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ABSTRACT

Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are
rare today, integrated over time they may be an important pathway to the red sequence. This work
uses SDSS, GALEX, and WISE observations to identify the evolutionary sequence from starbursts
to fully quenched post-starbursts in the narrow mass range log M (Mg) = 10.3 — 10.7, and identifies
“transiting” post-starbursts which are intermediate between these two populations. In this mass
range, ~ 0.3% of galaxies are starbursts, ~ 0.1% are quenched post-starbursts, and ~ 0.5% are the
transiting types in between. The transiting post-starbursts have stellar properties that are predicted
for fast-quenching starbursts and morphological characteristics that are already typical of early-type
galaxies. The AGN fraction, as estimated from optical line ratios, of these post-starbursts is about 3
times higher (2 36 4+ 8%) than that of normal star-forming galaxies of the same mass, but there is a
significant delay between the starburst phase and the peak of nuclear optical AGN activity (median
age difference of = 200 + 100 Myr), in agreement with previous studies. The time delay is inferred by
comparing the broad-band near NUV-to-optical photometry with stellar population synthesis models.
We also find that starbursts and post-starbursts are significantly more dust-obscured than normal
star-forming galaxies in the same mass range. About 20% of the starbursts and 15% of the transiting
post-starbursts can be classified as the “Dust-Obscured Galaxies” (DOGs), with near-UV to mid-IR
flux ratio of = 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst
phase and AGN activity suggests that AGN do not play a primary role in the original quenching of
starbursts but may be responsible for quenching later low-level star formation by removing gas and
dust during the post-starburst phase.

Subject headings: galaxies: active, galaxies: evolution, galaxies: formation, galaxies: starburst, galax-

ies: stellar content, galaxies: structure

1. INTRODUCTION

Galaxies show bimodality in their colors, morpholo-
gies, and star formation rates both locally and at
high redshift (e.g., [Strateva et all 12001
2004; Bell et al! IZD_OA Brammer et all 2009). Tt is
thought that star formation quenching causes “blue
cloud” galaxies to migrate to the “red sequence”
(Bell et al! [2004; [Faber et al! 2007). A wide variety
of quenching mechanisms have been proposed to ex-
plain the observed bi-modal galaxy properties (e.g.,
Di_ Matteo et all 12005; Keres et all 2005; |Croton et all
2006; Dekel & Birnboim [2006; [Hopkins et all [12006;
Somerville et al! [2008; Martig et all2009). These mech-
anisms quench star formation by heating up gas in the
galaxy (halo), stabilizing it against collapse, or (rapidly)
using it up or expelling it from the galaxy. These quench-
ing mechanisms can be classified broadly into two modes:
fast and slow. The slow mode occurs when star formation
gradually fades, probably due to simple gas exhaustion
over timescales longer than 2 1 Gyr, and it does not re-
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quire any special triggering event such as mergers (e.g.,

[2007; Fang et all2013). On the other hand,
rapid quenching is often identified with a triggering event
associated with a merger-induced starburst and the re-
sulting feedback (from either the starburst or from an
associated AGN) that rapidly removes or exhausts the
gas (e.g.,Sanders et all[1988; [Hopkins et al![2006). This
work focuses on rapidly quenching or recently quenched
galaxies.

(Quenched) post-starburst galaxies, also known as
K+A or E+A Sgalaxies (e.g., Dressler & Gunnl [1983;
Zabludoff et all [1996; |Quintero et all [2004), offer a
unique view into galaxy evolution because they are be-
lieved to be recently quenched starbursts rapidly transi-
tioning from the blue cloud to the red sequence. They
may contain lingering signatures of a quenching process
imprinted on their spectral and structural properties.
The fact that these galaxies have unusually large A-star
populations but lack younger stars has been interpreted

6 The term “K+A” refers to a galaxy with significant popula-
tions of both (old) K stars and (young) A stars, indicative of rapidly
quenched recent star formation. The term “post-starburst” tradi-
tionally refers to a K+A galaxy that was necessarily preceded by a
starburst. We use the terms K+A and post-starburst interchange-
ably. We often use the term K+A in a general sense when we refer
to related past studies. We avoid the term “E4+A” which refers to
a quenched galaxy with early-type morphology and a young stellar
population, because we show that many starburst galaxies already
have compact and early-type morphologies before quenching into
post-starbursts.
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as evidence for recently quenched starbursts.

Theoretically, post-starburst galaxies might be the
end-product of galaxy mergers (Hopkins et all 2006,
2008; Bekki et al! 2001, 2005; [Snyder et all 2011). In
gas-rich model mergers, tidal torques channel gas to
galaxy centers and power intense nuclear starbursts

(1991, [1996). The gas channeled
to the centers may also lead to the onset of ob-
scured nuclear AGN activity (Di Matteo et al! 2005;
[Hopkins et al! [2006). At the end of the starburst, af-
ter gas has been exhausted by the starburst itself and Jor
expelled by stellar feedback, the leftover gas and dust ob-
scuring the active galactic nucleus (AGN) are cleared out
due to feedback from the AGN (Springel et all 2005a/b;
[Hopkins et all 2006 [2007; Hopkins et all
2008; &M@M 2012). Consequently, star
formation and further black hole growth are halted.
Then the galaxies pass through the quenched post-
starburst phase before they passively age and become
“red and dead”. This work aims to test this hypothesis
in detail.

Using galaxy merger simulations, [Snyder et all (2011))
have constrained the typical K+A life-time of merger-
induced post-starbursts to be < 0.1 — 0.3Gyr (cf.
Falkenberg et all2009; (Wild et all2009). They find that
the presence of AGN makes almost no difference to the
evolution of the post-merger spectrum in their simula-
tion without diffuse dust. However, with diffuse dust,
they find that including AGN accretion results in a longer
K+A phase with stronger Balmer absorption lines than
without this accretion. Their interpretation of this re-
sult is that AGN feedback does not itself directly shut
off a starburst but rather serves to remove the leftover
obscuring dust around the post-starburst population in
the nucleus, thereby enhancing the Balmer absorption
features.

Consistent with the merger origin, past observational
studies of morphology and kinematics of K+A galaxies
in the field hint that they are merger remnants on the
way to becoming early-type galaxies (Norton et alll2001;
Quintero et all[2004; [Goto [2007). As such, they display

both early-type morphologies and signs of interactions
[1982: [Zabludoff et al) 1996: Quintoro cf al
[2004; Balogh et all [2005; [Yang et all 2008; [Pracy et all
2009). Similarly, many post-starburst galaxies are ob-
served to be blue-centered with positive color gradi-
ents and have central (within ~ 4kpc) A star popu-
lations (e.g., Yamauchi & Gotd [2005; |Goto et al! 2008;
IZDDE [Swinbank et all l2Ql2|)

Identifying the mechanisms responsible for quenching
star formation in post-starbursts is still an outstanding
problem after thirty years since their discovery. The rest
of this section highlights special problems that plague
post-starburst studies and have consequently hampered
progress in understanding feedback in these systems. A
brief discussion of how these problems are addressed in
this paper is also presented. The key novel feature of this
work is that it broadens the definition of post-starburst
using multi-wavelength galaxy colors and spectral indices
and thereby identifies AGN in post-starbursts more com-
pletely and consistently.

1.1. Finding a more complete sample of post-starbursts

Post-starbursts are rare galaxies, especially at low red-
shift (Wild et all [2009). They comprise < 1% of all
galaxies at z ~ 0.1 [2012). Furthermore,
these galaxies tend to evolve through regions of param-
eter space populated by normal galaxies. For these two
reasons, post-starbursts are hard to distinguish from
the underlying, slowly quenching normal galaxies. Be-
cause of this difficulty, the conventional definition of
post-starburst is restricted to quenched post-starbursts
with weak or no emission lines. The problem is that
this definition excludes any transiting (quenching) post-
starbursts with on-going star formation or strong AGN
activity, which may be a key link between starbursts and
the quenched post-starbursts.

In this work, we strive to directly link starbursts and
post-starbursts by using a variety of novel yet plausible
criteria to identify a more complete sample of objects
that are in transit between the starburst phase and the
fully quenched post-starburst phase. [(Wild et all (2010)
traced the evolution of local bulge-dominated galaxies
during the first 600 Myr after a starburst using principle
component analysis of stellar continuum indices around
the 4000 A break.

Our work is complementary to [Wild et all (2010) in
some of its main results but it is quite different in its
overall methodology and analysis. For instance, we take
a multi-wavelength approach: while we use stellar contin-
uum indices to define some post-starbursts, we also apply
additional constraints, such as the dust-corrected global
near-UV to optical colors or near-UV to mid-IR colors.
The continuum indices are SDSS values measured in a 3"
aperture and may not be representative of a galaxy as a
whole. They are also not sufficient to identify heavily
dust-obscured post-starbursts, which happen to overlap
with normal galaxies in their spectral indices. To iden-
tify such objects we find that mid-IR colors are useful
augmentation.

Finally, one of the methods used in this work is to
identify common members of the starburst sequence in a
narrow mass slice around log M (M) ~ 10.5. This value
corresponds to the transition mass in the color-mass di-
agram where both star-forming and quiescent galaxies
are presently observed (Kauffmann et al!2003H). A nar-
row mass window approximately captures galaxies on
the starburst evolutionary sequence because the quench-
ing timescale (< 1 Gyr;lMammﬂleZDDj; Snyder et _all
@) is much faster than the merging timescale ( a typl—
cal local galaxy has a major merger rate of < 0.05Gyr ™!

2010)). Therefore, the precursors of post-
starbursts are unlikely to grow in mass via multiple merg-
ers in the time it takes them to quench. The burst
fraction (amount of new stars formed) in a merger is
typically < 20% of the total mass (Norton et all 2001;
[Balogh et _al!2005; Kaviraj et alll2007; (Wild et al![2009;
Swinbank et al! IJM) Hence, it also does not signifi-
cantly contribute to the mass increase on the starburst
sequence.

Even though a galaxy can be linked to its immediate
progenitors by its mass, mass by itself is not a sufficient
predictor of galaxy properties. Recent studies show that
structural parameters that combine mass and radius (i.e.,
stellar mass surface density, u. or velocity dispersion, o)
are better tracers of galaxy quenching

[2006; [Franx et all 2008; [Cheung et all|2012; [Wake et all
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2012; [Fang et all[2013). This work will examine whether
s and o of starbursts and post-starbursts are indicative
of quenching in these galaxies.

1.2. Finding all AGN, including a population of highly
obscured AGN.

Most previous studies on post-starburst galaxies ex-
cluded strong AGN because they adopted a restrictive
definition of post-starbursts as galaxies with weak or
no emission lines. [Wild et al! (2010) attempted to im-
prove this by defining post-starbursts using spectral in-
dices only, bypassing the need for (weak) emission line
requirements. However, heavily dust-obscured post-
starbursts and broad-line AGN are still excluded or miss-
ing from their sample. This work attempts to include
dust-obscured post-starbursts as part of the starburst
sequence. It also constrains the star formation rates
of broad-line AGN and investigates whether they are
preferential to a specific stage in the merger sequence
(e.g., Hopkins et all [2006). We use GALEX and WISE
photometery in our selection criteria of obscured post-
starbursts, and we use the WISE 12 ym luminosity as a
proxy for star formation rates (upper limits) of broad-
line AGN. In a follow up paper, we plan to do further
study on the star formation rates of broad-line AGN us-
ing far-infrared data.

Past studies of quenched post-starburst galaxies hint
that AGN are more common in these galaxies than
in normal galaxies (Yan et all [2006; |Georgakakis et al.
2008; Brown et all 2009). However, these past stud-
ies were explicitly biased against strong AGN (Seyferts)
since they excluded emission-line galaxies from their
post-starburst samples. These studies also cannot ex-
clude the possibility that the weak AGN signatures in
their post-starbursts are from “LINER-like” emission
unrelated to AGN activity (Cid Fernandes et al! 2011
Yan & Blanton 2012; [Singh et al! 2013). Regardless,
Yan et al! (2006) have found that 95% of their K+A
galaxies have LINER-like line ratios. Using a sample
of 44 K+A galaxies at z ~ 0.8,|Georgakakis et all (2008)
have found a higher fraction of X-ray sources in post-
starbursts (~ 15%) than in normal red-sequence galax-
ies (~ 5%). These sources are mostly low luminosity
AGN at best and have a hard mean stacked X-ray spec-
trum suggesting moderate levels of obscured AGN activ-
ity in the bulk of this population. Similarly, Brown et all
(2009) have found that a third (8/24) of their K+A
galaxies at z ~ 0.2 are X-ray sources with luminosities
of ~ 10%? ergs™!.

To improve on these previously incomplete estimates
of the AGN fraction in post-starbursts, we assemble a
large and less biased sample of post-starbursts which in-
cludes emission-line galaxies to robustly identify AGN.
This enables us to estimate the AGN fraction in transit-
ing post-starbursts for the first time. We will infer the
relationship between AGN and recent quenching in post-
starbursts from the AGN fraction, and the time interval
between the peak of starburst to the peak of AGN activ-
ity. If the AGN fraction is low, it indicates that AGN and
quenching of starbursts are likely not related. A signifi-
cant AGN delay might indicate a non-causal or secondary
relationship (e.g., a common fueling mechanism or later
additional quenching) between starbursts and AGN even
if AGN are more common in post-starbursts than in nor-

mal galaxies.

The rest of the paper is structured as follows. Section 2
describes the multi-wavelength data. Section 3 presents
the sample selection. Starbursts and the different classes
of post-starbursts are defined in this section. Section 4
investigates the AGN properties of post-starbursts. Sec-
tion 5 presents the bulge properties of post-starbursts
as an independent check on our sample selection. Sec-
tion 6 presents a discussion on the importance of post-
starbursts in the build-up of the red sequence. This
section also summarizes the main results of the paper.
Throughout the paper, an (Q,,, Qa, h) = (0.27,0.73,0.7)
cosmology is used. All magnitudes and colors are on the
AB system unless indicated otherwise.

2. DATA AND MEASUREMENTS

In the first three subsections, we will briefly describe
the SDSS, GALEX and WISE data used. In the later
subsections, we will describe the dust correction, galaxy
structural parameters and stellar population modeling
employed in the following sections.

2.1. SDSS

The Sloan Digital Sky Survey (York et al!l2000, SDSS)
is a large photometric and spectroscopic survey. It has
mapped out about a third of the celestial sphere with
its five filter band-passes, ugriz (Fukugita et all [1996).
The parent sample (§3.1) used in this paper comes from
SDSS Data Release 8 (DR, [Aihara et all [2011). The
SDSS DR8 has more value-added quantities essential for
the paper.

As described in|Aihara et all (2011), DR8 includes var-
ious galaxy physical parameters such as stellar masses.
Briefly, the stellar masses are estimated from ugriz pho-
tometery using the Bayesian methodology to calculate
the likelihood of each model star formation history (SFH)
given the data (Kauffmann et all|20034). The mass es-
timate assumes that the SFH is approximated by a sum
of discrete bursts and uses templates over a wide range
in age and metallicity. Thus, there should be no concern
over systematic differences between the stellar mass esti-
mates of starbursts, post-starbursts and normal galaxies.
In addition, the masses of these galaxies are dominated
by their old pre-burst stellar populations as the contri-
bution to the total mass from newly formed stars in a
burst is only 3 — 20% of the total mass (Norton et al.
2001; Balogh et alll2005; [Kaviraj et all[2007; [Wild et al.
2009; [Swinbank et all [2012).

DRS also provides spectral indices and emission line
measurements (Tremonti et alll2004;|Aihara et all2011)).
To measure the nebular emission lines of a galaxy, the
continuum is modeled as a non-negative linear combina-
tion of single stellar population (SSP) template spectra
generated using the Bruzual & Charlot (2003) (hereafter
BC03) population synthesis code, and the best fitting
model is subtracted from the galaxy spectrum.

2.2. GALEX

We use UV data from the Galaxy Evolution Explorer
(GALEX, [Martin et all [2005) to to exploit the greater
sensitivity of its near-UV (mypy < 20.8) band to re-
cent star formation. The near-UV (1771 - 2831 A) imag-
ing data have a spatial resolution of 6-8” and 1” as-
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trometry. The data come from the cross-matched cat-
alog between GALEX GR6 against SDSS DR7. This
catalog is available through the GALEX CASJobs in-
terface”. At fainter UV magnitudes, GALEX loses red
galaxies because they drop below the GALEX detection
threshold. About 82% (~ 220,000) of galaxies in SDSS
spectroscopic sample (m, < 17.77), in the redshift of in-
terest for this work (0.03 < z < 0.1), have a GALEX
counterpart within 5”. Adopting brighter r-band limit
gives higher completeness (= 90%) but excludes signifi-
cantly more post-starbursts (see [Wyder et all (2007) for
a discussion of GALEX completeness relative to SDSS).
Since post-starbursts (including dust-obscured ones) are
mainly in the blue cloud and green valley, the GALEX in-
completenss is less likely to affect our results significantly.
Furthermore, about 10% of the post-starburst galaxies
have multiple GALEX matches within 5”. Although the
GALEX photometery for post-starbursts with multiple
matches may not be accurate, we do not exclude them
lest we systematically exclude merging systems. About
90% of these post-starbursts are significantly dust ob-
scured compared to normal galaxies. The exclusion of
these post-starbursts does not significantly alter any of
our main results.

2.3. WISE

The Wide-field Infrared Survey Explorer (WISE,
Wright et all 2010) performed an all-sky survey with
photometery in the 3.4 um, 4.6 pm, 12 um, and 22 ym
bands. We used the Infrared Science Archive (IRSA)®
to match SDSS galaxies with the closest WISE sources
within a 5” radius. About 99 (92)% of SDSS galax-
ies with 5”(2”) GALEX matches have corresponding
matches in WISE. We use WISE data to study obscured
star formation and AGN properties of post-starburst
galaxies.

2.4. Dust correction

The main purpose of the dust correction is to re-
duce the number of dusty obscured emission-line galax-
ies, which otherwise masquerade as post-starbursts. We
use the Balmer decrements, Ho/HS3, with the physi-
cally motivated two-component dust attenuation model
ofCharlot & Fall (2000) to correct for attenuation of the
nebular emission lines by dust. In the two-component
model, the diffuse dust accounts for 40% of the optical
depth at 5500 A while the denser birth-cloud dust ac-
counts for the other 60% (Wild et all 2011b). The op-
tical depth of the dust is assumed to be a power-law of
the form 7y oc A™%7 for the diffuse dust and 7, oc A~13
for the birth-cloud dust. We adopt this model because
it has a physical basis and is broadly consistent with ob-
servations (Wild et all[2011h).

In addition, we correct the continuum fluxes (i.e., inte-
grated magnitudes) using the empirical relationship be-
tween the emission line and continuum optical depths
found in [Wild et al! (2011a) and their empirical stellar
attenuation curve. They found that Balmer emission
lines experience two to four times more attenuation than
the continuum at 5500 A. We apply the dust correction

7 http://galex.stsci.edu/casjobs/
8 http://irsa.ipac.caltech.edu/Missions/wise.html

only on galaxies whose Ha and Hf3 lines are well mea-
sured (with signal-to-noise ratio (SNR) > 1). Galaxies
with undetected or low signal-to-noise Balmer emission
lines are not dust-corrected and their observed quanti-
ties are used as the intrinsic ones. We assume the dust-
free Case B recombination ratio of Ha/H/5 = 2.86 for H1I
regions (Osterbrock [1989) and Ha/HB = 3.1 for type II
AGN (Veilleux & Osterbrock [1987).

The Balmer decrements are measured within the 3”
fiber and do not reflect the galaxy-wide values, as there
are dust gradients across galaxies (Munoz-Mateos et al.
2009; (Wild et al! 20114). We make an approximate cor-
rection for this effect following [Wild et all (20114).

We also correct for Galactic extinction of optical fluxes
using the catalog values provided in SDSS DRS8 and of
the NUV fluxes assuming a ratio Ayuyv/E(B—V) = 8.2
(Wyder et all [2007), where Axyvy is the NUV Galactic
extinction and F(B — V) is the B — V' color excess.

More details on the dust correction can be found in
Appendix [Al where it is shown that our post-starburst
selection does not significantly depend on the detailed
assumptions of the dust correction described above. For
instance, using single foreground screen model for dust
distribution |Calzetti et all (2000), we recover 85% of
PSBs selected using the two-component dust attenuation
model. However, the single-component model identifies
~ 15 — 25% more PSB candidates, which may also be
dusty contaminants. Throughout the paper, the sub-
script ‘dc¢’ on a given quantity denotes dust-correction.
For example, W, 4c denotes a dust-corrected Ha equiv-
alent width (W, ).

2.5. K-correction

In addition to the dust correction, all galaxy magni-
tudes and colors used in this work are k-corrected to z =
0 using the public kcorrect IDL code (Blanton & Roweis
2007). The GALEX NUV magnitude and the five SDSS
ugriz magnitudes are used in estimating the k-correction.

2.6. Structural parameters

This section describes three structural parameters used
to study the relationship between star formation quench-
ing and bulge growth.

The stellar surface mass density is defined as the ra-
tio of half the total stellar mass to the half-light Pet-
rosian z band area, . = M., /2w R3 ,. Kauffmann et all

(2006) found that . is inversely proportional to the con-
sumption time of the accreted gas from a galaxy halo
(i.e, the burst decline time). They suggested that a high
stellar surface mass density may be connected to bulge
formation through a nuclear starburst and quenching of
star formation. However, [Fang et al! (2013) showed that
the mass surface densities as defined above may exag-
gerate structural differences between blue and red galax-
ies because they use a light-profile based radius as op-
posed to mass-profile based radius. We use p. as defined
above only to show that starbursts and post-starbursts
are both bulge-dominated galaxies, unlike most normal
star-forming galaxies.

The velocity dispersion, o, corrected to 1/8 of the effec-
tive radius, 7., is estimated from the velocity dispersion
measured within the 1.5” radius fiber, 01 5, using the re-
lation: o = 01 5(8 x 1.5” /1r,)-9% (Cappellari et alll2006).
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015 is measured by the SDSS idlspec2d pipeline using
broadened stellar PCA templates (Aihara et all 2011).
For r., we use the weighted average of the circularized
r-band radi of the de Vaucouleurs profile (7e gev) and ex-
ponential profile (reexp) : Te = fdev X Te,devy/b/a+ (1 —
fdev) X Teexpy/b/a, where faey is a coefficient that char-
acterizes a galaxy image as a linear combination of a de
Vaucouleurs profile and an exponential profile (available
in the SDSS catalog).

The color gradient, Volor, is defined as the difference
between the g — r galaxy-wide color and the 2 g — r
aperture color. The 2” aperture magnitudes are available
in SDSS DRS8. The global galaxy colors are derived from
model magnitudes by fitting the galaxy light with either
de Vaucouleurs or exponential profile.

Previous studies have used color gradients defined
based on 3" apertures (Roche et alll2009; Bernardi et al.
2011). We define V¢o1or using the 2” aperture instead to
better probe galaxy centers. For instance, about 90%
of galaxies in the parent sample have half-light r-band
areas that are twice the 2 aperture areas at the corre-
sponding redshifts. In comparison, only ~ 60% of the
galaxies have half-light areas that are twice the 3" aper-
ture areas. We note that this is the only time we use a
quantity measured within a 2" aperture.

Positive Volor means blue-centered (young bulge),
negative Violor means red-centered (old bulge) and
Veolor ~ 0 means a uniform color throughout a galaxy.

2.7. Stellar population modeling

To illustrate how a starburst evolves in some of our
diagrams, we overplot [Bruzual & Charlot (2003) model
tracks on these diagrams. To do so, we model SFHs of a
post-starburst as a superposition of an old stellar popula-
tion initially starting to form at time ¢ = 0 and following
a delayed exponential SFH of the form ¢ o texp(—t/7)
with e-folding time 71 = 1 Gyr (cf. [Kriek et all 2011)
plus a young stellar population formed in a recent burst
at t = 12.5Gyr (2 ~ 0.1) with exponentially declining
SFH, ¢ x exp(—t/72) and 72 = 0.1 Gyr (cf. Kaviraj et al.
2007; [Falkenberg et all2009). The SSP models assume
Chabrier (2003) IMF, a solar metallicity for SFH before
the recent burst, and 2.5 solar metallicity for the recent
burst. A superposition of the two SFHs with varying
burst mass fraction (bf ~ 3% —20%) generally describes
the starburst to post-starburst evolution. Because of the
well-known burst mass-age degeneracy, the ages of the
post-starbursts depend on the assumed decay timescale.
In Appendix [Bl we quantify the effect of using different
decay timescales (72 = 0.05 Gyr or 75 = 0.2 Gyr) instead
of our adopted one. The model tracks overplotted on the
data in some of our figures mainly serve to facilitate the
interpretation of the data, and our post-starburst selec-
tion is purely empirical: it does not explicitly use the
models.

2.8. Galazy merger simulation

To further justify our selection of dust-obscured post-
starburst galaxies, we use results from the M2M2 simula-
tion presented in [Lanz et all (2014) and [Hayward et al.
(2014), which is an equal-mass merger of two disk galax-
ies. Each disk galaxy is composed of a dark mat-
ter halo, gaseous and stellar exponential disks, and a

bulge. The progenitor galaxies each have a stellar mass
of 1.1 x 10'*° M and a gas mass of 3.3 x 101°M. See
Lanz et all (2014) for full details of the specific simula-
tion used.

The merger was simulated using the smoothed-particle
hydrodynamics code GADGET-3 (Springel et all 2005a).
The simulation includes models for star formation
and stellar feedback (Springel & Hernquistl 2003) and
black hole accretion and AGN feedback (Springel et al.
2005H). In post-processing, the three-dimensional dust
radiative transfer code SUNRISE (Jonsson et all [2006;
Jonsson et alll2010) was used to calculate synthetic UV—
mm SEDs of the simulated merger at various times
throughout the merger. SUNRISE uses the stellar and
AGN particles from the GADGET-3 simulation as sources
of radiation and calculates the effects of dust absorption,
scattering, and re-emission as the radiation propagates
through the dusty ISM of the simulated galaxies. SUN-
RISE calculates SEDs and images from arbitrary viewing
angles. For clarity, we show only results from a single
viewing angle in this work. SeelJonsson et all (2010) and
Hayward et all (2011) for further details of the SUNRISE
calculations.

3. SAMPLE SELECTION

This section presents the parent sample, and details on
how starbursts and post-starbursts are selected from this
sample.

3.1. The Parent Sample

The basic sample selection is shown Figure[ll The sam-
ple consists of a SDSS/GALEX/WISE-matched volume-
limited sample (0.03 < z < 0.1) in a narrow stellar mass
range of log M (Mg) = 10.3 — 10.7. We call this sam-
ple of ~ 67,000 galaxies the parent sample. The chosen
mass range roughly corresponds to the transition mass
in the color-mass diagram (Figure [Ib) from lower-mass
star-forming blue galaxies to higher-mass quiescent red
galaxies (Kauffmann et all[2003b). We located the cen-
ter of the mass bin on the lower end of the transition
mass because post-starbursts are preferentially found in
smaller-mass galaxies, unlike slowly transitioning galax-
ies which dominate at higher masses (see also[Wong et. al.
2012). Moreover, restricting the redshift to be less than
0.1 ensures higher GALEX completeness of the parent
sample to red-sequence galaxies. As discussed in §1, the
starburst-to-post-starburst evolution is followed in the
narrow mass-slice because mass likely does not increase
significantly more than a factor of 2 along the starburst
sequence.

As schematically outlined in Figure [2 the next three
subsections describe in detail the selection of starbursts
and post-starbursts from the parent sample. Starbursts
are selected to have Ha emission equivalent width above
175A. The selection of post-starbursts generalizes the
conventional definition to encompass both quenching
and quenched objects. The conventional post-starbursts,
which are characterized by weak or no emission lines but
strong Balmer absorption lines, are termed as “Quenched
Post-starbursts (QPSBs)” in this paper. Transiting post-
starburst (TPSB) galaxies, which precede quenched post-
starbursts but come after the starbursts, are selected in
two ways. The first selection is based on the distinctive
evolutionary path that starbursts and post-starbursts fol-
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FiG. 1.— Panel a): Redshift versus stellar mass. The black points are galaxies in the SDSS-GALEX-WISE-matched catalog. Panel
b): Dust-corrected NUV — g color versus stellar mass for galaxies in redshift range 0.03 < z < 0.1. This study uses a volume-limited
parent sample of galaxies in a narrow mass slice around the transition mass between the blue-cloud and the red-sequence. The hatched
regions in both panels define the parent sample (log M (Mg) = 10.3 — 10.7 and 0.03 < z < 0.1). It is known that quenched post-starburst
preferentially occupy the low-mass end of the green valley (Wong et all[2012). Hence, we chose the lower mass end of the transition mass.
The horizontal dashed lines approximately demarcate the blue cloud, the green valley and the red sequence.
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Fic. 2.— Schematic outline of our starburst and post-starburst selection. Identifying a reasonably complete transiting post-starburst

population between the starbursts and the quenched post-starbursts is the major new aspect of this paper. The TPSBs are identified by
combining their GALEX and/or WISE photometery with with their optical photometery and spectral indices.

low in the 3D parameter space defined by dust-corrected
NUV — g color, H§ equivalent width and the 4000 A
break. Objects in this first class are called “Fading Post-
starbursts (FPSBs)”. They are clearly offset from nor-
mal galaxy locus in the parameter space that defines
them. The second selection of TPSBs uses GALEX and
WISE photometery to identify dust-obscured transiting
post-starbursts, which are simply referred as “Obscured
Post-starbursts (OPSBs)”. We will later show that both
classes of transiting post-starbursts have similar proper-
ties (e.g., morphology) and that OPSBs generally pre-

cede the FPSBs.

The above discussion has isolated four classes of SB
and PSB galaxies, we now proceed to explain how the
four classes are selected.

3.2. Starbursts

A starburst has been defined in at least three ways
(Knapen & Jamed [2009). The definition we adopt con-
siders a starburst as a galaxy with a temporarily higher
current SFR than its past average by a factor of 2 — 3
(e.g., Brinchmann et all [2004; [Kennicutt et all 2005).
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This can be quantified by a threshold in the equiva-
lent width of Ha (Wn,). Galaxies with ratios of cur-
rent to past average SFR greater than two or three have
(dust-extincted) Wy, > 80 — 110 A (Lee et all 2009;
McQuinn et all [2010).

We define a starburst as a galaxy with dust-
corrected WHa,de > 175A . This threshold corresponds
to 2 20 deviation from the mean Wpg gc distri-
bution of star-forming galaxies in the parent sam-
ple (star-forming galaxies are objects below the max-
imum starburst boundary of [Kewley et all (2001) in
the BPT diagram). We note that a starburst with

Wi > 80 — 110 A and nebular extinction Ay = 1 will

~

have Wiq,dc 2 125 — 175 A if the continuum is extincted
less than the gas by a factor of two, as observed in star-
bursts (Calzetti et al![2000). Our starbursts have a me-
dian Ay of 2.3 and (fiber) SFR of about 10 Mg yr=* (spe-
cific SFR of about 102 yr=1). For comparison, the typ-
ical SFR of a normal star-forming galaxy in the parent

sample is about 1 Mg yr—1.

3.3. Quenched Post-Starbursts (QPSB)

The conventional post-starburst galaxies are charac-
terized as having no detectable or weak current star for-
mation, but with significant star formation in their re-
cent past (< 1Gyr). These two underlying characteris-
tics have been quantified using various spectral signa-
tures. The lack of ongoing star formation is inferred
from weak Ha and/or [O1I] emission lines. The episode
of significant recent star formation is inferred from the
presence of strong Balmer absorption lines (H¢ 2 4A),
indicative of intermediate-age stars (A stars) or from
the relative ratio of young to old stars or from the
comparison of Balmer absorption lines to 4000 A break
strength (e.g., [Zabludoff et all|1996; [Balogh et all|1999;
Blake et al! 12004; [Poggianti et all [2004; |Quintero et all
2004; [Yang et al! 2004; |Goto 2007; Wild et al! 2007%;
Yan et all[2009).

Figure B shows the dust-corrected equivalent width
WHa,de in emission versus Wys in absorption, after the
emission line infill correction. This diagram is used to
define QPSBs, which will help us motivate and explore
how such a conventional definition of post-starburst can
be improved on to include emission line galaxies (AGN
or star-forming post-starbursts).

The grey points in the figure represent all galaxies in
the parent sample. For the majority of galaxies, Wha,dc
and Wpgys are well-correlated with some scatter. Nor-
mal® star-forming galaxies form an elongated concentra-
tion above Wy, 2 10A and Wys > 2 A while quies-

cent galaxies clump below Wrq de S 3Aand Wys <

1 A. Galaxies undergoing starburst or rapid quenching
move vertically in this diagram (e.g., [Shioya et all|2001;
Quintero et all 2004). Galaxies undergoing strong star-
burst lie above the star formation sequence, while re-
cently quenched post-starbursts lie below the sequence.

We define quenched post-starbursts as galaxies with
Wha,de < 3A and Wgs > 4 A. We consider only QPSBs
with well-measured Wys (SNR, > 3) and Wy, (contam-
inants with bad Ha equivalent width measurements due

9 The adjective “normal” is used throughout the paper to de-
scribe galaxies that have not undergone a large burst (> 10%) of
star formation recently (< 1 Gyr).

to spectral gaps around Ha are excluded). QPSBs are
denoted by (red) squares and are found in the lower-
right corner of Figure Bl The (blue) stars in the top-
right corner represent the starburst galaxies selected in
the previous subsection (Wq ac > 175 A). A large gap
exists between starbursts and QPSBs, which must con-
tain many transiting objects if the basic picture of ag-
ing starbursts in this paper is correct. Identifying these
transiting post-starbursts is the next goal of this paper.
The (green) circles and the (brown) Xs represent the two
types of transiting post-starbursts that are found in the
next subsection.

3.4. Transiting Post-starbursts (TPSB)

This subsection will describe our two ways of identify-
ing TPSBs. Because of its similarity to that of previous
works, the selection of FPSBs is described first for con-
venience, but FPSBs actually come after the OPSBs in
time.

3.4.1. Fading Post-starbursts (FPSB)

Figure [ illustrates the point made in the introduc-
tion that it is difficult to identify the transiting post-
starburst population without additional constraints be-
cause they mostly overlap in this figure with the normal
(non-bursty) star-forming galaxy sequence. However, it
is possible to find these transiting objects by using other
combinations of colors and spectral indices. For this pur-
pose, Figure [] shows 2D projections of the 3D parame-
ter space defined by the 4000 A break, D,,(4000)4c, Wis,
and (NUV — g)qc.

D,,(4000)q. and Wy, are often used to distinguish re-
cent star formation histories dominated by bursts from
those that are more continuous (Kauffmann et al![2003a;
Martin et all 2007; [Wild et all 2007). D,,(4000), probes
the mean temperature of the stars responsible for the
continuum and is a good indicator of mean stellar popula-
tion age (Bruzual A/l1983; Kennicutt[1998; |Balogh et al
1999). Tt is also much less sensitive, but not impervious,
to dust effects (MacArthur 2005). We correct for (pos-
sibly small) dust effects on D,,(4000) using the average
attenuation in the narrow wavelength range in which it
is defined.

The (NUV — g)q4c color is sensitive to young massive
stars and as a result it evolves rapidly in rapidly quench-
ing galaxies. It provides an additional lever arm that
can be used to cleanly separate galaxies that are rapidly
quenching from the general star-forming population. The
fact that (NUV — g)q. color is an integrated galaxy-wide
photometric quantity also makes it complementary to
D,,(4000)4. and Wy, which are spectroscopic quantities
measured within a 3" aperture and therefore may not be
representative values of the entire galaxy. We select the
fading post-starbursts as galaxies that are outliers from
normal galaxies in (NUV — g)4. and Wys at a given
D,,(4000)4c.

As shown in Figure @h, D,,(4000)4. and Wy, are well-
correlated for normal galaxies with smooth SFHs. Galax-
ies with bursty histories are found off the main relation,
as shown by the (orange and navy) curved BC03 model
tracks, which represent bursty SFHs. The (magenta)
dashed curve across the main sequence denotes the fourth
order polynomial fit to the normal data (see Appendix [C]
for more information).
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F1G. 3.— The dust-corrected Ho emission equivalent width (Wgq,dc) against Héa absorption strength(Wys) for the galaxies in the
parent sample (grey), starbursts (blue stars), fading post-starbursts (FPSBs; green circles), obscured post-starbursts (OPSBs; brown Xs),
and quenched post-starbursts (QPSBs; red squares). This diagram defines starbursts and QPSBs only, as galaxies lying above the upper
horizontal line and below the lower horizontal line; FPSBs and OPBS are defined by the next figures. The definition for each class is given
in §3 and the number of galaxies in each class is indicated on the plot. The histograms show distributions of the Hao EW for star-forming
galaxies with well-measured emission lines (shaded sky-blue histogram) and the parent sample. As shown by the blue curve, the distribution
of Hoe EW for star- formlng galaxies is well fit by a log-normal distribution with ¢ = 1.5 and ¢ = 0.35. We define starbursts as objects with

WHa,de > 175 A, which is more than 2o from the mean.

Figure @b plots dust-corrected (NUV — g)q. color ver-
sus D,,(4000)4c. In this figure, two clouds of points are
visible for normal galaxies, the blue-cloud of young star-
forming galaxies to the upper left, and the quenched
old and red galaxies to the lower right. The (magenta)
dashed curve across the two clouds again denotes the
fourth order polynomial fit to the normal data (see Ap-
pendix [C)). Galaxies with bursty star formation histories
deviate off the main relation to the lower left.

In both Figures @ a&b, the starbursts and the
quenched post-starbursts are located at the extrema of
the burst tracks. SBs are found at the tip of the blue-
cloud, with very blue (NUV —g)q. color, low D,,(4000)q4¢
and relatively high Wys. Likewise, QPSBs are also lo-
cated off the main relation for normal galaxies, with very
red (NUV — g)q. color, intermediate D,,(4000)q. and rel-
atively high Wys. The FPSBs are located in the inter-
mediate region between starbursts and quenched post-
starbursts in both figures. Hence, both (NUV — g)q4c
and Wy are useful to identify this population.

FPSBs are selected quantitatively as objects that are
more than 2 ¢ outliers from normal galaxies in (NUV —
g)dc and Wys. This is illustrated in Figure Ek, which de-
picts the difference in (NUV — g)qc color, A(NUV —g),
and the difference in H§ equivalent width, A(HJ), from
the polynomial fit values at a given D, (4000). The
FPSBs are indicated by the (green) circles. The (pur-
ple) ellipse encloses most normal galaxies at the 2o
level. Thus, FPSBs are selected to be well outside
the normal galaxy locus (defined by the purple ellipse)
with well-measured A quantities (A(Hd)/o(Hd) > 3 and
A(NUV — g)/o(NUV — g) > 3, the os denoting the
measurement errors of Ho and NUV — g). This method

of selecting post-starbursts recovers almost all of the
quenched post-starbursts from Figure B] and identifies
many FPSBs (IV ~ 105). By using (NUV — g)q. color as
an additional selection criterion, specifically by requir-
ing A(NUV — g) > 0, a large number of contaminants
(N ~ 50) are removed. A significant number of these
contaminant galaxies show color gradient (have red cen-
ters but blue outer parts) and are (edge-on) disk galaxies.

In Figure @d we plot (NUV — g)qc color versus Wys,
a variant of Figure [ in which Wy 4c is replaced by
(NUV — g)qc color. The overall trends of this figure
and Figure [ are similar. We previously used A(NUV —
g) and A(HJ) in our selection because a starburst will
cause these deviations in this diagram. By construction,
the FPSBs do not overlap with normal galaxies in this
diagram. There is also minimum overlap in Figure Eh,
and the overlap in Figure @b is a projection effect. The
selection in 3D space cleanly separates FPSBs because it
removes contaminants that are offset from normal galaxy
in Figure [@h but not Figure [@d. Perhaps the offset of
these contaminants in Figuredh is due to the fiber effect
of SDSS spectra.

The selection of the TPSBs employed so far only iden-
tifies objects that are significantly offset from the normal
galaxy locus and therefore misses a subset that overlaps
with the normal galaxies (or those whose colors and spec-
tral indices are not well-measured). This is evident from
the small gaps between the SBs and the FPSBs in Fig-
ure [ & @l The next subsection will describe how some
of these missing objects are identified.

3.4.2. Obscured Post-starbursts (OPSB)
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BCO03 burst tracks with star formation timescales, 72 = 0.1 Gyr and burst mass fraction (bs) 3% or 20%. Panel ¢ shows the difference
in Wyg and (NUV — g)gqc from the polynomial fit at a given D, (4000). The FPSBs are selected if they are found in the upper right
corner and outside the (purple) ellipse, which encloses normal galaxies at the > 20 level. The typical errors in each panel for transiting

post-starbursts are shown as green crosses.

As discussed in the introduction, we aim to test
the merger-driven evolutionary framework for post-
starbursts.  Theoretically, it is thought that major
mergers naturally result in highly dust-obscured
galaxies (Hopkins et al! [2006; |[Jonsson et all [2006;
Chakrabarti et al!  2008; [Narayanan et all  [2010;
[Hayward et all [2012).  Since PSBs are believed to
be the results of such mergers (Hopkins et al IZDDH,
2008; Bekki et all 2001, 2005; Snyder et all 2011),
is plausible that they exist in dust- obscured phase as
they quench (Poggianti & Wu 2000;

Shioya et al) 2001). Thus, we search for dust- obscured
objects in our sample that likely bridge the gap between
SBs and FPSBs. These objects have similar spectral
indices and near UV colors as normal galaxies and
therefore could not be identified in the previous section.

Figure [ plots the flux density ratio between WISE
12 pm and GALEX NUV, fi9,m/fo.2um versus the ra-
tio of WISE 4. 6,um to WISE 3. 4,um The le,um/fO 2um
ratio roughly quantifies the amount of obscured ver-
sus unobscured star formation (Narayanan et all [2010;

2013). We consider galaxies with
fiopm/fo.2um > 200 as significantly dust-obscured

(cf. [Narayanan et all [2010). Local DOGs have
f12,m/f0.2um > 892 (Hwang & Geller 2013). According
to our definition, 69% of the starbursts, 45% the FPSBs
and the 20% QPSBS are Signiﬁcantly dust-obscured.
Likewise, 20% of the starbursts and 8% of the FPSBs
are classified as DOGs. In comparison, only about 13%
of galaxies in the parent sample are significantly dust-
obscured and only 0.8% are DOGs.

The fact that starbursts and post-starbursts selected
thus far are significantly more dust-obscured than normal
galaxies provides further motivation to select the second
class of transiting post-starbursts using Figure We
define the obscured post-starbursts (OPSBs) as galaxies
with Wys > 4A, f12um/f0.2um > 200 and f4.6um/f3.4um >
0.85 (the median value for SB is 0.8). Note that 20% of
the OPSBs are DOGs.

As further confirmation of the OPSB selection, Fig-
ure Bb shows how a simulated major merger evolves in
the f4.6,um/f3.4,um VS. f12#m/f0.2#m plOt The inset in this
figure shows the time evolution of the star formation rate
and AGN luminosity near the time of coalescence of the
galaxies (at ~ 1.13 Gyr). As the galaxies coalesce, a
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in the upper right box and with Wygs > 4 A. Many of the previously-selected starbursts (69%) and fading post-starbursts (45%) are as
obscured as OPSBs, even though this previous selection may be biased against obscured galaxies. We will later show these obscured
post-starbursts galaxies have similar properties as the fading post-starbursts. The dashed vertical line denotes the boundary for local
DOGs (Hwang & Geller 2013). Panel (b): The evolutionary path of a simulated merger-induced starburst. The merger model (triangles
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Two classic dust-obscured AGN, Arp 220 and NGC 6240, are shown for a reference. The inset plot shows that star formation declines
before the peak of AGN activity.
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strong starburst is induced. Simultaneously, the AGN
luminosity increases rapidly as the black hole particles
accrete gas. Because most of the gas in the galaxies
is consumed or heated (by shocks and AGN feedback)
during the starburst, the star formation rate rapidly de-
creases. The AGN continues to accrete for ~ 100 Myr
after star formation is terminated because the gas in-
flow rate needed to sustain the black hole accretion is
< 0.1Mg yr~—!, which is orders of magnitude less than
the star formation rate during the starburst. Dynami-
cal effects can also cause a delay between the maxima
in the star formation rate and black hole accretion rate
(Hopking [2012). Note that gas consumption, not AGN
feedback, is the dominant cause for the termination of
the simulated starburst. The effect of the AGN feedback
in the simulation is to further reduce the post-starburst
star formation rate and expel the remaining gas and dust
in the nuclear region (Hayward et alll2013; [Snyder et al.
2011)).

4. AGN AND THEIR CONNECTION TO
POST-STARBURSTS

Having identified plausible candidate galaxies on the
evolutionary pathway from starburst to quenched post-
starbursts, we now explore the possible connection be-
tween AGN activity and quenching in these objects.
The tight correlation between masses of galactic cen-
ter super-massive black holes (SMBH) and proper-
ties of host galaxy bulges (e.g., IMagorrian et all [1998;
Ferrarese & Merritt 2000; [Tremaine et al! [2002) imply
that galaxy evolution and SMBH accretion occur in a
long history of coupled growth and regulation (but see
Kormendy & Ha (2013) for a contrarian perspective on
co-evolution). Many semi-analytical models and the-
oretical simulations require AGN feedback to quench
star formation and correctly predict the observed color
bi-modality of galaxies and the shape of the galaxy
luminosity function (e.g., [Kauffmann & Haehnelti 12000;
Croton et _all2006; [Hopkins et al!2006; [Somerville et al.
2008; [Gabor et all[2011)).

The rapid quenching of post-starburst galaxies makes
them the ideal test-bed for AGN feedback models (e.g.,
Hopkins et all2006;|Snyder et alll2011};|Cen|2012). With
our samples spanning the whole post-starburst evolution-
ary path, we quantify the fraction of AGN hosts among
post-starbursts and their properties (stellar population
age, AGN strength, dust properties, etc). These quan-
tities may help us infer whether AGN are primarily re-
sponsible for quenching starbursts or not.

4.1. Optical AGN diagnostics

In Figure [6h, we show the BPT diagnostic using the
[O1M]/HB and [N1I]/He line ratios (Baldwin et all[1981;
Veilleux & Osterbrock [1987). The position of an ob-
ject in this diagram depends on its nebular metallic-
ity and the hardness of its radiation field. Thus, the
BPT diagram distinguishes between emission lines from
HII regions and AGN. AGN-dominated galaxies have
larger [O I11]/HB and [N II]/Ha ratios and occupy the up-
per right of the diagram, while the softer ionization of
HII regions means star-forming galaxies occupy the lower
left.

The dashed (magenta) curve demarcates the theoreti-
cal boundary for extreme starbursts, and galaxies above

this curve probably host AGN (Kewley et all 2001).
The solid (orange) curve demarcates the empirical lower
boundary for AGN (Kauffmann et all 2003d). Objects
below this curve are likely “pure” star-forming galaxies.
Galaxies between the boundaries of extreme starbursts
and “pure” star formation are thought to be mostly com-
posites of star formation and AGN, although some have
argued that unusual ionization in HII regions can lead
to starbursts without AGN lying in the composite region
(e.g., Brinchmann et all[200K). Similarly, galaxies in the
AGN region may also have some star formation contri-
bution, but their ionization state is dominated by the
AGN.

The starburst galaxies are distributed over the star-
forming and composite regions (25%) of the diagram
and only 3% are AGN. On the other hand, almost all
(93%) of the quenched post-starburst galaxies with well-
measured emission lines lie in the AGN region of the
BPT diagram (cf. [Yan et all|2006). This might indicate
weak AGN, although there is some evidence that photo-
ionization in weak emission-line galaxies such as QPSBs
can also be produced by shocks or post-asymptotic gi-
ant branch stars (Ho 2008; |Cid Fernandes et all 2011};
Yan & Blanton 2012; [Singh et all 2013). For instance,
Cid Fernandes et all (2011) have found that the ioniza-
tion in galaxies with (dust-extincted) Wpo < 3 A can be
sufficiently accounted for by ionization from hot evolved
stars without invoking AGN. The authors classified AGN
into Seyferts or Low Ionization Narrow Emission Re-
gion (LINER) galaxies if they have log([NII]/Ha) >
—0.4 and Wy, >6A or log([NII/Ha) > —0.4 and

3A < Wya <6A respectively. QPSBs are defined as
objects with Wxq g < 3A and accordingly they are
not LINERs, but they are LINER-like (objects above
the starburst boundary of (Kewley et alll2001) and with
Wha,de < 3 A).

The OPSBs and FPSBs bridge the starbursts and
QPSBs. This is consistent with our evolutionary path
from starburst to transiting to quenched post-starburst
galaxies, with star formation decreasing along the se-
quence as AGN emerge. 53% of the FPSBs and 37%
OPBSs are AGN while about 16% FPSBs and 49% of
OPSBs are composite. Therefore, about 36% and 35%
of transiting PSBs are AGN and composites respectively.
In comparison, only 10% and 32% of normal galaxies in
the parent sample with Wy gc > 3 A are AGN and com-
posites respectively.

Figure Bb presents the AGN fraction in transit-
ing post-starbursts using a bar chart. It subdivides
the (BPT) AGN into Seyferts and LINERs if they
have Whq,dc > 6Aor3A < Wha,de < 6A respectively.
Seyferts are about 5 times more common in transiting
post-starburst galaxies than in normal galaxies in our
chosen mass range. LINER-like objects are shown in the
figure for completeness, but our estimate of AGN fraction
in PSBs does not include such objects.

4.2. A delay between AGN and starbursts

In this subsection, we quantify the time delay between
the starburst and AGN phase.

Figure [ shows the distribution of (NUV — g)qc color
and D, (4000)q4. (i.e, observable proxy for age) of star-
bursts and AGN in transiting post-starbursts. The
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F1G. 6.— Panel (a) shows the BPT emission-line ratio AGN diagnostic for the parent sample, starbursts and post-starbursts whose emission
lines are detected with SNR > 3. The (magenta) dashed curve denotes the theoretical boundary for extreme starbursts (Kewley et al

[2001) while the solid (orange) curve denotes the empirical boundary of pure star-forming galaxies

[2003d). The diagram

shows that the quenched post-starbursts have LINER-like emission while transiting post-starbursts have both star formation and AGN-
dominated emission line ratios. The latter smoothly bridge the starbursts and the quenched post-starbursts. Panel (b) shows the percentage
of AGN in starbursts, post-starbursts and galaxies in the parent sample. LINERs are objects in AGN region of the BPT diagram with
3A < Whq < 6A while LINER-like objects are the corresponding objects with Wio < 3 A.

(NUV — g)4c color and D,,(4000)4. of TPSBs are sig-
nificantly offset to higher values (older age) compare
to values of starburst. The Kolmogorov-Smirnov test
(K-S test) indicates that the null hypothesis that the
(NUV — g)gc color and D, (4000)4. of starbursts and
TPSBs come from the same distribution (i.e, the two
population are coeval) can be rejected at o < 0.001 sig-
nificance level.

Furthermore, Figure [§ shows the z band-normalized
median and quartile SEDs of galaxies evolving from the
starburst to quenched post-starburst phase. We over-
plot BC03 models with SFR timescale, 75, of 100 Myr
and burst mass-fraction by of 20% at different ages in
order to indicate the time after the second burst. This
ballpark estimate shows that the median age of OPSBs
is about 400-500 Myr and there is 2 200 Myr gap be-
tween the median age of starbursts and and the AGN
hosts among TPSB. Because of the burst mass-age de-
generacy, the ages of the post-starbursts depends on the
decay timescale (72) assumed. As shown in Appendix [B]
models tracks with 7 = 0.05 — 0.2 can describe the star-
burst to post-starburst evolution while models with 7
outside this range are excluded since they would not
produce the observed population of post-starburst galax-
ies (cf. [2010). Therefore, in agreement with
the findings of several recent observational works (e.g,
Davies et alll2007; [Bennert et alll2008; [Schawinski et all
2009; (Wild et al! 2010), the time delay might range be-
tween 100 — 400 Myr depending on the assumed 7.

The significance of this time delay is that it strongly
suggests that AGN do not directly quench starbursts.
Recent theoretical works are converging to a view that,

in merger-fueled post-starburst evolution, AGN may pla;
a secondary or limited role in quenching m

22006; [Wild et all 2009; [Snyder et all 2011; [Cen 2012;
[Hayward et all [2013). In other words, a post-starburst
results from exhaustion of a bulk of its gas supply in a
starburst and/or from its expulsion by stellar feedback;
AGN feedback mainly reheats or ejects the remaining

gas that would otherwise fuel low-level star formation
over the next few billion years.

In particular, [Cerl ) proposed a new evolution-
ary model of galaxies and their SMBH. In this model,
starbursts and AGN are not coeval and AGN do not
quench starbursts. They argued that the main SMBH
growth occurs in the post-starburst phase, fueled by recy-
cled gas (cf. IScoville & Norman [1988; [Ciotti i
2007; Wild et al! 2010; Hopkins 2012) from aging stars
in a self-regulated fashion on a timescale that is sub-
stantially longer than 100 Myr. Our analysis supports
the [Cen ) model in that AGN are more frequent
in post-starbursts and they appear significantly delayed
from the starbursts phase. But as we will show later, we
do not find observational support for the model’s predic-
tion that a substantial (x10) black hole growth occurs
in the post-starburst phase compared to the starburst
phase.

4.3. Dust properties of AGN host

In Figure Bl we showed that more than two-thirds

of starbursts and more than a third of FPSBs are
significantly more dust-obscured compared to normal
star-forming galaxies. We also identified heavily dust-
obscured PSBs that precede the FPSBs. Therefore, our
finding that quenched post-starbursts were once heavily
dust-obscured, and that some dust-obscured AGN are
likely post-starbursts, is consistent with the later removal
of obscuring gas and dust by AGN feedback. However,
beyond this consistency, there is no clear observational
evidence yet that AGN clear away the remaining gas
and dust in post-starburst galaxies (e.g.,
12007; [Coil et all2011). Therefore, future study of post-
starburst with strong AGN identified in this work, may
provide further clues on the (secondary) role of AGN and
its relationship with its host galaxy.

Figure [ shows the distribution of V-band nebular
attenuation Ay for normal star-forming galaxies, star-
bursts and transiting post-starbursts. SBs and AGN in
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formation activity.

TPSB have higher dust attenuation (Ay = 2.7+ 3.4 and
Ay = 2.2 + 0.9 respectively) than normal star-forming
galaxies (Ay = 1.6 £ 0.7). K-S test indicates that the
null hypothesis that the Ay distribution of SBs or AGN
TPSBs come from that of normal star-forming galaxies
can be rejected at a < 0.001 significance while Ay dis-
tribution of SBs and AGN TPSBs are similar only at
a < 0.05. This observation is consistent with a removal
of dust by AGN feedback.

So far we have shown: 1) Starbursts and post-
starbursts are likely more dust-obscured than normal
star-forming galaxies. The starburst to quenched post-
starbursts evolutionary sequence is a decreasing dust
sequence. 2) AGN are about three times more com-
mon in transiting post-starbursts than in normal galax-
ies. However, we found, similar to previous works, that
there a significant time delay between starburst and the
peak of AGN activity in both obscured and fading post-
starbursts.

4.4. Broad-Line AGN (BLAGN)

Special techniques are often required to disentangle
AGN and galaxy emission in BLAGN host galaxies.
Trump et all (2013) have recently used SDSS aperture
photometry and z band concentration index to disentan-
gle the light of broad-line AGN and their host galax-
ies. By doing so, they have assembled a large sample of
BLAGN with host galaxy colors and stellar mass mea-
surements.

The selection criteria of post-starbursts discussed in
previous subsections will not identify post-starbursts
galaxies hosting BLAGN because their NUV fluxes and
spectral indices are rendered immeasurable by the bright
AGN. Nevertheless, to constrain how BLAGN fit in our
starburst sequence, we select a subset of broad-line AGN
from [Trump et all (2013) that have similar stellar mass
and redshift range as the parent sample. The properties

of these objects are discussed in Appendix [D] .

5. THE BULGE PROPERTIES OF POST-STARBURSTS AND
ITS NECESSITY FOR QUENCHING

The overall aim of this section is to provide a com-
plimentary check on our sample selection by showing
that the starbursts and post-starbursts are both bulge-
dominated, unlike most normal star-forming galaxies.
We show that their morphology is consistent with that of
galaxies transitioning between blue and red galaxies. In a
future paper we will present other structural parameters
that better discriminate between post-starbursts and the
slowly quenching normal galaxies.

Figure [[0h shows the relationship between the stellar
mass surface density, p., and the dust-corrected (NUV —
g)dc color. NUV-optical color and p, are known to
trace gas consumption time and the change in SFH that
takes place as galaxies transition from disc-dominated
to bulge-dominated systems (Kauffmann et al! [2006;
Catinella et all [2010).  Comparisons between stellar
surface mass density and bulge-to-total ratio by Wild
et al.(in preparation) shows that galaxies with p, >
3.0 x 108 M kpc—2 are classical bulge-dominated galax-
ies while ones with 1.0 x 108 Mg kpc™2 < p. < 3.0 x
108 Mg kpe=2 are pseudo-bulges. About 67% (95%)
of starbursts and 65% (91%) of post-starburst have
ps > 6 x 10%(3 x 10%) Mg kpe™2. In comparison, only
about 30% (68%) of normal star-forming galaxies have
ps > 6 x 10%(3 x 10%)Mg kpe=2. K-S test also indi-
cates that the distribution p. for starbursts and post-
starbursts are significantly different from normal star-
forming galaxies (they are drawn from same distribu-
tion at a < 0.001). The compactness of large majority
of starbursts and post-starbursts is consistent with the
necessity of bulge build-up for quenching (Wuyts et all
2011; Bell et al! 2012; ICheung et al! 2012; [Fang et al.
2013; [Mendel et all|l2013).
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F1G. 8.— The z band-normalized median and quartile fluxes at the effective wavelengths of the NUV,u, g,, 4,z bands (the flux ratios
are dust-corrected). The (cyan, orange and magenta) overplotted spectra are [Bruzual & Charlot (2003) burst models with SFR timescale
T2 = 0.1Gyr and burst fraction by = 20% of different ages, as indicated on each panel. The lowest (black) spectrum in each panel is
that of a 12.5 Gyr old galaxy (before the burst). The model spectra are not actual fits to the data but are chosen to be approximately
consistent with data. Galaxies follow an age sequence from starbursts (panel a) to obscured PSBs (panel b) to fading PSBs (panel c) to
quiescent PSBs (panel d). It is also notable that the SEDs of transiting PSBs hosting AGN (panels e and f) are significantly older than
the starbursts, indicating a ~200 Myr delay between a starburst and the appearance of an AGN. This indicates that the AGN is not the

primary source of quenching in starbursts.

Similarly, Figure [0b shows (NUV — g)4. color as a
function of the velocity dispersion, o. The velocity dis-
persion is the best correlated parameter with galaxy color
and star formation history (Wake et al![2012; [Fang et al.
2013). The Mpu—o relation (Magorrian et all[1998) also
means that velocity dispersion is a tracer of black hole
mass: the upper z-axis in Figure [[0b shows the inferred
black hole mass using the Tremaine et al! (2002) relation.

The general galaxy population forms the blue cloud at
lower o (median ¢ = 108 kms™!) and the red-sequence
at higher o (median o =160kms~1). As expected
for quenching/recently quenched galaxies, the starbursts
and the three post-starbursts classes are located in the
transition region between the blue cloud and the red se-
quence, at intermediate velocity dispersion (o ~ 125 —
140kms™1).

The SB to QPSB sequence is offset as a whole from
the normal SFR galaxies by about a factor of two in
black hole mass. However, from starburst to transiting
to quenched post-starbursts, there is little or no black
hole growth along the evolutionary sequence. This ob-
servation does not not support the prediction of substan-
tial (x10) black hole growth in the post-starburst phase

compared to the starburst phase (Cenl 2012).

In summary, we have shown that the three post-
starburst classes are bulge-dominated unlike most nor-
mal star-forming galaxies. The fact both SBs and PSBs
have similar morphology is independent evidence that
these two populations are linked. Similarly, the fact
FPSBs and OPSBs have structural properties that are
fully consistent with each other supports that they are
objects in the same category despite their different selec-
tion criteria.

6. DISCUSSION AND CONCLUSION
6.1. Building the red-sequence through post-starbursts

The quenching process happens in both slow and
fast-mode (e.g., [Cheung et al! 2012; Barro et al! 2013;
Dekel & Burkert 2013; [Fang et all 2013). We attempt
to constrain the transit time and the fraction of galax-
ies evolving through the two modes of quenching using
simple crude estimates. Assuming that the starbursts
are triggered by mergers or by some other phenomenon
that has a redshift dependence and using our thorough
and fairly complete post-starbursts sample today, one
can constrain how many of each kind of product evolved
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moval of dust by AGN feedback.

to the red sequence through the two quenching modes in
the past 10 Gyr.

The number of galaxies in the parent sample is ~
67,000 of which ~ 40,400 galaxies are located in the
blue cloud, ~ 14, 700 galaxies are in the red-sequence and
~ 11,900 galaxies are in the green valley (see Figure[Ib).
If half of galaxies currently on the red sequence had un-
der gone a dry major merger since z ~ 2 (Bell et all
2006; [Hopkins et all 2010), accounting for galaxies that
might have evolved out of the parent sample, a total of
< 22,000 red-sequence galaxies must have been in the
parent sample since z ~ 2.

On the other hand, from Figure [Bl the total number of
post-starburst galaxies in the parent sample is 341. If
we take the difference between the median age of SB and
QPSB to be the quenching time or the transit time to the
red-sequence, this transit time is ~ 600 Myr for star for-
mation timescale of 75 = 0.1 Gyr (as shown Appendix [Bl
the transit time may range between 400-900 Myr). This
suggests that about 570 galaxies per Gyr are currently
moving to the red-sequence through the post-starbursts
path at the constant mass.

Theoretical models argue that post-starbursts are the
end-products of galaxy mergers (Hopkins et all 2006,
2008; Bekki et al) 2001, 2005; [Snyder et al) [2011). As-
suming a uniform merger (production) rate since z ~
2 (last 10 Gyr), then the total production of post-
starbursts in our adopted mass range would be about
5700 galaxies. This is about 40% of the galaxies on the
red-sequence in the parent sample today. The major-
merger rate however is thought to increase with red-
shift roughly as o (1 + 2)?73 (Kartaltepe et all 2007;
Hopkins et all[2010; [Lotz et all[2011). In this case, the
transit rate through post-starbursts integrated to z ~ 2

gives 3 — 6 times more post-starbursts than the estimate
that assumes a uniform merger rate. Therefore, inte-
grated over time post-starbursts are an important path-
way to the red-sequence. They can account for at least
a quarter, and up to essentially all of the red-sequence
galaxies that are (were) in the parent sample.

At high redshift, disk instability-induced starbursts
may be more common than merger-induced starbursts
(Bournaud et all|2008; [Dekel et al! 12009). Our estimate
of post-starburst fraction above does not include post-
starbursts that might have resulted from this mecha-
nism. In addition, we also have not accounted for post-
starbursts that host broad-line AGN (which we do not
have a way of identifying). For these and other reasons,
the total contribution of the post-starburst path over
time to the build-up of the red sequence is certainly above
25%. Similarly, Wild et all (2009) found that about 40%
of the mass growth of the red sequence at z ~ 1 is likely
due to galaxies passing through the post-starbursts phase
while Barro et all (2013) found that almost all quiescent
galaxies at z 2 2 are descendants of rapidly quenching
compact star-forming galaxies.

If we conservatively assume that > 25% of the red-
sequence galaxies in the parent sample (over the past 10
Gyr) descended from post-starbursts, we can constrain
the transit time across green valley for slowly quench-
ing galaxies. Excluding the ~ 5700 galaxies that might
have descended from PSBs, about 16,300 out of the to-
tal of < 22,000 red-sequence galaxies must have gone
through the slow mode of quenching over the past 10
billion years. Assuming a constant transit time across
the green valley (Faber et all 2007), the fact that we
currently observe ~ 11,900 slowly fading normal galax-
ies in green valley implies that the transit time through
GV for the slow track is 2 7Gyr. This lower limit is
a factor of two higher than the transit time found by
Martin et all (2007). They estimated that slow fading
blue galaxies take ~ 3 Gyr to arrive in green valley, plus
additional ~ 3 Gyr to reach the red sequence. However,
the ~ 3 Gyr estimate of Martin et all (2007) is strictly
speaking a lower limit because it includes bursting and
dust-extincted galaxies among green valley galaxies.

Moreover, even though PSBs may account for essen-
tially all of the red-sequence, the evidence for evolution
via both the slow and fast track is indisputable. Previ-
ous studies suggest that nearly half of the red sequence
galaxies have disk-like morphologies (e.g., Bundy et al.
2010; [Cheng et all 2011; van der Wel et al. 2011), indi-
cating that the two modes of quenching are about equally
important. Similarly, [Fang et al! (2012) find that a non-
negligible fraction of green valley galaxies have disk-like
morphologies (Salim et all|[2012) and can remain in the
GV for several Gyr, which both point to the slow mode.

Likewise, disks in quenched galaxies are not rare at
high redshift despite the expected dominance of mergers
then. Bundy et all (2010) studied quiescent galaxies at
1 < z < 2 and found that passive disks with typically
Sa-Sb morphological types represent nearly one-half of
all red sequence galaxies. Similarly, van der Wel et all
(2011) investigated morphology of massive, quiescent
galaxies at z ~ 2. They estimate that more than 65% of
these galaxies are disk dominated. At a similar redshift,
Kocevski et all (2012) found that moderate luminosity,
X-ray-selected AGN do not exhibit a significant excess of
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F1G. 10.— The median and upper/lower quartile values of (NUV — g)q. color versus stellar mass surface density in Panel (a) and

(NUV —

g)dc color versus velocity dispersion in panel (b) are plotted. Starbursts and post-starbursts have similar morphology and they are

offset from normal star-forming galaxies in mass surface density and velocity dispersion (i.e, have more prominent bulges). If we assume
that velocity dispersion correlates with black hole mass following the Mpy — o relation from [Tremaine et all (2002), then there is little
black hole growth from SBs to QPSBs (in contrast with the prediction of [Ced (2012)).

distorted morphologies relative to a mass-matched con-
trol sample. About half of the AGN reside in galaxies
with discernible disks. The observed high disk fraction
in AGN hosts is hard to reconcile with the merger picture
of AGN fueling discussed in §1.

Despite its theoretical appeal, compelling observa-
tional evidence linking mergers with AGN activity has
been elusive, with results in favor of m
2011; IEl]issm_eJ_a.lJ l2QlJJ lLiumlJ l2Ql2|) and

against

with f,, > 0.4 are robust major mergers. However,
we also find that merger signatures disappear after the
starburst phase, and the transiting and quenched post-
starburst galaxies in general are much smoother than the
starbursts. We classify about 15% of TPSBs as as merg-
ing or disturbed galaxies and 6% have f,, > 0.4. Per-
haps the merger signature are washed out because of the
substantial time lag between the starburst and the PSB
(AGN) phases. Galaxy merger simulations estimate that
major merger signatures have a timescale of 200-400 Myr

2011 Ilimskl_@_au 12Q12| lSLhamnskl_ei_aiJ 12Q12|
[Villforth et all [2014) this picture. There are several
effects that make it difficult to identify the connection
between AGN activity and mergers. One is the ex-
treme dust obscuration that can be expected in such
systems [2006), making AGN detection
challenging. The second is the significant time delay
between the onset of the merger and the peak of the
AGN activity. Because of this delay, the most obvious
merger signatures may have faded by the time the
merger remnant is identified as a bright AGN.

We have looked at mergers fraction in starbursts and
post-starbursts in our sample. We tentatively find that
starbursts are more disturbed than normal star-forming
galaxies (the disturbance could be due to major or minor
mergers). We visually classified about 30% the starbursts
as merging or disturbed galaxies (they show either tidal
tails or strong asymmetries or have close companions). In
contrast, only about 3 % of 200 randomly selected normal
star-forming galaxies show merger signatures. Likewise,
according to the Galaxy Zoo classification
2011), which rather tend to be conservative in calling
something a merger, about 10% of the starbursts have a
weighted merger fraction f,,, > 0.4 while only 1% of nor-
mal star-forming galaxies have a weighted merger frac-
tion above this value. The fy, is calculated by taking
the ratio of the number of merger classifications for a
given galaxy to the total number of classifications for that
galaxy multiplied by a weighting factor that measures the
quality of the classifiers that have classified the galaxy.

Darg et al. (2010) have shown that almost all galaxies

[2010). Our estimated age of the transiting
post-starburst phase (2 300 Myr) or the time delay be-
tween starbursts and AGN (2 200+100 Myr) is in accord
with the timescale for the disappearance of merger sig-
natures. The color gradient and metallicity of starbursts
and PSB are also consistent with the merger origin of
these galaxies (see Appendix [El & [F]).

The above tentative result supports that the fast-track,
in local universe, is triggered by merger starbursts, whose
signatures are washed out in the post-starbursts phase.
We have also shown that velocity dispersion and global
mass surface density are high, presumably from merg-
ers, leaving post-starburst remnants which are smaller,
more compact, and with high stellar surface mass density
than non-bursty star-forming galaxies. However, despite
their high velocity dispersion and global mass surface
density, the post-starbursts still overlap in morphology
with many slowly quenching galaxies. Future work will
explore better morphological discriminants between the
fast and slow mode (Yesuf et al., in preparation).

Deep high resolution studies of handful of K+A
galaxies and post-starburst quasars however find sig-
nificant morphological disturbances in these objects
(e.g., naliz [2001; Bennert et al! [2008;
Yang et al! [2008; [Cales et all 2011). Galaxies we clas-
sified as undisturbed using the SDSS images may have
faint tidal features visible in deeper images. Therefore,
deep high resolution studies with more robust measure-
ments of merger signatures in transiting post-starburst
galaxies will be useful to test merger origin of post-
starbursts and to understand the AGN triggering mech-
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anism in post-starbursts.

6.2. Conclusion and summary

The unique spectral properties of quenched post-
starburst galaxies hint that these objects are recently
quenched starbursts. We investigated this inferred re-
lationship in detail by directly tracing them back to
the starbursts through a newly identified population of
“transiting” post-starbursts in the midst of quenching.
We showed that dust-obscured post-starbursts comprise
the majority of the transiting post-starburst population.

With our new sample of post-starbursts, we studied
the connection between quenching and AGN in post-
starbursts. We found that AGN are more commonly
hosted by post-starbursts than by normal galaxies. Post-
starburst AGN hosts make up > 36 + 8% of transiting
post-starbursts. Despite the high frequency of AGN in
post-starbursts, we found that the clear presence of AGN
is significantly delayed from the peak of starbursts by
2200 + 100 Myr.

As long as the AGN appearance is delayed, our re-
sults are generally consistent with “merger hypothesis” of
post-starbursts (Hopkins et all2006; [Snyder et all[2011;
Cenl2012), where mergers between gas-rich galaxies drive
nuclear inflows of gas thereby leading to nuclear star-
bursts, bulge formation, AGN activity, and eventually to
quenched post-starbursts. In support of the merger hy-
pothesis, we tentatively find that the starbursts are rel-
atively metal-poor at earlier stages, exhibit clear merger
signatures, and have shallower color gradients and promi-
nent young bulges. On the other hand, consistent with
the time delay, merger signatures disappear after the
starburst phase and that our three post-starburst classes
also have shallower color gradients and prominent young
bulges.

We also showed that starbursts and transiting post-
starbursts are significantly more dust-obscured than nor-
mal galaxies and quenched post-starbursts. The fact that
starbursts and post-starbursts evolve through a heavily
dust-obscured phase which also seems to coincide with
AGN activity, is consistent with later removal of dust by
AGN feedback. We therefore conclude that AGN may
not primarily quench starbursts but may play an impor-
tant role in quenching or preventing low-level star forma-
tion in post-starbursts. We acknowledge that the large
extent of the SDSS fiber beyond the nuclear region of a
galaxy could be a major concern since the line ratios of
an AGN may be diluted by on-going star formation in-
side the fiber. Future works with spatially resolved line
ratios or with other AGN selection criteria unbiased by
the host properties will hopefully provide a more defini-
tive test on the time delay between the AGN phase and
the starburst phase, and they will also help estimate the
AGN fraction in post-starbursts more accurately than we
have attempted in this work. Similarly, a more direct ev-
idence on the role of AGN in removing a leftover gas and
dust during the post-starburst phase may come to light
from observations of TPSBs using new facilities such as
ALMA.
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APPENDIX
A: DETAILS OF DUST CORRECTION

Methods of dust correction

We correct for dust effects on emission-line luminosities ([O1I], He, and etc), GALEX and SDSS colors, the Ho
equivalent width, Wy, and D,,(4000). For emission line extinction curve, we use eqn. Al and for the continuum
extinction curve, we use eqn. A2 (Charlot & Fall [2000; [Wild et all[2011aH). In this section, continuum quantities will
be denoted by ‘x’ superscript.

Qx = (1 — ) (A/5500) "% + 11 (A/5500) """ where p = 0.4 (A1)

Q% = 1/N IO/ A)™ ™+ (X)™ 4 (A A,)"* + (A )] (A2)

Q3 is composed of four power-law functions with exponents s; _4) smoothly joined with a smoothness parameter
n = 20. The power-law exponents vary with both axis ratio, b/a, and fiber specific star formation rate, ¥s, according
to linear functions given in (Wild et al. (2011a) eqn. 22-25. The Ay;_g) are related to the position of the three break
points at 0.2175 pm, 0.3 um and 0.8 um and the power-law exponents according to eqn. 19-21 in [Wild et all (2011a).
N is the normalization, defined such that Q) is unity at 5500 A.

The line optical depth is given by eqn. A3 and uses the expression of 7y in eqn. A4.

T = TvQx (A3)

TV = 0.921 x 25/ (Q4861 — Q6563) X log (HO(/Hﬁ X (Ha/HB);é) (A4)

We require SNR > 1o on Ha and HS lines. We assume dust-free (Ha/HS)qr = 2.86 for star-forming galaxies
(Osterbrock [1989) and (Ha/HB)qs = 3.1 for AGN (Veilleux & Osterbrock [1987). For example, using the above equa-
tions, the dust corrected [O I1] flux is given by:

forrde = forr x 100-4%1-086x7sr27 (A5)

To correct for galaxy fluxes (colors) we use the ratios of 7 /7 in eqn. 13-16 [Wild et all (20114), which are found
to vary strongly with galaxy properties such as axis-ratio and specific SFR. We use the ratios that give maximal
stellar extinction. In other words, min{ry /7y (¢s), 7v /73 (b/a)}. We prefer maximal stellar extinction because the
optical depth ratios in[Wild et al! (2011a) are generally smaller but asymptote to 2.08, the measured values in starbursts
(Calzetti et all2000). In estimating the optical depth ratios, we use star formation rates calculated from dust-corrected
Ha using the conversion factor of Kennicutt (1998). The SFRs will be overestimated if there is a significant contribution
from AGN to the Ha emission line. We used the optical depth ratios estimated from axis-ratio (i.e, inclination) only
as a check, and the possible over-estimation of SFR due to AGN does not significantly affect our results. It should be
noted that we do not purposely use the star formation rate measurements provided in SDSS DR8 which are derived
from photometry for AGN, because they may be systematically underestimated for dusty galaxies (including AGN,
Wild et alll20114).

™ =@y x Ty = Q) x (v /1v) X Tv (A6)

A} = 1.0867 (A7)

Because we are correcting for the global galaxy colors, while our estimate of 7 is based on fiber quantities, we will
approximately correct for gradient (aperture bias) in 7y by dividing A} with a correction factor fy = 1.0 — 1.25
according to Figure 6 of [Wild et al! (20114): for bulge-dominated galaxies we use eqn. A8 while for disk-dominated
galaxies we use eqn. A9.

1.0 if Rfib/Rgo Z 1 else
1.05 if Rfib/Rgo <1l & 10g1/) <-99
fo— L1 i Rpp/Ro>1 & —99 <logd < 9.6 A8
V=9 115 ifR/Reo<1 & —9.9<logt) < —9.6 (A8)
1.2 if Rfib/R50 > 1 & 10g’(/) > —9.6
1.25 if Rfib/Rf)Q <1l & 10g’§/1 > —9.6
1.0 if Rfib/Rgo Z 1 else
1.05 if Rfib/Rgo <1 & logy <—-9.9
o= d 105 it Rpa/Rso > 1 & —99 <logth < 9.6 (A9)
v = 1.1 if Rfib/R50 Z 1& 10g1/) Z —-9.6
115 if Rpay/Rso <1 & —9.9 < logt) < —9.6
1.2 if Rfib/Rg,o <1 & logy > —9.6
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For instance, (NUV — g)qc is given by eqn. A10 below. We use the effective wavelengths of SDSS bands given in
Fukugita et all (1996).

(NUV = g)ac = (NUV — g) — (ASy67 — Alsas)/ fv (A10)
We correct the Wy, using the following equation:

100.4 X 1.086 X Te563

WHa,dc = WHa X — WHa X 100-4><1-086><(7'6563*7';563) (All)

T00AXT 0865 g0s

D,,(4000) is defined as a flux ratio of a narrow continuum range red-ward of 4000 A break (4000 —4100) to a narrow
continuum range blue-ward of the break (3850 — 3950, Balogh et all(2005).

Therefore, D,,(4000)qc ~ D,,(4000) x 10%4*(Area=4bne) . where A* ; = (Afoo0 + Aloso + Ak100)/3.0 and Afy. =
(Azgs0 + A3g00 + A3es0)/3.0

In the rest of this section we will show that our post-starburst selection does not significantly depend on the detail
assumptions of the dust correction described above. To that end, Figure [ATlreplots the NUV — g color versus D, (4000)
diagram for different dust-correction assumptions. In Panel a and b, we show the version of the figure in which NUV —g
color versus D, (4000) are corrected using the |Calzetti et al (2000) extinction curve with the ratio of excess B — V
colors of gas to stars is, E*(B—V)/E(B—V) = 0.44 and 1.0. Note that, as described in §2.4, we adopted in the main
text the empirical attenuation curve of (Wild et alll2011a) and their prescription to estimate E*(B —V)/E(B — V)
ratios. Since the selection of FPSBs explicitly depends on the dust correction, we show in panel a to b, the alternative
selection of this class for the the given dust-correction prescription adopted in each panel. In panel a 136 FPSBs and
in panel b 126 FPSBs are identified. About 15-25% of the FPSBs are previously (83) unidentified but about 85% of
the FPSBs identified in section three are also identified in panel a to b. The |Calzetti et all (2000) curve lacks the
2175A bump and Wild et all (2011a) find typically 0.3 — 1.0 magnitudes more attenuation in the NUV compared
to the Calzetti extinction curve. Thus, the previously unidentified FPSBs may be dusty contaminants. Overall, the
fact that each panel identified comparable number of FPSBs and recovered 85% of FPSBs defined in §3, suggests
that the details of dust-correction are not important for the selection of these objects. Furthermore, the figure also
shows (in orange square) the subset starbursts with (dust-extincted) Wy, > 110, that is to say, those that satisfying
the [Lee et all (2009) definition of starbursts. This subset only account for 25% of all starbursts we have identified.
Therefore, the dust correction of Ha is important to identify majority of dust-extincted starbursts.

The AGN fraction for FPSBs selected in panel a and pane b is 45% and 48% respectively. In comparison, the
AGN fraction for FPSBs selected in the main text (§3.4) is 53%. Therefore, the error on AGN fraction of transiting
post-starbursts may be as high as 8% (or even higher if BPT composite galaxies indeed host AGN). Even with 8%
error, the AGN fraction in post-starbursts is still more than two times higher than that of normal galaxies.

The color-color diagram: the intrinsic colors of obscured post-starbursts

Moreover, in this subsection we aim to show that our dust-correction works and our starburst evolutionary path is
plausible. Figure shows the UV gz diagram (NUV — g vs. g — z), a variant of the widely used UV J diagram in
galaxy evolution studies (e.g., Wuyts et alll2007; [Williams et alll2009; [Whitaker et alll2012). In these diagrams dusty
star-forming, non-dusty star-forming and quiescent galaxies are well separated. Star-forming galaxies form a diagonal
track which extends from blue to red colors. The red end of this track is populated by dusty galaxies. The quiescent
galaxies form a separate clump above the dusty star-forming galaxies. We show the UV gz diagram before and after
the dust correction.

After dust-correction, blue star-forming and red quiescent galaxies are cleanly separated in the UV gz diagram.
The starbursts are significantly bluer after the dust correction and they lie well off the blue cloud to the lower left.
The dust correction is difficult for the quenched post-starbursts because of their weak emission lines. However their
location in the upper right corner of the UV gz diagram is consistent with little or no dust extinction(cf. Balogh et al
20085; [Kavira] et al.[2007; Brown et al!|2009; [Chilingarian & Zolotukhin [2012; [Whitaker et all[2012). We also showed
in Figure Bl that about 80% of quenched post-starbursts do not show significantly dust-obscured star formation ( have
f12um/f0.2um < 200)

Transiting post-starbursts show more significant dust-reddening than do quenched post-starbursts: their observed
colors are significantly redder but they are indeed intrinsically bluer. Despite the large overlap with normal galaxies,
the OPSBs generally have intermediate intrinsic colors between that of QPSBs and FPSBs. Their overlap with normal
galaxies is not a problem because the the overplotted model tracks also pass through normal galaxies. In contrast to
the dust-unreddened colors, the observed g — z colors of PSBs get redder from OPSBs to FPSBs to QPSB, suggesting a
decreasing dust sequence we have seen in previous diagrams. The plausible arrangement of SBs and PSBs in color-color
space is also further evidence that the dust corrections work.

B: DETAILS OF STELLAR POPULATION MODELING

We modeled SFHs of a post-starburst as a superposition of an old stellar population initially formed at time ¢ = 0
following a delayed exponential SFH of a form ¢ o texp(—t/71) with e-folding time, 71 = 1Gyr (cf. [Kriek et all
2011) and a young stellar population formed in a recent burst at t = 12.5 Gyr (z ~ 0.1) with exponentially declining
SFH, ¥ o« exp(—t/72), of 7o = 0.1 Gyr (cf. Kaviraj et all2007; [Falkenberg et. all[2009). Because of the burst mass-age
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FiG. Al.— Panel (a): Dust-corrected NUV — g color versus D(4000). The FPSBs are selected assuming the Calzetti extinction curve
with E*(B—V)/E(B—V) = 0.44. In panel (b) the FPSB selection assumes the Calzetti extinction curve with E*(B—V)/E(B—-V) =1.0
instead. The main point of the figure is that the details of the dust-correction are not important for the post-starburst selection as long as
dust in all galaxies are similar. On the other hand, most starbursts would not have been identified if it were not for the dust correction.
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Fic. A2.— Panel (a) : Rest-frame NUV — g vs. g — z color-color diagram, using observed (not dust-corrected) magnitudes. Panel
(b) : Dust-corrected rest-frame NUV — g vs. g — z color-color diagram. The rapid quenching/strong burst model tracks nicely describe
the sequence of starburst to transiting post-starburst to classical quenched post-starburst. The dust-obscured galaxies are also consistent
with the transiting post-starbursts along this track. We use this with our other evidence (in Figuresdl and B) to infer that, like the fading
post-starburst population, the dust-obscured post-starbursts represent an intermediate phase from starbursts to post-starbursts.
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Fic. Bl.— Panel (a): dust-corrected rest-frame NUV — g and g — z color-color diagram. Overplotted are burst modeled tracks of
72 = 0.05,0.1 and 0.2 Gyr (Bruzual & Charlofl [2003). Panel (b): Specific fiber star formation rate versus dust-corrected fiber g — z color .
These diagrams exclude burst models outside 72 = 0.05 — 0.2 range.

degeneracy, the ages of the post-starbursts depends on the decay timescale 75 we assumed. In this section, we quantify
the effect of using different decay timescales (12 = 0.05 or 72 = 0.2) instead of our fiducial value of 7o = 0.1 Gyr used
in the main text .

Figure[Bh replots the dust-corrected rest-frame NUV — g and g — z color-color diagram to show that the starbursts
to quenched post-starbursts evolution can alternatively be modeled with 7 = 0.05 Gyr and burst fraction by = 10%
or 75 = 0.2Gyr and burst fraction by = 30%. Likewise, Figure [BIb plots fiber specific SFR against dust-corrected
fiber g — z color to make a similar point. Thus, models with 7o outside the range 0.05-0.2 are excluded since they do
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Fic. B2.— The z band normalized median and quartile fluxes at the effective wavelengths of the NUV, u, g, r, 4,z bands. This figure is
the similar to Figure [8] but overplots [Bruzual & Charlof (2003) burst models with different SFR timescale 72 and burst fraction bf. Top
figure: the overplotted spectra are 2 = 0.05 Gyr and by = 10% of different ages, as indicated on each panel. Bottom figure uses 72 = 0.2

and by = 30% instead. The main point of the figure is that starbursts and AGN are not coeval, they are separated at least by about
100-400 Myr.
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FiG. D1.— The WISE color-color plot which can reliably identify luminous (obscured and unobscured) AGN. Starbursts (blue star),
fading post-starbursts (green circles), obscured post-starbursts (brown Xs), qucnchcd post-starbursts (rcd squarcs) and broad-line AGN
(orange diamonds) are overplotted on the figure. The f12 ,m/fs. 6 pm flux ratio is sensitive to PAH emission and is a first order star
formation indicator while f4.6 ym/f3.4 um is sensitive to hot dust emission from AGN. The dashed wedge denotes the [Mateos et all (2012)
AGN selection criteria while the horizontal dash-dotted line demarcates that of [Ashby et all (2009). The latter is more complete but less
pure. For comparison, we overplot broad line AGN of comparable mass and redshift studied by (2013). The figure confirms
that almost all starbursts and strongly star-forming transiting PSBs do not host strong or obscured AGN. Some transiting post-starbursts
show hot dust emission from AGN. The BLAGN have lower fi2,m/fs.6um ratios (less star-forming) than obscured post-starbursts but
higher flux ratios than quenched post-starbursts, suggesting that they may come after the obscured AGN phase (Hopkins et all [2006), if
they are related to post-starbursts.

not produce the observed population of post-starburst galaxies. The fiber specific star formation rates are estimated
from dust-corrected Ho (§ [Z4]) using the conversion factor of [Kennicutt (1998) and the fiber stellar mass. Figure
estimates the age of starbursts and post-starbursts for these alternative burst models using the z band normalized
median and quartile SEDs of these galaxies. Accordingly, the time lag between the starburst and AGN phase may be
between 100 and 400 Myr.

C: DETAILS OF POST-STARBURST SELECTION

The following equations specify the fourth order polynomial fits to the data of main sequence galaxies in Figure 4

Whs = 23.112 — 19.700 x 2 + 3.355 x 22 4 0.0817 x 2 — 0.00871 x z* (C1)

(NUV — g)ge = 7.010 — 13.547 x x + 8.895 x x? — 1.397 x x° + 0.0462 x 2* (C2)
where x = D,,(4000)4c

D: MORE AGN PROPERTIES OF POST-STARBURSTS
WISE AGN diagnostic

An AGN has a spectral energy distribution (SED) that rises from ~ 3 — 5 um due to hot dust emission from its
dusty torus (Nenkova et all [2008), while a starburst has a composite stellar spectrum which peaks at 1.6 ym and
declines over the range from ~ 3 — 5 ym. Mid-IR color-color diagnostic diagrams use this idea to distinguish AGN
dominated galaxies from starburst dominated ones (e.g., Lacy et alll2004}; [Stern et _al![2005; Donley et all[2012). The
IR color-color diagrams select only luminous AGN, and do not detect weak AGN 2012).

Figure [DI] plots the WISE color-color diagram: %Efwf m§f4 6um versus log(fy. 6#m/f3 4pm) Mghjim [2010;

Izotov et all 2011); |Assef et all 2012; [Lake et all 2012; This figure is similar to Figure [l and it
is presented here for completeness. Stellar populations younger than 0. 6 Gyr dominate 12 ym emission and, as a re-
sult, [4.6 pm] — [12 pm] color is known to correlate well with SFR (Donoso et al![2012). Normal galaxies in the parent
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F1c. D2.— The flux density ratio between WISE 12 um and GALEX NUV, fia,m /fo. 2um, Versus the WISE 12 ym luminosity. The
12 pm luminosity is used as a proxy for the (obscured) star formation rate ( an upper limit in AGN, see [Donoso et all 2012). fi2um/fo.2um
ratio may indicate the amount of dust-obscuration. The histograms on the right show the dlstrlbutlon of 12 pm luminosities for BLAGN
and OPSBs respectively. Even with some contribution of AGN to the 12 pum luminosity, BLAGN are generally less star-forming than
OPSBs (and majority of BLAGN are also likely less obscured). Therefore, BLAGN do not play a primary role quenching starbursts. Their
properties in this diagram are consistent with the idea that BLAGN come after the obscured AGN phase (Hopkins et all[2006).

sample form a tight and elongated bi-modal sequence with some vertical scatter at fio,m/f1.6um 2 1. Generally, the
starbursts are located at the right-most high-SFR. end of the sequence, while quenched post-starbursts typically have
lower f12,m /f1.6,m ratios like quiescent galaxies. The transiting post-starbursts mostly have intermediate f19,m /f1.6,m
ratios between SBs and QPSBs. The arrangement of SBs, FPSBs and QPSBs in decreasing order of redness due to
dust is another independent confirmation for the consistency of our evolutionary sequence. As expected from their
selection, the obscured post-starbursts are found in between the FPSBs and SBs.

The f4.6,m/f3.4um ratio may indicate emission from hot dust, ionized gas or stars. The simple £4.6,0m /f3.4m > 0.88
criterion can identify hot dust emission from AGN but only with ~50% reliability m
2012). The dashed wedge, which is calibrated by X-ray-selected AGN, identifies a highly complete and rehable sample
of luminous (hard X-ray luminosity, Lo _10xey > 10**ergs™1) AGN (Mateos et al! 2012). For a reference, we also
overplot broad-line AGN in the similar mass and redshift range.

According to the [Mateos et all (2012) classification, only 7% of the FPSBs and 21% of the OPSBs show clear AGN
signatures in WISE, and the majority of these galaxies are already classified as Seyferts by the optical emission line
diagnostics. This indicates that most of AGN found in the transiting post-starbursts, including the ones in composite
regions of the BPT diagram, must be weak (La_10xey < 10** ergs™!) if their presence is hidden by dilution from stellar
emission.

The star formation rates of broad-line AGN

Note that our post-starburst selection does not apply to broad-line AGN (BLAGN) hosts because many of the
indicators that we have used to characterize the main evolutionary PSB sequence are diluted or polluted by the strong
AGN signature in BLAGN (e.g., optical-UV colors and optical spectral signatures). Therefore, we cannot directly
constrain the role of broad-line AGN in our post-starburst evolutionary sequence. However, in the following analysis
we use 12 um luminosities of BLAGN hosts to infer upper limits on their star formation rates (Chary & Elba 2001)
and argue that their exclusion from the parent sample is not a problem. Their inferred star formation rates suggest
that they either come after the obscured post-starburst AGN (e.g., [Hopkins et al! [2006) or they are not part of our
evolutionary sequence at all.

The fact that BLAGN seem older than SBs and OPSBs was already suggested by their intermediate [4.6 um]—[12 pum]
color in Figure [DIl However, some AGN are known to exhibit suppressed aromatic features short-ward of 11.3 um
(Smith et all[2007; Diamond-Stanic & Rieke 2010), suggesting that the [4.6 ym] — [12 ym] color might underestimate
the SFR.

Figure [D2] shows 12 pm luminosity against the flux density ratio of WISE 12 ym to GALEX NUV, f12,m /f0.2m-
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The 12 pum luminosity is dominated by stellar populations younger than 0.6 Gyr in star-forming galaxies and in type
IT AGN (Donoso et all2012). The f12,m/fo.2,m ratio roughly quantifies the ratio of obscured to unobscured SFR in
star-forming galaxies and in type I AGN. It is not clear what fi2,m/fo.2.m ratio exactly means for BLAGN because
we do not know how much of their NUV and IR flux comes from stars and how much from the AGN. For this reason,
we place more emphasis on the 12 ym luminosity as an upper limit on star formation.

The general galaxy population shows a bi-modality in 12 ym luminosity, reflecting the global bi-modality in star
formation rates. As expected, the starbursts have higher 12 ym luminosity than normal star-forming galaxies while
quenched post-starbursts have intermediate 12 ym luminosity between quiescent and star-forming galaxies. Most
obscured post-starbursts have comparable 12 ym luminosity to that of starbursts. This, at face value, is inconsistent
with the fact their SFRs as indicated by their Ho and NUV — g colors are lower than those of starbursts (Figure Bl &
M). However the excess mid-IR emission in OPSBs may be due to additional dust heating from their intermediate age
(~ 0.4 Gyr) stellar populations (Salim et all[2009; [Kelson & Holden 2010).

The FPSBs have high to intermediate 12 ym luminosity but they are clearly offset to the right from normal star-
forming galaxies, that is, they are more dust-obscured. On the other hand, the BLAGN have similar 12 ym luminosities
to those of FPSBs but most of them coincide with normal blue star-forming galaxies, i.e, they are less obscured.

As the histograms of 12pm luminosities appended to the right of the plot shows, obscured post-starbursts are on
average more luminous than BLAGN in 12 um. K-S test indicates that distribution of 12 ym luminosities of OPSBs
and BLAGN are significantly different (D = 0.45, pis = 5.0 x 10718, i.e, a < 0.001). Therefore, BLAGN are likely less
star-forming (older) than obscured post-starbursts. This indicates that our conclusion that AGN and starbursts are
not coeval is not likely to be affected by the exclusion of BLAGN from our post-starburst sample. More work is needed
to directly constrain the age (after the starburst phase) of the very luminous BLAGN. Other studies have shown that
BLAGN hosts have comparable age (0.7 — 2 Gyr) to that of quenched post-starbursts but they are substantially older
than starbursts (Jahnke et alll2004; |Canalizo & Stockton/2013). At high redshift, a recent far-infrared Herschel /PACS
study by [Rosario et all (2013) found that the mean SFRs of BLAGN hosts are consistent with those of normal massive
star-forming galaxies and do not show strong enhancement in their SFRs to suggest that they are starbursting systems.

The fact that BLAGN have intermediate [4.6 ym] — [12 um] color and 12 ym luminosity and are likely less dust-
obscured is consistent with the expectation that AGN might quench or prevent low-level star formation in post-starburst
galaxies by removing leftover gas and dust after the starburst events (Hopkins et alll2006). Similarly, [Zakamska et al
(2008) have shown that type IT quasar hosts have increased star formation than type I quasar hosts, thereby supporting
the suggestion that obscured quasars come before naked quasars.

We conclude that broad-line AGN are unlikely to play a primary role in the initial quenching of starbursts and their
exclusion from our post-starburst sample does not affect our main conclusions. Future work to robustly constrain
the instantaneous star formation rate of local BLAGN hosts would be very useful to understand whether BLAGN are
associated with quenching of starbursts or low star-forming post-starburst galaxies.

E: FLAT COLOR GRADIENTS OF STARBURSTS & POST-STARBURSTS

Normal star-forming galaxies have red centers. A major merger likely alters or erases a color gradient of a pre-merger
normal galaxy by inducing star formation at the center or throughout the galaxy. Since the truncation of the starburst
is abrupt, post-starburst galaxies should still carry the imprint of their merger origin by having flatter or more positive
color gradients than normal star-forming galaxies.

Figure[ETh shows the color gradient, Veolor, versus (NUV —g)qc color while Figure[EIb plots dust-corrected NUV —g
and g — z diagram color-coded by the color gradient. Starbursts and their descendants (transiting and quenched post-
starbursts) have much shallower color gradients than the bulk of normal star-forming galaxies.

As expected, red quiescent galaxies have flat color gradients and are red throughout but blue galaxies show an
interesting regularity in their color gradients: blue galaxies with bluer in (NUV — g)q. color (or lower Ha) have
negative color gradients (i.e, show large reddening in their centers) while blue galaxies with redder (NUV — g)q. colors
(or higher Ha) have flat color gradients. In other words, galaxies with red centers have most of their star formation
in their outer blue disks and have small quiescent bulges. On the other hand, galaxies which are blue throughout are
either experiencing nuclear bursts (have star formation rates above the average) or their nuclear bursts are abruptly
terminated (have redder NUV — g colors). They have young bulges.

The fact that both starbursts and post-starbursts have flat color gradients (young blue bulges) suggests that star
formation is uniformly distributed throughout these galaxies, remaining so even as the burst quenches throughout the
galaxy. It also suggests that the centers of these galaxies must have been unreddened from the typical red centers of
disk galaxies, perhaps by gas inflow during a merger. Likewise, the flat color gradients of obscured post-starbursts
suggests that the dust-obscuration in these objects is likely a galaxy wide phenomenon. Previous studies have also
shown that A stars in K4+A galaxies are widespread and are not confined to their nuclear regions (Kauffmann et all
2003d; [Swinbank et all 2005; |Goto et all[2008; [Pracy et alll2009; Swinbank et all[2012).

F: METALICITY OF POST-STARBURSTS

Figure [Tl depicts the distribution of dust-corrected ([N I1]/[O IT]) 4. ratios for normal star-forming galaxies, starbursts
and post-starbursts. This ratio is a very reliable metallicity diagnostic and it is not very sensitive to the ionization
level (Kewley & Dopita 2002). Panel a compares the ([N1I]/[O11])4. ratios of transiting PSBs with those of quenched
PSBs and starbursts. The ([NII]/[O11])4. ratio increases as the starbursts progressively evolve to the transiting and
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Fic. E1.— Panel a: the median and upper/lower quartile values of (NUV — g)q. color versus color gradient, V o1or. Panel b: NUVgz
diagram color-coded by color gradient. The contours represent the number density of all galaxies in the parent sample. Where the number
of galaxies within a bin is more than 15, we color code by the median values of the color gradient or the concentration index. Otherwise,
the individual values for the galaxy is used.

quenched post-starbursts. The starbursts have ([NII]/[O1])4. ratios that correspond to 1 — 1.5 Z solar metallicity
range (Kewley & Dopita [2002) while the QPSBs have ratios corresponding to 2 — 3 Z, solar metallicity, although their
(INII]/[011))4¢ ratio might not be well measured because their emission lines are weak. The TPSBs have intermediate
metallicity between starbursts and QPSBs. K-S test indicates that the distributions of metallicity of starbursts and
TPSBs are significantly different (D = 0.28, pxs = 2.2 x 1078, i.e, a < 0.001) and so are the distributions of TPSBs
and QPSBs (D = 0.46,pks = 2.3 x 10712, i.e, a < 0.001).

Furthermore, panel b shows that starbursts which are younger than the median age (D,,(4000)q. < 1.1) have even
lower metallicity than the AGN hosts in TPSBs (cf. Groves et all[2006) and normal star-forming galaxies. K-S test
also indicates that the distributions of metallicity of younger starbursts (or all SBs) are significantly different ( at
a < 0.001 level) from AGN in TPSBs or normal star-forming galaxies. The transiently lower metallicity of younger
starbursts is consistent with metal poor gas inflows during merger-induced starbursts (Barnes & Hernquisti[1991,1996)
while the higher metallicity in post-starburst AGN is consistent with time delay between AGN and starbursts (e.g.,
Wild et all[2010; [Hopkind [2012; [Cen 2012).
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Fic. Fl.— Panel (a): The distribution dust-corrected [NII]/[O1II] ratios for the starbursts, transiting post-starburst and quenched
post-starbursts. The metallicity increases from the starbursts to the quenched post-starbursts. Panel (b):The distribution dust-corrected
[NII]/[O 1] ratios for the young starbursts (D (4000) < 1.1), normal star-forming galaxies and AGN in TPSBs. Starbursts are significantly
metal poor especially at younger ages, consistent with gas inflow during merger-induced starbursts. The AGN is TPSBs have significantly
higher metallicity than starbursts, suggesting a time delay between the starburst and AGN phase.



From Starburst to Quiescence 29

REFERENCES

Aihara, H., et al. 2011, ApJS, 193, 29

Ashby, M. L. N., et al. 2009, ApJ, 701, 428

Assef, R. J., et al. 2012, ArXiv e-prints B

Baldry, I. K., Glazebrook, K., Brinkmann, J., Ivezi¢, Z., Lupton,
R. H., Nichol, R. C., & Szalay, A. S. 2004, ApJ, 600, 681

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5

Balogh, M. L., Miller, C., Nichol, R., Zabludoff, A., & Goto, T.
2005, MNRAS, 360, 587

Balogh, M. L., Morris, S. L., Yee, H. K. C., Carlberg, R. G., &
Ellingson, E. 1999, AplJ, 527, 54

Barnes, J. E., & Hernquist, L. 1996, ApJ, 471, 115

Barnes, J. E., & Hernquist, L. E. 1991, ApJ, 370, L65

Barro, G., et al. 2013, ApJ, 765, 104

Bekki, K., Couch, W. J., Shioya, Y., & Vazdekis, A. 2005, MNRAS,
359, 949

Bekki, K., Shioya, Y., & Couch, W. J. 2001, ApJ, 547, L17

Bell, E. F., et al. 2004, ApJ, 608, 752

——. 2006, ApJ, 640, 241

—. 2012, ApJ, 753, 167

Bennert, N., Canalizo, G., Jungwiert, B., Stockton, A., Schweizer,
F., Peng, C. Y., & Lacy, M. 2008, ApJ, 677, 846

Bernardi, M., Roche, N., Shankar, F.; & Sheth, R. K. 2011,
MNRAS, 412, L6

Blake, C., et al. 2004, MNRAS, 355, 713

Blanton, M. R., & Roweis, S. 2007, AJ, 133, 734

Bournaud, F., et al. 2008, A&A, 486, 741

Brammer, G. B., et al. 2009, ApJ, 706, L173

Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C.,
Kauffmann, G., Heckman, T., & Brinkmann, J. 2004, MNRAS,
351, 1151

Brinchmann, J., Pettini, M., & Charlot, S. 2008, MNRAS, 385, 769

Brown, M. J. I., et al. 2009, ApJ, 703, 150

Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000

Bruzual A., G. 1983, ApJ, 273, 105

Bundy, K., et al. 2010, ApJ, 719, 1969

Cales, S. L., et al. 2011, ApJ, 741, 106

Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef,
J., & Storchi-Bergmann, T. 2000, ApJ, 533, 682

Canalizo, G., & Stockton, A. 2001, ApJ, 555, 719

—. 2013, ArXiv e-prints

Cappellari, M., et al. 2006, MNRAS, 366, 1126

Catinella, B., et al. 2010, MNRAS, 403, 683

Cen, R. 2012, ApJ, 755, 28

Chabrier, G. 2003, PASP, 115, 763

Chakrabarti, S., Fenner, Y., Cox, T. J., Hernquist, L., & Whitney,
B. A. 2008, AplJ, 688, 972

Charlot, S., & Fall, S. M. 2000, ApJ, 539, 718

Chary, R., & Elbaz, D. 2001, ApJ, 556, 562

Cheng, J. Y., Faber, S. M., Simard, L., Graves, G. J., Lopez, E. D.,
Yan, R., & Cooper, M. C. 2011, MNRAS, 412, 727

Cheung, E., et al. 2012, ApJ, 760, 131

Chilingarian, I. V., & Zolotukhin, I. Y. 2012, MNRAS, 419, 1727

Cid Fernandes, R., Stasiniska, G., Mateus, A., & Vale Asari, N.
2011, MNRAS, 413, 1687

Ciotti, L., & Ostriker, J. P. 2007, ApJ, 665, 1038

Cisternas, M., et al. 2011, ApJ, 726, 57

Coil, A. L., Weiner, B. J., Holz, D. E., Cooper, M. C., Yan, R., &
Aird, J. 2011, AplJ, 743, 46

Croton, D. J., et al. 2006, MNRAS, 365, 11

Darg, D. W., et al. 2010, MNRAS, 401, 1043

Davies, R. 1., Miiller Sanchez, F., Genzel, R., Tacconi, L. J., Hicks,
E. K. S., Friedrich, S., & Sternberg, A. 2007, ApJ, 671, 1388

Dekel, A., & Birnboim, Y. 2006, MNRAS, 368, 2

Dekel, A., & Burkert, A. 2013, ArXiv e-prints

Dekel, A., et al. 2009, Nature, 457, 451

Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433,
604

Diamond-Stanic, A. M., & Rieke, G. H. 2010, ApJ, 724, 140

Donley, J. L., et al. 2012, ApJ, 748, 142

Donoso, E., et al. 2012, ApJ, 748, 80

Dressler, A., & Gunn, J. E. 1983, ApJ, 270, 7

Ellison, S. L., Patton, D. R., Mendel, J. T., & Scudder, J. M. 2011,
MNRAS, 418, 2043

Faber, S. M., et al. 2007, ApJ, 665, 265

Falkenberg, M. A., Kotulla, R., & Fritze, U. 2009, MNRAS, 397,
1940

Fang, J. J., Faber, S. M., Koo, D. C.; & Dekel, A. 2013, ArXiv
e-prints

Fang, J. J., Faber, S. M., Salim, S., Graves, G. J., & Rich, R. M.
2012, ApJ, 761, 23

Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9

Franx, M., van Dokkum, P. G., Schreiber, N. M. F., Wuyts, S.,
Labbé, 1., & Toft, S. 2008, ApJ, 688, 770

Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K.,
& Schneider, D. P. 1996, AJ, 111, 1748

Gabor, J. M., Davé, R., Oppenheimer, B. D., & Finlator, K. 2011,
MNRAS, 417, 2676

Georgakakis, A., et al. 2008, MNRAS, 385, 2049

Goto, T. 2007, MNRAS, 377, 1222

Goto, T., Kawai, A., Shimono, A., Sugai, H., Yagi, M., & Hattori,
T. 2008, MNRAS, 386, 1355

Groves, B. A., Heckman, T. M., & Kauffmann, G. 2006, MNRAS,
371, 1559

Hayward, C. C., Jonsson, P., Keres, D., Magnelli, B., Hernquist,
L., & Cox, T. J. 2012, MNRAS, 424, 951

Hayward, C. C., Keres, D., Jonsson, P., Narayanan, D., Cox, T. J.,
& Hernquist, L. 2011, ApJ, 743, 159

Hayward, C. C., Torrey, P., Springel, V., Hernquist, L., &
Vogelsberger, M. 2013, arXiv:1309.2942

Hayward, C. C., et al. 2014, arXiv:1402.0006

Ho, L. C. 2008, ARA&A, 46, 475

Hopkins, P. F. 2012, MNRAS, 420, L8

Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Robertson,
B., & Springel, V. 2006, ApJS, 163, 1

Hopkins, P. F., Hernquist, L., Cox, T. J., & Kere§, D. 2008, ApJS,
175, 356

Hopkins, P. F., et al. 2010, ApJ, 715, 202

Hwang, H. S., & Geller, M. J. 2013, ArXiv e-prints

Izotov, Y. I., Guseva, N. G., Fricke, K. J., & Henkel, C. 2011, A&A,
536, L7

Jahnke, K., Kuhlbrodt, B., & Wisotzki, L. 2004, MNRAS, 352, 399

Jahnke, K., & Maccio, A. V. 2011, ApJ, 734, 92

Jonsson, P., Cox, T. J., Primack, J. R., & Somerville, R. S. 2006,
AplJ, 637, 255

Jonsson, P., Groves, B. A., & Cox, T. J. 2010, MNRAS, 403, 17

Kartaltepe, J. S., et al. 2007, ApJS, 172, 320

Kauffmann, G., & Haehnelt, M. 2000, MNRAS, 311, 576

Kauffmann, G., Heckman, T. M., De Lucia, G., Brinchmann, J.,
Charlot, S., Tremonti, C., White, S. D. M., & Brinkmann, J.
2006, MNRAS, 367, 1394

Kauffmann, G., et al. 2003a, MNRAS, 341, 33

—. 2003b, MNRAS, 341, 54

—. 2003c, MNRAS, 346, 1055

Kaviraj, S., Kirkby, L. A., Silk, J., & Sarzi, M. 2007, MNRAS, 382,
960

Kelson, D. D., & Holden, B. P. 2010, ApJ, 713, L.28

Kennicutt, R. C., Lee, J. C., Akiyama, S., Funes, J. G., & Sakai,
S. 2005, in American Institute of Physics Conference Series,
Vol. 783, The Evolution of Starbursts, ed. S. Hiittmeister,
E. Manthey, D. Bomans, & K. Weis, 3-16

Kennicutt, Jr., R. C. 1998, ARA&A, 36, 189

Keres, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS,
363, 2

Kewley, L. J., & Dopita, M. A. 2002, ApJS, 142, 35

Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., &
Trevena, J. 2001, ApJ, 556, 121

Knapen, J. H., & James, P. A. 2009, ApJ, 698, 1437

Kocevski, D. D., et al. 2012, ApJ, 744, 148

Kormendy, J., & Ho, L. C. 2013, ArXiv e-prints

Kriek, M., van Dokkum, P. G., Whitaker, K. E., Labbé, I., Franx,
M., & Brammer, G. B. 2011, ApJ, 743, 168

Lacy, M., et al. 2004, ApJS, 154, 166

Lake, S. E., Wright, E. L., Petty, S., Assef, R. J., Jarrett, T. H.,
Stanford, S. A., Stern, D., & Tsai, C.-W. 2012, AJ, 143, 7

Lanz, L., Hayward, C. C., Zezas, A., Smith, H. A., Ashby,
M. L. N., Brassington, N., Fazio, G. G., & Hernquist, L. 2014,
arXiv:1402.5151



30 Hassen Yesuf, et al.

Lee, J. C., Kennicutt, Jr., R. C., Funes, S. J. J. G., Sakai, S., &
Akiyama, S. 2009, ApJ, 692, 1305

Lintott, C., et al. 2011, MNRAS, 410, 166

Liu, X., Shen, Y., & Strauss, M. A. 2012, ApJ, 745, 94

Lotz, J. M., Jonsson, P., Cox, T. J., Croton, D., Primack, J. R.,
Somerville, R. S., & Stewart, K. 2011, ApJ, 742, 103

Lotz, J. M., Jonsson, P., Cox, T. J., & Primack, J. R. 2010,
MNRAS, 404, 575

MacArthur, L. A. 2005, ApJ, 623, 795

Magorrian, J., et al. 1998, AJ, 115, 2285

Martig, M., Bournaud, F., Teyssier, R., & Dekel, A. 2009, ApJ,
707, 250

Martin, D. C., et al. 2005, ApJ, 619, L1

—. 2007, ApJS, 173, 342

Mateos, S., et al. 2012, MNRAS, 426, 3271

McQuinn, K. B. W., et al. 2010, ApJ, 721, 297

Mendel, J. T., Simard, L., Ellison, S. L., & Patton, D. R. 2013,
MNRAS, 463

Munoz-Mateos, J. C., et al. 2009, ApJ, 701, 1965

Narayanan, D., et al. 2010, MNRAS, 407, 1701

Nenkova, M., Sirocky, M. M., Nikutta, R., Ivezié, Z., & Elitzur, M.
2008, ApJ, 685, 160

Noeske, K. G., et al. 2007, ApJ, 660, L43

Norton, S. A., Gebhardt, K., Zabludoff, A. 1., & Zaritsky, D. 2001,
AplJ, 557, 150

Osterbrock, D. E. 1989, Astrophysics of gaseous nebulae and active
galactic nuclei

Poggianti, B. M., Bridges, T. J., Komiyama, Y., Yagi, M., Carter,
D., Mobasher, B., Okamura, S., & Kashikawa, N. 2004, ApJ, 601,
197

Poggianti, B. M., & Wu, H. 2000, ApJ, 529, 157

Pracy, M. B., Kuntschner, H., Couch, W. J., Blake, C., Bekki, K.,
& Briggs, F. 2009, MNRAS, 396, 1349

Quintero, A. D., et al. 2004, ApJ, 602, 190

Roche, N., Bernardi, M., & Hyde, J. 2009, MNRAS, 398, 1549

Rosario, D. J., et al. 2013, ArXiv e-prints

Salim, S., Fang, J. J., Rich, R. M., Faber, S. M., & Thilker, D. A.
2012, ApJ, 755, 105

Salim, S., et al. 2009, ApJ, 700, 161

Sanders, D. B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews,
K., Neugebauer, G., & Scoville, N. Z. 1988, ApJ, 325, 74

Schawinski, K., Simmons, B. D., Urry, C. M., Treister, E., &
Glikman, E. 2012, MNRAS, 425, L61

Schawinski, K., Virani, S., Simmons, B., Urry, C. M., Treister, E.,
Kaviraj, S., & Kushkuley, B. 2009, ApJ, 692, L.19

Schweizer, F. 1982, ApJ, 252, 455

Scoville, N., & Norman, C. 1988, ApJ, 332, 163

Shioya, Y., Bekki, K., & Couch, W. J. 2001, ApJ, 558, 42

Silverman, J. D., et al. 2011, ApJ, 743, 2

Singh, R., et al. 2013, A&A, 558, A43

Smith, J. D. T., et al. 2007, ApJ, 656, 770

Snyder, G. F., Cox, T. J., Hayward, C. C., Hernquist, L., &
Jonsson, P. 2011, ApJ, 741, 77

Somerville, R. S., Hopkins, P. F.; Cox, T. J., Robertson, B. E., &
Hernquist, L. 2008, MNRAS, 391, 481

Springel, V., Di Matteo, T., & Hernquist, L. 2005a, ApJ, 620, L.79

—. 2005b, MNRAS, 361, 776

Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289

Stern, D., et al. 2005, ApJ, 631, 163

—. 2012, ApJ, 753, 30

Strateva, 1., et al. 2001, AJ, 122, 1861

Swinbank, A. M., Balogh, M. L., Bower, R. G., Hau, G. K. T.,
Allington-Smith, J. R.; Nichol, R. C., & Miller, C. J. 2005, ApJ,
622, 260

Swinbank, A. M., Balogh, M. L., Bower, R. G., Zabludoff, A. 1.,
Lucey, J. R., McGee, S. L., Miller, C. J., & Nichol, R. C. 2012,
MNRAS, 420, 672

Tremaine, S., et al. 2002, ApJ, 574, 740

Tremonti, C. A., Moustakas, J., & Diamond-Stanic, A. M. 2007,
AplJ, 663, L77

Tremonti, C. A., et al. 2004, ApJ, 613, 898

Trump, J. R., Hsu, A. D., Fang, J. J., Faber, S. M., Koo, D. C., &
Kocevski, D. D. 2013, ApJ, 763, 133

van der Wel, A., et al. 2011, ApJ, 730, 38

Veilleux, S., & Osterbrock, D. E. 1987, ApJS, 63, 295

Villforth, C., et al. 2014, MNRAS, 439, 3342

Wake, D. A., van Dokkum, P. G., & Franx, M. 2012, ApJ, 751, L44

Whitaker, K. E., Kriek, M., van Dokkum, P. G., Bezanson, R.,
Brammer, G., Franx, M., & Labbé, 1. 2012, ApJ, 745, 179

Wild, V., Charlot, S., Brinchmann, J., Heckman, T., Vince, O.,
Pacifici, C., & Chevallard, J. 2011a, MNRAS, 417, 1760

Wild, V., Heckman, T., & Charlot, S. 2010, MNRAS, 405, 933

Wild, V., Kauffmann, G., Heckman, T., Charlot, S., Lemson, G.,
Brinchmann, J., Reichard, T., & Pasquali, A. 2007, MNRAS,
381, 543

Wild, V., Walcher, C. J., Johansson, P. H., Tresse, L., Charlot, S.,
Pollo, A., Le Fevre, O., & de Ravel, L. 2009, MNRAS, 395, 144

Wild, V., et al. 2011b, MNRAS, 410, 1593

Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P., &
Labbé, 1. 2009, ApJ, 691, 1879

Wong, O. I, et al. 2012, MNRAS, 420, 1684

Wright, E. L., et al. 2010, AJ, 140, 1868

Wuyts, S., et al. 2007, ApJ, 655, 51

—. 2011, ApJ, 742, 96

Wyder, T. K., et al. 2007, ApJS, 173, 293

Yamauchi, C., & Goto, T. 2005, MNRAS, 359, 1557

Yan, R., & Blanton, M. R. 2012, ApJ, 747, 61

Yan, R., Newman, J. A., Faber, S. M., Konidaris, N., Koo, D., &
Davis, M. 2006, ApJ, 648, 281

Yan, R., et al. 2009, MNRAS, 398, 735

Yang, Y., Zabludoff, A. I., Zaritsky, D., Lauer, T. R., & Mihos,
J. C. 2004, ApJ, 607, 258

Yang, Y., Zabludoff, A. 1., Zaritsky, D., & Mihos, J. C. 2008, ApJ,
688, 945

York, D. G., et al. 2000, AJ, 120, 1579

Zabludoff, A. I., Zaritsky, D., Lin, H., Tucker, D., Hashimoto, Y.,
Shectman, S. A., Oemler, A., & Kirshner, R. P. 1996, ApJ, 466,
104

Zakamska, N. L., Gémez, L., Strauss, M. A., & Krolik, J. H. 2008,
AlJ, 136, 1607



