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Abstract 

 

Model assessment is one of the most important aspects of statistical analysis. In geographical 

analysis, models represent spatial processes, where variability in mapped output results from 

uncertainty in parameter estimates. Slight spatial misalignments can cause inflated error scores 

when comparing maps of observed and predicted variables using traditional error metrics at the 

level of individual spatial units. We conceptualize spatial model assessment as a continuous 

value map comparison problem, and employ methods from image analysis to score model 

outputs. The structural similarity index, a measure that attempts to replicate the human visual 

system using a local region approach is used as an exploratory map comparison statistic. The 

measure is implemented within a Bayesian spatial modelling framework, as a discrepancy 

measure in a posterior predictive check of model fit. Results are reported for simulation studies 

representing a variety of spatial processes in a spatial and space-time context. A case study of 

rainfall mapping in Sri Lanka demonstrates the proposed methodology applied to assessment of 

Bayesian kriging interpolations.  Both simulation studies as well as the case study demonstrate 

that the approach reveals hidden spatial structure not uncovered by traditional methods. The 

spatially sensitive assessment methodology provides a diagnostic tool to support spatial 

modelling and analysis. 
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Introduction 

Models of spatially varying phenomena commonly incorporate spatially distributed model 

parameters to account for spatial variation in the relationship between a process and modeled or 

missing covariates (Finley 2011). For example, space-time models of dynamic processes such as 

infectious disease or invasive species spread, utilize spatially distributed model parameters to 

account for spatial heterogeneity in epidemic waves (e.g., Smith et al. 2002, Wheeler and Waller 

2008). Statistical models with spatially-varying coefficients can accommodate non-stationary 

relationships in a regression context, which is particularly useful for large study areas.   A key 

advantage of spatially explicit modelling for geographical analysis is that parameter estimates 

can be mapped and integrated with other spatial data sets. The most common approaches for 

modelling spatially heterogeneous processes include Bayesian hierarchical modelling with 

dynamic spatial models (Gelfand et al. 2003), geographically weighted regression (GWR) 

(Brundson, Fotheringham, and Charlton 1996) and spatial filtering methods (Griffith 2008).  

A key difficulty in developing spatial models is model assessment, which comprises two 

stages: the relative comparison between candidate models in development in order to assist in 

model selection, and the characterization of discrepancies between modeled outcomes and 

observed data in order to facilitate further model development, data collection and hypothesis 

generation. In practice, these stages often occur iteratively. Traditionally metrics employed in the 

model selection phase simultaneously consider a quality of fit statistic (such as the deviance) 

along with some penalty for model complexity to discourage overfitting (e.g., AIC–Akaike 1973, 

BIC–Schwarz 1978, DIC–Spiegelhalter et al. 2002, Bayes Factors–Kass and Raftery 1995). By 

definition, the model selection stage is relative, and provides evidence about the performance of 

a given model in relation to others being considered–that is, model selection indices are used to 
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determine the best model among a suite of candidate models, or to combine relative strengths of 

different models through model averaging (Burnham and Anderson 2002). The model selection 

stage provides little information about the overall quality of proposed models, requiring 

alternative objective approaches for examining goodness-of-fit. For a recent example, Finely et 

al. (2012) use a squared error loss function that incorporates both discrepancy in the estimated 

values (i.e., mean) and uncertainty (i.e., variance) in predictions as model selection criteria 

within a posterior predictive model-checking framework.   

The second stage of model assessment examines how well a selected candidate model 

agrees with data in order to quantify goodness-of-fit.  A more expansive treatment of model 

residuals is typically conducted to quantify their magnitude and structure in a separate stage 

through goodness-of-fit tests. Typical approaches for measuring goodness-of-fit include a 

comparison of observed and estimated values, such as the chi-squared (χ
2
) test (e.g., Dice 1945), 

the root mean squared error, the mean absolute error (i.e., bias), or kappa statistics (e.g., Carletta 

1996). These tests are undertaken in geographical analysis any time a researcher has observed 

and predicted values (e.g., spatial interpolation, hierarchical modelling, image classification). 

Because these methods are employed so widely in many areas of geography, we use the term 

‘error’ here interchangeably with ‘residual’ rather than the more precise definition related to the 

difference between an estimate and its true parameter value.  

With analysis of spatial data, aspatial goodness-of-fit measures can be misleading, 

especially in the presence of spatially dependent error structures (Lee and Ghosh 2009). Analysis 

of the spatial structure of regression residuals has a long history in geographical analysis (e.g., 

Thomas 1968). Based on the assumption that simulated data drawn from a fitted spatial model 

represent realizations of random spatial processes, the spatial pattern of residuals can provide 
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details or confidence about model fit. Cliff and Ord (1981) employ global join-counts and 

Moran’s statistics to measure spatial autocorrelation of observed and expected maps derived 

from simulations of Hagerstrand’s spatial diffusion model (Hägerstrand 1953). More recently, 

Wulder et al. (2007) use a local measure of spatial autocorrelation to assess the spatial variation 

in error/variance in several scenarios of a forest productivity model; this practice is becoming 

increasingly common (e.g., Räty and Kangas 2010 ). Here we are concerned specifically with 

this second problem, and the continued development of spatially sensitive metrics for assessing 

model goodness-of-fit.   

A number of problems exist with measures of model fit commonly applied to traditional 

spatial models; for example, the true values for spatial parameters are generally unknown. 

Typically, assumptions and estimates of true values are based on results of field experiments 

taken over limited spatial scales (e.g., Turchin and Thoeny 1993). Scaling up field experiments 

to large-area spatial models is extremely challenging because ground truth data for models using 

coarsely grained units, such as pixels of 1 km by 1 km or larger, are very difficult to obtain. 

A second issue specifically stems from comparing two maps, either two model outputs or 

a model output with validation data, for each individual spatial unit. Typically a measure of 

discrepancy is computed at each spatial unit and summarized in one global metric. If the spatial 

locations for one map are offset by even a single spatial unit, due to geo-referencing error, for 

example, quantitative comparison of spatial units may indicate a high level of mismatch. 

However, the maps may be very similar (see Hagen-Zanker 2006a). As such, pixel-by-pixel 

metrics may produce overly critical comparisons due to errors in spatial co-registration (Pontius 

2000). A third related issue concerns spatial structure in the way that parameters themselves 

describe data, which could be easily missed by comparison of global summary measures. 
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Spatially local assessment methods, or those that characterize the spatial pattern of parameter 

estimates, are beneficial because they reveal systematic errors and spatial variability in errors 

that can be used to further refine models.  

Furthermore, because some variability in predictions is expected from all models (i.e., all 

models are wrong), determining when the difference between two maps is more than expected 

given a data generating spatial process can be problematic. For instance, often two maps 

generated as realizations of a spatial model are expected to have variability in output values at 

the same spatial location (Csillag and Boots 2005). This issue has been discussed mostly in the 

remote sensing literature, where traditionally researchers have set subjective thresholds above 

which change is considered substantive (Gong and Xu 2003). 

In the last decade, map comparison research has begun to overcome several of the 

preceding issues. Map comparison techniques are useful for evaluating similarities and 

differences between two map patterns. Map comparison approaches have been developed 

primarily for measuring agreement between categorical maps (Boots and Csillag 2006; Hagen-

Zanker 2006b; Visser and DeNijis 2006); for example, land-use and land-cover change 

simulations (Hagen-Zanker and Martens 2008). A benefit of map comparison techniques is the 

use of spatial neighborhoods to assess spatial pattern similarity, rather than individual spatial 

units. Csillag and Boots (2005) present a framework to test the hypothesis that the spatial 

patterns expressed in two categorical maps are generated by the same spatial processes. Such an 

approach enables statistical assessment of whether generating spatial processes are similar, and 

overcomes the need to set arbitrary thresholds. A key insight in Csillag and Boots (2005) is the 

need to consider users’ perceptions of when maps are different. Much less work considers the 
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assessment of change in continuous-value maps, although Hagen-Zanker (2006a) reviews a suite 

of potential methods. 

A final issue with assessing spatially explicit models is that the true values for the spatial 

process of interest often are unknown, and so must be estimated in some fashion. Frequently, 

hierarchical spatial models are fit within the Bayesian paradigm with implementation based on 

Markov chain Monte Carlo (MCMC) techniques. Within the Bayesian context, posterior-

predictive checking is a general approach to goodness-of-fit, whereby a fitted model, through its 

posterior distribution, is used to generate replicate data with the assumed model, where values 

are compared with observed data through  a measure of discrepancy (Gelman, Meng, and Stern 

1996). The combined methods described here represent a framework for checking spatial 

models, and provide a diagnostic tool to improve model-based spatial analysis.  

 In this paper, we employ a spatially explicit approach to evaluation of spatial models in a 

Bayesian model-checking framework. The primary contribution of this paper is a new model 

assessment methodology, based on two approaches: posterior predictive checks, and map 

comparison based on the structural similarity (SSIM) index, which are combined to quantify the 

spatial nature of a model fit. In short, fitted models are used to simulate new realizations of a 

process using its posterior predictive distribution, and these are compared to the observed data 

using spatially sensitive metrics. This approach is in line with the notion of a process-based 

approach to map comparison presented in Csillag and Boots (2005). The posterior predictive 

realizations from a fitted model can be interpreted as replicate data that could have been 

observed in a study area at another time, given that the data generating model is true. Therefore, 

comparing these realizations to the observed data provides a mechanism for assessing the fit of 

statistical models. A novel contribution of our work is the fusion of a Bayesian model-checking 
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approach with the SSIM index for checking the fit of spatial models. Because geographers 

typically work with data that describe one instance of spatially stochastic processes, simulation-

based inference is a powerful method for understanding geographic patterns.   

Methods 

Two component methods for the proposed model assessment approach are posterior predictive 

checks and map comparison. We briefly review each of these approaches before demonstrating 

their role in spatial model assessment.     

Posterior Predictive Model Checking 

Posterior predictive model checking differs from the classical hypothesis testing framework in 

that emphasis is placed on measuring the discrepancy between observed data and replicate data 

simulated with a fitted model, rather than testing whether the model is true or false. In Bayesian 

statistics, all parameters are treated as stochastic and assigned a prior distribution p(θ), and 

inference proceeds through the posterior distribution p(θ |Y), which conditions on observed data 

Y.  For a given model, specified by a likelihood p(Y|θ) and a prior p(θ), the posterior predictive 

distribution  

  dYpYpYYp
reprep

)|()|()|(   (1) 

allows us to draw new replicate data from the fitted model. The replicate data Yrep are assumed 

to have the same distribution as the observed data Y (which is specified as part of a model), and 

also assumed conditionally independent of Y, given θ.  As described in Gelman, Meng, and Stern 

(1996), simulated realizations of Yrep can be compared to observed data through  a general 

discrepancy measure T(Yrep,Y). This discrepancy measure is a specifically chosen statistic that 

compares observed data with replicate data generated with a model, and we focus here on a 
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measure for exploratory map comparison for continuous-valued spatial model assessment.  In the 

analysis reported here, we simulate 100 Yrep datasets from fitted models, and then compare the 

observed Y and Yrep datasets (i.e., Yrep vs, Y). Alternatively, in some cases the appropriate 

comparison is between parameter estimates obtained from posterior distributions and their true 

values (i.e., 
^

  vs.  ), to evaluate the fit of a specific model component. In all analyses, replicates 

were generated by randomly drawing parameter values  i from the posterior distribution  , and 

using these to simulate new values (i.e., Yrep). 

Map Comparison 
 

We selected the SSIM index (Wang et al. 2004), developed for evaluating image degradation, as 

an exploratory map comparison statistic for use in continuous-valued spatial model assessment. 

The SSIM index was originally proposed for evaluating the quality of image compression 

algorithms, but was later identified as a potential method for comparing continuous valued maps 

by Hagen-Zanker (2006a). The SSIM index is constructed to objectively make comparisons 

between images similar to the human visual system. A comparison of the mean square error 

(MSE) and SSIM index in Wang et al. (2004) shows that for a fixed MSE, vastly different image 

degradations are possible from a human perception standpoint. We employ the SSIM index to 

extend this notion to map comparison for model checking. A local region approach is ideal for 

simultaneously assessing similarity in spatial structure along with pixel-by-pixel correspondence 

in maps (Hagen-Zanker and Martens 2008). 

The SSIM index considers three components for map comparison: luminance, contrast, 

and structure, relating to local differences in mean, variance, and correlation (Wang et al. 2004). 
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Three summary statistics used in calculating the SSIM index are computed for each cell on the 

basis of a defined local region (e.g., a 5x5 moving window). 
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In the preceding three equations, a and b are two regular lattice maps, the index i iterates through 

n cells in a defined local region, and wi are spatial weights that can be used to adjust the 

smoothness/ abruptness of the local region effect. For example, in Wang et al. (2004), an 11x11 

circular local region is used with Gaussian weights. For equal weights, all wi can be set to 1/n. 

The local measures are combined into the three SSIM index components–luminance (L), contrast 

(C), and structure (S)–as follows: 
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where the constants c1, c2, and c3 are included for stability in situations where either the mean or 

variability is close to zero (e.g., large homogeneous patches). These constants can be related to 

the range of pixel values (R) via two additional constants, k1 = 0.01 and k2 = 0.03, established 

heuristically by Wang et al. (2004): c1 = (k1R)
2
, c2 = (k2R)

2
, and c3 = ½ c2. Note that these three 

components (L, C, S) are relatively independent, and changes in one component do not 
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necessarily affect the others. The components L and C fall in the interval [0,1] with 1 indicating 

perfect agreement, and S falls in the interval [-1,1] (the correlation coefficient between cells in 

each window). A value for the SSIM index of -1 indicates perfect negative correlation among 

values in the locally compared regions. The three SSIM index components are multiplicatively 

combined to give a measure of similarity for each local region that is equal to 1 when the two 

maps are identical: 

 
)]b,a(S[)]b,a(C[)]b,a(L[)b,a(SSIM   (8) 

The exponents α, β, and γ can be used to weigh individual components, with default values taken 

as α = β = γ = 1. Interpreting maps of L, C, S and the SSIM index values allows spatially local 

analysis of patterns of model fit. Alternatively, a global score of similarity (termed mSSIM) can 

be computed by taking the mean of all local SSIM index values. Global summaries can be 

calculated for each individual component. Given the structure of these formulas, the mSSIM 

value obtained by taking the mean of the local SSIM index values does not necessarily equal the 

product of the component global means. 

Expected and observed maps with low similarity in L indicate a poorly estimated local 

mean, whereas disagreement in C may indicate that local transitions are different across 

estimates. For example, smoother transitions might result from a spatial smoothing parameter in 

a model that is not evident in the data under study (i.e., oversmoothing). Differences in local 

spatial structure indicate local disagreement in pattern, and are more robust to errors induced by 

slight spatial misalignment. Where S is high, spatial patterns tend to be similar; even if pixel 

magnitudes are quite different (i.e., low L). Spatial patterns in model fit, evaluated by the SSIM 

statistic, may highlight model mis-specification due to missing variables, terrain-induced errors, 

or models that are over-parameterized.  When combined with simulations from a posterior 
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predictive distribution, the posterior-predictive-SSIM index provides a novel approach for spatial 

model assessment. 

Visual versus Quantitative Model Assessment 
 

Classical model assessment focuses on minimizing the error of predictions. The typical metrics 

for this are the root mean square error (RMSE) and the mean squared error (MSE). While error 

minimization is important to know how well a model describes the data, recent research in image 

processing reveals that in a spatial context, other aspects of image structure are very important 

for perception of spatial similarity in images (Wang et al. 2004;  Wang and Li 2011; Brunet, 

Vrscay, and Wang 2012). Here we extend this notion to maps, suggesting that additional 

information about spatial structure may be useful in assessing the fit of spatially explicit models. 

Similar to categorical map comparison, where maps with the same level of composition for a 

given map class, but different spatial configurations of those classes, are perceived differently 

(Remmel and Csillag 2003), here we hypothesize that for a fixed level of error, but different 

spatial patterns in error, continuous-valued maps appear to be different.  

 To demonstrate, a Gaussian spatial process was simulated for a 100x100 lattice on the 

unit square. The value for each cell was distributed as Normal (µ = 127, σ = 50), with spatial 

correlation defined by a partial sill and range of σ
2
 = 0.05 and γ = 2µ, respectively, and a 

Gaussian covariance function. A second Gaussian noise process was simulated with parameters 

µ=5, σ = 2, and spatial parameters drawn from γ = [100, 200, 300] , σ
2
 = [0.05, 0.15, 0.30]. 

Realizations of the noise process were added to the first process to create spatially variable 

distortion of the original map. Fig. 1 shows different realizations of the altered process where the 

MSE (Σ[a-ax]
2
, where a is the original process and ax is the noise-distorted process) has been 

held constant. The SSIM index scores in Fig. 1 highlight different levels of apparent distortion 
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undetectable by the MSE alone. This result has been demonstrated many times, and is why 

‘structure-based’ measures such as the SSIM index are used instead of the MSE in image quality 

assessment. The SSIM index rests on the assumption that the human visual system is adapted to 

extract structural information from a given view, and as such, image structure should be the basis 

for measures of image degradation. Similarly, we hypothesize that perceived similarity between 

maps also depends on spatial structure similarities. Based on this initial exploration, the SSIM 

index appears to be effective at discriminating between intuitive perceptions of map comparison 

for continuous valued maps. We contend that such additional information is helpful in spatial 

model assessment. 

Figure 1 about here 

A Simulation Study 
 

Synthetic data were used in order to demonstrate the model checking framework under known 

conditions. In one experiment, a spatial model was specified to replicate a study investigating a 

spatial process at a snapshot in time (e.g., an economic indicator across counties). In a second 

experiment, a discrete space-time model was used to create synthetic data to replicate a study 

evaluating spatially distributed model parameters over time (e.g., the diffusion rate for the spread 

of a disease across a landscape). We compare both replicate data (Y and Yrep) and spatial 

parameter estimates (i.e., 
^

  and  ) using the SSIM index, as well as the MSE in a posterior 

predictive model checking framework. The method demonstrated here is appropriate for a study 

area subdivided into n spatial units forming a regular square lattice. Fig. 2 outlines the analysis 

methodology. 

Figure 2 about here 
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A Spatial Data Generating Process: The Conditional Autoregressive Model 
 

Models that explicitly incorporate the spatial structure of a process and underlying covariates are 

becoming commonplace due to recent statistical developments and the relative ease of fitting 

these models in software such as WinBUGS (Lunn et al. 2000) or the MCMCglmm package in R 

(Hadfield and Kruuk 2010). When spatial effects (i.e., autocorrelations) arise from missing 

variables that are spatially structured and represent a theoretical population of random effects, 

typically a spatial random effects model is employed. Versions of such models are frequently 

used in disease mapping (Lawson 2009), spatial econometrics (Anselin 1988), and spatial 

statistics (Chun and Griffith 2013). Modelling proceeds via a Bayesian hierarchal approach, 

where data are specified conditional on unknown parameters, which are linked hierarchically to 

other parameters that are given spatial prior distributions. The spatial model we employed was an 

intrinsic Gaussian conditional autoregressive model with spatial random effects defined by  

 

1
)(]|[

/]|[




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where mi is the number of neighbours defined in a list N of indices that define each adjacency-

based neighbourhood, and τ is a parameter characterizing the conditional variance. Thus the 

conditional expected value in any cell is a weighted average of its neighbours, with a conditional 

variance inversely proportional to the number of neighbours. Neighbour relations were defined 

on a 40x40 grid using the queen’s case contiguity; mi is 8 for all non-edge cells. The conditional 

expectation of an observation in any given cell is a linear combination of observations of its 

neighbours. 
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 The model fit to the simulated data (described subsequently) was a null spatial model 

where  
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where X is a vector of covariates, and β is a vector of regression coefficients. The spatially 

correlated error bi is a conditional autoregressive result, as specified previously for each grid cell, 

and b0 is an intercept. Regression coefficients (β, b0) were given Normal prior distributions (μ = 

0, σ = 1000). Data were simulated to create a spatially structured dataset as follows: a 40x40 grid 

made up a study area where each grid cell had one covariate and coefficient values drawn from 

Normal distributions with spatial correlation defined by an exponential spatial covariance 

function [γ=10, σ
2
=0.05]. This specification induced spatial structure in the covariates, and 

ultimately in the simulated dependent variable, which was calculated as Y=127+βX, yielding a 

dependent variable (Y), independent variable (X), and coefficient (β) at each spatial location (n = 

1,600). For the purposes of illustrating the model assessment procedure, measurement error was 

excluded from the model.  

The model was fit to the simulated data in WinBUGS using 100,000 iterations after a 

burn-in of 10,000, where convergence was examined via the Gelman-Rubin statistic (Gelman 

and Rubin 1992) and autocorrelation plots were inspected visually for serial autocorrelation. 

Parameter posterior distributions were used to generate 100 replicate datasets (Yrep) from the 

fitted model in order to make inferences at a pseudo-significance level of 0.01. The map 

comparison statistic SSIM index and the MSE were used to compare each Yrep to the true Y 

values yielding 100 maps of the SSIM index and each of its components (L, C, and S).  
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A Space-time Data Generating Process: The Space-time Logistic Mixed Model 
 

To further illustrate the importance of spatial structure in model assessment, we used the SSIM 

index for comparison of data simulated with a space-time model having spatially local 

parameters. In this experiment, we specified a binary space-time process that was discrete in both 

space and time, analogous to the spread of an invasive species or emerging disease. Given n 

regions comprising a study area, we let }1,0{)( tZ
i

indicate presence (e.g., of disease) in region 

i, i=1,…, n, at time t, t=1,…,T. Therefore Z represented a sequence of binary maps describing the 

progression of spread across the landscape. We specified a logistic model for the transition 

probabilities (pit) of the spatial spread process conditional on the previous time period, 

Pr{Z(t)|Z(t–1)}. Following Smith et al. (2002), we assumed that occupied regions remain 

occupied, so that pit = 1 if Zi(t–1) = 1; if region i is unoccupied at time t–1, so that Zi(t–1) = 0, the 

probability it becomes occupied at time t is defined as: 

 

1

1


















t,iit

it

it
NN

p

p
log   (11) 

where μt is a time varying parameter representing a baseline probability of occupation, NNi,t-1 is 

the number of occupied neighbors of region i at time t–1, and λi is a spatially varying parameter 

quantifying the impact of occupied regions on their unoccupied neighbors. Here, a CAR prior 

was used for the spatially varying term λi, identical to that in the previous example, while a 

Normal prior was used for each μ. Full details of the model are given in Long et al. (2012). 

This experiment focused on investigating the spatial structure of differences between the 

true values for λ and those estimated by the model, 
^

  (as opposed to Y and Yrep). True values for 

λ were simulated to represent various patterns of spatial structure. The spatial processes reported 

include a linear spatial trend and constant temporal trend (process 2A; Table 1), a Gaussian 
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Markov random field (GMRF) exhibiting spatial nonstationarity and constant temporal trend 

(process 2B; Table 1), and a GMRF and sinusoidal temporal trend (process 2C; Table 1). These 

three scenarios were used to simulate binary data (presence/absence) describing a spreading 

process on a 40x40 grid over 100 time periods. As such, the λ values from each of the three 

scenarios represent the true values with which fitted estimates (
^

 ) are compared.  

Table 1 about here 

The space-time model was fitted to the simulated datasets in WinBUGS using 100,000 

iterations after a burn-in of 10,000, where convergence was confirmed via the Gelman-Rubin 

statistic (Gelman and Rubin 1992) and autocorrelation plots were inspected visually for serial 

autocorrelation. Again, 100 replicate datasets (termed Yrep) were simulated from the posterior 

distributions of parameters to facilitate posterior predictive checking of model fit. Unlike the 

preceding experiment with which we compared the map of Y with the Yrep data (producing 100 

SSIM index comparisons), in the space-time case, we assessed the spatial structure of 

comparisons of the fitted estimates of the spatial diffusion parameter  
^

   with the true values λ. 

We used the posterior means as point estimates of 
^

  to compare via map comparison with the 

map of true λ values.  
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Simulation Study Results and Discussion 

SSIM index and posterior predictive checking model assessment analysis was conducted in both 

spatial and space-time modelling contexts. Results indicate complimentary findings that spatial 

structure is an important part of model error and the proposed methodology reveals hidden 

structure in model spatial errors. .     

Spatial Model Assessment 
 

The Bayesian posterior predictive p-value revealed the posited model did fit the generated data, 

as the p-value based on the sample mean was 0.47 (where p-values in the tails indicate poor fit). 

When the average values for Yrep were compared with the observed values for each cell (i.e., a 

pixel-by-pixel comparison), the mean square error was 0.72, for a dependent variable with mean 

3.19 and standard deviation 2.31.  

Figure 3 about here 

Fig. 3 presents a map comparison analysis comparing the Yrep to the observed data. The 

mean SSIM index score was 0.88, varying between 0.78 and 0.89 when comparisons were made 

between each of the 100 Yrep and Y. The SSIM index components mapped in Fig. 3 reveal that the 

main component contributing to lack of fit was structure–identifying a lack of fit in pattern in 

certain parts of the map. This pattern is not apparent in the map of squared error (Fig. 3), where 

high errors appear randomly distributed. Because L and C components were uniformly very high 

(L = 0.99, C = 0.98, Table 2), areas of high structural dissimilarity indicate differences in pattern, 

where the values were still similar in terms of locally averaged error magnitude. Highlighted 

areas (dashed lines) in Fig. 3a-d demonstrate that on the right side, whereas L averages over local 

error variation, S highlights a pattern of dissimilarity in in spatial structure (i.e., correlation). 

This is due to overlapping windows that use the data multiple times in computation of the SSIM 
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index. On the left side (Fig. 3a-d), a difference in pattern is highlighted by the S component as 

well, while the map of errors appear to have no spatial structure.   

Space-time Model Assessment 
  

The SSIM analysis results of the space-time models are outlined in Table 2. For the simplest 

case, with linear spatial trend and no temporal trend in translocation, the structural similarity was 

poorest, with a mean SSIM index of 0.12. The components responsible for this low score were L 

(0.55) and C (0.56), whereas S was higher (0.70). Conversely, for patterns generated from a 

GMRF exhibiting spatial non-stationarity (processes 2B and 2C), L (0.95, 0.98) and C (0.76, 

0.92) scored higher, whereas S scored lower (0.32, 0.74). In all cases, the global SSIM index 

indicates differences in spatial structure between true model parameters and those estimated by 

the model. Of all models examined, process 2A had the lowest scores in the SSIM analysis. 

Threshold-like behaviour is evident, whereby values for λ below 1 could not be estimated 

accurately. Dependence between L and C is evident, as those areas that scored low in L had 

higher C scores. The S component was high due to the simple nature of the pattern (i.e., a linear 

vertical trend). The best fitting model spatially was for process 2C, with spatial nonstationarity 

for local spread and sinusoidal temporally random spread (Fig. 4). S and C were components 

dominating spatial estimation error in this more complex process. The small luminance errors 

were smoothed over by the moving window, yielding high L across the study area. Dashed areas 

in Fig. 4 highlight both S and C as contributing components. Interestingly, the high error hotspot 

evident in the map of squared errors is completely smoothed over in the SSIM maps. Because the 

smoothing is a function of the window size (5x5) and the smoothing function (none used here), 

SSIM results must be interpreted relative to these two parameters. 

Table 2 about here 
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Figure 4 about here 

A Case Study: Bayesian Kriging  

The simulation study demonstrates the use of the SSIM index in a context in which we have a 

known value for a spatial variable, and we estimate a model, and we make comparisons. 

However, practical spatial modelling encounters few situations where the true values of a spatial 

variable are known. Typically when building spatial models, the only data available to assess 

model fit are used to build a model. As discussed previously, posterior predictive checking 

provides a framework for using a model to draw new simulations from a posited process, and 

these can be compared with the original data. In this case, model assessment takes one of two 

forms: 1) check different realizations of spatial models against one thought to be the best, or 2) 

compare all iterations of models against each other. We employ the former strategy in an 

assessment of precipitation modelling in Sri Lanka. 

The Study Area and Data 

 

Sri Lanka is situated in the Indian Ocean, off the southeastern tip of the Indian subcontinent. The 

climate is tropical, and weather is characterized by two seasonal monsoons.  The northeast 

(maha) monsoon typically lasts from October until March, whereas the southwest (yala) 

monsoon lasts from April until September.  The southwest area of Sri Lanka generally receives 

significant rainfall during all seasons, while the northern and eastern regions of the country 

become arid and dry during the southwest monsoon season. Our long-term research interests 

focus on identifying associations between rainfall and incidence of waterborne infectious 

diseases.  
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Precipitation data were obtained from the Department of Meteorology of Sri Lanka. They 

include daily rainfall measurements (millimeters) from a network of 361 small-scale agro-

ecological weather monitoring stations (Fig. 5). The spatial distribution of the station network 

varies considerably with population, climate, and landuse. For this research, daily rainfall 

measurements were aggregated into total monthly rainfall. A subset of these data was extracted 

for the month of December 2008.  

Figure 5 about here 

 Daily rainfall data were obtained from 20 official meteorological stations operated by the 

Department of Meteorology of Sri Lanka.  This data set was aggregated into monthly rainfall for 

December 2008.  The official meteorological station data (n = 20) was used to validate the 

interpolations generated using the larger (n = 361) agro-ecological monitoring data. 

Methods 

 

Bayesian kriging was used to interpolate rainfall values across Sri Lanka onto a regular spatial 

lattice (1 km grid cells). Bayesian kriging differs from ordinary kriging in that priors are put on 

parameters of the semivariogram, and estimation yields a posterior distribution for each of the 

parameters (range, sill, and nugget). Random draws from the posteriors were used to generate 

predictive simulations (i.e., Yrep) and these were compared to the simulation based on posterior 

means using the SSIM index. Similar to the previous analysis, the variability expressed in the 

SSIM analysis reveals uncertainty in the fit of the predicted interpolations.  A Gaussian spatial 

linear mixed model was used to perform Bayesian kriging.  The R package geoR (Ribiero and 

Diggle 2001) was used to generate posterior predictive distributions. Because the initial rainfall 

values used to perform Bayesian kriging were not normally distributed, a Box-Cox 

transformation was performed on the rainfall variable to satisfy model assumptions.  The Box-



  Assessing Spatial Models 

20 

 

Cox transformation searches for an exponent value which is applied to each observation in order 

to make the shape of the distribution more Normal. The interpolated data then were back-

transformed for analysis and interpretation. Posterior predictive simulations (n = 99) were 

obtained with kriging by using random draws from posterior distributions of the semivariogram 

parameters.  Each interpolation was compared to the posterior mean interpolation using the 

SSIM index.   

Results and Discussion 

 

Fig. 6 presents a frequency distribution of mSSIM values from 99 Yrep compared to the posterior 

mean. The majority of the mSSIM values were between 0.26 and 0.28.  These values suggest that 

the interpolation generated from posterior predictive simulations were not very similar spatially 

to the posterior mean.  The highest mSSIM value attained was 0.31, while the lowest was 0.22 

(Table 2). Fig. 7 displays the SSIM map outputs attributed to both of these mSSIM values 

together with the posterior mean raster.  While L was very high for both simulations (0.99), both 

C (high mSSIM: 0.68, low mSSIM: 0.61) and S (high mSSIM: 0.49, low mSSIM: 0.38) were 

notably lower, and can be thought to be responsible for the low mSSIM values.  The spatial 

pattern of the distribution of rainfall in Sri Lanka is quite complex, which is reflected in the low 

S scores for both simulations.   

Figure 6 about here 

 Southern Sri Lanka attained much higher SSIM index scores than did northern Sri Lanka 

for both simulations, which most likely results from the much sparser sampling of rainfall values 

in the north vis-a-vis the south. Because far fewer observed rainfall values support interpolation 

in northern Sri Lanka, the posterior variances in these areas are likely to be much higher.  

Therefore, the simulation that attained the highest mSSIM value did so largely as a result of its 
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structural similarity in the southwest region of Sri Lanka (the most densely sampled area). This 

outcome suggests that the map of local SSIM index values is a much more important diagnostic 

tool in interpolation assessment than the global score. 

Figure 7 about here 

 Appendix A summarizes a comparison of the observed rainfall measurements at the same 

20 meteorological station locations to the predictions attained from the posterior mean from 

Bayesian kriging, as well as a variety of other different spatial interpolation methods (ordinary 

kriging, inverse distance weighting, and spline interpolation). While the mSSIM scores of 

comparisons between posterior predictive distribution simulations and the posterior mean 

interpolation were quite low, suggesting that visually, substantial change exists in model output 

in simulations from the posterior predictive distribution, Bayesian kriging attained the lowest 

mean absolute error (39.91 mm) over all 20 locations of any of the interpolation techniques. 

Discussion 

Map comparisons revealed that with both models, even when a model appeared to describe data 

well, spatial irregularities existed in how a model fits to data. The SSIM index identifies local 

differences in mean, variance, and correlation, providing information about spatial context and 

differences in each that can be further explored to reveal systematic deficiencies in a model 

specification. As Cliff and Ord (1981) show with global spatial measures, our analysis here 

demonstrates the importance of spatial model assessment when working with spatially detailed 

models. However, our work differs from previous attempts at spatially-oriented model validation 

in a number of important ways. First, the assessment of models using the SSIM index provides 

spatially local information not available in global autocorrelation measures. From a diagnostic 

perspective, this approach attempts to replicate the human visual system and determine models 
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that look right. But we are not advocating the use of the SSIM index as a replacement for error 

based approaches; rather, we suggest that map comparison metrics should play a complimentary 

role in model assessment for spatial models. Fig. 1 highlights the need for this type of metric.  

Two simulation experiments indicate that the SSIM index analysis provides additional 

information for model assessment purposes. However we have not defined any explicit criteria 

for distinguishing between good and bad model fit based on the SSIM index alone (e.g., SSIM 

index > 0.5 = good fit). The SSIM index, like many model assessment tools, is best used as a 

comparative measure of model agreement. The overall SSIM index is sensitive to three 

components: L, C, and S, which are largely independent of each other. The SSIM index should 

be considered together with these three components, because each component provides unique 

information valuable for model assessment. Given that local SSIM index values are the product 

of local L, C, and S, a small SSIM index value may be the result of lower scores in all three 

components, or a mixture of high and low scores in various components. This relationship 

becomes further complicated as local values are averaged across a map to provide a global score. 

For example, comparing the individual component results from the space-time simulation 

example (e.g., process 2A, SSIM = 0.12, L = 0.55, C = 0.56, S = 0.70; Table 2) with those from 

the Bayesian kriging case-study (SSIM = 0.27, L = 0.99, C = 0.65, S = 0.44; Table 2) illustrates 

the different ways component scores can combine to form global SSIM index values. From this 

result we can identify which components show better agreement, and use this extra information 

in assessment and model improvement. Finally, the value of any spatially local analyses is the 

resulting spatial information that is most effectively portrayed with a map. Thus, the local SSIM 

index maps (e.g., Fig. 7d, e) provide invaluable information about the spatial structure of model 
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agreement. Such maps can be used to examine where and how well the spatial structure of model 

output matches some true map or expectation, and where that model fails.  

 Although the analysis here employs the SSIM index as the local spatial measure, this is 

by no means the only available option, and using this approach has its disadvantages. The SSIM 

index method is wholly dependent on the window size parameters (set here to a 5x5 local 

window on a 40x40 grid). Further, recently the whole notion of measuring perceived error using 

the SSIM has been questioned. Dosselmann and Yang (2011) suggest that the SSIM index is 

directly related to the MSE, and its formulation (a product of means, variances, and correlations) 

is too simple to actually model the human visual system. Regardless, while the mechanism 

accounting for its performance requires further investigation (e.g., luminance adaptation, textural 

masking), studies demonstrate its ability to accurately reflect subjective mean opinion scores 

(Wang et al. 2004). A major limitation in our application to maps is that the SSIM index method 

is implemented and tested only on maps defined using a regular spatial lattice, which currently 

limits its application in model checking to spatial models based on raster data or a regular square 

grid. Future work could explore the properties of this statistic for more complex spatial lattice 

structures; however in such cases, care must be taken in the definition of the spatial 

neighbourhood matrix. The framework presented here is easily extendible to other spatial 

measures (e.g., Getis and Ord 1992; Anselin 1995), and we suggest that further research in this 

area is warranted. What is lacking in this analysis is a formal hypothesis test to determine 

significantly similar or different spatial models (Csillag and Boots 2005). However, before such 

hypotheses can be realized, a full analysis is required of the statistical power of the SSIM index 

for different spatial model specifications. How the SSIM index values relate to their data scale 

units remains unclear, and more work needs to be done to understand this relationship before the 
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SSIM index can be used in geographical analysis beyond relative comparisons. A final limitation 

is that the SSIM approach is scale dependent, and as in any pattern analysis, multiscale 

approaches are critical to identify the scale sensitivity to observed patterns. This limitation is also 

true in the context of model assessment. Wavelet-based methods in particular may have potential 

for comparison of continuous valued maps, and thus spatial model assessment.  

Conclusion 

Typically, with spatial and space-time models, evaluation of model fit is based solely on 

traditional aspatial model diagnostics. Here we advocate for a spatially explicit approach to 

testing how some mapped spatial output from a model differs from an expectation as a 

complimentary model diagnostic tool.  Specifically, the SSIM index is a useful tool for spatial 

model assessment because it calculates local differences in mean, variance, and correlation 

(spatial structure) between two maps using a spatial neighbourhood-based approach. Given the 

rate at which spatial models are now implemented in a range of applications, the inclusion of 

spatial measures for model assessment provides invaluable spatial information that can be used 

to examine the qoodness-of-fit of a chosen model. 
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Appendix A 
 

Table A1  Bayesian kriging predictions compared with multiple interpolation methods’ 

predictions and observed rainfall values at 20 official meteorological station locations 

 

Observed 

Rainfall 

(mm) 

Bayesian 

Kriging 

(mm) 

Ordinary 

Kriging 

(mm) 

Inverse 

Distance 

Weighting 

(mm) 

Splines 

(mm) 

259.57 265.65 242.57 305.78 355.68 

96.52 110.76 117.77 102.21 104.02 

146.71 130.85 127.61 137.72 27.24 

160.92 195.28 143.87 129.11 109.91 

91.31 115.82 82.94 81.25 87.58 

251.81 182.12 150.87 143.18 -269.53 

208.71 87.68 76.91 78.56 64.97 

131.73 79.33 120.6 103.46 65.65 

181.42 187.97 255.79 165.37 184.61 

147.34 69.27 111.13 77.89 93.42 

94.52 74.69 100.65 78.48 83.74 

47.55 27.81 85.09 77.77 -56.74 

304.12 254.76 206.55 280.13 302.9 

57.34 35.59 58.62 39.55 42.44 

276.23 312.12 206.95 277.32 281.86 

321.94 256.53 251.12 216.97 273.74 

313.3 283.09 198.65 282.93 352.18 

244.92 294.18 235.45 206.31 215.22 

166.84 171.85 123.34 46.63 -33.05 

184.54 105.66 132.56 81.98 83.62 

     Average 

Absolute 

Error: 39.91 46.97 47.06 81.03 

 



26 

 

Acknowledgements 
The authors thank the Department of Meteorology, Sri Lanka for facilitating access to rainfall 

data. The analysis presented here does not necessarily reflect the views of the Department. We 

also thank both GEOIDE and the Social Sciences and Humanities Research Council of Canada 

for funding.  



27 

 

References  
Akaike, H. (1973). “Information Theory and an Extension of the Maximum Likelihood 

Principle.” In Second International Symposium on Information Theory, 1:267–281. Springer 

Verlag. 

Anselin, L. (1988). Spatial Econometrics: Methods and Models. New York: Springer. 

Anselin, L. (1995). “Local Indicators of Spatial association-LISA.” Geographical Analysis 27(2), 

93–115. 

Boots, B., and F. Csillag. (2006). “Categorical Maps, Comparisons, and Confidence.” Journal of 

Geographical Systems 8(2), 109–18.  

Brunet, D., R. Vrscay, and Z. Wang. (2012). “On the Mathematical Properties of the Structural 

Similarity Index.” IEEE Transactions on Image Processing (99): 1488–1499. 

Brundson, C., A.S. Fotheringham, and M. Charlton. (1996). “Geographically Weighted 

Regression: A Method for Exploring Spatial Nonstationarity.” Geographical Analysis 28(4), 

281–98. 

Burnham, K. P., and D. R. Anderson. (2002). Model Selection and Multi-model Inference: a 

Practical Information-theoretic Approach. New York: Springer. 

Carletta, J. (1996). “Squibs and Discussions Assessing Agreement on Classification Tasks: The 

Kappa Statistic.” Computational Linguistics 22(2), 249–54. 



28 

 

Chun, Y., and Griffith, D.A. (2013). Spatial Statistics and Geostatistics: Theory and 

Applications for Geographic Information Science and Technology. Thousand Oaks: SAGE. 

Cliff, A., and J. K. Ord. (1981). Spatial Processes Models and Applications. London: Pion 

Limited.  

Csillag, F., and B. Boots. (2005). “A Framework for Statistical Inferential Decisions in Spatial 

Pattern Analysis.” The Canadian Geographer 49(2), 172–79.  

Dice L.R., (1945). “Measures of the Amount of Ecologic Association between Species.” Ecology 

26(3), 297–302. 

 

Ribeiro Jr., P.J. and P.J. Diggle. (2001). “geoR: A package for geostatistical analysis.” R-NEWS 

1(2),15-18.  

 

Dosselmann, R., and X. D. Yang. (2011). “A comprehensive assessment of the structural 

similarity index.” Signal, Image and Video Processing 5(1), 81–91. 

 

Finley, A. O. (2011). “Comparing Spatially Varying Coefficients Models for Analysis of 

Ecological Data with Non Stationary and Anisotropic Residual Dependence.” Methods in 

Ecology and Evolution 2(2), 143–54. 

 

Finley, A.O., S. Banerjee, and A.E. Gelfand. (2012). “Bayesian Dynamic Modeling for Large 

Space-time Datasets Using Gaussian Predictive Processes.” Journal of Geographical Systems 14 

(1): 29–47. 



29 

 

 

Gelfand, A. E., H.J. Kim, C. F. Sirmans, and S. Banerjee. (2003). “Spatial Modeling with 

Spatially Varying Coefficient Processes.” Journal of the American Statistical Association 

98(462), 387–96. 

 

Gelman, A., and D. B. Rubin. (1992). “Inference from Iterative Simulation Using Multiple 

Sequences.” Statistical Science 7 (4), 457–72. 

 

Gelman A, X.L. Meng XL, and H. Stern. (1996). “Posterior Predictive Assessment of Model 

Fitness via Realized Discrepancies.” Statistica Sinica 6,733–59. 

 

Getis, A., and C. Ord. (1992). “The Analysis of Spatial Association by use of Distance 

Statistics.” Geographical Analysis 24(3), 189–206. 

 

Gong, P., and B. Xu. (2003). “Remote Sensing of Forests over Time: Change Types, Methods, 

and Opportunities.” In Remote Sensing of Forest Environments: Concepts and Case Studies, 

301–34, edited by M.A. Wulder, and S.E. Franklin. Norwell: Kluwer Academic Publishers. 

 

Griffith, D. A. (2008). “Spatial-filtering-based Contributions to a Critique of Geographically 

Weighted Regression (GWR).” Environment and Planning A 40(11), 2751–69. 

 



30 

 

Hadfield, J. D, and L. E. B. Kruuk. (2010). “MCMC Methods for Multi-response Generalized 

Linear Mixed Models: The MCMCglmm R Package.” Journal of Statistical Software 33(2), 1–

22. 

 

Hagen-Zanker, A. (2006a). “Comparing Continuous Valued Raster Data: A Cross Disciplinary 

Literature Scan.” Netherlands Environmental Assessment Agency. Maastricht: Research Institute 

for Knowledge Systems. 

 

Hagen-Zanker, A. (2006b). “Map Comparison Methods that Simultaneously Address Overlap 

and Structure.” Journal of Geographical Systems 8(2), 165–85. 

 

Hagen-Zanker, A., and P. Martens. (2008). “Map Comparison Methods for Comprehensive 

Assessment of Geosimulation Models.” Lecture Notes in Computer Science 5072, 194–209. 

 

Hagerstrand, T. (1953). “On Monte Carlo simulation of diffusion” in Economic and Cultural 

Topics ( Quantitative Geography, Part I, edited by W L Garrison, D F Marble, [2 vols.; 

Evanston, Illinois: Northwestern University Department of Geography, 1967]), 1-32. 

 

Kass, R. E., and A. E. Raftery. (1995). “Bayes Factors.” Journal of the American Statistical 

Association 90 (430), 773–795. 

 

Lawson, A. B. (2009). Bayesian Disease Mapping: Hierarchical Modeling in Spatial 

Epidemiology, Boca Raton: Chapman & Hall/CRC. 



31 

 

 

Lee, H., and S. K. Ghosh. 2009. “Performance of Information Criteria for Spatial Models.” 

Journal of Statistical Computation and Simulation 79 (1): 93–106.  

 

Long, J. A., C. Robertson, F.S. Nathoo, and T.A. Nelson. (2012) “A Bayesian Space–time Model 

for Discrete Spread Processes on a Lattice. Spatial and Spatio-temporal Epidemiology 3, 151-

162. 

 

Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. (2000). “WinBUGS - A Bayesian 

Modelling Framework: Concepts, Structure, and Extensibility.” Statistics and Computing 10 (4), 

325–37.  

 

Pontius Jr, R.G., (2000). “Quantification Error versus Location Error in Comparison of 

Categorical maps.” Photogrammetric Engineering and Remote Sensing 66,1011–16. 

 

Räty, M., and A. Kangas. (2010). “Segmentation of Model Localization Sub-areas by Getis 

Statistics.” Silva Fenn 44 (2), 303–17. 

 

Remmel, T., and F. Csillag. (2003). “When Are Two Landscape Pattern Indexes Significantly 

Different.” Journal of Geographical Systems 5, 331–51. 

 

Schwarz, G. 1978. “Estimating the Dimension of a Model.” The Annals of Statistics 6 (2): 461–

464. 



32 

 

 

Smith D.L., B. Lucey, L.A.Waller, J.E. Childs, and L.A. Real. (2002). “Predicting the Spatial 

Dynamics of Rabies Epidemics on Heterogeneous Landscapes.” Proceedings of the National 

Academy of Sciences 99, 3668–72. 

 

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde. (2002). “Bayesian Measures 

of Model Complexity and Fit.” Journal of the Royal Statistical Society: Series B (Statistical 

Methodology) 64 (4): 583–639. 

 

Turchin, P., and W. Thoeny. (1993). “Quantifying Dispersal of Southern Pine Beetles with 

Mark-recapture Experiments and a Diffusion Model.” Ecological Applications 3(1), 187–98. 

 

Thomas, E. N. (1968). Maps of Residuals from Regression: Their Characteristics and Uses in 

Geographic Research. Ann Arbor: University Microfilms, A Xerox Company. 

 

Visser, H., and T. de Nijs. (2006). “The Map Comparison Kit.” Environmental Modelling & 

Software 21(3), 346–58.  

 

Wang Z., A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. (2004). “Image Quality Assessment: 

From Error Visibility to Structural Similarity.” IEEE Transactions on Image Processing 13, 

600–11. 

 



33 

 

Wang, Z., and Q. Li. (2011). “Information Content Weighting for Perceptual Image Quality 

Assessment.” IEEE Transactions on Image Processing 20 (5), 1185–98.  

 

Wheeler D.C., and L.A.Waller. (2008). “Mountains, Valleys, and Rivers: The Transmission of 

Raccoon Rabies over a Heterogeneous Landscape.” Journal of Agricultural, Biological, and 

Environmental Statistics 13, 388–406. 

Wulder, M. A., J.C.White, N.C. Coops, T. Nelson, and B. Boots. (2007). “Using Local Spatial 

Autocorrelation to Compare Outputs from a Forest Growth Model.” Ecological Modelling 

209(2–4), 264–76.  

 



34 

 

 

Table 1  Spatial processes used in the simulation experiments  

 

Name Model Parameters Spatial Parameter 

1 µ, σ σ – Exponential distance decay 

2A Λ, M Λ – Linear vertically increasing 

2B Λ, M  Λ – Gaussian Markov Random Field 

2C Λ, M  Λ - Gaussian Markov Random Field 

 

 

Table 2  Average SSIM index values, component values and MSE for 100 Y replicate data 

obtained from a conditional autoregressive model (Process 1) and three space-time models 

(process 2A, 2B, 2C). The range of SSIM index and component values obtained from a Bayesian 

kriging case study of spatial interpolation of rainfall in Sri Lanka (99% credible interval) . 

 

Measure Process 1 

[CAR model] 

Process 

2A[L1M2] 

Process 

2B[L3M2] 

Process 

2C[L3M3] 

99% 

Credible 

Interval 

SSIM 0.88 0.12 0.47 0.67 0.22-0.31 

L 0.99 0.55 0.95 0.98 0.99-0.99 

C 0.98 0.56 0.76 0.92 0.61-0.68 

S 0.87 0.70 0.32 0.74 0.38-0.49 

MSE 0.72 0.51 0.42 0.22 75.80-51.20 

P-value 0.48 n/a n/a n/a n/a 
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Figure 1. Examples of the structural similarity (SSIM) index measures of mapped patterns on a 

100x100 grid. Maps are realizations of a) a Gaussian spatial process, with b) and c) Gaussian 

noise added. Distorted maps have similar mean squared errors (MSE) when compared with the 

reference map, but different SSIM index values.  

 

Figure 2. An overview of the analysis methodology used in this paper, including simulation 

studies (a-b) and, c) a case study of rainfall interpolation in Sri Lanka. 

 

Figure 3. Spatial model results comparing a reference map (observed data) with one replicate 

dataset simulated by a random draw from posterior distributions of model parameters (replicate 

data). The SSIM index, squared error, and SSIM components are presented. Dashed lines 

indicate areas of spatial discrepancy based on SSIM index analysis. 

 

Figure 4. Space-time model results comparing a reference map (true λ) with posterior mean 

estimates for spatial diffusion parameters. The SSIM index, squared error, and SSIM 

components are presented. Dashed lines indicate areas of spatial discrepancy based on SSIM 

index analysis. 

 

Figure 5. Locations of official meteorological stations and small scale weather stations in Sri 

Lanka. 2008. 

 

Figure 6. Histogram of mSSIM values from 99 simulations drawn from the posterior 

distribution. 

 
  

 
 

Figure 7. A case study–Bayesian kriging of rainfall in Sri Lanka. Results comparing posterior 

predictive distribution simulations with highest and lowest mean SSIM index values with the 

posterior mean. The SSIM indices for a sample area of each simulation also are presented.  

 

 


