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Abstract: The extent to which biodiversity change in local assemblages contributes to global 

biodiversity loss is poorly understood. Here, we analyse 100 time-series from biomes across the 

Earth to ask how diversity within assemblages is changing through time. We quantified patterns 

of temporal α diversity, measured as change in local diversity, and temporal β diversity, 

measured as change in community composition. Contrary to our expectations, we do not detect 

systematic loss of α diversity. However, community composition changed systematically through 

time, in excess of predictions from null models. Heterogeneous rates of environmental change, 

species range shifts associated with climate change, and biotic homogenization may explain the 

different patterns of temporal α and β diversity. Monitoring and understanding change in species 

composition should be a conservation priority. 

 

One Sentence Summary: Time series reveal widespread change in the composition of 

ecological assemblages rather than systematic biodiversity loss. 

 

Main Text: Habitat destruction, pollution, and over-harvesting, as well as climate change and 

invasive species, have led to conspicuous reductions in biological diversity (1). Globally, 

increasing numbers of species are under threat (2), populations of vulnerable taxa are declining 

(3), and ecosystem function is changing as a result (4). Although these large-scale patterns 

emerge from processes that are based on local community structure, as yet there is no 

comprehensive analysis of how temporal change in ecological assemblages contributes to this 

global picture. Because the implementation of conservation and management decisions is 

typically at the scale of local to regional ecosystems (5, 6), knowledge of biodiversity change 

within assemblages is essential to inform policy. A comparative analysis of change across taxa, 

biomes, and geographic regions also provides insights into the mechanisms involved. Here, we 

use a definition of biodiversity that includes components of species richness, composition, and 
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relative abundance of species. We use standardized biodiversity monitoring of assemblages over 

years and decades to assess global patterns of temporal change in species diversity. 

We quantified change in biodiversity through time by two measures: temporal trends in α 

diversity and temporal β diversity (7). Temporal α diversity is a measure of diversity within a 

sample. It can be measured as species richness or with related diversity metrics that take species 

abundances into account. To measure temporal change in α diversity, we calculated, for each 

time series, the slope of the long-term relationship between diversity and time. Typically, β 

diversity is used to compare the composition of different communities in space, but it can also be 

used to compare the composition of a single community through time. Temporal β diversity 

(temporal turnover) quantifies differences in species composition between two (or more) samples 

separated in time. Temporal turnover can be measured with metrics of similarity to track changes 

in species identities (and sometimes their abundances) through time, either by comparing 

adjacent sampling periods, or with reference to a single baseline sample or time period. Because 

turnover metrics incorporate shifts in species composition, they potentially provide a more 

sensitive indicator of community change (8) than α diversity. 

Given widespread evidence of habitat change (9), abnormally high extinction rates (10), and 

documented declines of many species (2, 3), we predicted that most assemblages would exhibit a 

decrease in α diversity through time, although the pattern and extent of change may differ among 

taxonomic groups, climatic regions, and marine or terrestrial realms and with spatial scale (11). 

For example, there is no evidence of consistent loss of biodiversity among terrestrial plants (12). 

Similarly, as a consequence of long-term changes in species composition, we expected increases 

in temporal β diversity measured relative to an early baseline sample.  

To quantify biodiversity change, we gathered all datasets we could find that met a priori quality 

criteria (details in (13)) for standardized, long-term quantitative sampling. This collection 

includes over 6.1 million species occurrence records from 100 individual time series. There are 

35,613 species represented, encompassing mammals, birds, fish, invertebrates, and plants. The 

geographical distribution of study locations is global, and includes marine, freshwater and 

terrestrial biomes, extending from the polar regions to the tropics in both hemispheres (Figure 1). 

The collective time interval represented by these data is from 1874 to the present, although most 

data series are concentrated in the past 40 years (Figure 2). A full description of the datasets used 

in the analysis, including their sources and citation information, is included as table S1. We 

measure temporal α diversity with 10 metrics including species richness, and temporal β 

diversity with four metrics including the Jaccard similarity index. A strength of our analysis is 

that we calculate all metrics from the original data, rather than relying on published summary 

statistics, and thus are able to standardize sampling effort within each time series. Details of 

statistical standardization of data sets, choice of α diversity metrics, and null distributions for β 

diversity metrics based on Markov Chain Monte Carlo (MCMC) methods and neutral model 

analyses are described in 13. 

Surprisingly, we do not detect a consistent negative trend in species richness (Figure 2A), or in 

any of the other metrics of α diversity (Figure S1). The overall slope (estimated by allowing each 

study to have a different intercept, but constraining all studies to have the same slope) is 

statistically indistinguishable from zero (Figure 2). However, not all datasets have constant 

species richness. In a mixed model in which both the slope and the intercept are allowed to vary 

for each time series, slopes for species richness differ among assemblages, but do not exhibit 

systematic deviations. The variation cancels out because there are approximately equal numbers 
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of negative and positive slopes (41 and 59 respectively), and the distribution of slopes is centered 

around zero, with the majority of slopes being statistically very close to zero (65 out of 100 time 

series Figure 3 A). This pattern is also observed for short-term changes rather than long-term 

linear trends: out of 1557 measurements of species richness in two consecutive times, 629 (40%) 

increase, 624 (40%) decrease, and 304 (20%) do not change (Figure S2). Collectively, these 

analyses reveal local variation in temporal α diversity, but no evidence for a consistent or even 

an average negative trend. 

The variability in slopes of α diversity could be explained by spatial, temporal, and biological 

attributes of each of the time series. However, for all measures of α diversity, slope is not a 

significant function of total species richness, extent of the spatial distribution of samples, starting 

date, or duration of the time series (Figures S3 and S4). Average slopes estimated for the marine 

and terrestrial time series are not significantly different from zero (Figure S5). Time series for 

terrestrial plants exhibit, on average, a positive slope for species richness, in contrast to (12), 

who found no consistent change. There are no significant patterns for other taxonomic groups. 

An analysis of slopes by climatic regions reveals that temperate time series have a significantly 

positive trend, and time series sampled at a global scale show a significantly negative trend 

(Figure S5). Tropical time-series also have a negative slope, but it is not significantly different 

from zero. 

In contrast to species richness and other measures of α diversity, species temporal turnover as 

measured by the Jaccard similarity index and other measures of β diversity (Figure S6) exhibit 

consistent long-term changes (Figure 2 B and 3 B). Specifically, community similarity measured 

as Jaccard’s index between an ensuing year and the first year of sampling (the time-series 

baseline) decreases in 79 out of 100 the time series with a slope of -0.01 on average. Because 

Jaccard’s similarity is bounded between 0 and 1, a 0.01 slope means change in community 

composition per decade of 10% of the species (Figure 2 B). This result is robust if the last census 

point is used as the baseline (Figure S7). A model with constant overall slope and different 

intercept for each time series (and with the time axis re-scaled relative to each time series 

baseline) is also negative. Turnover slopes are, therefore, almost uniformly negative, which is 

indicative of systematic change in community composition since the initial census point.  

Even in a stochastic time series, some degree of turnover is to be expected because of temporal 

autocorrelation. However, the patterns of turnover in these time series are more pronounced and 

negative than what would be expected from simple temporal autocorrelation. Specifically, 

MCMC simulations of species-specific extinction and colonization produce slopes in turnover of 

-0.000013 on average, with confidence intervals straddling zero, and an approximately 50-50 

distribution of positive and negative slopes (13 and Figure S8). Similarly, neutral model 

simulations incorporating species abundance show change in similarity two orders of magnitude 

lower than we observe (13 and Figure S9). The decrease in community similarity observed in our 

analysis is therefore not a simple consequence of drift and autocorrelation caused by a 

colonization-extinction Markov model or by a model of neutral dynamics.  

These time series collectively exhibit no systematic change in temporal α diversity, although 

temperate assemblages show, on average, a positive trend in α diversity, whereas at the global 

scale we detect a negative trend. Moreover, across all climatic regions, realms, and taxonomic 

groups, temporal β diversity is increasing relative to the baseline (initial) sample. There are 

several reasons why α diversity may remain constant while temporal β diversity is consistently 

increasing.  
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One potential driver is that intensification of trade and transport, combined with the rapid 

increase in invasions of exotic taxa, is leading to the homogenization of species composition at 

local scales (14). Although homogenization may lead to a global loss of species, α diversity at 

local scales may stay constant or even increase as invaders replace residents and β diversity 

changes through time (11). This was the mechanism that Elton highlighted when he first voiced 

concerns about global biodiversity loss (15). Additional forces that might contribute to these 

contrasting patterns of α and β diversity include poleward shifts in geographic ranges as species 

respond to climate change (16). Moreover, contemporary habitat destruction and species loss is 

higher in tropical versus temperate regions (9), which is consistent with assessments of change in 

temporal α diversity in terrestrial plants (12) and population trends of vertebrates (17). 

Our results suggest that local and regional assemblages are experiencing a substitution of their 

taxa, rather than systematic loss. This outcome may in part reflect the fact that most of the 

available data are from the last 40 years, which highlights concerns over the problem of a 

“shifting baseline” in diversity monitoring (18). Nevertheless, we show that at these temporal 

and spatial scales there is no evidence of consistent or accelerating loss of α diversity. Most 

importantly, changes in species composition usually do not result in a substitution of like with 

like, and can lead to the development of novel ecosystems (19). For example, disturbed coral 

reefs can be replaced by assemblages dominated by macroalgae (20) or different coral species 

(21); these novel marine assemblages may not necessarily deliver the same ecosystem services 

such as fisheries, tourism and coastal protection that were provided by the original coral reef 

(22). 

Our core result— that assemblages are undergoing biodiversity change, but not 

systematic biodiversity loss (Figures 2 and 3)— does not negate previous findings that many taxa 

are at risk, or that key habitats and ecosystems are under grave threat. Neither is it inconsistent 

with an unfolding mass extinction, which occurs at a global scale, and over a much longer 

temporal scale. The changing composition of communities that we document may be driven by 

many factors, including ongoing climate change and the expanding distributions of invasive and 

anthrophilic species. The absence of systematic change in temporal α diversity we report here is 

not a cause for complacency, but rather highlights the need to address changes in assemblage 

composition, which have been widespread over at least the past 40 years. Robust analyses that 

acknowledge the complexity and heterogeneity of outcomes at different locations and scales 

provide the strongest case for policy action. There is need to expand the focus of research and 

planning from biodiversity loss to biodiversity change. 
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Fig. 1 – Distribution of the survey sites included in our analysis. Datasets are color-coded to 

reflect their climatic region: pink corresponds to global, royal blue to polar, turquoise to polar-

temperate, green to temperate, dark yellow to temperate tropical and red to tropical. Details and 

citation information about the datasets are included in table S1. 

 

Fig. 2 – Temporal change in species richness (A) and species composition (B) as measured by 

Jaccard similarity between each sample and the first sample in the time series. Data points are 

represented by grey circles and models fitted by solid lines. The black line corresponds to a 

model where a single slope, but different intercepts, were fitted to all the time series, and is 

represented here with the mean intercept. The colored lines correspond to a model where each 

time series had a different slope and intercept. Color-coding corresponds to climatic regions as 

per in figure legend. Figure S10 presents a similar analysis for a different approach to 

rarefaction. 

 

Fig. 3 – Slope estimate distributions for species richness (A) and Jaccard similarity (B). Slope 

estimates (horizontal axis), r
2
 (vertical axis) and number of data points in time series (bubble 

size) for each of the datasets. Bubbles are color coded as blue (positive slope), red (negative 

slope) and grey (non-significantly different from 0, see 13). 

 





0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

durationG(year)
Ja

cc
ar

d

(A) (B)

1900 1920 1940 1960 1980 2000

0

2

4

6

8

Year

lo
g(

S
)

CommonGtrend
Global
Polar
Polar/Temperate
Temperate
Temperate/Tropical
Tropical



−0.04 −0.02 0.00 0.02 0.04

(A) (B)

Coef

Estimate

F
re
qu
en
cy

−0.10 0.00 0.05

0
5
10

20
30

-0.05

−0.2 −0.1 0.0 0.1 0.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coef/mean(S)

r.
sq
ua
re
d

Estimate/aveY

F
re
qu
en
cy

−0.2 0.0 0.2 0.4

0
5

10
20

30


