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Abstract 

Regionalization, or the grouping of objects in space, provides a useful tool for 
organizing, visualizing, and synthesizing the information contained in multivariate spatial 
data. Landscape pattern indices can be used to quantify the spatial pattern (composition 
and configuration) of land cover features. Observable patterns can be linked to 
underlying processes affecting the generation of landscape patterns (e.g., forest 
harvesting). The objective of this research is to develop an approach for investigating the 
spatial distribution of forest pattern across a study area where forest harvesting, other 
anthropogenic activities, and topography, are all influencing forest pattern. We generate 
spatial pattern regions (SPR) that describe forest pattern with a regionalization approach. 
Analysis is performed using a 2006 land cover dataset covering the Prince George and 
Quesnel Forest Districts, 5.5 million ha of primarily forested land base situated within the 
interior plateau of British Columbia, Canada. Multivariate cluster analysis (with the 
CLARA algorithm) is used to group landscape objects containing forest pattern 
information into SPR. Of the six generated SPR, the second cluster (SPR2) is the most 
prevalent covering 22% of the study area. On average landscapes in SPR2 are comprised 
of 55.5% forest cover, and contain the highest number of patches, and forest/non-forest 
joins, indicating highly fragmented landscapes. Regionalization of landscape pattern 
metrics provides a useful approach for examining the spatial distribution of forest pattern. 
Where forest patterns are associated with positive or negative environmental conditions, 
SPR can be used to identify similar regions for conservation or management activities. 
 

INTRODUCTION 

Regionalization, or spatial classification, is the grouping of geographical entities 
based on properties or relationships (Chorley and Haggett 1967; Johnston 1968). 
Regionalization has long been a cornerstone of geographic data analysis (Haggett 1965), 
and has many purposes. For instance, regionalization is often applied to large, detailed 
geographical data sets to reduce data dimensionality and aid interpretation (Ng and Han 
2002). Examples of regionalization include ecozones (Schultz 2005), environmental 
domains (Leathwick and others 2003: Coops and others 2009), and spatially explicit 
regions relating to geology (Harff and Davis 1990), climate (Fovell and Fovell 1993) or 
agriculture (Lark 1998).  

Interest in quantifying landscape patterns has been driven by the premise that 
some ecological processes can be linked to the spatial pattern of land cover elements 
(Gustafson 1998). Measurement of landscape pattern can be done using a subset of the 
numerous landscape pattern indices (landscape metrics) that currently exist (Cardille and 
others 2005). Given the advancement in methods for acquiring and storing spatial data, 
the spatial extent of landscape pattern studies has increased. Detailed land cover data is 
now available for the United States (Vogelmann and others 2001; Homer and others 
2004) and Canada (Wulder and others 2008a), leading to large area landscape pattern 
studies (e.g., Riitters and others 2002; Wulder and others 2008b). Given the spatial extent 
available to landscape pattern studies, regionalization is a useful approach to aid in 
interpretation of large area landscape pattern information.  

There are only a small number of examples in the peer-reviewed literature that 
explore how landscape pattern can be used in regionalization. MacPhail (1971) used 
aerial photography to map landscape patterns and related them to image fabric and 
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textures to aid in the visual interpretation of different pattern regions. Similarly, 
Wickham and Norton (1994) created landscape pattern types, defined as a kilometre-wide 
geographical area, throughout which a limited number of land cover categories form a 
consistent pattern. Wickham and Norton (1994) employed visual interpretation of 
Landsat Thematic Mapper (TM) imagery in order to derive landscape pattern types. 
These studies took a qualitative approach using human interpretation and subjectivity for 
the regionalization process. A quantitative approach may be advantageous as it is more 
explicit, repeatable, transferable, and defensible (Hargrove and Hoffman 2004). 
Examples of quantitative approaches to mapping landscape spatial pattern also exist. 
Riitters and others (2000) developed a classification of forest fragmentation using two 
indices of spatial pattern. Forest fragmentation classes can then be mapped to examine 
the spatial distribution of forest fragmentation (globally, Riitters and others 2000; and in 
the United States, Riitters and others 2002). Morphological image processing (Soille 
2003) has also been used for mapping forest components. Morphological image analysis 
algorithms classify forest patches as core, edge, or patch (Vogt and others 2007). The 
forest patch classes can then be mapped to provide information on the spatial 
arrangement of the landscape. In this work, we intend to expand on these previous 
examples using multivariate cluster analysis as the method for the regionalization 
process. 

The goal of this study is to use regionalization for mapping forest pattern across a 
large area. To meet this goal, we implement multivariate cluster analysis as a quantitative 
approach to regionalizing forest pattern. Multivariate cluster analysis provides a new 
approach to the regionalization of landscape patterns. Landscape pattern indices are 
calculated and cluster analysis is performed on these metrics to generate Spatial Pattern 
Regions (SPR). SPR represent landscape units that exhibit similar forest pattern 
characteristics. By mapping SPR we can explore the spatial distribution of forest pattern 
across our study area. In a region of British Columbia, Canada, where increased forest 
harvesting is occurring due to insect salvage and mitigation activities, SPR are used to 
identify the spatial distribution of forest pattern.  
 

METHODS 

Study Area 

 Two adjacent forest districts within British Columbia, Canada were chosen as the 
study area (Fig. 1). The Prince George and Quesnel Forest Districts cover 5.5 million 
hectares of primarily forested land base. The climate in the Prince George and Quesnel 
Forest Districts is characterized by long, cold winters interspersed with hot, humid 
summers (Meidinger and Pojar 1991). Forests here are comprised primarily of lodgepole 
pine (Pinus contorta), white spruce (Picea glauca), and sub-alpine fir (Abies lasiocarpa). 

< Approximate location for Figure 1 > 
 Currently, the largest recorded mountain pine beetle (Dendroctonus ponderosae) 
infestation is occurring in British Columbia, causing extensive mortality in lodgepole 
pine stands. The range of infestation is estimated to have increased from 166,000 ha in 
1999 to 10.1 million ha in 2007 (Westfall and Ebata 2008). Short-term increases to the 
provincial allowable annual cut have been prescribed in the Prince George and Quesnel 
Forest Districts as a means to recover economic value from infested timber (British 
Columbia Ministry of Forests and Range 2007). The increased allowable annual cut will 
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facilitate salvage harvest opportunities, which are expected to impact resulting forest 
patterns. 
Data 

 A 2006 land cover dataset was generated for the calculation of landscape pattern 
metrics. Using a change detection method based on Landsat Thematic Mapper (TM) and 
Enhanced Thematic Mapper (ETM+) data (Han and others 2007), we updated forest 
conditions of an existing land cover dataset produced by the Earth Observation for 
Sustainable Development of Forests (EOSD) program (Wulder and others 2003; 2008a). 
Land cover is represented at a spatial resolution of 25 m, with up to 23 classes of 
categorical detail, which can be aggregated to forest, non-forest, and other classes 
(Wulder and Nelson 2003). The forest, non-forest, and other categories are useful for 
examining the spatial pattern of forests, and are comparable to land cover categories used 
for forest fragmentation studies in Canada (Wulder and others 2008b) and the United 
States (Riitters and others 2002). 
 A regular squared partition (fishnet) was used to generate an encompassing set of 
smaller analysis units (landscapes) within the study region. A 1 km landscape was chosen 
to capture the impacts of forest harvesting and insect salvage and mitigation activities. 
Larger landscape sizes exhibit varying levels of spatial pattern, while smaller landscape 
sizes tend towards a bifurcation of forest patch or no patch. In Canada, a 1 km landscape 
has been used for forest fragmentation reporting and identified as an appropriate scale for 
provincial and regional studies (Wulder and others 2008b).  
Analysis 

Landscape Pattern Variables 

Many metrics exist for quantifying the spatial pattern of land cover. It is typically 
appropriate to choose a subset of metrics relevant to a specific application (Gergel 2007). 
Previous work has used correlation analysis to identify key components of landscape 
spatial pattern (e.g., Riitters and others 1995). Others have based selection of metrics on 
background literature identifying the key components of spatial pattern (e.g., Hargis and 
others 1997; Boots 2006). Regardless, it is imperative to select applicable indices for any 
given study, and a small number of uncorrelated metrics are often sufficient to quantify 
the relevant aspects of pattern for any specific application (Gergel 2007).  

We select five indices of landscape pattern (Table 1) to quantify forest pattern for 
regionalization. Class proportion effectively defines the composition of the landscape in 
two class landscapes (Boots 2006) and researchers have demonstrated that class 
proportion is the driving factor of landscape spatial pattern (Boots 2006; Remmel and 
others 2002). Join counts are useful in quantifying the level of spatial clustering 
(sometimes calculated as contagion, see Li and Reynolds 1993) in landscape components 
and can be related to edge, an important aspect of habitat (Ranney and others 1981). 
Landscape fragmentation can be monitored using number of patches (Haines-Young and 
Chopping 1996). When quantifying patch area, Boots (2006) suggests that the sum of 
squared area of patches provides more information than average patch area, as it is 
sensitive to patch size distribution (e.g., the difference between one large and one small 
patch, and two medium patches). Thus, we have chosen to use an area squared measure to 
quantify the areal properties of patches. Patch perimeter-area ratio is useful in monitoring 
the regularity/complexity of patch shapes. Generally, natural landscapes exhibit complex, 
irregular shapes (Forman 1995), while anthropogenic landscapes contain regular shapes 
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and straight edges (Hammett 1992; Forman 1995), and we employ the mean patch 
perimeter-area ratio to quantify these differences. 

< Approximate location for Table 1 > 
Multivariate Cluster Analysis 

Cluster analysis has been referred to as the art of finding groups in data (Kaufman 
and Rousseeuw 1990). More specifically, cluster analysis is a quantitative statistical 
method that uses unsupervised learning to explore, find, and categorize features, and to 
gain insight on the nature or structure of data (Duda and others 2001).  

The CLARA (Clustering for LARge Applications) algorithm (Kaufman and 
Rousseeuw 1990) was used to perform cluster analysis. CLARA is a flat-partition method 
that has been specifically designed for use with large datasets. User definition of the k 
parameter (the output number of clusters) is required, and since k is unknown we 
implement the algorithm for a range of k values (2–10). An optimal clustering level (k) 
can be chosen iteratively using evaluative criteria that identify a k value for which the 
clustering is strongest (Milligan and Cooper 1985; Halkidi and others 2002).  
Normalization and Weighting 

 Normalized (standardized) data are necessary for cluster analysis. We normalize 
our data following Kaufman and Rousseeuw (1990): 
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defined as: 
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where n is the number of observations. This dispersion measure is more robust than the 
typically used standard deviation and is therefore recommended (Kaufman and 
Rousseeuw 1990). 
 A priori knowledge can be a useful tool to improve a clustering by adding weight 
to given attributes (e.g., Abrahamowicz 1985). In the absence of quantitative information, 
expert opinion is used to assign weights to input variables on a case specific basis. In 
consideration of the relative importance of land cover composition over configuration 
metrics (Gustafson and Parker 1992; Fahrig 1997; Remmel and others 2002; Boots 
2006), we increase the weighting of the class proportion metric by a factor of two over 
the other metrics in our study. 
 Early in our analysis, we identified two landscape groups that were impacting 
results: regions containing either 0% or 100% forest. Prior to analysis, we grouped these 
two groups into two intuitive clusters, SPR0 and SPR100, representing the proportion of 
forest in each. 

Spatial weighting can be a useful tool in regionalization when the end goal is to 
define spatially contiguous regions (see Oliver and Webster 1989 for a discussion on 
spatial weights). However, with forest pattern we expect spatially disjointed or distanced 
regions to exhibit similar forest patterns (e.g., separated by natural or anthropogenic 
features). As such, when identifying new/different locations with similar characteristics, 
methods not including spatial weighting are preferred (Coops and others 2009). We 



   

  5 

exclude spatial weighting for the generation of SPR because of the expectation of 
spatially distanced landscapes with similar forest patterns. 
Measure of Separation 

With cluster analysis it is necessary to calculate a measure of separation between 
objects. The use of the Euclidean distance measure is common in regionalization (e.g., 
Fovell and Fovell 1993; Gong and Richman 1995), and is easily computed on 
standardized variables in attribute space. Euclidean distance was implemented as the 
measure of separation between objects. In this example, we employed only interval-
scaled variables, however, when using binary, ordinal, nominal, or some mixture of 
variable types, other separation measures become more appropriate (Kaufman and 
Rousseeuw 1990). 
Cluster Evaluative Criteria 

The Davies-Bouldin index (DB) (Davies and Bouldin 1979) and average 
silhouette width (ASW) (Kaufman and Rousseeuw 1990) were chosen as evaluative 
criteria for selecting the optimal k. Measures of cluster strength frequently suggested are 
often tested on datasets with clearly defined clusters (e.g., Milligan and Cooper 1985). 
While these measures are known to work well with clusters that are compact, novel 
approaches are needed to test cluster validity when the data does not exude compact 
clusters, as with spatial data (Halkidi and others 2002). Strongly defined clusters are not 
expected here, as landscapes vary continuously over the range of metrics tested.  

ASW is calculated using [3], which is a measure of how well clusters are 
separated from their closest neighbour (Kaufman and Rousseeuw 1990). 
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Where a is the average dissimilarity between objects in a cluster i, b is the average 
dissimilarity of the objects in i to those in its closest neighbour, and k is the number of 
clusters. The maximal ASW for all k is interpreted as the optimal or strongest cluster 
level (Kaufman and Rousseeuw 1990). ASW values of 0.71-1.00 indicate a k with well 
defined clusters, while ASW values of 0.26-0.50 indicate a k with weakly defined or 
artificial clusters, (Kaufman and Rousseeuw 1990).  

DB uses a ratio of intra-cluster dispersion to inter-cluster separation divided by k 
to determine clustering strength for a given k [4] (Davies and Bouldin 1979).  
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Where Si is the dispersion of cluster i, Sj is the dispersion of the next closest cluster j, mij 
is the distance between the cluster centers of i and j, and k is the number of clusters. DB 
is advantageous in that it does not require user definition of parameters, such as minimum 
acceptable cluster distance or minimum acceptable standard deviation, which are often 
unknown (Davies and Bouldin 1979). Optimal k is found at the minimum DB value; 
when intra-cluster dispersion is low and inter-cluster separation is high.  
 In this study, the output clusters of multivariate cluster analysis are termed spatial 
pattern regions (SPR): regions that exhibit similar forest patterns. Multivariate cluster 
analysis allows users to examine many statistical and qualitative properties of each 
cluster. Descriptive statistics, such as mean, median, and coefficient of variation, were 
computed for each SPR and landscape metric combination. We generate the relative 



   

  6 

frequency histogram for each SPR and landscape pattern metric combination to assess the 
distributional properties of each SPR. Also, each cluster that is created by the CLARA 
algorithm has a medoid, which is a representative object for each cluster and is used as a 
surrogate center for each cluster (Kaufman and Rousseeuw 1987). Medoids are less 
sensitive to outliers than other cluster profiles (Van Der Laan and others 2003). With the 
CLARA algorithm, we extract each medoid and use it as a visual representation for each 
generated SPR. 
 

RESULTS 

Using cluster evaluative criteria (DB and ASW), an optimal cluster level was 
identified at k = 6 (Figure 2). In Fig. 2, we see that DB is minimal at k = 6, and ASW is 
maximum at k = 2, but has a second peak when k = 6. We chose k = 6 as the optimal 
clustering over the case when k = 2 based on the evaluative criteria, and also because the 
case where k = 2 provides few unique insights on landscape processes (largely 
representing a bifurcation of landscapes with high and low forest composition). 

< Approximate location for Figure 2 > 
Mean, median, and coefficient of variation for each of the 6 generated SPR were 

calculated (Table 2). Mean forest proportion increases from SPR1 (18.9%) to SPR5 
(93.5%), and then decreases to SPR6 (88.3%). The variation in forest proportion is 
highest when forest proportion is low (i.e., in SPR1, c.v. = 0.60). Number of patches is 
highest in SPR2 (mean = 24.0) and lowest in SPR6 (mean = 5.2). Forest/non-forest joins 
are highest in SPR2 (mean = 629.5 joins). Patch areas based on the area-squared measure 
are largest in SPR5 (mean = 7172 ha2) and smallest in SPR2 (mean = 3481 ha2). Average 
perimeter-area ratio is highest in SPR4 (mean = 955.0 m/ha), and there is a marked 
difference between the lowest SPR6 (mean = 527.6 m/ha) and the next lowest SPR3 
(mean = 752.3 m/ha). SPR4, SPR5, and SPR6 all have high forest composition (mean > 
80%), however, SPR4 and SPR5 have high perimeter area ratios (mean = 955.0 m/ha, 
879.6 m/ha, respectively) relative to SPR6 (mean = 527.6 m/ha). 

< Approximate location for Table 2 > 
We computed the relative frequency histogram of landscape metrics for each SPR 

(Fig. 3). SPR2 and SPR3 have similar distributions for forest proportion. Configurational 
attributes for SPR2 and SPR3 differ considerably in number of patches and forest/non-
forest joins. Based on Table 2, we would expect SPR4, SPR5 and SPR6 to have similar 
forest proportions, but there is a noticeable difference in the distribution of SPR4 from 
SPR5 and SPR6. The relative frequency distribution for SPR4’s number of patches and 
forest/non-forest joins differ when compared to SPR5 and SPR6. SPR5 and SPR6 have 
similar distributions for most of the spatial pattern metrics, but differ in number of 
patches and average perimeter area ratio. The relative frequency distribution of 
perimeter-area ratio for SPR6 is unique in comparison with other SPR. 

< Approximate location for Figure 3 > 
We extracted the medoid landscape for each SPR (Fig. 4). The medoid provides a 

visual representation of the type of landscape found in each SPR. This information is 
useful in interpreting results, as it is a visual reference of observed forest pattern. 
Multivariate cluster analysis is a quantitative approach to regionalization, however, the 
medoid landscape represents a qualitative descriptor for each SPR. 

< Approximate location for Figure 4 > 
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A map of the distribution of SPR can be viewed in Fig. 5. We included a digital 
elevation model (DEM) to aid in interpretation. SPR0 and SPR100 represent the least 
frequent SPR in the study area, constituting 2% and 4% of the total area (Table 3). SPR2 
(22%) has the largest area, while SPR1 (9%) has the smallest area. Topography, 
especially along the eastern edge of our study area, plays an important role in landscape 
spatial pattern. Valleys contain SPR5 and SPR6, regions with high levels of forest 
composition and low number of forest patches. Alpine areas are associated with SPR0, 
SPR1, SPR2, and SPR3, regions with low forest composition, high numbers of patches, 
and high forest/non-forest joins. The topographic influence on land cover in alpine area 
results in these regions being labelled the same as disturbed forest landscapes (e.g., from 
harvesting, natural disturbance). In reality, the patterns observed in alpine areas are 
natural, and should be distinguished from low lying areas where landscape pattern 
originates from some other process using ancillary information such as a digital elevation 
model (DEM) or land cover information. Anthropogenic activities are expected to be 
highest near the cities of Prince George and Quesnel (see study area, Fig. 1). These areas 
show up as predominantly SPR1, SPR2, and SPR3, the SPR with the lowest forest 
proportion and highest number of patches. In the western portion of the Quesnel Forest 
District (the lower left portion of Fig. 5), noticeable pockets of SPR100 (continuous 
forest) and SPR5 and SPR6 (high forest proportion, low number of patches), are 
interspersed with pockets of SPR1, SPR2, and SPR3 (low forest proportion, high number 
of patches). The mixture of fragmented and intact forest here may be an indication of the 
types of forest harvesting occurring in this area. Where topography is less extreme and 
has less of an influence on the spatial pattern of the landscape, forest harvesting activities 
are expected to be the driving factor in shaping observed forest patterns.  

< Approximate location for Figure 5 > 
< Approximate location for Table 3 > 

 

DISCUSSION 

Using landscape pattern indices and a 1 km analysis unit, we generated SPR, 
landscape units exhibiting similar forest pattern characteristics. The landscape pattern 
indices employed in this study are only a small subset of the suite of metrics available to 
researchers, and the choice of metrics should be related to the research purpose (Gergel 
2007). In this study, we are interested in monitoring forest fragmentation in a study area 
where post insect infestation salvage and mitigation related forest harvesting has 
occurred. We employ metrics useful for quantifying the key components of landscape 
pattern related to forest fragmentation (Haines-Young and Chopping 1996, Wulder and 
others 2008b). 

Forest fragmentation can be defined as the breaking up of forest into smaller and 
more numerous parcels (Forman 1995). We use this definition for labelling SPR as a 
forest fragmentation gradient going from SPR1 (highly fragmented) to SPR6 (low 
fragmentation, with SPR0 and SPR100 providing external bounds of no and all forest, 
respectively. Alternatively, researchers have used forest composition as a proxy for 
quantifying forest fragmentation due to the difficulty associated with interpreting 
composition and configuration metrics simultaneously (e.g., Wickham and others 2008). 
SPR provide a useful method for incorporating both composition and configuration 
measurements in forest fragmentation analysis across large areas.  
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Generation of relative frequency histograms for each SPR-metric combination 
proved to be useful for interpretation of SPR properties. For example, based solely on 
tabulated results, SPR4, SPR5, and SPR6 exhibit similar forest composition levels. The 
use of relative frequency histograms provides added information on SPR4 as it exudes a 
noticeably different distribution from SPR5 and SPR6. Similarly, extracting each medoid 
landscape provides a useful visual representation for each SPR.  

Any multivariate cluster analysis is dependant on the data, input parameters, and 
methods applied. We provide an example of multivariate cluster analysis using the 
CLARA algorithm and two tests for determining the optimal clustering (DB and ASW). 
Changing the clustering algorithm or the evaluative criteria will impact results. As it was 
specifically designed for large datasets, the CLARA algorithm is suited for large spatial 
datasets, where other methods (e.g., hierarchical) are computationally constrained. It is up 
to the user to explore combinations of algorithms and criteria that are useful and relevant 
for their research.  

This study was conducted in a region where increased forest harvesting has been 
prescribed in response to insect infestation (British Columbia Ministry of Forests and 
Range 2007). In the eastern part of the study area, an examination of the spatial 
distribution of SPR suggests that topographical influence on land cover is a key factor 
affecting forest pattern. Not surprisingly, the highest levels of forest fragmentation occur 
in areas with the most anthropogenic activity, located centrally in the study area. In the 
western portion, especially in the Quesnel Forest District, parcels of fragmented 
landscapes (SPR1, SPR2, and SPR3) are interspersed with non-fragmented landscapes 
(SPR5, SPR6, and SPR100). In the Quesnel Forest District, mountain pine beetle 
infestation is widespread, with salvage and mitigation harvesting activities likely driving 
the forest pattern. In the western region where anthropogenic impacts are shaping forest 
pattern, further investigation of natural processes, such as wildlife habitat loss (Bunnell 
and others 2004) and hydrologic regimes (Helie and others 2005) may be required. 
 

CONCLUSION 

 Current international forest monitoring initiatives cite forest fragmentation as a 
new indicator for reporting (e.g., Montreal Process Liaison Office 2000). Thus effective 
methods quantifying forest pattern across large areas are required to meet these goals. In 
Canada, the spatial extent of forest monitoring limits our ability to visualize and interpret 
forest pattern information. Similarly, the number of attributes required to effectively 
monitor forest pattern is not easily visualized with maps. Regionalization may provide an 
effective approach for meeting these monitoring directives. 
 In this research we demonstrate regionalization as an effective approach for 
mapping similarities and differences in landscape forest pattern. Regionalization provides 
a quantitative approach for grouping spatial units into categories based on a given set of 
attributes. Mapping SPR can benefit a variety management and conservation activities. If 
the forest pattern in a region has been identified as favourable or problematic, for a 
specific management goal, other areas with similar conditions can be identified. For 
instance, wildlife often prefer habitat with particular forest patterns; for example, 
American Martens in the Uinta Mountains of northern Utah are rarely detected in forest 
landscapes with >25% area open, but may prefer landscapes with low levels of 
fragmentation with contiguous forest openings (Hargis and others 1999). Using a 
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regionalization approach, such as SPR, locations that exhibit landscape pattern attributes 
preferred by American Martens, can be identified as potential habitat. Given the 
importance of landscape pattern for many ecological processes, regionalization of 
landscape pattern indices is a useful approach for examining the spatial distribution of 
landscape pattern. 
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Table 1: Metrics chosen for multivariate cluster analysis and their formulation. 

Metric Units Formulation 

Class Proportion % { }Fi
A

ai
=→

∑
 

Join Counts # { }NkFjg jk ==→∑ ,  

Number of Patches # { }ONFini ,,=→∑  

Patch Area 
Squared 

ha2 { }∑ =→ ONFiai ,,2
 

Mean Patch 
Perimeter-Area 

Ratio 
m/ha { }∑ =→ ONFi

a

p

n i

i ,,
1

 

A – total area of landscape, a – area of patch, g – join 
between two neighbouring cells, n number of patches, p 
– perimeter of patch, F – forest, N – non-forest, O – 
other. 
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Table 2: Mean, median, and coefficient of variation for each metric-SPR combination. 

    

Forest 

Proportion 

Number of 

Patches 

Forest/Non-

Forest Joins 

Squared 

Area of 

Patches 

Average 

Patch 

Perimeter 

Area Ratio 

  (units) (%) (#) (#) (ha2) (m/ha) 

mean 18.9 14.9 277.3 5647 831.1 
SPR1 

median 19 15 284 5484 838.9 

n = 5271 c.v. 0.60 0.40 0.49 0.24 0.14 

mean 55.5 24.0 629.5 3481 889.2 
SPR2 

median 57 23 616 3442 888.7 

n = 12150 c.v. 0.25 0.26 0.21 0.21 0.08 

mean 65.7 12.7 367.6 4021 752.3 
SPR3 

median 68 13 362 3964 762.6 

n = 11548 c.v. 0.19 0.29 0.28 0.22 0.14 

mean 84.7 21.4 371.1 5907 955.0 
SPR4 

median 85 20 365 5917 952.0 

n = 8027 c.v. 0.07 0.28 0.27 0.13 0.08 

mean 93.5 9.7 153.4 7172 879.6 
SPR5 

median 95 10 148 7315 871.6 

n = 10034 c.v. 0.05 0.35 0.50 0.09 0.11 

mean 88.3 5.2 137.6 6675 527.6 
SPR6 

median 92 5 128 6959 585.9 

n = 5775 c.v. 0.15 0.49 0.62 0.18 0.34 
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Table 3: Area percentages of each SPR. 

SPR Area (%) 

SPR0 2 

SPR1 9 

SPR2 22 

SPR3 21 

SPR4 14 

SPR5 18 

SPR6 10 

SPR100 4 



   

  17 

 

 
Fig. 1: Study area, the Prince George and Quesnel Forest Districts (5.5 million ha) 
located in British Columbia, Canada.  
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Fig. 2: Davies-Bouldin Index (DB) and Average Silhouette Width (ASW) results for k 
values of 2 – 10. Optimal k is found at minimum DB and maximum ASW (in this case k 

= 6). 
 



   

  19 

 
Fig. 3: Relative frequency histogram for each metric-SPR combination. Included are the 
mean and median values for each histogram. 
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Fig. 4: Medoid landscapes for each SPR. Medoids are the central object in each cluster of 
the multivariate clustering. They are the representative landscape for each SPR. SPR0 
and SPR100 are not shown but represent no forest and all forest, respectively. 
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Fig. 5: Map of spatial pattern regions – SPR [A], across the Prince George and Quesnel 
Forest Districts in British Columbia, Canada. Ancillary information, such as elevation 
[B], and mountain pine beetle infestation severity levels for 2006 [C], can assist 
interpretation of SPR.  
 


