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ABSTRACT

The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an
important diagnostic of heating processes. Observations indicate that EM(T) ∼ Ta below approximately 4 MK, with
2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence
of a on the time between individual nanoflares (TN) and the distribution of nanoflare energies. If TN is greater than a
few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed
range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power
law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second
nanoflare do lead to the observed range of a. However, TN must then be of the order of hundreds to no more than a
few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the
time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead,
it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only
a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than
previously envisioned.

Key words: magnetic reconnection – Sun: corona – Sun: X-rays, gamma rays

1. INTRODUCTION

The ability to carry out multiwavelength observations of
active regions (ARs) has led to major advances in understanding
how the coronal loops there may be heated. In particular,
studies of so-called AR core loops (Warren et al. 2011, 2012;
Winebarger et al. 2011; Tripathi et al. 2011; Schmelz & Pathak
2012; Bradshaw et al. 2012; Reep et al. 2013) have, for the
first time, imposed serious and credible constraints on their
heating. These AR cores were identified as being relatively
simple locations, where the radiation from the corona was
unlikely to be contaminated by that from the transition region
(TR) at the loop footpoints (the “moss”), thus permitting a direct
comparison with predictions from coronal heating models.

Using data from the EUV imaging spectrometer instrument
on the Hinode spacecraft, with support from the Hinode X-Ray
Telescope and the Atmospheric Imaging Assembly instrument
on the Solar Dynamics Observatory spacecraft, Warren et al.
(2011) were able to determine the dependence of the emission
measure (EM) on temperature in an AR core, where EM =∫

n2dh, dh is directed along the line-of-sight and EM(T) is
built up by considering many emission lines (in excess of 20 in
Warren et al. 2011). EM(T) quantifies the distribution of coronal
plasma as a function of temperature and can also be calculated
readily from theoretical models.

In the AR cores, EM(T) peaks at around 106.5–6.6 K (e.g.,
Warren et al. 2011, 2012). Between this peak and a few 105 K, it
has been suggested on observational and theoretical grounds that
EM(T) ∼ Ta (e.g., Jordan 1976; Withbroe 1978; Cargill 1994;
Cargill & Klimchuk 2004) and indeed Warren et al. (2011)
obtained a = 3.1. Subsequently, Tripathi et al. (2011) looked
at another AR and found a value of a closer to 2, and surveys
by Warren et al. (2012) and Schmelz & Pathak (2012) found
2 < a < 5, so that the amount of plasma around 1 MK differs
considerably between different ARs. Table 3 of Bradshaw et al.
(2012) provides a summary. (The earlier result of Antiochos

et al. 2003 should also be noted. On the basis of the presence of
1 MK TR “moss” at the base of a loop, they inferred material at
a few MK in the high corona, where no emission at 1 MK was
seen.)

These authors have all sought to interpret their results in
terms of nanoflare models of coronal heating. Nanoflares are
believed to arise when a localized bundle of magnetic flux is
sheared (or braided) with respect to its neighbors by motions
in the photosphere (e.g., Parker 1988). Provided the braiding
proceeds for long enough before dissipation occurs, nanoflares
with energies in the range 1023–1025 erg can occur often enough
to account for AR radiation losses, when summed over an entire
loop structure and many nanoflares. Cargill (1994) and Cargill &
Klimchuk (1997, 2004) proposed a nanoflare heating model in
which a loop, or sub-element thereof, is heated rapidly and then
cools before being reheated by the next nanoflare (hereafter,
low frequency or LF nanoflares). In this regime, a ∼ 2 is
expected (Cargill & Klimchuk 2004; Section 3 of this paper).
The larger value of a obtained by Warren et al. (2011) led them to
conclude that nanoflare heating occurred on a faster timescale,
with reheating occurring before the loop cooled below 1 MK
(hereafter, high frequency or HF nanoflares), so reducing the
amount of plasma in the lower part of their observed temperature
range. However, the other surveys suggest that values of a
consistent with both LF and HF nanoflares arise, and atomic
physics uncertainties are probably not significant enough to
account for this spread of values of a with either just a LF
or HF model (Bradshaw et al. 2012; Reep et al. 2013; Guennou
et al. 2013).

An important tool in interpreting these results is hydrody-
namic loop models that study the field-aligned plasma response
in a sub-element of a loop to heating in the form of a “train”
of nanoflares, where the “train” is defined as a semi-infinite se-
quence of nanoflares applied to the same field line. Through two
such simulations, Warren et al. (2011) demonstrated the differ-
ent EM(T) profiles to be expected from LF and HF nanoflares,
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with the former showing a ∼ 2 and the latter being very sharply
peaked around the temperature of maximum EM. Bradshaw
et al. (2012) carried out a more extensive set of LF nanoflare
simulations and showed that a was indeed of order two while
Reep et al. (2013) presented a “tapered” HF nanoflare train in
which the plasma was allowed to cool to below 1 MK after
the train terminated. They found 1.5 < a < 4. Thus, the LF
trains cannot account for the range of values of a seen, while
the tapered HF trains may account for a broader range of a.

This paper explores another option that can account for the
range of a. An important previous limitation is the assumption of
equally spaced nanoflares having the same energy. We remove
this assumption and present a series of zero-dimensional (0D)
hydrodynamic models to address how the observed range of
EM(T) scalings arise. In particular, we will show that it is
difficult for equal-energy, constant-separation nanoflare trains to
produce the entire range of observed values of a in a convincing
manner. However, distributions in which the nanoflare energy is
not constant, especially when the time between each nanoflare is
taken to be proportional to the energy released in the latter event,
has more success. Section 2 outlines our methodology, and
Section 3 outlines the results. Section 4 outlines the implications
for magnetohydrodynamic (MHD) coronal processes involved
in impulsive heating by both our results and those of Reep et al.
(2013).

2. METHODOLOGY

The major assumption of this paper is that the corona in AR
loops is heated by small energy releases (nanoflares) that form a
semi-infinite sequence, referred to as a “nanoflare train.” While
discussions of nanoflares are sometimes restricted to events of
the order of 1024 erg, we have no particular precondition as to
their size. The nanoflare is assumed to heat a sub-element of
the loop with cross-section Ah. This is sometimes referred to
as a flux bundle or strand; here we use the term “sub-loop.” It
is assumed that Ah is much smaller than the cross-section of
the observed loop and that the observed coronal signature is the
convolution of many sub-loops.

2.1. EBTEL Methods

We study the response of the corona to nanoflare heating by
solving the hydrodynamic equations along a sub-loop using the
enthalpy based thermal evolution of loops (EBTEL) approach
(Klimchuk et al. 2008; Cargill et al. 2012a, 2012b). This is a 0D
hydrodynamic time-dependent (sub-)loop model which solves
the equations of mass, momentum, and energy conservation
along a field line. Thermal conduction, optically thin radiation
(Section 2.2), an (imposed) heating function (Section 2.3), and
subsonic flows are included. The corona and TR are treated as
separate parts, coupled together by the conduction and enthalpy
fluxes across the boundary between the two regions. Thus,
EBTEL calculates averages of temperature, density, etc. in the
corona as well as heat and enthalpy fluxes at the corona/TR
boundary. The version of EBTEL used here has a more complete
description of radiative cooling (Cargill et al. 2012a), based
on the work of Bradshaw & Cargill (2010a, 2010b), than the
original version of EBTEL (Klimchuk et al. 2008). The choice
of the 0D approach is dictated by the need to survey large regions
of parameter space; in the work that has gone into this paper
we have looked at many thousands of examples. Comparison of
EBTEL with one-dimensional time-dependent hydrodynamic
models such as Hydrad (Bradshaw & Cargill 2006, 2013;

Table 1
Radiative Loss Function (RL = χTα erg cm3 s−1) Used in

EBTEL08 and a Parameterization of the New Losses
Based on Chianti (Warren et al. 2011; RL12)

T EBTEL08 New Loss Function
(K)

106.18 < T < 106.55 3.53 × 10−13 T−1.5 1.77 ×10−7 T−2.37

105.67 < T < 106.18 1.9 × 10−22 4 ×10−22

Bradshaw & Klimchuk 2011) shows very acceptable agreement
(Cargill et al. 2012a, 2012b).

EBTEL calculates the TR and coronal EMs separately. We
do not discuss the TR EM since our concern is with AR cores.
The EM profile is calculated over an entire run (many thousand
seconds), and the quantity n2dh is assigned to temperature bins
over a range 10% above and below the average temperature at
each timestep, which is chosen as 1 s. This reflects the fact that
EBTEL calculates average temperatures, with a ratio of average
to apex temperature of 0.9 (Klimchuk et al. 2008; Cargill et al.
2012a).

2.2. Radiative Losses

It is apparent that the magnitude and temperature dependence
of the optically thin radiative loss function plays an important
role in loop cooling, as highlighted recently by Reale &
Landi (2012, hereafter RL12) and Cargill & Bradshaw (2013).
Continual refinement of atomic physics, especially in the range
below a few MK, has led to significant increases in the losses
over those proposed by, for example, Rosner et al. (1978,
hereafter RTV). EBTEL parameterizes the losses as a piecewise
continuous function, RL = χTα , and has had the ability to use
those of RTV and Klimchuk et al. (2008, referred to as EBTEL08
losses). Warren et al. (2011) use more recent Chianti losses, as
do RL12; those used by Warren et al. are roughly 12% lower
than RL12 at 1 MK (∼3.5 × 10−22 erg cm3 s−1; H. Warren 2013,
private communication). (The RTV losses at 1 MK are roughly
10−22 erg cm3 s−1.) We now include the option of these new
Chianti losses between 105.67 and 106.55 K, as parameterized in
Table 1.

2.3. Input Parameters

The imposed heating function is split into two parts: a (weak)
steady background (Hb) and a time-averaged component due
to the nanoflares (Hn), where Hb and Hn have units of power
per unit volume. The background heating is included to prevent
the loop temperature and density falling to unreasonably low
values. The temperature due to Hb alone is significantly under
1 MK, and the associated EM is small.

The nanoflares are assumed to be triangular pulses with width
τH and peak value H0. For N nanoflares occurring within a
time T, in a sub-loop of half-length L, the average peak energy
in each nanoflare is H0 = 2HnT/NτH , and we define TN to
be the time between nanoflares on any sub-loop as TN =
(T − NτH)/N. As we increase the number of nanoflares, the
average energy in each event decreases. We can relate Hn to the
nanoflare energy (Q) as Q = HnT2LAh/N. As an example with
Hn = 8 × 10−3 erg cm−3 s−1, L = 40 Mm (parameters from
Warren et al. 2011), τH = 100 s, Ah = 1014 cm2, a sub-loop with
20 nanoflares occurring in 80,000 s gives H0 = 0.64 erg cm−3 s−1

and Q = 2.6 × 1025 erg.
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Figure 1. Emission measure as a function of temperature for a loop heated
by a single nanoflare. The solid, dashed, and dotted curves show the RL12,
EBTEL08, and RTV loss functions. The nanoflare is modeled by a triangular
pulse of duration 100 s and peak heating 0.38 erg cm−3 s−1.

3. RESULTS

Before presenting new results, we discuss briefly the EM
distribution arising from a single nanoflare. Figure 1 shows
EM(T) for τH = 100 s and H0 = 0.38 erg cm−3 s−1 in a sub-loop
of half-length 40 Mm and an assumed line-of-sight of 10% of the
total length, as used in all our results. Warren et al. (2011) used

17%. Three loss functions are shown: RTV (dots), EBTEL08
(dashed)b, and RL12 (solid). The EM peaks at approximately
T = T(EMmax) = 106.6 K. For T > T(EMmax), the coronal part of
the sub-loop cools predominately by thermal conduction to the
TR and chromosphere (e.g., Antiochos & Sturrock 1976, 1978).
Below T(EMmax), cooling is by a combination of optically thin
radiation from the corona to space and an enthalpy flux to power
the TR radiative losses (Bradshaw & Cargill 2010a, 2010b). The
RTV, EBTEL08, and RL12 losses have a = 1.7, 2.3, and 2.7,
respectively, between 1 MK and T(EMmax).

Cargill (1994) noted that below T(EMmax), EM(T) ∼ n2τ rad,
where τ rad ∼ T1−α/n is the instantaneous radiative cooling time.
Assuming that T ∼ n2 in the radiative phase (Serio et al. 1991;
Jakimiec et al. 1992; Reale et al. 1993; Cargill et al. 1995), the
result EM ∼ T3/2−α ∼ T2 arises from a simple fit to the RTV
losses. More generally, the radiative phase has T ∼ nl, with l ∼
1 for very long loops (Bradshaw & Cargill 2010b) and l ∼ 2.5
from short ones (Reale et al. 1993; Bradshaw & Cargill 2010b)
and one finds EM ∼ T1/l + 1 − α (Cargill & Klimchuk 2004;
Bradshaw et al. 2012). So steeper loss functions (more negative
α) give larger values of a, as seen in Figure 1. The largest value
of a to be expected from a single nanoflare is of the order of
three for the case of a very long loop (L > 1010 cm) and steep
loss function. Figures 2 and 3 show both the EBTEL08 and
RL12 losses. Figure 4 shows EBTEL08 losses.

3.1. Equally Separated Nanoflares

Both physical expectations and the results of Warren et al.
(2011) suggest that the separation between individual nanoflares
(TN) is the key parameter in understanding EM(T). The left
panel of Figure 2 shows EM(T) for a set of 20 nanoflare
trains, each running for 80,000 s, with 2L = 80 Mm and
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Figure 2. Left panel shows the emission measure as a function of temperature for nanoflare trains with constant energy nanoflares. The 20 curves are associated with
different delay times between the nanoflares (TN between 250 and 5000 s). The lowest curve corresponds to TN = 250 s and the highest to TN = 5000 s. Each curve
is shifted vertically by 0.2 on a log scale with respect to the previous one as TN increases. The four line styles break TN up into groups of 1000 s. The top right panel
shows the maximum value of the emission measure; the upper curve (+) shows the EM integrated over the entire temperature range. The lower right shows the slope
of the emission measure below the maximum temperature. The three horizontal lines correspond to a = 2, 3, and 5. Solutions where the EM vanishes at a temperature
above 106.25 are not shown so that only the upper 12 curves on the left are represented. Stars and circles are the EBTEL08 and RL12 radiative losses.
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Figure 3. Results for cases with a random distribution of equally space nanoflares (top panels) and for a power law distribution with slope m = −2.5 (lower panels).
The formats are the same as Figure 2.

Hn = 8.3 × 10−3 erg cm−3 s−1 (similar parameters to those
of Warren et al. 2011). Within each train, the nanoflares have
the same energy, and the time between each is identical. Each
curve shows a different value of TN , which increases from 250
to 5000 s in increments of 250 s. These values of TN give
H0 = 0.03–0.44 erg cm−3 s−1 as one moves from HF to LF
regimes. The sharply peaked curves have small values of TN
(HF nanoflares), and the broad distributions have large TN (LF
nanoflares). For clarity, as TN increases, each curve is shifted
upward by 0.2 on a log scale with respect to the previous curve.
The line styles break TN into groups of four: TN = 250, 500,
750, 1000 s, etc.

The peak of the EM (EMmax) occurs at roughly 106.6 K for
all cases, in agreement with the AR core studies. For TN �
3000 s, EM(T) extends to below 1 MK. For smaller TN , there
is an increasing range of temperatures below which there is no
emission, and for TN = 250 s, EM(T) is very sharply peaked. The
following should be noted: (1) the curves are truncated below
the point where EM(T) falls to the background corona value and
(2) the steep downturn of these truncated curves off the “main
sequence” of EM is a consequence of the assumption that T,

and hence EM(T), is distributed over a narrow range about its
average.

The upper right panel of Figure 2 shows EMmax as a function
of TN . As TN decreases, EMmax increases by roughly a factor
of five. This reflects the fact that the emission becomes more
localized in temperature. The upper curve (+ sign) shows the
quantity

∫ ∞
0 DEM(T )dT , where DEM(T) is the EM differential

in temperature, as calculated by EBTEL. There is a variation
of 15% over all TN . (This quantity has no strict meaning in
the language of EM analysis, unless EM(T) is strongly peaked
around some value (Δ log10 T ± 0.3), but its near-constancy
reflects the fact that roughly the same quantity of plasma is
radiating in all cases.) While not shown, T(EMmax) shows little
dependence on TN .

The lower right panel shows the dependence of a on TN, where
EM ∼ Ta below T(EMmax). The three horizontal lines correspond
to a = 2, a = 3, and a = 5. These are, respectively, one expected
value for LF nanoflares, the maximum possible value for LF
nanoflares, and the maximum deduced by the various data-
based investigations. The stars and circles are the EBTEL08 and
RL12 radiative losses, respectively. The quantity a is calculated
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Figure 4. Results for cases with a power law distribution of nanoflares with slope m = −2.5 (top panels) and m = −1.5 (lower panels). In both cases, waiting times
between the nanoflares are included so that TN on the horizontal axis is now an average over the nanoflare train. Stars (diamonds) in the lower right panel correspond
to nanoflare trains with Q ∝ TN (TN

2). The other panels have Q ∝ TN .

between T(EMmax) and a sequence of 12 lower temperatures,
increasing from 106 to 106.25 K, and then averaged. If EM
at any relevant temperature drops below 10−3 EMmax, the
associated value of a is excluded from the averaging. Although
this eliminates fluctuations in a, a calculation of a using the
lowest physically meaningful value of EM above 1 MK is often
also adequate.

The slope of EM(T) changes as one moves away from LF
nanoflares, with a of order 2 (2.7) for the EBTEL08 (RL12)
losses when TN > 2000 s. For TN less than 2000 s, the values
of a are undefined (and so not shown) since there is no plasma
for a significant range of temperatures above 106.25 K. The
sharp transition in a at TN < 2000 s is due to the loop being
reheated before it can cool below 106.25 K. There is a very small
intermediate range of TN where a lies above 2 and below 5 but
is not evident with a 250 s resolution of TN . Thus, very precise
tuning of TN is required to account for the observed range of a.
This seems unlikely.

While the behavior of the plasma above T(EMmax) is not
central to this paper, it merits comment. There is significant
material at these temperatures for LF heating, and EM ∼ T−5 in
the vicinity of 10 MK. This is in reasonable agreement with the
predicted scaling of T−11/2 (Cargill & Klimchuk 2004) which

arises for similar reasons to that in the radiative phase: EM(T) ∼
n2τ c ∼ n3/T5/2 where τ c ∼ nL2/T5/2 is the conductive cooling
time (e.g., Cargill et al. 1995). At constant pressure, as assumed
in Cargill & Klimchuk (2004), a p3/T11/2 scaling follows. For
our examples, the pressure is not exactly constant during the
conductive cooling phase, leading to a weaker scaling. The very
extreme temperatures (107.5 K) for the LF runs arise because
a heat flux limiter is used in EBTEL (Klimchuk et al. 2008).
When only the Spitzer conduction formalism is used, these very
high temperatures disappear. In fact, the physics of conductive
cooling is complicated at such high temperatures (e.g., West
et al. 2008), and a proper theoretical study of high temperature
AR plasmas is badly needed.

The upper panels of Figure 3 show results for a random
distribution of nanoflare energies with a factor 10 difference
between minimum and maximum values of Hn and constant TN
in each nanoflare train. Again, 20 nanoflare trains are shown
with TN increasing from 250 to 5000 s. For this flat distribution,
most of the energy is injected in large events. The results do
not change greatly from Figure 2 for large and small values of
TN but there is a broadening of EM(T) for intermediate values,
giving a between 3 and 10 for both loss functions around TN =
2000 s. However, there is still quite a sharp change from a ∼ 2
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to values of TN where a is undefined, roughly 500 s; again, this
will require quite precise tuning of TN..

3.2. Power Law Distributions of Nanoflares

We next consider the nanoflare distribution to be a power
law, N(Q) ∼ Q−m. It is well known that when the power law
extends over several decades, the value m = 2 corresponds to the
transition between the input power dominated by large (small)
events for m < 2 (m > 2): Hudson (1991). Data from solar flares
suggests that m < 2 (Crosby et al. 1993; Crosby 2011). On the
other hand, firm evidence for the value of m at nanoflare energies
is difficult to obtain. Different analysis methods give values
of m > and <2 for observed non-flaring brightenings (Parnell
2004). There is also ambiguity about how N(Q) is modified by
plasma cooling processes prior to any observation of intensity
fluctuations at EUV wavelengths (Parenti et al. 2006). Further,
given that nanoflares may be <1024 erg (see below and Testa
et al. 2013), any plasma brightening due to a single nanoflare
may be close to unobservable.

Such power law distributions also arise from theoretical and
computational modeling of a driven corona (see Charbonneau
et al. 2001 for a review). For example, Lu & Hamilton (1991)
and Lu et al. (1993) obtained m ∼ 1.4 for a simple model of
the coronal field in a self-organized state. Vlahos et al. (1995)
used different “rules” governing field dissipation to show that
m > 2, at least for smaller events. Numerical simulations of a
nanoflare-heated corona (e.g., Rappazzo et al. 2008; Bingert &
Peter 2013) also lead to power law distributions generally with
m < 2. An important caveat to all these results is that one is
unsure whether the correct dissipative processes are modeled
and/or resolved. We subsequently consider values of m > and
<2 but continue to restrict Q to be distributed over a decade,
with the individual nanoflare energies being calculated to ensure
the correct total power (8.3 ×10−3 erg cm−3 s−1) is going into
the sub-loop. The lower panels of Figures 3 show results for
m = 2.5 and are quite similar to the random distribution
discussed above.

Next, we propose that the time between consecutive
nanoflares depends on the energy of the second nanoflare, since
larger nanoflares will take longer to build up their energy. Two
scalings are considered: Q ∝ TN and Q ∝ TN

2, with the mo-
tivation discussed fully in Section 4 where we will argue that
the former is the more relevant scaling for AR core loops. The
results for m = −2.5 (−1.5) are shown in the upper (lower)
parts of Figure 4, where the horizontal axes in the right hand
column now show an average TN , so that, for example, when
〈TN〉 = 1000 s, the delay between individual nanoflares can
range from a few hundred to 3000 s. The left and upper right
panels show examples with Q ∝ TN only. The lower right panel,
which shows the dependence of a on TN, has stars denoting
Q ∝ TN and diamonds Q ∝ TN

2.
Instead of the abrupt transition in TN over a few hundred

seconds between a being of the order of 2–3 and having no
physical value, a now slowly increases from ∼2 for large TN to
∼5 for TN over a few thousand seconds. The transition to sharply
peaked EM(T) occurs at larger TN for Q ∝ TN

2. The lower panels
show a similar result holds for the flatter power law (m = 1.5).
It seems possible that the range of a observed could correspond
to differences between the various ARs (e.g., magnetic field
strengths and small-scale field topologies) leading to different
detailed dissipation processes (a range of TN and hence Q) within
a generic nanoflare scenario. The important point is that one is

Table 2
Summary of Parameter Variations

2L (Mm) 40 80 120
TN∗ (s): constant train 1000 2250 4500
〈TN∗ 〉(s): waiting time . . . 250 1000
Hn (10−3 erg cm−3 s−1) . . . . . . . . .

4 a = 1.7 1.9 2.5
8 a = 2 2 2.6
16 a = 2.2 2.2 2.6

Notes. The second and third rows show the critical time between nanoflares
(TN∗ ) as a function of loop lengths for a nanoflare train with equally spaced
nanoflares and one with waiting time included in a power law distribution. The
last three rows and columns show the asymptotic value of a for TN 	 TN∗ as a
function of the loop heating rate and loop length for an equally spaced nanoflare
train.

no longer tied to a very narrow range of TN to give the observed
range of a.

The reason behind this result is seen in Figure 5 which shows
the temperature and density evolution for two cases with a power
law nanoflare distribution, Q ∝ TN , and m = 2.5, where the
upper (lower) rows having equally spaced nanoflares (a “waiting
time” between nanoflares). The important point is that when a
waiting time is included, the plasma heated by a nanoflare prior
to a much larger event cools through the entire temperature
range to and below 1 MK, so contributing to EM over a broad
temperature range. This does not happen when the nanoflares
occur at equal intervals. The slow increase in a as 〈TN〉 decreases
is because there are an increasing number of nanoflares and so
fewer cases where a long delay occurs prior to a large nanoflare.
Eventually, for some small TN , the delay between nanoflares
is always short enough that in no cases is there cooling to
1 MK. (Note that the cooling time is relatively independent
of the energy in the nanoflare; See the Appendix and Cargill
et al. 1995). For Q ∝ TN

2, there is a smaller range of times
between nanoflares for a given 〈TN〉, so that as 〈TN〉 decreases,
the probability decreases of a sub-loop cooling below 1 MK
prior to reheating. This is evident in Figure 4, with larger values
of a between 1000 and 2000 s.

3.3. Parameter Variations

We now study the effect of changing L and Hn. The important
quantity in understanding these results is the ratio of TN to the
time taken for the sub-loop to cool to below 1 MK from its
peak temperature (the cooling time, τ cool: typically in the range
1000–3000 s). In general terms, if τ cool < (>) TN , one is in the
LF (HF) nanoflare regime. An expression for τ cool is derived in
the Appendix for the case of a radiative loss function that has
a single power law dependence on temperature. It is linearly
proportional to L and depends only weakly on the nanoflare
energy (see also Cargill 1993; Cargill et al. 1995).

We define the quantity TN∗ to be the value of TN below which
no valid value of a is obtained (i.e., when τ cool > TN). Table 2
summarizes the results for Q ∝ TN . The upper three rows show
TN∗ for a constant nanoflare train (as in Figure 2) and when
a waiting time between nanoflares is introduced (Figure 4)
for three loop lengths. The scaling between TN∗ and L is not
precisely linear, as predicted in the Appendix, but is adequate
given the approximations made in obtaining Equation (A2); see
Cargill et al. (1995) for more details. (For very short loops,
TN∗ is <250 s when a waiting time is included.) The last three
rows show a as a function of Hn and L for TN 	 TN∗ ; this is
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Figure 5. Temperature and density during two runs with a nanoflare power law, slope m = −2.5. In the upper panel, the nanoflares are distributed equally, while in
the lower panel, a waiting time proportional to the nanoflare energy is included.

independent of the form of the nanoflare train distribution. Here,
a lies in a fairly narrow range but does increase as L increases, as
we discussed at the start of this section, due to the influence of
gravitational stratification in long loops. Further, the net effect
of increasing L and/or Hn is to raise the entire range of a over
all TN .

4. DISCUSSION

The results of the previous section can be summarized as
follows.

1. Uniform nanoflare trains lead to a of the order of 2–3
(depending on the radiative loss function used) above some
value of TN . Below that value, the EM distribution is
sharply peaked around the temperature of peaked emission.
Random distributions lead to similar results.

2. Power law distributions of nanoflares lead to a broad range
of a (2 < a < 5) if there is a waiting time before a nanoflare
that depends on its energy. Larger values of a arise for
smaller TN .

3. The loop length is a key parameter. Long (short) loops have
a higher (lower) value of TN∗ and larger (smaller) value of
a. The results show little dependence on the magnitude of
the energy released in the loop.

Points (1) and (2) suggest that uniform nanoflare trains cannot
produce the observed range of EM slopes, and that quite steep
power laws are required, though an exception to this occurs
when a HF nanoflare train is “tapered” (Reep et al. 2013). It

also appears as if the observed values of a require quite small
values of TN . This has important implications, as discussed in a
moment. Regarding point (3), we note that Warren et al. (2012)
find larger a for larger AR areas. From their images, it is clear
that there is no direct one-to-one relation between AR area and
loop length, though one would suspect that larger ARs would
contain longer loops.

We now discuss the implications for nanoflare heating.
Defining Bt and Ba as the reconnecting (transverse) and axial
(guide) field components in the corona (following Parker 1988),
and v a typical photospheric velocity, then the energy supplied
to the corona is roughly BtBav/4π erg cm−2 s−1, with Bt ≈
Bavt/2L. If we assume a nanoflare involves the release of all the
stored magnetic energy (assumed to be contained in Bt), then
Q = (B2

tN/8π )Ah2L where BtN = Bt(t = TN), the time taken to
build up to a nanoflare energy is TN = (2L/v)(BtN/Ba), and Q ∝
T 2

N . The nanoflare energy can then be related to Hn (Section 2.3)
to give the condition (BtN/Ba) = (8π/B2

a )(Hn2L/v)that needs
to be met to satisfy the coronal energy requirements.1 If we take
typical AR numbers, Hn = 8 × 10−3, Ba = 150 G, 2L = 8 ×
109, v = 1 km s−1, then BtN/Ba ∼ 0.7, TN = 56,000 s and Q is of
order 1026 erg for Ah ∼ 1014 cm2 and 1024 erg for Ah ∼ 1012 cm2,

1 The analysis here follows Parker (1988) and differs slightly from that in
Lopez-Fuentes & Klimchuk (2010), which in some ways is more complete.
We assume the nanoflare arises when one magnetic strand (or sub-loop) is
moved with respect to another, whose magnetic field retains Bt = 0.
Lopez-Fuentes & Klimchuk assume that both strands acquire a component Bt .
This leads to differences of factors of two in some derived quantities but has no
influence on the physical conclusions.
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with smaller Hn having smaller values of BtN/Ba and TN . Two
points should be noted for the values of Hn used in Table 2:
(1) the build-up time is a factor 5–20 times longer than the TN
required to reproduce the EM(T) results discussed in Section 3
and (2) any model which assumes Bt � Ba (such as those using
reduced MHD; Rappazzo et al. 2008; Dahlburg et al. 2012) will
have difficulties in accounting for AR heating.

The discrepancy between a simple nanoflare model that
implies a long TN and the observed EM(T) results that require a
short TN can be partially resolved as follows. Assume that during
the nanoflare, Bt relaxes to Bt0 = Bt − dBtN and replenishment of
the coronal energy by footpoint motions begins at Bt = Bt0, with
dBt = Bavt/2L and dBtN = BavTN/2L. The rate energy is injected
is then vAh(Ba(Bt0 + dBt )/4π )which integrates to give, on
rewriting in terms of dBtN , Q = 2LAhdBtN (2Bt0 + dBtN )/8π .
For Bt0 = 0, we recover the earlier results. For dBtN = Bt0, Q ∝
TN , Q and TN are both smaller by roughly a factor dBtN/Bt0,
while there are Bt0/dBtN more nanoflares, ensuring that the total
energy requirements are met. If TN is to be reduced to the range
of values required for the observed EM(T), we conclude that the
nanoflare must be associated with a small decrease in Bt while
Bt0 remains large. Setting TN = 1000 s, and retaining the same
values of Ba, Bt0, L, and v as before, dBt = 1.9 G, Q = 3 ×
1024 erg for Ah = 1014 cm2, and Q = 3 × 1022 for Ah = 1014 cm2.
Q ∼ a few 1023 is inferred from AR moss studies using the Hi-C
instrument (Testa et al. 2013).

How this can occur in the frameworks of magnetohydrody-
namics is unclear at the moment but one suggestion comes from
the idea of helicity conservation. Here, a stressed state does not
relax to a potential field but that corresponding to a “constant-α
force-free field” (Taylor 1974; Heyvaerts & Priest 1984). Were
that state to be close to the stressed one, a small release of energy
could be the outcome. Further studies are needed.

The relation between Q and TN is important for our results,
and an early discussion of its consequences for a range of
astrophysical X-ray sources can be found in Rosner & Vaiana
(1978). We note that models of a driven corona such as initiated
by Lu and Hamilton (e.g., Lu et al. 1993) and flare observations
(e.g., Crosby et al. 1998) suggest that there is little if any
connection between Q and TN . However, the waiting times in
these cases are evaluated over a large volume (e.g., an entire AR
or computational box; see also Charbonneau et al. 2001) and so
yield no useful information about TN in a sub-loop such as we
are concerned with. Other theoretical models suggest various
scalings for “local” waiting times (e.g., Berger 1994; Craig
2001; Wheatland & Craig 2003). Berger (1994) and Sturrock &
Uchida (1981) argue that rotational twisting gives Q ∼ TD while
Wheatland & Craig (2003) discuss magnetic flux pile-up at a
separator leading to Q ∼ TD

2. However, none of these examples
consider the consequences of injecting energy into a loop that
already has a quite stressed field.

5. CONCLUSIONS

We have studied the expected EM distribution as a function of
temperature for models of nanoflare heating of AR loop cores,
with emphasis on the temporal distribution of nanoflares. The
two main results are (1) the best option for obtaining agreement
with observed values of the slope of the nanoflare distribution
EM(T) ∼ Ta lies in the incorporation of a waiting time prior to
a nanoflare that is proportional to its energy and (2) the time
separating nanoflares has to be of the order of a few hundred
to somewhat over 2000 s, thus ruling out the possibility that
a nanoflare involves the relaxation of the coronal field to a

near-potential state. We thus argue that nanoflares occur in a
corona that is continually stressed, with a small energy release
permitting a subsequent rapid replenishment of energy.

Our work has focused solely on slow photospheric driv-
ing. However, other authors (van Ballegooijen et al. 2011;
Asgari-Targhi & van Ballegooijen 2012; Asgari-Targhi et al.
2013) have developed “turbulent” models that also involve
very bursty energy release that one could term nanoflares. In
this work, Alfvén waves are injected into the chromosphere
and corona by photospheric footpoint motions of the order of
1 km s−1, with a correlation time of the order of a minute.
Both footpoints are set in motion and the interaction of counter-
propagating waves leads to a rapid turbulent cascade. Although
the reduced MHD assumption is made, these models do not suf-
fer from the “energy deficiency” problem discussed in Section 4
(see Table 2 of Asgari-Targhi & van Ballegooijen 2012).

Space does not permit a full discussion of their results but
Figure 7 of Asgari-Targhi & van Ballegooijen (2012) is a
reasonable sample and shows that for loop lengths of the order
100 Mm, a maximum temperature of the order of 2–3 MK
is obtained, consistent with AR observations. In all cases,
there is evidence for intermittent energy release, with bursts
being separated by a hundred seconds or so, leading to small
temperature fluctuations around a constant value (see Figure 9 of
Asgari-Targhi & van Ballegooijen 2012). This suggests that such
a turbulent heating model cannot account for the observed EM
slopes, instead giving a very sharply peaked EM(T). However,
with improved numerical resolution, finer spatial structure may
appear, perhaps leading to the dissipation occurring in smaller
regions.

The Hinode data described earlier in this paper thus appear to
impose important constraints on how nanoflare heating may be
operating, and it is in a different way from commonly supposed.
Indeed, one can finally say that quantitative analysis of coronal
heating is at last possible. The other result from this work, and
that of Testa & Reale (2012) and Testa et al. (2011), concerns
the presence of hot coronal components with temperatures in
excess of T(EMmax). This has long been a prediction of nanoflare
models (e.g., Cargill 1994, 1995) but is very difficult to interpret
due to ionization nonequilibrium (Bradshaw & Cargill 2006),
the predicted small EMs, and plasma physics issues associated
with heat conduction in very hot plasmas (West et al. 2008).
This would appear to be a productive area to focus on following
the insights obtained at lower temperatures, as described here.

This work was performed as a contribution to a team sup-
ported by the International Space Science Institute (ISSI) and
led by Helen Mason and Steve Bradshaw. I am grateful to Harry
Warren, Jim Klimchuk, and Steve Bradshaw for helpful dis-
cussions and to Aad van Ballegooijen for providing additional
information about his work. The referee raised an important
issue that led to an improved paper.

APPENDIX

GENERALIZED COOLING TIME

Cargill et al. (1995) evaluated the time taken for a loop to cool
from an initial temperature T0 and n0. The analysis assumed that
the loop cooled first by conduction and then by radiation, the
change between cooling processes occurring at a temperature
T∗. Analytic solutions due to Antiochos & Sturrock (1978) were
used for the conductive phase and the scaling T ∼ n2 (Serio
et al. 1991; Reale et al. 1993; Cargill et al. 1995) was used in
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the radiative phase. As presented in Cargill et al. (1995), the
solution was “hard wired” to a radiative loss function RL =
χTα = 6 × 10−20 T −1/2. We have discussed earlier that recent
work has led to greatly increased losses below a few MK, so that
in any single function fit, the value of α will be more negative,
with χ being adjusted accordingly to give a larger loss at 1 MK.
By following the same analysis as Cargill et al. (1995), it can be
shown that the total cooling time is

τcool =
(

2 − α

1 − α

) (
τ 4−2α
c0 τ 7

r0

)1/(11−2α)
, (A1)

where τ c0 and τ r0 are the cooling times defined at t = 0:
τc0 = 3kL2n0/κ0T

5/2
0 , τr0 = 3kT 1−α/χn, and τ r0 	 τ c0. One

can tidy up Equation (A1) in terms of the loop length and initial
pressure (p0):

τcool =
(

2 − α

1 − α

)
3k

(
1

κ4−2α
0 χ7

L8−4α

(n0T0)3+2α

)1/(11−2α)

. (A2)

Setting α = −1/2 recovers the scalings in Equation (14E) of
Cargill et al. (1995). If we now relate the initial loop pressure
to the energy in a nanoflare using Q = 3n0kT0H0τH LAh/2,
Equation (A2) can be used to show that τcool ∼
LQ−(3+2α)/(11−2α), so τ cool scales exactly linearly with L, inde-
pendent of the loss function slope, and depending weakly on Q.
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