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A standard reformed biogas composition, based on a 63% CH4 

37% CO2 input biogas, was defined by calculation. It is designed to 

resemble the composition of biogas that would enter a real SOFC 

stack, assuming 80% fuel utilization, and 25% recirculation of the 

anode off-gas. It is thermodynamically impervious to coking above 

720°C. This gas composition was then used to test the catalytic 

reforming performance of nickel powder and  

La0.8Ce0.1Ni0.4Ti0.6O3-δ at 900°C in the standard reformed biogas. 

No coking was seen on the powder samples by visual inspection 

after this test. The La0.8Ce0.1Ni0.4Ti0.6O3-δ is designed to exsolve Ni 

nanoparticles when reduced. SEM pictures of the post-test sample 

show some small particles that may be exsolved nanoparticles, but 

further investigation is needed to confirm this. Ni powder was the 

better reforming catalyst, but sintered extensively in the 3 h test. 

The La0.8Ce0.1Ni0.4Ti0.6O3-δ also showed reforming capability, and 

much better microstructural stability in the standard reformed 

biogas. 

 

 

Introduction 

 

The world faces a challenge of how to provide more affordable, clean electricity that does 

not increase carbon dioxide emissions. In order to do this, the use of renewable fuels and 

increasing the conversion efficiency of fuel to electricity will be key. Biogas is a 

renewable fuel, currently utilized in gas turbines at an electrical efficiency of 40%. 

However, solid oxide fuel cells offer potentially higher efficiencies, up to 60-70%. In 

order to accomplish this, the challenges of coking and sulphur poisoning in fuel cells 

running on biogas must be addressed. New anode materials must be synthesized that are 

not as susceptible to these problems, as the current state of the art Ni-YSZ anode. 

 

 

Calculation of Standard Reformed Biogas 

 

     In order to prevent coking when using biogas in an SOFC, it is necessary to change 

the C-H-O ratio in the gas stream, reducing the mol.% of carbon relative to oxygen and 

hydrogen. There are two main ways to accomplish this; firstly, by catalytic partial 

oxidation by adding air. However, this lowers fuel efficiency as some of the fuel is 

combusted before the SOFC. Secondly, by recirculating the anode off-gas, which adds 

more steam and carbon dioxide to the input biogas to the SOFC. These are also reforming 

agents for the biogas. Fig. 1 shows a schematic of an SOFC system running on biogas.  
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Figure 1. Simple schematic of an SOFC running on biogas. The numbers denote various 

compositions at different points in the system. 

 

 

     In this paper, a standard reformed biogas, composition at no.4 in Fig. 1 is defined, 

assuming that no air is added, but rather a fraction of the anode off-gas is recirculated. In 

order to do this, composition at no. 2 in Fig. 1, the input biogas, must be defined, as well 

as the fuel utilization in the SOFC, and the recirculation ratio, which is the fraction of the 

anode off-gas that is recirculated. 

 

     The input biogas composition was determined by taking an average and median across 

a range of methane levels in biogas, reported for different feedstocks (1,2). These were 

both close to 63% methane, so this was chosen as the methane level, and the balance was 

assumed to be carbon dioxide. The fuel utilization was determined by considering a 

variety of SOFC systems running on methane or biogas (3-9), and a fuel utilization of 

80% was chosen as a representative value. A figure of 25% was chosen for the 

recirculation ratio. This is lower than for a methane-based system, because the carbon 

dioxide in the biogas acts as a reforming agent, for dry reforming of methane according 

to eq. 1. Therefore, the input biogas composition was set as 63% methane, 37% carbon 

dioxide, corresponding to composition at no. 2 in Fig. 1. 

 

CH4 + CO2  2CO + 2H2                   [1] 

 

In order to calculate the standard reformed biogas composition at no. 4 in Fig. 1, an 

iterative approach was used to calculate a steady state composition. It was assumed that 

the biogas was input to the system at a steady rate, and that no air was added to the anode 

compartment, and that the stack was operating at 900°C. It was assumed that the methane 

in the biogas was utilized by the SOFC stack according to eq. 2, at a fuel utilization of 
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73.3%. The single pass utilization for the biogas is 73.3%, and the overall fuel utilization 

is 80%. 

 

CH4 + 3O2  CO2 + 2H2O                 [2] 

        

Thermodynamic modeling was carried out on the output gases from the stack, 

composition no. 6 in Fig. 1. This showed that at thermodynamic equilibrium at 900°C, 

the unused fuel would be almost totally converted to carbon monoxide and hydrogen. It 

was assumed that the gases coming out of the stack would be at thermodynamic 

equilibrium. 25% of the anode off-gas was then recirculated and added to the input 

biogas. Then the cycle described above was repeated, by assuming 73.3% fuel utilization 

of the input biogas, plus the recirculated 25% of the anode off-gas.  Since this contained 

carbon monoxide and hydrogen, these were included as fuels to be used by the stack, and 

it was assumed that these were oxidized to carbon dioxide and steam at a fuel utilization 

of 73.3%, as well as the methane from the input biogas. Therefore, a second output gas 

composition was determined, and this process was modeled through repeated cycles, until 

a steady-state composition of gases was obtained. These figures were adjusted slightly 

and rounded, to give the standard reformed biogas composition. This is shown, together 

with the input biogas composition, in Fig. 2. 

 

 

 
 

Figure  2. a) Composition of input biogas and b) standard reformed biogas 

 

     The gas composition at thermodynamic equilibrium for the standard reformed biogas 

composition at no. 4 Fig.1 was calculated as a function of temperature. This showed that 

above 720°C, there was no solid carbon, or coke in the equilibrium composition. 

Therefore this gas composition should not produce coking in the SOFC operating 

temperature range 750°C - 900°C. 

 

 

Experimental 

 

     The catalytic activity of two powder samples was compared at 900°C in 300 ml/min 

of gas; consisting of 285 ml/min of the standard biogas composition, with the balance 

argon. The gases were mixed to the correct ratio using mass flow controllers (Bronkhorst). 

a) b) 
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The samples were placed on a sintered quartz frit inside a quartz reactor. Nickel oxide  

(0.636 g, nickel mass 0.5 g, Pi-Kem) and the perovskite La0.8Ce0.1Ni0.4Ti0.6O3-δ (0.5 g, 

University of St Andrews) were tested. Each sample was reduced in 5% H2/N2 for 30 min, 

then switched to standard reformed biogas for 3 h. The outlet gases were analysed by GC 

(HP) MS-RGA (MKS Instruments), and a dewpoint sensor (Vaisala).   

 

 

Results and Discussion 

 

     The outlet gas compositions from the catalytic reforming tests on the powder samples 

are in Fig. 3. A C-H-O balance was calculated for the amount of gases going in and 

coming out. The maximum error was 20% on the values in Fig. 3; this is mainly due to 

inherent error in quantifying precisely the levels of hydrogen on the MS-RGA. It can be 

seen that the LCNT sample partially reforms the standard reformed biogas, and the nickel 

reforms it much more.  

 

Figure 3. Outlet gas compositions from catalytic reforming tests, with the standard 

reformed biogas composition, and the composition at thermodynamic equilibrium for 

comparison. LCNT = La0.8Ce0.1Ni0.4Ti0.6O3-δ. 

 

 

     However, BET analysis of the powders before and after testing shows that the NiO has 

a BET surface area of 3.7 m
2
.g

-1
 before testing, and 0.5 m

2
.g

-1
 after testing, and the LCNT 

had a surface area of 1.4 m
2
.g

-1
 before, and 1.0 m

2
.g

-1
 after testing. Fig. 4 shows SEM 

images of a) LCNT and b) Ni powders after testing at 900°C in the standard reformed 

biogas. The Ni powder coarsens and sinters quite severely in the biogas during the test, 

whereas the LCNT does not coarsen as much. No coking was apparent on either sample 

after testing by visual inspection. LCNT is an A-site deficient perovskite that was 

designed to exsolve B-site cations upon reduction in hydrogen, producing nanoparticles 
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of Ni. Nanoparticles such as these can enhance the catalytic activity of perovskites, 

according to the principles outlined in (10).  

 

a)  b)  

 

Figure 4. SEM images of powders after testing at 900°C in the standard reformed biogas 

for 3 h, a) La0.8Ce0.1Ni0.4Ti0.6O3-δ (LCNT), and b) Ni 

 

     Fig. 5 compares a pellet sample of LCNT after reduction in 5% H2/N2 at 900°C, to the 

LCNT powder sample tested in standard reformed biogas. It can be clearly seen that Ni 

nanoparticles are present on the surface of the sample reduced in 5% H2/N2. However, it 

is unclear from Fig. 5 whether there are any nanoparticles present. The nanoparticle 

formation may have been inhibited due to either the different gas mixture of the standard 

reformed biogas, or the different p(O2) compared to the 5% H2/N2. A further experiment 

will be carried out to investigate whether nanoparticles can be produced in biogas or not. 

 

a)  b)   

 

Figure 5. a) Surface of a pellet of La0.8Ce0.1Ni0.4Ti0.6O3-δ with Ni nanoparticles produced 

after reduction in 5% H2/N2 at 900°C, b) surface of La0.8Ce0.1Ni0.4Ti0.6O3-δ powder after 3 

h test in standard reformed biogas at 900°C. 

 

 

Conclusions and Further Work 

 

     A standard reformed biogas composition has been defined, by defining an input biogas 

from literature, assuming 80% fuel utilization in the SOFC stack, with 25% recirculation 
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of the anode off-gas, and calculating the steady state gas input to the SOFC stack. 

Determination of this gas composition allows catalytic reforming tests of potential anode 

powders, and fuel cell testing to be carried out in a gas composition representative of that 

which would be encountered in a real SOFC stack. 

     Ni powder and La0.8Ce0.1Ni0.4Ti0.6O3-δ powder have been tested as reforming catalysts 

in the standard reformed biogas composition, and although Ni performs better as a 

reforming catalyst, it undergoes significant sintering during a 3 h test at 900°C compared 

to the La0.8Ce0.1Ni0.4Ti0.6O3-δ. Further testing will be done using the standard reformed 

biogas composition to test SOFC anodes, and to investigate whether the nanoparticles 

expected to form in biogas or not. 
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