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High-precision photometry by telescope defocusing – V. WASP-15
and WASP-16
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ABSTRACT
We present new photometric observations of WASP-15 and WASP-16, two transiting extrasolar
planetary systems with measured orbital obliquities but without photometric follow-up since
their discovery papers. Our new data for WASP-15 comprise observations of one transit
simultaneously in four optical passbands using GROND on the MPG/European Southern
Observatory (ESO) 2.2 m telescope, plus coverage of half a transit from DFOSC on the
Danish 1.54 m telescope, both at ESO La Silla. For WASP-16 we present observations of four

� Based on data collected with the Gamma Ray Burst Optical and Near-Infrared Detector (GROND) at the MPG/ESO 2.2 m telescope and by MiNDSTEp with
the Danish 1.54 m telescope at the ESO La Silla Observatory.
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complete transits, all from the Danish telescope. We use these new data to refine the measured
physical properties and orbital ephemerides of the two systems. Whilst our results are close to
the originally determined values for WASP-15, we find that the star and planet in the WASP-16
system are both larger and less massive than previously thought.

Key words: stars: fundamental parameters – stars: individual: WASP-15 – stars: individual:
WASP-16 – planetary systems.

1 IN T RO D U C T I O N

The number of known transiting extrasolar planets (TEPs) is rapidly
increasing and currently stands at 310.1 Their diversity is also esca-
lating: the radius of the largest known example is 40 times greater
than that of the smallest. There is a variation of over three orders of
magnitude in their masses, excluding those without mass measure-
ments and those which are arguably brown dwarfs. Whilst a small
subset of this population has been extensively investigated, the char-
acterization of the majority is limited to the modest photometry and
spectroscopy presented in their discovery papers.

The bottleneck in our understanding of the physical properties of
most TEPs is the quality of the available transit light curves, which
are of fundamental importance for measuring the stellar density and
the ratio of the radius of the planet to that of the star. Additional
contributions, which arise from the spectroscopic parameters of
the host star and the constraints on its physical properties from
theoretical models, are usually dwarfed by the uncertainties in the
photometric parameters derived from the light curves.

We are therefore undertaking a project aimed at characterizing
TEPs visible from the Southern hemisphere (see Southworth et al.
2012b, and references therein), by obtaining high-precision light
curves of their transits. We use the telescope defocusing technique,
discussed in detail in Southworth et al. (2009a), to collect photo-
metric measurements with very low levels of Poisson and correlated
noise. This method is able to achieve light curves of remarkable pre-
cision (e.g. Tregloan-Reed & Southworth 2012). In this work we
present new observations and determinations of the physical proper-
ties of WASP-15 and WASP-16, based on nine light curves covering
six transits in total.

1.1 Case history

WASP-15 was identified as a TEP by West et al. (2009), who found
it to be a low-density object (ρ2 = 0.186 ± 0.026 ρJup) orbiting
a slightly evolved and comparatively hot host star (Teff = 6300 ±
100 K). Other measurements of the effective temperature of the
host star have been made by Maxted, Koen & Smalley (2011), who
found Teff = 6210 ± 60 K from the infrared flux method (Blackwell,
Petford & Shallis 1980), and by Doyle et al. (2013), whose detailed
spectroscopic analysis yielded Teff = 6405 ± 80 K.

Triaud et al. (2010) observed the Rossiter–McLaughlin effect for
WASP-15 and found the system to exhibit significant obliquity:
the sky-projected angle between the rotational axis of the host star
and the orbital axis of the planet is λ = 139.6+4.3

−5.2 degrees. This is
consistent with previous findings that misaligned planets are found
only around hotter stars (Winn et al. 2010), although tidal effects
act to align them over time (Triaud 2011; Albrecht et al. 2012).

1 Data taken from the Transiting Extrasolar Planet Catalogue (TEPCat)
available at http://www.astro.keele.ac.uk/jkt/tepcat/.

The discovery of the planetary nature of WASP-16 was made
by Lister et al. (2009), who characterized it as a Jupiter-like planet
orbiting a star similar to our Sun. Maxted et al. (2011) and Doyle
et al. (2013) measured the host star’s Teff to be 5550 ± 60 K and
5630 ± 70 K, respectively, in mutual agreement and a little cooler
than the value of 5700 ± 150 K found in the discovery paper.

Observations of the Rossiter–McLaughlin effect for WASP-16
have yielded obliquities consistent with zero: Brown et al. (2012)
measured λ = 11+26

−19 degrees and Albrecht et al. (2012) found λ =
−4+11

−14 degrees. The large uncertainties in these assessments are due
to the low rotational velocity of the star, which results in a small
amplitude for the Rossiter–McLaughlin effect.

The physical properties of both systems were comparatively ill-
defined, as they rested on few dedicated follow-up light curves:
only one light curve in the case of WASP-16 and two data sets
afflicted with correlated noise in the case of WASP-15. All three
data sets were obtained using EulerCam on the 1.2 m Swiss Euler
telescope at European Southern Observatory (ESO) La Silla. In this
work we present the first follow-up photometry since the discovery
paper for both systems, totalling nine new light curves covering six
transits. This new material has allowed us to significantly improve
the precision of the measured physical properties. Our analysis also
benefited from refined constraints on the atmospheric characteristics
of the host stars, as discussed above.

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

We observed one transit of WASP-15 on the night of 2012 January
19 using the GROND instrument mounted on the MPG/ESO 2.2 m
telescope at La Silla, Chile. The field of view of this instrument is
5.4′ × 5.4′ at a plate scale of 0.158′ ′ pixel−1. Observations were
obtained simultaneously in the g, r, i and z passbands and covered
a full transit plus significant time intervals before ingress and after
egress. CCD readout occurred in slow mode. The telescope was
defocused and we autoguided throughout the observations. The
moon was below the horizon during the observing sequence. An
observing log is given in Table 1.

The data were reduced with the IDL2 pipeline described by South-
worth et al. (2009a), which uses the DAOPHOT package (Stetson 1987)
to perform aperture photometry with the APER3 routine. The aper-
tures were placed by hand and the stars were tracked by cross-
correlating each image against a reference image. We tried a wide
range of aperture sizes and retained those which gave photometry
with the lowest scatter compared to a fitted model. In line with pre-
vious experience, we found that the shape of the light curve is very
insensitive to the aperture sizes.

2 The acronym IDL stands for Interactive Data Language and is a trade-
mark of ITT Visual Information Solutions. For further details, see
http://www.ittvis.com/ProductServices/IDL.aspx.
3 APER is part of the ASTROLIB subroutine library distributed by NASA. For
further details, see http://idlastro.gsfc.nasa.gov/.
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Table 1. Log of the observations presented in this work. Nobs is the number of observations, Texp is the exposure time, Tobs is the observational cadence and
‘Moon illum.’ is the fractional illumination of the Moon at the mid-point of the transit.

Transit Date of Start time End time Nobs Texp Tobs Filter Airmass Moon Aperture Scatter
first obs. (UT) (UT) (s) (s) illum. radii (pixel) (mmag)

WASP-15
DFOSC 2010 06 09 23:09 03:09 92 120 155 Bessell R 1.15 → 1.00 → 1.08 0.068 32, 45, 70 0.492
GROND 2012 04 19 02:23 09:39 229 62–45 115 Gunn g 1.17 → 1.00 → 2.09 0.040 50, 75, 95 0.640
GROND 2012 04 19 02:23 09:39 228 62–45 115 Gunn r 1.17 → 1.00 → 2.09 0.040 50, 75, 95 0.481
GROND 2012 04 19 02:23 09:39 225 62–45 115 Gunn i 1.17 → 1.00 → 2.09 0.040 50, 75, 100 0.607
GROND 2012 04 19 02:23 09:39 227 62–45 115 Gunn z 1.17 → 1.00 → 2.09 0.040 50, 75, 100 0.725
WASP-16
DFOSC 2010 05 10 01:33 06:17 131 100 128 Bessell R 1.18 → 1.01 → 1.22 0.156 30, 50, 80 0.542
DFOSC 2010 06 28 23:25 04:10 136 75 102 Bessell R 1.05 → 1.01 → 1.55 0.937 30, 40, 60 1.294
DFOSC 2011 05 13 01:07 05:42 140 90 118 Bessell R 1.23 → 1.01 → 1.15 0.752 26, 40, 60 0.586
DFOSC 2011 07 01 23:18 04:36 160 90 120 Bessell R 1.05 → 1.01 → 1.88 0.006 34, 45, 70 0.670

We calculated differential-photometry light curves of our target
star by combining all good comparison stars into an ensemble with
weights optimized to minimize the scatter of the observations taken
outside transit. We rectified the data to a zero-magnitude baseline
by subtracting a second-order polynomial whose coefficients were
optimized simultaneously with the weights of the comparison stars.
The effect of this normalization was subsequently taken into account
when modelling the data. The final GROND optical light curves are
shown in Fig. 1. Our time stamps were converted to the BJD(TDB)
time-scale (Eastman, Siverd & Gaudi 2010).

We also used GROND to obtain photometry in the J, H and K
passbands simultaneously with the optical observations. The field
of view of the GROND near-infrared channels is 10′ × 10′ at a

Figure 1. Optical light curves of WASP-15. The first four are from GROND
and the fifth is from DFOSC. The JKTEBOP best fit is shown for each data set,
and the residuals of the fit are plotted near the base of the figure.

Figure 2. Near-IR light curves of WASP-15 from GROND. The passbands
are labelled on the right-hand side of the figure.

plate scale of 0.60′ ′ pixel−1. These were reduced following stan-
dard techniques and with trying multiple alternative approaches to
decorrelate the data against airmass and centroid position of the
target star. We were unable to obtain good light curves from these
data, and suspect that this is because the brightness of WASP-15
pushed the pixel count rates into the non-linear regime, causing the
systematic noise which is obvious in Fig. 2.

A transit of WASP-15 was also observed using the DFOSC im-
ager on-board the 1.54 m Danish telescope at La Silla, which has a
field of view of 13.7′ × 13.7′ and a plate scale of 0.39′ ′ pixel−1. We
defocused the telescope and autoguided. Several images were taken
prior to the main body of observations in order to check for faint
nearby stars which might contaminate the point spread function
(PSF) of our target star, and none was found. Unfortunately, high
winds forced the closure of the dome shortly after the mid-point of
the transit, which has limited the usefulness of these data. The data
were reduced as above, except that a first-order polynomial (i.e. a
straight line) was used as the function to rectify the light curve to
zero differential magnitude.
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Figure 3. The four new light curves of WASP-16, plotted in the order they
are given in Table 1, plus a fifth data set (lower curve) from Lister et al.
(2009). The second data set is unreliable and a fitted model is not plotted
for it. The JKTEBOP best fits for the other data sets are shown as solid lines
and the residuals of the fits are plotted near the base of the figure.

Four transits of WASP-16 were obtained using the DFOSC im-
ager and the same approach as for the WASP-15 transit above. Three
of the transits were observed in excellent weather conditions whilst
the moon was below the horizon, and these yield excellent light
curves. The data were reduced as above, using a straight-line fit to
the out-of-transit data. A small number of images taken in focus
showed that there are faint stars separated by 32 and 45 pixels from
the centre of the PSF of WASP-16. They are fainter than our target
star by more than 8.7 and 6.8 mag, respectively, so have a negligible
effect on our results.

The second transit was undermined by non-photometric con-
ditions, bright moonlight and a computer crash shortly after the
transit finished. This transit is shallower than the other three, and
we attribute this to a count rate during the observing sequence that
became sufficiently high to enter the regime of significant non-
linearity in the CCD response. The data for this transit were not
included in subsequent analyses. All four light curves are shown in
Fig. 3, along with the Euler telescope data from Lister et al. (2009).
All our reduced data will be made available at the CDS.4

3 L I G H T- C U RV E A NA LY S I S

The analysis of our light curves was performed using the Homoge-
neous Studies methodology (see Southworth 2012, and references

4 http://vizier.u-strasbg.fr/

therein). The light curves were modelled using the JKTEBOP5 code
(Southworth, Maxted & Smalley 2004), which represents the star
and planet as biaxial spheroids. The main parameters of the model
are the fractional radii of the star and planet, rA and rb, and the
orbital inclination, i. The fractional radii are the true radii of the ob-
jects divided by the orbital semimajor axis. They were parametrized
by their sum and ratio:

rA + rb k = rb

rA
= Rb

RA

as the latter are less strongly correlated than the fractional radii
themselves.

3.1 Orbital period determination

Our first step was to obtain refined orbital ephemerides. Each of
our transit light curves was fitted individually and their error bars
rescaled to give χ2

ν = 1.0 versus the fitted model. This is needed
as the uncertainties from the APER photometry algorithm tend to be
underestimated. We then fitted the revised data sets and ran Monte
Carlo simulations to measure the transit mid-points with robust error
bars.

Our own times of transit mid-point were supplemented with those
from the discovery papers (Lister et al. 2009; West et al. 2009). The
reference times of transit (T0) from these papers are given on the
BJD and HJD time conventions, respectively, but the time-scales
these refer to are not specified (see Eastman et al. 2010). D. R.
Anderson (private communication) has confirmed that the time-
scales used in these, and the other early WASP planet discovery
papers, are UTC. We therefore converted the timings to TDB.

We also compiled publicly available measurements from the Ex-
oplanet Transit Database (ETD6), which makes available data sets
from amateur observers affiliated with TRESCA.7 We retained only
those timing measurements based on light curves where all four con-
tact points of the transit are easily identifiable. We assumed that the
times were all on the UTC time-scales and converted them to TDB
for congruency with our own data.

Once the available times of mid-transit had been assembled, we
fitted them with straight lines to determine new orbital ephemerides.
Table 2 reports all times of mid-transit used for both objects, plus
the residuals versus a linear ephemeris. The new ephemeris for
WASP-15 is given as

T0 = BJD(TDB) 2454 584.698 59(29) + 3.752 097 48(81)E,

where E represents the cycle count with respect to the reference
epoch and the bracketed quantities show the uncertainty in the
final digit of the preceding number. The reduced χ2 of the fit to
the timings is encouragingly small at χ 2

ν = 0.78 for 4 degrees of
freedom, which suggests that the orbital period is constant and the
uncertainties of the available times of minimum are reasonable. A
plot of the fit is shown in Fig. 4.

The situation for WASP-16 is less favourable, with χ 2
ν = 2.59

(9 degrees of freedom) and large residuals for several of the most
precise data points (Fig. 5). We have reason to be cautious about our

5 JKTEBOP is written in FORTRAN77 and the source code is available at
http://www.astro.keele.ac.uk/jkt/codes/jktebop.html.
6 The Exoplanet Transit Database (ETD) can be found at
http://var2.astro.cz/ETD/credit.php.
7 The TRansiting ExoplanetS and CAndidates (TRESCA) website can be
found at http://var2.astro.cz/EN/tresca/index.php.
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1304 J. Southworth et al.

Table 2. Times of minimum light of WASP-15 (upper) and WASP-16
(lower) and their residuals versus the ephemerides derived in this work.

Time of minimum Cycle Residual Reference
[BJD(TDB) − 2400000] number (JD)

54 584.698 60 ± 0.000 29 0.0 0.000 01 1
55 320.109 14 ± 0.001 35 196.0 −0.000 55 2
56 036.759 90 ± 0.000 28 387.0 −0.000 42 3 (g)
56 036.760 49 ± 0.000 19 387.0 0.000 17 3 (r)
56 036.760 44 ± 0.000 23 387.0 0.000 12 3 (i)
56 036.760 20 ± 0.000 28 387.0 −0.000 12 3 (z)

54 584.429 15 ± 0.000 29 0.0 0.000 17 4
55 276.759 11 ± 0.000 36 222.0 −0.000 57 5
55 311.068 59 ± 0.001 85 233.0 0.004 24 2
55 314.183 58 ± 0.001 00 234.0 0.000 62 2
55 326.657 93 ± 0.000 19 238.0 0.000 54 3
55 376.554 53 ± 0.000 49 254.0 −0.000 56 3
55 688.416 29 ± 0.001 77 354.0 0.000 52 6
55 694.651 94 ± 0.000 20 356.0 −0.001 04 3
55 744.550 44 ± 0.000 23 372.0 −0.000 25 3
56 037.700 89 ± 0.000 24 466.0 0.001 17 7
56 087.595 54 ± 0.001 02 482.0 −0.001 89 8

References: (1) West et al. (2009); (2) T. G.Tan (ETD); (3) This work; (4)
Lister et al. (2009); (5) E. Fernandez-Lajus, Y. Miguel, A. Fortier & R. Di
Sisto (TRESCA); (6) M. Vrašt́ák (TRESCA); (7) M. Schneiter, C. Colazo
& P. Guzzo (TRESCA); and (8) F. Tifner (TRESCA).

own timings, as the DFOSC time stamps are known to have been
incorrect for the 2009 season (Southworth et al. 2009b). This issue
was minimized for the 2010 season (which contains the first two
transits of WASP-16 we observed) and fixed for the 2011 season
(which contains the third and fourth WASP-16 transits), so the

disagreement between the two 2011 transits cannot currently be
dismissed as an instrumental effect. WASP-16 should be monitored
in the future to investigate the possibility that it undergoes transit
timing variations. In the meantime, the linear ephemeris given by
the timings in Table 2 is

T0 = BJD(TDB) 2454 584.428 98(38) + 3.118 6068(12)E,

where the error bars have been multiplied by
√

2.59 to account for
the large χ 2

ν .

3.2 Light-curve modelling

We modelled each of our light curves of WASP-15 and WASP-16
individually, using JKTEBOP to fit for rA + rb, k, i and T0. The best-
fitting models are shown in Figs 1 and 3. This individual approach
was necessary to allow for differing amounts of limb darkening
(LD) for WASP-15 and for possible timing variations in WASP-16,
and has the advantage of providing an opportunity to assess error
bars by comparing multiple independent sets of results rather than
relying on statistical algorithms. The DFOSC transit for WASP-15
lacks coverage of the egress phases so was modelled with T0 fixed at
the value predicted by the orbital ephemeris, and the second transit
of WASP-16 was ignored due to the systematic errors discussed in
Section 2. The follow-up photometry for WASP-15 presented by
West et al. (2009) was not considered as it contains substantial red
noise. The Euler telescope light curve of WASP-16 (Lister et al.
2009) was added to our analysis as it has full coverage of a transit
event with reasonably high precision.

Light-curve models were obtained using each of five LD laws
(see Southworth 2008), with the linear coefficients either fixed at

Figure 4. Plot of the residuals of the timings of mid-transit of WASP-15 versus a linear ephemeris. Timings obtained from amateur observations are plotted
using open circles, and other timings are plotted with filled circles. The dotted lines show the total 1σ uncertainty in the ephemeris as a function of cycle
number.

Figure 5. Plot of the residuals of the timings of mid-transit of WASP-16 versus a linear ephemeris. Other comments are the same as for Fig. 4.
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Table 3. Parameters of the fit to the light curves of WASP-15 from the JKTEBOP analysis (top). The final parameters are given in bold and the
parameters found by other studies are shown (below). Quantities without quoted uncertainties were not given by those authors but have been
calculated from other parameters which were.

Source rA + rb k i (◦) rA rb

GROND g 0.1538 ± 0.0121 0.0967 ± 0.0031 85.56 ± 1.21 0.1403 ± 0.0106 0.01356 ± 0.00137
GROND r 0.1466 ± 0.0065 0.0936 ± 0.0014 86.13 ± 0.72 0.1341 ± 0.0058 0.01255 ± 0.00070
GROND i 0.1505 ± 0.0063 0.0956 ± 0.0013 85.68 ± 0.63 0.1374 ± 0.0057 0.01313 ± 0.00069
GROND z 0.1519 ± 0.0084 0.0959 ± 0.0014 85.51 ± 0.84 0.1386 ± 0.0076 0.01329 ± 0.00080
DFOSC R 0.1545 ± 0.0086 0.0933 ± 0.0023 85.27 ± 0.87 0.1413 ± 0.0078 0.01318 ± 0.00093

Final results 0.1500 ± 0.0037 0.09508 ± 0.00078 85.74 ± 0.38 0.1370 ± 0.0033 0.01303 ± 0.00039

West et al. (2009) 0.1436 0.099 ± 0.001 0.1331 0.01318
Triaud et al. (2010) 0.1474 0.09842+0.00067

−0.00058 85.96+0.29
−0.41 0.1342+0.0039

−00027 0.01321+0.00047
−0.00030

Table 4. Parameters of the fit to the light curves of WASP-16 from the JKTEBOP analysis (top). The final parameters are given in bold and the
parameters found by Lister et al. (2009) are shown below. Quantities without quoted uncertainties were not given by Lister et al. (2009) but
have been calculated from other parameters which were.

Source rA + rb k i (◦) rA rb

DFOSC transit 1 0.1365 ± 0.0052 0.1118 ± 0.0060 83.84 ± 0.39 0.1228 ± 0.0053 0.01364 ± 0.00043
DFOSC transit 3 0.1354 ± 0.0073 0.1198 ± 0.0032 84.14 ± 0.59 0.1209 ± 0.0063 0.01448 ± 0.00090
DFOSC transit 4 0.1362 ± 0.0050 0.1204 ± 0.0035 84.09 ± 0.44 0.1216 ± 0.0046 0.01464 ± 0.00063
Euler transit 0.1219 ± 0.0071 0.1074 ± 0.0038 84.75 ± 0.55 0.1101 ± 0.0067 0.01182 ± 0.00059

Final results 0.1362 ± 0.0031 0.1190 ± 0.0022 83.99 ± 0.26 0.1218 ± 0.0030 0.01402 ± 0.00033

Lister et al. (2009) 0.1167 0.1095+0.0023
−0.0018 85.22+0.27

−0.43 0.1065 0.01012

theoretically predicted values8 or included as fitted parameters. We
made no attempt to fit for both coefficients in the four bi-parametric
laws as they are very strongly correlated (Carter et al. 2008; South-
worth 2008). The non-linear coefficients were instead perturbed
by ±0.1 on a flat distribution when running the error analysis algo-
rithms, in order to account for their intrinsic uncertainty.

A circular orbit was adopted for both systems as the radial veloc-
ities indicate circularity with limits in eccentricity of e < 0.087 for
WASP-15 (Triaud et al. 2010) and e < 0.052 for WASP-16 (Pont
et al. 2011). The coefficients of a polynomial function of the out-of-
transit magnitude were included when modelling the GROND data,
to account for the fact that such a function was used to normalize
the data when constructing the differential magnitudes. We checked
for correlations between the coefficients of the polynomial and the
other parameters of the fit, finding a significant correlation only be-
tween k and the quadratic coefficient. The correlation coefficients
in this case are in the region of 0.4 for the g band, 0.5 for the r band
and 0.65 for the i and z bands, depending on the specifics of how LD
was treated. The uncertainties in the resulting parameters induced
by this correlation are accounted for in our methods for estimating
the parameter uncertainties.

Error bars for the fitted parameters were obtained in two ways:
from 1000 Monte Carlo simulations for each solution and via a
residual-permutation algorithm (Southworth 2008). The final pa-
rameter values are the unweighted mean of those from the solutions
involving the four two-parameter LD laws. Their error bars are the
larger of the Monte Carlo or residual-permutation alternatives, with
an extra contribution to account for variations between solutions

8 Theoretical LD coefficients were obtained by bilinear interpolation
to the host star’s Teff and log g using the JKTLD code available from
http://www.astro.keele.ac.uk/jkt/codes/jktld.html.

with the different LD laws. Tables of individual results for each
light curve can be found in the Supplementary Information.

For WASP-15, we found that the residual-permutation method re-
turned moderately larger uncertainties for the g and z light curves,
as expected from Fig. 1. We were able to adopt solutions with the
linear LD coefficient fitted for the GROND data, but had to use
solutions with fixed LD coefficients for the DFOSC observations as
they only cover half a transit. The sets of photometric parameters
agree extremely well (Table 3) and were combined into a weighted
mean after downweighting the DFOSC transit by doubling the pa-
rameter error bars. Published results are in acceptable agreement
with these weighted mean values.

For WASP-16 the results for the three DFOSC transits agree
very well with each other but not with those for the Euler data set
(Table 4), which is unsurprising given the best fits plotted in Fig. 3.
We therefore combined only the results from the DFOSC transits
into a weighted mean to obtain our final photometric parameters.
The error bars quoted by Lister et al. (2009) appear to be rather
small given the available data and the discrepancy with our follow-
up observations.

4 PHYSI CAL PROPERTI ES

The physical properties of the two systems can be determined from
the photometric parameters measured from the light curves, the
spectroscopic properties of the host star (velocity amplitude KA, ef-
fective temperature Teff and metallicity

[
Fe
H

]
) and constraints from

theoretical stellar evolutionary models. We used the approach pre-
sented by Southworth (2009), which begins with an estimate of the
velocity amplitude of the planet, Kb. A set of physical properties
can then be calculated from KA, Kb, rA, rb, i and orbital period
using standard formulae. The expected radius and Teff of a star of
this mass and

[
Fe
H

]
can then be obtained by interpolating within the
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Table 5. Spectroscopic properties of the host stars in WASP-15 and
WASP-16 adopted from the literature and used in the determination
of the physical properties of the systems.

Source WASP-15 Ref. WASP-16 Ref.

Teff (K) 6405 ± 80 1 5630 ± 70 1[ Fe
H

]
(dex) 0.00 ± 0.10 1 0.07 ± 0.10 1

KA ( m s−1) 64.6 ± 1.2 2 116.7 ± 2.2 3

References: (1) Doyle et al. (2013); (2) Triaud et al. (2010); and (3)
Lister et al. (2009).

predictions of theoretical stellar models. The value of Kb is then
iteratively refined to maximize the match between the observed and
predicted Teff, and the measured rA and predicted RA

a
. This proce-

dure is performed over a sequence of ages for the star, beginning at
the zero-age main sequence and terminating once it becomes sig-
nificantly evolved, in order to find the best overall fit and the age of
the system.

We determined the physical properties of WASP-15 and WASP-
16 using this approach, as implemented in the ABSDIM code (South-
worth 2009), and the spectroscopic properties of the stars as sum-
marized in Table 5. We have adopted the atmospheric parame-
ters (Teff and

[
Fe
H

]
) from Doyle et al. (2013), as this represents a

thorough analysis of observational material of greater quality than
for alternative measurements (see Section 1). The statistical errors
were propagated through the analysis using a perturbation algorithm
(Southworth, Maxted & Smalley 2005), which has the advantage of
yielding a complete error budget for every output parameter.

Systematic errors are also incurred through the use of stellar
theory to constrain the properties of the host stars; these were as-
sessed by running separate solutions for each of five different sets
of stellar model predictions (Claret 2004; Demarque et al. 2004;
Pietrinferni et al. 2004; VandenBerg, Bergbusch & Dowler 2006;
Dotter et al. 2008) as implemented by Southworth (2010). Finally, a
model-independent set of results was generated using an empirical
calibration of stellar properties found from well-studied eclipsing
binary star systems. The empirical calibration follows the approach
introduced by Enoch et al. (2010) but with the improved calibration
coefficients derived by Southworth (2011). The individual solutions
can be found in Tables A10 and A11 in the Supplementary Infor-
mation. We used the set of physical constants given by Southworth
(2011, their table 3).

Tables 6 and 7 contain our final physical properties for the WASP-
15 and WASP-16 systems, plus published measurements for com-
parison. The mass, radius, surface gravity and density of the star
are denoted by MA, RA, log gA and ρA, and of the planet by Mb, Rb,
gb and ρb. T ′

eq is the equilibrium temperature of the planet (neglect-
ing albedo and heat redistribution) and � is the Safronov (1972)
number. All quantities with a dependence on stellar theory have
separate statistical and systematic error bars quoted. The statistical
error bar for a quantity is the largest of the five error bars found
in the solutions using different theoretical model predictions. The
systematic error bar denotes the largest deviation between the final
value of the quantity and the individual values from using the five
different sets of models.

The higher Teff adopted for WASP-15 A in the current work
caused us to find the star to be more massive and less evolved than
previously thought. Our results are in good agreement with previous
determinations but are significantly more precise due to the new
photometry presented in this paper. Our results for WASP-16 go
in the reverse direction: we find a less massive and slightly more
evolved star (with a log g closer to the spectroscopic determination
by Doyle et al. 2013). The planet WASP-16 b is 0.21 RJup (2.5σ )
larger than previously thought, leading to a lower surface gravity
and density by 2σ . We find an old age of 8.6+3.4

−2.9 Gyr for WASP-16,
in agreement with the absence of emission in the calcium H and K
lines (B. Smalley, private communication). The measurements for
the planetary masses and radii are contrasted in Fig. 6.

5 SU M M A RY

WASP-15 and WASP-16 are two TEPs whose discovery was an-
nounced by the SuperWASP Consortium in 2009. Since then both
have been the subject of follow-up spectroscopic analyses to mea-
sure their Rossiter–McLaughlin effects and host star temperatures,
but neither have benefited from additional transit photometry to re-
fine measurements of their orbital ephemerides and physical proper-
ties. We have rectified this situation by obtaining new light curves of
two transits for WASP-15, of which one was covered in four optical
passbands simultaneously, and of four transits for WASP-16.

We modelled these photometric data using the JKTEBOP code with
careful attention paid to LD and error analysis, and augmented
them with published spectroscopic parameters in order to find the
physical properties of the components of both systems. Our ap-
proach followed that of the Homogeneous Studies project by the first

Table 6. Derived physical properties of the WASP-15 system and a comparison to previous measurements. Separate
statistical and systematic error bars are given for the results from the current work.

This work West et al. (2009) Triaud et al. (2010) Doyle et al. (2013)

MA ( M�) 1.305 ± 0.051 ± 0.006 1.18 ± 0.12 1.18+0.14
−0.12 1.23 ± 0.09

RA ( R�) 1.522 ± 0.044 ± 0.002 1.477 ± 0.072 1.440+0.064
−0.057 1.15 ± 0.16

log gA (CGS) 4.189 ± 0.021 ± 0.001 4.169 ± 0.033
ρA ( ρ�) 0.370 ± 0.027 0.365 ± 0.037 0.394+0.024

−0.032

Mb ( MJup) 0.592 ± 0.019 ± 0.002 0.542 ± 0.050 0.551+0.041
−0.038

Rb ( RJup) 1.408 ± 0.046 ± 0.002 1.428 ± 0.077 1.379+0.067
−0.058

gb ( m s−2) 7.39 ± 0.46 6.08 ± 0.62
ρb ( ρJup) 0.198 ± 0.018 ± 0.000 0.186 ± 0.026
T ′

eq (K) 1676 ± 29 1652 ± 28
� 0.0332 ± 0.0013 ± 0.0001
a (au) 0.05165 ± 0.00067 ± 0.00008 0.0499 ± 0.0018 0.0499+0.0019

−0.0017

Age (Gyr) 2.4 +0.6
−0.6

+0.2
−0.4 3.9+2.8

−1.3
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Table 7. Derived physical properties of the WASP-16 system and a comparison to previous measurements.
Separate statistical and systematic error bars are given for the results from the current work.

This work Lister et al. (2009) Doyle et al. (2013)

MA ( M�) 0.980 ± 0.049 ± 0.023 1.022+0.074
−0.129 1.09 ± 0.09

RA ( R�) 1.087 ± 0.041 ± 0.008 0.946+0.057
−0.052 1.34 ± 0.20

log gA (CGS) 4.357 ± 0.022 ± 0.003 4.495+0.030
−0.054

ρA ( ρ�) 0.762 ± 0.056 1.21+0.13
−0.18

Mb ( MJup) 0.832 ± 0.036 ± 0.013 ± 0.855+0.043
−0.076

Rb ( RJup) 1.218 ± 0.039 ± 0.009 1.008+0.083
−0.060

gb ( m s−2) 13.92 ± 0.71 19.2+1.9
−2.6

ρb ( ρJup) 0.431 ± 0.033 ± 0.003 0.83+0.13
−0.17

T ′
eq (K) 1389 ± 24 1280+35

−21

� 0.0579 ± 0.0021 ± 0.0004 0.070 ± 0.010

a (au) 0.04150 ± 0.00070 ± 0.00032 0.0421+0.0010
−0.0018

Age (Gyr) 8.6 +3.3
−2.7

+0.6
−0.9 2.3+5.8

−2.2

Figure 6. Plot of planet radii versus their masses. The overall population
of planets is shown using blue crosses, using data taken from TEPCat on
2013 February 11. WASP-15 b and WASP-16 b are indicated using black
lines with open circles for the values from their respective discovery papers
and filled circles for the new results from the current work. The outlier
with a mass of 0.86 MJup but with a radius of only 0.78 RJup is the recently
discovered system WASP-59 (Hébrard et al. 2013).

author, and WASP-15 and WASP-16 have been added to the Tran-
siting Extrasolar Planet Catalogue.9

We confirm that WASP-15 is a highly inflated planet with a large
atmospheric scale height which, when combined with the brightness
of its host star (V = 10.92), makes it a good candidate for studying
the atmospheres of extrasolar planets. Our simultaneous observa-
tions in four optical passbands are in principle good for probing
this, so we attempted to do so using the methods of Southworth
et al. (2012a). In practice, we found that our data are not extensive
enough to allow inferences to be drawn. This is in line with previous

9 The Transiting Extrasolar Planet Catalogue (TEPCat) is available at
http://www.astro.keele.ac.uk/jkt/tepcat/.

experience (Mancini et al. 2013a,b; Nikolov et al. 2013) and could
be rectified by obtaining new observations with GROND.

We find a significantly larger radius for WASP-16 b, moving it
from the edge of the mass–radius distribution to an area of parameter
space more typical for transiting hot Jupiters. This underlines the
point that multiple high-quality transit light curves are needed for
the physical properties of a TEP to be reliably constrained. The
detailed error budgets we have calculated show a typical situation:
an improved understanding of both WASP-15 and WASP-16 would
require additional transit light curves, radial-velocity observations
and more precise

[
Fe
H

]
determinations.
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