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1.0 Abstract 

 

The European eel, Anguilla anguilla, has a complex life-cycle involving 

migrations between the Sargasso Sea and the river systems of Europe and 

North Africa.  The requirement to move across large salinity gradients 

presents a significant physiological challenge and the developmental stages 

of the eel are closely linked to these migrations.  Microarrays were created to 

elucidate gene expression changes occurring during; 

i. The transition from juvenile yellow to the adult sexually 
maturing, migrating silver eel and; 

ii. Salinity adaptation during the migration from freshwater to 
seawater. 

Groups (n = 6) of freshwater-acclimated yellow or silver eels were 

transferred to seawater for between 6 hours and 5 months and 

complementary control groups were transferred to freshwater.  Brain, kidney, 

intestine and gill cDNA libraries were constructed using suppression 

subtractive hybridisation (SSH) techniques and a novel protocol based on 

Invitrogen's Gateway cloning system.  The latter technique produced a low 

redundancy (~4 %) EST bank with a wide range of insert sizes  (0.5 – 10 kb). 

Two microarray types were produced; one comprised 5760 clones from the 

two brain libraries whilst the other was a multi-tissue microarray incorporating 

6144 clones from the SSH libraries.  Pooled RNA samples were probed 

against the microarrays to highlight differentially expressed genes.  Real-time 

quantitative PCR (QPCR) was used to validate the observed expression 

changes of selected genes in the tissues of individual fish.  Following yellow 

to silver transformation of freshwater-adapted eels, the expression of tyrosine 

3-mono-oxygenase/tryptophan 5-mono-oxygenase activation protein (14-3-3) 

and vaccinia related kinase 3 was shown to be consistently elevated.  

Prolactin expression increased in the brains of silver eels following two-day 

seawater-acclimation but QPCR analysis revealed high variation amongst 

freshwater-adapted eels.  This is the first eel microarray study and the 

expression profiles highlighted herein will provide new avenues for research 

into the sexual development and salinity acclimation of A. anguilla 
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1.1 Table of abbreviations 

 

14-3-3 Tyrosine 3-mono-oxygenase/tryptophan 5-mono-oxygenase activation protein 

BCP  1bromo-2chloropropane 
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AANAT Arylalkylamine N-acetyltransferase 

AQP Aquaporin  

Blast Basic local alignment search tool  
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CFTR Cystic fibrosis transmembrane conductance regulator  
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Ct Treshold cycle 
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MIAME Minimum information about a microarray experiments  

MOPS 3-(N-Morpholino)-propanesulfonic acid  

MRNA Messenger RNA  
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NABs NeutrAvidin™ biotin-binding protein agarose beads 
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REST Relative Expression Software Tool  
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RT Reverse transcriptase 
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SDS Sodium dodecyl sulfate 
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SSH Suppression subtractive hybridisation  
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TIFF Tag image file format 
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2.0 Introduction 

 

‘‘Eels are derived from the so-called 'earth's guts' that grow 

spontaneously in mud and in humid ground; in fact, eels have at times been 

seen to emerge out of such earthworms, and on other occasions have been 

rendered visible when the earthworms were laid open by either scraping or 

cutting” (Aristotle, 350 B.C.).  The reproductive habits of the eel have 

perplexed researchers since ancient times and still to this day eel spawning in 

the wild has yet to be observed. 

  

The European eel (Anguilla anguilla) is a euryhaline, facultative 

catadromous teleost (Tsukamoto and Arai, 2001; Tsukamoto, 1998), which 

spends the majority of its adult life in fresh or brackish water (Tzeng, 2000).  It 

returns to the sea in order to spawn (Moriarty, 1978) and once hatched, the 

eel larvae drift back to European coastal waters whereupon the young eels 

migrate into river systems and develop into adults.  This life-cycle 

necessitates the ability to adapt physiologically to fresh, brackish and marine 

environments at distinct life stages.  As an osmoregulator, A. anguilla 

maintains a relatively stable blood plasma osmolality whether in brackish 

water, freshwater or seawater.  Each aquatic habitat poses a different 

osmoregulatory challenge to the eel due to the markedly different salinities of 

the water; subsequently, different strategies have evolved to maintain osmotic 

homeostasis.  The transitions between environments of different salinities are 

associated with the developmental and morphological stages of the eel.  The 

elopomorphs, which encompass A. anguilla, are some of the most ancient 

teleosts, having diverged ~350 million years ago (Lauder and Liem, 1983).  As 

such, they may exhibit conserved characteristics which are less evolutionarily 

derived than other teleosts (Weltzien et al., 2006).  The eel therefore provides 

an excellent study organism to examine both development and 

osmoregulation. 

 

In addition to their scientific interest, eels are increasingly under threat 

as a species due to massive reductions in their populations over the last half-
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century (Stone, 2003).  The decline in eel numbers has been estimated at 

99% since 1980 (Dekker, 2003) and in 2005 the Swedish Species Information 

Centre was the first organisation to classify the eel as critically endangered.   

 

Eels are also of worldwide economic interest, with the global market 

approaching an estimated £1.5 billion (Heinsbroek, 1991).  Global aquaculture 

production of eels increased exponentially in the latter half of the 20th century 

but now appears to have reached a plateau (Figure 2.0.a).  Due to the 

complexity of the eel life-cycle, captive breeding of the eel has remained 

elusive.  Fertilised eggs from the Japanese eel, A. japonica, were obtained 

following hormone treatments as far back as 1974 (Yamamoto and Yamauchi, 

1974) but similar experiments with A. anguilla have had limited success 

(Palstra et al., 2005).  In 2005, the one remaining segment of the Japanese 

eel life-cycle in captivity was achieved; development of glass eels from larvae 

(Kagawa et al., 2005), however, this has still to be replicated in the European 

eel.  Eel aquaculture, without a viable alternative, has therefore always relied 

solely on wild caught, post-larval eels as seed stock.  Since 1950, however, 

eel capture rates have plummeted which is reflected in the worldwide crash in 

eel populations (Figure 2.0.b), leading to unsustainable aquaculture practices 

(EU-Communication:IP/03/1332, 2005).  The exact reasons for the population 

decline are not understood but it has been associated with over fishing 

(Castonguay et al., 1994; Dekker, 2003), impaired reproduction due to dioxin 

contamination (Castonguay et al., 1994; Palstra et al., 2006), viral disease 

(van Ginneken et al., 2004) and diminished fat stores due to insufficient food 

stores in inland waters (Svedäng  and Wickstrom, 1997).  The current eel 

crisis has had direct implications for the direction of current eel research, with 

calls for specific research into the reproduction and development coming from 

the European Parliament (Dossier reference: INI/2005/2032, 2005,).  The 

present study will add to the body of knowledge regarding the sexual 

development and physiology of the eel. 
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Figure 2.0.a.  Global aquaculture production of A. anguilla over the last 
60 years. Source: Food and Agriculture Organisation of the United 
Nations. 
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Figure 2.0.b.  Global wild A. anguilla capture over the last 60 years.  
Source: Food and Agriculture Organisation of the United Nations. 
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2.1 The eel life-cycle 

 

From egg to elver:  Spawning of A. anguilla is believed to occur 

between November and July (Wang and Tzeng, 2000) in the Sargasso Sea, 

which is a floating lens of warm water in the south east Atlantic (Schmidt, 

1922).  The location of European eel spawning has never been observed first 

hand but it is implied from the results of a study carried out by Johannes 

Schmidt using tow nets to study the spatial distribution of eels of varying sizes 

in the Atlantic (Schmidt, 1922).  He showed that there is an increase in eel 

length which directly correlates to increasing distance from the Sargasso Sea 

(Figure 2.1.a). 

 

 

 
 
Figure 2.1.a.  Distribution of eel larvae.  Length increases from ~10 mm 
in the vicinity of The Sargasso Sea, (20-35 N Latitude and 30-70 W 
Longitude) to >45 mm in European waters.  Reproduced from Schmidt, 
1922. 
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When eel larvae hatch they are known as leptocephali, the name being 

derived from the Greek; lepto- (thin) and -kephalos (headed).  They have a 

transparent, leaf-like body shape which is suitable for drifting in ocean 

currents (Figure 2.1.a).  The Gulf Stream and North Atlantic Current carry 

them towards North African and European estuaries.  Estimates of the time 

taken for migration to European coastal waters vary from an average of 350 

days (Wang and Tzeng, 2000) up to 2-7 years (Van Utrecht, 1985).  The large 

variation in estimates owes, impart, to the difficulty in determinig the age of 

eels (Deelder, 1981), debate as to whether the leptocephali actively swim 

towards their destination (Lecomte-Finiger, 1992; Wang and Tzeng, 2000) 

and to the inherent variability in the accuracy of otolith analysis between 

researchers (Svedäng 1998).   

 

 

 

Figure 2.1.b.  Growth of captive-bred A. japonica larvae.  Scale bar = 10 
mm, dah = days after hatching.  Reproduced from Tanaka (2003). 
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Upon reaching the continental shelf the leptocephali undergo a 

metamorphosis into glass eels.  During this development the eels become 

more cylindrical in shape and both buoyancy and drifting ability diminish.  

Subsequently they swim proactively to estuaries where they become 

pigmented elvers.  This journey from the continental shelf to the estuaries 

takes an average of 98 days (Wang and Tzeng, 2000).  The majority of elvers 

migrate up into river systems where they become fresh water-adapted yellow 

eels (Moriarty, 1978).  Some eels, however, remain in marine environments 

for the entirety of their life-cycle or move down rivers as immature adult yellow 

eels to inhabit the brackish waters of estuaries (Tsukamoto and Arai, 2001). 

 

Yellow eels are sexually immature and may reside in rivers for up to 50 

years (Poole and Reynolds, 1998) with the average age at maturity being 12-

20 years in northern Europe but only 6-8 in southern Europe and North Africa 

(Tesch and Greenwood, 1977).  Some eels remain in marine or brackish 

water around estuaries throughout their lives, as shown by Tsukamoto (2001).  

He examined the strontium:calcium ratio in the layers of otoliths (the calcium 

carbonate deposits found in the inner ear of all fish, which can be used to 

show temporal use of freshwater or seawater habitats) and concluded that 

some eels never enter freshwater.   

 

The development from yellow to the final silver life stage (silvering) 

occurs prior to migration but the cue for its onset is not well characterised.  It 

is not directly linked to age or size (Svedäng 1996; Vøllestad, 1992) but it has 

been postulated to be associated with the accumulation of mesenteric fat 

(Larsson, 1990).  This corresponds with the link shown between mesenteric 

fat levels and hormone regulation during the sexual maturation of Atlantic 

salmon (Rowe, 1991).  Energy reserves are required for the return migration 

(~6000 km) to the Sargasso Sea, as it is reported that eels do not eat during 

their trans-oceanic crossing (Tucker, 1959). 

 

Traditionally, eels undergoing sexually development have been 

classified into two groups; yellow and silver (Feunteun et al., 2000).  Recently, 

however, this has been disputed as being an inadequate description and the 
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silvering process is currently being redefined by various authors although 

agreed nomenclature is still to agreed. 

 

During silvering the eel pre-acclimates physiologically to seawater in 

preparation for the migration to the spawning grounds of the Sargasso Sea 

(Cutler and Cramb, 2001; Kirsch et al., 1975; Tesch and Greenwood, 1977).  

As eels reach maturity the undersides of the skin turn silver or bronze due to 

differentiation of pigment cells (Pankhurst, 1982).  There is some proliferation 

of the gonads (Pankhurst, 1982), their eyes become bigger and the head 

takes on a more hydrodynamic form.  A very recent study, profiling the level of 

circulating developmental hormones of silvering eels, has indicated that this 

process is associated with hormonal surges of testosterone and estradiol, 

whilst growth hormone and thyroid hormone do not appear to change 

between the two stages (van Ginneken, 2006). 

 

It is postulated that in the late summer and autumn following silvering 

there is an environmental trigger which induces the migration back to the 

spawning grounds (Vøllestad et al., 1986).  This process is not fully 

understood but has been attributed to many environmental cues in eel 

species including temperature (Boubée et al., 2000), atmospheric depressions 

(Okamura, 2002), lunar phase and river water levels (Cullen and McCarthy, 

2003).  Most likely there is a combination of factors involved which trigger 

downstream migration.  The timing of migration appears to be sex dependent, 

with males departing up to two months prior to females (Tesch, 2003).  This 

segregation between the sexes is thought to be based on body size, which is 

directly proportional to swim speed (Usui, 1991).  Males start to mature at ~40 

cm whilst the females grow to >60 cm before silvering (Svedäng 1996).  

Based on the average open ocean swim speed of 0.48 body lengths/s for 

migrating Anguilla japonica (Aoyama et al., 1999), a male eel 50 cm long 

would take ~289 day to make the 6000 km migration whilst a female eel, 80 

cm long would take ~181 days (author’s calculation).  The eel is thought to 

migrate to the Sargasso Sea at great depth, having been photographed at 

2000 m (Robins et al., 1979) and as the current of the Gulf Stream is 

negligible at this depth (Halkin and Rossby, 1985) these calculations should 
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be reasonably accurate, providing the eels take a direct route.  The temporal 

coincidence of male and female sexually mature eels at the Sargasso Sea is 

implicit from the sex-dependent timing of migration and the difference in 

swimming speeds.  Interestingly, the very action of performing this migration, 

and the change in body composition it causes, has been suggested as the 

trigger for the final sexual development of the eel (van Ginneken, 2006). 

 

There has never been a study of the naturally occurring endogenous 

hormonal changes during the final sexual maturation because captive silver 

eels do not finally mature and there are only two published reports of 

migrating silver eels being caught at sea (Bast and Klinkhardt, 1988; Ernst, 

1977).  In teleosts, sexual development is under the control of the brain-

hypophyseal-gonadal endocrine axis (Yaron and Sivan, 2006).  Induced 

“natural” maturation by the administration of sexual steroids has been shown 

to promote luteinising hormone (LH) synthesis in the pituitary but this was not 

associated with a subsequent systemic release of LH and thus sexual 

maturation did not occur (Dufour et al., 1983).  Treatment of silver eels with 

exogenous gonadotrophin has, however, been used to induce gonadal 

development (Fontaine, 1936) which indicates that there is inhibition of 

gonadotropin release or actions in captive silver eels.  It has recently been 

suggested that dopamine prevents final sexual maturation of the eel by 

inhibiting release of LH (Vidal et al., 2004).  This model involves a decrease in 

dopamine inhibition of gonadotrophin releasing hormone expression, which in 

turn stimulates LH synthesis and secretion to bring about ovarian 

development.  How the external environment triggers these processes is not 

understood. 
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2.2 Introduction to osmoregulation 

 

In freshwater, the epithelia of the eel are constantly challenged by the 

osmotic gradient created between the external medium (high osmotic 

potential/ low osmolality) and the internal plasma (low osmotic potential/ high 

osmolality).  The physiological challenge is reversed in seawater as the 

external salinity induces water loss across epithelial surfaces as well as ion 

gain.  To combat oedematous or dehydrating conditions, and maintain 

osmotic homeostasis, eels possess an arsenal of ion and water transport 

pathways.  These are used in concert across the three main osmoregulatory 

tissues; kidney, intestine and gill, with the latter being responsible for the 

majority of ion movements to balance diffusional gains or losses (Evans, 

1999; Petr, 1968). 

 

The salt and water transporting systems are highly labile and rapidly 

upregulate or downregulate when the animal changes environmental salinity.  

In addition to regulation of expression, the distribution of ion transporters in 

key regulatory tissues can also be salinity dependent.  The cystic fibrosis 

transmembrane conductance regulator, for example, will redistribute from the 

apical surface to the basolateral surface of epithelial tissues in the gill, kidney 

and gut when the eel adapts to freshwater from seawater (Marshall and 

Singer, 2002). 

 

In freshwater, volaemic homoestasis is achieved principally by the 

excretion of large volumes of urine (Gaitskell and Jones, 1971).  Even though 

the urine is very dilute, salts are lost in this process and the eel must actively 

absorb ions via branchial epithelial mitochondria-rich cells in the gill (Ando, 

1981; Baldisserotto and Mimura, 1994) which supplements those obtained 

from ingested food and water.  In the marine environment, the eel maintains a 

relatively stable blood plasma osmolality level by increasing drinking, 

secreting excess ions via epithelial surfaces in the gill and excreting low 

volumes of urine which is approximately isosmotic to the plasma (Beyenbach, 

1995; Cutler and Cramb, 2001). 
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2.3 Osmoregulatory adaptations: Gill 

 

The primary role of the gills in fish is one of gas exchange, for which 

there is a large epithelial surface area arranged over a complex series of 

branchial arches subdivided into multiple filaments which are then partitioned 

further into lamellae.  With such a large surface area specifically adapted for 

rapid diffusion of gases, the gills are susceptible to water uptake and ion loss 

in freshwater whilst the converse is true in seawater.  The eel gill physiology 

adapts physiologically, however, in order to absorb or secrete ions in 

freshwater and saltwater respectively.  Differences in both osmotic membrane 

permeability and blood perfusion of the gill epithelia are also exhibited 

between the two environmental salinities. 

 

The epithelia of the gill are made of three main cell types; pavement 

cells, which make up approximately 90% of the gill surface area; 

mitochondria-rich cells (also know as chloride cells) and accessory cells.  The 

pavement cells are joined to each other and to mitochondria-rich cells by 

deep-tight junctions consisting of several multi-strand protein connections 

(e.g. claudins, occludins and junctional adhesion molecules), whilst links with 

accessory cells consist of fewer strands and are therefore deemed thin-tight 

junctions (Karnarky, 1992).  The mitochondria-rich cells mediate the net loss 

or gain of ions via a suite of membrane ion transport mechanisms (Evans et 

al., 1999) but pavement cells have also been indicated to play a role in Cl- 

uptake (Wood et al., 1998).   

 

Trans-epithelial ion transport, cell volume and integrity are maintained 

by the chloride-cation-cotransporter family which is important during salinity 

adaptation (Cutler and Cramb, 2002b; Haas and Forbush III, 2000).  This 

family includes NKCC1 which is found primarily on the basolateral 

membranes of secretory epithelia.  Their role is to transport Na+, K+ and Cl- 

ions across this membrane in an electrically neutral way with two Cl- ions 

being transported with one ion each of Na+ and K+ (Russell, 2000). 
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Freshwater adapted gill: During freshwater acclimation of the eel 

there is a net influx of chloride ions from the external medium across the gill 

epithelium.  The dilute nature of freshwater and the inherent electrochemical 

gradients necessitate an active transport mechanism to facilitate Na+ and Cl- 

uptake.  The basolateral membrane of the gill mitochondria-rich cell has 

extensive infoldings which produce a high surface area and extensive tubular 

system.  Associated with this membrane are high numbers of mitochondria 

and the transport enzyme Na+/K+-ATPase (Karnaky et al., 1976), which uses 

ATP to drive 3Na+ from the mitochondria-rich cell into the extracellular 

compartment in exchange for 2K+.  This process in addition to the action of K+ 

channels sets up an electrochemical gradient from the extracellular fluid to the 

cytosol of the mitochondria-rich cell.  When acclimated to seawater, Na+ 

coupled to K+ and Cl- travel down the electrochemical gradient into the cell via 

a common basolateral transport protein, the NKCC1 isoform of the Na+/K+/Cl- 

cotransporter family (Degnan, 1985; Evans et al., 1999).  Chloride ions then 

cross the apical membrane via anion channels such as the cystic fibrosis 

transmembrane conductance regulator (CFTR), whilst Na+ exits via 

paracellular pathways through the thin-tight junctions between chloride and 

accessory cells. 

 

Chloride uptake in freshwater acclimated yellow eels is thought to 

occur via Cl-/HCO3- exchange, which also plays a role in acid-base regulation 

(Cutler and Cramb, 2001). This view is supported by the circumstantial 

evidence that acetazolamide and thiocyanate, Cl-/HCO3- exchange inhibitors 

(Nguyen et al., 2004), cause a lowering of the Cl- concentration in cultured 

Salmo trutta mitochondria-rich cells, as measured by X-ray microanalysis of 

frozen tissues (Morgan, 1994).  The Cl-/HCO3- exchanger has been localised 

to mitochondria-rich cells in gill epithelia of teleosts by localisation of the 

mRNA in the rainbow trout (Oncorhynchus mykiss) (Sullivan, 1996) and of the 

protein in freshwater tilapia (Oreochromis mossambicus) and mudskipper 

(Periophthalmodon schlosseri) (Wilson, 2000b).  The precise involvement of 

pavement cells in this process remains unresolved; in vitro experiments 

assessing flux ratios of Na+ and Cl- across a cultured branchial epithelium 

from rainbow trout, thought to consist of pavement cells alone, showed active 
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chloride uptake at the apical surface and associated passive Na+ transport 

(Wood et al., 1998).  In separate experiments, however, acetazolamide and 

thiocyanate had no effect on intracellular Cl- concentrations of brown trout 

(Salmo trutta) pavement cells (Morgan and Potts, 1995; Morgan, 1994).  

 

Greg Goss and co workers illustrated that, in freshwater, the gill 

epithelium of rainbow trout (at least) exhibit two functioning sub-populations of 

mitochondria-rich cells (Goss, 2001).  The morphologically identical 

subgroups were distinguished by their ability to bind peanut lectin agglutinin.  

The main function of mitochondria-rich cells that do not bind peanut lectin 

agglutinin (PNA- cells) appears to be sodium uptake and acid secretion 

(Figure 2.3.1.a).  They exhibit higher levels of H+-ATPase activity and acid 

stimulated Na+ uptake, the latter being sensitive to both phenamil and 

bafilomycin.  H+-ATPase is a H+ pump which actively secretes protons to the 

external medium.  This creates an electrochemical gradient with a net positive 

charge outside the cell and a negative charge within the cell.  Conversely, the 

peanut lectin agglutinin binding (PNA+) mitochondria-rich cells have a chloride 

uptake and base secretion function.  These cells have high levels of Na+,K+-

ATPase, half the level of H+-ATPase and lack phenamil sensitive Na+ 

transport (Figure 2.3.a). 
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Figure 2.3.a.  Freshwater adapted gill epithelial model.  The 
morphologically identical mitochondria-rich cell subgroups, identified 
by their ability to bind peanut lectin, have distinct functions. PNA- 
mitochondria-rich cells have a chloride uptake/base secretion function 
which is driven by apical H+-ATPase activity.  PNA+ mitochondria-rich 
cells, however, have a sodium uptake/ acid secretion function driven by 
a basolateral proton pump.  PNA: peanut agglutinin, MRC: mitochondria 
rich cell, TJ: tight junction, PC: pavement cell, C.A.: carbonic anhydrase. 

 

 

Water transport across the gill epithelium occurs via simple diffusion 

through both the trans-cellular membranes and paracellular pathways.  If 

these were the only pathways for water transport in eels then the epithelia of 

both freshwater and seawater acclimated fish would have a similar 

permeability to water but this is not the case.  The branchial epithelial water 

permeability is ~6 fold higher in freshwater adapted eels compared to their 

seawater adapted counterparts (Isaia, 1984).  Additional water transport 
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mechanisms must therefore be present and it is in this role that aquaporins 

(AQPs) are believed to play a part.  Aquaporins are members of an ubiquitous 

family of channel-forming proteins, originally known as the major intrinsic 

protein (MIP) family, and function as molecular water channels that allow 

rapid osmotic water flow mainly in epithelial tissues (Deen and van Os, 1998).  

A cDNA homologue of the mammalian aquaporin 3, the first aquaporin to be 

cloned in the eel, was isolated from eel gill and subsequently shown to be 

expressed in the gill, eye, intestine and oesophagus with sporadic expression 

in the kidney (Cutler and Cramb, 2002).  Expression of this protein is most 

prevalent in the freshwater adapted eel gill and a decrease in expression of 

up to 94% is seen following adaptation of the eel to seawater (Cutler and 

Cramb, 2002).  The discovery of this peptide could explain the discrepancy 

between water permeability of membranes in eels adapted to different 

salinities. 
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Seawater adapted gill:  The gill is the major site for salt secretion in 

the seawater-adapted eel.  A typical mitochondria rich cell in seawater has an 

apical crypt and a basolateral tubular system.  The tubular system is made of 

invaginations into the cell, toward the apical surface, which  effectively brings 

the two membranes to within 2-5 µm of each other.  This allows the 

membrane to function, essentially, as a thin NaCl pump.  Salt secretion is 

driven by Na+,K+-ATPase which keeps intracellular Na+ levels low (figure 

2.3.b).  This enzyme was localised to the basolateral membrane using the 

specific binding of tritiated ouabain (Karnaky et al., 1976), and more recently, 

TEM and immunogold studies have also shown it to be located specifically in 

the tubular system (Dang, 2004).  Chloride ions can then enter across the 

basolateral membrane (via the Na+,K+,2Cl co-transporter) and they leave 

through apical CFTR type anion channels.  This creates a membrane 

potential enabling sodium ions to follow by passive diffusion through a cation 

specific leaky paracellular shunt formed between the mitochondria rich and 

accessory cells. 
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Figure 2.3.b.  Ion transport across the seawater adapted gill epithelium.  
The basolateral membrane of the MRC is potentiated by Na+,K+-ATPase 
which drives Cl- entry by Na+,K+,2Cl--ion symporter.  Cl- crosses the 
apical membrane through CFTR-like ion channels and Na+ follows 
passively through paracellular routes.  Also shown is Ca2+ absorption by 
a pathway independent to the secretion of NaCl.  Not shown is the apical 
crypt or basolateral tubular system normally associated with the MRC.  
AC; accessory cell, MRC; mitochondria-rich cell, PC; pavement cell, TJ; 
tight junction. 
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2.4 Osmoregulatory adaptations: Renal system 

 

The kidney of the eel is fully glomerular but it lacks the loop of Henlé 

found in mammals (Cleveland and Trump, 1969; Hentschel and Elger, 1989).  

The apical surface of the renal tubules is lined by an apical brush border 

which affords a large surface area for ion transport and fluid 

secretion/absorption depending on the salinity of the external habitat 

(Martinez et al., 2005).   

 

Freshwater adapted renal system:  In freshwater adapted eels, the 

glomerular filtration rate is high and nearly all filtered solutes are reabsorbed 

across the epithelia of the renal tubules; furthermore, ions are also reclaimed 

across the epithelia of the urinary bladder (Cutler and Cramb, 2000).  In 

vertebrates the vast majority of these resorptive processes occur in the distal 

tubule but in teleosts (bar the lampreys) they occur in the proximal tubule 

(Dantzler, 2003).  In the early distal tubule (figure 2.4.a) salt uptake is driven 

by basolateral Na+,K+-ATPase and facilitated by the apically located sodium, 

potassium, chloride co-transporter (NKCC2 isoform) (Dantzler, 2003).  The 

latter mechanism is dependent on K+ cycling through apical potassium 

channels and allows cellular Cl- to accumulate and then exit passively down 

the concentration gradient via basolateral chloride channels and K+:Cl- 

cotransporters (Braun and Dantzler, 1997).  Na+:H+ exchange and paracelluar 

routes may also contribute significantly to Na+ transport.  The transport 

mechanisms of the late distal tubule remain to be elucidated.  The urinary 

bladder of freshwater adapted teleosts has a tight epithelium and is largely 

impermeable.  Additional Na+ and Cl- are reclaimed from the urine as the 

urine is further diluted to ~2 mM (Marshall and Grossel, 2006). 
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Figure 2.4.a.  Ion transport mechanisms in the water impermeable 
epithelium of the early distal tubule of the freshwater eel.  Basolateral 
Na+,K+-ATPase drives the process of salt reabsorption by creating 
gradients to allow apical import of Na+, K+ and Cl-.  K+ is recycled 
apically through K+ channels whilst Cl- exits basolaterally through K+:Cl- 
cotansporters.  Na+ also crosses the membrane via paracellular routes 
and Na+:H+ exchange. 

 

 

Seawater adapted kidney:  In seawater adapted eels, the glomerular 

filtration rate is significantly reduced in order to conserve water, and tubular 

secretion of electrolytes and fluid contribute significantly to urine formation.  

Lacking a loop of Henlé, eels are unable to produce urine that is hypertonic to 

plasma but the kidney’s osmoregulatory role in seawater is nonetheless 

essential, serving primarily as the main secretory route for absorbed Mg2+, 

Ca2+and SO4
2− (Bone et al., 1995; Cleveland and Trump, 1969; Karnaky, 
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1998).  The urine of seawater adapted eels has a tonicity similar to the 

extracellular fluid but with Mg2+, SO4
2- and Cl- replacing Na+ and Cl- as the 

major electrolytes.  Tubular secretion, which may exceed glomerular filtration 

by as much as four fold, occurs in the early proximal tubule (Beyenbach, 

2004).  Here, Cl- is secreted by a secondary active process driven by 

basolateral Na+,K+ ATPase.  Chloride ions enters basally through the NKCC1 

Na+/K+/2Cl- cotransporter before exiting apically through CFTR-like anion 

channels (Figure 2.4.b).  There is net secretion of Mg2+, SO4
2-, Na+ and Cl- in 

the early proximal tubule with the latter two ion types being largely reabsorbed 

in the late proximal tubule.  Here, again, the driving force is basolateral Na+, 

K+ ATPase which creates a diffusion gradient allowing apical Na+-glucose and 

Na+-amino acid coupled transport.   

 

Even before reaching seawater, freshwater adapted silver eels 

migrating downstream are thought to prepare physiologically for the 

impending change in salinity.  The expression levels of the 1a isoform of 

Na+/K+/2Cl- cotransporter (NKCC1a) in the kidney increases during the 

silvering process but remains constant during seawater-acclimation of silver 

eels (Cutler and Cramb, 2002b).  This suggests a pre-acclimation to 

seawater, controlled as part of a developmental process and occurring prior to 

leaving freshwater. 
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Figure 2.4.b.  Ion transport mechanisms in the early proximal tubule of 
the seawater adapted eel kidney.  There is net secretion of Mg2+ (via H+ 
and Na+ exchange), SO4

2- (dependent on C.A.), Cl- (driven by basolateral 
Na+,K+-ATPase) and Na+ (by electrically coupled paracellular pathways).   
K+ enters the cell basally via Na+,K+-ATPase and Na+/K+/2Cl- 
cotransporter, and is recycled through basolateral K+ channels.  Na+ is 
excreted via paracellular routes and Na+:H+ exchange.  Water is lost 
down the resultant diffusion gradient.  CA: carbonic anhydrase, TJ: tight 
junction.  
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2.5 Osmoregulatory adaptations: Intestine 

 

The freshwater adapted eel drinks little, other than what is imbibed 

during feeding (Martinez et al., 2005).  The ingested food provides the eel with 

a valuable source of salts, but otherwise the role of the intestine in freshwater 

osmoregulation is limited.  Following seawater adaptation, however, drinking 

rates of the eel are markedly increased (> 10 fold) and the intestine takes on a 

key osmoregulatory role (Gaitskell and Jones, 1971).  Ingested seawater is 

desalinated as it passes through the gut, largely by active transport of 

monovalent ions across the epithelia which starts in the oesophagus and 

continues throughout the intestine and rectum.  The subsequent reduction in 

salinity of the luminal fluid allows water to be absorbed by passive osmosis 

(Skadhauge, 1969); a process facilitated by the large surface area of the 

brush border membranes of the luminal epithelial cells.  The mechanism of 

Na+ absorption from luminal fluids is powered by basolateral Na+,K+-ATPase 

which creates a diffusion gradient to drive apical Na+ influx via Na+/Cl- and 

Na+/K+/Cl- co-transporters (Loretz, 1995).  Cl- uptake also occurs via 

bicarbonate transporters which secrete HCO3
- in exchange for Cl- (Ando, 

1990).  Thus far, cDNAs representing three chloride-bicarbonate exchanger 

isoforms have been found in the eel intestine (Cutler and Cramb, 2001).  The 

bicarbonate is then rendered electrochemically inert by precipitation.  A 

schematic summary of ion transport across this membrane is shown in figure 

2.5.a.  Upon initial examination this process could not drive water uptake but if 

the bicarbonate was derived from the osmotically inert cellular CO2 then there 

would be a net influx of ions into the epithelial cells, thus aiding water uptake 

(Wilson et al., 2002). 

 

Sodium/ bicarbonate co-transporter genes have also been isolated 

from eel intestine, as well as the gill and kidney tissues (Cutler and Cramb, 

2001).  The sodium/ bicarbonate co-transporter are thought to be located on 

the basolateral membrane of the luminal epithelial cells (Grossel et al., 2001) 

and may therefore provide extra HCO3
- for the apical chloride-bicarbonate 

exchange.  In addition, the process of transporting one sodium ion with two or 
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three bicarbonate ions from the extracellular fluid into the epithelial cell is 

electrogenic (Romero and Boron, 1999).  This would hyperpolarize the cell 

membrane potential, thereby providing a driving force for basolateral Cl- efflux 

via chloride channels (Cutler and Cramb, 2001). 

 

 

 

Figure 2.5.a.  Ion transport across the seawater adapted intestinal 
membrane.  Apical Na+ uptake through co-transporters is driven by 
basolateral Na+,K+-ATPase.  Apical Cl- uptake occurs via HCO3

-/Cl- 
exchange and exits basolaterally through CFTR-like anion channels.  
Intracellular bicarbonate comes from hydration of dissolved CO2 by 
carbonic anhydrase.  Not shown are the basolateral sodium/ bicarbonate 
exchangers.  TJ: tight junction, CA: carbonic anhydrase.
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2.6 Introduction to brain function in osmoregulation and 

development. 

 

Co-ordination of responses involves the reception of stimuli and 

subsequent reaction.  Exogenous signals include day length, lunar phases, 

tides, water levels in rivers as well as external salinity.  Endogenous signals 

include levels of energy stores (adiposity) and plasma osmolality and pH.  

Responses are mediated by the neuroendocrine and endocrine signalling 

pathways which invoke the appropriate responses from specific cells and 

tissues.   

 

In the case of salinity adaptation there are various local and circulatory 

signalling systems and agents which modulate the expression and function of 

ion and water transporters in eel tissues (Evans, 2002).   

 

When teleosts are faced with an osmoregulatory challenge there are 

two hormonal response types; the first is fast and short-acting whilst the 

second is slow and long-acting.  The first type offer an immediate response to 

the osmoregulatory stress but are often cleared from the system within 

minutes (Takei and Hirose, 2002).  They include oligopeptide hormones such 

as angiotensin II, arginine vasotocin, natriuretic peptides and urotensins which 

target specific epithelia where they modulate existing ion channels or 

transporters by phosphorylation or dephosphorylation of key residues.  The 

long-acting response hormones show gradual increases to elevated levels for 

prolonged periods of several hours or longer.  This group incorporates 

cortisol, growth hormone (GH), insulin-like growth factors (IGFs) and prolactin 

(PRL) and stimulate the synthesis of ion channels and transporters and 

induce structural reorganisation so that the animal can cope, long term, with 

its new environmental salinity.   

 

The central control for many hormone secretions is the hypothalamus 

which regulates pituitary secretions through the actions of a variety of 

hormones which include; growth hormone-releasing hormone, pituitary 
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adenylate cyclase activating polypeptide, corticotropin-releasing hormone, 

somatolactin release-inhibiting hormones and thyrotropin releasing hormone. 

The tiered organisation of these systems is shown in context with their 

secretion sites, pathway induction and site of action (Figure 2.6.a). 

 

 

 

Figure 2.6.a.  Hierarchical overview of the response to sensory input via 
the hypothalamo-hypophysial axis resulting in an endocrine cascade to 
peripheral glands and tissues.  CRH: corticotropin-releasing hormone, 
U-I: urotensin-I, AVT: arginine vasotocin, TRH: thyrotropin-releasing 
hormone, GnRH: gonadotropin-releasing hormone, GHRH: growth 
hormone-releasing hormone, GHIH: growth hormone-inhibiting 
hormone, PRH: prolactin-releasing hormone, PIH: prolactin-inhibiting 
hormone, ACTH: adrenocorticotropic hormone, TSH: thyroid stimulating 
hormone, GTH-I and -II: gonadotropin-I and –II, GH: growth hormone, 
PRL: prolactin, SL: somatolactin, MSH: melanophore stimulating 
hormone, MCH: melanin concentrating hormone. Adapted from Takei 
and Loretz, 2006. 
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One of the principal sites of hormone secretion is the pituitary gland, 

which is subdivided into two functionally and anatomically distinct sections: 

the anterior pituitary and the posterior pituitary (neurohypophysis) (Figure 

2.6.b.).  The anterior pituitary (adenohypophysis) originates from the 

nasopharangeal epithelium and is subdivided into the rostral pars distalis and 

proximal pars distalis.  It is responsible for the secretion of gonadotropin-I and 

–II (orthologous to follicle stimulating hormone and luteinising hormone 

respectively), thyroid stimulation hormone, growth hormone, prolactin, 

adrenocorticotropic hormone and somatolactin.  The posterior pituitary is 

derived from neural tissue and comprises the pars intermedia and pars 

nervosa and secretes the neuroendocrine hormones; melanin concentrating 

hormone, arginine vasotocin and isotocin. 

 

 

 

Figure 2.6.b.  Hypothalamo-hypophysial structure of the eel. 

 

 

Hormone secretions are not, however, restricted to those tissues laid 

out in Figure 2.6.a.  Teleosts also possess a caudal neurosecretory system in 

the posterior section of the spinal chord comprised of Dahlgren cells and 
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responsible for urotensin-I and –II secretion, reviewed in Kobayashi et al 

(1986).  Additionally, atrial natriuretic peptide, a seawater adapting hormone 

(Takei and Balment, 1993), is secreted by the heart whose release is 

stimulated by increases in plasma osmolality in teleosts (Kaiya and Takei, 

1996) and by cardiac stretch in mammals (Farrell, 1999).  Upon exposure to 

seawater the blood volume in the eel decreases (Kaiya, 1996b), which would 

normally inhibit ANP secretion in mammals.  In teleosts, however, the 

increase in plasma osmolality has an overriding effect and ANP secretion 

increases.  This in turn causes a dose dependent decrease in angiotensin II 

levels which inhibits both drinking (Tsuchida, 1998) and Na+/Cl- absorption by 

the intestine (Loretz, 1997).  This appears, at first, to be counter intuitive as 

the eel in seawater must drink copiously to ensure adequate water uptake.  

Indeed, upon initial transfer to seawater the eel elevates its drinking rate 

substantially, a response which is initiated by external chloride receptors as it 

occurs prior to increases in plasma osmolality (Takei et al., 1998).  Drinking 

rapidly abates, however, as the influence the plasma osmolality-stimulated 

increase in ANP secretion overrides these mechanisms.  Increased ANP 

secretion and the associated anti-dipsogenic effects are transient, however, 

decreasing after 1-2 hours post seawater transfer (Kaiya and Takei, 1996b), 

at which point drinking rates become elevated once again.  Therefore this 

system allows the eel a period of respite, during which, alimentary ion 

transport systems can adapt to seawater. 

 

Following the work by Utida et al the traditional view was that, amongst 

teleosts, cortisol was the seawater adapting hormone and prolactin was the 

freshwater hormone (Utida et al., 1972).  In the freshwater adapted killifish for 

example, Fundulus heteroclitus, plasma cortisol levels peak 1 hour post 

transfer to seawater, which coincides with the highest plasma Na+ level 

(Marshall, 1999).  More recent studies have now shown that cortisol may 

actually have a dual role as it is also implicated in ion uptake, whilst seawater 

acclimation also involves the growth hormone (GH)/ insulin like growth factor I 

(IGF-I) axis (McCormick, 2001).  Salmonids treated long term with GH 

(Komourdjian et al., 1976) or transgenically over expressing the hormone 

(Saunders et al., 1998) show elevated levels of salinity tolerance.  Although 
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larger fish will have an inherently greater salinity tolerance, the same effect 

has been noted just 48 hours following growth hormone injection, before any 

size effects could be implicated (Bolton et al., 1987).  Several salinity related 

physiological changes induced by GH and IGF-I have been noted.  Prunet et 

al (1994) found GH treated Atlantic salmon exhibited increased numbers of 

secretory mitochondria rich and accessory cells in the gill.  In vivo Na+,K+-

ATPase expression and activity are also raised in the gill mitochondria rich 

cells (Mancera and McCormick, 1998; Sakamoto et al., 1997), as is the Na+-

K+-2Cl- cotransporter (Pelis and McCormick, 2001).  Examining the system 

from the other side, elevated levels of GH and IGF-I have been shown in 

salmonids following salinity challenge (Sakamoto et al., 1993).  Pertinent to 

the current study, however, is the lack of evidence which relates GH and IGF-I 

to osmoregulation within the anguillid eels.  In cultured pituitary cells, an 

osmotic challenge had no effect on GH secretion levels (Suzuki et al., 1991; 

Suzuki et al., 1990).  Additionally, eels have also been shown to survive in 

seawater without a pituitary, and therefore without growth hormone (Takei and 

Hirose, 2002). 

 

 

In addition endocrine and neuroendocrine systems discussed, there 

must be also be pathway for sensing and coordinating environmental cues 

with endogenous factors to bring about eel silvering at a time to maximise 

reproductive success.  Furthermore the eel must be able to react to additional 

environmental signals which dictate the timing of migration in a way that 

synchronises their arrival at the spawning grounds.  One such mechanism for 

co-ordinating these responses in the eel could involve leptin (Zhang et al., 

1994), which has been characterised as a signal peptide relating somatic 

energetic status to the reproductive system.  Early leptin research focussed 

on the function of this adipocyte secreted peptide in relation to appetite 

regulation (Campfield et al., 1995).  However, knockout mice, either incapable 

of producing leptin (ob/ob) or lacking the leptin receptor (db/db) were found to 

be infertile, suggesting a role in reproductive pathways.  Subsequently, 

experiments showed that direct injection of human recombinant leptin could 

restore fertility of ob/ob mice mutants, cementing its place as a reproductive 
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signal peptide (Chehab et al., 1996).  The first reported mechanism of 

interaction with reproductive pathways in mice was shown by direct injection 

of leptin which induced an increase in levels of circulating LH (Barash et al., 

1996).  Likewise, leptin has since been shown to influence follicle stimulating 

hormone in a similar way (Yu et al., 1997). 

 

Leptin has recently been cloned in a number of teleost fish (Huising et 

al., 2006; Kurokawa et al., 2005) but the process of understanding its role is in 

its infancy.  Some of the functions of teleost leptin appear to be conserved 

with other chordates, but the mechanisms involved remain unclear.  In 

mammalian systems leptin appears to be antagonistic to neuropeptide Y, but 

this relationship is not immediately discernable in teleosts.  Ammar et al 

(2000) showed that leptin is an appetite suppressant and stimulant of 

reproductive behaviour whilst neuropeptide Y stimulates eating and 

suppresses reproductive behaviour.  The opposing roles of these two 

peptides is further highlighted by the direct inhibitory action of leptin upon 

neuropeptide Y synthesis in the hypothalamic arcuate nuclei (Baskin et al., 

1999).  As mentioned previously, leptin has been shown to cause an increase 

in LH secretion in mice but in teleosts, neuropeptide Y has also been shown 

to stimulate LH release.  Two parallel studies, one on goldfish (Kah et al., 

1989) and the other on rainbow trout (Bernard et al., 1989) both showed that 

porcine neuropeptide Y treatment of in vitro pituitary cell cultures induced a 

dose dependent increase in LH release.  These findings are in agreement 

with a more recent in vivo study of seabass (Dicentrarchus labrax), which also 

showed that neuropeptide Y causes an increase in LH secretion (Cerda-

Reverter et al., 1999).  The effects of neuropeptide Y in this case, however, 

were dependent on nutritional state; stimulation of LH secretion was only seen 

in chronically fasted animals whilst the effects were suppressed in fed 

animals.  One of the first leptin studies in teleosts treated cultured pituitary 

cells from carp (Cyprinus carpio) with purified mouse leptin and demonstrated 

an increase in secretion of LH; the amplitude of the response was dependent 

on the sexual maturation stage (Peyon et al., 2001).  Therefore, at first glance 

the actions of leptin upon LH secretion appear to be complementary to those 

of neuropeptide Y.  The situation is still unclear, however, as the stimulatory 
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effect on LH secretion seems to be nutritionally dependent for neuropeptide Y 

and developmentally dependent for leptin.  These pathways are candidates 

for the regulation of sexual development in relation to energy stores in the eel, 

and may provide answers as to why, as in mammals, the onset of puberty is 

size not age dependent (Foster and Nagatani, 1999). 
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2.7  Introduction to Microarray Technology 

 

There are many experimental approaches available which can be used 

to investigate biological systems.  A hypothesis can be derived from known 

data of a model species and similar techniques can be reused to examine an 

unrelated organism.  This approach has the advantage that tried and tested 

experimental techniques can be easily transferred to the system in question.  

It is, however, limited in the answers that it can provide and is unlikely to 

elucidate new and unexplored avenues of research.  A different approach is to 

use screening tools which allow a wide range of potential targets to be studied 

simultaneously.   

 

“Microarray Technology” describes a set of screening tools used to 

study the research fields which fall under the broad term “Genomics”.  These 

fields of research examine, in almost their entirety, a form of the genetic 

material or its derivatives of an organism.  This ever broadening field now 

encompasses; genomics (study of all/most DNA), transcriptomics (study of 

all/most transcribed genes i.e. mRNA), proteomics (study of all/most proteins), 

metabolomics (study of metabolically relevant proteins), epigenomics 

(integrates disease modelling and genomics) and ecotoxicogenomics 

(integrates genomics and environmental toxicology).  The present study will 

use transcriptomics by isolating and examining the mRNA.  This has the 

advantage that mRNA lacks introns, promoters and non-transcribed DNA and 

a particular tissue will only express a subset of genes. 

 

  The challenge, however, when examining these fields is one of 

throughput; how to examine everything simultaneously.  Microarrays provide 

one solution to this challenge and have revolutionised genomics.  They allow 

the relative expression levels of thousands of features (DNA, mRNA or 

protein) to be simultaneously quantified.  By comparing the expression of an 

experimental group with a control group, differences can be identified and 

subsequent expression profiles can be created.  Such expression studies can 

provide insights into the function of genes and their products and to how they 
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are coordinated in a complicated and highly interlinked manner (Phimister, 

1999).  By clustering groups of seemingly co-regulated genes/proteins, 

previously unknown pathways can be highlighted and new lines of enquiry 

can be followed. Compared with traditional molecular biology experiments 

which examine genes or proteins in isolation, the use of microarray screening 

methods expedites the process of identifying possible relationships and 

finding novel genes. 

 

The first published article to specifically use “microarrays” was Shena 

et al (1989) but the way in which a DNA microarray works has stemmed from 

the principles developed in Southern blotting techniques (Southern, 1975).  

These techniques use labelled nucleic acid molecules to interrogate nucleic 

acids attached to a solid medium via adenine-thymine and guanine-cytosine 

base hybridisation (Watson and Crick, 1953).   

 

A cDNA microarray has the form of a regular microscope slide.  The 

glass is of a higher quality, with fewer imperfections and a more uniform 

surface topology.  The glass is coated so that the surface will bind cDNA 

strongly.  Often a positively charged substance (e.g. poly-aminosilane) is 

used, which forms many interactions with the negatively charged cDNA to 

hold it in place.   Amplicons are spotted onto the slide, traditionally using a pin 

spotter, so that each individual spot (~150 nm in diameter) comprises cDNA 

corresponding to a single gene transcript.   This process is repeated so that 

up to ~ 20,000 features can be printed on a single slide to make the final 

microarray.   

 

Two different probe sets (RNAs) isolated from an experimental and a 

control group are differentially labelled with fluorescent dyes (Cy3 and Cy5) 

and simultaneously co-hybridised to the cDNA microarray.  The relative 

fluorescence (Cy3:Cy5) is quantified for each target by using a con-focal laser 

scanner.  The Cy3:Cy5 ratio indicates which probe sequences have 

hybridised to the targets on the array and thus reflects the relative expression 

of individual genes in each sample.  This method therefore quantitatively 

measures the relative amount of mRNA in a sample giving an indication as to 
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which genes are being up-/down-regulated.  To imply a functional endpoint for 

a level of transcription for a particular gene requires the assumption that 

transcript copy number directly influences protein activity.  This assumption 

ignores several biological processes (e.g. protein folding and post-

translational modifications) which occur after transcription and before resultant 

performs its role.  Despite this caveat the revealed data can be enlightening, 

to say the least. 

 

Microarray techniques and genomic studies have traditionally been 

associated with model organism such as H. Sapiens, D. melanogaster, 

C.elegans, M.musculus, A. thaliana etc, but increasingly, non-model 

organisms are being investigated in this way (Cossins and Crawford, 2005).  

The European eel is one such non-model organism but as a fish it stands well 

placed to be of significant importance.  Whilst most developmental and 

biological systems are common to all vertebrates, fish are by far the most 

specious, numbering over 28,000 extant species, which far outnumbers the 

mammals (~4600) or birds (~10,000) (Wilson and Reeder, 1993).  Fish have 

managed to inhabit almost every piscine environment on the planet; 

hypersaline lakes, anoxic waters, highly pressured waters (<1000 Atm), the 

Arctic where ice fish rely on “anti-freeze” proteins to survive sub-zero 

temperatures and thermal springs where the temperatures can exceed 45 ºC.  

It has been suggested that the sheer diversity of fishes and their ability to 

adapt to niche habitats will, in conjunction with genomic studies, reveal some 

of natures most intriguing secrets (Oleksiak and Crawford, 2006).  In addition, 

fish are unique in that their habitat is a medium in which they are immersed 

and effectively their environment is in direct contact with all bodily fluid 

compartments and tissues via the gills and gastrointestinal system (Randall et 

al., 2002).  This has specific implications in the present study, as changes in 

environmental salinity will allow us to elucidate some of the important 

pathways involved in teleost osmoregulation. 

 

There are already many fish genomic studies, the most advanced 

being the model oragnaisms zebrafish (Danio rerio), medaka (Oryzias latipes) 

and pufferfish (Takifugu rubripes and Tetraodon nigroviridis).  Zebrafish is a 
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well-characterised developmental model species due in part to the 

transparent eggs and short reproduction cycle and has recently become the 

species of choice for gene knockdown studies for some of Sir David Lane’s 

research groups.  The pufferfish have some of the smallest known genomes 

and are thus a very attractive species for genomic studies.  Non-model fish 

species are also increasingly under the genomic gaze.  They include the the 

flounder (Platichthys flesus), killifish (Fundulus heteroclitus), rainbow trout 

(Oncorhynchus mykiss), several salmon species and the subject of the first 

genomic study of a non-model fish species which examined the hypoxic 

abilities of the goby (Gillichthys mirabilis, Gracey et al., 2001).  Whilst model 

fish species certainly hold an important place in biological research, it will be 

the study of hyper-adaptable fishes such as the eel and those inhabiting 

extreme niches, along with subsequent comparative physiology that will 

facilitate the most fascinating discoveries over the coming years. 



 43 

2.8 Hypothesis and aims. 

 

The hypothesis to be investigated; 

 

The brain is the central organ for the co-ordination of environmental 

cues (photoperiod, lunar cycle, temperature and environmental salinity) with 

the anatomical and physiological adaptations which accompany pre-

migrational morphogenesis and the osmoregulatory plasticity seen in post-

migrational, salinity-adapted fish. 

 

The aims of the project; 

 

Develop cDNA libraries for the brain, kidney, intestine and gill taken 

from eels adapted to both fresh and marine environments. 

Use these cDNA libraries to create microarrays. 

Determine gene expression profiles for yellow and silver eels 

adapted to freshwater and seawater. 

Determine the cDNA sequence of potential genes of interest. 

Validate the gene expression profiles using complementary 

techniques. 
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3.0 Materials and methods 

 

The materials and methods chapter is presented in 27 sections.   

 

Sections 3.1-3.4 detail the collection of eel tissues, RNA extraction and 

the preparation of messenger RNA.   

 

Section 3.5 covers some commonly used techniques as well as buffer 

and oligonucleotide details.   

 

Sections 3.6 – 3.23 detail the techniques used to create the cDNA 

libraries created during the project, the discursive timeline for this can be 

found in Results Sections 4.3 – 4.13. 

 

Sections  3.23-27 detail the techniques associated with the microarray 

hybridisations and subsequent validation of results by real time quantitative 

PCR. 
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3.1 Animal treatment and tissue collection 

 

Adult, sexually immature yellow and migrating, sexually maturing silver 

eels were captured in fresh water in the rivers and tributaries of the River Tay 

catchment area by a local supplier in Blairgowrie, Scotland.  The occurrence 

of eels at the silver developmental stage is season dependent (Han et al. 

2003) and as such the silver eels were caught in the autumn/winter during 

their downstream migration whilst yellow eels were caught all year round.  

Yellow eels were distinguished from silver eels on the basis of skin colour and 

head morphology and the independence between animal size and sexual 

maturation (Svedäng 1996; Vøllestad, 1992) was exhibited by a large weight 

range in both eel types (yellow=252 

 

-540 g, silver=237-570 g).  Eels were assumed to be all females as 

male eels tend to stop growing at ~150 g (Degani et al., 2003).  Eels were 

kept in holding tanks (40 eels per 700 L tank) in the Gatty Marine Laboratory 

(St Andrews, Scotland) maintained on a 12h:12h light-dark cycle in fresh 

water (FW) at ambient temperature before experimentation until the 

experiments.  Eels naturally undergo long periods of fasting as part of their 

natural life-cycle and as such, were not fed during the holding or acclimation 

periods.   

 

Groups of eels (n=6) were transferred to experimental tanks (6 eels per 

100 L tank) containing FW 2-3 days before experimentation. Salinity transfer 

was achieved by decreasing the water level to approx 5 % then re-filling back 

to initial levels over a 1 hour period with SW (salinity stressed) or FW 

(controls).  Free flowing FW or SW was provided for each tank for the 

remainder of the acclimation period.  Eels were concussed by striking the 

cranium and then killed by decapitation and pithed before removal of tissues.  

The groups of silver eels from the FW and SW tanks were killed at 6 hours, 2 

days, 7 days and 5 months.  Yellow FW and SW eels were killed at the 7 day 

time point.  In total, 60 eels were used according to table 3.1.a below.  Gill, 

intestine, brain, renal- and head-kidney tissues were collected from all eels.
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Table 3.1.a.  Eel acclimation groups. 

 

Eel type Condition Acclimation time Number of Fish 

Silver SW 6 Hours 6 

Silver FW 6 Hours 6 

Silver SW 2 Days 6 

Silver FW 2 Days 6 

Silver SW 7 Days 6 

Silver FW 7 Days 6 

Silver SW 5 Months (Longterm) 6 

Silver FW 5 Months (Longterm) 6 

Yellow SW 7 Days 6 

Yellow FW 7 Days 6 
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3.2  Metadata 

 

Physiological data and biological observations, collectively known as 

metadata, were recorded for each fish used in the experiment; whole fish 

weight; tissue weight; presence of parasites and signs of disease (e.g., 

lesions on skin or internal organs); disturbance and kill times.   

 

Additionally, blood samples from the silver eels were taken directly 

after decapitation and plasma properties (Figures 4.1.a - f) were recorded; 

plasma osmolality (assessed using a vapour pressure osmometer, Wescor 

Inc., Logan, US); plasma protein concentration; plasma cortisol concentration 

; plasma angiotensin II; plasma Cl- (measured with a Chloride Analyser, 

Corning, Essex, UK); plasma Na+ and K+ concentrations (determined using 

flame photometry (Corning, Model 450).    
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3.3 Total RNA Extraction 

 

The RNA extraction protocol was adapted from Chomczynski and 

Sacchi (1987).  In brief, tissues were homogenised in 10 times volume:weight 

of Solution D (4 M guanadinium thiocynate, 10 % v/v β-mercapthoethanol, 1 

mM EDTA, 10 mM  Tris-HCl, pH 7.5) using a Polytron System PT3100 

Homogeniser (Kinematica, Luzern, Switzerland) or using a syringe and 16 

gauge needle.  Following homogenisation the following solutions were added 

sequentially and votexed after each addition; 0.1 volume 2 M sodium acetate, 

pH 4; 0.5 volume phenol and 0.2 volume 1bromo-2chloropropane (BCP).  

Samples were centrifuged at 5020 g for 35 min at 0 °C, (Beckman J6-M6, 

Rotor 4.2).  The supernatant was transferred to a new tube and 0.2 volume 

BCP added, the mixture was then vortexed and centrifuged as before.  The 

supernatant was mixed with 0.2 volume isopropan-2-ol and 0.2 volume High 

Salt Buffer (1.2 M NaCl, 0.8 M sodium citrate), vortexed and incubated at 

room temperature for 10 min before being centrifuged for 20 min at 5020 g at 

room temperature.  The second BCP step was omitted to maximise the RNA 

yield from brain samples. The supernatant was removed and the remaining 

pellet was washed twice in 70 % ethanol and air dried before being 

resuspended in H2O (all water was distilled and purified >18mΩ  (Milli-Q, 

Millipore, Waterford, UK)).  The RNA concentration was calculated using 

spectrophotometric absorbance at 260 nm. 

 

The quality of RNA was determined by visualising the 18 Svedberg unit 

(S) and 28S bands on a denaturing agarose gel (see Results 4.2).  The 

denaturing agarose gel was made by suspending 1.2 g agarose (high pure, 

low EEO, BioGene, UK) in a mixture of H2O (65 ml) and 10 x MOPS buffer 

(10 ml, 0.5 M 3-(N-Morpholino)-propanesulfonic acid, pH 7.0; 50 mM sodium 

acetate; 5 mM EDTA) by boiling for several minutes and then cooled to 55 ºC.  

Fomaldehyde (18 ml) was added and the solution poured into a cast, a Teflon 

coated comb with the appropriate number of wells was inserted and the gel 

allowed to set at room temperature for 30 min.  Gels were submersed in 1 x 

MOPS buffer.  RNA samples (5 µl) were added to RNA loading buffer {28 µl; 
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formamide (62.5 % v:v), formaldehyde (9.25 % v:v), 1.25 x MOPS buffer, 

bromophenol blue (50 µg/ml)} and heated to 65 ºC  for 15 min to denature the 

secondary structure of the RNA.  The samples were cooled to room 

temperature and loaded into the wells and a current of 10 mV/cm applied until 

the bromophenol dye front had traveled ~2/3 of the length of the gel.  The gel 

was washed for 30 min in H2O to remove formaldehyde followed by RNA 

staining by immersing the gel in a solution of ethidium bromide 10 µg/ml for 30 

mins.  Excess stain was removed by washing the gel three times in H2O for 

30 min each.   

 

Ratios of relative intensity of 18S:28S rRNA bands were determined by 

densitometric analysis using GeneSnap and GeneTools (Syngene, UK) and 

used to highlight degraded RNA samples; intact RNA should have an 

18S:28S ratio of 1:2. 

 

RNA quality was also verified with capilliary electrophoresis using a 

2100 Bioanalyzer (Agilent Technologies, Palo Alto, California) carried out at 

Ninewells Hospital, Dundee, UK (see Results 4.2).
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3.4 Messenger RNA Isolation 

 

Messenger RNA (mRNA) for each tissue was isolated from total RNA 

pooled from each fish within a group.  Each tissue pool contained 1.2 mg total 

RNA comprising 20 µg taken from each fish in each experimental (FW/ SW) 

and control (FW/ FW) group.  mRNA was extracted from the total RNA by 

oligo (dT)-cellulose affinity column chromatography using an adaptation of a 

standard method (Berger and Kimmel, 1987).  In brief, 0.25 g oligo (dT)-

cellulose was resuspended in H2O to remove fine particles and then stacked 

in a 3 ml clear syringe blocked with ashless cotton wool.  Three column 

volumes (CV) of binding buffer (Tris-HCl 0.01 M, pH 7.5), NaCl (0.5 M), EDTA 

(1 mM, pH 8), 0.5 % SDS) were passed through the column.  A peristaltic 

pump assisted the flow of liquid through the column and the final binding 

buffer was drawn through until level with the top of the cellulose.  Total RNA 

(1.2 ml of 1 mg/ ml) was mixed with an equal volume of 2 x binding buffer and 

heated to 65 °C for 5 minutes, cooled on ice for 2 minutes, applied to the 

column and drawn through until level with the cellulose surface.  The sample 

was left for 2 mins at room temperature and then the column was washed with 

3 CV binding buffer.  The entire eluate was collected, reheated to 65°C for 5 

minutes, cooled on ice and reapplied to the column at room temperature.  

This was followed by a further 5 CV binding buffer and then 3 CV wash buffer 

(0.01 M Tris-HCl, 0.5 M NaCl, 1 mM EDTA, pH 7.5).  The effluent was 

discarded and 9 ml elution buffer (0.01 M Tris-HCl, 1 mM EDTA, pH 7.5) was 

heated to 65 °C and passed through the column 1ml at a time and the eluate 

was collected in a 50 ml conical centrifuge tube.  To precipitate the mRNA, 

2.5 volumes 100 % ethanol and 0.1 volume 3 M sodium acetate (pH 5.2) were 

added to the eluate and the solution left overnight at 4 °C.  The mixture was 

centrifuged at 5020 g for 40 min at 4 °C.  The pellet was washed twice with 70 

% ethanol at room temperature, allowed to air dry and then dissolved in 50 µl 

H2O.
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3.5 Commonly used techniques, buffers and oligonucleotides 

 

The following techniques were used frequently during the development 

of the cDNA libraries (Sections 3.6 to 3.16).  To minimise repetition the reader 

will be referred back to this section when standard protocols were used.  

Commonly used buffers and oligonucleotides are presented in Tables 3.5.a 

and 3.5.b respectively. 

 

General PCR conditions: Reactions were carried out in a final volume 

of 25 µl containing 1 µl template DNA, 1 µl forward primer (10 mM), 1 µl 

reverse primer (10 mM), 5 µl betaine (5 M), 2.5 µl 10 x PCR buffer, 1 µl 

dNTPs (10 mM each), 3 µl magnesium acetate (25 mM), 0.5 U Accurase™ 

(Biogene, UK) and H2O to 25 µl.  Cycling parameters were 95 ºC for 2 min, 

followed by 40 cycles of 95 ºC for 10 s, X ºC (specific for each primer set) for 

10 s, 68 ºC for 5 min (plus 20 s added incrementally per cycle), with final 

extension for 10 min. 

 

DNA agarose gel electrophoresis:  Agarose (1 g, high-pure low EEO, 

BioGene, Cambridge, UK) was suspended in 100 ml 1 x TAE buffer (4 mM 

Tris-acetate, 0.1 mM EDTA) and dissolved by boiling for several minutes.  

The solution was cooled to 40 ºC and ethidium bromide added to a final 

concentration of 1 µg/ ml before pouring into a mould and inserting a Teflon 

coated comb with the appropriate number of wells, and allowed to set at room 

temperature for 30 min.  DNA samples were mixed 6:1 with 6 x DNA loading 

buffer {1 x TAE, bromophenol blue (1.2 %, w:v), glycerol (25 %, v:v)}.  Gels 

were submersed in 1 x TAE buffer, DNA samples loaded and a current of 10 

mV/cm applied until the bromophenol dye front had traveled ~2/3 of the length 

of the gel. 

 

Spot blot:  A 1 % agarose solution (15 ml) containing ethidium 

bromide was made as per DNA agarose gel method and poured into a 10cm 

diameter petri-dish and allowed to set at room temperature for 15 min.  The 

underside of the petri-dish was marked out with a grid to localise samples.  
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DNA samples to be quantified were serially diluted and 1 µl of each dilution 

applied to the gel surface alongside serially diluted DNA solution of the 

plasmid pEXP7-tet (50 ng/µl, Invitrogen, Paisley, UK).  DNA was visualised 

under UV light and comparatively quantified by eye.  

 

DNA precipitation:  Unless otherwise stated all DNA precipitation was 

performed by adding glycogen (1 µl, 20 µg/µl) to the DNA solution followed by 

0.1 volume 7.5 M ammonium acetate and 2.5 volumes ice cold 100 % ethanol 

and incubated for at least 10 min at –20 ºC.  DNA was pelleted by 

centrifugation at 15,000 g for 10 min, the supernatant removed and the pellet 

washed twice with 200 µl 70 % ethanol.  The ethanol was aspirated, the pellet 

air-dried and resuspended in H2O.   
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Table 3.5.a.  Chemical details of commonly used buffers 

 

1 x TE Tris-HCl (10 mM), EDTA (1 mM) 

1 x TAE Tris-acetate (4 mM), EDTA (0.1 mM) 

TEN buffer  10 mM Tris-HCl, pH 7.5; 0.1 mM EDTA; 25 mM NaCl) 

1 x SSPE 180 mM NaCl, 1 mM EDTA, 10 mM NaH2PO4, pH 7.4) 

10 x Black Buffer 

(Biogene, Cambridge, 

UK) 

Tris-HCl (750 mM, pH 8.8), ammonium sulphate (200 mM) and Tween 20 

(0.1%) 

10 x Tris PCR Buffer Tricine (150 mM), potassium acetate (200 mM), Tween 20 (0.1% v:v) 

LB agar Bacto-tryptone (10 g), bacto-yeast extract (5 g), NaCl (10 g), dissolved in 

950 ml, pH adjusted to 7.0 with NaOH (~0.2 ml, 5 M), volume made up to 1 l 

with H20 and autoclaved. 

Terrific Broth Bacto-tryptone (12 g), bacto-yeast extract (24 g), glycerol (4 ml), dissolved 

in 900 ml, autoclaved, and added to a 100 ml sterile solution of KH2PO4 

(0.17 M), K2HPO4 (0.72 M) 

1 x SSPE buffer 150mM Sodium Chloride, 10mM Sodium Phosphate, 1mM EDTA 

1 x SSC buffer Sodium chloride (0.15 M), sodium citrate (0.015 M) 

SOC Bacto-tryptone (20 g), bacto-yeast extract (5 g), NaCl (0.5 g), dissolved in 

950 ml,autoclaved and supplemeted with a sterile solution of KCl (10 ml. 

250 mM, pH 7.0), a solution of MgCl2 (5 ml, 2M) and a sterile solution of 

glucose (20 ml, 1 M) 

mRNA isolation 1 x 

Binding Buffer 

Tris-HCl (0.01 M, pH 7.5), NaCl (0.5 M), EDTA (1 mM), SDS (0.5% w:v) 

mRNA isolation 1 x 

Wash Buffer 

Tris-HCl (0.01 M, pH 7.5), NaCl (1 M), EDTA (1 mM) 

mRNA isolation 1 x 

Elution Buffer 

Tris-HCl (0.01 M, pH 7.5), EDTA (1 mM) 

10 x MOPS buffer 10 ml, 0.5 M 3-(N-Morpholino)-propanesulfonic acid, pH 7.0; 50 mM sodium 

acetate; 5 mM EDTA 

RNA loading buffer Formamide (62.5 % v:v), formaldehyde (9.25 % v:v), 1.25 x MOPS buffer, 

bromophenol blue (50 µg/ml) 
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Table 3.5.b.  Oligonucleotides and primers for PCR, QPCR, cDNA 
synthesis and RNA amplification.  All sequences are 5’ – 3’ orientation. 
14CSA = 14 carbon long spacer arm, P = phosphate group. 

SMART™ cDNA PCR amplified library primers 

G-Super-Oligo-d(T) 5′-GGGGACCCACTTTGTACAAGAAAGCTGGGTAGGCGGCGCCACTCCTGGAGCCCGT(T)26-3′ 

GSO2 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTAUGGCAGTGGTAACAACGCAGAGTACGCGGG-3′ 

SMART-attB1 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTAUGGCAGTGG-3′ 

SMART-attB2 5′-GGGGACCCACTTTGTACAAGAAAGCTGGGTAGG-3′ 

EnvGenIntOligo 5′-AGGCGGCGCCACTCCTGGAGCCCGT-3′ 

G-MCS2 5′-UGGCAGTGGTAACAACGCAGAGTACGCGG-3′ 

M13 Forward  5′-GTAAAACGACGGCCAG-3′ 

M13 Reverse: 5′-CAGGAAACAGCTATGAC-3' 

  

CloneMiner Library Orignal primers 

Biotinylated Oligo d(T) 

attB2 Primer  
5′-Biotin.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGT(T)19-3′ 

attB1 adapter 5′-TCGTCGGGGACAACTTTGTACAAAAAAGTTGG-3′ 

      3′-CCCCTGTTGAAACATGTTTTTTCAACC-P-5′   

Biotinylated Random attB2 

primer 
5′-Biotin.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGT(N)6TGCCTG-3’ 

  

2G CloneMiner Primers 

Biotinylated 2G Oligo d(T) 

attb2 Primer 

5′-Biotin-GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAACCGTCACGTAC(T)20-

3′ 

Biotinylated 2G Random 

attB2 primer 

5′-Biotin-

GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAACCGTCACGTAC(N)6TGCCTG-3’ 

2G attb1 adapter  5′-TCGTCGGGGACAACTTTGTACAAAAAAGTTGGGTGCATCAGCTGGACTAG-3′ 

      3′-CCCCTGTTGAAACATGTTTTTTCAACCCACGTAGTCGACCTGATC-P-5′   

NintpDONR222anti 5′-GTTGGGTGGAACCGTCACGTAC-3’ 

NpDONR222sense 5′-GTTGGGTGGAACCGTCACGTAC-3’ 

  

3G CloneMiner Primers  

Biotinylated 3G Oligo d(T) 

attB2 Primer 

5′Biotin-

14CSA.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAACCGTCACTAGT(T)19-3′ 

Biotinylated 3G Random 

attB2 primer 

5′Biotin-

14CSA.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAACCGTCACTAGT(N)6TGCCT-3’ 

3G attB1 adapter 5′-TCGTCGGGGACAACTTTGTACAAAAAAGTTGGGTGCATCAGCTGGACTAGT-3′ 

      3′-CCCCTGTTGAAACATGTTTTTTCAACCCACGTAGTCGACCTGATCA-P-5′   

3G Bi-directional Colony 

PCR primer 

5′- GACTGATAGTGACCTGTTCGTTGCAACAAATTG-3′ 

 

  

Suppression Subtractive Hybridisation Primers 

Oligo d(T) cDNA synthesis 

primer 
5’-TTTTGTACAAGCTT30N1N-3’ 

Adaptor 1 5’-CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT-3’ 

       3’-GGCCCGTCCA-5’ 

Adaptor 2R 5’-CTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT-3’ 

     3’-GCCGGCTCCA-5’ 

Bi-directional PCR primer 5’-CTAATACGACTCACTATAGGGC-3’ 

SSH Nested PCR primer 1 5’-TCGAGCGGCCGCCCGGGCAGGT-3’ 

SSH Nested PCR primer 2 5’-AGCGTGGTCGCGGCCGAGGT-3’ 

  

RNA Amplification Primers  

Oligo dT(15)-T7 primer  5’ AAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGCGC(T)15 3’ 

Template Switch 5’ AAGCAGTGGTAACAACGCAGAGTACGCGGG 3’ 
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3.6  SMART cDNA PCR Amplified Library 

  

SMART cDNA Synthesis.  mRNA (1 µg) was combined in a 200 µl 

PCR tube with 1 µl G-Super-Oligo-dT (10 µM) and 1 µl GSO2 (10 µM), final 

volume 4 µl, and incubated at 65 ºC for 5 min to denature the nucleic acid and 

then cooled to 48 ºC.  The temperature was maintained at 48 ºC during the 

addition of 2 µl 5x First Strand Buffer, 1 µl DTT (0.1 M) and 1 µl dNTPs (10 

mM each).  The solution was mixed by gentle pipetting before the addition of 

1 µl RNAseOUT (40 U/µl, Invitrogen, Paisley, UK) and 1 µl Superscript III (200 

U/µl, Invitrogen, Paisley, UK).  The solution was mixed again and incubated at 

48 ºC for 2 hours, cooled to 37 ºC and1 µl RNAse H (2 U/µl, Invitrogen, 

Paisley, UK) added and incubated at 37 ºC for 30 min. 

 

SMART cDNA amplification.  cDNA was amplified in 3 x 25 µl PCR 

reactions as detailed in Section 3.5 using SMART-ATTB1 (GGG GAC AAG 

TTT GTA CAA AAA AGC AGG CTA AGG CAG TGG ) and SMART-ATTB2 

(GGG GAC CCA CTT TGT ACA AGA AAG CTG GGT AGG) primers with an 

annealing temperature of 58 ºC.  These primers bind to the nested sites in the 

attB adapters shown in Figure 3.7.a. 

 

SMART cDNA Size selection.  Following amplification, cDNA above 

400 bp was size selected using SizeSep 400 Sepharose Columns (Amersham 

International, Little Chalfont, U.K).  Columns were washed three times with 3 

ml TAE buffer, pH 7.6 and centrifuged at 400 g for 2 min supported in 15 ml 

centrifuge tubes.  The columns were transferred to fresh 15 ml centrifuge 

tubes and the cDNA samples were applied to the column.  Following 

incubation at room temperature for 2 min the columns were centrifuged again 

as above to collect the cDNA.  A small sample of the cDNA was placed in a 

well of a 1 % agarose gel containing 0.2 µg/ml ethidium bromide.  In the 

adjacent well were DNA markers (1 kb DNA Ladder, NEB, Hitchin, UK) with 

the remainder of the cDNA in a separate well (Figure 3.6.d).  Following 

electrophoresis, the gel was cut parallel to the lanes so that the small cDNA 

sample and DNA markers were in one section whilst the remaining cDNA was 
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in the other.  The gel section containing the cDNA sample and markers was 

visualised with UV light and used as a template to excise the remaining cDNA 

from the other section of gel in size specific fractions.  Therefore this portion 

of the cDNA was isolated without exposing it to UV light, reducing the 

likelihood of possible DNA nicking.  The cDNA portion of the gel was cut into 5 

sections containing cDNA fractions of 0.5-1.0 kb, 1.0-2.0 kb, 2.0-3.0 kb, 3.0-

5.0 kb and >5 kb. The cDNA was extracted from the gel using Geneclean 

(Anachem Ltd, Luton, UK). 

  

 

  

1 2 3 

 

 

Figure 3.6.d. Lane 1: 1kb Ladder (Invitrogen), Lane 2: SMART cDNA 
Library after SizeSep Column treatment, Lane 3 Untreated SMART cDNA 
Library.  cDNA presented here was exposed to UV light and as such not 
used for cloning. 

 

 

Vector Transformation.  A sample of size selected cDNA (2.5 µl) was 

combined with 0.5 µl pDONR221, 1µl 5 x BP Clonase™ reaction buffer and 
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1µl BP Clonase™ enzyme mix (proprietary, Invitrogen, UK) and incubated at 

room temperature for 2 days.  The reaction was terminated by addition of 0.5 

µl Proteinase K (2 µg/µl, Invitrogen, Paisley, UK) and incubation at 37 ºC for 

10 min.  cDNA was purified by precipitation by adding 2.5 vol isopropanol and 

placed on ice for 30min.  cDNA was pelleted by centrifugation at ~15,000 g for 

20 min, the pellet was washed once with 70 % ethanol and air dried. 

 

Host Transfection.  The cDNA pellet was resuspended in 5 µl H2O 

and added to 50 µl GeneHog E.coli. (Invitrogen, Paisley, UK), transferred into 

a pre-cooled electroporation cuvette at 0 ºC and electroprated at 1600 v.  

Prewarmed SOC (450 µl, 37 ºC) was added and cells were incubated on a 

rotating wheel at 37 ºC for 45 min.  Aliquots of the cell suspension (125 µl) 

were spread onto large (20 cm diameter) LB-agar plates containing 

kanamycin (50 µg/ml) and incubated at 37 ºC overnight.  Individual colonies 

were randomly selected and grown in 200 µl Terrific Broth containing 

kanamycin (50 µg/ ml) in 96 well plates.  Clones were verified for successful 

cDNA inserts by PCR amplification of 1 µl colony template with M13 forward 

and reverse primers (annealing temperature 58 ºC) and visualised on agarose 

gels.  
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3.7  CloneMiner™ cDNA library: Procedures 

  

The procedures for the production of CloneMiner™ libraries are 

described briefly below.  For a complete description of these protocols see 

Appendix 1 : CloneMiner™ cDNA Library Construction Kit Manual.  All 

products mentioned in this section were manufactured by Invitrogen, Paisley, 

UK.  The only deviation of note from the standard CloneMiner protocol was 

the creation of a second “random” cDNA library which was primed in the first 

instance by the degenerate CloneMiner™ Random attB2 primer.  This primer 

was used at 20x the concentration of the standard CloneMiner™ oligo d(T) 

attB2 primer. 

 

CloneMiner™ First strand cDNA synthesis: Reverse transcription 

was primed by 1 µl CloneMiner™ oligo d(T) attB2 primer (30 µM, 5′-Biotin. 

GGC GGC CGC ACA ACT TTG TAC AAG AAA GTT GGG T (T)19 -3′) or 

CloneMiner™ Random attB2 primer (600 µM, 5′-Biotin. GGC GGC CGC ACA 

ACT TTG TAC AAG AAA GTT GGG T (N)6 TGC CTG-3’) and was combined 

with 2 µg mRNA and 2 µl dNTPs (10 mM each)  in a volume of 9 µl and 

incubated at 65 ºC for 5 min, to denature any secondary RNA structure, and 

then cooled to 45 ºC for 2 min to allow primer annealing. The first strand 

master mix was prepared on ice containing 4 µl 5x First Strand Buffer 

(Invitrogen, UK), 2 µl DTT (0.1 M) and 1 µl H2O, combined with the mRNA 

and incubated for 2 min at 45 ºC before adding 2 µl Superscript II RT and 

incubating for a further 60 min at 45 ºC to allow first strand cDNA synthesis to 

occur.   

 

CloneMiner™ Second strand synthesis: The first strand reaction 

was placed on ice whilst adding the components of the second strand 

reaction; 92 µl DEPC-treated water, 30 µl 5X Second Strand Buffer, 3 µl 

dNTPs (10 mM each), 1 µl E. coli DNA Ligase (10 U/µl), 4 µl E. coli DNA 

Polymerase I (10 U/µl) and 1 µl E. coli RNase H (2 U/µl).  This was incubated 

at 16 ºC for 2 hours, during which the second strand of cDNA was created.  

T4 DNA Polymerase (2 µl) was then added and incubated at 16°C for 5 
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minutes to create blunt-ended cDNA.  The reaction was stopped by adding 10 

µl of 0.5 M EDTA, pH 8.0.  The cDNA was separated from the proteins and 

any remaining RNA in the mix by adding 160 µl of phenol:chloroform:isoamyl 

alcohol (25:24:1) and shaking thoroughly by hand for approximately 30 

seconds.  This was then centrifuged at room temperature for 5 minutes at 

14,000 rpm before carefully removing the upper aqueous phase to a fresh 1.5 

ml tube.  The cDNA was precipitated by adding 1 µl glycogen (20 µg/µl), 80 µl 

NH4OAc (7.5 M) and 600 µl 100% ethanol and incubating at -80°C for 10 

minutes.  The cDNA was pelleted by centrifuging the sample at +4°C for 25 

minutes at 14,000 rpm.  The supernatant was carefully removed and the 

cDNA pellet was washed twice with 150 µl of 70% ethanol before aspirating 

all the ethanol and allowing the cDNA pellet to air-dry for 10 min.  The cDNA 

pellet was then resuspended in 18 µl of DEPC-treated H2O and placed in ice. 

 

Ligation of the CloneMiner™ attB1 adapter:  The CloneMiner™ 

attB1 adapter was blunt-end ligated to the non-biotinylated end of the cDNA 

by adding 10 µl 5X Adapter Buffer, 10 µl CloneMiner™ attB1 adapter (1 

µg/µl), 7 µl DTT (0.1 M) and 5 µl T4 DNA Ligase (1 U/µl).  The contents were 

mixed gently by pipetting and incubated at 16°C for 16-24 hours.  The cDNA 

was then incubated at 70°C for 10 minutes to inactivate the ligase. 

 

Size Fractionating CloneMiner™ cDNA by Column 

Chromatography: Column chromatography using Sephacryl® optimizes size 

fractionation of the cDNA and makes the cloning of larger inserts more 

probable.  Sephacryl®  particles are essentially hollow spheres (25-75 µm in 

diameter) with pores on their surface which allow molecules of a certain size 

to enter (up to 20,000 kDa MW).  Therefore when the cDNA solution is 

passed through the column the largest molecules, including DNA over ~ 500 

bp, elute first because they have less volume to traverse as they go around 

the particles.  Conversely, the smaller molecules must travel a more 

convoluted route through the Sephacryl® particles and thus elute later 

allowing the two particle size fractions to be separated.  A drip-column 

containing 1 ml of Sephacryl® S-500 HR resin suspended in ethanol (supplied 

with the CloneMiner kit) was mounted in a support stand and the ethanol 
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allowed to drain away.  The column was then washed four times with 0.8 ml 

TEN buffer (10 mM Tris-HCl, pH 7.5, 0.1 mM EDTA, 25 mM NaCl) allowing all 

the buffer to drain away.  TEN buffer (100 µl) was added to the cDNA solution 

which was then applied to the column.  Two aliquots of 100 µl TEN buffer 

were then added to the column and the effluent discarded.  Further aliquots of 

100 µl TEN buffer were then added to the column and each of the next 20 

individual droplets to come through the column were collected in pre-labelled 

1.5 ml tubes. 

 

CloneMiner™ cDNA quantification using spot blot analysis:  The 

volume of each droplet was measured using a pipette and a spot blot was 

performed to measure the cDNA concentration.  A 1 % agarose gel (15 ml) 

containing ethidium bromide (1 µg/µl) was made as per the DNA agarose gel 

method (Section 3.5) and poured into a 10cm diameter petri-dish and allowed 

to set at room temperature for 15 min.  The underside of the petri-dish was 

marked out with a grid to localise samples.  A 0.5 µl sample from each cDNA 

droplet was serially diluted to a 1:10 dilution and a 1:20 dilution.  1 µl from 

each of these dilutions was spotted onto the surface of the gel alongside five 

1 µl samples of pEXP7-tet plasmid DNA diluted to 25 ng/µl,10 ng/µl, 5 ng/µl 

and 1 ng/µl.  The samples were allowed to dry before the DNA was visualised 

with UV light.  The concentration of each of the cDNA samples was 

determined by comparing their fluorescence to that of the pEXP7-tet DNA 

standards by eye. 

 

Performing the CloneMiner™ BP Recombination Reaction:  A pool 

of cDNA was collated comprising the first 150 ng to come through the column 

in the earliest drip fractions, this should contain the longest cDNA molecules.  

This cDNA was precipitated by adding 1 µl glycogen (20 µg/µl), 0.5 volumes 

NH4OAc (7.5 M) and 2.5 volumes 100% ethanol and incubating at -80°C for 

10 minutes.  The cDNA was pelleted by centrifuging the sample at +4°C for 

25 minutes at 14,000 rpm.  The supernatant was carefully removed and the 

cDNA pellet washed twice with 150 µl of 70% ethanol before aspirating all the 

remaining ethanol and allowing the cDNA pellet to air-dry for 10 min.  The 

cDNA was resuspended in 4.5 µl TE buffer and 0.5 µl was removed for spot 
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blot quantification as described above.  In a final volume of 10 µl 

approximately 75-100 ng attB-flanked cDNA was combined with 1 µl 

pDONR222 plasmid (250 ng/µl), 2 µl 5 x BP Clonase™ reaction buffer and 3 

µl BP Clonase™ enzyme mix.  The BP reaction mixture was incubated at 25 

°C  for 20 hours. 

 

Transformation of CloneMiner™ competent cells: The BP reaction 

was stopped by adding 2 µl of proteinase K (2 µg/µl) and incubating at 37 °C 

for 15 minutes and then at 75 °C for 10 minutes.  The cDNA was precipitated 

by adding 90 µl H2O, 1 µl glycogen (20 µg/µl), 50 µl NH4OAc (7.5 M) and 375 

µl 100% ethanol and incubating at –80 °C for 10 minutes.  The cDNA was 

pelleted by centrifuging the sample at +4 °C for 25 minutes at 14,000 rpm.  

The supernatant was carefully removed and the cDNA pellet washed twice 

with 150 µl of 70% ethanol before aspirating all the remaining ethanol and 

allowing the cDNA pellet to air-dry for 10 min.  The cDNA was resuspended in 

9 µl H2O and then divided into six 1.5 µl aliquots.  Each aliquot was mixed 

with 50 µl ElectroMAX™ DH10B™ T1 Phage Resistant Cells.  These cells are 

not resistant to kanamycin but they are susceptible to the CcdB protein 

encoded by the ccdB gene found in the plasmid pDONR222.  The cells must 

acquire a pDONR222 plasmid to be capable of growing on selective media 

containing kanamycin.  The ccdB gene is removed completely from 

pDONR222 when replaced with an attB flanked cDNA molecule during the BP 

recombination reaction.  Therefore, only the cells which are transfected by 

recombined plasmid will be viable.  The cDNA/cell mixture was pipetted into 

an ice-cold electroporation cuvette and electroporated at 2000v using an 

Electroporator 2510 (Eppendorf, Cambridge, UK).  Electroporation disrupts 

the cell membrane to allow the pDONR222 plasmid to enter.  The cell 

suspension was quenched with 1ml SOC medium (see Table 3.5.a) and 

incubated on an orbital shaker for 1 hour at 37 °C to allow the kanamycin 

resistance gene to be expressed before plating onto LB agar containing 

kanamycin (50 µg/µl, see Table 3.5.a).  Cells were allowed to grow overnight 

at 37 °C and then individual colonies were selected at random and grown 

overnight at 37 °C on an orbital shaker in Terrific Broth (200 µl, see Table 

3.5.a) containing kanamycin (50 µg/µl).  Clones were verified for successful 
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cDNA inserts by PCR amplification of 1 µl colony template with M13 forward 

and reverse primers (annealing temperature 58 ºC) and visualised on agarose 

gels (see Results, Figure 4.5.e).
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3.8 Second generation (2G) CloneMiner™ libraries 

 

Two cDNA libraries called “Oligo” and “Random” were made, following 

the CloneMiner™ protocol as described in Section 3.7, with the first strand 

cDNA synthesis primed by 2G oligo d(T) attB2 primer or 2G random attB2 

primer respectively.  The 2G attB1 adapter was used instead of the 

CloneMiner™ supplied adapter.  In order to monitor the cDNA strands during 

subsequent normalisation and subtraction procedures, the second strand was 

radiolabelled as follows. 

 

Radiolabelling of 2G CloneMiner™ Second Strand.  Identical 

procedures were followed as detailed in Section 3.8 except that the second 

strand mixture contained;  20 µl first strand reaction kept on ice whilst adding 

1 µl α32P dCTP (~10µCi),  91 µl DEPC-treated water, 30 µl 5X Second Strand 

Buffer, 3 µl dNTPs (10 mM each), 1 µl E. coli DNA Ligase (10 U/µl), 4 µl E. 

coli DNA Polymerase I (10 U/µl) and 1 µl E. coli RNase H (2 U/µl).  This was 

incubated at 16 ºC for 2 hours, during which the second strand of cDNA was 

created.  Normal CloneMiner™ protocol was then resumed. 
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3.9 Normalisation 

 

Due to experimental inefficiencies this protocol was never implemented fully 

(see Section 4.6).   

 

attB flanked cDNA was made from kidney messenger RNA using the 2G Oligo 

d(T) attB2 primer and the 2G attB1 (see Section 3.5 for sequences) adapter as per 

the CloneMiner™ protocol detailed in Section 3.8.  The first strand cDNA had a biotin 

label at the 5’ end, as conferred by the first strand synthesis primers, and the second 

strand of the cDNA was radiolabelled with α32P dCTP as described in Section 3.8.  

The cDNA (1 µg) was prepared in 100 µl 1 x SSPE buffer (150mM Sodium Chloride, 

10mM Sodium Phosphate, 1mM EDTA) and 50 % formamide.  The solution was 

heated to 95 ºC and then cooled to 65 ºC until ~50 % of the cDNA had annealed.  

The cDNA was then snap-cooled on ice.  SA-PMPs (0.6 mg) were washed three 

times with 200 µl 1 x SSPE buffer. After the final wash the buffer was removed and 

the SA-PMPs resuspended with a solution of radiolabelled, biotinylated cDNA (1 µg) 

was diluted in 1 x SSPE buffer (100 µl).  The suspension was incubated at room 

temperature for varying times between 30 min and 2 hours, following which the 

beads were removed using a magnet.  The amount of radiolabelled cDNA either 

bound to the beads or remaining in the supernatants was determined by liquid 

scintillation counting (Cerenkov radiation). 
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3.10 Post-biotinylation of DNA 

 

A 50 µl reaction was prepared containing 5 mg DNA, 5 µl 10 x Label IT 

Buffer, 5 µl Label IT biotinylating reagent, H2O to 50 µl.  This was incubated 

for 1 hour at 37 ºC and then the DNA was purified by ethanol precipitation by 

addition of 1 µl glycogen (20 µg/µl), 0.1 volume NaCl (5 M) and 2 volumes ice 

cold ethanol (100 %) and incubated for 10 min at –20ºC.  DNA was pelleted 

by centrifugation at 15,000 g for 10 min, the supernatant removed and the 

pellet washed once with 100 µl 70 % ethanol.  The ethanol was aspirated, the 

pellet air-dried and resuspend in 20 µl H2O.  Labelled DNA was denatured by 

adding 2 µl 3 M NaOH and incubated at 25ºC for 5 min then placed on ice for 

2 min.  The solution was neutralised by the addition of 2 µl N1 buffer (a 

proprietary buffer containing 3 M HCl, Mirus, WI, USA).  The biotinylated, 

denatured DNA was then used in a variety of hybridisation reactions.
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3.11 Cloning of 18S and 28S rRNA fragments 

 

cDNA from the brain 2G random cDNA library was amplified using 

standard PCR conditions using attB1sense 

(TCGGGGACAACTTTGTACAAAAAA) and attB2anti 

(GGCGGCCGCACAACTTTGTACAAGAAA) primers , annealing temperature 

58 ºC and run on a 1.5 % EtBr stained agarose gel.  Two over-expressed 

bands at 500 bp and 1.5 kb were excised from the gel and purified using a 

GeneClean DNA purification kit (Anachem Ltd., Luton, UK) and cloned using 

TOPO TA Cloning Kit (Invitrogen, UK).  PCR was performed on individual 

clones and the subsequent DNA was sequenced using BigDye™ (Applied 

Biosystems, Renton, USA).  
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3.12 Driver production 

 

  Clones (2000) were randomly selected from a library and grown 

individually in 200 µl Terrific Broth containing kanamycin (50 µg/µl) in 96 well 

plates overnight at 37 ºC.  Clones were collated into a single 96 well plate 

containing 200 µl Terrific Broth (kanamycin 50 µg/ml) per well using a sterile 

replicator and grown overnight at 37 ºC.   Colony PCR was performed for 

each well, containing ~20 clones, using 2G internal primers 

(NintpDONR222anti 5′-GTTGGGTGGAACCGTCACGTAC-3’and 

NpDONR222sense 5′-GTTGGGTGGAACCGTCACGTAC-3’, annealing 

temperature 58 ºC) as per normal PCR conditions (Section 3.5) except that 

reaction volume was doubled to 50 µl.  A sample (5 µl) from each PCR was 

collated into a Driver pool and amplicons were purified by ethanol precipitation 

as previously described (Section 3.5) and verified by visualisation on a 1 % 

ethidium bromide stained agarose gel (Figure 4.9.b).
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3.13 Subtraction with pH directed hybridisation.   

 

Driver cDNA (2 µg amplified kidney cDNA clones, 1.5 µg 18S cDNA 

and 1.5 µg 28S cDNA) was biotinylated using Label IT Biotin Labelling Kit 

(Mirus, WI, USA, see section 3.10) and ethanol precipitated (see section 3.5).  

Tester cDNA was prepared from intestine RNA using the CloneMiner™ kit 

with the non-biotinylated 2G CloneMiner™ 2G Random attB2 primers as per 

standard protocol (Section 3.8).  Tester cDNA (150 ng) in 100 µl H2O was 

used to resuspend the pellet of precipitated biotinylated driver.  Tester and 

Driver DNA was denatured by adding 10 µl 3 M NaOH and heated to 65 ºC, 

immediately cooled to 30ºC.  The solution was neutralised with 10 µl solution 

N1 (3 M HCl containing proprietary buffer, Mirus, WI, USA) and incubated at 

room temperature for 1 hour to allow rehybridisation of complimentary Tester 

and Driver cDNA strands.  Biotinylated cDNA species were removed using 

SA-PMPs (0.6 mg) as described in Section 3.9.  The remaining tester in the 

SA-PMP supernatant was ethanol precipitated and resuspended in 9 µl TE 

buffer and the cDNA concentration determined using a spot blot comparison.  

Tester cDNA was subsequently cloned into pDONR222 following standard 

CloneMiner™ protocol (see Section 3.8). 
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3.14 Temperature directed subtraction in the presence of 

formamide. 

 

Tester cDNA (500 ng) was prepared from intestine RNA using the 

CloneMiner™ kit with the non-biotinylated 2G CloneMiner™ 2G Random 

attB2 primer.  The cDNA was diluted in 16.7 µl H2O and then denatured by 

heating to 95 ºC for 2 min, snap-cooled on ice for 2 min before adding 100 µl 

ice-cold formamide and 5 µg biotinylated driver (2 µg kidney cDNA, 1.5 µg 

18s cDNA and 1.5 µg 28s cDNA in 83.3 µl 1xSSPE, denatured following 

biotinylation as per Section 3.10).  After overnight incubation at 42 ºC 

biotinylated cDNA was removed with 0.25 mg SA-PMPs as described in 

Section 3.9.  The cDNA remaining after subtraction was quantified using a 

spot blot and standard CloneMiner™ cloning procedure ensued (Section 3.8). 
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3.15 Temperature directed subtraction in the absence of 

formamide.   

 

Tester cDNA (500 ng) prepared from intestine RNA using the 

CloneMiner™ kit with the non-biotinylated 2G CloneMiner™ 2G Random 

attB2 primers was diluted in 29 µl 1xSSPE and then combined with 5 µg 

biotinylated driver (2 µg kidney cDNA, 1.5 µg 18s cDNA and 1.5 µg 28s cDNA 

in 10 µl 1 x TE).  A thermal-cycler was used to heat the mixture to 95 ºC for 2 

min and then to cool the sample gradually to room temperature at a rate of 5 

ºC/min.   Biotinylated species were removed using 0.25 mg SA-PMPs as 

described in Section 3.9.  The cDNA remaining after subtraction was 

quantified using a spot blot and standard CloneMiner™ cloning procedure 

ensued (see Section 3.8).   
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3.16 Third generation (3G) CloneMiner™ libraries 

 

Two cDNA libraries called “Oligo” and “Random” were made, following 

the CloneMiner™ protocol as described in Section 3.7.  The only exceptions 

were that the first strand cDNA synthesis was primed by either the 3G oligo 

d(T) attB2 primer which incorporates a biotin molecule on a 14-carbon spacer 

arm (14CSA), 

(5′Biotin_14CSA.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAA

CCGTCACTAGT(T)19-3′) or 3G random attB2 primer 

(5′Biotin_14CSA.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAA

CCGTCACTAGT(N)6TGCCT-3’).  The 3G attB1 adapter was used instead of 

the CloneMiner™ supplied adapter.;  

 

5′-TCGTCGGGGACAACTTTGTACAAAAAAGTTGGGTGCATCAGCTGGACTAGT-3′ 

     3′-CCCCTGTTGAAACATGTTTTTTCAACCCACGTAGTCGACCTGATCA-P-5′   
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3.17 Investigation of SA-PMP non-specific binding 

 

Two separate reactions were prepared, both contained 1 µl α32P-

labelled A. anguilla kidney cDNA (100 ng/µl, ~1000 cpm) and 3 µl H2O with 

either 1 µl C. leucas cDNA (1000 ng/µl, non-biotinylated) or 1 µl A. anguilla 

kidney biotinylated cDNA (1000 ng/µl).  NaOH (0.5 µl, 3 M) was added to 

each reaction followed by incubation at room temperature for 30 min before 

placing on ice.  The pH of the reactions was neutralised by adding 0.5 µl ice 

cold 3 M HCl followed by 2.5 µl 20 x SSPE buffer and 2 µl H2O and incubated 

at 70 ºC overnight to allow re-annealing of complementary cDNA strands.  

Two aliquots of 0.6 mg SA-PMPs were prepared as per Section 3.9 and finally 

re-suspended in 20 µl of 1 x SSPE.  Each aliquot of SA-PMPs was 

resuspended with one of the two reactions and then incubated at room 

temperature for 10 min. The SA-PMPs were removed from the supernatants 

using a strong earth magnet.  Unbound cDNA was washed from the SA-PMPs 

with six washes of 50 µl H2O pre-warmed to 50 ºC.  Radiolabelled DNA 

associated with each fraction was measured by liquid scintillation counting 

(Cerenkov radiation). 
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3.18 Solvent treatment of SA-PMPs to remove DNA. 

 

Six separate, identical reactions were set up; each containing 1 µl 

α32P-labelled A. anguilla kidney cDNA (100 ng/µl, ~1000 cpm) and 3 µl H2O 

with 1 µl A.anguilla kidney biotinylated cDNA (1000 ng/µl).  To each solution 

NaOH (0.5 µl, 3 M) was added followed by incubation at room temperature for 

30 min before placing on ice.  As in the previous experiment, the solutions 

containing the denatured cDNAs were neutralised by adding 0.5 µl ice cold 3 

M HCl, 2.5 µl 20 x SSPE buffer and 2 µl H2O and incubated at 70 ºC overnight 

to allow re-annealing.  Six aliquots of 0.6 mg SA-PMPs were prepared as per 

Section 3.9 and finally re-suspended in 20 µl of 1 x SSPE.  Each aliquot of 

SA-PMPs was resuspended with one of the six reactions and the resultant 

suspension was incubated at room temperature for 10 min. The SA-PMPs 

were removed from the supernatants using a magnet.  SA-PMPs were 

washed twice with 50 µl H2O pre-warmed to 50 ºC and then washed three 

times with 20 µl of one of the following solvents; 5 M NaCl; 3 M sodium 

acetate, pH 4.6; 70 % ethanol; 100 % ethanol; New Wash from the Geneclean 

kit (Anachem Ltd, Luton, UK); H2O pre-warmed to 50 ºC (control).  

Radiolabelled DNA associated with each fraction was measured by liquid 

scintillation counting (Cerenkov radiation). 
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3.19 NeutrAvidin™ biotin binding protein agarose beads 

 

α32P-labelled tester A. anguilla kidney cDNA was incubated with a 10 

or 100 fold excess of biotinylated A. anguilla kidney cDNA or a 100 fold 

excess of non-biotinylated C. leucas cDNA (as per table 3.19.a).  Samples 1-3 

were incubated at 70 ºC overnight and sample 4 was incubated for 2min at 95 

ºC in order to denature the cDNA and then incubated at 70 ºC overnight.   

Twenty aliquots of NABs (20 µl each) were prepared by washing the beads 

three times in 1 x SSPE (centrifuged 20 µl NABs slurry at 3000 g for 30 sec, 

removed supernatant, added 20 µl 1 x SSPE and flicked gently to resuspend, 

repeated three times.  NABs were never centrifuged at speeds >3000 g as 

this crushes the NABs, thereby reducing the active surface area available for 

biotin binding).  Samples 1-4 were added to the individual NAB aliquots and 

then incubated on ice for 20 min with occasional agitation.  The NAB 

suspensions were centrifuged at 3000 g for 30 sec and the supernatant 

removed to a fresh aliquot of NAB whilst the spent NAB were kept for 

analysis.  The process was repeated for the remaining NAB aliquots, finally 

the supernatants containing DNA were transferred to a pony vial.  All samples 

of NABs and supernatants were transferred to pony vials containing 3 ml H2O 

and the radioactivity determined by liquid scintillation counting (Cerenkov 

radiation). 

 

Table 3.19.a.  Sample contents and incubation conditions to test how 
efficiently NAB bind biotinylated cDNA. 

 

 
Sample 

A. anguilla α32P 
dCTP labelled 
kidney cDNA 

(ng) 

A. anguilla 
Biotinylated 

Driver kidney 
cDNA (ng) 

C. leucas non-
biotinylated 
cDNA (ng) 

Incubation 
conditions 

1 10 0 1000 70 ºC Overnight 
2 10 100 0 70 ºC Overnight 
3 10 1000 0 70 ºC Overnight 

4 10 100 0 
95 ºC for 2 min 

followed by 70 ºC 
overnight 
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3.20 Inclusion of spin-columns to separate NeutrAvidin™ beads 

 

Driver cDNA was prepared by PCR amplifying the 1536 brain SSH 

clones as per standard protocol with Nested PCR primers 1 and 2 (see 

Section 3.21).  The amplicons were purified by ethanol precipitation (as 

described in Section 3.5) and then biotinylated using the Mirus method as 

described in Section 3.10.  Two identical samples were prepared containing 

α32P-labelled radiolabelled, biotinylated Driver cDNA (6 µg) in 1 x SSPE buffer 

(30 µl).  These were added to 300 µl aliquots of NAB (pre-washed three times 

with 300 µl 1 x SSPE buffer) and incubated at room temperature for 1 hour.  

Samples were transferred to micro-centrifuge spin-columns, taken from a 

GeneClean kit (Anachem Ltd, Luton, UK).  The spin-columns were mounted in 

a 1.5 ml tube to catch the eluate and centrifuged at 3000 g for 3 min.  The 

NAB were washed by adding 140 µl H2O to the spin column which was then 

centrifuged over the same tube as before to combine the wash fluid with the 

previous eluate.  This solution was treated with a further two aliquots of NAB.  

The radioactivity in the eluate and all three used NAB aliquots was 

determined by liquid scintillation counting (Cerenkov radiation, Figure 4.11.b). 
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3.21 Suppression Subtractive Hybridisation. 

 

The SSH protocols were carried out as described in the PCR-Select™ 

cDNA Subtraction Kit User Manual (Clontech, Basingstoke, UK) which can be 

found in appendix 2; brief details are provided below.  Double stranded cDNA 

was produced for each tissue by oligo d(T) (5’-TTTTGTACAAGCTT30N1N-3’) 

primed reverse transcription from messenger RNA (isolated as per Section 

3.4).  This was followed by second strand synthesis.  The cDNA was then 

digested using Rsa I, a restriction endonuclease that recognises a four base 

sequence found in the oligo d(T) primer and randomly throughout the cDNA, 

and yields blunt ends.  The cDNA of the tissue undergoing subtraction was 

divided into two Tester aliquots whilst the cDNAs from the three other tissues 

was combined to form the Driver.  The two Tester cDNAs were ligated with 

different adapters, the ends of which do not have a phosphate group, so only 

one strand of each adaptor attaches to the 5' ends of the cDNA.  The two adaptors have 

stretches of identical sequence to allow annealing of SSH PCR primer 1 after the recessed 

ends have been filled in (see Figure 4.12.a).  The bi-directional SSH PCR primer 1 (5’-

CTAATACGACTCACTATAGGGC-3’) was used to amplify the subtracted cDNA.  A 

secondary PCR amplification was then performed using nested primers (SSH Nested PCR 

primer 1: 5’-TCGAGCGGCCGCCCGGGCAGGT-3’, SSH Nested PCR primer 2: 5’-

AGCGTGGTCGCGGCCGAGGT-3’) to further reduce any background PCR products and 

enrich for differentially expressed sequences. The cDNAs were inserted into the T/A cloning 

vector pCR4-TOPO (Invitrogen Ltd, Paisley, UK) and transformed by 

electroporation into DH5α E. coli (Eurogentec Ltd, UK). 
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3.22 Creation of a high quality subtracted attB brain library 

 

Driver preparation.  A 96 well plate was prepared with Terrific Broth 

(200 µl) containing kanamycin (50 µg/µl) in each well.  Each well was 

transfected with a bacterial sample (1 µl) from 16 brain SSH clones so that all 

1536 brain SSH clones were represented on the one plate.  The bacteria were 

grown overnight on a shaking bed incubated at 37 ºC.  A sample (1 µl) from 

each well representing 16 brain SSH clones was then used as template in one 

of 96 50 µl PCR reactions using the SSH Nested primer 1 

TCGAGCGGCCGCCCGGGCAGGT and SSH Nested primer 2 

AGCGTGGTCGCGGCCGAGGT using standard PCR protocol (Section 3.5) 

and an annealing temperature of 57 ºC.  An additional PCR was performed to 

create a radiolabelled tracer to track the Driver using the same PCR 

conditions as before but with the addition of α32P dCTP (10 µCi) using 16 SSH 

clones (1 µl) as template.  The 97 PCRs were collated and the DNA purified 

by ethanol precipitation (see Section 3.5) and resuspended in H2O (110 µl).  

This solution represented the Driver cDNA.  A SizeSep 400 Spun column 

(Amersham Biosciences, UK) was prepared by washing 3 times with 2 ml 

TAE buffer (pH 7.6).  The column was supported in 15 ml centrifucation tube 

and centrifuged at 400 g for 2 min at room temperature before the columns 

were transferred to fresh 15 ml centrifugation tubes.  The Driver cDNA 

solution was applied to the SizeSep 400 column in order to purify it from the 

components of the PCR reaction, critically the α32P dCTP.  The PCR solution 

was allowed to sit in the column for 2 min at room temperature before 

centrifuging at 400 g for 2 min at room temperature to collect the cDNA.  Size 

selected Driver DNA subsequently biotinylated using the Label IT Biotin 

Labelling Kit (Mirus, WI, USA) as described previously in Section 3.10.   

 

Subtraction.  A hybridisation was prepared in 1 x SSPE buffer (30 µl) 

containing Tester cDNA (600 ng) subtracted with a ten-fold excess of 

biotinylated Driver cDNA (6 µg, with α32P tracer).  The solution was incubated 

at 95 ºC for 2 min, 70 ºC for 10 min and then cooled to 20 ºC at a rate of 1 

ºC/min.  To remove the Driver from the hybridisation, the solution was added 
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to a 300 µl aliquot of NAB (pre-washed three times with 300 µl 1xSSPE 

buffer) and incubated at room temperature for 1 hour.  The suspension of 

NAB was transferred to a micro-centrifuge spin-column (Anachem Ltd, Luton, 

UK), mounted in a 1.5 ml tube to catch the Tester eluate and centrifuged at 

3000 g for 3 min.  Unbound cDNA was washed from the NAB by 

resuspending the beads with 140 µl H2O and centrifuging again, combining 

the wash fluid with the previous Tester eluate.  The eluate, now in a volume of 

170µl, was treated with a further two aliquots of NAB and the washes 

repeated each time so the final volume was 450 µl.  The radioactivity in a 10 

µl sample of the Tester eluate and all three used NAB aliquots was 

determined by liquid scintillation counting (Cerenkov radiation).  All of the 

radiolabelled Driver cDNA was associated with the NAB confirming that only 

Tester cDNA was present in the eluate.   

 

Cloning.  The Tester cDNA was ethanol precipitated and resuspended 

in 4.5 µl TE buffer.  The DNA concentration was determined using a spot blot 

analysis on EtBr stained agarose gel with DNA standards (see Section 3.5) 

and found to be 20 ng/µl.  The Tester cDNA was cloned into pDONR222 in a 

reaction comprising Tester cDNA (4 µl), pDONR222 (1 µl, 250 ng/µl), 5 x 

Clonase ™ buffer (2 µl ) and BP Clonase™  enzyme mix (3µl, proprietary), 

and incubated overnight at room temperature.  The recombination reaction 

was stopped by adding proteinase K (2 µl, 2 µg/µl) and incubating at 37 ºC for 

10 minutes before adding 90 µl H2O.  The DNA in the solution was 

precipitated as per Section 3.5 and resuspended in 9 µl H2O, which is 

important in order that the recombined vector is in a salt free solution.  Six 

samples of the recombined vector (1.5 µl each) were combined with 

ElectroMAXTM DH10β T1 phage resistant cells (50 µl) and transferred into a 

pre-cooled electroporation cuvettes at 0 ºC and electroprated at 1600 v.  

Prewarmed SOC (1 ml, 37 ºC) was added to each electroporation cuvette to 

quench the cells before transferring to a 1.5 ml micro-centrifuge tube and 

incubating on a rotating wheel at 37 ºC for 45 min.  Aliquots of the cell 

suspensions (125 µl) were spread onto large (20 cm diameter) LB-agar plates 

containing kanamycin (50 µg/ml) and incubated at 37 ºC overnight.  Individual 

colonies were randomly selected and grown in 200 µl Terrific Broth containing 
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kanamycin (50 µg/µl).  The clones were grown overnight on a shaking bed 

incubated at 37 ºC.  To verify the integrity and redundancy level of the library 

the inserts from 46 clones analysed.  Colony PCR was performed using 

standard PCR conditions with the 3G bi-directional colony PCR primer (5’-

GACTGATAGTGACCTGTTCGTTGCAACAAATTG-3’) with an annealing 

temperature of 60 ºC.  The amplicons were visualised on an agarose gel to 

check if all clones contained inserts and the size of inserts (Section 4.13).  To 

test the redundancy level of the library the 46 clones were sequenced by 

Macrogen (South Korea).  The sequences were edited from expression 

vectors and adaptors sequences, quality assessed by electrophoretogram 

and blasted against available databases using Trade2dBest (CIH, Oxford).
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3.23  RNA Amplification 

 

First strand cDNA synthesis: Reverse transcription is primed by and 

T7 Oligo dT(15) primer (1 µl, 30 µM, 5’ AAA CGA CGG CCA GTG AAT TGT 

AAT ACG ACT CAC TAT AGG CGC T(15) 3’) and was combined with 0.5 – 3 

µg total RNA in 8 µl H2O and incubated at 70 ºC for 4 min then cooled to 45 

ºC for 2 min. The first strand master mix was prepared on ice containing 4 µl 

5x First Strand Buffer (Invitrogen, UK), 1 µl template switch (TS) primer (100 

µM, 5’ AAG CAG TGG TAA CAA CGC AGA GTA CGC GGG 3’), 2 µl DTT 

(0.1 M), 1 µl RNAseIN (40 U/ µl), 2 µl dNTPs (10 mM each) and 2 µl 

Superscript II RT (200 U/µl, Invitrogen,UK).  The first strand master mix was 

combined with the RNA and T7 oligo d(T) primer and incubated for 1 h 30 min 

at 45 ºC before placing on ice.   

 

Second strand cDNA synthesis: The following was added to the first 

strand reaction, 89.25 µl H2O, 15 µl Black Buffer {Tris-HCl (750 mM, pH 8.8), 

ammonium sulphate (200 mM) and Tween 20 (0.1%), BioGene, UK}, 9 µl 

magnesium actetate (25 mM), 3 µl dNTPs (10 mM each), 1 µl E.coli RNase H 

(2 U/µl, Invitrogen, UK), 0.75 µl Accurase DNA polymerase (5 U/µl, BioGene, 

UK), and then incubated at 37 ºC at 5 min to allow the RNase H to nick the 

RNA, 94 ºC for 2 min to denature the nucleic acid strands, 75 ºC for 1 min to 

allow primer annealing and 68 ºC for 30 min for Accurase to make the second 

strand.  Following second strand synthesis a solution containing NaOH and 

EDTA (7.5 µl, 1 M NaOH, 2 mM EDTA) was added and the mixture incubated 

heated to 65 ºC for 10 min to degrade the RNA.   

 

cDNA purification:  cDNA was purified by phenol:chloroform 

extraction; 160 µl phenol:chloroform:isoamyl alcohol (25:24:1) was added to 

the second strand synthesis cocktail and shaken by hand thoroughly for 30 s.  

This was centrifuged at room temperature and 15,000 g for 5 min, and upper 

aqueous phase removed to a fresh tube and the DNA purified by ethanol 

precipitation (as per section 3.5). 
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In vitro transcription:  The T7 Megascript Kit (Ambion, UK) was used 

and the standard protocol followed.  Briefly, a mixture containing 8 µl H2O, 8 

µl ribo-NTP Mix (A, G, C and UTP, 18.75 mM each) and 2 µl 10 x Megascript 

reaction buffer (proprietary, Ambion, UK) was prepared and used to 

resuspend the cDNA pellet.  The solution was kept at room temperature to 

prevent the spermidine in the reaction buffer co-precipitating with the cDNA.  

To this was added Megascript enzyme mix (2 µl, proprietary, contains RNase 

inhibitor and T7 phage polymerase, Ambion, UK) and incubated for 6 hours at 

37 ºC.  The RNA was purified by ethanol precipitation and the RNA pellet was 

washed twice in 70 % ethanol, briefly air-dried (<5 min, do not over-dry the 

RNA pellet as it becomes insoluble) and resuspend in 30 µl RNase free H2O.  

The RNA concentration was determined by spectrophotometric absorbance at 

260 nm.  The cDNA created during reverse transcription was left in the 

solution of amplified RNA.  Compared to the RNA, the cDNA forms only a 

minute fraction and will not influence future reactions. 
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3.24 Microarray probes, labelling and hybridisation 

 

For all microarray experiments, cDNAs used for hybridisation were 

prepared from 20 µg samples of total RNA from a single tissue type (gill, 

intestine, brain and renal kidney) either pooled from all animals in an 

experimental group (n=6) or from individual fish.  Two cDNA samples from 

different eel groups were co-hybridised to a microarray, one sample being 

labelled with Cy3 and the other with Cy5.  Experiments were replicated in dye-

swap to address any labelling bias caused by differential incorporation rates 

between Cy3 and Cy5 (Churchill, 2002).  Dye-swap replication involves 

repetition of the entire microarray experiment but swapping the cDNA labels 

so that the cDNA previously labelled with Cy3 is now labelled with Cy5 and 

vice versa.  This controls for any bias which could be introduced if the Cy3 

and Cy5 labelling reactions are not equally efficient. 

Fluorescently labelled cDNA was created using the CyScribe Post-

Labelling Kit (Amersham Biosciences, Little Chalfont, UK) according to the 

manufacturers instructions.  CyScript™ reverse transcriptase is used to create 

first-strand cDNA incorporating a chemically reactive nucleotide analogue 

(amino allyl-dUTP) into the cDNA.  The RNA is then degraded and the cDNA 

purified to remove free nucleotides and then labelled with the reactive forms 

of Cy3 or Cy5 NHS-esters that bind to the modified amino allyl-nucleotides. 

After a final purification, the labelled cDNA is ready for hybridisation. 

 

cDNA production and labelling: Briefly, two first strand synthesis 

reactions were performed in parallel for the two samples to be hybridised to 

the microarray.  Eel RNA (20 µg) was combined with random nonamer 

primers (1 µl, Amersham Biosciences) and/ or anchored oligo d(T) primer (1 

µl) and the volume made up to 11 µl with H2O.  Both primer types were used 

for amplified mRNA but only the anchored oligo d(T) was used with total RNA 

to avoid non-messenger RNA being transcribed.  Reactions were incubated at 

70 °C for 5 min and then cooled and left at room temperature for 10 min to 

allow the primers to anneal to the mRNA.  To the solution was added 5 x 

CyScribe™ buffer (4 µl, proprietary), DTT (2 µl, 0.1 M), CyScribe™ nucleotide 
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mix (1 µl, proprietary), CyScribe™ post -labelling amino allyl-dUTP (1 µl, 

proprietary) and CyScript™ reverse transcriptase (1 µl).  The reaction was 

incubated at 42 °C for 90 min to allow reverse transcription to occur before 

cooling to 37 °C and adding NaOH (2 µl, 2.5 M).  The reaction was incubated 

for 15 min to degrade the RNA and then neutralised by adding 10 µl HEPES 

(2 M, pH 6.6).  The cDNA was purified by adding to a GFX glass fibre matrix 

purification column (Amersham Biosciences) containing 500 µl GFX capture 

buffer (proprietary) and centrifuging over a 1.5 ml micro-centrifuge tube at 

13800 g for 30 seconds.  The eluate was discarded and the column 

transferred to a fresh 1.5 ml tube.  The cDNA was washed three times by 

adding 600 µl ethanol (80 %) and centrifuging at 13800 g for 30 seconds, 

discarding the eluate after each centrifugation.  The column was centrifuged 

for an additional 10 s at 13800 g to remove residual ethanol and then 

transferred to a fresh 1.5 ml tube.  To elute the cDNA, freshly made sodium 

bicarbonate (60 µl, 0.1 M, pH 9.0) was added to the column and incubated at 

room temperature for 5 min.  The column was centrifuged again at 13800 g 

for 1 min to collect the purified amino allyl-labelled cDNA.  The cDNA was 

post-labelled by using the amino allyl-labelled cDNA solution to resuspend an 

aliquot of Cy3 or Cy5 CyDye NHS-ester (Amersham Biosciences) and 

incubated in the dark at room temperature for 90 min.  Unreacted CyDye 

NHS-ester was inactivated by adding hydroxylamine (15 µl, 4 M) and 

incubated in the dark at room temperature for a further 15 min.  

Unincorporated CyDye was immediately removed from the fluorescently-

labelled cDNA by using a CyScribe GFX purification column as described 

above except that GFX wash buffer (Amersham Biosciences) was used 

instead of 80 % ethanol to wash the cDNA. 

The two differentially labelled (Cy3 and Cy5) cDNA samples were 

mixed in a light-proof 1.5 ml tube, to which was added calf thymus DNA (20 

µl, 200 ng/ ml) and poly A oligo-nucleotides (2 mg/ml, 20-mers).  The solution 

was transferred to a Centricon concentrator column (Millipore, Watford, UK) 

supported in a 1.5 ml micro-centrifuge tube.  Water was added up to the mark 

engraved on the column and then centrifuged at 14000 g for 5 min.  The 

eluate was discarded and H2O again added to the engraved mark and the 

column centrifuged at 14000 g for 8 min.  Further centrifugations at 14000 g 
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were performed for 1 min until the remaining volume was 14.4 µl or less.  The 

solution was collected by placing the column inverted in a fresh 1.5 ml micro-

centrifuge tube and centrifuging for 1 min at 14000 g.  The solution was 

transferred to a PCR tube, combined with 20 x SSC buffer (15 µl), formamide 

(30 µl), SDS (0.6 µl, 10% weight:volume) and the volume made up to 60 µl 

with H2O.  The solution was heated to 95 °C for 5 min to denature the DNA 

and then snap cooled on ice before being applied to a pre-hybridised 

microarray slide as described below. 

 

Microarray pre-hybridisation: Microarrays were pre-hybridised for 1 

hour at 45 °C in 50 ml pre-hybridisation solution containing to following final 

concentrations; formamide (50 % v/v); 5 x SSC buffer; SDS (0.1 %); bovine 

serum albumin (0.1 mg/ ml); denatured calf thymus DNA (200 ng/ ml) and 

yeast RNA (200 ng/ ml).  Pre-hybridisation reduces background fluorescence 

signal which usually originates from non-specific hybridisation of the labeled 

samples or auto-fluorescence of the glass slide.   Arrays were washed twice 

for 5 min in 0.1 x SSC for 5 min, dipped in H2O and dried by centrifugation.  

Labelled cDNA probes were aliquoted onto the arrays and overlayed with an 

M-series lifterslip (Erie Scientific Company, Portsmouth, USA) which ensures 

equal distribution of probe across the printed surface as they have a raised 

perimeter edge on the underside.   Arrays were placed in an airtight chamber 

to maintain humidity and incubated overnight at 44 °C to allow binding of the 

labelled cDNA with the complementary features on the microarray.   

 

Microarray stringency washes:  The microarray was placed vertically 

into a flask containing solution A (50 ml, 10 % SDS, 1 x SSC) at room 

temperature to allow the coverslip to come away from the microarray.  The 

microarray was transferred to a cylindrical flask containing solution A (50 ml) 

at room temperature and placed on a roller for 5 min.  The microarray was 

then transferred to a fresh flask containing solution B (50 ml, 1 % SDS, 1 x 

SSC) pre-warmed to 42 °C and placed on a roller inside an incubation oven at 

42 °C for 5 min.  The wash with solution B was repeated before the 

microarray was washed 5 times in solution C (50 ml, 0.1 x SSC) pre-warmed 

to 42 °C in rolling flasks for 5 min each.  The array was washed once more 
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with solution D (50 ml, 0.01 x SSC) at room temperature by submerging for 10 

s.  The array was dried quickly by placing in a slide rack and centrifuging at 

2000 g for 1 min and scanned immediately.
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3.25 Sequencing analysis 

 

Differentially expressed clones from the SSH array (400) and brain 

array experiments (100) were sequenced using M13 primers by Macrogen 

Ltd. (Seoul, South Korea) using dideoxy chain termination with BigDye™ and 

an ABI3730 XL DNA Analyser (Applied Biosystems, Renton, USA).   The 

sequencing reaction involves an initial PCR of a clone using M13 forward (5′-

GTAAAACGACGGCCAG-3′) and M13 reverse (5′-CAGGAAACAGCTATGAC-

3') primers followed by purification of the amplicons.  The second stage uses 

DNA polymerase to copy the amplicons primed by a single specific primer 

(M13 forward).  Included in this reaction are four different fluorescently 

labelled dideoxy chain terminators, one for each of the four DNA bases.  

When one of these dyes is incorporated instead of the matching nucleotide 

base the extension is terminated.  This occurs for every length of strand 

possible (as dictated by the template) and the dye at the end of each strand 

can be identified by the ABI3730 XL DNA Analyser to give the final DNA 

sequence. 

 

Trade2dBest (CIH, Oxford) was used for sequence analysis.  The 

software extracts the sequence from the original electrophoretogram data and 

then edits out expression vector and adaptor sequences.  Sequences were 

compared to NCBI databases using two algorithms based on Basic Local 

Alignment Search Tools blastx and blastn (Altschul et al., 1997) before being 

assembled into contigs using ClustalX software (NCBI Toolkit, University of 

British Columbia, USA). 

 

Putattive functions for selected genes were determined using the Gene 

Ontology database (http://www.geneontology.org/, Ashburner, 2000). 
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3.26 Microarray data acquisition, normalisation and analysis  

 

Hybridised slides were scanned with a confocal laser scanner 

(ScanArray Lite, Microarray Analysis System, PerkinElmer Life Sciences, 

Beaconsfield, UK).  The microarrays were first scanned at a laser output of 

633 nm to detect Cy5 labelled cDNA first, as this dye is more sensitive to 

photo-bleaching.  Scans were performed at 10 µm resolution and laser 

intensities and PMT gain ranging from 60-90 % and then saved as *TIFF files.  

The process was then repeated with a laser output of 543 nm to detect Cy3 

labelled cDNA.  One scan for each dye type was selected for analysis.  The 

criteria for selection included; the scans with the highest average signal 

intensity; no saturated features (spots) and a low background signal.  The 

fluorescent signal intensities of both dyes for each spot were measured using 

Quantarray Microarray Analysis software (PerkinElmer Life Sciences).  

Features were located with a 20 x 20 spot-grid with 224.5 nm spacing 

between spots, a 160 nm standard feature diameter, grid elasticity was set to 

10 and feature elasticity was set to 50.  The grid and feature elasticity is a 

feature of the Quantarray Microarray Analysis software, and allows automatic 

location of the sub-arrays (grids) and features which fall outside the expected 

location as dictated by the grid and feature spacing.  Adaptive quantification, 

which allows the spots intensity to be measured from spots of different sizes, 

was performed with a maximum feature diameter of 190 nm with background 

measurements taken between 220 to 265 nm from the centre point (Figure 

3.20.a). 

 

 

 

Figure 3.20.a. Red area represents feature data area (variable 160-190 
nm diameter), blue portion represents background area measured from 
220-265 nm from the centre-point of the feature. 
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Data processing was performed using the web-accessible MicroArray 

Data Suites of Computed Analysis (MADSCAN) software (Le Meur et al., 

2004).  MADSCAN then follows a stepwise data processing method 

encompassing:  

 

Filtration. Median background intensities (taken from the 220-265 nm 

reading) of replicate spots are subtracted from each of the corresponding 

foreground intensities (taken from the 160-190nm feature data area).  

Features which exhibited high diameter variance, signal below background 

level or signal above saturation level were removed from further analysis. 

 

Normalisation.  Genes showing the lowest variation in expression 

between the two conditions were selected by an iterative Rank Invariant 

Method algorithm (Tseng et al., 2001).  This method ranks all of the spot 

intensities in the Cy3 and Cy5 channels and the spots where the difference in 

rank is less than 5 are deemed to be non-variant.  The data for the remaining 

genes are subjected to an intensity dependent normalisation to the non-

variant genes using the Lowess fitness algorithm (Dudoit et al., 2000).  

Lowess fitness stands for Locally weighted estimated and uses the 

geometrical mean (A) and a constant (k) to minimize signal-dependent non-

linear bias between the two intensity levels, Cy3 (G) and Cy5 (R).  Madscan 

performs a within-print tip (local) normalization with a smooth parameter 

(defined as the fraction of data used to smooth at each data point) f = 0.40. 

 

Scaling. After normalisation, scaling procedures were applied to bring 

the variances of filtered and normalised expression values among replicate 

spots to the same variation level. 

 

Outlier detection.  Due to the small number of replicates available in 

microarray experiments, the use of modified statistical tests are required to 

evaluate the consistency of replicates within one array and between replicated 

arrays. A median absolute deviation test (modified z-test) and Grubb’s test (p 

= 0.01) were used to detect outliers which in the case of microarray 
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experiments represent the genes showing significant changes in expression 

between the two conditions. 
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The median absolute deviation test is a measure of the spread of data, 

similar to standard deviation (Burke, 2001), and is expressed as;  
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The Grubb’s test specifically detects outliers in data.  If the largest 

value in a data set is suspected of being an outlier then; 
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where xn is the largest value, x1 is the smallest value, x is the mean of 

all the n values and s is the sample standard deviation of all n values.  The 

critical value for the test performed depends on the sample size n and the 

selected significance level 

 

Data integration.  The replicated data points are summarised using 

mean and coefficient of variation values per slide and between replicated 

slides. This step consolidates the data sets and allows the comparison 

between them. 

 

Hierarchical clustering with Cluster and Tree View software 1.6.6 

(Eisen et al., 1998) was performed with the SSH array data to obtain a good 

visual data representation. These programs permit the clustering of genes 

with similar expression profiles based on calculation of difference between 

gene expression levels.  
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Fold change method (Draghici, 2003) was used for selection of 

differentially expressed genes. Using the fold change method, genes were 

considered up-regulated if the ratio between salinity stress and control 

normalised expression values was reproducibly (including dye-swap) higher 

than 1.5 (mRNA more abundant in fish encountering salinity stress) and under 

expressed if the ratio was lower than 0.6 (mRNA is less abundant in fish 

encountering salinity stress).  

 

Statistical analysis was performed using Student's t-test to determine 

the significance of inter-individual differences between gene expression in fish 

in the FW to SW acclimation experiments. 
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3.27 Real-time Quantitative PCR Assays 

 

cDNA was synthesised separately for each eel using brain total RNA.  Total 

RNA (1 µg) was combined in a PCR tube with 1 µl random hexamers (10 µM), 1 µl 

dNTPs (10 µM each) and made up to a final volume of 12 µl with H2O.  Random 

hexamers must be used when using RPL-P0 as the endogenous control as the 

encoding RNA does not have a poly (A) tail.  The mixture was incubated at 65 ºC for 

5 min to denature the nucleic acid and then cooled rapidly on ice for 2 min.  To the 

mixture was added 4 µl 5 x Superscript II reaction buffer (Invitrogen, Paisley, UK), 2 

µl DTT (0.1 M) and 2 µl RNAseOUT (40 U/µl, Invitrogen) and then incubated at 25 ºC 

for 2 min to allow primers to anneal.  Superscript II reverse transcriptase was then 

added and the mixture incubated at 25 ºC for 10 min, then at 42 ºC for 50 min and 

finally at 70 ºC.  RNA was removed by adding 1 µl E. coli RNAse H (2 U/µl, 

Invitrogen, Paisley, UK) and incubating at 37 ºC for 30 min.  cDNA was purified by 

ethanol precipitation as per Section 3.5 and then resuspended in 20 µl H2O. 

 

QPCR Primers (Table 4.24.a) were synthesised (MWG Biotech, Ebersberg, 

Germany) and checked to see if they amplified a single product by visualising 

amplicons on ethidium bromide stained agarose gels (see Section 3.5) and by 

analysis of dissociation curves.   To ensure that there was no amplification of non-

specific products or amplification from genomic DNA, control QPCR reactions were 

performed for each primer set which contained no template or an RNA template.  The 

spent reactions were analysed with gel electrophoresis and dissociation plot analysis 

and primer sets which gave multiple products were discarded and new primers 

designed. 

 

Real time PCR reactions contained ABI SYBR Green Master Mix (12.5 µl, 2 

x), forward and reverse primers at final concentrations of 70 – 300 nM, 1 µl cDNA 

template and made up to 25 µl with H2O.  Reactions were performed using the ABI 

Prism 7000 apparatus (Applied Biosystems, Warrington, UK).  Identical cycling 

conditions were used for all primers (initial activation at 95 °C 15 min, then 45 cycles 

of 95 °C 15 s, 60 °C 1 min) followed by a dissociation analysis from 60 °C to 95 °C.  

Reactions were performed in duplicate or triplicate. 
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4.0 Results 

 

The results chapter is presented in 28 sections.   

 

Sections 4.1 and 4.2 contains the metadata results and RNA quality 

analysis. 

 

Sections 4.3 – 4.13 contain the results and experimental timeline for 

the creation of the various cDNA libraries created during the project. 

 

The microarray hybridisations and data analysis are presented in 

Sections  4.14 - 4.17. 

 

The identification of genes showing significant changes in expression 

and subsequent sequencing and gene ontology data are presented in 

Sections 4.18 – 4.21.   

 

Sections 4.22 –4.29 contains results pertaining to the QPCR validation 

of microarray results and target gene characterisation. 
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4.1  Metadata 

 

 The following physiological data and biological observations, 

collectively known as metadata, were recorded for each fish used in the 

experiment; whole fish weight; tissue weight; presence of parasites and signs 

of disease (e.g., lesions on skin or internal organs); disturbance and kill times.  

Although these factors are not directly related to the microarray experiment 

this metadata may provide explanatory variables for anomalies in the results.  

Collection of this data is also a requisite for the MIAME standards (Brazma 

2001), which detail the minimum information about a microarray experiments 

to be included in any publications.  Additionally, blood samples from the silver 

eels were taken directly after decapitation and plasma properties (Figures 

4.1.a - f) were recorded; plasma osmolality (assessed using a vapour 

pressure osmometer (Wescor Inc., Logan, US)); plasma protein 

concentration; plasma cortisol concentration ; plasma angiotensin II; plasma 

Cl- (measured with a Chloride Analyser (Corning, Essex, UK); plasma Na+ 

and K+ concentrations (determined using flame photometry (Corning Model 

450).   
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Figure 4.1.a - f.  Plasma properties for silver eel groups.  Bars represent mean 
values for groups of six identically treated fish.  Error bars indicate standard 
deviation from the mean.  Statistics are a pairwise t-test assuming 
heteroschedastic variation. NS = Non significant, * = 95 % significance level 
and ** = 99 % significance level. 
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4.2. RNA Quality Analysis 

 

The quality of all RNA samples was verified using both denaturing gel 

electrophoresis (Figure 4.2.a) and by capilliary electrphoresis (Figure 4.2.b).  

Degraded RNA samples were discarded 

 

  

Figure 4.2.a.  Total RNA run on a denaturing agarose gel. Top row; lanes 
1-6 = renal kidney from yellow 7day FW acclimated eel, lanes 7-12 = 
renal kidney from yellow 7day SW acclimated eel, lanes 13-18 = gill from 
silver 7day FW acclimated eels.   Bottom row; lanes 1-6 = gill from silver 
7day SW acclimated eels, lanes 7-12 = gill from silver 5 month FW 
acclimated eels, lanes 13-18 = gill from silver 5 month SW acclimated 
eels. 
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Figure 4.2.b.  RNA analysis by Agilent Bioanyliser representing an intact 
(i) and a degraded (ii) total RNA sample. 
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4.3 Overview of cloning method evolution 

 

A cDNA library refers to a complete, or nearly complete, set of all the 

transcribed genes contained within a particular organism or cell/tissue type.  

Genes are transcribed from genomic DNA as intronless mRNA but as all RNA 

is inherently fragile, being susceptible to ubiquitous RNases, reverse 

transcription is used to convert the mRNA into the more stable cDNA.   

 

Genes are present in different frequencies in genomes and their 

transcription can vary by several orders of magnitude.  The most prevalent 

mRNA species in a typical somatic cell comprises ~10 transcripts, each of 

which is represented by approximately 5000 copies whilst there are around 

15,000 rare mRNAs that are represented by only 1-15 copies per cell (Bishop 

et al., 1974; Davidson and Britten, 1979). Rare mRNAs are even more under 

represented in the brain which exhibits very high transcript diversity (Hahn 

and Owens, 1988; Snider and Morrison-Bogorad, 1992).  This can cause 

redundancy problems for microarray experimenters as the most abundant 

genes can be repeated many times on a single microarray whereas the rare 

genes might not be represented at all.  Normalisation and subtraction 

procedures can be utilised to maximise the number of unique genes 

represented in a cDNA library (Bonaldo et al., 1996). 

 

The creation of a high quality cDNA library with low redundancy is the 

cornerstone of a good microarray project and as such a large amount of effort 

was invested in optimising the procedure.  The original goal was to create a 

full length cDNA library with low redundancy for each of the four tissues under 

examination (brain, gill, intestine and kidney).  Making high quality cDNA 

libraries, however, proved difficult and a large amount of time was invested in 

developing a new method of producing cDNA libraries with a large average 

insert size and low redundancy.  A library with low redundancy reduces the 

number of repeated clones, maximising mRNA representation on the array 

and minimising time and money wasted on characterisation of repeated 
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clones.  The larger insert size allows easier identification and characterisation 

of each clone.   

 

The GatewayTM system, based on the site specific recombination 

properties of bacteriophage lambda (Landy, 1989), was chosen as the basis 

for the protocol.  The mRNA is first subjected to reverse transcription and 

second strand synthesis to create double stranded complementary DNA 

(cDNA).  Primers and adapters used in this process confer an attB 

recombination site to each end of every cDNA created which is then inserted 

into a plasmid via an enzyme-mediated recombination, during which the attB 

sites recombine with two corresponding attP recombination sites in a plasmid 

(Figures 3.7.a and 3.7.b).  The recombination site names, attB and attP, refer 

to attachment sites of bacteriophage lambda in the bacterial DNA and the 

corresponding site in the phage sequence and it was the biology of this 

system which inspired the current technique (Campbell, 1961).  The 

recombined plasmid is then transfected into a host Escherichia coli by 

electroporation whereupon the bacteria can be spread on selective media and 

grown allowing individual colonies containing unique cDNAs to be selected. 

 

The plasmids used also contain a ccdB gene between the two attP 

sites and a kanamycin resistance gene (KanR) outwith the attP sites (Figure 

4.4.c and 4.5.d).  Thus when the recombination reaction occurs the ccdB 

gene is replaced in the plasmid by the cDNA insert.  This allows for both 

positive and negative selection of the donor vector in E. coli following 

recombination and transformation.  Media containing kanamycin are used to 

positively select for transformants containing the plasmid.  The ccdB gene 

encodes the CcdB protein which interferes with E. coli DNA gyrase thus 

inhibiting bacterial growth and allowing negative selection. 
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4.4 SMART cDNA PCR amplified library 

 

The first attempt at creating a cDNA library was based around the 

cDNA preparation method known as SMART which stand for “Switching 

Mechanism At the 5' end of RNA”.  Two primers were used during cDNA 

synthesis, G-Super-Oligo-d(T) and GSO2, which confer nested primer sites 

for PCR amplification of cDNA and attB1 and attB2 sites for recombination 

with the plasmid (Figure 3.7.a). 

 

G-Super-Oligo-d(T) 

GGG GAC CCA CTT TGT ACA AGA AAG CTG GGT AGG CGG CGC CAC TCC TGG AGC CCG 

T(T)26  

 

 

GSO2 

GGG GAC AAG TTT GTA CAA AAA AGC AGG CTA AGG CAG TGG TAA CAA CGC AGA GTA CGC 

GGG 

 

Figure 4.4.a.  G-Super-Oligo-d(T) primer with the nested cDNA 
amplification primer site, EnvGenIntOligo, underlined and the SMART-
attB2 recombination site highlighted in green.  GSO2 primer with G-
MCS2 nested primer cDNA amplification site underlined, the SMART-
attB1 recombination site is highlighted in yellow and the GGG site which 
allows template switching during first strand synthesis is highlighted in 
red. 

 

The mRNA, oligonucleotides, dNTPs and reverse transcriptase are 

mixed together and the G-Super-Oligo-d(T) primer binds to the poly A tail at 

the 3' end of mRNA, thus initiating reverse transcription.  The poly A tail is a 

long sequence of adenine nucleotides (often several hundred) added to the 

"tail" or 3' end of the mRNA by polyadenylate polymerase (Higgs et al., 1983).  

Upon reaching the 5’ end of the RNA template the RT adds several cytosine 

residues to the 3’ end of the newly synthesised cDNA molecule, to which the 

complementary GGG section of GSO2 binds.  The RT then switches 

templates from the mRNA to GSO2 and incorporates the complement of 

GSO2 at the 3’ end of the first strand cDNA molecule.  The first strand cDNA 
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is therefore a complement of the mRNA but with attB1 and attB2 adapters at 

either end.  Only full length cDNAs will be viable as both attB sites are 

required for the Gateway reaction.  The cDNA is amplified by PCR using 

SMART-attB1and SMART-attB1primers which has the combined effect of 

making the second strand of cDNA and increasing the amount of cDNA.  The 

whole process is shown schematically in Figure 4.4.b. 

 

`  

mRNA  (A)n   3’ 

(A)n   
(T)27 –attB2 

Template switch to GSO2 
and incorporation of 
complement into first 
strand cDNA  

ATTB1 
attB1-CCC 

(T)27 –attB2 

5’ 

attB1-GGG 
attB1-CCC 

mRNA 

mRNA 
cDNA 

cDNA 

PCR amplification with 
ATTB1 and ATTB2 
primers 

(T)27 –attB2 

(T)27 –attB2 
       ATTB2 

+ 

attB flanked cDNA 

cDNA 

G-Super-Oligo-d(T) binding and 
first strand cDNA synthesis 
followed by binding of GGG 
region GSO2 

attB2 attB1 

attB1-GGG
CCC

 
 

Figure 4.4.b. attB flanked cDNA synthesis using SMART™ cDNA PCR 
amplifiction method. 

 

 

The resultant attB flanked cDNA was passed through a sepharose 

column to isolate the cDNA over 400bp in length.  Size selected cDNA was 

then cloned into the plasmid pDONR221 by site specific recombination (attB x 

attP) (Figure 4.4.c).  This process is mediated by the enzyme integrase and 
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host integration factor (Landy, 1989).  E. coli (GeneHog, Invitrogen, Paisley, 

UK) were transfected with the recombined vector and grown on media 

containing kanamycin. 

 
 

Figure 4.4.c. Insertion of attB flanked cDNA into pDONR221 via 
recombination with attP sites.  The section of the plasmid encoding the 
ccdB and chloramphenicol resistance gene (CmR) genes is replaced with 
the attB flanked cDNA. 

 

 

The libraries obtained with this method were characterised by small 

insert sizes (<1 kb) and, as only full length cDNA should be created, this 

suggests that only a fraction of the mRNA species present in each tissue was 

being represented.  At this stage Invitrogen were consulted about the vector 

pDONR221, and it transpired that this vector was not intended for use in 

cDNA library creation.  Although promoted as being capable of accepting 

cDNA inserts of up to 180 kb the vector consistently preferentially accepted 

the smallest clones available, a fact not presented in the pDONR221 product 

brochure.  Invitrogen suggested utilising the CloneMiner™ kit which uses the 
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same basic protocol but with a new vector, pDONR222 which was designed 

specifically for cDNA library production. 
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4.5 CloneMiner™ cDNA library 

 

The CloneMiner™ kit (Invitrogen, UK) uses the same principles as the 

SMART™ cDNA PCR amplified library detailed in Sections 3.6 and 4.4.  The 

procedures differ in that the attB flanked cDNA is made in a different way and 

a different plasmid and E. coli strain are used.  The CloneMiner oligo d(T) 

attB2 primer has a biotin molecule at the 5’ end and the attB2 site is 

highlighted (Figure 4.5.a).  The oligo d(T) section binds the poly A tail of 

mRNA, priming first strand synthesis by reverse transcriptase.  Second strand 

synthesis is performed by E. coli DNA polymerase 1 before the cDNA is blunt-

ended by T4 DNA polymerase.  The attB1 adapter is double stranded and 

phosphorylated at the 5’ blunt end (Figure 4.5.a).  This allows it to be blunt-

end ligated to the double stranded cDNA by E.coli DNA ligase.  The attB1 

adapter is only ligated at the 5’ end of the sense strand of the cDNA as the 

biotin at the 5’ end of the attB2 site prevents the attB1 adapter ligation at the 

3’ end of the cDNA.   

 

CloneMiner™ Oligo d(T) attB2 primer  

5′-Biotin.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGT(T)19-3′ 

 

 

CloneMiner™ attB1 adapter 

5′-TCGTCGGGGACAACTTTGTACAAAAAAGTTGG-3′ 

     3′-CCCCTGTTGAAACATGTTTTTTCAACCp-5′   

 

Figure 4.5.a.  Biotinylated CloneMiner™ Oligo d(T) attB2 primer with 
attB2 site highlighted in green.  Phosphorylated CloneMiner™ attB1 
adapter with attB1 site highlighted in yellow. 
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The diversity of cDNA species produced in this way is potentially 

limited as the cDNA is only made from the 3’ end of mRNA.  Any mRNA 

species lacking a poly (A) tail, due to degredation or shearing during handling, 

would not be represented.  In an attempt to address this potential bias an 

additional first strand primer (random attB2 primer) was created with a 6 base 

wobble (N6) replacing the oligo d(T) sequence (Figure 4.5.b).   

 

CloneMiner™ Random attB2 primer 

5′-Biotin.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGT(N)6TGCCTG-3’ 

 

Figure 4.5.b.  CloneMiner™ Random attB2 primer containing a 6-base 
variable region highlighted in red, a 6-base anchor highlighted in blue 
and the attB2 site is highlighted in green. 

 

The variable (N)6 site has the potential to bind to any complementary 

site along the length of a particular mRNA.  The (N)6 site could, however, bind 

to any complementary site on contaminating, non-messenger RNA carried 

over during the mRNA extraction; such as ribosomal RNA.  In an attempt to 

limit this, the bases TGCCTG were added to the 3’ end of the primer.  

Statistically a sequence 6 bp long should occur every 4096 bp but on testing 

various eel gene sequences (CFTR, NKCCl, Na+K+-ATPase) it was found to 

occur approximately every 800 bp – 1 kb.  The complement to the sequence 

TGCCTG was not found in 18S or 28S rRNA sequences available for A. 

anguilla, nor any other 18S or 28S sequences from teleost species.  The 

random attB2 primer was used in parallel with the oligo d(T) attB2 primer to 

make two cDNA libraries as summarised below (Figure 4.5.c). 
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mRNA 

(A)n 

(T)20attB2-Biotin 

First strand 
synthesis 

Second strand 
synthesis 

attB1 adapter 
ligation 

attB2-Biotin attB1 

Size selection and BP recombination 

attB2-Biotin 

(A)n 

GTCCTG(N)6attB2-biotin 

Intact mRNA 

Size selection and BP recombination 

attB2-Biotin 

mRNA without poly (A) tail 

attB2-Biotin attB1 

 

Figure 4.5.c.  Production of attB flanked cDNA using CloneMiner™ Oligo 
d(T) attB2 or Random attB2 primers from mRNA with or without a poly 
(A) tail, respectively, using the CloneMiner™ protocol.  The attB1 and 
attB2 sites are highlighted in yellow and green respectively. 

 

 

The attB flanked cDNA made with the oligo d(T) and random primers 

was cloned into the plasmid pDONR222 (Figure 4.5.d) by recombination 

mediated by the enzyme Clonase™.  As in the previous method the attB sites 

flanking the cDNA recombine with the attP sites in the plasmid, inserting the 

cDNA in place of the ccdB and chloramphenicol resistance (CmR) genes 

(figure 4.5.b). 
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Figure 4.5.d. Insertion of attB flanked cDNA into pDONR222 via 
recombination with attP sites. 

 

 

The two cDNA libraries created had a larger average insert size than 

the SMART™ cDNA PCR amplified library we prepared previously.  Average 

size was approximately 1.2 kb for the Random primed library and ~2 kb for 

the Oligo primed library (Figure 4.5.e).  This result confirmed that the 

CloneMiner™ protocol could be used to create cDNA libraries with an 

adequately large insert size.  The protocol required to be adapted in order to 

allow normalisation and subtraction protocols to be applied at a later stage.   
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Figure 4.5.e. CloneMiner™ Library, 48 clones made with CloneMiner ™ 
random attB2 primer (top two rows), 48 clones made with CloneMiner ™ 
oligo d(T) attB2 primer (bottom two rows). 
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4.6 Second generation (2G) CloneMiner™ libraries 

 

Second generation CloneMiner™ oligo and random libraries were 

made as detailed in section 3.8.  The standard attB adapters from the 

CloneMiner™ kit which are conferred to the cDNA during reverse transcription 

and second strand synthesis, do not lend themselves to manipulations such 

as cDNA normalisation or subtraction. The sequences of the first strand 

synthesis oligo d(T) attB2 primer and attB1 adapter were altered to include 

internal primer sites (underlined portion) within the attB sites (highlighted 

portion) to give a set of second generation (2G) primers (Figure 4.6.a).  The 

internal primer sites allow the cDNA to be amplified and the resulting 

amplicons will not have the sites necessary for attB x attP recombination and 

thus cannot insert into the pDONR222 plasmid. 

 

 

2G Oligo d(T) attB2 Primer (NattB2dT primer) 

5′-B.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAACCGTCACGTAC(T)20-3′ 

 

 

2G Random attB2 primer (NIntattB2primer)  

5′-B.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAACCGTCACGTAC(N)6TGCCTG-3’ 

 

 

2G attB1 adapter (NIntattB1primer) 

5′-TCGTCGGGGACAACTTTGTACAAAAAAGTTGGGTGCATCAGCTGGACTAG-3′ 

     3′-CCCCTGTTGAAACATGTTTTTTCAACCCACGTAGTCGACCTGATCp-5′   

 

Figure 4.6.a.  Biotinylated 2G Oligo d(T) attB2 primer and biotinylated 2G 
Random attB2 Primer with attB2 sites highlighted in green and internal 
primer sites for NIntattB2primer underlined.  Phosphorylated 2G attB1 
adapter with attB1 site highlighted in yellow and internal primer site for 
NIntattB1primer underlined. 

 

cDNA biotinylated on the first strand and radiolabelled on the second 

strand was created to monitor strand associations during the subsequent 
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normalisation protocol.  The libraries were amplified by PCR as per standard 

protocol (see Section 3.5) using the internal primers (NattB2dT and NIntattB1 

primers, annealing temperature 58 ºC) to examine the size of the cDNAs and 

to ensure both attB sites were present, as only cDNA with both attB adaptors 

at the ends would amplify.  The cDNA from the Oligo and Random libraries 

was intact, in that it had both attB sites, and exhibited a large range of sizes 

from 0.5 to 10 kb (Figure 4.6.b).  These cDNA libraries were subjected to 

normalisation procedures, as detailed in Section 4.7, to redress the imbalance 

in frequency of different genes. 

 

 

 

1 2 3 

 

 

Figure 4.6.b. Lane 1, 1 kb DNA Ladder (NEB).  Amplified cDNA from the 
Oligo (Lane 2) or Random (Lane 3) libraries made using the 
CloneMiner™ protocol with 2G primers and adapters. 
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4.7 Normalisation 

 

Genes are present in different frequencies in genomes and similarly 

their transcription rates vary by several orders of magnitude.  Normalisation 

aims to reduce this redundancy by removing a high proportion of the most 

abundant mRNAs without deleting any genes from the library.   

 

One experimental procedure designed to accomplish this was to heat 

denature double stranded cDNA to create single stranded cDNA and then 

cool this down slowly in the presence of 50 % formamide.  The rehybridisation 

is stopped once ~50 % of the cDNA has reannealed by snap cooling the 

cDNA.  Re-association kinetics demand that when the cDNA rehybridises the 

most prevalent species will hybridise at a faster rate than those which are less 

abundant (James and Higgins, 1985; Ko, 1990; Patanjali et al., 1991; 

Weissman, 1987).  The double stranded cDNA is then selectively removed 

and a normalised cDNA library remains.  To remove a particular fraction of 

DNA from a solution, in this case the cDNA which has rehybridised, there 

must be a method of targeting only the desired species and the biotin label on 

the first strand of each cDNA provides such a target.  Biotin binds to avidin 

and its homologues with a very high affinity (Kd=1015M, (Green, 1975; Hiller et 

al., 1987) and solid supports coated in avidin can be used to bind and 

selectively remove biotin labelled compounds from a solution.  Thus, avidin is 

used to remove all biotin-conjugated DNA which includes the double stranded 

cDNA and the first strand cDNA, leaving only the non-biotinylated, second 

strand of cDNA which did not rehybridise.  The second strand cDNA is then 

converted into double stranded cDNA and cloned as described in Section 3.8.  

The resultant clone set should contain a library of cDNAs which are within 

approximately one order of magnitude of each other.  

 

Initially, Streptavidin Magnesphere® Paramagnetic Particles (SA-PMPs, 

Promega, UK) were used to target and remove biotin-conjugated DNA 

molecules from the solution.  The irregular shaped particles are coated with 

streptavidin, an avidin homologue isolated from Streptomyces avidinii, and are 



 112 

promoted as being able to bind biotin-conjugated nucleic acid at a rate of 

0.75-1.25 nmol biotinylated oligo(dT)/ mg particles.  The SA-PMPs can be 

removed from a solution using a strong earth magnet as they exhibit a dipole 

moment when in a magnetic field.  See section 3.9 for normalisation protocol 

details.  This normalisation procedure was not used, however, as control 

experiments showed problems with the SA-PMPs as described below. 

 

Before the normalisation protocol (Section 3.9) was implemented, a 

control experiment was performed to test the efficiency of the SA-PMPs and 

to see how long complete binding of the biotinylated cDNA would take.  Three 

identical samples of biotinylated, radiolabelled kidney cDNA (1 µg) in a 100 µl 

solution containing 1 x SSPE were prepared (without formamide or heat 

denaturation).  An aliquot of SA-PMPs (0.6 mg) pre-washed three times in 1 x 

SSPE was applied to each of the cDNA samples and incubated at room 

temperature either for 30 min, 1 hour or 2 hours, following which the beads 

were removed using a magnet.  The amount of radiolabelled cDNA either 

bound to the beads or remaining in the supernatant was determined by liquid 

scintillation counting (Cerenkov radiation).  The experiment showed, however, 

that the SA-PMP could not remove all the biotinylated, radiolabelled cDNA.  

The assay showed that the maximum amount of biotinylated cDNA that could 

be removed from a solution was ~30 % regardless of incubation time. 

 

This had four possible meanings; 

i.  The streptavidin binding sites on the beads are saturated.   

Only a fraction of the biotin-conjugated cDNA is available to the 

streptavidin due to steric hindrance. 

The cDNA is not fully biotinylated suggesting that the reverse 

transcriptase primer may not be fully biotinylated. 

The beads bind non-specifically to cDNA rather than to biotin. 

 

To address the first possibility two identical biotinylated, radiolabelled 

cDNA samples (1 µg) in 100 µl 1 x SSPE were exposed to 50 µg and 100 µg 

SA-PMPs in otherwise identical conditions.  The capture rates were 37 % and 
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31 % respectively suggesting that binding site saturation was not a plausible 

explanation. 

 

The second possibility was investigated by heat denaturing the 

radiolabelled, biotinylated cDNA to release any secondary structure within the 

cDNA and to denature the two strands prior to binding with the streptavidin 

beads. Three identical samples (1 µg) of the same kidney radiolabelled, 

biotinylated cDNA prepared above were diluted in 1 x SSPE buffer (100 µl).  

Samples 1 and 2 were heated to 95 ºC for 2 min and then either cooled slowly 

to room temperature to allow strand annealing (Sample 1) or snap cooled on 

ice to maintain the cDNA in a denatured state (Sample 2).  Sample 3 was a 

control and was maintained at room temperature.  Samples were then 

combined with SA-PMPs (0.6 mg, pre-washed three times with 200 µl 1 x 

SSPE buffer) and incubated at room temperature (Samples 1 and 3) or at 0 

ºC (Sample 2).  SA-PMPs were separated from the supernatants using a 

strong earth magnet and the amount of radiolabelled cDNA either bound to 

the beads or remaining in the supernatants was determined by liquid 

scintillation counting (Cerenkov radiation).  Samples were heated denatured 

and then cooled slowly to room temperature or snap cooled on ice followed by 

binding to SA-PMPs at room temperature or 0 ºC respectively.  Relative 

capture rates were determined by liquid scintillation counting (Cerenkov 

radiation, Table 4.7.a).  

 

 

Table 4.7.a.  Biotinylated DNA capture rate by SA-PMP exposed to 
different heating regimes.  The maximum capture rate was 32 %, 
regardless of incubation conditions. 

 

Sample Heat Treatment Capture Rate (%) 

1 95 ºC 2 min, cooled slowly to 25 ºC 32 

2 95 ºC 2 min, snap cooled on ice 28 

3 Control - No heating 25 
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The expected result was that sample 1 would show the highest capture 

rate as the radiolabelled second strand is allowed to re-anneal with the 

biotinylated first strand prior to binding to the SA-PMPs.  Sample 2 was 

expected to show the lowest amount of radiolabelled cDNA associated with 

the beads as snap cooling and incubating the cDNA on ice throughout the 

incubation with the SA-PMP should keep the two strand of cDNA separate.  

Sample 3 was a control sample which was not heated.  Comparing sample 1 

to the control sample 3, only a small increase (7 %) was seen in capture rates 

after heat denaturation.  An interesting result is shown when samples 1 and 2 

are compared; there is only a 4 % decrease in capture rate following snap 

cooling of the cDNA.  Snap-cooling should, however, have kept the cDNA 

single stranded and all of the radiolabelled, non-biotinylated second strand 

cDNA should have remained in the supernatant rather than binding to the SA-

PMPs.   

 

The third possible explanation for the poor binding efficiencies was that 

the cDNA is not fully biotinylated.  This would suggest that the first strand 

cDNA reverse transctriptase primers may not be fully biotinylated.  This was 

discussed with MWG Biotech, the manufacturers of the biotinylated primers.  

They explained that the primers were purified by HPLC and as such it was 

very unlikely that they were not fully biotinylated.  The biotin molecule is, 

however, very close to the DNA backbone and steric hindrance may occlude it 

from the SA-PMP even in when the DNA strands are completely free from 

secondary structure.  This does not explain why 28 % of the radiolabelled 

second strand cDNA is bound to the SA-PMPs even after full denaturation 

and dissociation from the biotinylated first strand.  The possibility that the 

cDNA is not labelled with biotin could have serious consequences, as the 

main function of this is to block the ligation of the attB1 adapter, with follow on 

effects for the recombination reaction with the plasmid.  To confirm whether 

the cDNA in the Random and Oligo libraries was flanked at either end by 

attB1 and attB2 sites, cDNA from each library was subjected to a standard 

PCR (see Section 3.5) with either NIntattB1primer the NIntattB2primer 

specific primers alone or together using an annealing temperature of 58 ºC 
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(Figure 4.7.a).  If there was amplification with the NIntattB1primer alone then 

there must be an attB1 site at both ends of the cDNA molecules, which would 

imply that the cDNA did not possess the blocking biotin molecule on the first 

strand of cDNA. 
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Figure 4.7.a.  Lane 1:1 kb DNA Ladder (NEB). Lane 2: Oligo library cDNA 
amplified with NIntattB1primer and NIntattB2primer primers together, 
Lane 3: Oligo library cDNA amplified with NIntattB1primer alone, Lane 4: 
Oligo library cDNA amplified with NIntattB2primer primer alone, Lane 5: 
Random cDNA with NIntattB1primer and NIntattB2primer primers 
together, Lane 6: Random library cDNA amplified with NIntattB1primer 
alone, Lane 7: Random library cDNA amplified with NIntattB2primer 
primer alone. 

 

The “random” and “oligo” library cDNAs amplify with both primers and 

NintattB1primer primer alone (Figure 4.7.a).  This implies there is an attB1 site 

at both ends of the cDNA indicating that some or all of the cDNA in both 

libraries does not have a biotin label which would otherwise block the attB1 

adapter ligation.  The Random cDNA also amplifies with the NIntattB2primer 

primer alone which could be a facet of the first strand primer as the (N)6 

portion of this primer could bind to the first strand cDNA during second strand 

synthesis, thus an attB2 site would be present at both ends. 

 

Further tests were carried out to ascertain how much biotinylated cDNA 

could be removed using the SA-PMPs.  First strand cDNA was made using 

the 2G Oligo d(T) attB2 primer as per normal protocol except for the inclusion 
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of 10µCi α32P dCTP in the reaction mixture.  Second strand synthesis and 

attB1 adapter ligation was not performed.  The cDNA was heat denatured, 

snap cooled on ice and combined with the SA-PMPs and allowed to bind for 

30 min.  Less than 2% biotinylated, radiolabelled cDNA was bound to the 

beads.  This result should have raised more suspicion than it did at the time. 

What it actually shows is that single stranded biotinylated cDNA is not bound 

by SA-PMPs.  The poor binding was attributed to steric hindrance caused by 

occlusion of the biotin by the cDNA, a situation which has been previously 

described (Sabanayagam et al., 2000).  To overcome the suspected steric 

hindrance new primers were created with a 14-carbon spacer arm linked to a 

biotin molecule at the 5’ end of the nucleotide but no improvement in binding 

efficiency was observed (results not shown). 

 

Other unsuccessful attempts to improve the binding efficency included 

using a heat stable reverse transcriptase (C.therm.  RT) isolated from 

Carboxydothermus hydrogenoformans so that cDNA could be created at 

higher temperatures to limit creation of secondary structures which may have 

occluded the biotin (data not shown).  Another protocol involved binding the 

biotinylated first strand cDNA synthesis primers to the SA-PMPs and making 

the cDNA in situ on the beads which was also unsuccessful (data not shown). 

 

During the various attempts to optimise the efficiency of biotin captures 

by SA-PMPs discussions with members of collaborating group (Prof Balment, 

Manchester University, UK) showed that they too were having great difficulty 

in optimising the normalisation process using a similar procedure and the 

decision was subsequently taken to abandon it in favour of a subtraction 

protocol. 
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4.8 Post-biotinylation of cDNA  

 

At the point of changing from normalisation to subtraction protocols 

there were still fundamental problems with the extraction of biotinylated DNA 

from a solution using SA-PMPs, fundamental to both processes.  This issue 

was addressed by changing to post-biotinylation of the cDNAs after synthesis 

using Label IT Biotin Labelling Kit (Mirus, WI, USA) as opposed to the 

previous method of incorporation of biotin via the first strand cDNA synthesis 

primer.  Post-biotinylation refers to the fact that the biotinylation occurs after 

the cDNA has been synthesised. 

 

At this time our laboratory was undergoing a refurbishment and 

radioactive material handling facilities were not available so non-radiolabelled 

DNA was used and quantified by visualisation on ethidium bromide stained 

agarose gels. 

 

The Label IT Biotin Labelling Kit (Mirus, WI, USA) was evaluated by 

preparing 5 mg biotinylated kidney cDNA (see section 3.10).  This was then 

added to 0.6 mg SA-PMPs (previously washed three times with 300 µl 1 x 

SSPE buffer) and incubated for 15 min at room temperature.  The SA-PMPs 

were isolated with a magnet and the supernatant was removed to a new tube.  

The beads were then washed three times with 200 µl H2O and each wash 

was kept so that any DNA not aspirated with the supernatant and not bound 

to the SA-PMPs could be quantified.  The supernatant and washes were 

separately subjected to DNA precipitation and the pellets resuspended and 

visualised on an agarose gel (Figure 4.8.a). 
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1  2   3    4     5      6       7 

 

 

Figure 4.8.a. Lane 1 1kb DNA Ladder (NEB, Hitchin, UK), Lane 2 kidney 
cDNA prior to biotinylation, Lane 3 kidney cDNA post-biotinylation, Lane 
4 Supernatant of biotinylated kidney cDNA treated with SA-PMPs, Lanes 
5, 6 and 7 contain washes 1-3 respectively. 

 

 

Successful biotinylation of the DNA is clearly shown by the gel shift 

(Lane 3, Figure 4.8.a) as biotin-labelled DNA runs slower than non-labelled 

DNA on the gel.  This is a function of the biotin linkage group covalently 

bound at the N7 position on guanine bases along the length of the DNA 

molecules (Figure 4.8.b).  Following incubation with the SA-PMPs the labelled 

DNA appears to have been completely removed from the solution (Lane 4) 

and no DNA is seen in the washes (Lanes 5-7).  This indicated that this 

method can be used to separate biotinylated DNA from non-labelled DNA 

using a subtraction method. 
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Figure 4.8.b.  A guanine base following Mirus biotinylation.
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4.9 Subtraction 

 

The normalisation process proved too difficult to optimise and was thus 

superseded by a subtraction hybridisation protocol Subtraction has many 

similarities to normalisation; both processes aim to reduce redundancy in the 

library and both utilise the specific binding of cDNA strands.  They differ 

because subtraction aims to totally remove a subset of cDNAs in a population 

but normalisation tries to minimise the huge differences in cDNA copy number 

without deleting any species from the library (Bonaldo et al., 1996).  The 

subtraction protocol was based on a method described in Carninci et al., 

(2000).   

 

Subtraction uses two pools of cDNA, Tester and Driver.  The Tester is 

the cDNA library from which a fraction of the cDNAs has to be removed 

whereas the Driver represents the solution containing the cDNAs to be 

removed from the library.  Driver is normally amplified from cDNA clones 

which have already been isolated and is biotinylated allowing it to be targeted 

and removed from a solution following hybridisation with the Tester cDNA.  

Tester is combined with excess amounts of the Driver.  The cDNA is 

denatured to create single stranded DNA and then allowed to completely 

reanneal.  The cDNA which is present in the Tester and also represented in 

the Driver will, due to reassociation kinetics (James and Higgins, 1985),  be 

more likely to rehybridise with the excess complementary Driver strand than 

with the complementary Tester strand.  Tester cDNA not represented in the 

Driver cDNA sample can only rehybridise with the complementary Tester 

strand.  All biotin-labelled DNA is then removed from the solution; this 

includes heterologous cDNA with one strand each from Tester and Driver.  

The cDNA left in the solution is cloned and the resultant library contains only 

Tester cDNA not present in the Driver cDNA.  Optimising subtraction should 

be easier than normalisation as an excess of Driver, containing genes already 

collected, can be hybridised with Tester and the binding reaction allowed to 

go to completion. 
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The aim was to create a cDNA library from one tissue and then 

sequentially subtract this tissue from the next, with each subsequent Driver 

pool containing the cDNA of clones already isolated from the previous 

libraries as outlined in the flowchart (Figure 4.9.a).  The Driver pools were 

also supplemented with biotinylated amplicons of 18S and 28S rRNA 

fragments which had been isolated from the brain cDNA library. 
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Driver Pool: Biotinylated kidney + 18/28S 

Redundant Intestine 
cDNA removed Intestine 

subtracted 
cDNA 

Intestine 
Tester cDNA 

4000 clones collected from 
subtracted Intestine library 

Driver Pool: Biotinylated Intestine + Kidney + 18/28S 

Gill Tester cDNA 

Gill subtracted cDNA 

4000 clones collected from 
subtracted Gill library 

Redundant Gill cDNA removed 

Driver Pool: Biotinylated Intestine + Gill + Kidney + 18/28S 

Brain subtracted 
cDNA 

Brain Tester 
cDNA 

4000 clones collected from 
subtracted Brain library 

Redundant brain cDNA 
removed 

Kidney Tester 
cDNA 

Kidney subtracted 
cDNA 

Driver Pool: Biotinylated Brain + Intestine + Gill + Kidney + 18/28S 

Redundant intestine cDNA 
removed 

4000 clones collected from 
subtracted Kidney library 

2000 clones collected from 
Kidney library 

Figure 4.9.a. Flow chart summarising the sequential subtraction 
process. 
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Cloning of 18S and 28S rRNA fragments.  When examining the A. 

anguilla brain 2G random cDNA library on an agarose gel, two over-

expressed bands were found.  In an attempt to remove these from the library 

during subtraction, the bands were cloned and subsequently found to be 18S 

and 28S rRNA gene fragments (see section 3.11).  In an attempt to subtract 

these clones from subsequent libraries, amplicons for each were synthesised 

by colony PCR using 2G internal primers (NintpDONR222anti 5′-

GTTGGGTGGAACCGTCACGTAC-3’and NpDONR222sense 5′-

GTTGGGTGGAACCGTCACGTAC-3’, annealing temperature 58 ºC) as per 

normal PCR conditions (Section 3.5).  These amplicons were then used to 

supplement the Driver pools. 

 

Driver production.  Initially, a CloneMiner™ cDNA library was created 

from the first tissue (kidney) using the 2G Oligo d(T) attB2 primer. (Figure 

4.9.b).  

 

   1  2       3 

 

 

Figure 4.9.b. Lane 1 1kb DNA  Ladder (NEB, Hitchin, UK); Lane 2 1µl 
kidney Driver cDNA solution; Lane 3 0.5µl kidney Driver cDNA solution. 

 

The intestine– kidney subtraction process was attempted following 

three protocols where denaturation/re-annealing was mediated by either pH, 
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temperature with formamide or formamide alone (see Sections 3.13, 3.14 and 

3.15 respectively) 

 

This first, pH directed, subtraction used 150 ng intestine Random 

cDNA as Tester and 5 µg biotinylated Driver cDNA made from a 2G kidney 

CloneMiner library library using a pH directed hybridisation protocol in which 

strongly alkaline conditions were used to denature the DNA and re-annealing 

was brought about by neutralisation.  Only 48 ng cDNA remained after 

subtraction which is lower than recommended (75 –100 ng) in the 

CloneMiner™ manual for cloning but nevertheless cloning was attempted.  

Less than 1/3 of the resultant clones which grew on LB agar containing 

kanamycin contained a vector with an insert (data not shown).  The 

ElectroMAX™ DH10B™ T1 Phage Resistant Cells should not grow on media 

containing kanamycin as resistance is only conferred after transfection by an 

appropriate vector.  The vector, however, contains a ccdB lethal gene which 

kills the E.coli unless it has been replaced during recombination with a cDNA.  

Thus, only cells containing a vector with an insert should grow.  In practice 

there is always a percentage of cells which grow but do not show a positive 

insert because they have developed kanamycin resistance or had it conferred 

by transfection with a vector containing the resistance gene but lacking the 

ccdB gene.  The low numbers of positive clones was attributed to the amount 

of Tester cDNA (48 ng) which remained after the subtraction being 

significantly less than the 150 ng recommended for efficient cloning by the 

CloneMiner™ protocol.  It was suspected that the rapid pH change could 

allow non-specific binding of Driver and Tester, resulting in insufficient cDNA 

being left for cloning. 

 

The second attempt at the intestine – kidney subtraction used 

temperature to denature the Driver and Tester cDNA, which was then snap-

cooled on ice before the addition of formamide and warming of the solution to 

room temperature.  The formamide was present to slow the rate of DNA re-

annealing.  A higher concentration of Tester DNA (500 ng) and the same 

amount of Driver (5 µg) was used to increase the likelihood that sufficient 

cDNA would remain after subtraction.  After the subtraction there was ~80 ng 
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cDNA left, which should have been enough for successful cloning, but no 

colonies grew.  This was possibly due to formamide being carried over with 

the cDNA into the cloning step and inhibiting the recombination reaction.  

 

The intestine – kidney subtraction was thus repeated a third time, again 

using heat directed denaturation of Driver and Tester.  No formamide was 

added, instead the Tester/Driver mix was cooled slowly from 95 ºC to 25 ºC at 

a rate of 5 ºC/min.  Approximately 80 ng cDNA remained following subtraction 

and this protocol seemed to have proved successful in that a large number of 

colonies grew after cloning and the majority contained a vector with an insert 

(Figure 4.9.c).  The majority of clones were ~500 bp, with the largest clones 

being ~ 2.5 kb which was smaller than anticipated and indicative of a poor 

quality cDNA library. 

 

 

 

Figure 4.9.c. Colony PCR of 96 clones from the subtracted CloneMiner™ 
random intestine cDNA library made using the protocol: “heat directed 
hybridisation in the absence of formamide”. 

 

 

This experiment was replicated and in parallel to this, a second 

subtraction was performed using the same Driver cDNA (kidney cDNA, 18S 

and 28S rRNA amplicons) but the Tester was CloneMiner™ oligo intestine 

cDNA, which was prepared using non-biotinylated 2G oligo d(T) attB2 

primers.  It was hoped that the subtracted oligo library would have a larger 

average insert size but both of the resultant libraries were of a similar quality 
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to the library shown in Figure 4.9.c in that they had small inserts (data not 

shown). 

 

One possible reason for the sub-optimal results of this protocol was the 

possible binding of biotinylated Driver cDNA to non-complementary strands of 

Tester which would then be removed during the extraction of biotinylated 

species.  This could occur as the ends of the Driver and Tester are 

complementary as they had been amplified with the same primer sites.  This 

could lead to removal of Tester cDNA not represented in the Driver cDNA 

pool, although why this would reduce the size of the cDNA library is not clear.  

This potential issue was addressed by the creation of third generation (3G) 

primers for library production with Spe I restriction sites (Figure 4.9.d) 

incorporated to allow complete adapter removal from Driver cDNA, therefore 

removing homologous sites shared by Tester and Driver which could facilitate 

binding of non-complimentary cDNA species. The nested internal primer sites, 

NintpDONR222anti and NpDONR222_sense (underlined portions) reflect 

incorporation of the restriction site but the attB sites remained unchanged 

(highlighted portion).  A 3G bi-directional primer was designed for colony PCR 

purposes which binds outside the attB recombination site (Figure 4.9.d). 
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3G Oligo d(T) attB2 Primer (NpDONR222anti2) 

5′-14-CSA.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAACCGTCACTAGT(T)19-3′ 

 

 

3G Random attB2 primer (NpDONR222anti2)  

5′-14-CSA.GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGTGGAACCGTCACTAGT(N)6TGCCT-3’ 

 

 

3G attB1 adapter (NintpDONR222sense2) 

5′-TCGTCGGGGACAACTTTGTACAAAAAAGTTGGGTGCATCAGCTGGACTAGT-3′ 

     3′-CCCCTGTTGAAACATGTTTTTTCAACCCACGTAGTCGACCTGATCA-P-5′   

 

3G Bi-directional Colony PCR primer 

5′-GACTGATAGTGACCTGTTCGTTGCAACAAATTG-3′ 

 

Figure 4.9.d. 3GOligo d(T) attB2 primer and 3G Random attB2 primers, 
both have a 5’ 14-carbon spacer arm, an attB2 site highlighted in green 
and an internal primer site for NpDONR222anti2 primer which is 
underlined.  Phosphorylated 3G attB1 adapter with attB1 site highlighted 
in yellow and an internal primer site for NpDONR222sense2 underlined.  
All 3G primers and adapters have an Spe I restriction site (ACTAGT) 
denoted in bold.  The 3G Bi-directional Colony PCR primer binds to the 
pDONR222 vector outside the attB recombination sites on both sides of 
the cDNA insert.
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4.10 Non specific DNA binding by SA-PMPs 

 

The subtraction protocol initially used SA-PMP as they had been 

shown to remove all the DNA, labelled using the Mirus Label IT kit, from a 

solution (see Section 4.8).  Following continued lack of success of the various 

subtraction processes, further investigation of the SA-PMPs was carried out 

and they were found to non-specifically bind substantial amounts of double-

stranded cDNA.  During these investigations, two hybridisation reactions were 

arranged, each containing α32P dCTP labelled eel kidney cDNA subtracted 

with either excess Carcharhinus leucas (bull shark) rectal gland cDNA or 

excess biotinylated eel kidney cDNA.  The bull shark rectal gland cDNA was 

used to make up the cDNA concentrations in both reactions to the same 

concentration.  The cDNA strands in both reactions were dissociated by 

applying strongly alkaline conditions followed by neutralisation to allow re-

annealing before the reactions were treated with SA-PMPs (see Section 

3.17).   

 

Theoretically the reaction containing the C. leucas rectal gland cDNA 

and radiolabelled eel cDNA should show no binding to the SA-PMPs as there 

is no biotinylated cDNA.  In the other reaction, the radiolabelled eel cDNA 

should hybridise to the biotinylated cDNA and subsequently bind to the SA-

PMP.  In practice, 83 % non-biotinylated A. anguilla kidney radiolabelled 

cDNA bound to the SA-PMPs when hybridised to biotinylated A. anguilla 

kidney cDNA.  In the absence of any biotinylated cDNA, however, 64 % of 

non-biotinylated radiolabelled A. anguilla kidney cDNA bound.  Thus the SA-

PMPs bound biotinylated cDNA but they also bound non-biotinylated cDNA 

non-specifically (Figure 4.10.a).   
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Figure 4.10.a. Non-specific cDNA binding by SA-PMPs shown as percent 
α32P labelled kidney cDNA (non-biotinylated) bound to SA-PMPs after 
hybridisation with either complementary biotinylated A. anguilla kidney 
cDNA or non-complementary, non-biotinylated C. leucas rectal gland 
cDNA. 

 

 

An additional experiment was performed to see if the non-biotinylated 

cDNA associated with the SA-PMPs could be recovered using various 

solvents (see Section 3.18).  Only sodium acetate significantly reduced the 

amount of cDNA bound to the SA-PMPs but more than 30 % cDNA still 

remained bound indicating that the SA-PMPs were non-specifically binding 

cDNA (Figure 4.10.b). 
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Figure 4.10.b. Removal of non-biotinylated α32P-labelled cDNA non-
specifically bound to SA-PMPs using various sovent washes; NaCl (5 
M); sodium acetate (3 M, pH 4.6); 70 % ethanol; 100 % ethanol; New 
Wash (Anachem Ltd, Luton, UK) or H2O. 

 

 

Similar problems with SA-PMPs have been reported elsewhere 

(Murray, 2005).  These problems include; low binding efficiency of biotinylated 

cDNA by SA-PMPs; non-linear relationships between levels of SA-PMP 

binding of biotinylated cDNA with either concentration of beads or length of 

incubation time; and limited removal of non-biotinylated cDNA non-specifically 

bound to SA-PMPs.  Consequently, alternative avidin supports were sought. 
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4.11 NeutrAvidin™ biotin binding protein agarose beads: Specific 

and non-specific DNA binding capacity 

 

Following the discovery that SA-PMPs bind DNA non-specifically, 

NeutrAvidin™ biotin-binding protein agarose beads (NABs) from Pierce 

Biotechnology (Perbio Science UK Ltd., Cramlington, UK) were tested as an 

alternative avidin support.  A preliminary experiment tested the capacity of 

NABs for binding biotin labelled DNA and non-specific DNA binding.  This was 

essentially a repeat of the experiment which showed non-specific DNA 

binding by SA-PMPs.  Radiolabelled eel kidney cDNA was hybridised with 

excesses of biotinylated eel kidney cDNA or non-biotinylated cDNA from C. 

leucas before incubation with aliquots of Neutravidin™ (see Section 3.19).  

The NABs were shown to bind ~90 % of radiolabelled DNA which had been 

hybridised with a 10 or 100 fold excess of biotinylated cDNA (samples 3 and 

4, figure 4.11.a).  Losses of radiolabelled A. anguilla kidney DNA hybridised 

with non-biotinylated C. leucas rectal gland cDNA during the process were 

only ~18 % (sample 1, figure 4.11.a). 

 

These results showed that the NABs could be used for removal of the 

majority (~90 %) of biotinylated DNA.  At a Driver:Tester ratio of 10:1, heat 

denaturation at 95C for 2min prior to a reannealing period at 70 ºC overnight 

increased the efficacy of removal of Tester DNA from the solution by 26 %.  In 

the control experiment 18 % of the radiolabelled A. anguilla kidney DNA 

remained associated with the NABs.  During the application of this protocol to 

make a subtracted library this would be the equivalent of losing 18 % Tester 

cDNA.  These losses would be acceptable and are probably due to the 

physical nature of the NAB slurry which makes it extremely difficult to remove 

all the supernatant following centrifugation.   
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Figure 4.11.a. Tracking of α32P labelled tester cDNA samples 1-4 (see 
table 3.14.a) after incubation with biotinylated eel kidney Driver cDNA or 
non-biotinylated C. leucas rectal gland cDNA.  Samples 1-4 were 
exposed to five NAB aliquots in order to bind biotinylated cDNA.  The 
Total: Supernatant column refers to total radiolabelled cDNA which 
remained in the supernatant after exposure to the five NAB aliquots.  
The Total: NAB Aliquots column represents the total amount of 
radiolabelled cDNA associated with all five NAB aliquots. 

 

 

The protocol was adapted by the inclusion of spin-filters to separate the 

supernatant and NABs.  This both streamlined the process and improved the 

efficiency (see Section 3.20).  The two supernatants showed only trace levels 

of radiolabelled cDNA remaining after treatment with NABs (sample 1 = 0 

cpm, sample 2 = 40 cpm, figure 4.11.b).  The first aliquot of NAB bound the 

most radiolabelled, biotinylated cDNA (16624 and 17907 cpm for samples 1 

and 2 respectively) with the second and third aliquots binding between 40.5 – 

130.5 cpm.   
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Figure 4.11.b.  Binding of A. anguilla α32P dCTP labelled kidney cDNA to 
NABs.  Supernatant was subsequently removed using three spin-
columns in series and the amount of A. anguilla α32P dCTP labelled 
kidney cDNA associated with each NAB aliquot was quantified by liquid 
scintillation counting (Cerenkov radiation).  

 

 

Thus far, no usable cDNA libraries had been created although good 

progress was being made in optimising the process.  In addition to making the 

oligo and random libraries it was decided that a second, more established 

approach to making subtracted cDNA libraries would expedite results.  The 

method chosen was suppressive subtraction hybridisation (SSH) cDNA 

libraries, a method that has been used for studies of osmoregulation in the 

teleost, tilapia (Orechromis mossambicus) (Fiol and Kultz, 2005). 
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4.12 Suppressive Subtraction Hybridisation cDNA libraries 

 

The theory behind SSH libraries is similar to the subtraction protocols 

already described in Sections 4.3 and 4.4.  Tester and Driver cDNAs are 

hybridised, and the hybrid sequences are then removed.  Consequently, the 

remaining cDNAs represent genes that are expressed in the Tester yet absent 

from the Driver.  SSH libraries were created for each of kidney, intestine, brain 

and gill in collaboration with Dr. S. Kalujnaia, University of St Andrews, UK.  

 

For each library, three hybridisations were performed.  In the first two 

hybridisations, an excess Driver cDNA was combined with each sample of 

Tester.  The samples were heat denatured and cooled to allow to annealing, 

generating four potential strand arrangements; a, b, c, and d (Figure 4.12.b).  

The concentration of high- and low-abundance sequences is equalised 

among the type a molecules because re-annealing is faster for the more 

abundant molecules due to the second-order kinetics of hybridisation (James 

and Higgins, 1985; Ko, 1990).  At the same time, type a molecules are 

significantly enriched for differentially expressed sequences while cDNAs that 

are not differentially expressed form type c molecules with the Driver.  The 

first two hybridisations were combined to form the third hybridisation but the 

cDNA was not denatured this time.  Only the remaining equalised and 

subtracted single-stranded Tester cDNAs can re-associate to form new type e 

hybrids.  These new hybrids are double-stranded Tester molecules with 

different ends, which correspond to the sequences of Adaptors 1 and 2R.  

Fresh, denatured Driver cDNA was also added to further enrich fraction e for 

differentially expressed sequences.  The adaptor ends were filled in by DNA 

polymerase, resulting in type e molecules with different annealing sites for the 

nested primers on their 5' and 3' ends.  The sample, containing the entire 

population of molecules (a-e) was then subjected to PCR with PCR primer 1.  

During this PCR only type e molecules were exponentially amplified.  Type a 

and d molecules are missing SSH PCR primer 1 annealing sites, and thus 

cannot be amplified. Most of the type b molecules form a pan-like structure 
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that prevents their exponential amplification, whilst type c molecules have 

only one primer annealing site and amplify linearly.  
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SSH Oligo d(T) cDNA synthesis primer 

5’-TTTTGTACAAGCTT30N1N-3’ 

 

SSH Adaptor 1 

5’-CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT-3’ 

    3’-GGCCCGTCCA-5’ 

 

SSH Adaptor 2R 

5’-CTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT-3’ 

  3’-GCCGGCTCCA-5’ 

 

SSH PCR primer 1 

5’-CTAATACGACTCACTATAGGGC-3’ 

 

SSH Nested PCR primer 1 

5’-TCGAGCGGCCGCCCGGGCAGGT-3’ 

 

SSH Nested PCR primer 2 

5’-AGCGTGGTCGCGGCCGAGGT-3’ 

 

Figure 4.12.a.  Sequences of the SSH Oligo d(T) cDNA synthesis primer, 
SSH Adaptor 1, SSH Adaptor 2R, Bi-directional SSH PCR primer, SSH 
Nested PCR primer 1 and SSH Nested PCR primer 2.  There is a section 
in both SSH Adaptor 1 and 2R which allows annealing of the SSH PCR 
primer 1 to their complement once the recessed end have been filled in. 
When Adaptors 1 and 2R are ligated to Rsa I-digested cDNA, the Rsa I 
site is restored. 
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PCR amplification using the bi-
directional SSH PCR primer 1

 
Figure 4.12.b.  Schematic diagram of suppression subtractive 
hybridisation (SSH). Adapted from PCR-Select™ cDNA Subtraction Kit 
User Manual (Clontech, Basingstoke, UK) which is reproduced in 
appendix 2.  See text for brief explanation. 
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Colonies (1536) were randomly picked from each tissue-subtracted 

library and 50 clones were randomly selected.  Four subtracted cDNA libraries 

were constructed from brain, gill, intestine and renal plus head kidney based 

on the suppressive subtraction hybridization technique (Diatchenko et al., 

1996) where cDNAs produced from each tissue (Tester) were subtracted 

against an excess of cDNA prepared from the three other tissues (Driver) to 

obtain the representative collection of tissue-specific expressed sequence 

tags (ESTs).  The libraries were prepared from tissue specific pooled RNA 

samples collected at 6 hours, 2 and 7 days and 5 months from SW and FW 

acclimated silver eels.  In total, 196 RNA samples (four tissues from 48 fish) 

were used in these studies.  Clones (1536) were randomly selected from each 

of the four SSH libraries and amplified by high throughput colony PCR and 

amplicons visualised on large agarose gels.  Colonies showed almost 100% 

positive inserts, ranging in size from 200-1300bp (Figure 4.1.a).  Inserts were 

generally small because the cDNA was restriction digested with Rsa1 before 

cloning meaning that full-length clones were unlikely.  Subsequently the 

amplified clones were sequenced to measure redundancy.  The redundancy 

levels were found to be 26 %, 21 %, 11 % and 18 % for brain, intestine, gill 

and kidney libraries respectively.   
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Figure 4.12.c.  A representative sample of the SSH library.  The samples 
are amplified from 96 samples from the brain SSH library using the bi-
directional SSH primer (see section 3.5).  Cloning efficiency is close to 
100 % and inserts range from 200-1300 bp.  The centre lane of each row 
contains DNA markers (100bp Ladder, NEB, Hitchin, UK) with size labels 
marked on alternate rows. 
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4.13 Creation of the high quality subtracted attB brain library 

 

Tissue specific, subtracted cDNA libraries for gill, kidney, brain and 

intestine were created using SSH and as such the subtraction scheme 

described in Section 4.9 was no longer needed.  Rather than abandoning the 

body of work which had been prepared during the development of these 

protocols, they were instead adapted to create a single brain cDNA library 

containing long/full-length clones exhibiting low redundancy levels. 

 

The brain exhibits very high transcript diversity with rare mRNAs being 

represented very infrequently and as such, using a cDNA library containing 

more clones would increase the likelihood of finding interesting genes (Hahn 

and Owens, 1988; Snider and Morrison-Bogorad, 1992).  In addition, if the 

clones in the new brain library were longer than those in the SSH library, it 

would be easier to identify them via homology with known genes from other 

species.  By using the cDNA clones from the brain SSH library to create 

Driver to subtract the new brain library it was hoped that the redundancy level 

would be significantly lower than the 26 % achieved with the SSH brain 

library.  A similar method was developed using SSH subtracted, biotinylated 

cDNA to enrich a Gillichthys mirabilis cDNA library for hypoxia-induced genes 

(Gracey et al., 2001).  Combining a lower redundancy with a larger number 

and size of clones would lead to a high quality subtracted brain cDNA library.  

This new high quality library, now referred to as the “Subtracted attB Brain 

Library” was to be printed alongside the SSH brain cDNA library creating a 

brain microarray representing ~ 6000 genes to be used primarily for 

examining the differences in gene expression in the brains of yellow and silver 

FW eels.   

 

A largely novel method (Section 3.22) was employed to produce the 

subtracted attB brain library, a high quality brain oligo d(T) primed library 

comprising a representative collection of long/full-length brain-specific ESTs.  

cDNAs produced from brain (Tester) using an adapted CloneMiner Gateway 

protocol (Invitrogen, Paisley, UK) were subtracted against an excess of cDNA 
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prepared from the SSH brain library (Driver) resulting in a library with low 

redundancy.  The subtracted attB brain library was prepared from 48 brain 

RNA samples collected at 6 hours, 2 days, 7 days and 5 months from yellow 

and silver eels acclimated to SW and FW.  Clones (4224) were randomly 

selected from the subtracted attB brain library (subtracted with SSH brain 

clones) amplified by high throughput colony PCR and amplicons visualised on 

1 % agarose gels.  Colonies showed almost 100% positive inserts ranging in 

size from 0.5kb to 10kb indicating that a large proportion were full length 

cDNAs (Figure 4.13.a).   

 

 

 

 

 Figure 4.13.a.  A representative sample of the subtracted attB brain 
library.  The samples are amplified from 96 samples from the subtracted 
attB brain library using the 3G bi-directional SSH primer.  Cloning 
efficiency is close to 100 % and inserts range from 0.5 – 10 kb.  The 
centre lane of each row contains DNA markers (1 kb Ladder, NEB, 
Hitchin, UK) with size labels marked on alternate rows. 

 

 

For each library created, the subtracted attB brain library and SSH 

brain, kidney, gill and intestine libraries, clones were randomly selected for 

sequencing to determine the approximate redundancy levels (Table 4.1.a).  

BLAST sequence analysis indicated the subtracted attB brain library had the 

lowest level of redundancy (4%) with only one clone being repeated twice, 33 
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clones with high homology to known genes, 7 clones with no known 

homology.  The redundancy levels in the SSH libraries were higher (27.1 %, 

20.8 %, 10.4 % and 18.8 % redundancy for brain, intestine, gill and kidney 

libraries respectively). 

 

 

Table 4.13.a.  Estimated library redundancy levels for the subtracted 
attB brain library and the four SSH libraries as calculated from 
sequences of a random, representative sample of clones taken from 
each library. 

 

Library 
Sequences 
analysed 

Number of 
redundant 
 clones 

Redundancy 
(%) 

Subtracted attB 
brain library 43 2 4.2 
Brain SSH 48 13 27.1 
Kidney SSH 48 9 18.8 
Gill SSH 48 5 10.4 
Intestine SSH 48 10 20.8 

 

 

 

Amplicons from the 4224 clones from the subtracted attB brain library, 

the 1536 brain SSH clones and 96 control cDNAs comprising either known eel 

genes or coding regions of genes from other species (detailed in Table 4.2) 

were packed in dry ice and sent to the Liverpool Microarray Facility (The 

University of Liverpool) for printing onto microarrays.
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4.14 RNA amplification for microarray hybridisation 

 

The eel brains is small (<1 g) and as such the amount of extractable 

RNA per fish was very low (3-80 µg per brain).  To compensate for the limited 

material a method of RNA amplification was employed to provide extra RNA 

for the microarray hybridisations.  One method of RNA amplification uses T7 

Phage polymerase to make multiple copies of RNA from a cDNA template in a 

linear reaction so that small quantities (<1 µg) of total RNA can be amplified 

several hundred fold yet maintaining the relative abundances of all mRNA 

species present (Eberwine et al., 1992; Phillips and Eberwine, 1996; 

Vangelder et al., 1990).  Amplification of RNA can increase reproducibility and 

enhance gene discovery when using microarrays (Feldman et al., 2002).  This 

protocol was applied to the brain RNA samples derived from the 5 month 

freshwater acclimated silver eel, and 7 day freshwater acclimated yellow eel 

groups (see Section 3.23 for experimental details). 

 

The first strand synthesis follows the same procedure as the SMART 

cDNA synthesis described previously and is summarised in figure 4.14.b 

below.  Reverse transcription is primed by the T7 oligo d(T) primer (Figure 

4.14.a) to create first strand cDNA.  Upon reaching the 5’ end of the RNA 

template, reverse transcriptase (RT) adds several cytosine residues to the 3’ 

end of the newly synthesised cDNA molecule, to which the complementary 

GGG section of the Template Switch primer binds (Figure 4.14.a).  The RT 

then switches templates from the mRNA to the Template Switch primer and 

incorporates its complement at the 3’ end of the first strand cDNA molecule.  
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Oligo d(T)15-T7 primer 

5’ AAA CGA CGG CCA GTG AAT TGT AAT ACG ACT CAC TAT AGG CGC (T)15 3’ 

 

Template Switch primer 

 5’ AAG CAG TGG TAA CAA CGC AGA GTA CGC GGG 3’ 

 

Figure 4.14.a.  Oligo d(T)15-T7 primer with the T7 nested RNA site 
highlighted in green.  Template Switch primer with the GGG site which 
binds the 3’ end of newly synthesised cDNA. 

 

 

When the reverse transcriptase reaches the 5’ end of the mRNA it 

switches template from the mRNA to the Template Switch primer, the 

complement of which is copied into the first strand of cDNA (Wang et al., 

2000).  Messenger RNA nicks created by RNase H and the Template Switch 

primer bound at the 3’ end of the first strand cDNA primes the second strand 

cDNA synthesis.  The RNA is then degraded by addition of NaOH which is 

followed by purification of the cDNA by ethanol precipitation (see section 3.5) 

before in vitro transcription of the cDNA by T7 phage polymerase.  The end 

product is multiple copies of the mRNA present in the original total RNA 

sample. 



 146 

.

`  

mRNA 
 (A)n   3’ 

(A)n   
(T)15 –T7 

5’ 

TS-GGG 
TS-CCC 

mRNA 
cDNA 

cDNA 

Multiple copies of mRNA 

T7-oligo-d(T) and 
Template Switch primer 
binding followed by first 
strand synthesis 

(T)15 –T7 

T7’ 
T7 

TS-GGG 
TS-CCC 

Second strand cDNA 
synthesis 

mRNA amplification via 
in vitro transcription by 
T7 phage polymerase 

mRNA  (A)n   3’ 

TS-GGG 
TS-CCC 

mRNA is nicked by 
RNase H 

 

Figure 4.14.b.  Schematic representation of the mRNA amplification 
protocol. 
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4.15 Microarray construction 

 

Two types of microarray were constructed, one incorporated only brain 

cDNAs from the subtracted attB brain library clones (4224) and the SSH brain 

library (1536) whilst the other array type incorporated clones (6144) from the 

SSH arrays from the four tissues, kidney, brain, intestine and gill.   

 

The brain array was created with 5896 cDNAs comprising 4224 clones 

from the subtracted attB brain library and 1536 clones from the SSH brain 

library.  The multi-tissue SSH array was constructed with 6144 ESTs, 1536 

from each of the subtracted libraries of brain, gill, kidney and intestine.  Both 

array types were supplemented with an additional 96 control cDNAs 

comprising either known eel genes or coding regions of genes from other 

species (Table 4.15.a).  These 96 genes, isolated from other fish or plant 

species, were used as controls to test the stringency and probe specificities 

under the hybridisation conditions used.  For both arrays, each cDNA was 

printed in three locations to give three technical replicates per slide.  Each 

replicate was divided into 16 sub-arrays, 19 spots wide and 20 spots tall, with 

landing lights (spots which fluoresce) placed at the corners of the replicate to 

aid spot location (Figure 4.15.a).  The arrays were spotted onto GAPS II 

Coated Slides (Corning Incorporated, Corning, NY) by the Liverpool 

Microarray Facility (The University of Liverpool).  Array experiments were 

replicated in dye-swap, meaning that the cDNA sample fluorescently labelled 

with Cy3 in the first (forward) experiment was labelled with Cy5 in the second 

(dye-swap) experiment, and vice versa for the other cDNA (Churchill, 2002).  
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Table 4.15.a. Control genes from plate Aa_BOS_61 incorporated onto 
every microarray used.  Accession numbers are given for gene 
sequences published in public databases.  AQP = aquaporin, CFTR = 
cystic fibrosis transmembrane conductance regulator, SERCA = 
sarco/endoplasmic reticulum Ca2+ ATPase, PMCA = plasma membrane 
Ca2+-ATPase, MDR = multi drug resistance p-glycoprotein, EAE = 
epithelial anion exchanger, NHE = sodium/hydrogen exchanger, HSP = 
heat shock protein.  

 

Well Species Gene isoform 
Accession 

number 
Colony PCR 

primers 
Plasmid 

Bacterial 
Resistance 

A1 
Aspergillus 

nidulans 
Nitrate 
transporter XP_658612 M13* PCR 4 Km, Amp 

A2 
Anguilla 
anguilla 

Na+/K+ ATPase 
α1 X76108 M13* PCRII Km, Amp 

A3 
Anguilla 
anguilla 

Na+/K+ ATPase 
α3 Not published M13* PCRII Km, Amp 

A4 
Anguilla 
anguilla 

Na+/K+ ATPase 
α3 Not published M13* PCRII Km, Amp 

A5 
Anguilla 
anguilla 

Na+/K+ ATPase 
α3 Not published M13* PCRII Km, Amp 

A6 
Anguilla 
anguilla 

Na+/K+ ATPase 
α3 Not published M13* PCRII Km, Amp 

A7 
Anguilla 
anguilla 

Na+/K+ ATPase 
β1 AJ239317 M13* 

pGEMT, 
Xl2bleu Amp 

A8 
Anguilla 
anguilla 

Na+/K+ ATPase 
β3 AJ239316 M13* PCRII-INVF' Km, Amp 

A9 
Anguilla 
anguilla 

Na+/K+ ATPase 
β2 Not published M13* 

pGEMT, 
Xl2bleu Amp 

A10 
Anguilla 
anguilla 

Na+/K+ ATPase 
β2 Not published M13* 

pGEMT, 
Xl2bleu Amp 

A11 
Anguilla 
anguilla 

Na+/K+ATPase 
β4 Not published M13* 

PCRII-
INVFalfa Km, Amp 

A12 
Anguilla 
anguilla 

Na+/K+ ATPase 
β2 Not published M13* 

PCRII-
INVFalfa Km, Amp 

B1 
Anguilla 
anguilla CFTR Not published M13* 

PCRII-
INVFalfa Km, Amp 

B2 
Anguilla 
anguilla CFTR Not published M13* 

PCR blue 2-
1 Km, Amp 

B3 
Anguilla 
anguilla MDR Not published M13* PCR  2-1 Km, Amp 

B4 
Anguilla 
anguilla SERCa Not published M13* pGEMT Km, Amp 

B5 
Anguilla 
anguilla SERCa Not published M13* PCRII-INVF' Km, Amp 

B6 
Anguilla 
anguilla PMCA Not published M13* PCRII-INVF' Km, Amp 

B7 
Anguilla 
anguilla 

Golgi Ca2+ 
ATPase Not published M13* pGEMT Km, Amp 

B8 
Anguilla 
anguilla 

Na+K+2Cl- 
cotransporter CAD92101 M13* 

pGEMT, 
Xl2-MRF' Amp 

B9 
Anguilla 
anguilla 

Na+K+2Cl-  
cotransporter CAD92101 M13* 

pGEMT, 
Xl2-MRF' Amp 

B10 
Anguilla 
anguilla 

Na+K+2Cl- 
cotransporter CAD92101 M13* 

pGEMT, 
Xl2-MRF' Amp 



 149 

Well Species Gene isoform 
Accession 

number 
Colony PCR 

primers 
Plasmid 

Bacterial 
Resistance 

B11 
Anguilla 
anguilla 

Na+K+2Cl-  
cotransporter CAD92101 M13* PCR4 blunt Km, Amp 

B12 
Anguilla 
anguilla 

Na+K+2Cl- 
cotransporter CAD92101 M13* 

pGEMT, 
Xl2-MRF' Amp 

C1 
Anguilla 
anguilla 

Na+K+2Cl-  
cotransporter CAD92101 M13* 

pGEMT, 
Xl2-MRF' Amp 

C2 
Anguilla 
anguilla 

Na+K+2Cl- 
cotransporter CAD92101 M13* PCR4 blunt Km, Amp 

C3 
Anguilla 
anguilla 

Na+K+2Cl 
cotransporter CAD92101 M13* PCR4 blunt Km, Amp 

C4 
Anguilla 
anguilla 

Na+K+2Cl 
cotransporter CAD92101 M13* PCR4 blunt Km, Amp 

C5 
Anguilla 
anguilla 

Na+K+2Cl 
cotransporter CAD92101 M13* PCR4 blunt Km, Amp 

C6 
Anguilla 
anguilla 

 KCl 
cotransporter Not published M13* PCR4 blunt Km, Amp 

C7 
Anguilla 
anguilla 

Na+/Cl-/HCO3-  
exchanger Not published M13* PCR4 blunt Km, Amp 

C8 
Anguilla 
anguilla 

Na+/Cl-/HCO3-  
cotransporter Not published M13* PCR  2-1 Km, Amp 

C9 
Anguilla 
anguilla NHE AJ006917 M13* PCR  2-1 Km, Amp 

C10 
Anguilla 
anguilla EAE1 Not published M13* PCR  2-1 Km, Amp 

C11 
Anguilla 
anguilla EAE2 Not published M13* PCR  2-1 Km, Amp 

C12 
Anguilla 
anguilla EAE3 Not published M13* PCR  2-1 Km, Amp 

D1 
Anguilla 
anguilla NKCC CAD92101 M13* PCR4 blunt Km, Amp 

D2 
Anguilla 
anguilla NKCC CAD92101 M13* PCR4 blunt   

D3 
Anguilla 
anguilla AQP1 AJ564420 M13* PCR4 blunt Km, Amp 

D4 
Anguilla 
anguilla AQP1 AJ564420 M13* PCR4 blunt Km, Amp 

D5 
Anguilla 
anguilla AQP3 AJ319533 M13* PCR  2-1 Km, Amp 

D6 
Anguilla 
anguilla AQP3a AJ319533 M13* PCR4  Km, Amp 

D7 
Anguilla 
anguilla AQP3c Not published M13* PCR4  Km, Amp 

D8 
Anguilla 
anguilla AQP3f Not published M13* PCR4 Km, Amp 

D9 
Anguilla 
anguilla AQP4 Not published M13* PCR4 Km, Amp 

D10 
Anguilla 
anguilla AQP1 

AJ564420 
 M13* PCR4 Km, Amp 

D11 
Anguilla 
anguilla AQP1 

AJ564420 
 M13* PCR4 Km, Amp 

D12 
Anguilla 
anguilla AQP3 

AJ319533 
 M13* PCR4 Km, Amp 

E1 
Anguilla 
anguilla AQP3a 

Not published 
 M13* PCR4 Km, Amp 

E2 
Anguilla 
anguilla AQP3c 

Not published 
 M13* PCR4 Km, Amp 
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Well Species Gene isoform 
Accession 

number 
Colony PCR 

primers 
Plasmid 

Bacterial 
Resistance 

E3 
Anguilla 
anguilla AQP3e 

AJ784153 
 M13* PCR4 Km, Amp 

E4 
Anguilla 
anguilla AQP3 

AJ319533 
 M13* PCR4 Km, Amp 

E5 
Anguilla 
anguilla AQP4 Not published M13* PCR4 Km, Amp 

E6 
Anguilla 
anguilla AQP8 Not published M13* PCR4 Km, Amp 

E7 
Anguilla 
anguilla AQP8 Not published M13* PCR4 Km, Amp 

E8 
Anguilla 
anguilla AQP8b Not published M13* PCR4 Km, Amp 

E9 
Anguilla 
anguilla AQP8b Not published M13* PCR4 Km, Amp 

E10 
Anguilla 
anguilla AQP3F' Not published M13* PCR4 Km, Amp 

E11 
Anguilla 
anguilla AQP3e' AJ784153 M13* PCR4 Km, Amp 

E12 
Anguilla 
anguilla P-type flappase Not published M13* PCR  2-1 Km, Amp 

F1 
Anguilla 
anguilla GAPDH AB075021 M13* PCR  2-1 Km, Amp 

F2 
Anguilla 
anguilla  β-actin DQ493907 M13* PCR  2-1 Km, Amp 

F3 
Anguilla 
anguilla  Uroguanylin Not published M13* PCR  2-1 Km, Amp 

F4 
Anguilla 
anguilla  Renoguanylin Not published M13* PCR  2-1 Km, Amp 

F5 
Anguilla 
anguilla  Guanylin AJ301673 M13* PCR  2-1 Km, Amp 

F6 
Anguilla 
anguilla PepT1 Not published M13* PCT II or 4 Km, Amp 

F7 
Anguilla 
anguilla HSP 70 Not published M13* PGEMT Km, Amp 

F8 
Anguilla 
anguilla 

Antisecretory 
factor  Not published M13* PCT II or 4 Km, Amp 

F9 
Anguilla 
anguilla Prolactin 

X69149 
 M13* PCT II or 4 Km, Amp 

F10 
Anguilla 
anguilla 

Guanylase 
cyclas c Not published M13* PGem Km, Amp 

F11 
Anguilla 
anguilla  Uroguanylin Not published pET32 Xa/lic pET32 Amp 

F12 
Anguilla 
anguilla  Renoguanylin Not published pET32 Xa/lic pET32 Amp 

G1 
Anguilla 
anguilla  Guanylin AJ301673 pET32 Xa/lic pET32 Amp 

G2 
Anguilla 
anguilla Phospholamban Not published M13 

pDONR 
222, Inv Km 

G3 
Anguilla 
anguilla 

Mitochondrial 
DNA AP007233 M13 

pDONR 
222, Inv Km 

G4 
Anguilla 
anguilla 

Laminin 
receptor Not published specific 

pDONR 
222, Inv Km 

G5 
Anguilla 
anguilla 18s rRNA Not published specific 

pDONR 
222, Inv Km 

G6 
Anguilla 
anguilla 

Ribosomal 
protein LS4a Not published M13 

pDONR 
222, Inv Km 
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Well Species Gene isoform 
Accession 

number 
Colony PCR 

primers 
Plasmid 

Bacterial 
Resistance 

G7 
Anguilla 
anguilla  18s rRNA Not published specific 

pDONR 
222, Inv Km 

G8 
Anguilla 
anguilla HSP Not published specific 

pDONR 
222, Inv Km 

G9 
Anguilla 
anguilla 18s rRNA Not published specific 

pDONR 
222, Inv Km 

G10 
Anguilla 
anguilla 

Na+/K+ ATPase 
α1 X76108 M13* PCR 1000 Km 

G11 
Anguilla 
anguilla  18s rRNA Not published M13* 

pDONR 
222, Inv Km 

G12 
Anguilla 
anguilla  28s rRNA Not published M13*, specific 

pDONR 
222, Inv Km 

H1 
Squalus 

acanthias 
Na+/K+ ATPase 
α1 AJ781093 M13* PCR 4 Km, Amp 

H2 
Carcharhinus 

leucas 
Na+/K+ ATPase 
α1 Not published M13* PCR 4 Km, Amp 

H3 
Carcharhinus 

leucas 
Na+/K+ ATPase 
β1 Not published M13* PCR 4 Km, Amp 

H4 
Carcharhinus 

leucas 
Na+K+2Cl-  
cotransporter Not published M13* PCR 4 Km, Amp 

H5 
Carcharhinus 

leucas AQP1e Not published M13* PCR 4 Km, Amp 

H6 
Scyliorhinus 

canicula 
Na+K+2Cl-  
cotransporter Y18919 M13* pGEMT Amp 

H7 
Scyliorhinus 

canicula 
Na+K+2Cl- 
cotransporter Y18919 M13* pGEMT Amp 

H8 
Scyliorhinus 

canicula CFTR Not published M13* pGEMT Amp 
H9 Salmo salar CFTR AF161070 M13* pGEMT Amp 

H10 
Pleuronectes 

flesus MDR-A AJ344049 M13* pGEMT Amp 

H11 
Pleuronectes 

flesus MDR-B Not published M13* pGEMT Amp 

H12 
Arabidopsis 

thaliana 
Nitrate 
transporter NM_114375 M13* PCR4 Km, Amp 
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Figure 4.15.a.  Microarrray printing design showing the three technical 
replicates per slide, each subdivided into 16 sub-arrays.  Red spots 
indicate location of landing lights. 
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4.16 Optimising microarray print quality 

 

Generally the quality of printing by the Liverpool Microarray Facility 

(The University of Liverpool) was very poor and batches of slides were 

regularly discarded as they were unusable.  Initially, test microarrays were 

prepared using cDNA amplified from 96 clones from the brain oligo subtracted 

library.  The cDNAs were printed repeatedly on the same array which was 

then hybridised with brain cDNA from a pool of samples. Analysis of a 

scanned slide at different levels of magnitude revealed various defects.  Spot 

quality was poor at the top left of each replicate which was caused by a 

defective print tip (Figure 4.16.a i).  Spots were also shown to be misaligned 

as shown by the kinks in the columns of spots (Figure 4.16.a ii).  Although 

spot size was non-uniform (Figure 4.16.c iii) each replicate spot in the same 

position in each of the three replicates exhibited consistent size. 
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Figure 4.16.a.  Test array, printed with 96 cDNAs viewed at three levels 
of magnification.  Slide dimensions are 25 x 75 mm.  At low 
magnification (i) the poor print quality of the top left sub-array of each 
replicate is indicated by the arrows.  Medium magnification of the array 
(ii) shows misaligned columns of spots indicated by an arrow.  
Variability in spot size is shown at high magnification (iii). 
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Despite the imperfections in the spot printing, reasonable quality data 

could be expected from arrays of this standard.  When the arrays were printed 

using the entire libraries, however, the print quality deteriorated further.  

Defects were diverse and included overlapping spots, inconsistent printing 

across the array, high or uneven background levels, and poor spot quality 

manifested as black-holes or doughnuts.  Overlapping spots were found at the 

borders of adjacent sub-arrays (Figure 4.16.b).  Spots with a doughnut 

conformation were found on some arrays (Figure 4.16.c).  This normally 

occurs when the cDNA solution spotted onto the microarray dries too quickly 

following printing. 

 

 

 

 

Figure 4.16.b.  An example of overlapping spots shown at the border 
between two sub-arrays as indicated by arrow. 
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Figure 4.16.c.  An example of spots on the brain array with a doughnut 
conformation.  The row indicated by the arrow has three such spots. 

 

 

The uneven printing was observed as banding across each row of sub-

arrays on hybridised slides (Figure 4.16.d).  The bands of higher fluorescence 

are comprised of spots which either have more material printed per feature, or 

the features have different binding properties.  An investigation was 

undertaken to test whether the uneven banding shown in figure 4.16.d was 

due to the amount of cDNA printed per feature or if it could be attributed to 

variable binding characteristics across the array.  A spot check was carried 

out to try and troubleshoot what the Liverpool Microarray Facility were doing 

wrong.  A spot-check involves hybridising Cy3 labelled random 20-mers to a 

microarray, which will cause in turn cause all cDNA spots on the array to 

fluoresce.  The array was not pre-hybridised before hybridisation to the 

fluorescent 20-mers and thus the array will show high background 

fluorescence.  This is also useful as areas of differential background are 

highlighted.  The scan of the spot-check array revealed a similar banding 

pattern to that shown in figure 4.16.d.  Clear bands of low background 

fluorescence are visible on the scan of the spot-check array, indicated by 

arrows on Figure 4.16.e.  These areas of low background contrast with the 

generally high background.  These bands of low background fluorescence 

correspond to the areas of increased spot intensity shown in Figure 4.16.f. 
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Figure 4.16.d.  Uneven microarray printing on the brain array.  The array 
was co-hybridised with fluorescently labelled eel brain cDNA from the 5 
month silver FW and 7 day yellow FW groups.  Arrows indicate bands of 
spots exhibiting higher levels of hybridisation to labelled material. 
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Figure 4.16.e.  Scan showing a single replicate from the spot-check 
array.  A brain array, not subjected to prehybridisation, was hybridised 
with fluorescently labelled (Cy5) random 20-mer oligonucleotides.  The 
arrows indicate four horizontal bands of low background which 
correspond to the bands of high spot intensity shown in figure 4.3.d. 

 

At higher resolution, three bands per sub-array are visible (Figure 

4.16.f).  The top 4 rows show high spot fluorescence and low background.  

The central 11 rows of each sub-array have spots which fluoresce at a slightly 

lower level but have a high background.  The bottom 5 rows of each sub-array 

have spots which show low fluorescence combined with a high background. 
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and low background 
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Low spot fluorescence  
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Figure 4.16.f. Sub-array from the brain array subjected to the spot-
check.  Three levels of print quality are visible 

 

We communicated our findings to the Liverpool Microarray Facility who 

revealed that arrays were printed over the course of three days and that the 

three levels of banding would correlate to their spots printed on each of the 

three days.  The disparity of quality between spots printed on separate days 

was attributed to the gradual degradation of the lysine coating of the slides 

which occurs once they are removed from the packaging which contains a 

protective atmosphere.  Subsequently the arrays were remade with all spots 

being printed in a single day which improved quality to an adequate level 

(figure 4.16.g) and these arrays were used in the final hybridisation 

experiments.  As a consequence of the various defects found with the printing 

the brain arrays were reprinted four times and the SSH arrays more than 10 

times.  Despite repeated attempts to aid the Liverpool Microarray Facility with 

troubleshooting problems the printing was never optimised.  To keep the 

project progressing, sub-standard arrays were used which compromised the 

experiments as many spots were completely absent, reducing both the 

quantity and quality of data. 
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Figure 4.16.g. A brain oligo array exhibiting relatively even fluorescence 
across the slide. The array was co-hybridised with fluorescently labelled 
eel brain cDNA from the silver 5 month FW acclimated group and the 
yellow 7 day FW acclimated group. The array was printed in one 
continuous run on a single day.
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4.17 Validation of array reproducibility 

 

The reproducibility of successive array experiments was assessed by 

monitoring genes, including a number of known genes such as the Na,K,2Cl 

cotransporter (NKCC).  Replicate microarrays were hybridised with the same 

cDNA samples over several days and the expression values across all the 

repeated NKCC features on the arrays was monitored.  The average 

intensities from three triplicate spots recorded for each of seven NKCC clones 

across six replicate arrays showed that the results were reproducible between 

successive microarray experiments (figure 4.17.a). 
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Figure 4.17.a. Assessment of the inter- and intra-array variability in 
levels of expression recorded for the Na, K, 2Cl-cotransporter (NKCC) 
mRNA in the intestine of FW-acclimated fish. cDNAs were pooled from 6 
FW acclimated fish and on six separate days a sample of the pooled 
cDNAs was labelled, as detailed in section 3.17, before being hybridised 
to 6 independent microarrays which contained 7 different clones of 
NKCC. The Y axis represents the log of fluorescence intensity recorded 
and the X axis represents the average intensity values for the seven 
different cDNAs of NKCC spotted in triplicate across the microarrays.

R2=0.9 
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4.18 Brain microarray results: Comparison of brain gene expression 

profiles between 7 day FW yellow and 5 month FW acclimated silver eels.   

 

Ideally, gene expression in the 7 day FW acclimated yellow eels would have 

been compared to the 7 day FW acclimated silver eels but unfortunately the RNA for 

the latter samples was degraded and unsuitable for use.  The RNA from the brains of 

5 month FW adapted silver eels was chosen as a replacement.  It was felt that 

modulation of gene expression in response to the eel being transferred from the 

holding tanks to the experimental tanks and to the disturbance experienced during 

draining and refilling of tanks would be minimised.  The metadata (Section 4.1) did 

not reveal anything to suggest that the yellow and silver groups were significantly 

different, other than their developmental state.  A non-paired t-test (assuming 

heteroskedastic variance) shows there to be no significant difference in circulating 

levels of the known stress response hormone, cortisol, between the yellow 7 day FW 

adapted and silver 5 month FW adapted eels (p = 0.74).  Both groups were caught 

and killed at very similar times during the day, however the silver group was 

processed in April 2002, whilst the yellow group was processed in November 2002 

(Table 4.18.a) 
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Table 4.18.a.  Capture and kill times for the 7 day FW yellow and 5 month FW 
adapted silver eel groups. 

 

Catch time Kill time 
Fish 

Silver Yellow Silver Yellow 

1 2.39pm 2.39pm 2.47pm 2.42pm 
2 3.07pm 3.07pm 3.09pm 3.09pm 
3 3.30pm 3.28pm 3.35pm 3.31pm 
4 3.54pm 3.48pm 3.58pm 3.51pm 
5 4.16pm 4.09pm 4.23pm 4.11pm 
6 4.40pm 4.34pm 4.46pm 4.36pm 

 

 

The brain microarray was co-hybridised with fluorescently labelled cDNAs 

derived from amplified eel brain total RNA from the 7 day FW adapted yellow group 

and the 5 month FW adapted silver group.  The yellow and silver eel cDNA was 

labelled with Cy3 and Cy5 respectively.  Subsequently the experiment was repeated 

in dye-swap in which the exact procedure was repeated except the cDNA labels Cy3 

and Cy5 were reversed. 

 

At a given laser intensity and PMT gain, the signal intensity from Cy3 

fluorescence is normally greater than that from the Cy5 fluorescence.  In an attempt 

to compensate for this, the data for the yellow-silver comparison was analysed twice 

and will be referred to as “analysis 1” and “analysis 2”.  Analysis 1 used identical 

scanning intensities in all instances, the laser output: PMT gain ratio was 68 %: 68 % 

for both forward and dye-swap experiments.  For analysis 2, the Cy5 scans chosen 

had a higher laser intensity and PMT gain than the Cy3.  Scan settings in analysis 2 

for the forward experiment were; laser output: PMT gain ration Cy3 65 %: 65%, Cy5 

68 %: 68 %, and for the reverse experiment, Cy3 63 %: 63%, Cy5 68 %: 68 %.  

These scans showed similar average fluorescence in an attempt to compensate for 

the difference fluorescence of Cy3 and Cy5.  The calculated changes in expression 

level of genes were very similar between analysis 1 and 2 showing that the 

MADSCAN normalisation and data treatment gave consistent results with data 

obtained from scans at different intensities. 

 

Data was analysed using MADSCAN.  Initially the background fluorescence is 

subtracted from the foreground intensities from the Cy3 and Cy5 channels.  Data 

then undergoes log2 transformation which uncouples the mean intensity from the 
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variance. Visualisation of the variance is much clearer following log2  transformation 

and fold changes around low intensities become comparable to high intensities 

(figure 4.18.a). 
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Figure 4.18.a. Cy5 intensities against Cy3 intensities before and after log2 data 
transformation (analysis 1, non-normalised data, 7 day yellow FW brain vs 5 
month silver FW brain, forward experiment).  Before log2 transformation the 
variance is directly correlated with intensity but following transformation the 
variance at all intensities becomes comparable.  
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M vs. A plots (Dudoit et al., 2000) were created to view ratios and 

fluorescence intensity at the same time (Figures 4.18.b and 4.18.c) in order to 

identify spot artefacts and detect intensity dependent patterns in the log ratios before 

and after normalisation.  M stand for minus whilst A stands for add, a reference to the 

way in which they are calculated from the log fluorescence values; 

 

M is the log2 intensity ratio for a given spot; 

M =  log2 (Cy3 / Cy5) =  log2 Cy5 - log2 Cy3.   

 

A is the mean log2 spot intensity in both the Cy3 and Cy5 channels; 

A = (log2 Cy5 + log2 Cy3) / 2.   

 

M vs A plots show non-linear unwanted dependence between ratios and 

fluorescence.  The trendline in each M versus A plot is a lowess fitness curve which 

is applied to a selected set of non-differentially expressed genes.  Non-differentially 

expressed genes were selected by an iterative Rank Invariant Method algorithm 

(Tseng et al., 2001).  The algorithm is expressed as; 

  

For the first loop: 

S0 ≡ {g:│rank (Cy5g) −rank (Cy3g)│< p × G & l <rank[(Cy5g +Cy3g )/2]< 

G−l}  

 

For iteration i to the kth 

Si ≡ {g :g εSi−1 &  │rankgεSi −1 Cy5g −rankgεSi −1 Cy3g│ < p×│Si−1│}  

 

g is the gene being tested for rank variance, Cy5g and Cy3g are the 

fluorescent intensities, p = 0.05, G is the highest rank, I is the rank threshold = 10 

(i.e. ± 5), Si−1 is the number of genes in set Si.  The iteration stops at the kth step 

when │Sk│ ≡│Sk −1│, where the set of genes Sk is the rank invariant set. 

 

This algorithm separately ranks all spots in the Cy3 and Cy5 channels 

according to the intensity.  Spots in the highest (G-I) ranks are discounted as they 
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may be approaching saturation.  A given spot (g) is selected for inclusion in the set of 

non-differentially expressed genes (Sk) if the assigned rank in Cy3 and Cy5 differs 

less than the rank threshold (± 5 ranks).  

 

The lowess fitness curve, a local, non-parametric regression which stands for 

Locally Weighted Estimate, is fitted to this set of invariant genes.  The remaining 

(variant) spot data are then normalised to this curve.  This allows a differential 

normalisation factor to be applied to M depending on spot intensity, allowing the non-

linear bias in the ratio to be accounted for.  In addition, each sub-array in a 

microarray is printed with a different pin so there is an additional spatial variable in 

the normalisation equation which accounts for any variance in the data which is print-

pin dependent.  The normalisation curve function is intensity-dependent, using A, the 

geometric mean of the intensities.   

 

Log2 Cy5/Cy3        log2Cy5/Cy3-c(A) = log2Cy5/[k(A)Cy3] 

 

Where c(A) is the lowess fit to the M-A plot and k is a constant. 

 

A span f is defined as the fraction of data used to smooth at each data point (f 

= 0.4, i.e., 40 % of data around a point).  For the within-print tip group normalisation, 

i.e. spatial approach, the lowess fit simply becomes (print tip+A)-dependent. 

 

Log2 Cy5 / Cy3 ↔ log2 Cy5 / Cy3 - ci(A) = log2 Cy5 / [ki(A)Cy3] 

 

Where i is the ith sub-array. Finally the data is normalised according to: 

≡ f~ (A)    between   min g ε S Ag and max g ε S Ag   

 

The transformation of data by the normalisation process is clearly visible; for 

analysis 1 see Figures 4.18.d and 4.18e; for analysis 2 see Figures 4.18.f and 4.18.g. 
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Figure 4.18.b.  Representative MADSCAN generated M vs. A plots from analysis 
1 before (i) and after (ii) data processing (analysis 1, 7 day FW acclimated 
yellow versus 5 month FW acclimated silver eel groups, brain, forward 
experiment).  The curves are lowess fitness curves built on the set of non-
variant genes to which the rest of the data is normalised.  The different 
coloured spots correspond to the 48 sub-arrays printed by different print-tips.  
M is the log2 intensity ratio = log2 (Cy3/Cy5) and A is the mean log2 spot 
intensity = (log2 Cy5 + log2 Cy3) / 2. 
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Figure 4.18.c.  Representative MADSCAN generated M vs. A plots from analysis 
2 before (i) and after (ii) data processing (analysis 2, 7 day FW acclimated 
yellow versus 5 month FW acclimated silver eel groups, brain, dye-swap 
experiment).  The curves are lowess fitness curves built on the set of non-
variant genes to which the rest of the data is normalised.  The different 
coloured spots correspond to the 48 sub-arrays printed by different print-tips.  
M is the log2 intensity ratio = log2 (Cy3/Cy5) and A is the mean log2 spot 
intensity = (log2 Cy5 + log2 Cy3) / 2. 
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Figure 4.18.d and e.  Plots of the log2 Cy5 intensities against log2 Cy3 
intensities before (d) and after (e) normalisation (analysis 1, 7 day FW 
acclimated yellow eel (Cy3) vs 5 month FW acclimated silver eel (Cy5) groups, 
brain, forward experiment).  Cy3 and Cy5 were scanned using identical laser 
intensity and PMT gain (65 % and 65 % respectively).  There is a bias for Cy3 
fluorescence intensity to be higher than Cy5 when scanned under identical 
conditions, as shown in the non-normalised plot in which the majority of the 
data points fall above the x = y regression.  Following normalisation the 
variance is equally distributed about the regression. 
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Figure 4.18.f and g.  Plots of the log2 Cy5 intensities against log2 Cy3 
intensities before (f) and after (g) normalisation (data from analysis 2, 7 day FW 
acclimated yellow eel (Cy3) vs 5 month FW acclimated silver eel (Cy5) groups, 
brain, forward experiment).  Prior to normalisation the variance in analysis 2 is 
more centred around the x = y regression than in analysis 1.  This was 
achieved by scanning the Cy3 and Cy5 channels using different laser intensity: 
PMT gain ratios (Cy3 65 %: 65%, Cy5 68 %: 68 % respectively) to accommodate 
for the higher natural of fluorescence of Cy3.  The data in (d) is not linear but 
following normalisation (e) the variance is equally distributed about the 
regression showing a linear relationship. 
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Following lowess normalisation the data was scaled to bring the inter- and 

intra-slide variance to within the same range allowing separate slides to be compared 

directly. This is achieved using a function of the median absolute deviation and 

geometric mean (Yang et al., 2002).   

         

 

Median absolute deviation ≡ median {xi−x- m│}  where x- m is the median of xi  

Geometric mean = prod (MADxij) 
(1/n) 

Scaled xii = (xji / MAD(x)ij)*GM 

 

 

The scaling is visualised using whisker plots (Figure 4.18.h and 4.18.i) which 

show five statistical descriptors.  The line in the box is the 50th percentile, i.e. the 

median, 50% of the data are contained below and above this line. The height of the 

box, i.e. the distance between the 25th and 75th percentiles, is known as the inter-

quartile range or inter-quartile distance (IQD). The length of the tails or whiskers is 

usually 1.5 times the IQD.  Data points that fall beyond the whiskers are normally 

considered outliers, or in the case of microarrays they represent potentially 

differentially expressed genes.  Before data normalisation the IQD is large showing 

that the variance is also large.  The 50th percentile, IQD and the whiskers are not 

aligned between the forward and dye-swap experiments which indicates that the data 

from these two experiment cannot be compared directly.  Following data 

normalisation the intra-slide variance is much smaller as shown by the smaller IQD 

and shorter whiskers.  Data normalisation scales the inter-slide variance so that it is 

now comparable, as shown by the alignment between IQD and whiskers, so that 

outliers (differentially expressed genes) can be accurately identified. 



 172 

 Before data 
normalisation 

After data 
normalisation 

Forward Dye swap Dye swap Forward 

4.6.h  

 

Before 
processing 

After processing 

Forward Dye swap Dye swap Forward 
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Figures 4.18.h and 4.18.i.  Whisker plots before and after data processing 
{analysis 1 (4.18.h) and analysis 2 (4.18.i)}, yellow 7 day FW acclimated versus 
silver 5 month FW acclimated eel groups, brain).  The height of the box 
represent the inter-quartile distance, the line within the box represents the 50th 
percentile and the length of the whiskers is 1.5 x the IQD.  Outliers beyond the 
whiskers represent potentially differentially expressed genes. 

 

 

Density plots of the intensity ratios for analyses 1 and 2 following all 

processing steps show the data have a distribution which is close to normal (Figure 
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4.18.j).  There is a slight positive bias (skew = 0.35) in the distribution which is also 

apparent in the whisker plots indicating that more genes are up-regulated in silver 

eels than yellow eels. 



 174 

 

0

200

400

600

800

1000

1200

-1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 1.8

Mean M

F
re

q
u

e
n

c
y

Forward

Dye Swap

i
 

0

200

400

600

800

1000

1200

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Mean M

F
re

q
u

e
n

c
y

Dye swap

Forward

ii
 

 

Figure 4.18.j.  Frequency distributions showing near normal distribution of 
mean intensity ratios (M) of replicate spots following data normalisation in both 
analysis 1 (i) and analysis 2 (ii), (7 day FW acclimated yellow eel versus 5 
month FW acclimated silver eel groups, brain).  M is the log2 intensity ratio = 
log2 (Cy3/Cy5) 
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Genes were selected for further analysis if they showed consistent up or 

down-regulation in silver eels shown by expression ratios >1.5 or  <0.67-fold 

respectively.   Thresholds were set to select only the genes exhibiting the largest fold 

changes between conditions.  Differences between experimental groups were 

considered consistent if replicated in each of the triplicate spots on each array and 

between separate arrays in the dye-swap experiment.  

 

Genes (70) which showed consistent up or down regulation were selected for 

further analysis.  Genes identified in analysis 1 always showed very similar 

expression ratios in analysis 2 and vice versa.  All genes identified in analysis 1 and 

2 were sequenced, trimmed for vector and adapter sequences using trace2dbest and 

compared to current NCBI protein and EST databases using blastx and.  These 

sequences have been submitted to arrayexpress (http://www.ebi.ac.uk/aerep) and 

will be available online following publication of the results.  The known biological 

functions for each clone was ascertained from the Gene Ontology database 

(http://www.geneontology.org/, Ashburner, 2000).  Clones were then clustered, by 

the putative function of the protein they encode, into the following sub-groups;  signal 

transduction (Table 4.18.b), development and morphogenesis (Table 4.18.c),  

membrane and structure (Table 4.18.d), metabolism (Table 4.18.e), immune/stress 

response (Table 4.18.f) and transcription and post-translational modification (Table 

4.18.g).  Some clones could not be placed into any of these clusters, or they have no 

known function or the sequencing failed (Table 4.18.h). 
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Table 4.18.b.  Signal transduction cluster.  Mean fold-change (FC) and standard 
deviation (SD) of brain transcripts from the 7 day FW acclimated yellow eel 
group and the 5 month FW acclimated silver eel during forward and dye-swap 
experiments.  Blastx and blastn results from NCBI database searches show 
homologies to known proteins and genes respectively. 

 

Clone ID FC SD Blastx Blastn Biological process 

Aa_BOS_01C01 2.05 0.57 

gb|AAH23556.1| VRK3 
protein [Homo sapiens] 
260   4e-68                            

TC18156 similar to 
GB|AAH23556.1|232721
27|BC023556 VRK3 
protein {Homo sapiens;} 

Regulation of extra-cellular signal 
regulated kinases via MAP kinase 
pathway.  
Phosphorylation of transcription 
factors. 

Aa_BOS_17C12 0.65 0.04 

emb|CAA48902.1| 
prolactin-precursor 
[Anguilla anguilla]  
381   e-104 

TC80284 
UP|PRL_ONCMY 
(P21993) Prolactin 
precursor (PRL), 
complete    
98   5e-19    

Hormonal signalling 

Aa_BOS_28G03 1.66 0.22 

gb|AAI02765.1| 
Microtubule-associated 
protein   
396   e-109 

TC90114 similar to 
UP|Q7ZXP1 (Q7ZXP1) 
Mapre2-A protein, 
Microtubule-associated 
protein   
611   e-173 

Cell proliferation 
Cellular defense 
Signal transduction 

Aa_BOS_35D04 1.52 0.05 

gb|AAH64229.1| DnaJ 
(Hsp40) homolog, 
subfamily C, member 9 
[Xenopus Laevis]  
241   3e-62 

>gi|109502119|ref|XM_0
01064040.1| Gene info 
PREDICTED: Rattus 
norvegicus DnaJ 
(Hsp40) homolog, 
subfamily 
52.0   0.003   

Small GTPase mediated signal 
transduction 

Aa_BOS_38B06 0.66 0.05 

emb|CAA48902.1| 
prolactin-precursor 
[Anguilla anguilla]  
382   e-105  

TC80284 
UP|PRL_ONCMY 
(P21993) Prolactin 
precursor (PRL), 
complete 
105   2e-21 

Hormonal signalling 

Aa_BOS_45C05 1.92 0.15 

gb|AAH59577.1| 
Secretogranin III [Danio 
rerio]    
133   9e-30 

TC292724 UP|Q6PBU8 
(Q6PBU8) 
Secretogranin III, 
complete               165   
2e-39 

Intercellular trafficking of storage 
components during granule 
maturation 

Aa_BOS_49C01 1.74 0.34 

gb|AAH59577.1| 
Secretogranin III [Danio 
rerio]   
134   2e-30 

TC292724 UP|Q6PBU8 
(Q6PBU8) 
Secretogranin III, 
complete               165   
2e-39 

Intercellular trafficking of storage 
components during granule 
maturation 

Aa_BOS_58A09 0.62 0.02 

gi|1638811|dbj|D88022.
1|  Anguilla japonica 
mRNA for eel C-type 
natriuretic peptide    
702    0.0   

gi|1638811|dbj|D88022.
1|  Anguilla japonica 
mRNA for eel C-type 
natriuretic peptide  702   
0.0   

Blood pressure regulation 

Aa_BOS_38B06 0.66 0.05 

emb|CAA48902.1| 
prolactin-precursor 
[Anguilla anguilla]  
382   e-105  

TC80284 
UP|PRL_ONCMY 
(P21993) Prolactin 
precursor (PRL), 
complete 
105   2e-21 

Hormonal signalling 
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Table 4.18.c.  Development and morphogenesis cluster.  Mean fold-change (FC) and 
standard deviation (SD) of brain transcripts from the 7 day FW acclimated yellow eel 
group and the 5 month FW acclimated silver eel during forward and dye-swap 
experiments.  Blastx and blastn results from NCBI database searches show 
homologies to known proteins and genes respectively. 

Clone ID FC SD Blastx Blastn Biological processes 

Aa_BOS_01C05 1.68 0.41 

ref|NP_998310.1| tyrosine 3-
monooxygenase/tryptophan 5-
monooxygenase activation 
protein, beta polypeptide 
[Danio rerio]. 
384   e-105 

TC87178 UP|Q6UFZ9 
(Q6UFZ9) 14-3-3B1 protein, 
complete                 492   e-138 

Ubiquitous phosphoprotein partner 
regulating many pathways including 
apoptosis, cell proliferation and 
salinity adaptation in teleost gill 

Aa_BOS_03C09 1.77 0.11 

gb|AAH65983.1| Vangl2 
protein [Danio rerio] 
76   1e-12 

TC268919 Vangl2 protein 
[Danio rerio] 
785   0.0 

Cell morphogenesis 
Cell migration in hindbrain 
Convergent extension involved in 
gastrulation 
Establishment of cell polarity 
Negative regulation of frizzled 
signalling pathway 
Integral membrane protein 
Wnt signalling pathway regulation 
 

Aa_BOS_02H05 1.58 0.15 

gb|AAT64101.1| reticulon 4-N 
[Takifugu rubripes] 
74   4e-12 

TC86638 UP|Q6IEJ1 (Q6IEJ1) 
RTN4-M, complete 
88   4e-16 

Angiogenesis 
Negative regulation of axon extension 
Nervous system development 
Regulation of cell migration 

Aa_BOS_18F06 0.63 0.03 

***** No hits found ***** TC279868 UP|Q91430 
(Q91430) Seven-up[40] 
protein, complete                 127   
5e-28 

Nervous system development 
Eye development 
Phototaxis 
Cell fate determinant 
Heart development 
Synaptic transmission 

Aa_BOS_28D03 1.59 0.04 

gb|AAT44427.1| V-Fos 
transformation effector-like 
protein 
455   e-127 

TC17783 homologue to 
GB|AAD10201.1|3037139|AF0
56328 V-Fos transformation 
effector {Oryzias latipes;} 
882   0.0 

Nervous system development 
Regulation of transcription from RNA 
polymerase II promoter 
Inflammatory response 
DNA methylation 

Aa_BOS_28G03 1.66 0.22 

gb|AAI02765.1| Microtubule-
associated protein 
396   e-109 

TC90114 similar to 
UP|Q7ZXP1 (Q7ZXP1) 
Mapre2-A protein, Microtubule-
associated protein 
611   e-173 

Cell proliferation 
Cellular defense 
Signal transduction 

Aa_BOS_30B01 2.50 1.14 

ref|NP_084066.2| 
methyltransferase 5 domain 
containing 1 [Mus musculus] 
240   5e-62 

TC87451 similar to 
UP|Q7PR74 (Q7PR74) 
ENSANGP00000016999 
(Fragment) 
218   2e-55 

Cell proliferation 
Peptidyl-arginine N-methylation 

Aa_BOS_30D02 1.71 0.17 

gb|AAH55246.1| Birc4 protein 
[Danio rerio] 
215   1e-54 

TC292658 UP|Q7SXU1 
(Q7SXU1) Birc4 protein 
(Fragment), complete 
48   4e-04 

Anti-apoptosis 
Caspase inhibition 

Aa_BOS_40F12 0.63 0.03 

gb|AAH55653.1| 
Microspherule protein 1 [Danio 
rerio] 
187   3e-46 

TC4627 similar to 
GB|AAC52086.1|2384717|AF0
15308 nucleolar protein {Homo 
sapiens;}  76   2e-12 

Protein modification 
Regulation of cell cycle progression 
 

Aa_BOS_51F06 0.63 0.04 

TC79092 similar to 
UP|SEP3_MOUSE (Q9Z1S5) 
Neuronal-specific septin 
123   8e-27 

***** No hits found ****** Cytokinesis 

Aa_BOS_51H06 0.54 0.04 

***** No hits found ****** TC79092 similar to 
UP|SEP3_MOUSE (Q9Z1S5) 
Neuronal-specific septin 
123   8e-27 

Cytokinesis 

Aa_BOS_54B11 0.59 0.06 

***** No hits found ***** TC79092 similar to 
UP|SEP3_MOUSE (Q9Z1S5) 
Neuronal-specific septin 
123   8e-27 

Cytokinesis 

Aa_BOS_58D10 1.93 0.13 

gb|ABC67288.1| midkine b 
[Carassius auratus gibelio] 
108   7e-23 

TC17948 similar to 
UP|Q9W767 (Q9W767) 
Pleiotrophin 1 (Midkine-related 
growth factor Mdk1) 

Brain development 
Secretory pathway 

Aa_BOS_59D06 0.63 0.05 

***** No hits found ****** TC79092 similar to 
UP|SEP3_MOUSE (Q9Z1S5) 
Neuronal-specific septin 
123   8e-27 

Cytokinesis 
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Table 4.18.d.  Membrane and structure cluster.  Mean fold-change (FC) 
and standard deviation (SD) of brain transcripts from the 7 day FW 
acclimated yellow eel group and the 5 month FW acclimated silver eel 
during forward and dye-swap experiments.  Blastx and blastn results 
from NCBI database searches show homologies to known proteins and 
genes respectively. 

 

Clone ID FC SD Blastx Blastn 
Biological processes as identified by 
Gene Ontology 

Aa_BOS_30E02 1.87 0.24 

gb|AAL00466.1| 
Nucleobase:cation 
symporter for xanthine  
64   3e-09    

CX066551                                                              
174   2e-42 

Xanthine symport 

Aa_BOS_40G07 1.75 0.31 

gb|AAA21578.1| kainate 
receptor alpha subunit                         
325   1e-87 

TC86160 similar to 
UP|Q90278 (Q90278) 
Kainate receptor beta 
subunit    
113   8e-24 

Extracellular-glutamate-gated ion 
channel activity 

Aa_BOS_49G05 0.59 0.06 

***** No hits found ****** TC78300 UP|Q68K22 
(Q68K22) Gelsolin 
(Fragment), partial (12%)         
101   3e-20 

Actin filament assembly and 
disassembly 

Aa_BOS_39H01 0.60 0.06 

ref|NP_055723.1| 
transmembrane protein 
15 [Homo sapiens]   
223   6e-57 

TC300781 weakly similar to 
UP|Q8R2Y3 (Q8R2Y3) 
Transmembrane protein 15    
54   6e-06 

Integral membrane protein 

Aa_BOS_32G06 0.59 0.03 

dbj|BAD93115.1| 
intercellular adhesion 
molecule 2 precursor  
52   1e-05    

 ***** No hits found ****** Intercellular adhesion 

Aa_BOS_32E03 0.65 0.06 

gb|AAQ97859.1| 
tubulin, beta, 2 [Danio 
rerio]     
423   e-117 

TC267911 UP|Q9DFT6 
(Q9DFT6) Beta tubulin, 
complete   
545   e-154 

Cytoskeleton 

Aa_BOS_29C12 0.51 0.04 

ref|NP_570129.1| 
contactin associated 
protein-like 5 isoform 1 
129   9e-29   

 ***** No hits found ****** Cell adhesion 
Sensory perception of sound 

Aa_BOS_01G06 1.55 0.20 

gb|AAH62826.1| 
Tubulin, alpha 8 like 2 
[Danio rerio]          
380   e-104          

TC268704 UP|Q6TNP4 
(Q6TNP4) Tubulin, alpha 4, 
complete                591   e-
168 

Cytoskeleton 
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Table 4.18.e.  Metabolism cluster.  Mean fold-change (FC) and standard 
deviation (SD) of brain transcripts from the 7 day FW acclimated yellow 
eel group and the 5 month FW acclimated silver eel during forward and 
dye-swap experiments.  Blastx and blastn results from NCBI database 
searches show homologies to known proteins and genes respectively. 

 

Clone ID FC SD Blastx Blastn 
Biological processes as identified by 

Gene Ontology 

Aa_BOS_01E10 0.55 0.05 

gb|AAH28818.1| Aldose 
1-epimerase [Mus 
musculus]    
186   7e-46 

 ***** No hits found ****** Carbohydrate metabolism 

Aa_BOS_06H03 1.50 0.09 

emb|CAC83782.1| 
phosphoglucose 
isomerase-2 [Danio rerio]  
375   e-103 

TC291056 UP|Q7ZU30 
(Q7ZU30) Glucose 
phosphate isomerase a, 
complete    
163   7e-39 

Glucose metabolism 

Aa_BOS_13B10 0.65 0.04 

gb|ABD38667.1| 
aldehyde dehydrogenase 
4 family   
207   3e-52 

TC282238 similar to 
UP|Q96IF0 (Q96IF0) 
Aldehyde dehydrogenase 
4A. 88   4e-16   

Metabolic processes 
Proline catabolism 
Proline metabolism 

Aa_BOS_28H10 1.81 0.27 

gb|AAH53192.1| Aldolase 
c, fructose-bisphosphate 
[Danio rerio]    
420   e-116 

TC279277 UP|Q8JH70 
(Q8JH70) Aldolase c, 
fructose-bisphosphate   
470   e-131 

Fructose metabolism 

Aa_BOS_32G11 0.59 0.06 

gb|AAA52646.1| 
hexokinase 1 [Homo 
sapiens]     
431   e-119 

TC269571 UP|Q6NX09 
(Q6NX09) Zgc:77618 
protein, complete               
321   2e-86 

Glycolysis 

Aa_BOS_36A02 1.64 0.08 

ref|XP_694230.1| 
PREDICTED: similar to 
Cytochrome P450 27,  
390   e-107 

CD599042 weakly similar 
to GB|AAH55637.1|3 
LOC402831 protein   
74   7e-12 

Steroid hydroxylase for bile 
biosynthesis 

Aa_BOS_33G03 0.60 0.06 

gb|AAD34062.1| CGI-67 
protein [Homo sapiens]                          
396   e-109 

TC281312 homologue to 
UP|Q6PCB6 (Q6PCB6) 
LOC58489 protein 
(Fragment)    
398   e-110 

Peptidase 

Aa_BOS_39A05 1.55 0.09 

ref|NP_653355.1| calcium 
activated nucleotidase 1 
[Rattus norvegicus]     
54   3e-06 

TC20399 similar to 
UP|Q8K4Y7 (Q8K4Y7) 
Apyrase  , partial (54%)  
58   4e-07         

Ribonucleoside diphosphate 
catabolism 
Inhibition of blood coagulation 

Aa_BOS_45C11 1.59 0.06 

ref|YP_164025.1| NADH 
dehydrogenase subunit 2 
[Anguilla rostrata]    
144   9e-34 

 ***** No hits found ****** Mitochondrial electron transport, 
NADH to ubiquinone 

Aa_BOS_51C09 0.63 0.03 

 ***** No hits found ****** TC69979 UP|Q7YXL7 
(Q7YXL7) Glutathione S-
transferase     
115   2e-24 

Glutathione metabolism 

Aa_BOS_51D04 0.62 0.05 

***** No hits found ****** TC69979 UP|Q7YXL7 
(Q7YXL7) Glutathione S-
transferase     
115   2e-24 

Glutathione metabolism 

Aa_BOS_52E03 1.95 0.19 

gb|AAD15625.1| lactate 
dehydrogenase [Anguilla 
rostrata]   
68   3e-10 

 ***** No hits found ****** Lactate metabolism 

Aa_BOS_53C09 0.61 0.02 

 ***** No hits found ****** TC69979 UP|Q7YXL7 
(Q7YXL7) Glutathione S-
transferase     
115   2e-24 

Glutathione metabolism 

Aa_BOS_59C12 0.63 0.07 
***** No hits found ****** TC69979 UP|Q7YXL7 s 

Glutathione S-transferase    
115   2e-24 

Glutathione metabolism 

Aa_BOS_57E01 0.59 0.10 

 ***** No hits found ****** TC69979 UP|Q7YXL7 
(Q7YXL7) Glutathione S-
transferase     
115   2e-24 

Glutathione metabolism 
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Table 4.18.f.  Immune/stress response cluster.  Mean fold-change (FC) 
and standard deviation (SD) of brain transcripts from the 7 day FW 
acclimated yellow eel group and the 5 month FW acclimated silver eel 
during forward and dye-swap experiments.  Blastx and blastn results 
from NCBI database searches show homologies to known proteins and 
genes respectively. 

 

Clone ID FC SD Blastx Blastn Biological processes as 
identified by Gene Ontology 

Aa_BOS_10F10 0.61 0.08 

ref|NP_862671.1| 
aminoglycoside 
phosphotransferase  
142   1e-32 

 ***** No hits found 
****** 

Response to antibiotic 

Aa_BOS_27C04 1.82 0.30 

gb|AAH54250.1| 
Xcirp2 protein 
[Xenopus laevis]    
147   3e-34 

TC91409 similar to 
UP|Q9DED4 
(Q9DED4) Cold-
inducible RNA 
binding protein 2 
(Xcirp2 protein) 254   
3e-66 

Response to cold 

Aa_BOS_28G03 1.66 0.22 

gb|AAI02765.1| 
Microtubule-
associated protein   
396   e-109 

TC90114 similar to 
UP|Q7ZXP1 
(Q7ZXP1) Mapre2-
A protein, 
Microtubule-
associated protein   
611   e-173 

Cell proliferation 
Cellular defense 
Signal transduction 

Aa_BOS_40G01 0.56 0.04 

gb|AAL58575.1| 
invariant chain-like 
protein 14-1 
[Oncorhynchus 
mykiss]    
131   3e-29 

TC78880 
UP|Q8JFN5 
(Q8JFN5) Invariant 
chain S25-7 (MHC 
class II)    
68   4e-10 

Association with major 
histocompatibility complex  

Aa_BOS_60A02 1.77 0.14 

ref|XP_854311.1| 
PREDICTED: 
similar to C-type 
lectin superfamily...    
74   9e-12 

 ***** No hits found 
****** 

Immune response 
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Table 4.18.g.  Transcription and post-translational modification cluster.  
Mean fold-change (FC) and standard deviation (SD) of brain transcripts 
from the 7 day FW acclimated yellow eel group and the 5 month FW 
acclimated silver eel during forward and dye-swap experiments.  Blastx 
and blastn results from NCBI database searches show homologies to 
known proteins and genes respectively. 

Clone ID FC SD Blastx Blastn 
Biological processes as identified by 

Gene Ontology 

Aa_BOS_02E06 1.53 0.14 

ref|NP_956549.1| DNA 
methyltransferase 1 
associated protein 1    
96   8e-19 

gi|33988721|gb|BC00
2855.2|  Homo 
sapiens DNA 
methyltransferase 
56.0    2e-04 

Negative regulation of transcription 

Aa_BOS_20H11 0.60 0.03 

gb|AAH03896.2| Rpl17 
protein [Mus musculus]                           
342   7e-93 

TC86629 homologue 
to UP|Q80V08 
(Q80V08) Ribosomal 
protein l17  
(Fragment)   
648   0.0   

RNA binding 

Aa_BOS_25B08 1.91 0.26 

ref|NP_001026330.1| 
DEAH (Asp-Glu-Ala-His) 
box polypeptide   
251   3e-65 

TC267948 homologue 
to 
GB|AAH35974.1|2327
3556|BC035974 
DHX15 protein (Homo 
sapiens)  293   4e-78 

RNA splicing factor 

Aa_BOS_31H01 1.87 0.22 

gb|AAP20146.1| 40S 
ribosomal protein S2 
[Pagrus major]         
206   3e-52        

TC3361 homologue to 
UP|Q6NWC3 
(Q6NWC3) 
Zgc:85824, partial 
(97%)       492   e-138 

Transcription 

Aa_BOS_33G04 0.61 0.05 

gb|AAH03896.2| Rpl17 
protein [Mus musculus]                          
342   6e-93 

TC86629 homologue 
to UP|Q80V08 
(Q80V08) Ribosomal 
protein l17  
(Fragment)   
648   0.0   

RNA binding 

Aa_BOS_37F08 1.57 0.09 

gb|AAS78677.1| 
transcriptional 
intermediary factor 1 
delta    
119   9e-26 

TC282163 
transcriptional 
intermediary factor 1 
alpha; tripartite   
52   2e-05 

Negative regulation of transcription 

Aa_BOS_39G11 0.46 0.05 

gb|ABA95861.1| 
retrotransposon protein   
34   4.7   

TC87740 similar to 
GB|AAC51339.1|1888
538|HSU89354 
CREB-binding protein 
{Homo sapiens;}   
56   2e-06  

Positive regulation of transcription 
factor activity 
Transcription factor 

Aa_BOS_42G09 1.70 0.24 

gb|AAH10370.1| Tumor 
suppressor candidate 3, 
isoform b [Homo 
sapiens]   385   e-105 
722   0.0   

TC81556 homologue 
to 
GB|AAH10370.1|1471
4487|BC010370 
tumor suppressor 
candidate 3, isoform b 
{Homo sapiens;}     

Protein amino acid N-linked 
glycosylation via asparagine 
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Table 4.18.h.  Other/no known function and failed sequencing clones.  
Mean fold-change (FC) and standard deviation (SD) of brain transcripts 
from the 7 day FW acclimated yellow eel group and the 5 month FW 
acclimated silver eel during forward and dye-swap experiments.  Blastx 
and blastn results from NCBI database searches show homologies to 
known proteins and genes respectively. 

 

Clone ID FC SD Blastx Blastn Biological processes as 
identified by Gene Ontology 

Aa_BOS_31F05 0.64 0.10 

ref|NP_080003.1| 
kelch-like 10 [Mus 
musculus]  
197   3e-49   

TC72471 similar to 
UP|KH10_MOUSE 
(Q9D5V2) Kelch-
like protein 10 
94   7e-18 

Striated muscle contraction 

Aa_BOS_13E10 1.76 0.14 

gb|AAH59675.1| 
Wu:fd42g01 protein 
[Danio rerio]             
458   e-128           

TC72100 similar to 
UP|Q91YM1 
(Q91YM1) 
AW549877 protein, 
partial   
613   e-174 

No known function 

Aa_BOS_25F06 1.75 0.05 

 ***** No hits found 
****** 
52   2e-05 

TC89335 similar to 
UP|Q8NH31 
(Q8NH31) Seven 
transmembrane 
helix protein     

Non known function 

Aa_BOS_28H06 1.59 0.15 

gb|AAH44166.1| 
Male sterility 
domain containing 
2 [Danio rerio]   
444  e-123 

gi|7024432|emb|AJ
272073.1|TMA2720
73 Torpedo 
marmorata mRNA 
for male sterility 
protein 2-like 
protein...  
230  6e-57 

No known function 

Aa_BOS_49F03 1.62 0.09 
***** No hits found 
****** 

 ***** No hits found 
****** 

 

Aa_BOS_53A11 1.67 0.13 ***** No hits found 
****** 

 ***** No hits found 
****** 

 

Aa_BOS_53B11 1.76 0.32 ***** No hits found 
****** 

 ***** No hits found 
****** 

 

Aa_BOS_55E11 1.97 0.53 ***** No hits found 
****** 

 ***** No hits found 
****** 

 

Aa_BOS_58D11 0.63 0.05 Sequencing failure Sequencing failure  

Aa_BOS_19C09 1.79 0.41 Sequencing failure Sequencing failure  

Aa_BOS_31H06 0.50 0.05 Sequencing failure Sequencing failure  

Aa_BOS_19G02 0.64 0.04 Sequencing failure Sequencing failure  
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4.19  Brain microarray results: Comparison of brain expression 

profiles between 2 day freshwater acclimated and 2 day seawater 

acclimated silver eels   

 

Fluorescently labelled cDNAs from brain total RNA derived from the 2 

day FW acclimated silver eel group and the 2 day SW acclimated silver eel 

group were co-hybridised to a brain microarray.  Subsequently the experiment 

was repeated in dye-swap in which the exact procedure was repeated except 

the cDNA labels Cy3 and Cy5 were reversed Sufficient RNA was available for 

these samples and as such the RNA was not amplified.  For both the forward 

and dye-swap experiments the laser output: PMT gain ratios were 73 %: 73% 

for Cy3 and 75 %: 75 % for Cy5.  Data was processed using the MADSCAN 

method in the same manner as the yellow-silver experiment described 

previously.  Unlike the yellow:silver data analysis described in section 4.18, 

only one analysis was performed only at the laser/ PMT gain settings stated.  

Background was subtracted from foreground spot intensities and non-variant 

genes were again selected by iterative rank invariant method algorithm.  A 

lowess fitness model was applied to the selected genes and all data were 

normalised to the model.  Data transformations following processing and 

normalisation are shown in the M versus A plots (Figures 4.19.a and 4.19.b). 
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Figure 4.19.a.  MADSCAN generated M vs. A plots from (i) before and (ii) 
after data normalisation (forward experiment, 2 day FW versus 2 day SW 
acclimated silver eel groups, brain).  The curves are lowess fitness 
curves built on the set of non-variant genes to which the rest of the data 
is normalised.  The different coloured spots correspond to the 48 sub-
arrays printed by different print-tips.  M is the log2 intensity ratio = log2 

(Cy3/Cy5) and A is the mean log2 spot intensity = (log2 Cy5 + log2 Cy3) / 2 
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Figure 4.19.b.  MADSCAN generated M vs. A plots from (i) before and (ii) 
after data processing (dye-swap experiment, 2 day FW versus 2 day SW 
acclimated silver eel groups, brain).  The curves are lowess fitness 
curves built on the set of non-variant genes to which the rest of the data 
is normalised.  The different coloured spots correspond to the 48 sub-
arrays printed by different print-tips.  M is the log2 intensity ratio = log2 

(Cy3/Cy5) and A is the mean log2 spot intensity = (log2 Cy5 + log2 Cy3) / 2 

 

 

 

Data were scaled to median absolute deviation and geometric means 

of the forward and dye-swap experiments and visualised by whisker plots 

(Figure 4.19.c). 
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Before 
processing 

After 
processing 

Forward Dye swap Dye swap Forward 

 

Figure 4.19.c.  Whisker plots before and after data normalisation (2 day 
FW versus 2 day SW acclimated silver eel groups, brain). 

 

 

Density plots of the intensity ratios of the normalised data show a 

distribution close to normal (Figure 4.19.d).  There is a slight bias (skew = 

1.59) in the distribution indicating more genes were being up-regulated 

following FW to SW transfer. 
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 Figure 4.19.d. Frequency distribution showing near normal distribution 
of mean intensity ratios (M) of replicate spots following data 
normalisation (2 day FW versus 2 day SW acclimated silver eel groups, 
brain). 

 

 

Genes (42) which showed consistent up or down regulation were 

selected for further analysis.  Half (20) of these clones had also been 

previously identified from the 2 day FW acclimated yellow eel brain versus 5 

month FW acclimated silver eel brain experiment (section 4.18).  All genes 

identified were sequenced, trimmed for vector and adapter sequences using 

trace2dbest and compared to current NCBI protein and EST databases using 

blastx and blastn (Table 4.19.a).  As with the Yellow: Silver analysis (Section 

4.18), clones were then clustered according to their known biological function 

as deterimined from the Gene Ontology database (Ashburner, 2000).  The 

vast majority of clones could be placed into the following clusters;  signal 

transduction (Table 4.19.a), development and morphogenesis (Table 4.19.b),  

membrane and structure (Table 4.19.c), metabolism (Table 4.19.d), and 

transcription and post-translational modification (Table 4.19.e).  Some clones 
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could not be placed into any of these clusters, or they have no known function 

or the sequencing failed (Table 4.19.f). 

 

 

 

Table 4.19.a.  Signal transduction cluster.  Mean fold-change (FC) and 
standard deviation (SD) of brain transcripts from the 2 day FW and 2 day 
SW acclimated eel groups during forward and dye-swap experiments.  
Blastx and blastn results from NCBI database searches show 
homologies to known proteins and genes respectively. 

 

Clone ID FC SD Blastx Blastn Biological processes as 
identified by Gene Ontology 

Aa_BOS_17G10 2.27 0.37 

gb|AAA73877.1| 
thyroid hormone 
receptor interactor   
TRIP6                          
52   2e-05 

TC291100 similar 
to UP|Q8UW12 
(Q8UW12) 
Thyroid receptor 
interactor   40   
0.091 

Regulation of transcription, 
DNA dependent 
Electron transport 
Focal adhesion formation 
Positive regulation of cell 
migration 
Release of cytoplasmic 
sequestered NF-kappaB 

Aa_BOS_21C08 2.50 0.81 

emb|CAA48902.1| 
prolactin-precursor 
[Anguilla anguilla] 
>gi|4175...   381   
e-104 

TC80284 
UP|PRL_ONCMY 
(P21993) 
Prolactin 
precursor (PRL), 
complete      105   
2e-21 

Hormonal signalling 

Aa_BOS_22F09 2.60 0.04 

dbj|BAE72666.1| 
bHLH protein DEC1 
[Danio rerio] 
>gi|47086679|ref...   
233   4e-60 

TC94256 similar 
to 
UP|BHB2_MOUS
E (O35185) Class 
B basic helix-loop 
helix protein 
2...228   2e-58 

Integrin-mediated signalling 
pathway  
Negative regulation of cell 
adhesion 

Aa_BOS_35D04 1.99 0.55 

gb|AAH64229.1| 
DnaJ (Hsp40) 
homolog, subfamily 
C, member 9 
[Xeno...   241   3e-
62 

gi|109502119|ref|
XM_001064040.1
| Rattus 
norvegicus DnaJ  
(Hsp40) homolog, 
subfamily   52.0   
0.003 

Small GTPase mediated 
signal transduction 

Aa_BOS_45C05 2.73 0.59 

gb|AAH59577.1| 
Secretogranin III 
[Danio rerio] 
>gi|41152165|ref|...   
133   9e-30 

TC292724 
UP|Q6PBU8 
(Q6PBU8) 
Secretogranin III, 
complete        165   
2e-39 

Intercellular trafficking of 
storage components during 
granule maturation 
Secretion regulation 
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Table 4.19.b.  Development and morphogenesis cluster.  Mean fold-
change (FC) and standard deviation (SD) of brain transcripts from the 2 
day FW and 2 day SW acclimated eel groups during forward and dye-
swap experiments.  Blastx and blastn results from NCBI database 
searches show homologies to known proteins and genes respectively. 

 

Clone ID FC SD Blastx Blastn Biological processes  

Aa_BOS_02H05 2.44 0.16 

gb|AAT64101.1| reticulon 4-
N [Takifugu rubripes] 
>gi|42601268|tp...    74   4e-
12 

TC86638 UP|Q6IEJ1 
(Q6IEJ1) RTN4-M, 
complete                            
88   4e-16 

Angiogenesis 
Negative regulation of axon 
extension 
Nervous system development 
Regulation of cell migration 

Aa_BOS_03C09 2.73 0.84 

gb|AAH65983.1| Vangl2 
protein [Danio rerio]                            
76   1e-12 

TC268919 Vangl2 protein 
[Danio rerio]    785   0.0 

Cell morphogenesis 
Cell migration in hindbrain 
Convergent extension involved in 
gastrulation 
Establishment of cell polarity 
Negative regulation of frizzled 
signalling pathway 
Integral membrane protein 
Wnt signalling pathway regulation 

Aa_BOS_15E12 2.08 0.13 

ref|XP_696568.1| 
PREDICTED: similar to 
cerebellin 1 precursor pr...    
91   6e-17 

TC285223 similar to 
UP|CBN2_HUMAN 
(Q8IUK8) Cerebellin 2 
precurso...     
76   2e-12 

Nervous system development 
Synaptic transmission 

Aa_BOS_30C09 2.62 0.44 

ref|NP_998388.1| 
myristoylated alanine-rich C 
kinase substrate 2...    66   
2e-09 

TC14418 weakly similar to 
UP|AAH66915 
(AAH66915) MARCKS-like 
protein, Myristoylated 
alanine-rich (Kinase?)...    
101   3e-20 

Cell motility 

Aa_BOS_17G10 2.27 0.37 

gb|AAA73877.1| thyroid 
hormone receptor interactor   
TRIP6                          52   
2e-05 

TC291100 similar to 
UP|Q8UW12 (Q8UW12) 
Thyroid receptor interactor   
40   0.091 

Regulation of transcription, DNA 
dependent 
Electron transport 
Focal adhesion formation 
Positive regulation of cell migration 
Release of cytoplasmic sequestered 
NF-kappaB 

Aa_BOS_22F09 2.60 0.04 

dbj|BAE72666.1| bHLH 
protein DEC1 [Danio rerio] 
>gi|47086679|ref...   233   
4e-60 

TC94256 similar to 
UP|BHB2_MOUSE 
(O35185) Class B basic 
helix-loop helix protein 
2...228   2e-58 

Integrin-mediated signalling pathway  
Negative regulation of cell adhesion 

Aa_BOS_30E04 2.19 0.25 

dbj|BAA90775.1| type II 
brain 4.1 minor isoform 
[Rattus norvegicus]   248   
2e-64 

CK025783 similar to 
SP|Q9WV92|E4L3 Band 
4.1-like protein 3 (4.1B) 
(Differentially expressed 
inadenocarcinoma of the 
lung protein 1), ...   159   
1e-37 

Negative regulation of cell 
proliferation 

Aa_BOS_35H07 0.65 0.18 

sp|Q5XHG6|TS31A_XENLA 
Tetraspanin-31 A (Tspan-31 
A) (Sarcoma amplified 
sequence)   268   1e-70 

TC280466 UP|Q6TGU5 
(Q6TGU5) Sarcoma 
amplified sequence, 
complete      174   2e-42 

Positive regulation of cell proliferation 

Aa_BOS_37H03 2.15 0.30 

gb|AAH26335.1| Coronin, 
actin binding protein, 2B 
[Homo sapiens]      
 307   3e-82 

TC82999 similar to 
UP|CO2B_HUMAN 
(Q9UQ03) Coronin-2B 464   
e-129 

Actin cytoskeleton organization and 
biogenesis 
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Table 4.19.c.  Membrane and structure cluster.  Mean fold-change (FC) 
and standard deviation (SD) of brain transcripts from the 2 day FW and 2 
day SW acclimated eel groups during forward and dye-swap 
experiments.  Blastx and blastn results from NCBI database searches 
show homologies to known proteins and genes respectively. 

 

Clone ID FC SD Blastx Blastn Biological processes  

Aa_BOS_01G06 2.94 0.04 

gb|AAH62826.1| 
Tubulin, alpha 8 like 
2 [Danio rerio]                  
380   e-104 

TC268704 
UP|Q6TNP4 
(Q6TNP4) Tubulin, 
alpha 4, complete                
591   e-168 

Cytoskeleton 

Aa_BOS_29F05 2.67 0.06 

gb|AAL00466.1| 
Nucleobase:cation 
symporter for 
xanthine [Strepto...    
64   3e-09 

gi|15903705|ref|NP
_359255.1| 
Nucleobase:cation 
symporter for 
xanthine 
[Streptococcus 
pneumoniae R6]  
64.3  4e-09 

Xanthine symport 

Aa_BOS_09E04 2.42 0.64 

gb|AAR84618.1| 
beta actin 
[Acanthopagrus 
schlegelii]                  
427   e-118 

TC290348 
UP|ACTB_CTEID 
(P83751) Actin, 
cytoplasmic 1 
(Beta-actin) 
 959   0.0   

Cytoskeleton 
Muscle contraction 
Cell motility 
Cytokinesis 
Cell signalling 
Organelle transport 

Aa_BOS_37H03 2.15 0.30 

gb|AAH26335.1| 
Coronin, actin 
binding protein, 2B 
[Homo sapiens]      
307   3e-82 

TC82999 similar to 
UP|CO2B_HUMAN 
(Q9UQ03) Coronin-
2B  
464   e-129 

Actin cytoskeleton 
organization and 
biogenesis 

Aa_BOS_51H06 0.71 0.09 

 *** No hits found *** TC79092 similar to 
UP|SEP3_MOUSE 
(Q9Z1S5) 
Neuronal-specific 
septin   
123   8e-27 

Cytokinesis 
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Table 4.19.d.  Metabolism cluster.  Mean fold-change (FC) and standard 
deviation (SD) of brain transcripts from the 2 day FW and 2 day SW 
acclimated eel groups during forward and dye-swap experiments.  
Blastx and blastn results from NCBI database searches show 
homologies to known proteins and genes respectively. 

 

Clone ID FC SD Blastx Blastn Biological processes  

Aa_BOS_06H03 2.54 0.01 

emb|CAC83782.1| 
phosphoglucose 
isomerase-2 [Danio 
rerio]  
375   e-103 

TC291056 
UP|Q7ZU30 
(Q7ZU30) Glucose 
phosphate isomerase 
a, complete    
163   7e-39 

Glucose metabolism 

Aa_BOS_17F01 2.50 0.17 

gb|AAH59511.1| 
Enolase 1, (alpha) 
[Danio rerio]                       
419   e-116 

TC79739 homologue 
to UP|Q6IQP5 
(Q6IQP5) Enolase 1, 
(Alpha) 
652   0.0   

Glycolysis 

Aa_BOS_32F12 0.57 0.11 

 *** No hits found *** gi|56565288|dbj|AP00
7233.1|  Anguilla 
anguilla mitochondrial 
DNA,   
1376    0.0    

Mitochondria synthesis 

Aa_BOS_36A02 3.01 0.74 

ref|XP_694230.1| 
PREDICTED: similar 
to Cytochrome P450 
27, mitoc...    
390   e-107 

CD599042 weakly 
similar to 
GB|AAH55637.1|3 
LOC402831 protein 
{Danio rerio} 
74   7e-12 

Steroid hydroxylase for 
bile biosynthesis 

Aa_BOS_38E03 2.35 0.14 

gb|AAH66694.1| 
Ubiquitin specific 
protease 5 [Danio 
rerio]             
406   e-112 

gi|67514530|ref|NM_2
14755.2|  Danio rerio 
ubiquitin specific 
protease     
95.6    2e-16 

Ubiquitin specific 
proteolytic cleavage 
mRNA catabolism 
 

Aa_BOS_59C12 0.71 0.02 

*** No hits found ***  TC69979 UP|Q7YXL7 
(Q7YXL7) Glutathione 
S-transferase 
(Fragment) 
115   2e-24 

Glutathione metabolism 

Aa_BOS_38G02 2.52 0.83 

 *** No hits found *** >gi|75811931|gb|DQ0
19116.1|  Pseudomys 
australis voucher 
ABTC35951 
cytochrome c oxidase 
subunit    
44.1    0.66 

Electron transport 
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Table 4.19.e.  Transcription and post-translational modification.  Mean 
fold-change (FC) and standard deviation (SD) of brain transcripts from 
the 2 day FW and 2 day SW acclimated eel groups during forward and 
dye-swap experiments.  Blastx and blastn results from NCBI database 
searches show homologies to known proteins and genes respectively. 

 

Clone ID FC SD Blastx Blastn Biological processes  

Aa_BOS_02E06 3.025 
0.1343

5 

ref|NP_956549.1| 
DNA 
methyltransferase 1 
associated protein 
1 [Danio rerio]    
96   8e-19 

gi|33988721|gb|B
C002855.2|  
Homo sapiens 
DNA 
methyltransferase
56.0    2e-04 

Negative regulation of 
transcription 

Aa_BOS_17G10 2.27 0.37 

gb|AAA73877.1| 
thyroid hormone 
receptor interactor   
TRIP6                          
52   2e-05 

TC291100 similar 
to UP|Q8UW12 
(Q8UW12) 
Thyroid receptor 
interactor    
40   0.091 

Regulation of transcription, 
DNA dependent 
Electron transport 
Focal adhesion formation 
Positive regulation of cell 
migration 
Release of cytoplasmic 
sequestered NF-kappaB 

Aa_BOS_37F08 2.94 1.12 

gb|AAS78677.1| 
transcriptional 
intermediary factor 
1 delta short    
119   9e-26 

TC282163 
transcriptional 
intermediary 
factor 1 alpha; 
tripartite    
52   2e-05 

Negative regulation of 
transcription 

 



 

 193 

Table 4.19.f.  Other/no known function and failed sequencing clones.  .  
Mean fold-change (FC) and standard deviation (SD) of brain transcripts 
from the 2 day FW and 2 day SW acclimated eel groups during forward 
and dye-swap experiments.  Blastx and blastn results from NCBI 
database searches show homologies to known proteins and genes 
respectively. 

 

Clone ID FC SD Blastx Blastn Biological processes  

Aa_BOS_60A02 2.37 0.38 

ref|XP_854311.1| 
PREDICTED: similar 
to C-type lectin 
superfamily...     
74   9e-12 

*** No hits found *** Immune response 

Aa_BOS_13E10 3.09 0.42 

gb|AAH59675.1| 
Wu:fd42g01 protein 
[Danio rerio]                       
458   e-128 

TC72100 similar to 
UP|Q91YM1 
(Q91YM1) AW549877 
protein, partial ...    
613   e-174 

No known function 

Aa_BOS_25F06 2.15 0.45 

 *** No hits found *** TC89335 similar to 
UP|Q8NH31 (Q8NH31) 
Seven transmembrane 
helix ...     
52   2e-05 

No known function 

Aa_BOS_28H06 1.95 0.73 

gb|AAH44166.1| 
Male sterility domain 
containing 2 [Danio 
rerio] ...    
444   e-123 

gi|7024432|emb|AJ272
073.1|TMA272073 
Torpedo marmorata 
mRNA for male sterility 
protein 2-like protein... 
230  6e-57 

No known function 

Aa_BOS_33A03 2.48 0.53 *** No hits found *** *** No hits found ***  
Aa_BOS_46G06 2.70 0.91 *** No hits found *** *** No hits found ***  

Aa_BOS_49F03 2.50 0.47 *** No hits found *** *** No hits found ***  

Aa_BOS_53A11 2.66 0.89 *** No hits found *** *** No hits found ***  
Aa_BOS_58D11 2.08 0.47 Sequencing failure Sequencing failure  

Aa_BOS_01C07 2.47 0.79 Sequencing failed Sequencing failed  

Aa_BOS_20E06 2.54 0.82 Sequencing failed Sequencing failed  
Aa_BOS_31H06 0.66 0.08 Sequencing failed Sequencing failed  
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4.20  SSH multi-tissue array results 

 

In the initial SSH array experiments, labelled cDNAs derived from pools 

of 6 FW acclimated eel samples for each tissue and time point were 

compared with the equivalent labelled, time and tissue-matched cDNAs made 

from RNA pooled from 6 SW acclimated eels.  Maximum differences in gene 

expression were mainly found between the long-term acclimated, 5-month, 

FW and SW groups.  The inter-fish variability was investigated in the 5 month 

FW/FW and FW/SW acclimated eel groups using reference design 

methodology (Churchill, 2002).  Labelled cDNAs were prepared from the gill 

and intestine of 6 individual FW/SW transferred fish and then hybridised along 

with a common (for each tissue) reference obtained from a pool of 6 FW/FW 

fish RNAs.   
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4.21 Online Holdings Database 

 

In collaboration with the NERC Environmental  Bioinformatics Centre, a 

database was created outlining the holdings generated during the course of 

the project.  The online holdings comprise details of: tissue samples, meta-

data, RNA samples, clone sets, sequence data, microarrays and publications.  

The database can be viewed at;  

http://envgen.nox.ac.uk/cgi-

bin/view_dataset_secure.cgi?dsname=000011 
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4.22  Validation of the brain microarray results 

 

Six genes were selected for further analysis to both validate the microarray 

results and to learn more about their involvement in biological process (Table 4.22.a).  

Using a gene ontology database (The Gene Ontology, http://www.geneontology.org) 

their general biological roles were elucidated.   

 

Microarray results were validated using real-time quantitative PCR (QPCR) to 

quantify two genes identified during the yellow-silver experiment and one from the 

FW-SW acclimation experiment.  This method was applied to each fish in all 

experimental groups, allowing inter-fish variability to be examined.  Six genes were 

initially selected as candidates for real-time quantitative PCR (QPCR) validation of 

the yellow FW acclimated eel versus silver FW acclimated eel experiment using the 

brain microarray (Table 4.22.a).  These genes were selected based on the quality of 

sequence obtained, and whether the putative gene identity suggested involvement in 

important developmental or osmoregulatory pathways.In addition, prolactin was 

chosen to validate the silver eel 2 day FW versus SW experiment.  Prolactin was 

selected as its expression changed significantly in this instance and had also been 

shown to vary significantly in other tissues as identified by the SSH multi-tissue array 

and thus setting up this quantitative PCR experiment would expedite results 

elsewhere in the project. 
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Table 4.22.a.  Gene candidates selected for validation of the brain array by 
QPCR.  Known functions presented are from The Gene Ontology. 

 
Analysis 1 (fold 

change from 
yellow to silver) 

Analysis 2 (fold 
change from 

yellow to silver) Clone ID 
 

Forward Dye-
swap 

Forward Dye-
swap 

Putative identity as 
determined by homology to 
known genes using blast x 

and blastn 
 

Known functions from gene ontology 
database 

 

01e01_Aa_BOS_01C01 2.71 1.54 1.60 2.35 
Vaccinia related kinase 3 
protein 
(VRK3) 

 
Regulation of extra-cellular signal 
regulated kinases via MAP kinase 
pathway. 
Phosphorylation of transcription 
factors. 

01e09_Aa_BOS_01C05 2.25 1.28 1.66 1.53 

Tyrosine 3-monooxygenase/ 
tryptophan 5-
monooxygenase activation 
protein, β polypeptide 
(14-3-3) 

Ubiquitous phosphoprotein partner 
regulating many pathways including 
apoptosis, cell proliferation and 
salinity adaptation in teleost gill 

15a18_Aa_BOS_58A09 0.62 0.65 0.60 0.61 C-type natriuretic peptide Vasorelaxant 
cGMP stimulant 

08e23_Aa_BOS_29C12 0.46 0.53 0.48 0.55 Contactin associated protein 
Part of the neurexin family 
Cell adhesion 
Contain EGF repeats 

10n14_Aa_BOS_40G07 2.06 1.40 1.57 1.95 
Kainate receptor alpha 
subunit 

Ligand gated ion channel 

12e09_Aa_BOS_45C05 1.97 1.69 2.01 2.01 Secretogranin III 

Binds to secretory granule membrane 
and targets chromogranin A to 
secretory granules in pituitary and 
pancreatic cells 
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4.23 Real Time Quantitative PCR (QPCR) Assays 

 

QPCR enables accurate quantification of mRNA transcription levels from small 

biological samples.  The QPCR assay uses the intercalating dye SYBR Green to 

detect the DNA created during each round of PCR.  In solution, the unbound dye 

fluoresces at a very low level but in the presence of double stranded DNA it binds the 

minor groove of DNA and its fluorescence is greatly elevated.  This method of DNA 

quantification is simple and negates the need for expensive, sequence specific, 

fluorescently labelled probes.  Its accuracy and sensitivity have lead to it being the 

most emerging method for mRNA transcription analysis (Bustin, 2002) and as a 

consequence was used in this instance as the amounts of starting material (RNA) 

required are much lower than for other methods such as Northern blotting.  Using 

QPCR allows quantification of the expression level of a gene in relation to an 

endogenous reference gene, which allows different samples to be compared directly.  

The reference gene is usually a “housekeeping” gene whose transcription is not 

regulated or influenced by the experimental procedure under examination (e.g., 

salinity transfer) and is used to normalise for differing amounts of amplifiable material 

available between samples. 

 

 mRNA is first converted into cDNA, by reverse transcription, which is then 

used as a template for two separate PCR amplifications of the gene of interest and 

the endogenous reference gene.  Included in the PCR mixture is a reporter dye 

which fluoresces when bound to double stranded DNA.  The amount of target and 

control DNA synthesised during the PCR is quantified at the end of each PCR cycle 

by measuring the fluorescence emitted by the reporter dye which represents the DNA 

concentration.  The fluorescence from all the samples is then plotted against the 

cycle number and a threshold is set within the exponential phase of the reaction 

(figure 4.23.a).   This threshold is used to determine the Ct value for each sample.   

The Ct value is the cycle number at which the fluorescence emitted from the reaction 

crosses the threshold and it is used for the quantification calculations of target and 

reference genes.   
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Figure 4.23.a.  Screenshot from the QPCR analysis software (ABI Prism 7000 
SDS, Applied Biosciences, Warrington, UK).  Plots indicate the fluorescent 
signal emitted from each sample in each successive round of amplification 
which is equivalent to the DNA concentration.  The green horizontal line 
represents the threshold which the user sets within the exponential phase of 
the reaction, the Ct values for each sample are taken at the point the 
fluorescence crosses this threshold. 

 

 

Non-specific detection using SYBR Green was chosen as the initial set-up of 

the experiment was simpler and cheaper than specific detection systems which 

require the design and production of expensive fluorescently labelled probes (e.g., 

TaqMan QPCR).  SYBR Green is an asymmetrical cyanine intercalating dye 

incorporated into the PCR reaction which binds any double stranded DNA generated 

during PCR and emits enhanced fluorescence (Ishiguro et al., 1995).  Although any 

double stranded DNA created during PCR will give a fluorescent signal, well 

designed primers should only give a single product and this can be verified by gel 

electrophoresis or more specifically by DNA dissociation curve analysis (Ririe et al., 

1997).  The DNA dissociation curve is generated after the QPCR reaction has taken 

place.  The spent QPCR reaction is slowly heated from 60 ºC to 95 ºC and the 

fluorescence emitted is measured every 0.35 ºC.  The derivative of the fluorescence 

(d(F)/dt) is then plotted against temperature, the derivative of the fluorescence being 

used rather than the raw fluorescence data as it allows easier visual analysis.  Only 
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primer sets which prime the synthesis of single products can be used for the SYBR 

green QPCR assay, as indicated by a single peak (figure 4.23.b).   

 

 

  

Figure 4.23.b.  Screenshot taken from ABI Prism 7000 SDS software showing 
two dissociation plots.  The green line, representing the dissociation plot for 
the prolactin amplicons, has a well-defined single peak indicating only one 
product has been formed.  The red line, representing the dissociation of 
product synthesised with the first set of GAPDH primers, exhibits two peaks 
suggesting that two different products have been made during the QPCR 
reaction and that these primers are not suitable for use.  

 

 

The delta-delta Ct (2-∆∆Ct) method (Livak and Schmittgen, 2001) was chosen 

to analyse the QPCR data.  Other methods available for analysing QPCR results 

such as the Relative Expression Software Tool (REST) (Pfaffl, 2001; Pfaffl et al., 

2002) or the Data Analysis for Real-Time PCR (DART-PCR) method (Peirson et al., 

2003) were not considered appropriate for use in this instance.  Both the REST and 

DART methods calculate the mean Ct for the target and reference genes for each of 

the two experimental groups being examined and subsequently the expression of the 

target relative to the reference gene is calculated.  These approaches require that all 

initial RNA samples under examination are at the same concentration and assumes 

that all reverse transcriptase reactions are equally efficient in order that the template 

cDNA is the same between the two experimental groups.  If these assumptions do 

not hold true then large variability can be introduced into the results, which can 
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effectively mask subtle changes in expression.  The advantage of using the REST or 

DART methods is that they can accommodate differences in efficiencies of the target 

and control reactions whilst the 2-∆∆Ct method demands that both reaction types are 

equally efficient.  The 2-∆∆Ct method calculates the target gene expression relative to 

a reference gene for each individual fish.  Mean averages of relative expression of 

the target gene in the two experimental groups are taken and compared.  The key 

difference between the REST/DART and the 2-∆ ∆ Ct method is the point at which the 

mean expression values are taken.  Thus the 2-∆ ∆ Ct method allows for variability in 

the starting RNA concentrations and between reverse transcription reactions as each 

individual sample is normalised for concentration by its own internal control.  The 

amount of RNA available after the extensive work optimising the cDNA libraries and 

performing the microarray hybridisations was severely limited and as such it was 

decided that the 2-∆∆Ct method would be used to avoid wasting RNA during the 

quantifications.   

 

To understand the 2-∆∆Ct method it is useful view the series of equations which 

define it.  Starting with the exponential amplification of the target DNA during QPCR 

which can be described by the equation;  

 

X n = X
0
B 1 + E

X

b cn

   i 

 

; where Xn is the number of target molecules at cycle n, X0 is the starting 

number of target molecules and EX is the efficiency of the target amplification 

reaction.   
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The threshold cycle (Ct) is the cycle number at which the amount of 

synthesised target reaches the threshold set by the user and is described as; 

 

X
T

= X
0
B 1 + E

X

b cCt
X

= K
X   ii

 

 

; where XT is the threshold number of target gene molecules, X0 is the starting 

number of target gene molecules, CtX is the cycle number required for the target 

gene amplification to reach the threshold value and KX is a constant.  The equivalent 

equation for the reference gene is; 

 

R
T

= R
0
B 1 + E

R

b cCt
R

= K
R   iii

 

 

; where RT is the threshold number of reference gene molecules, R0 is the 

starting number of reference gene molecules,  CtR is the cycle number required for 

the reference gene amplification to reach the threshold value, ER is the efficiency of 

the reference gene amplification reaction and KR is a constant.  The number of target 

molecules relative to reference molecules at the threshold can be calculated by 

dividing XT  by RT; 

 

X T

R
T

ffffffffff
=

X
0
B 1 + E X

b cCt
X

R
0
B 1 + E

R

b cCt
R

ffffffffffffffffffffffffffffffffffffffffffffffffffff
=

K X

K
R

fffffffffff
= K  iv 

 

Assuming the efficiencies of target gene and reference gene amplification are 

equal, equation iv can be simplified; 

 

If   E X = ER = E ,    v 

 

then  
X

0

R
0

fffffffff
B 1 + E
` aCt

X
@Ct

R
= K .  vi 

 

X0/R0 represents the number of starting target gene molecules normalised to 

the number of starting reference gene molecules (XN) and CtX-CtR is the difference in 

threshold cycles between target and reference (∆Ct).  Thus, equation vi can be 

further simplified to; 
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X N B 1 + E
` a∆Ct

= K ,   vii 

 

and then rearranged to give; 

 

    X N = KB 1 + E
` a@ ∆Ct

.   viii 

 

Equation viii can then be used to find the number of normalised target gene 

molecules in an experimental sample (XN,es) relative to a control sample (XN,cs); 

 

X N,es

X
N,cs

fffffffffffffff
=

K B 1 + E
` a@ ∆Ct,es

K B 1 + E
` a@ ∆Ct,cs

ffffffffffffffffffffffffffffffffffffffffffffffffffffff
= 1 + E
` a@ ∆Ct es@ ∆Ct cs

b c

. ix  

  

 

The reaction efficiency (E) for an optimised PCR amplification of short 

amplicons (<150 bp) is close to one (i.e., the amount of DNA in the reaction doubles 

every cycle).  The expression  -(∆Ctes- ∆Ctcs) is shortened to –∆∆Ct. Thus, the 

amount of normalised target gene in an experimental sample relative to a control 

sample is expressed as; 

 

 amount of normalised target = 2
@ ∆∆Ct

 . x 
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4.24 QPCR Primer Design and Optimisation 

 

The binding of SYBR green to double stranded DNA is not sequence-specific 

and as such, stringent controls were used to ensure only the desired DNA amplicons 

were amplified as non-specifically amplified DNA would have invalidated results. To 

ensure only desired DNA was being amplified, exon spanning primers were made for 

each control and target gene so only cDNA made from mRNA could be amplified.   

Additionally the amplicons were examined crudely by agarose gel electrophoresis 

and also by the more stringent method of analysing the dissociation plot of derivative 

fluorescence values of target and control amplicons. Genes to be analysed with 

QPCR were selected because of significant changes in expression shown by the 

microarray data and also because of sequence homology to known genes.  The 

genes analysed and the QPCR primers are shown below (Table 4.24.a). 

 

 

Table 4.24.a.  Genes analysed with respective primers used for QPCR analysis.  
Primers spanning splice sites are shown in mixed black and red text. 

 

Gene Forward Primer Reverse primer 

Prolactin ACGACCTGGACACCCATTTC GATTCCGGCACTCTCAAAGC 

VRK3 TGCCGAATACTGGACGTGC GCAGTATCCCGCCAGGTACA 

14_3_3 AGAAGACCGAGGGCAACGA AGGAGTCCCAGCACGTCCT 

Beta Actin GGATCCGGTATGTGCAAAGC CATCACACCCTGATGTCTGGG 

RPL-P0 TGAAGTCTTGAGCGATGTGCA GGAGAAGGGCGAGATGTTCAG 

GAPDH1 GGAGGTGCCAAGAGGGTCAT GCAGGAGGCATTGCTGACA 

GAPDH2 CAATGCCTCCTGCACAACC AACGGTGGTCATGAGCGC 

18s rRNA ACGGCCGGTACAGTGAAACT CGCTCGTCGGCATGTATTAG  

 

 

In order to attain reaction efficiencies close to 1 for target and reference gene 

primer sets, which is an assumption for the 2-∆∆Ct method to hold true, stringent 

experimental design was necessary which included rigorous primer design and 

subsequent optimisation of reactions.  The primers were designed using Primer 

Express 2.0 (Applied Biosystems, UK) with an annealing temperature (Tm) between 

58 ºC and 60 ºC and an amplicon size ranging from 95 bp to 110 bp.  The narrow Tm 

range allows standard cycling parameters to be used for all primers.  A longer DNA 
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fragment will bind more molecules of dye and give a greater signal than a short 

fragment, thus all amplicons were kept within 15 bp of each other.  There is a 

possibility that the isolated mRNA could contain traces of genomic DNA.  To ensure 

that only cDNA complementary to intronless mRNA is amplified during QPCR, one 

primer from each pair was designed to span a splice site where an intron would have 

been present in the genomic DNA.  This primer cannot bind to any contaminating 

genomic DNA, which would contain introns, and is therefore not amplified.  The exon-

intron boundaries were determined using a combination of Clustal X Multiple 

Sequence Alignment Program (version 1.8, June 1999) and Spidey 

(http://www.ncbi.nlm.nih.gov/spidey/) to align A. anguilla cDNA sequences with the 

corresponding cDNA and genomic DNA sequence from D. rerio or T. rubripes.  cDNA 

sequences for A. anguilla were obtained from NCBI (http://www.ncbi.nlm.nih.gov/) or 

from the clones sequenced from the cDNA libraries used to make the microarrays.  

cDNA and genomic DNA information for D. rerio and T. rubripes was taken from the 

Ensembl database (Hubbard et al., 2005). 

 

An example of the process of selecting a pair of primers, where one primer 

spans an intron, is shown below using the sequence of an eel clone 

(01e09_Aa_BOS_01C05) which is homologous to D. rerio tyrosine 3-mono-

oxygenase/tryptophan 5-mono-oxygenase activation protein, beta polypeptide (14-3-

3).  Firstly, Primer Express 2.0 was used to generate a range of potential optimal 

primer pairs and then these were compared to the splice sites in the sequence.  The 

fragment of A. anguilla 14-3-3 cDNA to be amplified was aligned with the 

corresponding cDNA and genomic DNA sequences from D. rerio using ClustalX with 

the primer sites highlighted (Figure 4.24.a).  The alignment between the three 

sequences using ClustalX and the location of the donor and acceptor splice sites was 

then verified using Spidey (Figure 4.24.b).  The intron-exon boundaries (splice sites) 

match in both the ClustalX alignment and the Spidey alignment.  A pair of primers, 

one of which spans an intron, was selected from the Primer Express generated set.  

For 14-3-3 the forward primer is located within an exon whilst the reverse primer 

spans a 654bp intron between exons.  In the unlikely event that amplification was 

also primed from genomic DNA there would be two products created, 103bp and 

757bp in length, amplified from the cDNA and genomic DNA respectively which 

would be identified by gel electrophoresis or on the dissociation plot. 
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Eel_14-3-3_Aa_may06_03F02           AGGAGCTGTCCAACGAGGAGCGCAACCTGCTGTCGGTGGCCTACAAGAAC 
D.RERIO_14-3-3_CDNA                 TGGAGCTTTCCAATGAAGAGCGCAACTTGCTCTCTGTGGCTTACAAGAAT 
D.RERIO_14-3-3_GENOMIC              TGGAGCTTTCCAATGAAGAGCGCAACTTGCTCTCTGTGGCTTACAAGAAT 
                                     ****** ***** ** ********* **** ** ***** ********  
         
Eel_14-3-3_Aa_may06_03F02           GTGGTGGGGGCGCGGCGCTCCTCCTGGCGCGTCATCTCCAGCATCGAGCA 
D.RERIO_14-3-3_CDNA                 GTGGTGGGTGCCCGGCGCTCATCCTGGCGCGTCATCTCAAGCATTGAGCA 
D.RERIO_14-3-3_GENOMIC              GTGGTGGGTGCCCGGCGCTCATCCTGGCGCGTCATCTCAAGCATTGAGCA 
                                    ******** ** ******** ***************** ***** ***** 
          Forward primer 
Eel_14-3-3_Aa_may06_03F02           GAAGACCGAGGGCAACGAGAAGAAGCAGCAGATGGCGCGCGAGTACCGCG 
D.RERIO_14-3-3_CDNA                 GAAGACCGAGGGGAATGAGAAGAAGCAGCAGATGGCTCGCGAGTATCGTG 
D.RERIO_14-3-3_GENOMIC              GAAGACCGAGGGGAATGAGAAGAAGCAGCAGATGGCTCGCGAGTATCGTG 
                                    ************ ** ******************** ******** ** * 
Intron-spanning Reverse Primer continued after intron 
Eel_14-3-3_Aa_may06_03F02           AGAAGATCGAGGCCGAGCTGCAGGACATCTGCAAGGACGTGCTG------  
D.RERIO_14-3-3_CDNA                 AAAAGATCGAGACCGAACTACAGGACATTTGCAGTGATGTGCTG------ 
D.RERIO_14-3-3_GENOMIC              AAAAGATCGAGACCGAACTACAGGACATTTGCAGTGATGTGCTGGTATCT 
                                    * ********* **** ** ******** ****  ** ******      
 
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              TCACATCCTTGTCTGAACCTCCTAAACCTTTTGTGTTCATTTATATAATT 
 
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              TGTTTAGTTATTCAAATTATATTAATATATATTTACTTATTAATTAAACA 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              ATTTATATATATATATATATATATCTTTGTCTTTGTTGCCCAAGTTAACA 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              TATTTATGGTGAAATCTGAGAGCTTCGTCAAAATTTCAGAAAAAAATAGG 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              CAAAAATTATTTATGCCATATGCCTCAGTGGTTCAATTGAAATGTTATCA 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              ATTAATTAAAATACATTTGTGCGTACACACAACAAAATACTGACTTAATT 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              TAACAGTTCCTTCAGTGAAGGGTGCCTCTGATCTGTTTCTTCTTGGCTGT 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              GCCTCTTATGTATTTCCTTGGATACACCAAGGAACTTTTTCAAAGAGAGA 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              AAGTCAGATGGAAGCTCTCAGATTTCAACTGTTATTTTAATTTGTGTAAT 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              GTAGATAAATTACGTATTTAGTCGTTTGAATCGACATGAGGGTCAGTAAT 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              TAATAACATCATTTTCAATTTCGGTGAATTGGCCCTTTAAGATGCAAGAC 
                                                                                       
Eel_14-3-3_Aa_may06_03F02           -------------------------------------------------- 
D.RERIO_14-3-3_CDNA                 -------------------------------------------------- 
D.RERIO_14-3-3_GENOMIC              TTAGCTATTCATCATATGTTCAGTCTGCTTTTTTAAATAATGGATATTTT                                                                                   
continuation of reverse primer 
Eel_14-3-3_Aa_may06_03F02           -----------------------------------------------GGA 
D.RERIO_14-3-3_CDNA                 -----------------------------------------------GGT 
D.RERIO_14-3-3_GENOMIC              AGATCACAAAAATTAACCACCTTGATTGTCACAATCTGTCTTTACAGGGT 
                                                                                   **  
 
Eel_14-3-3_Aa_may06_03F02           CTCCTGGACAAACACCTGATCACCAACGCCAGTCAGGCGGAGAGCAAGGT 
D.RERIO_14-3-3_CDNA                 CTTTTGGAGAAGTACCTCATTGCCAATGCCTCTCAAGCAGAGAGCAAGGT 
D.RERIO_14-3-3_GENOMIC              CTTTTGGAGAAGTACCTCATTGCCAATGCCTCTCAAGCAGAGAGCAAGGT 
                                    **  **** **  **** **  **** ***  *** ** *********** 

Figure 4.24.a.  ClustalX alignment of A. anguilla 14-3-3 cDNA sequence flanking 
exons 1 and 2 with the corresponding cDNA and genomic DNA sequences from 
D. rerio (Ensembl gene ID: ENSDARG00000015382).  Forward and intron-
spanning reverse primers are highlighted in green and blue respectively.         



 

 208 

                                  

Exon 1: 2545-2844 (genomic); 174-473 (mRNA) 
2545        CCATTTCAGTGTAAAAATGGACAAGAGCGATCTGGTGCAGAAAGCCAAGC 

                      || || ||||||||||| || ||||| ||||| ||||||| 

174                   GTGAACATGGACAAGAGTGACCTGGTACAGAAGGCCAAGC 

2585        TAGCCGAACAGGCCGAGCGGTATGATGACATGGCAGCAGCAATGAAAGCT 

            | || || ||||| ||||| ||||| |||||||| || || ||||| ||  

214         TGGCGGAGCAGGCAGAGCGCTATGACGACATGGCGGCGGCGATGAAGGCG 

2635        GTGACTGAAGGTGGTGTGGAGCTTTCCAATGAAGAGCGCAACTTGCTCTC 

            ||||| || |  ||   |||||| ||||| || ||||||||| |||| || 

264         GTGACGGAGGAGGGGCAGGAGCTGTCCAACGAGGAGCGCAACCTGCTGTC 

2685        TGTGGCTTACAAGAATGTGGTGGGTGCCCGGCGCTCATCCTGGCGCGTCA 

             ||||| |||||||| |||||||| || |||||||| ||||||||||||| 

314         GGTGGCCTACAAGAACGTGGTGGGGGCGCGGCGCTCCTCCTGGCGCGTCA 

2735        TCTCAAGCATTGAGCAGAAGACCGAGGGGAATGAGAAGAAGCAGCAGATG 

            |||| ||||| ||||||||||||||||| || |||||||||||||||||| 

364         TCTCCAGCATCGAGCAGAAGACCGAGGGCAACGAGAAGAAGCAGCAGATG 

                           Forward primer site 

2785        GCTCGCGAGTATCGTGAAAAGATCGAGACCGAACTACAGGACATTTGCAG 

            || |||||||| || || ||||||||| |||| || |||||||| ||||  

414         GCGCGCGAGTACCGCGAGAAGATCGAGGCCGAGCTGCAGGACATCTGCAA     

2835        TGATGTGCTGGTATCTTCAC 

             || |||||| 

464         GGACGTGCTG 

Reverse primer site; continues after intron 

Exon 2: 3498-3621 (genomic); 474-597 (mRNA) 
3498        GTCTTTACAGGGTCTTTTGGAGAAGTACCTCATTGCCAATGCCTCTCAAG 

                      || ||  |||| ||  |||| ||  |||| |||  ||| | 

474                   GGACTCCTGGACAAACACCTGATCACCAACGCCAGTCAGG 

3538        CAGAGAGCAAGGTTTTTTACCTGAAAATGAAAGGCGATTACTATAGATAT 

            | ||||||||||| || ||||||||||||||||| ||||| |  |||||  

514         CGGAGAGCAAGGTGTTCTACCTGAAAATGAAAGGAGATTATTTCAGATAC 

3588        TTATCTGAGGTAGCATCCGGAGAGTCCAAGGCCAGTAAGTGCAT 

             | |||||||| ||||| ||||| |||||||    

564         CTGTCTGAGGTGGCATCTGGAGACTCCAAGGAGG 

Exon 3: 7046-7209 (genomic); 598-758 (mRNA) 
7046        TCCCCCTCAGCCACGGTTGAGAACTCTCAGAAGGCTTACCAGGATGCTTT 

                      | |||||  ||   || ||| | || ||  ||   ||||| 

598                   CGACGGTGAAGTCTTCCCAGGACGCGTATAAGAGCGCTTT 

7086        TGACATAAGCAAGAAGGACATGCAGCCCACGCACCCTATACGGTTGGGTC 

            ||| || || ||| ||   ||||||||||||||||| ||  |  |||| | 

638         TGAGATCAGTAAGGAG---ATGCAGCCCACGCACCCCATCAGACTGGGCC      

7136        TTGCCCTCAACTTCTCCGTTTTTTACTATGAGATCCTCAACTCTCCTGAG 

            | || |||||||||||||| || ||||| |||||||||||||| || ||| 

685         TGGCTCTCAACTTCTCCGTCTTCTACTACGAGATCCTCAACTCGCCCGAG 

7186        AATGCCTGCCAACTTGCCAAGACGGTGAGTATAT 

             | ||||||   || ||||||||| 

735         CAGGCCTGCAGCCTGGCCAAGACG 

Exon 4: 10989-11068 (genomic); 759-838 (mRNA) 
10989       TCTTTTACAGGCTTTTGATGAAGCCATTGCTGAGCTTGACACTTTAAATG 

                      || ||||| |||||||||||||| || ||||| || || | 

759                   GCATTTGACGAAGCCATTGCTGAACTCGACACCTTGAACG 

11029       AGGACTCCTACAAAGACAGCACCTTGATCATGCAGCTTCTAAGGGACAAC 

            |||| || ||||||||||||||| ||||||||||||| || 

799         AGGAATCATACAAAGACAGCACCCTGATCATGCAGCTACT 

 

Figure 4.24.b.  Spidey (NCBI) alignment of the genomic region of D. rerio 
encompassing the 14-3-3 gene (above, Ensembl gene ID: 
ENSDARG00000015382) with the corresponding cDNA from A. anguilla (below) 
with nucleotide mismatches shown in red.  The forward and intron-spanning 
reverse QPCR primers are highlighted in green and blue respectively. 
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In order to compensate for potential differences in binding or extension 

initiation between primers, test experiments were carried out for each primer pair 

using a standard amount of cDNA template with varying concentrations of each 

primer between 50 nM and 900 nM (final concentration).  The lowest primer 

concentrations which gave the highest reaction efficiency were selected.  For a PCR 

reaction optimised for Mg2+ and amplifying short amplicons the reaction efficiency 

should be close to 1.  The reaction efficiencies of each primer set were compared 

over a 3125 dilution series of template to verify that primers worked equally efficiently 

over a range of template concentrations.  Amplification efficiencies were calculated 

for each primer set using the equation below (slope is calculated as the linear 

regression coefficient of Ct versus log RNA input).    

 

QPCR Efficiency = 10-(1/slope) -1 

 

For each primer set, the plots of Ct versus log RNA input, the reaction 

efficiencies (E) and the fit (R 2) of the fitted regressions are presented (Figure 4.24.c). 
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Figure 4.24.c.  QPCR efficiency plots.  QPCR was performed in triplicate for 
each primer set at 5 different template concentrations over a large (3125-fold) 
dilution series.  A linear regression was applied to the mean Ct values for each 
primer set at each RNA concentration, the slope of which was used in the 
equation “Efficiency = 10-(1/slope) –1” to give the reaction efficiencies.  RPL-P0 
(E= 1.00, R2= 1.00); β-actin (E= 1.01, R 2= 0.99); VRK3 (E= 1.02, R 2= 0.99); 14-3-3 
(E= 0.99, R 2= 1.00); prolactin (E= 0.99, R 2= 1.00). 

 

 

Endogenous reference genes:  GAPDH, 18s rRNA, acidic ribosomal 

phosphoprotein P0 (RPL-P0) and β-actin were chosen as candidates for endogenous 

control genes as they have been shown to have stable expression across a wide 

range of organisms under various treatments.  The expression level of a target gene 

is compared to an endogenous control gene to give a relative expression level.  This 

allows different samples to be compared directly whilst minimizing the effect of 

differences between samples caused by experimental inaccuracies such as the 

amount of starting RNA in the initial sample or RT efficiency. 

 

The first set of GAPDH primers (see Figure 4.24.d and Table 4.24.a) designed 

as based on the above principles were not suitable for use in the QPCR  assay as 

analysis of the dissociation curve revealed two distinct peaks around the 80 ºC mark 

(Figure 4.23.b).  When viewed on a gel there was, however, only a single band at 

~114 bp.  A mis-prime from genomic DNA would have given a second product of 427 

bp which would have been clearly visible on the gel and would have a significantly 

higher Tm than the 114 bp product.  The two products were probably due to priming 
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of GAPDH and a similar isoform or pseudogene in the cDNA samples. New primers 

were designed to span a different intron (Figure 4.24.d) but these primers also gave 

multiple products and as such GAPDH was ruled out as a potential reference gene 

candidate. 
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Exon 3: 2786-2901 (genomic); 176-291 (mRNA) 
 

2786        CTCCTGGTAGGCTCACATTAAGGGTGGTGCAAAGAGAGTCATCATCTCTG 

                       ||||| | ||||| ||||| ||||| ||||||||||| | 

176                   ACTCACCTGAAGGGAGGTGCCAAGAGGGTCATCATCTCCG 

                      Y  S  P  E  G  R  C  Q  E  G  H  H  L  R  

       Original GAPDH forward primer site  

 

2826        CCCCAAGTGCAGATGCCCCCATGTTTGTCATGGGTGTCAACCATGAGAAA 

            |||| || || || ||||||||||| || ||||| |||||||| || ||| 

216         CCCCCAGCGCTGACGCCCCCATGTTCGTGATGGGCGTCAACCACGAAAAA 

              P  Q  R  *  R  P  H  V  R  D  G  R  Q  P  R  K  

 

 

2876        TATGACAACTCTCTCACAGTTGTAAGGTAAATGGTG 

            |||||||| || || |  ||||| || 

266         TATGACAAATCCCTGAAGGTTGTCAG 

            I  *  Q  I  P  E  G  C  Q  

  Original reverse primer site 

 

 

Exon 4: 3214-3295 (genomic); 292-373 (mRNA)  

 
3214        ATTCTCCCAGCAATGCCTCCTGCACCACCAACTGCCTGGCTCCTTTGGCA 

                      ||||||||||||||| |||||||||||||||||  ||||  

292                   CAATGCCTCCTGCACAACCAACTGCCTGGCTCCCCTGGCC 

   Redesigned GAPDH forward primer site 

 

3254        AAGGTCATCAATGATAACTTTGTCATCGTTGAAGGTCTTATGGTAAGATTAA 

            ||||||||| | || ||||| | ||| |  || |  || ||| 

332         AAGGTCATCCACGACAACTTCGGCATTGAGGAGGCGCTCATG 

                      Redesigned GAPDH intron-spanning reverse primer site. 

 

 

Exon 5: 3476-3555 (genomic); 374-453 (mRNA) 

 
3476        TCCATTTCAGAGCACTGTTCATGCCATCACAGCAACACAGAAGACCGTTG 

                      | ||| ||||| |||  ||| || || |||||||| || | 

374                   ACCACCGTTCACGCCTACACGGCCACCCAGAAGACGGTGG 

 

Figure 4.24.d.  Spidey alignment of A. anguilla GAPDH cDNA (below) with D. 
rerio genomic DNA (above, Ensembl ID: ENSDARG00000043457) with 
nucleotide mismatches shown in red.  The original forward and intron-
spanning reverse GAPDH primer sites are highlighted in green and blue 
respectively. The second, redesigned intron-spanning forward and reverse 
GAPDH primer sites are highlighted in pink and grey respectively.  There is an 
overlap between the original reverse and redesigned forward primer sites 
which is highlighted in yellow.  Neither pair of primers was suitable to amplify a 
control gene for QPCR. 
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The 18S rRNA primers (Figure 4.24.e and Table 4.24.a) were also deemed to 

be unsuitable to amplify a control gene as the Ct of the control experiment containing 

RNA template was too near (<8 Ct) that of the cDNA.  The ubiquitously abundant 

18S rRNA gene comprises only one exon so primers cannot be designed to span an 

intron, thus genomic DNA is also amplified.  This effect can be minimised by DNase 

treating the RNA before the RT step but as the amount of RNA was limited, the 

number of manipulation steps was kept to a minimum to preserve the integrity of the 

RNA.  Contamination of solutions used in PCR is also common when using 18S 

rRNA primers as it is very highly conserved between species and a single stray cell 

or spore could erroneously influence a result.  

 

 

TACACACGGCCGGTACAGTGAAACTGCGAATGGCTCATTAAATCAGTTATGGTTCCTTTGATCGCTCCAACGTTA

CTTGGATAACTGTGGCAATTCTAGAGCTAATACATGCCGACGAGCGCTGACCCTCCCAGGGGATGCGTGCATTTA

TCANACCCAAAACCCATCCGGGGTGCCTCGTGCGCCCCGGCCGCTTTGGTGACTCTAGATAACCTCGGGCCGATC

GCACGCCCTCCGTGGCGGTGACGTCTCA 

 

Figure 4.24.e.  A. anguilla 18s rRNA which is an intron-less gene, showing 
forward and reverse QPCR primer sites highlighted in green and red 
respectively.  18 S rRNA sequence derived from eel brain cDNA cloned in 
Section 3.12. 

 

 

Actin is a major component of the protein scaffold that supports the cell and 

determines its shape, and is the most abundant intracellular protein in eukaryotic 

cells.  The β isoform of actin has been widely used as a reference gene for QPCR 

studies, however, some studies have shown its expression to be regulated under 

certain experimental conditions suggesting that as a reference gene it should be 

used with caution (Dheda et al., 2004; Selvey et al., 2001).  β-Actin has, however, 

been previously used as the endogenous reference gene for QPCR studies 

examining the yellow to silver developmental processes of the Japanese eel, Anguilla 

japonica (Han et al., 2003) which is one of the closest relatives of the European eel.  

β-Actin was also shown by the microarray results in the present study to have a very 

stable expression in the brain of both yellow and silver freshwater-adapted eels.  β-

Actin primers (Figure 4.24.f and Table 4.24.a) were also designed using the D. rerio 

genomic sequence (Ensembl ID: ENSDARG00000037746) to find the splice sites.  

These primers were only suitable as a control for the Yellow to Silver development 
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experiment as a significant increase in expression (2.42 fold) was shown during FW 

to SW transfer were shown during the microarray experiments (see Table 4.19.a). 

 

Exon 1: 1327-1458 (genomic); 46-177 (mRNA) 

 
1327        CTCTTCCTGCAGTTGAGCCATGGAAGATGAAATCGCCGCACTCGTTGTTG 

                      |||| |||||||||||||||||| |||||||| ||||||| 

46                    AGTTCAGCCATGGAAGATGAAATTGCCGCACTGGTTGTTG 

 

1367        ACAATGGATCCGGTATGTGCAAAGCCGGATTTGCTGGAGACGACGCCCCT 

            | || |||||||||||||||||||||||||| |||||||| || || ||  

86          ATAACGGATCCGGTATGTGCAAAGCCGGATTCGCTGGAGATGATGCTCCC 

             Forward Primer site 

 

1417        CGTGCTGTCTTCCCCTCCATCGTTGGTCGCCCCAGGCATCAGGTAAACTATT 

            || ||||||||||| |||||||| ||||||||||| |||||| 

136         CGCGCTGTCTTCCCATCCATCGTGGGTCGCCCCAGACATCAG 

 

Intron-spanning reverse primer site continues in next intron 

 

 

Exon 2: 1546-1785 (genomic); 178-417 (mRNA) 
 

1546    TTTTTTGTGTTCAGGGTGTGATGGTGGGTATGGGCCAGAAAGACAGCTACGTTG 

                      ||||||||||| || ||||| ||||| ||||||||||||| 

178                   GGTGTGATGGTTGGCATGGGACAGAAGGACAGCTACGTTG 

            

1586        GTGATGAAGCCCAGAGCAAGAGGGGTATCCTGACCCTCAAGTACCCAATT 

            |||| || || ||||||||||| |||||||||||||| |||||||| ||  

218         GTGACGAGGCTCAGAGCAAGAGAGGTATCCTGACCCTGAAGTACCCCATC 

 

1636        GAGCACGGTATTGTGACCAACTGGGATGACATGGAGAAGATCTGGCATCA 

            |||||||| ||||| ||||||||||| |||||||||||||||||||| || 

268         GAGCACGGCATTGTCACCAACTGGGACGACATGGAGAAGATCTGGCACCA 

 

1686        CACCTTCTACAACGAGCTGAGAGTTGCCCCTGAGGAACACCCAGTCTTGC 

            |||||||||||| |||||| | || ||||| ||||| ||||| ||| ||| 

318         CACCTTCTACAATGAGCTGCGTGTGGCCCCCGAGGAGCACCCCGTCCTGC 

 

1736        TCACAGAGGCTCCCCTGAACCCCAAAGCCAACAGGGAGAAGATGACCCAG 

            |||||||||| |||||||||||||||||||||||||| |||||||||||| 

368         TCACAGAGGCCCCCCTGAACCCCAAAGCCAACAGGGAAAAGATGACCCAG 

 

            GTAATTATAA 

 

Figure 4.24.f.  Extract from a Spidey (NCBI) alignment of the genomic region of 
D. rerio encompassing β-actin (upper sequence, Ensembl ID: 
ENSDARG00000037746) with the corresponding cDNA from A. anguilla β-actin 
(lower sequence).  Forward and intron-spanning reverse QPCR primer sites are 
highlighted in blue and green respectively. 
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RPL-P0 is a ribosomal protein which is a component of the 60S ribosome 

subunit and the encoding gene (AY763793) has been used previously in QPCR 

studies for A. anguilla (Pierce et al., 2004b, Weltzien et al., 2005).  Unlike some other 

ribosomal genes such as 18S and 28S, RPL-P0 contains introns which enable intron-

spanning primers to be generated (Pierce et al., 2004a).  Splice sites in A. anguilla 

predicted by Spidey correlated with D. rerio.  The forward primer spans the splice site 

between two exons (Figure 4.24.g). 

 

Exon 4: 7602-7757 (D.rerio_RPLP0 genomic DNA); 310-465 (mRNA A. anguilla acidic 

ribosomal phosphoprotein P0) 
7602        AGATATTGTTTGAGTTCAGGTGCCCGCTGCTGCCCGTGCTGGTGCCATCG 

                           | ||||||| ||||| |||||||| |||||||| | 

310                   GCCAATAAGGTGCCAGCTGCAGCCCGTGCCGGTGCCATTG 

                      G  Q  *  G  A  S  C  S  P  C  R  C  H  C  

 

7642        CCCCCTGTGAGGTGACCGTGCCGGCCCAGAACACCGGGCTCGGTCCTGAG 

            ||||||| || || |||||||| || |||||||| ||||||||||||||| 

350         CCCCCTGCGACGTCACCGTGCCAGCTCAGAACACTGGGCTCGGTCCTGAG 

              P  L  R  R  H  R  A  S  S  E  H  W  A  R  S  *  

 

7692        AAGACCTCTTTCTTCCAGGCTTTGGGAATCACCACCAAGATCTCCAGAGG 

            |||||||| ||||||||||| ||||| ||||||||||||||||||||||| 

400         AAGACCTCCTTCTTCCAGGCCTTGGGCATCACCACCAAGATCTCCAGAGG 

            E  D  L  L  L  P  G  L  G  H  H  H  Q  D  L  Q  R  

 

7742        AACCATTGAAATCTTGGTGAGTAGCA 

            |||||||||| ||||| 

450         AACCATTGAAGTCTTG 

             N  H  *  S  L  

Intron-spanning forward primer site, continues in next exon 

 

Exon 5: 10379-10564 (genomic); 466-651 (mRNA) 
10379       CTGCCCTCAGAGTGACGTTCAGCTGATCAAACCTGGAGACAAGGTGGGCG 

                      || || || ||||| || ||  | |||||||||||||||| 

466                   AGCGATGTGCAGCTCATTAAGACCGGAGACAAGGTGGGCG 

                      E  R  C  A  A  H  *  D  R  R  Q  G  G  R  

 

10419       CCAGCGAGGCCACGCTGCTGAACATGCTGAACATCTCGCCCTTCTCCTAC 

            ||||||||||||| ||||| |||||||||||||||||||||||||||||| 

506         CCAGCGAGGCCACTCTGCTCAACATGCTGAACATCTCGCCCTTCTCCTAC 

              Q  R  G  H  S  A  Q  H  A  E  H  L  A  L  L  L  

      

Reverse primer site      

                           

10469       GGGTTGATCATCCAGCAGGTGTATGATAACGGCAGTGTCTACAGCCCCGA 

            ||| | ||||||||||||||||| || |||||||| |||||||||||||| 

556         GGGCTCATCATCCAGCAGGTGTACGACAACGGCAGCGTCTACAGCCCCGA 

            R  A  H  H  P  A  G  V  R  Q  R  Q  R  L  Q  P  R  

 

10519       GGTGCTGGACATCACTGAGGATGCCCTGCACAAGAGATTCCTGGAGGTTT 

            ||| |||||| |||| ||||| || |||||   ||| ||||||||| 

606         GGTCCTGGACGTCACCGAGGAGGCTCTGCAGCTGAGGTTCCTGGAG 

             G  P  G  R  H  R  G  G  S  A  A  E  V  P  G  

 

Figure 4.24.g.  Extract from a Spidey (NCBI) alignment of the genomic region of 
D. rerio encompassing the RPL-PO gene (upper sequence, Ensembl gene ID: 
ENSDARG00000051783) with the corresponding cDNA from A. anguilla (lower 
sequence).  The intron-spanning forward and reverse QPCR primers are shown 
in green and yellow respectively. 
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Optimal QPCR primers were sought for each gene but this was not always 

possible.  For example, secretogranin III is comprised of only one exon so intron 

spanning primers were not possible.  Predicted intron-exon boundaries for the 

homologues to kainate receptor, contactin and c-type natriuretic peptide genes were 

not reliable due to insufficient sequence information or significant divergence from 

known sequences at the nucleotide level.  Optimal intron spanning primer sites were 

found for clones 01e01_Aa_BOS_01C01 and 01e09_Aa_BOS_01C05 and as such 

they were selected as the genes used to validate the array.  The former shows strong 

homology (blastx score = 260, e = 4e-68) to human vaccinia related kinase 3 (VRK3).  

The latter is homologous to the β-subunit of D. rerio tyrosine 3-monooxygenase/ 

tryptophan 5-monooxygenase activation protein (blastx score = 384   e-105) which is 

a member of the 14-3-3 family, and hereon will be referred to as 14-3-3 protein. 

 

14-3-3 proteins are ubiquitous phosphoprotein partners and very potent 

master regulators that control the activity of many signal transduction pathways in 

response to a changing environment (Fu et al., 2000).  Interestingly, many molecular 

phenomena involved in salinity adaptation of euryhaline fish are regulated by 14-3-3 

proteins.  Examples are the activation of H+-ATPase (Kultz et al., 2001), the 

regulation of cell proliferation and apoptosis (Fu et al., 2000), modulation of Na+/K+-

ATPase activity via protein kinase C (PKC) regulation (Crombie et al., 1996), the 

regulation of ion transport and transporters (Chan et al., 2000), and the regulation of 

the cytoskeleton (Roth et al., 1999). 

 

VRK3 is a member of the relatively uncharacterized VRK family which also 

includes VRK1 and VRK2 (Nichols and Traktman, 2004).  The nucleolar protein 

VRK1 is known to phosphorylate various transcription factors including p53 (Vega et 

al., 2003), AFT2 and c-Jun (Sevilla, 2004; Sevilla et al., 2004).  VRK2 localises in the 

endoplasmic reticulum and the human form has been shown to interact with BHRF1, 

an Epstein–Barr virus encoded protein resulting in an anti-apoptotic effect.  VRK3 is 

expressed in the nucleus and over-expression and knockdown studies have shown it 

to be involved in the negative regulation of the extracellular signal regulated kinases 

ERK1 and ERK2 (Kang and Kim, 2006).  
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4.25  QPCR assay of A. anguilla 14-3-3 and VRK3 expression in yellow 7 

day FW and silver 5 month FW acclimated eel brain. 

 

A validated QPCR assay which could be used for 14-3-3, VRK3 and prolactin 

was established using the control genes ribosomal protein large P0 (RPL-P0) or β-

actin.  Specific primer pairs were made for each gene with at least one primer from 

each pair spanning an intron.  Amplicon identity was assessed using gel 

electrophoresis and dissociation curves analysis (Figure 4.25.a). 
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Figure 4.25.a.  Dissociation plot of derivative fluorescence values of target and 
control amplicons.  Following amplification the fluorescence is measured as 
the QPCR solution is gradually heated to separate the double stranded DNA.  A 
single peak indicates that a single product has been created with no primer 
dimers. 

 

 

Reactions were optimised using various primer concentration combinations to 

obtain efficiencies of 2 +/- 0.02 (equivalent to a doubling in DNA concentration for 

each round of PCR) so that the 2-∆ ∆ Ct data analysis method could be employed (see 

section 3.31) (Livak and Schmittgen, 2001).  Ct measurements for each QPCR were 

taken for each sample at the point the fluorescence, which represents the DNA 
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concentration, reached a threshold set in the exponential phase of the reaction (see 

figure 3.31.a).  In the 2-∆∆Ct method of analysis data are presented as the fold change 

in target gene expression normalised to the endogenous control (β-actin or RPL-P0) 

and relative to the untreated control. For the untreated control sample, the 

expression of the target gene is treated as a constant in relation to the control gene, 

so ∆∆Ct equals zero and as 20 equals one, so the fold change in gene expression of 

the target gene relative to the control gene equals one by definition.  For the treated 

samples, evaluation of 2-∆∆Ct indicates the fold change in gene expression relative to 

the untreated control. 

 

The relative expression of 14-3-3 and VRK3 in the brain was measured in 

duplicate experiments with samples taken from each fish in the 7 day FW acclimated 

yellow (n = 6) and 5 month FW acclimated silver (n = 6) eel groups.  β-actin was 

selected as the control gene as this had been shown in the microarray results to 

have stable expression in the brain of both yellow and silver FW acclimated eel 

brains [fold change from yellow to silver = 1.13 ± 0.11 (mean ± standard deviation)] 

and has been used previously as a reference gene when examining the yellow to 

silver development of anguillid eels (Han et al., 2003).   

 

Relative expression of 14-3-3 normalised to β-actin as determined by QPCR 

was an average 1.61 fold higher in the brain of silver eels (p-value <0.05, Table 

4.25.a).  This concurred with the microarray determined relative expression change 

of 1.68. 

 

Relative expression of VRK3 normalised to β-actin was an average 1.52 fold 

higher in the brains of silver eels (p-value <0.005, Table 4.25.a).  This was similar to 

the microarray determined relative expression change of 2.05. 
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Table 4.25a. Expression of 14-3-3 and VRK3 in the brain relative to β-actin in 
yellow 7 day FW acclimated and silver 5 month FW acclimated eel brains. P-
value calculated using a non-paired T-test assuming heteroskedastic variance 
and 10 degrees of freedom. 

 

Ct difference between  

target and control gene 

(∆Ct mean +/- standard 

deviation) 

Target Control 

Yellow Silver 

Relative expression 

of target gene 

normalised to control 

gene  

(∆∆Ct) 

Fold expression 

change from  

Yellow to Silver 

(2-∆∆Ct) 

T test 

p-value 

14-3-3 β-actin 1.39 ± 0.594 0.70 ± 0.081 0.69 1.61 0.035 

VRK3 β-actin 7.85 ± 0.293 7.25 ± 0.084 0.60 1.52 0.003 
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4.26 QPCR assay of prolactin expression in silver 2 day FW and silver 2 

day SW acclimated eel brain. 

 

Prolactin was selected to validate the microarray experiment examining the 

effect of salinity change on gene expression in the brain.  Prolactin was shown to be 

up-regulated in the silver 2 day SW in comparison with the corresponding FW group.  

β-Actin (used in the yellow-silver QPCR assay) was deemed unsuitable as the 

endogenous reference gene for the salinity change QPCR assay as the present 

microarray study had shown it to be up-regulated in the brain following SW 

adaptation of silver eels (fold change from FW to SW = 2.42 ± 0.63 standard 

deviations (Table 4.19.a).  Therefore RPL-P0 was selected as an alternative 

endogenous reference gene as it was shown to have a constant expression in the 

brain of both FW and SW adapted silver eels.   

 

The relative expression of prolactin in the brain was measured in duplicate 

experiments with samples taken from each fish in the silver 2 day FW acclimated (n = 

6) and silver 2 day SW acclimated (n = 6) eel groups.  β-actin was discounted as a 

control gene as the microarray result showed a significant increase in expression of 

this transcript in the brain following FW to SW transfer (fold change from yellow to 

silver = 2.42 ± 0.63 standard deviations, see table 4.7.a).  Gene expression was 

instead normalised to RPL-P0 (accession number: AY763793) a housekeeping 

ribosomal protein which, unlike 18S rRNA, contains introns.  RPL-P0 encodes a 

ribosomal protein that is a component of the 60S subunit (Weltzien et al., 2005).  This 

gene was shown to have a constant expression in the brains of both FW and SW 

adapted silver eels (FW Ct = 23.94 ± 0.35 standard deviations, SW Ct = 24.25 ± 0.25 

standard deviations).   

 

Relative expression of prolactin normalised to RPL-P0 as measured by QPCR 

was an average 77 fold higher in the brain of silver eels acclimated to SW for 2 days 

than silver eels acclimated to FW for 2 days (Table 4.26.a).   



 

 221 

Table 4.26.a.  Expression of prolactin in the brain relative to RPL-P0 in silver 
eels acclimated for 2 days to FW or SW. P-value calculated using a non-paired 
T-test assuming heteroskedastic variance and 10 degrees of freedom. 

 

Ct difference between  

target and control gene 

(∆Ct mean ± standard 

deviation) 

 

Target Control 

FW SW 

∆∆Ct 

Fold expression 

change (Yellow to 

Silver, 2-∆∆Ct) 

P-Value 

Prolactin RPL-P0 2.18 ± 7.79 8.44 ± 0.19 6.26 76.64 0.11 

 

 

 

The difference in expression (∆ Ct) between prolactin and the control gene 

RPL-P0 in SW was relatively consistent (Mean ∆ Ct = 8.44, standard deviation = 

0.19) but the FW group exhibited high variance (Mean ∆ Ct = 2.18, standard 

deviation = 7.79).  Thus, despite the large average increase in prolactin expression in 

2 day SW acclimated silver eels the difference between the groups was not 

statistically significant (T-test p-value = 0.11) due to the high variability within the FW 

acclimated group.  The average changes in expression levels of prolactin shown by 

QPCR, however, concur with the microarray expression data. 

 

The large variance in prolactin expression in the FW group was investigated 

further by comparing it with the meta data.  A linear regression using fish weight as 

the explanatory variable gave a model which appeared show correlation with the 

prolactin expression and explained most of the variance in the group (y = -0.1016x + 

44.477, R2 = 0.724) (Figure 4.26.a).  Correlations were also sought between prolactin 

expression and plasma properties (angiotensin II, cortisol, protein content, osmolality, 

NA+, K+, Cl-) collected as meta-data (see section 4.1) but none were found. 
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Figure 4.26.a.  Fish weight and prolactin expression in the brain of the 2 day 
FW acclimated and 2 day SW acclimated, silver eel groups.  A negative 
correlation between fish weight and prolactin expression in the FW group is 
shown by the fitted linear regression (y = -0.1016x + 44.477, R2 = 0.724). 

 

 

QPCR to assess the prolactin expression in silver 2 day FW adapted eel brain 

was repeated alongside brain RNA samples taken from the silver 6 hour FW and 

silver 5 month FW acclimated groups.  The same linear relationship which correlated 

the prolactin expression with fish weight was seen again in the silver 2 day FW 

acclimated group (R2 = 0.60) but there was no correlation between prolactin 

expression and fish weight in either the 6 hour or 5 month FW acclimated groups (R2 

= 0.05 and 0.20 respectively) nor when all the FW eels tested were treated as one 

group (R2 = 0.026, figure 4.26.b). 

 

The use of prolactin to validate the microarray results revealed the importance 

of examining the gene expression in individuals rather than relying solely on pooled 

samples as pooling data can mask variation.  The correlation between prolactin 

expression in the 2 day FW silver eel brain and fish weight was not mimicked across 

all FW acclimated eels indicating the importance of examining a large sample size 

before drawing conclusions about possible correlations.  
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Figure 4.26.b.  Prolactin expression plotted against fish weight.  The fitted 
linear regression (y = -0.009x + 3.1495) is not significant (p > 0.5) and explains 
only a fraction of the variance (R2 = 0.0257). 

 

 

The SW acclimated eels from both the 6 hour and 2 day groups all exhibited 

high prolactin expression except for one fish in the 6 hour group which expressed the 

lowest prolactin expression of all fish tested.  Prolactin expression in the brains of all 

the FW and the 5 month SW acclimated eels tested showed high variance in 

expression levels and there was no correlation with fish weight (figure 4.26.c). 
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Figure 4.26.c.  Prolactin expression in the brains of silver eels acclimated to 
FW or SW for 6 hours, 2 days or 5 months. 
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4.27 Confirmation of 14-3-3 protein clone identity.   

   

The initial blastn and blastx searches likened the A. anguilla clone 

01e01_Aa_BOS_01C01 to the beta isoform of the 14-3-3 protein from D. rerio.  Initial 

sequencing of this clone from the subtracted attB brain library gave almost the entire 

14-3-3 protein coding sequence with only 10 amino acids remaining to be 

determined.  The level of sequence conservation of 14-3-3 maintained across 

isoforms and species is extremely high with human and yeast sharing 70 % 

homology (figure 4.27.b).  The clone is probably the beta isoform as suggested by 

the Neighbour-Joined  phylogram (figure 4.27.a).  Members of the 14-3-3 family of 

proteins play a role in most cellular functions including regulation of protein kinase C, 

exocytosis, apoptosis, several metabolic processes, redox regulation.  They are able 

to bind discrete phosphoserine/ threonine-binding motifs and in mammals the 14-3-3 

family consists of seven homologues but no single conserved function has been 

assigned (Kjarland et al., 2006). Teleosts often exhibit high numbers of isoforms 

owing to evolutionary genome duplication events and this appears to be the case 

with 14-3-3 where nine isoforms have already been isolated in D. rerio alone.  This is 

the first 14-3-3 protein isolated from Anguilla anguilla. 
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Figure 4.27.a. Cross-species Neighbour-Joined phylogram of 14-3-3 isoforms.  
The scale bar in the phylogram represents branch length (number of amino 
acid substitutions/site). 
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Figure 4.27.b.  ClustalX alignment of vertebrate and S. cerevisae 14-3-3 

isoforms with the A. anguilla clone 01e01_Aa_BOS_01C01. 
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4.28  Confirmation of Vaccinia related kinase 3 protein clone identity 

 

The initial blastn and blastx searches likened the 01e09_Aa_BOS_01C05 A. 

anguilla clone to VRK3 from H. Sapiens.  The closest teleost match from blastx was 

with VRK3 from T. rubripes but good matches were also found with VRK1 and VRK2 

from D. rerio (VRK3 has not been isolated in D. rerio).  This is the first member of the 

VRK protein family to be isolated in Anguilla anguilla or any other anguillid species.  

The VRK family of proteins have several characterised functions including the 

regulation of p53 by VRK1 and VRK2 (Blanco et al., 2006; Vega et al., 2004), 

phosphorylation of Barrier to Autointegration Factor by VRK1 and VRK2 (Nichols et 

al., 2006) and the suppression of ERK activity by VRK3 (Kang and Kim, 2006). 

 

To confirm the identity of the A. anguilla clone a ClustalX alignment was done 

and a NJ phylogram was produced (figures 4.28.b and 4.28.a respectively).  The 

VRK isoforms align well but the level of conservation is not as pronounced as with 

the 14-3-3 protein.  The NJ phylogram concurs with the blast searches, grouping the 

A. anguilla clone with other VRK3 isoforms rather than VRK1 or VRK2. 
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Figure 4.28.a.  Cross-species NJ phylogram of VRK isoforms.  The scale bar in 
the phylogram represents branch length (number of amino acid 
substitutions/site). 
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Figure 4.28.b.  ClustalX alignment of vertebrate VRK isoforms with the A. 
anguilla clone 01e09_Aa_BOS_01C05.
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4.29 Confirmation of prolactin precursor protein clone identity 

 

The prolactin clone 06e15_Aa_BOS_21C08 aligns almost perfectly 

with the four previously published A. anguilla sequences of the prolactin 

precursor (figure 4.29.a).  This clone, from the subtracted attB brain library 

contains the full-length sequence.  Two other clones, 05e23_Aa_BOS_17C12 

and 10c12_Aa_BOS_38B06, also contain the full length prolactin sequence 

but on the microarray these clones are spotted poorly and their fluorescence 

is not significantly enough above background to be reliable. 

 

Figure 4.29.a. ClustalX alignment of published A. anguilla prolactin 
precursor sequences with clone 06e15_Aa_BOS_21C08. 
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5.0 Discussion  

 

The European eel, Anguilla anguilla undergoes several remarkable 

developmental transformations during its fascinating life cycle which involves 

extraordinary migrations across the globe and across extreme physiological 

barriers.  This life cycle presents researchers with an interesting model 

organism to study osmoregulation and development.  To date, 

osmoregulatory research on the eel has focussed on its ability to rapidly adapt 

to changes in external salinity by modulating the epithelial expression of ion 

and water channels in the gills, kidney and intestine via the action of 

hormones, reviewed in Cutler and Cramb, 2001.  Research into the sexual 

development of the eel has predominantly examined the effects and 

interactions of endocrine pathways involving dopamine and luteinising 

hormone (Vidal et al., 2004), follicle stimulating hormone (Degani et al., 2003), 

growth hormone (Marchelidon et al., 1996), thyroid-stimulating hormone(Han 

et al., 2004) and prolactin (Han et al., 2003).  The population of European eels 

has declined rapidly since the early 1970s and in 2005 was classified as 

critically endangered by the Swedish Species Information Centre.  As such, 

the importance of research into this species, especially with regards to its 

breeding, is becoming increasingly poignant.   

 

This study set out to investigate the hypothesis; 

 

The brain is the central organ for the co-ordination of environmental 

cues (day length, photoperiod, temperature and environmental salinity) with 

the anatomical and physiological adaptations which accompany pre-

migrational morphogenesis and the osmoregulatory plasticity seen in post-

migrational, salinity-adapted fish. 
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To create the tools to test this hypothesis, the following aims were 

defined; 

 

i. Develop cDNA libraries for the brain, kidney, intestine and gill 

taken from eels adapted to both fresh and marine environments.  

ii. Use these cDNA libraries to create microarrays. 

iii. Determine gene expression profiles for yellow and silver eels 

adapted to fresh- and seawater. 

iv. Determine the cDNA sequence of potential genes of interest. 

v. Validate the gene expression profiles using complementary 

techniques.  

 

All of the initial aims were achieved.  Subtracted cDNA libraries were 

successfully created for the kidney, gill, intestine and brain of the eel, and 

used to create microarrays.  A microarray, specific for the brain was used to 

determine brain gene expression profiles to examine two aspects of eel 

biology;  

 

a. The transition from juvenile yellow to the adult sexually maturing, 

migrating silver eel; and  

b. salinity adaptation during the migration from freshwater to 

seawater.   

 

The microarrays created represent the first such study for the 

European eel Anguilla anguilla or for any eel species and enabled a wide 

range of genes to be simultaneously monitored. 

 

The validity of the observed changes in gene expression determined 

using the microarrays was then confirmed using real-time quantitative PCR 

(QPCR) analysis.  QPCR assays were developed for the quantification of 

three selected genes, which showed differential expression on the 

microarrays; 
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i. Tyrosine 3-mono-oxygenase/tryptophan 5-mono-oxygenase 

activation protein 

ii. Vaccinia related kinase 3  

iii. Prolactin 

Quantification was normalised to an endogenous reference gene, 

either acidic ribosomal protein P0 or β-actin.   

 

The cDNA libraries and microarrays produced in this project will 

provide the base to facilitate the discovery of important genes involved in 

many aspects of eel biology.  In addition, the QPCR assays developed will be 

useful in validating gene expression profiles. 
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5.1 Gene expression changes during the life cycle of the eel. 

 

We examined the changes in the gene expression profile of the eel 

brain which occur during one of the key developmental stages of the eel, the 

yellow to silver metamorphosis.  The genes whose expression showed the 

greatest difference between the two developmental stages were selected for 

sequencing analysis.  The sequencing results confirmed that the majority of 

clones in the attB subtracted brain library were very long or full-length and that 

the level of redundancy in the library was very low (Table 4.13.a).  These 

sequences have been submitted to arrayexpress (http://www.ebi.ac.uk/aerep) 

where they will be freely available online once the data have been published. 

 

The sequenced clones were then assigned putative biological functions 

by comparison with the Gene Ontology database 

(http://www.geneontology.org/, Ashburner, 2000).  Clones whose functions 

were related were then clustered into six sub-groups; Signal Transduction; 

Development and Morphogenesis; Membrane and Structure; Metabolism; 

Immune/Stress Response; and Transcription and Post-Translational 

Modification (Tables 4.18.b-g respectively).  Unsurprisingly the largest cluster 

was Development and Morphogenesis indicating that there are significant 

changes which occur in these pathways during the yellow to silver transition.  

The second largest cluster was Metabolism, suggesting that there may be 

significant changes in the metabolic pathways employed following silvering, 

perhaps in preparation for the long migration ahead. 

 

Within the Membrane and Structure cluster, intercellular adhesion 

molecule 2 was down regulated by 0.59-fold.  Inter-cellular adhesion and the 

formation of tight-junctions are key to the permeability of membranes and 

would seem an unlikely candidate to be up-/down-regulated within the brain.  

The expression of related genes (claudins) involved in membrane 

permeability are known to be down-regulated in eel gill following transfer to 

seawater (Kalujniaia 2007b).  Whilst the membranes of the eel gill are known 

to undergo extreme phenotypic changes following salinity transfer, little has 
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been reported on the membranes which protect the brain and changes which 

may occur during osmoregulation and development.  As discussed below, 14-

3-3 proteins have been implicated as having a role in membrane integrity and 

the possibility that there are osmotically regulated changes to the brain from 

salinity fluctuations is intriguing.  It would be interesting to follow up these 

results using immunohistochemistry or in situ hybridisation techniques to 

localise the expression of these membrane specific genes and elucidate what 

role they may be playing. 

 

Two genes, 14-3-3 and VRK3, were selected for more detailed analysis 

by QPCR.  This enabled the microarray results to be validated and the inter-

fish gene expression variability to be examined. 

 

The brain expression of 14-3-3 in the silver, 5 month FW acclimated 

eel group was 1.61 fold higher than in the yellow, 7 day FW acclimated group 

when assayed with QPCR, which is very similar to the 1.68 fold change 

quantified for the same gene when using the microarray.  Inter-fish variability 

of brain 14-3-3 expression was lower within the silver group (mean ∆Ct = 0.70 

± 0.08 SD) than in the yellow group (mean ∆Ct = 1.39 ± 0.59 SD) and the 

result was statistically significant (t-test p-value = 0.035).   

 

The 14-3-3 family of proteins was originally identified in 1967 as an 

abundant cytosolic protein in the bovine brain with the numerical 

nomenclature arising from their fraction number on DEAE-cellulose 

chromatography and migration position on starch gel electrophoresis (Moore 

and Perez, 1967).  The 14-3-3 proteins are small acidic soluble proteins with a 

native size of 28-33 kDa that are found in all eukaryotic organisms.   

Speculative functions were suggested as the 14-3-3s kept cropping up 

associated with biologically important proteins (early 14-3-3 work reviewed in 

Aitken et al., 1992) but it was almost 30 years after their initial discovery when 

the first functional evidence showed that 14-3-3 proteins bind discrete 

phosphoserine/threonine motifs (Muslin et al., 1996). 
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14-3-3 proteins are now known to be ubiquitous regulators of cellular 

physiology and biochemistry that control the activity of many signal 

transduction pathways by their ability to bind a wide range of functionally 

diverse signaling proteins, including many protein kinases, phosphatases and 

other phosphoproteins in response to external stimuli (Fu et al., 2000).  They 

operate by binding to specific phosphorylated sites on over 300 known target 

proteins, thereby forcing conformational changes or influencing interactions 

between their targets and other molecules leading to the description that they 

‘finish the job’ when phosphorylation alone lacks the power to drive changes 

in the activities of intracellular proteins” (Mackintosh, 2004).  It is difficult at 

this stage to pinpoint the role this protein is playing in the brain of the silver 

eel as 14-3-3s have been implicated in a wide range of cellular pathways 

including signal transduction, regulation of metabolism, cell cycle and 

checkpoint control, apoptosis, gene transcription, chromosome remodeling, 

intracellular protein trafficking and stress response.  Large numbers of 14-3-3 

isoforms have been isolated from other species; seven in mammals and 

thirteen in Arabidopsis thaliana (Ferl et al., 2002).  Coupled with the genome 

duplication events specific to teleosts (Taylor et al., 2003) one can assume 

that the presently described 14-3-3 isoform in eel will not be a singular 

occurrence.  What is not clear from the microarray result, however, is which 

14-3-3 proteins are being elevated in the silver eel brain.  This is an important 

aspect as 14-3-3 isoforms have been shown to be differentially expressed in 

mammalian (Nakanishi et al., 1997) and teleost (Koskinen et al., 2004) 

species suggesting different roles for each.  The sequence homology between 

the 14-3-3 clone used on the microarray and other 14-3-3 isoforms from other 

species was examined using ClustalX which suggested that it was the beta 

isoform (Section 4.27).  With such high sequence homology between the 

known 14-3-3 isoforms, however, it remains to be confirmed if the microarray 

technique was specific enough to measure whether it was 14-3-3 beta 

transcripts alone that were binding to the 14-3-3 beta cDNA clone on the 

array.  

  

An interesting reported function of 14-3-3 is its involvement in salinity 

adaptation of the euryhaline teleost, F. heteroclitus (Kultz et al., 2001) where 
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an up-regulation of 14-3-3 was shown in the gills following SW to FW transfer.  

This has been linked with the increased activity of P-type H+-ATPase which 

has been seen in response to 14-3-3 binding (Babakov et al., 2000; 

Chelysheva et al., 1999).  Increased P-type H+-ATPase activity mediated by 

14-3-3 in response to external hypo-osmolality would thus drive out protons 

across the gill epithelial membrane, creating a gradient for the absorption of 

Na+ through sodium channels.  Conversely, when F. heteroclitus 14-3-3 was 

expressed in Xenopus oocytes it was shown to have a protective effect from 

the effects of hyper-osmolality of the external medium leading to increased 

survival of the oocytes.  The mode of action in this case was speculated to be 

the inhibition of membrane chloride channels (Kohn et al., 2003).  Eels are 

euryhaline but the average plasma osmolality for all eels examined was 

higher in SW (354.16 ± 31.67 mOsm/L) than in FW (299.83 ± 27.83 mOsm/L), 

a significant salinity change (p<0.0005) from which the animal may need to 

protect itself.  The up-regulation of 14-3-3 in the brain of silver eels could, 

therefore, be part of the pre-adaptation of silver eels to the hyper-osmotic 

environment of SW (Tesch and Greenwood, 1977).  Other reported 

preadaptations of silver eels to SW include decreased gill osmotic 

permeability (Kirsch et al., 1975) and decreased NKCCla expression in the 

kidney compared to yellow eels (Cutler and Cramb, 2001).  Whether 14-3-3 

directly influences P-type H+-ATPase expression in the brain of silver FW 

adapted eels is not apparent but during the current study, V-type H+-ATPase 

expression in the brain was up-regulated (mean M = 1.48, ± 0.10 SD, see 

Table 4.18.b) during yellow to silver transition of the eel.  Although originally 

associated with vacuoloar proton transport, V-type H+-ATPase is now known 

to be expressed in a wide variety of plasma membranes where it is involved in 

energizing transport across cell membranes and entire epithelia (Beyenbach 

and Wieczorek, 2006).  This proton pump has also been shown to associate 

with 14-3-3 proteins (Klychnikov et al., 2006) and although the nature of this 

interaction has not been clarified, increased expression of V-type H+-ATPase 

would provide more targets for the simultaneously up-regulated 14-3-3.   

 

14-3-3 isoforms are also known to bind to and activate protein kinase C 

(PKC) (Isobe et al., 1992; Van Der Hoeven et al., 2000) which in turn has 
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been shown to inhibit the activity of Na+/K+ ATPase in the gill epithelium of 

teleosts, e.g. Atlantic cod (Crombie et al., 1996).  The microarray results from 

this study show that Na+/K+ ATPase α1 (clone 16m19_Aa_BOS_61G10) was 

consistently down regulated in the brain of silver eels (mean M = 0.77, ± 

0.03).  The second clone of Na+/K+ ATPase α1 was removed from the 

analysis as the fluorescence fell below background level; this appears to be 

because of poor quality spotting.  Other clones on the microarray representing 

the Na+/K+ ATPase α3 isoform and the Na+/K+ ATPase representing β-

subunit isoforms did not change their expression significantly between the two 

developmental conditions.  Recently, the differential expression of Na+/K+ 

ATPase isoforms in response to salinity challenge has been demonstrated in 

teleosts which could account for the differences seen between Na+/K+ 

ATPase isoforms here (Richards et al., 2003).  Several lines of evidence 

indicate, however, that Na+/K+ ATPase α and β-subunit synthesis is 

simultaneously regulated (Emanuel et al., 1987) which calls into question the 

differences in expression of the Na+/K+ ATPase subunits seen in silver eel 

brain.  As with all results from microarrays, it would be prudent for the 

expression of the various isoforms of Na+/K+ ATPase subunits in the brains 

of yellow and silver eels to be verified by a second method such as QPCR. 

 

A role of 14-3-3s which is related (indirectly) to the simultaneously up-

regulated VRK3 is the stabilising effect 14-3-3 have on the inactive form of 

Raf-1 (Jirakulaporn and Muslin, 2004).  Binding of Raf-1 by 14-3-3 prevents it 

from phosphorylating and activating the mitogen activated protein kinase 

(MAPK) family members ERK1 and ERK2.  Negative regulation of ERK1 and 

ERK2 are also known functions of VRK3 (Kang and Kim, 2006) and are 

discussed further in section 5.3. 

 

A final role to be mentioned in relation to the silvering process is 14-3-

3’s role linking photoreception, neurotransmission, signal transduction and the 

synthesis of melatonin from tryptophan in relation to the regulation of pineal 

photo-neuroendocrine transduction (Klein et al., 2003). The pineal gland of 

teleost fish is a photosensory organ whose primary role is the rhythmical 

release of melatonin, as dictated by ambient photoperiod, or by an 
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endogenous circadian oscillator entrained by diurnal photoperiod (Asaoka et 

al., 2002).  The pineal organ transduces light-dependent neural inputs into a 

hormonal output by modulating the activity of arylalkylamine N-

acetyltransferase (AANAT), which catalyses the production of N-

acetylserotonin as part of the melatonin pathway (serotonin →N-

acetylserotonin → melatonin) (Ganguly et al., 2005; Korf et al., 1996).  At 

night, elevated cyclic adenosine monophosphate (cAMP) levels cause the 

phosphorylation of two sites on AANAT, S205 and T31, by protein kinase A.  

This post-translational modification of AANAT creates phosphorylated target 

sites for 14-3-3 binding which facilitate the formation of a complex between 

the two proteins.  Binding of AANAT by 14-3-3s both increases and prolongs 

melatonin production; firstly by decreasing the Km for serotonin and secondly 

by protecting AANAT from degradation.  This protection is manifested as 

physical shielding of susceptible amino acids from proteolytic enzymes and 

dephosphorylation of the S205 and T31 sites (Pozdeyev et al., 2006; 

Schomerus and Korf, 2005).   

 

Melatonin has been shown to down regulate prolactin expression in 

cultured pituitary cells of rainbow trout (Falcon et al., 2003) which would 

correlate with the simultaneous down-regulation of prolactin in the brain of 

silver eel as indicated by two of the prolactin clones (mean fold change = 0.65 

± 0.05) in the present microarray experiments.  This provides further 

circumstantial evidence that elevated expression of 14-3-3 in freshwater-

adapted silver eel brains could be causing an increase in circulating melatonin 

levels. 

 

It is not, however, only sunlight that can influence melatonin 

production.  There is a lunar-related rhythmicity of melatonin production in 

cultured pineal cells of the teleost, Siganus guttatus, exposed to natural light 

conditions, including moonlight, which is suggested to direct the timing of 

spawning of these species (Park et al., 2006; Takemura et al., 2006).  The link 

between lunar phase and spawning has also been reported in the gilt-head 

sea bream, Sparus aurata (Saavedra and Pousão-Ferreira, 2006) and has 

been specifically linked with the down-stream migration of silver eels at the 
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start of their journey to the Sargasso Sea where they spawn (Cullen and 

McCarthy, 2003).  Eel spawning in the Sargasso Sea could be timed with 

lunar phase and thus the increased stability of melatonin production could be 

linked with this rhythm.  The timing and amplitude of melatonin secretion can 

also be affected by temperature (Barrett and Takahashi, 1999; Ekstrom and 

Meissl, 1997; Underwood, 1990); an environmental variable which has also 

been linked with the timing of seaward migration of the eel (Boubée et al., 

2000; Sloane, 1984).   

 

A recently described function of melatonin could provide a clue to way 

in which these systems are regulated in the eel.  Gaildrat and Falcón (2000) 

showed that melatonin inhibits cAMP accumulation in cultured pike (Esox 

lucius) pituitary cells.  As previously mentioned, cAMP accumulation is directly 

involved in the phosphorylation of AANAT which, in turn, catalyses the 

penultimate step in melatonin production.  The inhibition of cAMP, by 14-3-3 

induced melatonin production could, therefore, provide the basis of a negative 

feedback system in the eel.   

 

The injection of melatonin into rainbow trout has been shown to 

suppress hypothalamic-pituitary dopamine metabolism (Hernández-Rauda et 

al., 2000).  Following the treatment there was a subsequent drop in DOPAC 

and a reduction of the DOPAC:DA ratio.  Subsequently, Sylvie Dufour’s group 

showed that dopamine inhibits gonadotrophin releasing hormone (GnRH) 

stimulated LH synthesis and release.  Linking these two finding one can infer 

that increased melatonin would thus reduce the level of inhibition LH 

synthesis and thus allow puberty to progress.  In a further twist, melatonin 

synthesis has also been shown to be under the influence of dopamine 

receptors, with different effect depending on the receptor isoform in question 

(Zawilska and Luvone, 1989). 

 

When the VRK3 expression was assayed by QPCR, the results aligned 

well with the microarray results.  QPCR showed the brain expression of VRK 

3 in the silver, 5 month FW acclimated eel group to be 1.52 fold higher than in 

the yellow, 7 day FW acclimated group.  This is slightly lower than the 2.05 
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fold change which was implied by the microarray experiments but both results 

are very comparable.  The QPCR assay of VRK3 revealed inter-fish variability 

to be greater within the yellow group than the silver group which was 

consistent with the variability of 14-3-3 seen in the same eels.  Within the 

yellow group the inter-fish variability (SD = ± 0.293) was almost three times 

greater than the silver group (SD = ± 0.084).  The QPCR result showing the 

increase in VRK3 expression was statistically significant (t-test p-value = 

0.003). 

 

VRK3 is a member of the relatively uncharacterized VRK family which 

also includes VRK1 and VRK2 (Nichols and Traktman, 2004).  The nucleolar 

protein VRK1 is known to phosphorylate various transcription factors including 

p53 (Vega et al., 2003), AFT2 and c-Jun (Sevilla, 2004; Sevilla et al., 2004).  

VRK2 has two known isoforms; VRK2A which localises in the endoplasmic 

reticulum and the VRK2B which is cytoplasmic (Blanco et al., 2006).  

Functionally, the human form of VRK2 has been shown to interact with 

BHRF1, an Epstein–Barr virus encoded protein resulting in an anti-apoptotic 

effect (Li et al., 2006).   

 

VRK3 is expressed in the nucleus and over-expression and knockdown 

studies have shown it to be involved in the negative regulation of the 

extracellular signal regulated kinases ERK1 and ERK2 (Kang and Kim, 2006).  

In this situation VRK3 acts by activating a mitogen activated protein kinase 

(MAPK) phosphatase called vaccinia H1-related phosphatase which 

specifically dephosphorylates and inactivates ERK in the nucleus (Todd et al., 

1999).  ERK1 and ERK2 play a pivotal role as one of the four main groups of 

MAPKs which also include c-jun N-terminal kinase (JNK), p38 and a group of 

atypical MAPKs including ERK3, ERK5 and ERK8 (Lewis et al., 1998).  ERKs 

are involved in a variety of physiological responses including in cell 

proliferation, differentiation, development and death, as well as in synaptic 

plasticity in the brain (Chang and Karin, 2001; Pouyssegur et al., 2002). 

 

It would seem appropriate for a signalling peptide such as VRK3 to be 

up-regulated following silvering of the eel as there are a multitude of major 



 

 242 

physiological changes which occur during silvering and also there may also 

be preadaptations for the impending seawater migration. 
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5.2 Gene Expression Changes During Osmoregulation 

 

The analysis of 2 day FW/SW acclimation microarray results revealed a 

multitude of genes exhibiting marked up-/down-regulation.  As for the 

yellow:silver analyses,  the genes exhibiting the greatest changes in 

expression were sequenced.  Once again the sequencing results underlined 

that the attB subtracted brain library has low redundancy and long clones.  

Through comparison with the Gene Ontology database, the clones were 

assigned a biological function and similar functional groups were clustered 

together into five sub-groups; Signal Transduction, Development and 

Morphogenesis, Membrane and Structure, Metabolism and Transcription and 

Post-translational modification (Tables 4.19.a-e respectively).  As was seen 

during the yellow to silver experiments, the Development and Morphogenesis 

cluster was the most populous, possibly reflecting the multitude of adaptations 

at the cellular and organ structure level which are required following an 

osmoregulatory challenge.   

 

Prolactin was selected for further analysis using QPCR in order to 

validate the silver eel 2 day FW/SW acclimation microarray results and to test 

the gene expression for each individual fish adapted to the different salinities.  

Exon-spanning primers were developed for A. anguilla prolactin and for the 

endogenous control RPL-P0.     

 

When the brain prolactin expression of 2 day FW and SW eels was 

assayed using QPCR, the inter-fish variability FW acclimated group was so 

large (mean ∆Ct = 2.18 ± 7.8 SD) that the mean expression between the two 

groups was statistically indistinguishable (t-test p-value = 0.11).  The standard 

deviation of 7.8 ∆Ct is equivalent to a 222-fold variability in expression and as 

the variability in the SW group was so much lower (mean ∆Ct = 8.44 ± 0.19 

SD), it raised the question as to whether the QPCR assay was performed 

incorrectly or if the brain RNA samples of the silver eel 2 day FW acclimated 

group had been incorrectly diluted or had become degraded.  Replication of 

the experiment, however, revealed near identical results suggesting the 
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experiment had been performed correctly.  The RNA samples used in the 

QPCR assay were all diluted to the same concentration and an equal aliquot 

of each was used for both target and control gene quantification.  Thus any 

large variability in the Ct of the endogenous control gene, which should 

remain relatively constant would indicate possible sources of experimental 

error such as dilution mistakes or RNA degradation.  The variability in brain 

expression of the endogenous control gene (RPL-P0) for the 2 day FW silver 

eel group RNA samples was, however, very low (Ct = 23.94 ± 0.35) indicating 

that the RNA was correctly diluted and that the RNA was not degraded.  

Therefore, these results indicate a possibly interesting phenomenon that SW 

acclimated eels exhibit high prolactin expression during the initial stages of 

SW acclimation.  All but one of the eels in the 6 hour SW and all of the 2 day 

SW acclimated groups showed high prolactin expression whereas the 

corresponding FW groups showed large variation in prolactin expression 

(Figure 4.26.b). 

 

Variation in prolactin expression was not restricted to the QPCR 

results; the microarrays also have an anomaly.  On the microarray there are 

four prolactin clones, one from the control plate and a further three from the 

brain attB subtracted library.  The prolactin clone from the control plate 

(16k17_Aa_BOS_61F09) did not show significant up- or down-regulation 

during the yellow to silver transition (mean fold change = 0.99 ± 0.2 SD) or 

during FW to SW adaptation (mean fold change = 0.93 ± 0.36 SD).  During 

the FW-SW acclimation experiment one prolactin clone 

(06e15_Aa_BOS_21C08) from the brain attB subtracted library showed 

significant up-regulation after SW acclimation (mean fold change = 2.81 ± 

1.26) but the same clone showed no significant difference during yellow to 

silver development (mean fold change = 1.06 ± 0.08 SD).  The remaining two 

clones (05e23_Aa_BOS_17C12 and 10c12_Aa_BOS_38B06) showed no 

significant up-regulation in SW adapted eels, if anything they showed a slight 

decrease (mean fold change = 0.8 ± 0.08).  Interestingly though, these two 

clones showed a significant down-regulation in silver eel brain, relative to their 

yellow counterparts (mean fold change = 0.65 ± 0.05), a phenomenon which 

has previously been identified in Anguilla japonica (Han et al., 2003).  
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Prolactin is known to be under the inhibitory control of dopamine in mammals 

(Ben-Jonathan and Hnasko, 2001) and has been reported in some teleosts 

(Chan et al., 2006; Wigham and Ball, 1976).  Dopamine has been identified as 

the neuroendocrine “lock”  which prevents final sexual maturation of silver 

eels until they are at sea (Vidal et al., 2004).  Dopamine expression in the eel 

is thought to decrease during the final stages of maturation during the 

migration at sea causing an increase in luteinising hormone (LH) as 

implicated by dopamine antagonists which promote sexual maturation (Vidal 

et al., 2004).  Therefore, dopamine would presumably be maintained at high 

levels in the silver eels used in the current study and could be inhibiting 

prolactin expression, possibly explaining the low expression in the brain of 

silver eels.  Extrapolating this theory further, there would be a corresponding 

increase in prolactin expression during the final sexual maturation of the eel 

when dopamine expression decreases.  A possible role for prolactin in this 

hypothetical situation could be the regulation of gonadal steroidogenesis.  

This pathway has been implicated in two other euryhaline teleosts; 

testosterone production in the goby (Gobius niger) is stimulated by treatment 

with mammalian prolactin (Bonnin, 1981) and similar results were found in a 

mummichog, Fundulus heteroclitus, when it was treated with purified salmon 

prolactin (Singh et al., 1988).  

 

With such apparent disparity between the prolactin spots on the array, 

however, the expression first needs to be validated before making further 

speculative conclusions.  This has already been done in this study for the 

prolactin expression in FW and SW adapted silver eels but remains to be 

done in future experiments for the yellow-silver transition. 
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5.3 Development of a new microarray platform for a non-model 

species. 

 

Two types of microarray were created for A. anguilla, a first for this or 

any anguillid species.  This provides a new resource for the fish research 

community to supplement similar projects which include, amongst others; 

T.rubripes, O.latipes, T.nigroviridis P.flesus , F.heteroclitus, O.mykiss and, 

S.salar.  It is hoped that the results from future experiments with these 

microarrays, as well as those presented here will help to steer research in 

novel directions. 

 

The first microarray constructed was specific for the brain and 

contained clones (5760) from the brain alone which were taken from the brain 

attB subtracted library (4224 clones) and the brain SSH library (1536 clones).  

The second microarray type was a multi-tissue SSH microarray that contained 

clones (6144) from the four SSH cDNA libraries from brain, gill, kidney and 

intestine (1536 clones from each).  The results from the SSH array 

experiments were gathered by Dr S. Kalujnaia and as such are not presented 

in this thesis.  The SSH array results can, however, be found in appendices 1 

and 2 which refer to the published journal articles (Kalujnaia, McWilliam et al, 

2006 and Kalujnaia, McWilliam et al, 2007). 

 

Both array types were supplemented with an additional 96 cDNAs 

comprising known eel genes or coding regions of genes from other species 

were used as controls to test the stringency and probe specificities under the 

hybridisation conditions used.  For both arrays, each cDNA was printed in 

three different locations to give three technical replicates per slide.  The 

arrays were spotted onto GAPS II Coated Slides by the Liverpool Microarray 

Facility (LMF, The University of Liverpool).   

 

Extensive problems with the quality of the printing carried out by the 

LMF were encountered, they included poor spot quality (black holes, 

doughnuts, unequal spot sizes), misaligned printing (overlapping spots, kinks 
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in rows) and inconsistent printing (manifested as banding across hybridised 

microarrays).  The Liverpool Microarray Facility was a relatively new unit 

when they were printing the eel microarrays and it may have been beneficial 

to use a more experienced group.  The contractual obligations of the NERC 

grant meant that funding for this part of the project had already been allocated 

to the LMF.  Nevertheless, through extensive dialogue and troubleshooting 

with the LMF, microarrays of an acceptable quality were produced.   

 

Many of the problems we encountered with the microarray printing can 

be attributed to the spotting robot used which spots the features using pins 

which first dip into the PCR amplicons and then makes contact with the 

surface of the array.  This contact does not provide an accurate and 

reproducible feature and also can damage the delicate surface coating of the 

array.  Recent advances in microarray printing technology, however, could 

circumvent many of the problems we encountered.  By marrying inkjet 

technology to microarray production, bespoke arrays can now be produced 

using non-contact printing (Hall, 2006).  The LMF have already invested in an 

Arrayjet inkjet spotter and the A.anguilla microarrays may see the benefit of 

this in the future. 

 

The differences in brain gene expression between yellow, juvenile 

sexually immature eels and silver, sexually maturing, migrating eels were 

examined using the brain microarray.  cDNA made from amplified brain total 

RNA taken from the yellow, 7 day FW-acclimated and silver, long term FW-

acclimated eel groups was co-hybridised to a brain array, and the experiment 

repeated in dye-swap to obtain consistent results.  Two sets of microarray 

data were obtained from these experiments.  The first data-set used identical 

scanning intensities for Cy3 and Cy5 channels in both forward and dye-swap 

experiments whilst the second data-set represented Cy3 and Cy5 channels 

scanned under different laser intensities in an attempt to compensate for 

intrinsic differences of Cy3 and Cy5 fluorescence.  Both data-sets were 

normalised using the MADSCAN process (Le Meur et al., 2004) and 

differences in gene expression between the two developmental conditions 

were recorded as fold changes.  The fold changes in both data sets were very 
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similar indicating that the normalisation process worked well.  A relatively 

small number of genes (70) showed a greater than 1.5 fold up- or down-

regulation in the eel brain following the transition from the yellow to silver 

developmental stage. Of the 70 genes identified, 47 were from the attB 

subtracted brain library and they represented 43 different genes, with only one 

gene being represented twice and an additional three genes that were 

unidentifiable due to sequencing failure.  There were 23 genes identified from 

the SSH brain library but these represented only 9 potentially different genes 

and one gene which was unidentifiable due to sequencing failure.  The 

remaining 13 genes comprised 4 genes that were unidentifiable by either 

blastx or blastn due to limited sequence information, and 9 redundant clones 

which included 5 copies of a glutathione S-transferase homologue and 4 

copies of a neuronal-specific septin homologue, a GTPase enzyme with 

multiple roles in cytokinesis, cell polarity and exocytosis (Xue et al., 2004).  

These results echo the preliminary redundancy sequencing results which 

indicated that the SSH brain library had a high (~26 %) redundancy level 

whilst the attB subtracted brain library had a very low (~4 %) redundancy 

level.  The longer clones of the attB subtracted brain library permitted 

successful identification of all genes for which good sequencing results were 

obtained, whilst the shorter clones in the SSH brain library meant that some 

genes (18 %) were not identifiable by homology searches. 

 

The differences in brain gene expression during salinity adaptation of 

silver eels were also examined.  cDNA made from mRNA from the silver, 2 

day, FW- and SW-acclimated groups was co-hybridised to the brain 

microarray with dye-swap replication of the experiment.  Microarray data was 

extracted and analysed at only one laser intensity as the previous yellow-

silver experiment showed near identical results in both analyses.  The genes 

(37) with the largest changes in expression were selected for sequencing 

analysis.  Of these genes, 29 were from the attB subtracted brain library 

which represented 26 different genes, the sequencing of two of the clones 

failed and one could not be identified by blastx or blastn sequence analysis.  

The remaining 9 genes were from the SSH brain library, of which 4 were 

identified as different genes, 4 could not be identified by either blastx or blastn 
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and one sequencing reaction failed.  The brain attB subtracted library is again 

shown to have a low level of redundancy and the longer clones of which it 

comprises offer easier clone identification that those in the brain SSH library. 
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5.4 Future studies 

 

There appear to be any number of directions in which this project could 

now be directed.  Firstly, with regards to the protocol for making subtracted 

attB cDNA libraries; this could be applied to the other tissues in the eel to 

create a single highly representative library and used to create a microarray to 

be used to look at the majority of eel genes simultaneously.  Special efforts 

could also be made to ensure all genes of interest, including those involved in 

the pathways mentioned above are represented.   

 

To elaborate on the current microarray findings, several lines of 

investigation could be followed.  Further QPCR analysis is necessary to 

validate other genes of interest from the microarray; especially addressing the 

prolactin expression in the brain of yellow and silver FW adapted eels.  

Elucidating the potential seasonality and lunar rhythmicity of systems 

associated with sexual maturation would require biologically relevant sampling 

of eels exposed to light and temperature conditions mimicking the natural 

environment.  QPCR assays could also be applied to RNA extracted from 

dissected brains to localise the expression of particular genes to specific 

areas, such as the pineal organ.  Immunohistochemistry could also be used 

for more precise localisation of expressed genes of interest. 

 

As well as providing a valuable tool for research into eel development 

and osmoregulation, it is hoped that the protocols developed here, especially 

the method for cDNA library production, can be applied to other questions in 

other species. 
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