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The difluoromethylene (CF2) group in aliphatic
chains: Synthesis and conformational preference
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Abstract
The syntheses of palmitic acids and a nonadecane are reported with CF2 groups located 1,3 or 1,4 to each other along the aliphatic

chain. Specifically 8,8,10,10- and 8,8,11,11-tetrafluorohexadecanoic acids (6b and 6c) are prepared as well as the singly modified

analogue 8,8-difluorohexadecanoic acid (6a). Also 8,8,11,11-tetrafluorononadecane (27) is prepared as a pure hydrocarbon

containing a 1,4-di-CF2 motif. The modified palmitic acids are characterized by differential scanning calorimetry (DSC) to deter-

mine melting points and phase behaviour relative to palmitic acid (62.5 °C). It emerges that 6c, with the CF2 groups placed 1,4- to

each other, has a significantly higher melting point (89.9 °C) when compared to the other analogues and palmitic acid itself. It is a

crystalline compound and the structure reveals an extended anti-zig-zag chain. Similarly 8,8,11,11-tetrafluorononadecane (27)

adopts an extended anti-zig-zag structure. This is rationalized by dipolar relaxation between the two CF2 groups placed 1,4 to each

other in the extended anti-zig-zag chain and suggests a design modification for long chain aliphatics which can introduce con-

formational stability.
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Introduction
The selective replacement of hydrogen by fluorine is widely

practised in bio-organic and medicinal chemistry [1-4]. It is

generally perceived that fluorine exerts only a moderate steric

influence relative to hydrogen in organic compounds, but that

the electronegativity of fluorine can have significant electronic

influences [5]. The difluoromethylene (CF2) functionality has

received considerably less attention as a functional group for

modifying the properties of organic molecules, relative to –F

and –CF3 groups. However we have recently become interested

in the CF2 group, and in particular have noticed that the replace-
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Figure 1: The CF2 group in 1c accelerates RCM reactions relative to CHF (1d) and CH2 (1e) and with a similar rate to classical or Thorpe–Ingold
substituents such as the ketal 1a and dicarboxylate ester 1b [8].

Figure 2: X-ray structures of a) 1,1,4,4- (3) b) 1,1,7,7- (4) and c) 1,1,6,6- (5) tetrafluorocyclododecanes. The CF2 groups locate at the corners, even
for 5 which gives rise to a distorted ring conformation [6,7].

ment of the two hydrogen atoms of a methylene by two fluo-

rine atoms leads to widening of the C–CF2–C angle (~118°) and

a narrowing of the F–C–F angle (104°) relative to tetrahederal

geometry [6,7]. This deviation of classical sp3, towards sp2

hybridisation, imparts certain properties to the CF2 group in that

it can accommodate angle strain. For example CF2 compounds

display an apparent Thorpe–Ingold effect relative to CH2 in ring

closing metathesis reactions (RCM) to cycloheptene [8]. Com-

parison of the rates of reaction with different substituents at the

C-5 position of the diene precursors 1a–d, revealed that the CF2

substituent in 1c was as effective as the dicarboxylate 1a or

ketal 1b in promoting RCM (Figure 1). This is attributed to

C–CF2–C angle widening, which absorbs angle strain in the

resultant cycloheptene 2c.

In another study we have prepared cyclododecanes 3–5 with

regiospecific placement of two CF2 groups around the ring [6]

(Figure 2). X-ray structures reveal that the CF2 groups only ever

occupy corner locations. This is a result of several factors

including C–CF2–C angle widening, which relaxes 1,4-torsional

strain across corner positions, lengthening the contact distance

between those H(1)···H(4) interactions relative to those with

CH2 at the corner. Also if the CF2 locates at an edge this would

require that a C–F bond project into the middle of the ring. The

larger steric influence of the fluorine, projecting into the tightly

packed arrangement of endo orientated hydrogen atoms, raises

the energy of such conformations. For cyclododecane, placing

the CF2 groups 1,4 (3) or 1,7 (4) to each other, stabilizes the

[3.3.3.3] square like conformation of the ring. However if the
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Scheme 1: Synthesis route to 8,8-difluorohexadecanoic acid (6a).

CF2 groups are placed 1,6 to each other as in 5, this introduces

considerable distortion of the ring conformation as shown in

Figure 2, because the CF2 avoids an edge location, which would

place a fluorine atom endo and unfavourably into the centre of

the ring.

As part of an on-going interest in the behaviour and influence of

the CF2 group we have now explored the effect of locating two

CF2 groups along an extended aliphatic chain. Long chain fatty

acids present tractable model systems as they are solid ma-

terials and their physical properties are well described [9]. In

this study we selected the three palmitic acid analogues 6a–c

shown in Figure 3, as targets for synthesis and comparative

analysis.

Figure 3: Synthesis targets: Palmitic acid analogues 6a–c.

Palmitic acid 6a containing a single CF2 group at C-8 was

prepared as a control compound. The location for CF2 substitu-

tion in the middle of the aliphatic chain was selected as it is

sufficiently remote from the carboxylic acid head group to have

any electronic influence. Two additional analogues 6b and 6c

were prepared, each with two CF2 groups, located 1,3 and 1,4

from each other respectively. These targets were designed to

explore the significance on properties and chain stability of

co-locating the CF2 groups at different distances from each

other.

Results and Discussion
Synthesis of the palmitic acids 6a–c
As a general strategy palmitic acids 6a–c were prepared by aryl

oxidation of long chain pentadecabenzenes [10,11]. The intro-

duction of the CF2 groups was carried out by treatment of the

appropriate precursor ketone with diethylaminosulfur trifluo-

ride (DAST) [12,13]. The synthesis of palmitic acid 6a is illus-

trated in Scheme 1. At the outset aldehyde 8 was condensed

with the acetylide of 1-octyne to afford propargylic alcohol 9,

an alcohol which was readily oxidized to ketone 10. Treatment

with DAST afforded difluoromethyleneacetylene 11 in good

yield. The fluorination of propargylic ketones, to generate diflu-

oromethyleneacetylenes, is methodology developed by Grée et

al. [14-18] and it proved to be very reliable in our hands. An

efficient hydrogenation generated the C-8 substituted difluo-

romethylenepentadecabenzene 12. Finally biphasic ruthenium

tetroxide-catalyzed aryl oxidation gave the palmitic acid 6a in

24% overall yield as illustrated in Scheme 1 [10,11].

For palmitic acid 6b, it was required to introduce the CF2

groups 1,3 to each other. This was achieved by sequential

preparation of appropriate precursor ketones as illustrated in

Scheme 2. For the first CF2 group ketone 14 was treated with

DAST. Conversion to the CF2 group occurred in modest (45%)

yield. Generally aliphatic ketones are less efficiently converted
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Scheme 2: The synthesis of palmitic acid analogues 6b and 6c.

to CF2 groups with DAST in comparison to propargylic

ketones. Progression of the resultant CF2 containing olefin 15

by epoxidation, chain extension and then oxidation, to ketone

18, generated the second fluorination substrate of the synthesis.

DAST treatment gave pentadecabenzene 19, which was again

oxidised by RuO3 to the corresponding palmitic acid 6b.
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Figure 4: DSC traces for the three palmitic acid analogues 6a–c.

Palmitic acid 6c was prepared again relying on the method-

ology developed by Grée et al. [14-17] for introduction of the

CF2 groups. Thus treatment of ketone 21 with DAST resulted in

an efficient conversion to difluoromethyleneacetylene 22. This

terminal acetylene is amenable to acetylide formation on treat-

ment with BuLi [19,20] and condensation with hexaldehyde

gave propargylic alcohol 23. The lithium methylenedifluo-

roacetylide (RCF2C≡CLi) reaction to form a C–C bond,

provides a particularly useful synthon to access this 1,4-di-CF2

motif. Oxidation and then treatment of the resultant ketone 24,

with DAST generated the tetrafluoroacetylene 25. Complete

hydrogenation of the triple bond proved efficient and the resul-

tant tetrafluoropentadecabenzene 26 was readily oxidized to

palmitic acid 6c as illustrated in Scheme 2. This completed the

syntheses of the palmitic acid analogues 6a–c.

Differential scanning calorimetry (DSC) data was then

measured for all three of the palmitic acid samples 6a–c over a

temperature range of −150 to 400 °C. In this way accurate

melting point values were obtained. The melting point of C-8

difluorinated palmitic acid 6a (62.9 °C) was very similar to the

natural palmitic acid (62.5 °C), Thus a single CF2 substitution,

certainly at this location, has very little influence on the melting

point. For palmitic acid 6b, with the two CF2-groups placed 1,3

to each other, the melting point (69 °C) is also similar to

palmitic acid, but the phase behaviour is more complex as evi-

denced by the broad DSC profiles. This palmitic acid 6b was

amorphous in nature and was not a crystalline solid, unlike the

other two analogues 6a and 6c which formed crystals

(Figure 4).

The tetrafluorinated palmitic acid 6c, with the CF2 groups

located 1,4 from each other displays a sharp and significantly

higher melting point (89.9 °C) than the other two palmitic acids

6a and 6b.

Palmitic acids 6a and 6c were crystalline solids and single

crystal X-ray diffraction data were obtained for these com-

pounds. As described above analogue 6b was amorphous in

nature and despite considerable effort a single crystal could not

be obtained for 6b. The resultant structures for 6a and 6c are

shown in Figure 5 and Figure 6 respectively. In each case two
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Figure 5: The X-ray crystal structures of 8,8-difluorohexadecanoic acid (6a).

Figure 6: The X-ray structure of 8,8,11,11-tetrafluorohexadecanoic acid (6c).

molecules as they appear within the unit cell are presented in

the image, allowing a view from above and to the side of the

extended chain. The closest CF···HC contacts are 2.88 Å in 6a

and 2.85 Å in 6c, much longer than any meaningful organic

fluorine hydrogen bond [21]. The C–CF2–C angle in 6a

(Figure 5) is 117° and as expected, wider than the other

C–CH2–C angles which are typically ~112.5°. For 6c (Figure 6)

the C–CF2–C angles are 115.6° (at C-8) and 116.3° (at C-11)

also consistently wider that the aliphatic C–CH2–C angles. The

significantly higher melting point and good crystallinity of 6c

can be attributed to the relative orientation of the two CF2

groups. They are pointing perfectly anti-parallel to each other

such that their dipoles cancel out in the extended anti-zig-zag

chain conformation. We are currently exploring if this is a

special situation whereby CF2 groups positioned 1,4 from each

other can add conformational stability to aliphatic chains in

other systems.

It occurred to us that the interactions of the carboxylate groups

in palmitic acid 6c, may be dictating overall stability and con-

formation of the alkyl chain in the solid state. Thus it appeared

appropriate to prepare a true hydrocarbon chain to further

investigate the conformational preference of the 1,4-di-CF2

motif. Accordingly we selected to prepare tetrafluorononade-

cane 27. This is a long chain hydrocarbon with the 1,4-di-CF2

motif placed centrally. The synthetic route to 27 is illustrated in

Scheme 3. The strategy for incorporating the two CF2 groups

followed that used for the preparation of palmitic acid 6c. In

this case propargylic ketone 30 was treated with DAST to

generate difluoroacetylene 31. The resultant acetylene could

then be deprotonated for conjugation to aldehyde 32. Oxidation

and then fluorination of ketone 34 with DAST, introduced the

second CF2 group and generated tetrafluoroacetylene 35.

Finally hydrogenation of the central acetylene group gave the

saturated tetrafluorononadecane 27. This compound proved to
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Scheme 3: Synthesis route to the tetrafluorinated alkane 27.

Figure 7: The X-ray structure of 8,8,11,11-tetrafluorononadecane (27).

be a crystalline solid (mp 35–37 °C) with a melting point very

similar to nonadecane (32–35 °C). A suitable crystal was

subject to X-ray structure analysis and the resultant structure is

shown in Figure 7. It is clear that the alkyl chain of 27 is

extended in a similar conformation to that found in palmitic

acid 6c and we conclude that this is the preferred conformation

of this motif in a hydrocarbon chain.

Conclusion
In conclusion, we have synthesised three palmitic acid

analogues 6a–c carrying regiospecifically located CF2 groups.

The tetrafluorononadecane 27 was also prepared as an example

of a true hydrocarbon. Relatively efficient synthesis protocols

were devised for placing the CF2 groups 1,3 and 1,4 to each

other. The CF2 groups of 6b, 6c and 27 were introduced

sequentially from appropriate precursor ketones, using DAST.

In particular, the methodology of Grée et al., enabled the effi-

cient introduction of CF2 groups from propargylic ketones in

the syntheses of 6a, 6c and 27. A useful C–C bond forming

reaction involved a lithium methylenedifluoroacetylide

(RCF2C≡CLi) condensation with an aldehyde, offers an effi-

cient strategy for the preparation of the 1,4-di-CF2 motif after

suitable functional group manipulations.

The non-crystalline nature of 6b presumably arises due to chain

disorder from linear 1,3-repulsions between the fluorines, so the

preferred conformation of this motif could not be determined in

this study. The melting point of palmitic acid 6c (89.9 °C) was
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Figure 8: Conformational interconversion of 1,4-di-CF2 motif.

notable in that it was significantly higher than that of the two

other analogues 6a and 6b, and also of palmitic acid itself. The

solid state structure of 6c and 27 show that the 1,4-di-CF2 motif

prefers an anti-zig-zag conformation. We attribute this prefer-

ence to intramolecular dipole–dipole relaxation which is

maximised in the extended anti-zig-zag chain conformation

(Figure 8). Also repulsive through space 1,4-F···F interactions

will be disfavoured if the chain undergoes gauche con-

formational disorder. These contributing factors suggest that the

1,4-di-CF2 motif (R–CF2CH2CH2CF2–R) will be useful for

adding conformational stability to aliphatic chains.
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