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I work for that, short man, large dream

I send my rockets forth between my ears

Hoping an inch of good is worth a pound of years

Aching to hear a voice cry back along the universal mall

We’ve reached Alpha Centauri!

We’re tall!

O God! We’re tall!

An excerpt from If Only Taller We Had Been, by Ray Bradbury.



To my supervisors, friends, and family. Thank you.
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Abstract

I have investigated the properties of the large scale structure of the nearby Universe using data

from the Galaxy and Mass Assembly survey (GAMA).

I generated complementary halo mass estimates for all groups in the GAMA Galaxy Group

Catalogue (G3C) using a modified caustic mass estimation algorithm. On average, the caustic

mass estimates agree with dynamical mass estimates within a factor of 2 in 90% of groups. A

volume limited sample of these groups and galaxies are used to generate the large scale struc-

ture catalogue. An adapted minimal spanning tree algorithm is used to identify and classify

structures, detecting 643 filaments that measure up to 200 h�1 Mpc, each containing 8 groups

on average. A secondary population of smaller coherent structures, dubbed ‘tendrils,’ that link

filaments together or penetrate into voids are also detected. On average, tendrils measure

around 10 h�1 Mpc and contain 6 galaxies. The so-called line correlation function is used

to prove that tendrils are real structures rather than accidental alignments. A population of

isolated void galaxies are also identified. The properties of filaments and tendrils in observed

and mock GAMA galaxy catalogues agree well.

I go on to show that voids from other surveys that overlap with GAMA regions contain

a large number of galaxies, primarily belonging to tendrils. This implies that void sizes are

strongly dependent on the number density and sensitivity limits of the galaxies observed by a

survey.

Finally, I examine the properties of galaxies in different environments, finding that galaxies

in filaments tend to be early-type, bright, spheroidal, and red whilst those in voids are typically

the opposite: blue, late-type, and more faint. I show that group mass does not correlate with

the brightness and morphologies of galaxies and that the primary driver of galaxy evolution is

stellar mass.
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1
Filaments, voids, and the growth of large scale

structure

Matter, both visible and dark, has a remarkably nonuniform distribution in the present Uni-

verse. The distribution of galaxies and galaxy clusters is not random, and this clustered dis-

tribution is largely a consequence of, and caused by the evolution of, initial perturbations in

the gravity field of the very early, pre-inflationary Universe (Bond et al., 1996). These initial

perturbations were the first seeds of anisotropy in the distribution of matter in the Universe,

and expanded rapidly during inflation (Blumenthal et al., 1984). Given this generally ‘lumpy’

distribution of matter in the Universe, it follows that overdense regions would have exerted

a greater gravitational force on their surroundings. Since gravitational potential scales with

density as r2� = 4⇡G⇢, these overdense regions will continue to accrue matter from nearby

underdense regions – this carries the implication that overdense regions are gravitationally

unstable. This vicious cycle will eventually result, along with the inclusion of other astronom-

ical processes such as star formation, supernovae and other forces such as radiation pressure,
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Chapter 1. Filaments, voids, and the growth of large scale structure

in galaxies and the Universe as we know it today with cluster diameters in the tens of mega-

parsecs, and velocity dispersions up to a few hundred kilometres per second.

Baryons tumbling and accumulating in density perturbations, however, are not sufficient

to make a universe that resembles the one we exist in. Most modern, conventional theories of

the origin of galaxies, groups, and the large scale structure of the Universe require exotic dark

matter particles. Over the years, a cold dark matter model coupled with an accelerating expan-

sion model for the Universe has emerged, supported further by analysis of data from recent

cosmological probes such as the Wilkinson Microwave Anisotropy Probe (WMAP; Komatsu

et al., 2011). One of the predictions of the cold dark matter paradigm is that galaxy groups

serve as tracers for halos of underlying dark matter. Prior to the decoupling of matter and radi-

ation, it is thought that dark matter particles, with their smaller interaction cross-section, were

at liberty to collapse into the primordial density anisotropies before ‘conventional’ matter. As

the Universe cooled and expanded, baryons were left free to fall into these overdense regions

already populated by dark matter and form the building blocks of the large scale structure of

the Universe (Springel et al., 2005).

The study of the large scale structure is a developing field in astronomy and astrophysics

that primarily focuses on observing, quantifying and understanding the distribution of matter

(both visible and dark) in the Universe, as well as attempting to determine the mechanisms

that drive the formation of such structures (Eke et al., 1996; Springel et al., 2005; Thomp-

son & Gregory, 2011). It serves to create a set of well-understood observational constraints

for the clustering of galaxies and the distribution of filamentary structure, all of which act

as rigorous benchmarks for computational cosmological models. Since the early 80s (Oort,

1983), astronomers have been mapping out these structures with ever more powerful galaxy

surveys; and in much the similar way, the literature and theory surrounding the formation of

structures has been evolving with observations (e.g., Einasto et al., 1980; Arnold et al., 1982;

Blumenthal et al., 1984). These studies rely on observed or simulated data of the positions

of galaxies in the Universe. Observing the large scale structure of the Universe provides as-

tronomers with an insight into the end product of the processes that shaped the Universe, and

is vital for furthering not only our understanding of cosmology, but of galaxy formation and

evolution.

2



1.1. Large scale structure

Figure 1.1: One of the earliest (and most puzzling images) of galaxy distribution not being completely
uniform, shown in de Lapparent et al. (1986). The ‘CfA Stickman’ has been an iconic image of the
startling nature of the distribution of galaxies for many years.

1.1 Large scale structure

When viewed at scales of the order of tens to hundreds of megaparsecs, the Universe looks

like a complicated filigree of matter that is often described as a ‘foam,’ or the ‘Cosmic Web.’

The primary components of this web consist of large complexes of galaxies (referred to in the

literature as groups or clusters, depending on size) which are themselves linked via linear, one

dimensional structures of galaxies commonly called filaments. Filaments can come together to

form ‘sheets’ and ‘knots’, which are two and three dimensional structures respectively. Strad-

dling between filaments lie voids: vast, empty regions of the Universe populated only by a

handful of isolated galaxies.

There is ample observational evidence of the Cosmic Web. Large scale structures exist on

scales around 70 � 100h�1 Mpc (Sousbie et al., 2009); though smaller filaments that connect

close cluster pairs at distances 5 h�1 Mpc also exist (Colberg et al., 2005). The Las Campanas

Redshift Survey (LCRS; Schectman et al., 1995) was one of the first large scale surveys to pro-

vide observational evidence that galaxies are distributed in a non-uniform manner; although

evidence for this had been present for a few years by then (Figure 1.1). More recent galaxy

surveys such as 2dF (Colless et al., 2001) and the Sloan Digital Sky Survey (SDSS; Abazajian

et al., 2009) have demonstrated the existence of filaments, sheets, and knots. Similarly, ob-

servations have shown the existence of gigantic voids measuring several tens of Mpc (Joeveer

et al., 1978; de Lapparent et al., 1986; Shectman et al., 1996), where there are remarkably

low densities of galaxies: down to 10% of the cosmic mean galaxy density (Pan et al., 2012).
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It is worthwhile questioning whether or not these results are caused by chance statistical align-

ments of galaxies. Bharadwaj et al. (2004) have addressed this issue by examining filaments

found in the LCRS. By shuffling slices of data from the LCRS randomly, the group were able

to demonstrate that any filament longer than the length of the shuffled slices will exist purely

out of chance alignment; this variable is found to be roughly 70� 80 h�1 Mpc, implying that

these are the longest real filaments found in the LCRS.

1.1.1 Constraining cosmology

As discussed above, the large scale distribution of galaxies in the present Universe acts as an

excellent benchmark for cosmological theories, but also as a data set for the measurement

of fundamental cosmological parameters. Perhaps the most notable example of this was the

observational detection of the 100 h�1 Mpc baryon acoustic peak in the large-scale correla-

tion function of galaxies (Eisenstein et al., 2005), which served as a verification of the linear

growth of structure via gravitational instability and acted as a confirmation of the predicted

outcomes of cold dark matter cosmological theory (Peebles & Yu, 1970; Bond & Efstathiou,

1984). These early works predicted characteristic acoustic peaks in the power spectrum of

the Universe, imprinted there as a result of perturbations in the relativistic plasma of the early

Universe. Once frozen out (following the reduction of the sound speed due to the decoupling

of matter and radiation at z ⇠ 1000), these perturbations formed the earliest ‘scaffolding’ into

which baryonic matter could gradually accumulate and begin forming the first galaxies; and

eventually, large scale structure. The detection of the acoustic peak imprinted onto the cor-

relation function of galaxies in the SDSS Luminous Red Galaxy Sample by Eisenstein et al.

(2005) provided direct evidence for the growth of structures via linear perturbation theory

following z ⇠ 1000, as well as providing tangible proof of the existence of dark matter in

the early Universe (acoustic oscillations would be much greater in a Universe containing only

baryonic matter, as the absence of dark matter allows for the further propagation of the oscil-

lations). Given that ⇤CDM models predict narrow peaks in the clustering of galaxies, grown

out of the initial perturbations imprinted into the distribution of matter at z ⇠ 1000, the detec-

tion of this acoustic peak serves as a ‘smoking gun’ confirmation of CDM theory for structure

growth. More importantly, alternative non-linear gravitational growth theories do not predict

such peaks (e.g. Fry, 1984). This result is a fundamental demonstration of the application of

large scale surveys on constraining cosmological parameters. Filaments also serve as rigorous

4



1.1. Large scale structure

benchmarks of the accuracy of cosmological models at the largest possible scales, with current

studies focusing on comparing the observed properties of filaments to those found in vari-

ous N-body cosmological simulations (Forero-Romero et al., 2009; Bond et al., 2010; Murphy

et al., 2011).

Another probe of cosmology from large scale structure was originally proposed by Alcock

& Paczynski (1979), which stipulates that the ratio between an object’s observed angular size

and its size in radial/redshift size varies according to cosmological parameters. Specifically,

the test proposes that a hypothetical sphere in space would have its line of sight scale as a

function of the inverse Hubble parameter H�1(z) and its transverse size scale with the angular

diameter distance DA(z); therefore the ratio of the two measures gives H(z)DA(z). The primary

advantage of such an approach is that it is fully independent of galaxy evolution and depends

entirely on the geometry of the Universe; however, in practice this measurement is made

difficult due to redshift space distortions caused by the peculiar velocities of galaxies in dense

regions. Cosmic voids, therefore, make for attractive alternatives for the Alcock-Paczynski test,

as they are almost entirely free of galaxies and occupy a large fraction of the Universe and have

shapes that can be easily measured, as proposed by Ryden (1995). If we consider the idealised

case of a spherical void surrounded by a thin wall of galaxies, the ratio of its depth to its width

is given by

ev(z) =
uv

H0rv
y(z)z (1.1)

where rv is the radius of the void and uv is the outward moving velocity of the galaxies that

surround it. y(z) is the angular size distance DA(z) = H0
R z

0 dz/H(z). Lavaux & Wandelt

(2012) propose a method to measure the expansion history of the Universe by measuring the

ellipticity of stacked voids in different redshift bins and this method is applied by Sutter et al.

(2012) to SDSS DR-7 data and yields statistically inconclusive results. Despite this, this study

provides a robust proof-of-concept of applying the AP test to cosmic voids in future larger

redshift surveys.

1.1.2 How does large scale structure impact galaxies?

The impact of environment on galaxy evolution has been studied for many decades. Butcher

& Oemler (1984) found spiral galaxies in rich clusters were more red than spirals in the field.
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Chapter 1. Filaments, voids, and the growth of large scale structure

Dressler (1980); Postman & Geller (1984); Dressler et al. (1997) established that there is a

relationship between a galaxy’s morphology and the density of its local cluster environment.

Similar studies have shown that a galaxy’s colour (Kreckel et al., 2012), stellar mass (Chabrier,

2003), gas content (Beygu et al., 2013; Benítez-Llambay et al., 2013) and luminosity function

(Croton et al., 2005) are all affected by its local density (within 1-2 Mpc). At kiloparsec scales,

wet mergers between gas-rich galaxies lead to major changes in morphology, orbital kinemat-

ics and star formation (Toomre & Toomre, 1972; Quinn et al., 1993; Balogh, 2007), which in

turn lead to a different stellar population compared to a galaxy that is more isolated. Galaxies

in clusters tend to be red early-type galaxies, while galaxies in the field and within filaments

appear to be blue late-type galaxies (Tanaka et al., 2007), and there exists a correlation be-

tween the spin and shape of haloes and the filaments and sheets they reside in (Hahn et al.,

2007b,a; Paz et al., 2011). More recently, Spitzer observations in the 24 µm wavelength have

been used to identify starburst and AGN galaxies in filaments in the outskirts of Abell 1763

(Fadda et al., 2008). While the impact of ‘extreme’ environmental factors is well understood,

the role of large scale structure, or indeed, a general understanding of the impact of envi-

ronment on all scales on galaxy evolution has not yet been achieved. This is a vast, extant

problem in extragalactic astronomy, which, with the advent of modern galaxy surveys and

powerful simulations, can be tackled.

Understanding large scale structure also plays an important role in advancing the field

of galaxy formation. Through a combination of the agglomeration of matter into pancake-

like discs (Zel’dovich, 1970) under the influence of gravity, and models such as hierarchical

merging (White & Rees, 1978) or secular evolution (Kormendy & Kennicutt, 2004), matter

(baryonic and otherwise) appears to have come together to form galaxies, which themselves

have become bound in clusters or groups. In the early Universe, galaxy formation was driven

largely by collapsing material within the density fluctuations of cold dark matter; whereas

interactions driven by environment are far more important in the Universe we currently ex-

ist in. In particular, mergers drive the formation of classical bulges and elliptical galaxies by

disrupting disks - this is one of the fundamental impacts of environment on galaxy formation

and evolution (Lukash et al., 2011; Gurbatov et al., 2012). These interactions also influence

various physical processes within galaxies, as discussed in the preceding paragraph. The prop-

erties of galaxies in different large scale structure environments (filaments, knots/clusters,

and voids) can be directly compared to the results of semi-analytic models run in conjunction

6



1.1. Large scale structure

with high resolution dark matter simulations, where the mass accretion and merging history

of each halo is known (Primack, 2009).

As well as impacting on galaxy-galaxy dynamics, filaments are also currently thought to

serve as pathways by which matter can accrete onto galaxies: a general study of galaxies in

filaments in the 2dFGRS has shown that galaxies infalling onto clusters along filaments tend

to have an increased rate of star formation (Porter et al., 2008). Filamentary structures are

also important for constraining the mass budget of the Universe, as a large fraction of baryonic

matter is thought to reside within inter-cluster space in the form of hot gas (Fukugita et al.,

1998; Pimbblet, 2005).

An alternative approach is to study voids, which contain an uncharacteristically few num-

ber of galaxies. As well as being tremendously useful for the AP test, studies of voids have

also provided a lower constraint for ⌦ (Dekel & Rees, 1994). Of particular interest is the void

probability function (White, 1979) that provides an expression for the probability of there be-

ing no galaxies in a volume V based on correlation functions; it was modified by Conroy et al.

(2005) to give the probability of finding no galaxies in a sphere of radius R randomly placed

in a spherical volume element. Voids and the VPF provide yet another benchmark for the ac-

curacy of theoretical simulations, but one must bear in mind that the VPF is also susceptible

to the selection bias caused by magnitude limits of redshift surveys. Early studies of voids

(Joeveer et al., 1978; Gregory & Thompson, 1978; Kirshner et al., 1981; de Lapparent et al.,

1986) have been supplemented by more recent large galaxy redshift surveys (Colless et al.,

2001; Abazajian et al., 2009) that provide comprehensive and complete pictures of voids. The

Void Galaxy Survey (VGS, Kreckel et al., 2012) is one such effort that has identified galaxies

in voids from the SDSS-DR7 data. Beygu et al. (2013) have recently identified the system

VGS_31, which is comprised of three galaxies in a void that appear to be aligned linearly. The

system is linked together by a single massive cloud of HI gas. Rieder et al. (2013) have recently

shown that such structures can be accurately reproduced in simulations, however; the exis-

tence of substructures in voids has been previously predicted, including ‘low-density ridges’ of

galaxies within voids (van de Weygaert & van Kampen, 1993; Gottlöber et al., 2003).

The discussion presented so far in this chapter explains the necessity for developing a

comprehensive observational catalogue of large scale structure. Being able to rigorously and

objectively classify galaxies as belonging to the constituent parts of the Cosmic Web (filaments

7



Chapter 1. Filaments, voids, and the growth of large scale structure

and voids) adds an additional parameter space against which other properties of galaxies can

be tested. Beyond asserting and confirming known trends such as the tendency of galaxies in

dense environments to be brighter and more clustered (Zehavi et al., 2005), a comprehensive

catalogue of large scale structure allows us to directly explore the potential impact of some of

the earliest density perturbations on the galaxies we observe today.

1.2 Filament finders

While being remarkably easy to detect by eye given a large enough volume of space to look

at, an accurate and concensus-driven classification of the Cosmic Web still eludes us. There is

much debate on what exactly constitutes a filament, or even a definitive algorithm for detecting

them and a number of different methods exist (e.g., Doroshkevich et al., 2004; Pimbblet,

2005; Colberg, 2007; Forero-Romero et al., 2009; Murphy et al., 2011; Smith et al., 2012;

Cautun et al., 2013; Alpaslan et al., 2014). Filament finders consist of a set of algorithms

that seek out filamentary structure in data sets obtained by galaxy surveys, or from simulated

distributions of galaxies or dark matter. Most filament finders can be categorised as finders that

approximate the placement of galaxies in the field as a density distribution over which they

seek maxima, minima and the lines that connect these. Other methods exist, including the

detection of filaments using the warm-hot intergalactic medium (WHIM) which is the result

of gravitational heating caused by the formation of filaments. The WHIM can also be detected

through x-ray absorptions (Davé et al., 2001; Zappacosta et al., 2010; Williams et al., 2010)

and delineates filamentary structure. More general filament finders include an algorithm by

González & Padilla (2010) that combines a tessellation based density estimator with a variable

that determines the likelihood of two halos being bound based on their dynamical energy.

Aragón-Calvo et al. (2010) take a different approach and classify structures by looking at their

morphologies, finding that filaments are the most prominent structures as opposed to walls and

sheets; and largely mark the structure of the cluster-void dichotomy. More recently, Murphy

et al. (2011) have recovered filamentary structure in the 2dFGRS data by running a friends-

of-friends finder on galaxies, then rerunning it a second time to detect filaments. Tempel et al.

(2013) have used a modified marked point process method to search for filaments within

a 0.009  z  0.155 slice of the SDSS, modelling the filamentary network as a series of

connected cylinders. Using narrow cylinders (of radius 0.5 h�1 Mpc) they identify filaments

as having a characteristic length of 60 h�1 Mpc, and that galaxies in filaments contribute to

8



1.2. Filament finders

Figure 1.2: Left: The skeleton of a random Gaussian field. The yellow points show local minima;
orange points are saddle points; and red points are local maxima. Right: The skeleton on the left panel
overlaid onto a smoothed version of the Gaussian density field it was derived from, showing how the
skeleton lines trace out filaments that connect overdensities (Novikov et al., 2006).

35-40% the total galaxy luminosity function.

1.2.1 Density based filament finders

One example of an algorithm that examines the density distribution is the so-called ‘3D skele-

ton’ (Novikov et al., 2006; Sousbie et al., 2008, 2009) (now referred to as DisPerSE Sousbie,

2011). This method identifies regions of overdensities in the distribution of galaxies in the

Cosmic Web, and uses these overdensities to trace out lengths of filaments that connect clus-

ters and nodes (i.e. density maxima and minima respectively). For a density field derived from

a distribution of galaxies, it is possible to define a void as being a region of space where all

points traveling along the direction of the density gradientr⇢ = �⇢/�ri converge onto a local

minimum. The skeleton is then defined as being the overdense regions that surround these

voids, with the following two properties: i) the nodes of the skeleton are the local maxima

of the density field, where multiple skeleton lines converge (analogous to nodes in the large

scale structure where filaments converge); and ii) any two local maxima must be separated

by a saddle point and aren’t directly connected to each other. A two-dimensional schematic of

this is shown in Figure 1.2.

The Skeleton method doesn’t have a well-defined way of detecting the ends of filaments.

This is taken into account with the Smoothed Hessian Major Axis Filament Finder (SHMAFF)

algorithm (Choi et al., 2010; Bond et al., 2010), where the filament end is defined as the

point at which the angular rate of change of the primary axis of a filament exceeds a certain

curvature parameter C , motivated by the argument that in the Cosmic Web, filaments end
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Chapter 1. Filaments, voids, and the growth of large scale structure

where they intersect each other, or nodes (Bond et al., 1996). Applying DiSPERSE to SDSS

data yields filaments that are, on average, 52.5 ± 6.5 Mpc in length (Sousbie et al., 2008).

1.2.2 Friends-of-friends filament finders

An alternative approach to filament finding that has proven successful is to pass a second

friends-of-friends algorithm over the results of a first pass; i.e. look at which groups are bound

to other groups. This has been successfully applied to the 2dF survey by Murphy et al. (2011)

and has resulted in the discovery of filamentary structure. In total, 7603 systems are discov-

ered containing at least two members, and at redshift z  0.12 87 % of all galaxies belong to

some form of interconnected structure. The primary challenge of this method is to generate

an algorithm that is able to select structures without a preferential direction or orientation, a

process made rather difficult by redshift space distortion effects, commonly referred to as the

Fingers of God. The FoG effect is characterised by the elongation of groups and clusters of

galaxies in redshift space along the line of sight of the observer; it is caused by the random

peculiar velocities of galaxies within these dense regions adding an additional Doppler shift

to the redshift of the galaxy which deviates from Hubble expansion. A similar, but distinct

redshift space distortion effect is referred to as the Kaiser effect (Kaiser, 1987), whereby the

coherent peculiar velocities of galaxies infalling into clusters leading to line of sight distortions

in redshift space. These effects are circumvented in Robotham et al. (2011) by taking an ex-

isting catalogue of galaxy groups, 2PIGG, constructed by Eke et al. (2004) and collapsing each

group to a single point on their central positions, effectively scrubbing away the FoG effect.

A second FoF algorithm is then run on this distribution and successfully recovers filamentary

structure without being affected by the fingers of god (see Figure 2.5).

Comparisons to simulated galaxy catalogues reveal that the properties of structures de-

tected in the 2dFGRS and simulations broadly agree with some discrepancies. On the whole,

there are more large luminous structures in the 2dFGRS data than there are in the mocks, and

this can be attributed to poorly understood galaxy formation models being used to construct

the mocks. Given the existence of the GAMA Group Catalogue (Robotham et al., 2011), dis-

cussed in the following chapter, I have chosen to pursue this approach for my own filament

finding algorithm.

The second chapter of this thesis serves as a general overview of the Galaxy and Mass

Assembly survey, whose data has been used for all of the work done in this thesis, and collects
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1.2. Filament finders

Figure 1.3: The RA-z plane of the 2dFGRS survey showing both the northern and southern galactic
poles and the distribution of galaxies in connected systems colour-coded according to the multiplicity
of the structures they belong to (Murphy et al., 2011).
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Chapter 1. Filaments, voids, and the growth of large scale structure

most of the relevant information about the survey. In the third chapter of this thesis, I will

describe the process by which I have been able to verify the masses of the GAMA groups using

a complementary mass estimation method. This is an important first step to filament finding,

as it verifies the accuracy of the GAMA groups. As these form the initial particles for the

filament finding method I have developed, this verification ensures that any calibration of the

filament finding algorithm parameters that depend on group parameters will be reliable. In

chapter 4, I discuss my filament finding algorithm, the GAMA Large Scale Structure Catalogue,

and make comparisons to filaments found in the GAMA mock catalogues. Chapter 5 presents

a preliminary study on the impact of large scale structure on observable galaxy properties.

Finally, Chapter 6 is a summary of work and conclusions. Throughout this thesis, a cosmology

of H0 = 100 km s�1 Mpc�1, ⌦M = 0.25, and ⌦⇤ = 0.75 is used.
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2
The Galaxy and Mass Assembly survey

Since the discovery of the ‘Great Wall’ in the CfA survey, (Geller & Huchra, 1989), galaxy

surveys have come a long way in providing larger and larger data sets that are used in detecting

and quantifying the statistics of large scale structures, as well as addressing other questions

in extragalactic astronomy (see Table 2.1 for a detailed list of recent extragalactic surveys and

their selection criteria and a summary of the properties of current galaxy surveys can be found

in Figure 2.1). Galaxy surveys have now expanded to cover over 45000 deg2 and recover 357

million unique objects (Abazajian et al., 2009) at their largest extent at close redshifts, with

other surveys choosing to focus on smaller regions but collecting a much greater density of

galaxies – up to 1,000 galaxies per square degree (Driver et al., 2011). The importance of

increasing object density is to be able to recover to a high fidelity the distribution of galaxies

in halos; this information can then be used to detect galaxy clusters and filaments.

Every survey has a different goal, but generally improvements come in the form of deeper

and more precise observations of more galaxies, though not necessarily in bigger regions.

The huge volume of data generated by these surveys addresses many problems that exist in
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Chapter 2. The Galaxy and Mass Assembly survey

Figure 2.1: A summary of the properties of modern galaxy surveys taken from Baldry et al. (2010) that
shows spectral density against survey area, with a colour legend showing the primary spectrum range
for each survey. Squares represent surveys that are limited by magnitude cut-offs; circles are surveys
that use colour-cuts while triangles represent surveys that predominantly observe targeted objects.
Table 2.1 summarises the selection criteria of these surveys.

modern extragalactic astronomy. Examples of this using data from recent surveys include

work on the galaxy luminosity function (Loveday et al., 2012), the galaxy stellar mass function

(Baldry et al., 2012), the bimodality of the distribution of red and blue galaxies (Baldry et al.,

2006), star formation history of galaxies in halos (Weinmann et al., 2006), and the cosmic

spectral energy distributions (Driver et al., 2012), as well as providing observational tests for

cosmology (Blake et al., 2011). Moving from single to multiple wavelengths is increasing the

understanding we have of the different populations of stars present in galaxies as well as the

role of dust, and challenging old paradigms such as the classification of galaxies into ‘red and

dead’ and ‘blue and starbursting’ (Kelvin et al., 2012).
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Chapter 2. The Galaxy and Mass Assembly survey

2.1 Galaxy and Mass Assembly

One such survey, the Galaxy and Mass Assembly (GAMA)1 survey (Driver et al., 2009, 2011)

is an ongoing joint European-Australasian galaxy survey based around a spectroscopic cam-

paign using the Anglo-Australian Telescope, with complementary imaging covering 21 bands

of the electromagnetic spectrum from the ultraviolet through to far infrared using a multitude

of ground and space based telescopes: GALEX (FUV, NUV), SDSS (ugriz), UKIDSS (YJHK),

VIKING (ZYJHK), WISE (W1-4; NIR), and H-ATLAS (PACS, SPIRE; FIR) and GMRT and ASKAP

(radio). The GAMA input catalogue is based on data taken from SDSS and UKIDSS. The aims

of the survey are to cover a region of ⇠ 360 deg2 and to obtain ⇠ 400k redshifts for galaxies

out to a magnitude of mr = 19.8 mag. Phase one of GAMA (referred to internally as GAMA I)

has observed three fields of 4⇥ 12 degrees centred at ↵ = 9h, � = 1 deg (G09), ↵ = 12h, �

= 0 deg (G12) and ↵ = 15h, � = 0 deg (G15). Phase two (GAMA II) has expanded these to

5⇥ 12 degrees as well as gathering data in two additional southern fields: ↵ = 34 deg, � =

-7 deg (G02) and ↵ = 345 deg and � = -32.5 deg (G23). GAMA is funded by the STFC (UK),

the ARC (Australia), the AAO, and the participating institutions. Figure 2.2 shows an all-sky

projection with regions mapped out by different galaxy surveys, as well as GAMA.

All three equatorial regions are more than 98% spectroscopically complete (Driver et al.,

2011), and the two southern fields are in the process of being completed. GAMA has been

designed to have over 1000 objects per square degree. This is achieved through a greedy

tiling algorithm that performs the target selection for the survey (Robotham et al., 2010). By

ensuring that a particular section of sky is revisited up to 10 times, GAMA is able to detect

not just the most bright sources in every square degree, but fainter background objects. The

survey’s coverage of such a large variety of wavelengths ensures maximum sensitivity to a large

range of physical processes that take place within galaxies, while at the same time providing

information on all the different constituents of a galaxy (dust in the IR, star formation in

the UV, stellar mass in the optical, and so on). All this complexity originates from the many

different processes that go through a galaxy in its lifetime, including mergers, infall of gas once

it cools, star formation, and tidal interactions. It is therefore necessary for a comprehensive

galaxy survey to sample as much of the spectrum as possible. The GAMA database contains,

amongst others, catalogues of galaxy morphology (Kelvin et al., 2012), stellar masses (Taylor

1http://www.gama-survey.org/
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2.1. Galaxy and Mass Assembly

Figure 2.2: An all-sky projection map of pointings and regions for a variety of galaxy surveys conducted
with different instruments and telescopes, and GAMA, marked by the thick black lines. The three
equatorial regions are the most complete, with the two southern fields currently being completed.
Figure taken and reproduced with permission from Simon Driver (priv. comm.)
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Figure 2.3: The GAMA G12 field shown for four different distributions, with mr > 19.4 mag. The two
leftmost panels show all galaxies and groups in this field (groups coloured according to total luminosity
in L�; and the rightmost panels show all galaxies within groups and all galaxies outside of groups, in
the field. It is very telling to see that galaxies present within groups show clear examples of redshift
space distortion, whereas this is removed in the plot showing all groups. Note also how galaxies outside
of groups also trace out large scale structure.

et al., 2011), metallicities (Lara-Lopez et al., in prep), star formation rates (Gunawardhana

et al., 2013), matched aperture photometry (Hill et al., 2011, Liske et al., in prep) and the

GAMA Group Catalogue (Robotham et al., 2011) which is described below and referenced in

subsequent chapters.

2.2 The GAMA Group Catalogue

One of GAMA’s primary scientific goals is to better understand the relationship between dark

matter halos and the galaxies that reside in them. The largest concentrations of galaxies, in

clusters and groups, act as beacons that help us pinpoint dark matter halos; so a qualitative

understanding of the distribution of galaxy clusters and their associated halo masses is a rigor-

ous benchmark for dark matter simulations and models (Driver et al., 2009) (see Figure 2.4).

Cosmological parameters, particularly ⌦0 have a profound effect on the presence, abundance

and evolution of dark matter halos (Murray et al., 2013). By identifying the most massive
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Figure 2.4: Galaxy groups are unique tracers of dark matter halos. The panel on the left shows dark
matter halos generated with the Millennium catalogue with coloured circles indicating masses of groups
within halos (yellow: 1013 � 1014 M�; cyan 1012 � 1013 M�; red < 1012M�). The right panel is the
same field with only group members shown in redshift space, with prominent group member galaxies
shown in white and others in magenta, with links drawn in cyan lines (Driver et al., 2009).

clusters, we can make good estimates of the amplitude of density fluctuations in the early

Universe (Jenkins et al., 2001).

With GAMA, the large scale structure of the Universe and the nature of dark matter have

so far been investigated by looking at the relationship between dark matter haloes and their

galactic contents, focusing on analysing the low end of the halo mass function. The halo mass

function (Peacock & Smith, 2000; Jenkins et al., 2001; Berlind & Weinberg, 2002) measures

the number of galaxies hosted by a halo as a function of its mass. While the masses, numbers

and locations of galaxies within halos should be driven more by the phenomena such as gas

dynamics, star formation, galactic interactions and radiative cooling, the masses and spatial

distributions of halos is expected to depend on gravitational dynamics and the nature of dark

matter, as well as different cosmological models. All of these can be robustly tested by applying

a groupfinding algorithm to GAMA data and mocks, and comparing these results.

The groups presented in the GAMA Galaxy Group Catalogue (G3C) (Robotham et al., 2011)

have been identified using a slightly modified friends-of-friends (FoF) algorithm (Press & Davis,

1982). FoF algorithms work by associating groups that are within certain distances of each

other into common groups. To correctly account for the distortion effects of peculiar velocities,

the algorithm used by Robotham et al. (2011) uses a two step approach considers projected

separations separately to the radial redshift positions; in other words, the algorithm groups
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Figure 2.5: A schematic demonstration of the modified FoF algorithm of Robotham et al. (2011) applied
to an idealised set of galaxies. Namely, this figure demonstrates the two step approach whereby galaxies
are grouped both along the line of sight and projected on the sky. This uses both projected and radial
separations and recovers the underlying group (galaxies 1, 5, and 6). This figure has been reproduced
with permission from Robotham et al. (2011).

galaxies together both along the line of sight, as well as projected onto the sky. Galaxies

considered to be grouped in both projections are then assigned to the same group. A schematic

of this is shown in Figure 2.5. This approach therefore requires two linking lengths, with the

radial linking length designed to be considerably greater than the projected projected one to

properly account for the effects of peculiar velocities.

The two key parameters for the FoF algorithm are the projected linking length b, and

the radial expansion factor applied to it to account for the peculiar motions of galaxies, R.

Assuming static versions of these parameters falls short of accurately accounting for the effects
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of peculiar velocities in clusters, so b and R are allowed to scale as a function of local density

(similar to the approach of Eke et al. (2004)). b and R now therefore depend on position ((r))

and faint magnitude limit mlim:

b(r, mlim) = b0

✓
1
�

⇢emp(r, mlim)
⇢̄(r, mlim)

◆Eb

(2.1)

R(r, mlim) = R0

✓
1
�

⇢emp(r, mlim)
⇢̄(r, mlim)

◆ER

(2.2)

where ⇢̄ is the average local density of GAMA at r as a function of survey depth and is calculated

from the selection function, ⇢emp is calculated directly from the number density of galaxies in a

comoving cylinder centred on r with projected radius r� and radial extend l�. � is calculated

such that a galaxy within a local volume that is � times overdense as ⇢̄ will not have its

links altered; �, Er , and ER are calculated by calibrating the FoF algorithm on a series of

mock galaxy catalogues, designed specifically to replicate the GAMA luminosity function and

geometry (the details of these mocks and the simulations used to obtain them are described

in more detail in Section 2.2.1). To clarify, I refer to groups taken directly from the mocks as

mock groups and groups that the FoF algorithm recovers from the mocks as FoF groups.

Calculating these parameters therefore becomes an optimisation problem: with the mock

catalogues the true grouping of galaxies is known; one can therefore iteratively run the FoF

finder and vary the parameters mentioned in the previous paragraphs such that the group-

ing quality of the algorithm is maximised. This grouping quality is defined as the group cost

function. In Robotham et al. (2011), grouping quality is determined with two global mea-

sures: how accurately the algorithm recovers groups and the galaxies within them, and the

significance of the grouping.

Accurate group retrieval means that at least 50% of the recovered FoF group galaxies be-

long to their actual mock group; in Robotham et al. (2011) this is defined as a bijective match.

This can be converted into an efficiency statistic, ETot, which measures global halo finding effi-

ciency and will be 1 if all groups are bijectively matched, and 0 if none are so. The significance

of group retrieval is given by the total quality parameter, QTot. This is defined as the product

of the relative fractions of members that belong to the recovered FoF group and the intrinsic

group and should equal 1 for the perfectly recovered group. These two parameters can be
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combined into a final summary statistic:

STot = ETotQTot (2.3)

that will span the range 0-1. The optimisation is performed such that this value is maximised.

Those parameters that maximise STot are then used to generate the group catalogue on ob-

served data. Refer to Tables 1 and 2 in Robotham et al. (2011) for the values of each parameter

and their errors.

The final group catalogue contains 23,838 galaxy groups with � 2 members out to rAB =

19.8 mag which corresponds to about 40% of the galaxies in the GAMA catalogue. Notably,

most groups (63.2%) found in the catalogue are galaxy-galaxy pairs that span across the entire

redshift range. The groupfinding algorithm has been calibrated by being run on a series of

GAMA mock catalogues (Merson et al., 2012), discussed in the following section. A broad

visual overview of the outputs of the group catalogue is shown in Figure 2.6 where the three

equatorial GAMA fields are shown, with all groups in the catalogue shown.

GAMA is a highly complete spectroscopic survey ( 98% as of the creation of the group

catalogue, with measured redshifts having an uncertainty�v ⇡ 50 kms�1). The average target

density is 1050 galaxies per square degree, out to mr < 19.8 mag. This means that some

galaxies that may previously have been considered to be in the field and isolated are now

seen to be part of an underlying group of faint galaxies (Robotham et al., 2011). Similarly,

regions thought to contain few galaxies are now seen to contain not just more galaxies, but

a considerable amount of structure. This is one of the principal strengths of GAMA, and is

fundamental to why it is so well suited for studies of structure.

The group catalogue provides a number of useful properties for each group, including

mass, radius, velocity dispersion, and luminosity. Masses are estimated by using the relation

M/ �2R where� and R correspond to the velocity dispersion and the projected group radius.

Group radius estimates were calculated for radii that contain 50%, 68% and 100% of the galax-

ies within each group (Rad50, Rad68 and Rad100 respectively), and the projected group centre

was located by three different methods, discussed below. The group velocity dispersion is cal-

culated using the GAPPER algorithm introduced in Beers et al. (1990) where all the recession

velocities for N galaxies within a group are ordered, and the velocity dispersion is estimated
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Figure 2.6: Top-down view (looking down in Declination) of the three equatorial GAMA fields and the
groups that they contain, as per the GAMA group catalogue. Each group is denoted by a circle placed
on its centre, the size of which denotes the number of galaxies in the group. The circles are coloured
according to the velocity dispersion of the group. This image has been reproduced with permission
from Robotham et al. (2011).
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using calculated values for the gaps between velocity pairs vi+1� vi for i = 1, 2..., N �1. The

dynamical mass for each group is given by

MFoF

h�1M�
=

A
G/(M�km2s�2Mpc)

✓
�2

FoF

km2s�2

◆
RadFoF

h�1Mpc
(2.4)

where G is the gravitational constant (6.673 ⇥10�20 km2 s�2 Mpc), RadFoF and �FoF are the

radius and velocity dispersion of the group obtained by the methods described above. A is a

scaling factor that is required to obtain a median-unbiased estimate of the friends-of-friends

mass with respect to the real halo mass. It varies depending on multiplicity and median redshift

of a group.

The group luminosity isn’t defined as simply the total observed r-band luminosity of all

galaxies considered to be in a group, as this does not account for any residual selection effects.

Instead, the total observed luminosity is corrected for each group by integrating the GAMA

luminosity function to the to the r-band absolute magnitude limit of each group. In other

words, the group luminosity LFoF is given by:

LFoF = BLobs

R �14
�30 10�0.4Mr�GAMA(Mr)dMr
R Mr�l im

�30 10�0.4Mr�GAMA(Mr)dMr

(2.5)

where Lobs is the observed total r-band luminosity of the group, B is the scaling factor required

to produce a median unbiased luminosity estimate (similar to A for masses), and Mr�l im is the

effective r-band absolute magnitude limit for the group and depends on the redshift of the

group and the apparent magnitude limit of GAMA (mr = 19.8 mag). The limits of -30 and -14

for the numerator are effectively infinite limits, as a typical density of a luminosity function is

covered by a couple of magnitudes of M⇤.

It is constructive here, as an aside, to discuss how the absolute magnitudes of galaxies in

the group catalogue (and in subsequent parts of this thesis) are calculated. To begin with, the

distance modulus of an object at z is calculated, using the cosmological luminosity distance

DL to that object at that redshift. In other words,

DM = 5 log DL + 25 (2.6)
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with DL = (1+ z)R0Sk(r), where R0Sk(r) refers to the radial comoving distance, DM , all given

in h�1 Mpc. The radial comoving distance is defined as the distance between the observer and

the galaxy measured along a radial path defined at the present cosmological time. There is

another detail that one must be mindful of: given that the absolute magnitude calculation is

being done using flux from one filter (the r-band in this case), one must bear in mind that that

this filter will only be sensitive to a certain fraction of the galaxy’s full spectrum, redshifted

into the rest frame. One must therefore apply a so-called k-correction to all fluxes in order to

be able to compare them. The absolute magnitude of an object with mr = 19.8 mag at that

redshift z can be calculated using the k-correction values taken from R11:

(k+ e)(z) =
NX

i=0

ai(zref, zp)(z � zp)i �Qzref
(z � zref) (2.7)

where zref is the redshift to which all galaxies are corrected to; Qzref
is a single luminos-

ity evolution parameter (Yee et al., 2000b); zp is the redshift used in the polynomial fit to

the median KCORRECT-v4.2 (Blanton & Roweis, 2007) k-correction of GAMA-I galaxies and

ai(zref, zp) are the coefficients of that polynomial fit. We replicate the values used in R11:

zref = 0, Qref = 1.75, zp = 0.2, N = 4, a1, 4 = 0.2085, 1.0226, 0.5237, 3.5902, 2.3843.

This is not as effective as calculating individual k-correction values for each galaxy based on

stellar population synthesis models as done in Taylor et al. (2011) but is computationally far

less expensive and provides results that are statistically similar enough to warrant the use of

this faster method.

Returning to the properties of groups, the projected group centre is defined in three differ-

ent ways in the G3C: the first centre corresponds to the rAB luminosity centre of light (CoL) of

all the galaxies associated with the group. The second definition, the iterative group centre, is

estimated by calculating the rAB CoL of the group, and then rejecting the most distant galaxy

from this centre. This process is then repeated until only two galaxies remain, at which point

the brightest one of these is selected as the group centre. In the final method, the brightest

group galaxy in the rAB-band is selected as the group centre (BGG).

The G3C provides a very good starting point for a project that involves the detection of

filament finding using a second-pass friends-of-friends algorithm as described in the previous

chapter and in Murphy et al. (2011). Using groups as the foundations of filaments successfully
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removes redshift space distortions from any detected structures (see Figure 2.3). A second FoF

pass on the G3C should therefore extract filamentary structure free from the bias of redshift

space distortions. Furthermore, the existence of mock catalogues allows for comparisons be-

tween real and simulated filaments.

2.2.1 The mock GAMA group catalogue

The GAMA mock catalogues (R11; Merson et al., 2012) are 9 mock light cones that match the

geometry of the three equatorial GAMA fields. The primary prupose of mock galaxy catalogues

in GAMA, at the time of writing of this thesis, was to provide a benchmark for the grouping

algorithm used to generate the galaxy group catalogue. More broadly, mock galaxy catalogues

are an essential tool in understanding how the construction of an observational survey and its

selection effects impact on the estimation of astronomical statistics and measurements, such

as luminosity functions and correlation functions. The obvious advantage of mock galaxy

catalogues is that the ‘true’ values of these statistics are known by design, and so it is possible

to compare statistics extracted from the mock catalogue with conventional methods to the

‘actual’ value.

The construction of the GAMA mocks is detailed in Merson et al. (2012). Broadly speaking,

the procedure by which the mock catalogues are constructed from numerical simulations is as

follows: (i) a population of galaxies is generated using dark matter haloes or the distribution

of dark matter, (ii) place these galaxies into a cosmological volume, and (iii) apply the angular

and radial selection functions of the survey that the mock catalogue is mimicking. In the case

of the GAMA mock galaxy catalogue, the dark matter haloes are taken from the Millennium

Simulation (Springel et al., 2005). This is an N-body dark matter simulation that provides the

full spatial information of each halo and provides merger trees, which allows for clustering

information to be extracted. The cosmological parameters adopted in the Millennium Simu-

lation (and therefore present in the GAMA mock catalogues) match those measured from the

WMAP and are as follows: the total density of baryons, ⌦b = 0.045; the total matter den-

sity, ⌦m = 0.25; the dark energy density, ⌦⇤ = 0.75; the Hubble constant, H0 = h100 km s�1

Mpc�1 with h= 0.73; the primordial scalar spectral index, ns = 1; and a fluctuation amplitude

of �8 = 0.9.

The haloes provided by the Millennium Simulation are populated with galaxies by using

semi-analytic models, or SAMs (as opposed to hydrodynamical simulations which are better
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suited to simulate smaller scales). The SAM used for the GAMA mock galaxy catalogues is the

Bower et al. (2006) GALFORM semi-analytic galaxy formation model. GALFORM functions by

modeling, within each halo, numerous physical processes that play a part in the formation and

evolution of galaxies: collapse and mergers of dark matter halos; heating and cooling of gas;

star formation in disks; feedback from supernovae, active galactic nuclei and the ionisation of

the interstellar medium; chemical enrichment of stars and gas; and dynamical friction from

mergers. The galaxies are adjusted to match the GAMA survey luminosity function (Loveday

et al., 2012) in the r-band. The mock galaxy catalogues are considered to be complete to

approximately Mr�5 log h⇡ �17, and the GALFORM model used is complete to around 108M�

h�2 (Peder Norberg, priv. comm.). This completeness is estimated by testing different galaxy

formation models and running them through the snapshots of the Millennium Simulation in

order to measure the robustness of the predicted stellar mass function. Having generated

galaxies within haloes, 9 lightcones matching the geometry of each of the 3 GAMA fields are

placed within the simulation box. The result is a series of 27 mock lightcones (9 for each

GAMA field) with a galaxy population whose luminosity function matches that of GAMA, and

whose full clustering information is known.

Having a series of bespoke mock galaxy and group catalogues is extremely useful as it

allows for calibration work (such as the calculation of scaling parameters such as A and B used

in Eqns 2.4 and 2.5). The GAMA mock galaxy catalogue is utilised extensively in this thesis. In

chapter 3, the mocks are used as a benchmark to calibrate the parameters used in the caustic

mass measurement algorithm, and in chapter 4 the properties of filaments and tendrils found

in the mocks are compared to ones found in observational data.
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3
Verification of the GAMA group catalogue masses

and groupfinder effectiveness

In this chapter we look to verify the GAMA group masses derived by Robotham et al. (2011).

In Robotham et al. group masses were estimated from the velocity dispersion combined with

the group radius. Measuring the mass of a galaxy group is both one of the most challenging

and most fundamental ways to understand the distribution of the dark matter it sits in. Tra-

ditionally, mass estimates of groups are calculated virially, via measurements of the velocity

dispersions of their members, e.g., Hughes (1989); Carlberg et al. (1996); Girardi et al. (1998);

Tucker et al. (2000). By assuming that the group is in virial equilibrium, the dynamical mass

of the group follows the relation M/ �2R. The obvious limitation of this method is that the

relation will hold only out to the virial radius of the galaxy group, so mass estimates made

using galaxies beyond this radius become less reliable. The dynamical mass will, however,

measure the mass of whatever is contained within the virial radius of the group: visible and

dark matter alike. Comparing the dynamical mass measurement to the estimate of the mass
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of the visible matter of a group is a very reliable estimator of dark matter mass. More accurate

mass estimates at large radii are possible using weak lensing (Kaiser et al., 1995), however

the obvious drawback of this approach is the observational challenge involved in measuring

the lensing signal for a large galaxy group sample.

An alternative and complementary approach to group mass estimation is to look at the

distribution of the galaxies within a group in redshift space (defined as the projected distance

r from the group centre and the line-of-sight velocity v with respect to the median group red-

shift for every member of the group) and estimate the group escape velocity by analysing the

distinct shape of this distribution, described by some to resemble the horn of a trumpet. This

method of analysing galaxy group members in redshift space was first introduced as a mass

estimator by Diaferio & Geller (1997) and Diaferio (1999) (hereafter DG97 and D99) for large

clusters with 200+ members and is referred as the caustic mass estimation technique by its

developers. An early version of the method was first used in an attempt to constrain cosmo-

logical parameters, specifically ⌦M (Regős & Geller, 1989) with little success. By subsequently

identifying that velocity measurements of galaxy groups were heavily affected by random mo-

tions, as well as by comparing observed caustics to those predicted by cosmological models,

DG97 determined that this method is unreliable for determining ⌦M . Navarro et al. (1997)

later went on to demonstrate that the density profiles of dark matter halos do not vary with

cosmological parameters, putting attempts to use the caustic method to measure cosmological

parameters to rest for good. However, the amplitude A(r) of these caustics, which is defined

as the area within caustics fit to the minimum of the upper and the lower line-of-sight veloc-

ities vu and vl , does provide a measure of the gravitational potential �(r) of the group. This

can then be used to estimate the mass of the group. The method has been subsequently used

by Diaferio et al. (2005); Diaferio (2009); Serra et al. (2011) as a robust way of calculating

masses of galaxy groups using all of the positional information from a group (out to R200) and

as a test for cluster membership (Rines & Diaferio, 2006). Additional research has shown that

for a set of rich X-ray luminous clusters, caustic mass estimates agree to within a ratio of 1.03

± 0.11 with mass estimates obtained via lensing analysis (Rines et al., 2003).

This chapter details the application of the caustic method to the GAMA Galaxy Group

catalogue and its accompanying mocks (described in the previous chapter) and attempts to

provide complementary caustic mass estimates to the dynamical mass estimates of the group

halos within the catalogue. Veryifying group masses is crucially important to being able to
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use groups as the foundations for large scale structure in the next chapter: the caustic mass

method fails for poorly defined groups (as discussed later in this chapter), so if the caustic

masses agree well with the dynamical masses, this implies that the groups are defined well. In

the filament finding method discussed in Chapter 4, groups are used to trace filaments, so it

is vital that they are defined well. Accurate mass measurements are therefore the first step to

developing a large scale structure catalogue. By also applying the method to mock light cones

that mimic the GAMA data I am able to carefully calibrate my algorithm to produce median-

unbiased mass estimators for each galaxy group using only redshift and positional information

out to radii that are well beyond the virial radius.

3.1 The caustic mass method - background

The caustic method is based on analysing the distribution of group members within redshift

space, which is defined in D99 as the plane (r, v) of the galaxies, where r is the projected radial

separation from the group centre, and v is the line-of-sight velocity relative to the group centre

of mass. The spherical infall model of Regős & Geller (1989) predicts the existence of two

‘lines’ that form a trumpet shape on this plane where the phase-space density in redshift space

is infinite; and in practice these trumpets are observed when looking at both simulated and

real groups. In the spherical model, plotting galaxies in a group in redshift space causes them

to collapse to the peak redshift of the group along the line-of-sight, placing them somewhere

between the centre of the group and the turnaround radius. In redshift space this translates

to the trumpet-like lines that describe the escape velocity of the group. By definition, galaxies

outside of these caustics are beyond the turnaround radius of the group – in other words,

their peculiar velocity is so great that they are escaping the group. If we assume that galaxies

lying outside the caustics are considered to be escaping the group, it follows that the caustic

describes the escape velocity v2
esc(r) of a cluster as a function of distance r from its centre. An

idealised caustic fit to a simulated cluster, taken from Serra et al. (2011) is shown in Figure

3.1.

Here follows a brief overview of the physical justification behind the caustic method. Full

details of the model can be found in DG97, D99 and Serra et al. (2011).

Assuming a spherically symmetric model for a group, the escape velocity within a shell of

radius r for a group is given by v2
e (r) = �2�(r). Given our position as observers, it is the line-
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Figure 3.1: In this figure taken from Serra et al. (2011), a simulated galaxy cluster is plotted in redshift
space, with blue points denoting galaxies within the cluster, and black points galaxies outside the cluster.
The cyan lines are true caustics for this cluster, and the black lines represent the fitted caustic, with 1�
errors shown.
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of-sight component (vlos) of this escape velocity that determines the location of the caustics,

but this value depends upon the escape velocity profile of the cluster which we may not always

know. Instead, we require an expression for the caustic amplitude that is independent of the

escape velocity profile. Serra et al. (2011) determine such an expression, summarised below:

We begin by looking at the velocity anisotropy parameter �(r) = 1� (hv2
✓ i+ hv2

�i)/2hv2
r i

where v✓ , v� and vr correspond to the longitudinal, azimuthal and radial components of an

individual galaxy’s velocity respectively. �(r) therefore measures the velocity anisotropy of the

group by taking the averages of these velocity measurements for each group member. If we

assume that group rotation is negligible, hv2
✓ i = hv2

�i = hv2
losi and hv2

r i = hv2i � 2hv2
losi where

vlos is the line-of-sight component of the velocity. Rearranging this for hv2i and incorporating

the equality of all velocity components into the expression for �(r) gives:

hv2i= hv2
losi
Å

3� 2�(r)
1� �(r)

ã
⌘ hv2

losig(�) (3.1)

where

g(�) =
3� 2�(r)
1� �(r) =

2hv2
losi+ hv2

r i
hv2

losi
(3.2)

The potential of a system is related to its escape velocity in the form of �2� = hv2
esc(r)i,

so it is possible to link the potential to the caustic amplitude if we make the assumption that

A 2(r) = hv2
esc,losi in the form

� 2�(r) = hv2
esc,losig(�) =A 2(r)g(�) (3.3)

which combines all unknowns into a single parameter, � . The final link in the chain is to

consider the mass of an infinitesimal shell:

G dm= �2�(r)F (r)dr =A 2(r)g(�)F(r)dr (3.4)

with F (r) = �2⇡G⇢(r)r2

�(r) . Combining the expression for F (r) and G dm brings us back to the

familiar result for the mass of a shell; G dm= 4⇡G⇢(r)r2 dr. Integrating Eq. 3.4 gives
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GM(< r) =
Z r

0
A 2(r)g(r)F(r)dr (3.5)

This expression is close to what we need, but is limited by the fact that the density profile

of the system needs to be known in order to get a value for the mass. To overcome this, D99

assume that F� (r) = F (r)g(�) is a slowly varying function with respect to the radius of the

system in hierarchical clustering scenarios, and this result is confirmed by Serra et al. (2011).

We therefore set F� (r) to be constant and adopt the value of F� = 0.7 of Serra et al. (2011)

(this is not critical, as we later adjust our mass estimates by a scaling factor, discussed below),

giving the final expression

GM(< r) =F�
Z r

0
A 2(r)dr (3.6)

which can be used to provide mass estimates for our data sample. The Serra et al. (2011)

F� = 0.7 value is measured from simulated galaxy groups.

3.1.1 The caustic mass method - algorithm

A successful caustic mass estimation algorithm must be able to accurately infer the continuous

dark matter distribution in the halo that the group resides in, from a discrete set of points

– the galaxies within the group. The most important goal of this algorithm is to correctly

determine the location of the caustic for a group. Given that caustics are lines where densities

tend to a certain value, locating them involves calculating a smooth 2D density distribution

for the group members in redshift space (this is typically done by convolving the 2D discrete

data with a kernel; e.g. Pisani, 1993). Based on this density distribution the algorithm then

determines a threshold at which the caustic is placed.

For a given galaxy group for which member positions are known (↵, �, and z), the projec-

tion into redshift space takes place via the following transformations:

r =
cDA(zc)

H0
tan (3.7)

and
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3.1. The caustic mass method - background

v = c
z � zc

1+ zc
(3.8)

where DA is the comoving distance to the galaxy, zc is the redshift of the group centre, and  

is the angular separation of a given member galaxy from the group centre at redshift z along

the line of sight.

Having placed each group member galaxy into redshift space, we can now calculate the 2D

density distribution of these galaxies within redshift space. Consider N galaxies in a cluster

distributed in a redshift diagram with coordinates x= (r, v). Using an adaptive kernel method

(Silverman, 1986), the density distribution of these galaxies is described as

fq(x) =
1
N

NX

i=1

1
h2

i

K
Å

x� xi

hi

ã
(3.9)

where K is the adaptive kernel

K(t) =

8
<
:

4⇡�1
�
1� t2
�3

if t < 1,

0 otherwise
(3.10)

and hi = hchopt�i is the local smoothing parameter. �i = [�/ f1(xi)]
1/2 where f1 is equation

(3.9) where hc = �i = 1 for any i and log� =
P

i log [ f1(xi)]/N . The motivation for using an

adaptive kernel estimator is to have a density estimator that can adapt to density distributions

where the true probability density changes quickly (Pisani, 1993); this is generally a caveat of

fixed kernel estimators that risk to oversmooth or undersmooth the probability distribution.

The true distribution of galaxy members within a group in redshift space is not always known

(the grouping algorithm is imperfect, nor are we able to observe all galaxies in the Universe).

Finally, the optimal smoothing parameter hopt is

hopt =
3.12
N1/6

✓
�2

r +�
2
v

2

◆1/2
(3.11)

where �r and �v are respectively the uncertainties in the galaxy coordinates. The positional

uncertainty �r is calculated from the astrometric uncertainties in GAMA for each galaxy and

is negligible, while for �v we use uncertainty in the redshift measurement of the galaxy. This
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was typically around 80 km s�1 when this work was first done; however GAMA has since

automated its redshift measurement process and the typical uncertainty has decreased to 50

km s�1.

Performing this calculation can take a great deal of time, particularly when it comes to

calculating fq and optimizing for the best value of hc; an initial attempt to make the calculation

on a personal computer was abandoned after two days. A faster, less computationally intensive

and time saving way of obtaining the density estimator is to use Fast Fourier Transforms (FFT)

to convolve a two-dimensional histogram of the data in redshift space with the adaptive kernel.

The process is described in Silverman (1986) for one dimension, but can easily be extended

to two.

This process begins by creating a two-dimensional normalised histogram of the galaxies in

redshift space (projected radius from the group centre versus line-of-sight velocity), and over

the same parameter space, a histogram of calculated values for the kernel given in Eq. (3.10).

The smoothing parameters �i , hopt and hc are used to adjust the values of the data histogram,

but ultimately have little impact on the final calculated value of the density estimate. The

density estimate fq(r, v) is defined as the inverse FFT of the product of the forward FFT of the

data and kernel histograms, or in other words:

fq(r, v) =F�1 (F (data)⇥F (kernel)) (3.12)

where F and F�1 denote forward and inverse fast Fourier transforms respectively. The end

result of this calculation is a two-dimensional matrix that describes the density distribution

of the group galaxies in redshift space; note that the modulus of this matrix is used in order

to discard any phase shifts caused by the Fourier transforms. The matrix has dimensions of

28 ⇥ 28; any size lower than 27 ⇥ 27 does not provide the algorithm enough resolution to

give reliable results and using values larger than 28⇥28 produces negligible improvements in

resolution at the cost of computer time. The caustics are drawn on the density distribution on

locations where fq(r, v) = , and  is obtained by minimising the function S(, R) taken from

D99:

S(, R) = |hv2
esci,R � 4hv2iR|2 (3.13)
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3.1. The caustic mass method - background

where the term hv2
esci,R is the square of the mean escape velocity at R for a given value of

. This corresponds to the average size of the caustic amplitude from the group centre to the

maximum projected radial distance R for a given value of  and hv2iR is the group velocity

dispersion taken from the G3C. Using the group velocity dispersion from the G3C means that

this method is not fully independent from the dynamical masses used in the group catalogue

(as they both depend on velocity dispersion). The value of  that minimises S(, R) is the

parameter that most affects the final calculation of where the caustics lie and the resulting

mass estimate, as opposed to the parameters that go into calculating fq(r, v).

To minimise the function S(, R), the value of  for which the average caustic size is equal

to 4hv2iR is used. The R (R Development Core Team, 2011) function OPTIM is used to do this;

OPTIM is a general-purpose optimisation function based around the Nelder-Mead algorithm

(Nelder & Mead, 1965), which lends itself particularly well to this task as S(, R) is a parabolic

function with only one well-defined minimum – more complicated optimisation algorithms are

therefore not needed. Once the location of the contour is determined (black line in Figure 3.2),

the algorithm draws the caustics (green lines in Figure 3.2 along min{|vu|, |vl |} where vu and

vl correspond to the upper and lower values of the line-of-sight velocity of the group along the

contour. The algorithm scans through the density distribution in bins of r, and for each bin

selects the minimum of these two velocities, vu(r) and vl(r), and reflects it along the line-of-

sight velocity axis (i.e. v = 0kms�1. The caustic amplitude beyond the maximum extent of the

group is artificially set to 0, even though often the caustic closes before the maximum radial

extent of the group is reached (see Figure 3.2).

Based on mock catalogues of galaxies built with N-body simulations in DG97, there is a

constraint on the logarithmic derivative of the caustic amplitude: d lnA /d ln R  2. Any

values of A (r) for which this derivative does not hold are considered to be the result of the

caustic algorithm coming up with the wrong location for the caustic at that particular radius,

often due to excessive foreground/background galaxies. In other words, DG97 find that for

a vast range of simulated groups, galaxies never have velocities such that the logarithmic

derivative of the caustic amplitude is greater than 2. Instead, in these cases a caustic amplitude

such that d lnA /d ln R= 1/4 is used, as in Serra et al. (2011).

To summarise, the algorithm works as follows:

1. Convert the galaxy positions in redshift space into a two-dimensional histogram of galaxy
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number densities,

2. create another histogram of the same dimensions containing values for the kernel as per

Eq. (3.9),

3. calculate fq(r, v) using Eq. (3.12),

4. calculate the best value for  with Eq. (3.13),

5. fit the caustics by reading off the minimum value of |vu| and |vl | along r, whilst ensuring

that the derivative inequality holds,

6. integrate between the caustics to estimate the mass of the group using Eq. (3.14) and

scale it accordingly using caustic mass estimates of mock galaxy groups to obtain a

median-unbiased estimator.

The final mass expression is

Mc

h�1M�
=

0.7Ac

G/(M�km2s�2Mpc)

Z r

0
A (r)2 dr (3.14)

where r is given in units of h�1 Mpc andA in s�1 km.
R r

0 A 2(r)dr is calculated by discretising

A (r) over a set of equally spaced steps and Ac is the caustic mass scaling factor. Figure 3.2

shows example caustic fits for four friends-of-friends mock galaxy groups of descending total

luminosity (from 1012 h�2 L� to 109 h�2 L�).

Despite the computational efficiency of the FFT method to calculate the density estimate,

there are a number of drawbacks that need to be adressed. To begin with, the area over which

the 2D histograms for the data and the kernel are created need to be larger than the area the

data spans. This is to avoid the kernel (and the resulting density estimate) wrapping around

the borders due to the periodic nature of Fourier transforms and results in a very smooth

density distribution compared to those shown in DG97 and D99. This will artificially increase

the sizes of the caustics and cause a systematic overestimation of the caustic mass (though the

scaling factor Ac corrects for this); the smoothing is independent of group size as shown in

Figure 3.2. The presence of background galaxies is not considered in this analysis, and it is

assumed that the friends-of-friends algorithm used in Robotham et al. (2011) has recovered

group members as accurately as possible. This is tested later in this chapter.
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3.1. The caustic mass method - background

Figure 3.2: Four examples of the placement of the contour  (black) and the caustics fitted to it
(green) for four FoF mock galaxy groups (whose galaxies are shown as the black points) from the G3C
in descending order of luminosity. It is evident here that the FFT method used to estimate the density
distribution causes the final caustics to be very smooth with respect to the caustics drawn in DG97
and D99. This introduces a source of error in our caustic mass estimates. Notice how the gradient
requirement d lnA /d ln R = 1/4 is enforced towards the ends of the caustics in all panels, where the
green lines no longer follow the black caustics.

39



Chapter 3. Verification of the GAMA group catalogue masses and groupfinder effectiveness

Figure 3.3: Side-by-side comparison showing how the caustic mass estimation performs for a large
mock galaxy group. In both panels, the black points represent the locations of galaxies in redshift
space, the black lines show the contour fq(r, v) =  and the green lines are the caustics drawn along
min{|vu|, |vl |}. The left panel is a caustic fit only for galaxies present within this mock group and shows
a clear example of the ‘trumpet’ distribution. The right panel includes nearby galaxies in redshift space
out to ±4R100 and |z � zmed|  4⇥max|z � zmed| whilst circling the original group members in red. In
this case the trumpet distribution is lost and the caustics are artificially closed at the end of the sample.

3.2 Caustic mass estimates of groups

Before applying this algorithm to the actual group catalogue, it is important to understand

how well it performs when estimating masses for a set of mock catalogues that have been

prepared alongside the G3C, where true masses are known. We therefore calibrate our caustic

mass estimation algorithm using a set of 9 GAMA mock galaxy catalogues (described above).

In these mock catalogues, the true grouping of galaxies is known, so a well-informed calcu-

lation of their halo mass is possible. This acts as a benchmark for our caustic mass estimation

algorithm and allow us to experiment with different implementations of the method. Serra

et al. (2011) show that fine-tuning the parameters of the caustic mass algorithm (hc , q, )

does not provide a considerable improvement of its results; as described above, parameters

such as hopt do not change the final mass estimate by much when changed. Instead, to test

for the impact of group centre definition, the algorithm is run using different values for the

group centre given in the G3C: the centre of light, the iterative group centre and the brightest

cluster galaxy. This provides a useful way of testing the stability of the caustic algorithm to

different definitions of the group centre, as well as confirming the conclusions from Robotham

et al. (2011) of which definition is the most appropriate.
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3.2. Caustic mass estimates of groups

3.2.1 Sensitivity to definition of group centroid

In Robotham et al. (2011), it is shown using comparisons to mock catalogues that the iterative

method seems to be particularly robust at picking out the true group centre even in the pres-

ence of outliers. These tend to throw off the estimated group centre when using the centre of

light method, as one would expect any mean to be susceptible to outliers; the centre of light

method depends most explicitly on the group being recovered correctly. The brightest clus-

ter galaxy approach is also robust to outliers, but analysis reveals that the iterative method

recovers the most group centres that match the mock groups: the iterative centre of light

method picks out the correct group centre 90% of the time. For the caustic mass algorithm,

the most robust definition of the group centre should produce the most stable results; in other

words, the variance in the scale factors Ac for each multiplicity and redshift bin should be

minimal for the most stable group centre. This is confirmed by running the caustic algorithm

on the mock group catalogue and changing only the location of the group centre from the

iterative centre-of-light group centre to the brightest group galaxy and then to the centre-of-

light: �2(AIterCen) = 0.192 whereas �2(ABGG) = 0.201 and �2(ACoL) = 0.361. It is expected

that the tendency of the centre-of-light method to incorrectly define the group centre to be

near an outlying bright galaxy to throw off the placement of the caustics by deforming the

density distribution of galaxies in redshift space. However, the caustic algorithm is expected

to be robust to minor perturbations in the placement of the galaxies in redshift space, as the

difference in the variances given above is minor.

3.2.2 Sensitivity to definition of group radius

A second test involves changing the number of galaxies that I consider when calculating the

mass for each group, i.e. artificially increasing group membership. This will test the caustic

mass algorithm’s robustness to incorrectly defined groups. I do this by extending the boundary

of the group in redshift space to include some nearby galaxies. In redshift space, this extension

is defined as:

|z � zmed|�z; �z = 4⇥max|z � zmed| (3.15)

Spatially, I increase the maximum distance a given galaxy can be from the group centre

while it is still considered to be in the group. This effectively checks whether the caustic
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Chapter 3. Verification of the GAMA group catalogue masses and groupfinder effectiveness

algorithm is sensitive to other interloping groups or poorly defined groups. Including extra

galaxies that in some cases belong to other groups not only systematically increases the mass

estimates made by the caustic algorithm as one might expect, it also increases the mean spread

of the results (defined as the ratio of the logarithm of the true and estimated mass) from h�2i=
8.33⇥ 10�3 for caustic mass estimates made with the groups as they are, to h�2i = 0.0126.

One expects the overall mass estimate to increase as a result of including more galaxies, but the

increase in spread is unexpected: the caustic algorithm ought to work better with a greater

number of galaxies. Instead, the algorithm is unable to correctly place the caustics in the

redshift space diagram because the extended search cut includes galaxies that are most likely

inside other independent groups (Figure 3.5).

Visual examination of the redshift space plots in Figure 3.3 of these extended group cuts

shows that the inclusion of nearby galaxies disrupts the distinctive trumpet shaped distribution

seen in ideal spherical groups – galaxies that belong in other groups sit off at high values of

line of sight velocity. Figure 3.4 shows a mass comparison between the group catalogue data

and the extended group cut. Shown are a subset of groups; those that with redshift between

0 and 0.1, and with 5 to 9 members (before including nearby galaxies). The caustic mass

estimates made with the extended group cut (in dashed black lines) show a much greater

spread, due to the reasons described above. This result highlights the importance of carefully

determining group membership when using the caustic algorithm, as the presence of galaxies

that are not associated with the group being considered can have a catastrophic effect on the

locations of the caustics, ultimately resulting in an incorrect mass estimate. For this reason,

much of the work that has been done with caustics (DG97, DG99 and Serra et al., 2011) also

incorporates a groupfinding method. In the case of this work, combining the caustic method

with the friends-of-friends algorithm used to determine group membership for the G3C and

mocks allows me to significantly reduce the probability of the caustics being placed incorrectly

due to the presence of interloper galaxies within a group.

3.2.3 Caustic mass estimation in mock groups

Just as the mock catalogue was used to calibrate the groupfinding algorithm by Robotham

et al. (2011), so can the catalogue be used to calibrate the caustic mass algorithm. Using

the original grouping from the G3C with the iterative group centre, I calculate caustic mass

estimates for every group in the mock catalogues, as well as Ac for a set of redshift and mul-
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Figure 3.4: The black dashed contours show the results of running the caustic algorithm on the mock
catalogues and including galaxies nearby in the field, or in other groups. By comparison, the solid
black contours represent the mass estimates made when considering only galaxies known to be in each
group from the simulation. Finally, the red contours represent the distribution of the dynamical mass
estimates from the G3C. All three distributions have been adjusted to the same median as the dynamical
mass estimates, shown in the red contours. Each contour line contains 10, 50 and 90% of the points,
and the dashed green lines are 2/5/10 times away from the median.
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Figure 3.5: A projection of the mock group in Figure 3.3 showing all galaxies within the mock group
circled in red, and all galaxies that are detected when the algorithm includes nearby galaxies out to
±4R100 and |z � zmed|  4⇥max|z � zmed| The area shaded in blue represents the physical size of the
simulation region at the median redshift of the group. At this range it is evident that the algorithm is
including galaxies that are likely to belong to other separate groups.
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3.2. Caustic mass estimates of groups

2 NFoF  4 5 NFoF  9 10 NFoF  19 20 NFoF  1000
19.4 19.8 19.4 19.8 19.4 19.8 19.4 19.8

0 zFoF  0.1 1.63 1.63 0.43 0.43 0.45 0.46 0.41 0.41
0.1 zFoF  0.2 1.58 1.59 0.43 0.43 0.42 0.42 0.38 0.39
0.2 zFoF  0.3 1.52 1.53 0.42 0.44 0.36 0.38 0.35 0.35
0.3 zFoF  0.5 1.18 1.21 0.29 0.31 0.29 0.29 0.24 0.26

Table 3.1: Values for Ac for each group subset in both the rAB < 19.4 and rAB < 19.8 mock G3C mock
catalogues using iterative group centres and with all galaxies in group. Including these numbers in Eq.
3.14 gives a median-unbiased estimate for the group mass. Note that without including these factors,
the mass estimate can vary by up to a factor of 3, most likely caused by the smoothing FFT caustic
fitting method used.

tiplicity bins in order to make caustic mass estimates for observed groups median unbiased

(Table 1). Figure 3.6 shows the results of these calculations for each multiplicity and redshift

bin, comparing the distribution of caustic mass estimates (in black) to the dynamical mass

estimates (red). As it is designed to do, the caustic method performs best in very populated

groups (N � 200; of which there is only one in the G3C). This is shown by the fact that the

scatter of the distribution of mass estimates shown in Figure 3.6 decreases as a function of

increasing multiplicity. The scaling factor Ac should be unity for an ideal galaxy; instead the

caustic mass is systematically greater than the masses of the mock groups, i.e. Ac < 1. The only

exception to this is for groups with two to four members, where the caustic algorithm is much

more likely to fail to find appropriate contours, and thus defaults the mass to a specific value

of 104 h�1 M�. This artificially adds a tail to the distribution of masses for that group subset.

There may be a few reasons for this: (a) the simulated galaxy groups in the mock catalogues

not being perfectly spherical, (b) the groups not being virialised (one of the basic assumptions

of the spherical infall theory, on which the caustic algorithm is based, is that the group is viri-

alised), (c) the extra smoothing in our caustic introduced by using FFT to calculate the density

distribution fq(r, v), and (d) the fact that the caustic method is designed to work on groups

with more than 200 members. Note also that the caustic mass estimate is very susceptible to

the velocity dispersion measured for the group, which is always less of a robust measurement

when considering groups with few members. The overall variation in the scale factor Ac is

roughly a factor of 4.5, which is of the order of the range of scaling factors used to calibrate

the G3C dynamical mass estimates (see Table 3 in Robotham et al. (2011)). In contrast to the

dynamical mass estimate scaling factors, the caustic mass scaling factors vary less as a function

of redshift, but are far more sensitive to variations in group multiplicity. However, both mass

estimates perform equally badly when dealing with low multiplicity groups.
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As expected, the least satisfactory results are for groups that are galaxy pairs, where there

is little velocity dispersion information for the caustic algorithm to use. This explains the

presence of large tails in the 2  NFoF  4 panels of Figure 3.6. However, note that both

methods tend to fail at these low multiplicities, which is to be expected as dynamical mass

measurements rely on accurate velocity measurements as well. For higher multiplicity and

redshift cuts the caustic mass estimate PDFs shown in this figure agree extremely well with

those of the dynamical mass estimates; indicating again similarities between both algorithms

when it comes to performing badly for certain galaxy groups. This can be seen in the scatter

plots as both contours tend to follow roughly the same profile, meaning that it is likely that a

group that performs badly in one algorithm is likely to do so with the other. This is particularly

visible for the 10  NFoF  19, 0.3  zFoF  0.5 bin where there is a secondary concentration

of high mass groups that is present in both distributions.

Figure 3.7 converts the information shown in Figure 3.6 into a set of probability density

functions where the ratio between the caustic and dynamical mass estimates and the known

halo mass (shown in black and red respectively) is displayed alongside the ratio between

both mass estimates (in blue). The PDFs are all generated by convolving the data with a

rectangular kernel with a bandwidth of 0.1/
p

12 (this value is chosen to be small so that the

data isn’t oversmoothed). As shown on Figure 3.7, for groups with a mid-range multiplicity

(5  NFoF  19) the caustic mass estimates have a greater spread than the dynamical mass

estimates; this is true across all redshift bins. For groups with NFoF  4 the scatter is comparable

across all redshifts. Both methods produce estimates that are within a factor of 2 in agreement

with each other, which is very good. The large tails seen in Figure 3.6 for low multiplicity

groups are again visible here: the small ‘bumps’ forming on the right hand of the PDF are seen,

once again demonstrating that both methods tend to fail in similar ways. Despite the caustic

algorithm being designed for high multiplicity groups, it is still possible to make reasonable

estimates of the group mass for groups with only a handful of galaxies.

The caustic mass estimate should recover the intrinsic halo mass of each group as accu-

rately as possible, as the grouping for these is known. However, when applying the algorithm

to the real data in the G3C, I run the algorithm not on intrinsic groups, but on groups put to-

gether by the friends-of-friends algorithm used in Robotham et al. (2011). An important test

therefore is to see how the caustic mass estimation algorithm performs on bijectively matched

groups drawn out from the mock catalogue (instead of instrinsic mock halo groups) using the
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Figure 3.6: Distribution of caustic (dynamical) masses for the intrinsic mock groups as a function of
halo mass, drawn in black (red) for rAB  19.4. For each panel, both mass estimates have been corrected
to be median-unbiased. The contours represent areas containing 10, 50 and 90% of the groups and
the green lines are regions where the mass estimate is 2/5/10 times off the true mass. Of particular
interest is the tendency for both distributions to follow each other very closely, particularly when over
or under estimating the true halo mass.
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Figure 3.7: Probability distribution functions of median-unbiased values of log Mest
MHalo

for the rAB < 19.4
sample, with caustic masses drawn in black, and dynamical masses in red. The blue line is the PDF
of log Mc

Mdyn
and highlights the agreement between the two methods. The green dashed lines indicate

regions that are factors of 2/5/10 away from the ‘true’ mass. The difference between scatter in the
caustic and dynamical mass estimates is often minimal, with the caustic method showing less scatter
for groups with 5 NFoF  19.
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Figure 3.8: As Fig. 3.6 but for bijectively matched groups identified by the friends-of-friends algorithm
instead of the true known intrinsic grouping. The coloured lines represent regions containing 10, 50
and 90 % of groups. The black contours compare the caustic mass to the FoF halo mass, and FoF
dynamical mass estimate to the FoF halo mass estimate are shown by the red contours.

same friends-of-friends algorithm, and the results of this can be seen in Figures 3.8 and 3.9.

In both figures the distribution of data mimics that of the trends for the caustic masses on the

intrinsic mock groups, with these showing less scatter compared to the caustic masses of the

FoF mock groups. Given that the design of the friends-of-friends algorithm used in Robotham

et al. (2011) to construct the groups in both the mocks and the final group catalogue is to

reject groups that have significant outliers, it is expected that the caustic method does better

for intrinsic groups, where the grouping is perfect.

One final check is to examine how the caustic mass estimates perform as a function of
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Figure 3.9: As Fig. 3.7 but for the bijectively matched FoF groups from the mock galaxy catalogues.
The different lines show median-unbiased values of log Mest

MHalo
for the rAB < 19.4 sample. The black line

shows the ratio between the caustic mass and the FoF halo mass, while the red line shows the ratio
between the FoF dynamical and halo masses. As before, the blue line shows the distribution of the ratio
between the caustic mass and the FoF dynamical mass.
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Figure 3.10: Left: A comparison of the performance of the two mass estimation methods as a function
of the grouping quality parameter, QTot. Black points correspond to caustic masses, and red ones to
dynamical masses. Both methods perform worst when QTot is close to 0, but quickly recover at approx-
imately 0.2. The green lines show a rolling median in each 0.1 bin for the caustic mass (solid line) and
for the dynamical mass (dashed line). Right: The ratio between the caustic and the dynamical mass
estimates as a function of QTot, with the rolling median in each 0.1 bin overplotted in green.

the quality of the grouping QTot, which is defined in Robotham et al. (2011) and described

in the previous chapter. Figure 3.10 shows how the two mass estimates behave as a function

of QTot. The left panel shows that the caustic mass estimates behave in just the same way as

the FoF mock dynamical mass estimates, performing well after a total quality factor of about

0.2. This is further demonstrated in the right panel of this figure, where the ratio between

the caustic and dynamical mass estimates for the FoF mock groups remains close to unity as a

function of QTot, with a small tendency for the caustic mass to be systematically greater than

the dynamical mass as QTot approaches 1. This may be caused by the fact that for QTot = 1 (i.e.

a perfectly recovered group), the scale factors that account for the imperfections in grouping

and ‘correct’ the caustic mass estimates are no longer needed.

Based on these results, the caustic mass estimates for the mock FoF groups in the cata-

logue are made using group centres obtained with the iterative CoL rejection method and only

include galaxies considered to belong to each group. The same redshift and multiplicity cuts

used in Robotham et al. (2011) are used. I calculate the scaling factors Ac for each bin as the

necessary value to ensure that the median of the ratio of the mass estimate to the true mass is

unity. Values for Ac are listed in Table 3.1.
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3.2.4 Caustic mass estimation in observed groups

With the appropriate scale factors in Table 3.1, I run the algorithm on the actual group cata-

logue itself, using the same redshift and multiplicity cuts, and based on the results from the

previous section, use the grouping from the catalogue and the iterated CoL. This provides me

with a full set of halo mass measurements for every group in the catalogue that are comple-

mentary of the the dynamical masses already existing in the G3C. Figure 3.11 shows the ratio

between the caustic and dynamical masses as a function of dynamical mass without scaling

the caustic masses to be median unbiased with respect to the mocks. The figure shows the im-

portance of the scale factor Ac and shows that the caustic masses tend to improve as a function

of rising dynamical mass, except for a handful of extreme groups with Mdyn ⇠ 1016 where the

caustic mass seems to wildly overestimate the mass of the group.

Both the caustic and the dynamical mass estimates are adjusted by their appropriate scale

factors, and then compared. The results of this comparison can be seen in Figure 3.12 for the

rAB < 19.4 mag limited sample. By calculating the ratio of the caustic to the dynamical mass,

I show that 90.8% ± 6.1% groups have a caustic mass estimate that is within a factor of two

of the dynamical mass estimate, which is a remarkably good agreement. In a vast majority

of cases the two mass estimates agree very well with each other, particularly for groups at

high redshift (bottom row). This is largely due to the fact that at high redshift, only the most

massive groups are recovered, and so have very good velocity dispersion measurements. In

all cases the scatter of the data is minimal, with the scatter decreasing with increasing group

membership through a combination of better grouping and velocity dispersion measurements.

In order to make a comparison between the groups and mocks as fair as possible, it is

necessary to account for the fact that velocity uncertainties have not been included in the mocks

as this directly affects the kernel, through Eqn. (3.11). This issue is addressed in Robotham

et al. (2011), whereby all groups with �2  130 km2 s�1 are removed from any comparisons

between the groups and mocks. It is argued that below this cut the velocity dispersion of a

group would be significantly affected by this uncertainty; since the dynamical mass estimate is

directly proportional to �2, a poor velocity dispersion calculation will throw off the final mass

estimate. I apply the same velocity cut to the group and mock catalogues. Figures 3.12 and

3.13 display the resulting comparison between the ratio Mc/Mdyn of the caustic and dynamical

masses for the groups (black) and mocks (black) for this subset of groups. There is still some
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Figure 3.11: The mass ratio of caustic and dynamical masses as a function nof dynamical mass. Note
that the caustic masses in this figure have not been median unbiased with respect to the mocks using
Ac , to show the importance of doing so. See Figure 3.12 for mass comparisons with the proper scaling
factors applied.
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difference between the scatter of the mass estimates for the groups and the mocks and the

disagreement is most noticeable in cases where the caustic mass is greater than the dynamical

mass. However, if this velocity cut is not included, and instead include the mock groups with

poorly defined masses, the discrepancy between the two distributions increases.

Taking these considerations into account, these new mass estimates appear to agree with

the existing dynamical mass estimates for the G3C. While both methods utilise the same veloc-

ity and positional information in different forms, the dynamical mass method is not as sensitive

to the full 2D velocity profile of each group and does not extend radially as far as the caustic

mass method. This is caused by the dependence of v and r to each other, which is another ef-

fect that is considered in the caustic method, whereas the velocity dispersion and group radius

used to calculate Mdyn are treated independently to each other. The good agreement between

the mass estimates is also a good indicator that the GAMA groups have been well defined,

since the caustic mass method is quite sensitive to a well defined group.

3.3 Summary and discussion

Using the caustic mass estimation algorithm introduced by DG97 and D99 complementary

caustic mass estimates are made for observed and mock groups in the G3C. This implementa-

tion of the algorithm is calibrated by running it on mock GAMA group catalogues where the

intrinsic grouping is known; and for bijectively matched friends-of-friends mock groups. A

scaling factor Ac is calculated for different bins of redshift and multiplicity and is used to cal-

culate median-unbiased mock group mass estimates. In all cases there is very good agreement

between the caustic mass and dynamical mass estimates. Of great note is the tendency for both

PDFs shown in Figure 3.6 to match each other extremely well, implying that both algorithms

perform equally well and equally badly for mock groups: that both estimate methods fail for

low multiplicity (2  N  4) groups highlights an interesting systematic bias present in both

methods that warrants further study.

Having been calibrated the algorithm on the mock catalogues, it is applied to the G3C to

obtain caustic mass estimates for real groups, and the results shown in Figure 3.12. As with the

mocks, both mass estimates are generally consistent with each other: on average, 90.8±6.1 %

of groups have caustic and dynamical mass estimates that agree to within a factor of two, which

is an excellent result. This is strong evidence for the reliability of the caustic mass estimation
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3.3. Summary and discussion

Figure 3.12: Distribution of the caustic masses compared to dynamical masses for real galaxy groups
from G3C with �2 � 130 km2 s�1. The dashed green lines are as Figure 3.6, and the solid black lines
represent regions containing 10, 50 and 90% of the data. There is a good correlation between the
caustic and dynamical mass estimates as already shown in Fig 3.8 and 3.9 for the mocks.
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Figure 3.13: As in Figure 3.7 this figure shows the PDF of the logarithm of the mass ratio between
the caustic and dynamical mass estimates for all groups with �2 � 130 km2 s�2. The blue line shows
the same distribution but for the bijectively matched FoF mock catalogues with the same velocity cut
to illustrate the smaller scatter between the two methods for the real data.
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2 NFoF  4 5 NFoF  9 10 NFoF  19 20 NFoF  1000
2 5 ✏(N2) 2 5 ✏(N2) 2 5 ✏(N2) 2 5 ✏(N2)

0 zFoF  0.1 0.878 0.970 0.010 0.862 0.983 0.030 0.958 1.0 0.030 0.769 1.0 0.152
0.1 zFoF  0.2 0.898 0.977 0.005 0.836 0.904 0.020 0.949 1.0 0.020 0.978 1.0 0.022
0.2 zFoF  0.3 0.904 0.979 0.006 0.794 0.997 0.028 0.952 1.0 0.028 1.0 1.0 0
0.3 zFoF  0.5 0.909 0.978 0.009 0.904 0.979 0.034 0.889 1.0 0.118 1.0 1.0 0

Table 3.2: Fraction of groups that have a caustic mass estimate that is within a factor of 2 and 5 from
the dynamical mass estimate. The error ✏(N2) is defined as

p
1/N2 � 1/Ntot where N2 is the number of

groups within a factor 2 and Ntot is the total number of groups for a given bin. The number of groups
present in each multiplicity bin drops sharply (from thousands of groups to 10 or less) after the first
multiplicity bin, drastically lowering the relevance of these statistics.

method, particularly when considering the less than ideal conditions the algorithm faces when

working with so many groups with few members. Despite being designed to work with groups

with over 200 members, the caustic method is able to successfully determine accurate mass

estimates for groups with as few as two members, highlighting the adaptability and strength

of this method when combined with a friends-of-friends algorithm. Previous work using the

caustic mass estimation method has highlighted the importance of running it on well-defined

groups, so its success in this work is a credit to the robustness of the G3C groups. The tightness

of the contours shown in the first column of Figure 3.12 and the large fraction of accurately

determined masses given in Table 3.2 are very convincing demonstrations that the caustic

method is able to perform well even for very low multiplicity groups, and that these mass

estimates are indeed correct.

In Figure 3.13, the ratio between the caustic and dynamical mass estimates in the groups is

very sensitive to the application of a velocity cut at �2 � 130 km2 s�2, which is the minimum

velocity for groups in the mock catalogue to have realistic velocity dispersions. The mock

catalogues have not been analysed with realistic velocity errors, and so by discarding groups

whose velocity dispersions (i.e. groups with �2  130 km2 s�2) would be badly affected

by the inclusion of velocity errors, a fair comparison to the group catalogue can be made.

Once this cut is applied, it is shown that the distribution of ratio between the caustic and

dynamical masses is consistent between the mocks and groups, particularly for groups with 2

to 4 members.

These caustic mass estimates serve to add further credibility to the dynamical mass esti-

mates, as the caustic algorithm is sensitive to the escape velocity profile of a given group out

to its full extent. That both dynamical mass and caustic mass estimates for the mocks and

the groups give such similar results despite their relative independence from each other is a

positive result that not only reinforces the dynamical mass estimates, but also demonstrates
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Chapter 3. Verification of the GAMA group catalogue masses and groupfinder effectiveness

the power of the caustic approach when combined with a friends-of-friends algorithm. A non-

GAMA specific version of the algorithm is freely available to use and can be downloaded from

http://www.gama-survey.org/pubs/.

Further than verifying the dynamical masses for the GAMA groups, the work done in this

chapter strengthens the assumption that the GAMA groups have been robustly defined. Sev-

eral times in this chapter I have referred to the fact that the caustic mass method drastically

underperforms and miscalculates mass estimates when run on groups that are poorly defined.

Therefore, the fact that these caustic masses are matching well to the dynamical masses goes

beyond the verification of the dynamical masses to say that the groups are indeed very well

defined. This is particularly true for low multiplicity groups, where the caustic mass method

still gives reliable results. This verification of the quality of the grouping in the GAMA group

catalogue is a strong foundation for the work done in the following chapter, where groups

serve as the most fundamental building block for filamentary network of the Universe.
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The GAMA Large Scale Structure Catalogue

Both visible, and dark matter in the Universe is distributed in a non-uniform way. The earliest

galaxy surveys, such as the CfA Redshift Survey (de Lapparent et al., 1986), paved the way in

recognising that there is structure and order to the distribution of galaxies in the Universe. The

dominant model of structure formation today is that galaxies tend to cluster into groups, which

themselves form the building blocks of large scale structure we observe (Press & Schechter,

1974; Bahcall, 1988; Bond et al., 1996; Eke et al., 2004). The so-called ‘cosmic web’ is com-

posed of clusters and superclusters of galaxies that are connected to each other by groups of

galaxies (e.g. Bharadwaj et al., 2004; Colberg et al., 2005; Pimbblet, 2005; Novikov et al.,

2006; Sousbie et al., 2008, 2009). These structures themselves surround voids, which are

extremely underdense regions containing a small number of isolated galaxies: voids typically

have a galaxy density that is 10% less than that surrounding a typical field galaxy (Pan et al.,

2012). The few galaxies that do exist in voids are subject to dynamics that are unique to these

underdense regions (Blumenthal et al., 1992; Sheth & van de Weygaert, 2004). Galaxies can

be classified as belonging to different types of density regions: filaments, clusters, or voids,
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Chapter 4. The GAMA Large Scale Structure Catalogue

with each classification presenting a unique environment to that galaxy.

Our understanding of large scale structure has developed over recent years. Structure

formation has developed through advanced simulations such as Angulo et al. (2012); Habib

et al. (2012) and large galaxy surveys like the 2dFGRS (Colless et al., 2001), the MGC (Liske

et al., 2003), the SDSS-DR7 (Abazajian et al., 2009), the 6dFGS (Jones et al., 2009) and GAMA

(Driver et al., 2011; Liske et al. in prep) have helped to characterise large scale structure

in the Universe. There is still some work to be done, however, on bridging the gap between

observations and simulations, in order to establish whether or not the larger scale environment

(i.e. � 1h�1 Mpc) of galaxies influences their evolution. In other words, is a galaxy in a

filament discernibly different from a galaxy in a void? If so, how can we use direct observations

and simulations to find out?

Answering these questions requires a robust, reliable, and reproducible definition of the

constituent parts of large scale structure: filaments, voids, and everything in between. The

field of filament finding and classification has been expanding in recent years, with numerous

algorithms currently being used to detect and define large scale structure (Sahni et al., 1998;

Pimbblet, 2005; Forero-Romero et al., 2009; Aragón-Calvo et al., 2010; Stoica et al., 2010;

Murphy et al., 2011; Sousbie, 2011; Hoffman et al., 2012; Smith et al., 2012). In complement

to this, there is a large volume of work that is currently being done to identify voids (El-

Ad & Piran, 1997; Peebles, 2001; Hoyle & Vogeley, 2002, 2004; Aragon-Calvo et al., 2010;

Thompson & Gregory, 2011; Pan et al., 2012).

In this chapter I discuss the heart of my thesis: an algorithm to identify and classify large

scale structures in the three equatorial GAMA fields, and a series of catalogues it produces that

identify different populations of galaxies as belonging to distinct types of large scale environ-

ments. Filaments of groups and galaxies are detected, as well as smaller coherent structures

formed by individual galaxies on the peripheries of filaments, dubbed ‘tendrils’, as well as

galaxies that lie in very underdense regions of space, referred to void galaxies.

4.1 Data

4.1.1 GAMA Group Catalogue

As discussed earlier in this thesis, the GAMA Group Catalogue, or G3C (hereafter I refer to

the paper that describes its creation as R11), provides a comprehensive catalogue of 23838
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Figure 4.1: A cutout of the G12 field, with the 0.15  z  0.2 and �1�  �  0� limits. The red
circles represent group centres, sized according to the number of galaxies in each group. Black points
represent galaxies inside and outside of groups.

galaxy groups across the three equatorial GAMA fields out to mr < 19.8 mag. The catalogue

groups 73298 galaxies out of a possible 180979, roughly 40% of all galaxies. A cutout of the

G12 field is shown in Figure 4.1, with groups and galaxies shown together. Group centres are

marked by red circles sized according to each group’s multiplicity. The black points represent

all galaxies within and without groups.

As discussed in Chapter 2, the G3C is generated with a friends-of-friends algorithm that

operates on projected and radial separations independently (see Figure 1 in R11). This is a

very important step, as it allows the algorithm to take redshift space distortions into account

and effectively removes them. Figure ?? displays four panels with different populations of
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galaxies and groups for the G12 region. The two panels to the left show, respectively, all

galaxies that are within this region, and all groups recovered by the FoF group finder (coloured

by their group luminosity in L�h�2). The third panel shows all galaxies in groups. The final

panel shows all galaxies not in groups, which are defined as being isolated galaxies. This final

population is very important, as it still traces large scale structure despite not being dense

enough to be detected as structure by metrics that rely on local overdensities of galaxies.

This ‘isolated’ population emphasises that large-scale structure exists on all scales, persisting

even down to rather low values of local galaxy density. A complete quantification of large-

scale structure must, therefore, not rely solely on a threshold in density, but must take into

consideration the spatial distribution of galaxies themselves.

The G3C provides estimates of group centres and a number of size estimates (whose accu-

racy is tested in Section 3.2.1 of the previous chapter), integrated magnitude and luminosity

measurements, and other properties for each group. Of greatest importance to the large scale

structure work are the position estimates for each group, as the groups provide the first step

in generating filamentary structure in the algorithm, as discussed in the following sections.

Collapsing groups to their central point ensures that the filaments are free from redshift space

distortions. The group centre used for this work is iterated centre of light, which in the pre-

vious chapter and in R11, is shown to be the most robust definition of the group centre when

compared to mock groups.

4.1.2 Sample selection

As with any other body of observed data, it is important to ensure that the sample of galaxies

and groups used in this work are as free as possible from any intrinsic bias, most often caused

by observational effects and the inescapable limitations found in any galaxy survey. Abso-

lute magnitude limited samples are particularly important for a study on large scale structure

like this, where different populations of galaxies in varying density environments span many

magnitude ranges (Driver et al., 2011); it also allows any linear structure finder to use a con-

stant search length instead of varying it as a function of redshift, which is a great shortcut.

To maximise the number of galaxies kept after a luminosity cut in the r-band, I seek out the

absolute magnitude limit for a given redshift z such that I retain the largest possible number

of galaxies and groups. Within the G3C, the proxy for absolute magnitude for a group is given

by the TotFluxProxy parameter. This is defined as the total luminosity for the group, and
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is corrected to account for selection effects and missing flux, and is given in units of L⇤. The

absolute magnitude of each galaxy can be calculated from its apparent magnitude.

For a given redshift, the absolute magnitude of the faintest possible galaxy that can be seen

in GAMA is given by Mh
r (z) = 19.8�DM(z)�k(z). All galaxies whose magnitude Mgal > Mh

r (z)

for a given redshift z are discarded. After this any groups that have fewer than 2 member

galaxies remaining are discarded, retaining only groups that would still have been detected

with this absolute magnitude cut. The redshift that retains the largest number of galaxies and

groups is z = 0.213, where Mh
r = �19.77 mag.

The sample selected by z = 0.213 and Mh
r = �19.77 mag can be seen in Figure 4.2. The

numbers on the top left of this panel refer to the number of groups that are kept after the

absolute magnitude cut is applied, and those that are discarded. Only groups that are kept are

plotted. The numbers in the bottom left of this plot show the number of galaxies below the

redshift limit, and those above (shown in the region shaded in red). The notable feature of

this plot is that the group luminosity distribution is effectively flat below the redshift cut. The

final sample contains a total of 45542 galaxies and 6000 groups across the three equatorial

GAMA regions. It would be possible to include groups from the G3C with only one remaining

galaxy after making a volume limited sample, but this would lead to more noisy large scale

structures with many links to small, isolated groups.

Figure 4.3 highlights my sample within the context of the entire G3C, with the group lumi-

nosity plotted as a function of redshift for all groups. The points in red show all the groups in

our sample, which have at least two members left. For any group left in the sample, I use its

full group properties as listed in the G3C. I also apply this same sample selection to the mock

galaxy and group catalogues.

The three panels in Figure 4.4 show, for the three equatorial fields from G09 to G15, all of

the galaxies (grouped and ungrouped) in the selected sample. In all three regions the number

density of galaxies increases sharply after z ⇡ 0.1. Lowering the absolute magnitude limit

for the sample, thereby selecting more faint galaxies, would reveal more faint galaxies at low

redshifts; however this would result in a much smaller sample size.
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Figure 4.2: Distribution of the total group r-band luminosity (see R11 for more details) as a function
of redshift, after the sample selection process has been applied. The numbers in the top left display
the number of groups kept and discarded after removing galaxies - the kept galaxies are plotted in the
figure. The region shaded in highlights the region with z > 0.213 and is no longer volume limited, and
the numbers in the bottom corners show how many groups are above and below the redshift cut. We
are therefore left with 3,589 groups across all three GAMA regions, with z  0.213 and with at least
two or more galaxies with Mr  �19.77. This sample selection ensures the structures we detect are
volume limited.
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Figure 4.3: All groups in the G3C are plotted here, with our final sample shown in red. The redshift
limit of z = 0.213 is easily seen here. The red sample corresponds to all groups in the unshaded region
in the left.
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Figure 4.4: Three side by side cones showing the remaining galaxy sample after the selection described
in Figure 4.2 for the G09, G12 and G15 regions respectively out to z = 0.213. All three cones span the
full 5� declination range, which results in increasing projection effects at higher redshifts.
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4.2 Filaments and large scale structure

4.2.1 Minimal spanning trees and Scooper

After selecting an appropriate sample, it is possible to move on to running the data through

the structure finding algorithm. This classification method is designed to be easily repeatable

and be as objective as possible with regards to classifying large scale structure. The algorithm

functions on the basis of two assumptions: (1) that all bright, high luminosity groups tend to

‘live’ in knots and filaments and that (2) void galaxies are only clustered at extremely small

scales. Both of these assumptions are robustly backed up by observational evidence.

The structure finding algorithm is based primarily on minimal spanning trees (MST, Iyanaga,

1980), which have been used previously by others (Barrow et al., 1985; Graham et al., 1995;

Doroshkevich et al., 2004; Colberg, 2007) on a combination of observed and simulated data

to examine the large scale structure of galaxies and haloes. Here, the minimal spanning tree

approach is applied to groups of galaxies, instead of individual galaxies, as has been done in

the aforementioned works. This approach of using groups instead of galaxies as tracers of

filaments is very similar to the method used in Murphy et al. (2011), which is discussed in the

introduction to this thesis. MSTs are a product of graph theory most famously associated with

Paul Erdős, and are commonly used in a number of scientific fields, including computer sci-

ence, sociology, scientometrics and epidemiology. They are particularly useful for picking out

‘skeletal’ patterns and linear associations within point data sets as well as for distinguishing

clustering and structure in a systematic and quantitative way. This makes them ideal tools to

objectively detect large scale structure in the Universe.

Within the context of graph theory, a graph is a collection of nodes (in this case, groups)

and edges (straight lines connecting nodes). A path is defined as a sequence of edges that joins

nodes, and a graph where a path is possible between any pairs of nodes is a connected graph.

A spanning tree is defined as a graph where a single path connects all nodes and has no loops.

If this path is the shortest possible path that connects all nodes, then it is a minimal spanning

tree (MST). MST-based algorithms are analogous to FoF-based ones, as an MST is simply one

specific solution of a FoF algorithm. In the case of this work, each node is a galaxy or group,

and edges are the distances between them.

For a selected sample of groups and galaxies, the structure finding algorithm is composed
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of 5 main steps:

1. Generate an MST on group centres, and remove excessively lengthy edges (see Section

4.2.1). The structures that are left over are defined as filaments; in other words all

groups that are in the same set of unbroken edges, or path are considered to be part of

the same structure.

2. Examine the morphology of each filament by subdividing it into a series of branches,

including the backbone, which is the longest link that travels from one end of the filament

to the other through its most central node. This is discussed in Section 4.2.1.

3. Travel along each filament, scooping up galaxies that lie within a certain orthogonal

distance r from each filament. These are referred to as galaxies near filaments. Galaxies

not in and around filaments are referred to as unassociated galaxies.

4. Having removed galaxies near filaments from the sample, I generate and trim another

MST on these unassociated galaxies. These structures are defined as tendrils, containing

tendril galaxies; as with filaments, all galaxies that belong to the same unbroken chain

are considered to be part of the same tendril.

5. Any galaxies not in tendrils or near filaments are finally classified as being void galax-

ies. This means that the definition of a void galaxy used in this work depends on linear

proximity to another galaxy, as opposed to the commonly used method of finding un-

derdensities and then naming any galaxy within them as a void galaxy.

A visual representation of this algorithm is shown in Figure 4.5, where the data and output

of R11 is shown in the region enclosed by the dashed black lines. The groups are then put

through an MST and placed into filaments; which are then combined with galaxies using the

Scooper algorithm to identify galaxies near filaments (shown in blue) and isolated galaxies.

A second MST is generated using unassociated galaxies, and these are classified into tendrils

(shown in green) and voids (shown in red). The algorithm then outputs a series of interlinked

catalogues that give summary statistics for each filament and tendril, and the associated groups

and galaxies within filaments, tendrils and voids through a series of unique identifiers. We now

describe the steps given above in greater detail.
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Figure 4.5: Flowchart schematically describing, for one example region, all the steps taken to go from
a distribution of galaxies to a network of filaments, tendrils and voids. All groups are shown on the top
panel, and all ungrouped galaxies on the lower panel. The groups are then put into a minimal spanning
tree and the longest edges are trimmed. Ungrouped galaxies are then scooped up around each filament,
giving the large network of galaxies near filaments (shown in blue). All ungrouped galaxies are then
classified as being tendril galaxies (in green) or void galaxies (shown in red).
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Minimal spanning tree on groups, and filaments

The construction of the MST on the groups (and, subsequently, the galaxies) is done using the

nnclust package within the R programming language (R Development Core Team, 2011).

The function mst within nnclust constructs a minimal spanning tree for a set of points on a

2D or 3D Cartesian plane using Prim’s algorithm (Prim, 1957). Prim’s algorithm functions on

the basis of knowing the distance between all nodes in a graph. Starting from a random node,

the algorithm travels along an edge to the nearest node. It then travels to the node nearest to

either of the nodes it has already visited, and continues this process iteratively until all nodes

have been visited. The path it has taken to do this is the minimal spanning tree. This is the

most computationally efficient way of generating MSTs.

Comoving Euclidean coordinates of group centres are used to define the locations of the

groups (nodes) and are fed into mst, whose output is a set of links between nodes, and their

distances. The links are given by unique ID names between the start and end of an edge. I

remove any edges whose length is beyond a certain threshold value b (the value of this param-

eter and how it is determined is explained below). This allows the identification of distinct

sub-structures and removes unrealistically long links between objects in low density regions.

This is important, because Scooper will go on to collect galaxies along edges and associate

them with filaments. For an untrimmed MST, some edges will be between distinct filaments

and travel through underdense regions, meaning that Scooper will associate possible void

galaxies as being in a filament. Objects that remain in unbroken chains are then grouped

together as an individual filament.

The choice of the maximum edge length b, is an important one. Examples of different max-

imum linking lengths are shown in Figure 4.6 where b is given in units of h�1 Mpc. Within

each cone, each point is a group and all points of the same colour belong to the same filament.

As b tends to higher and higher values, all groups will be clustered into one massive super-

filament, which is unrealistic given that we expect structural collapse in large scale structure

to stabilise at scales less than 15 h�1 Mpc (Chris Power, private communication). Conversely,

if the linking length is too small, dominant superstructures are broken up into several short

sub-structures. Additionally, as b drops, the total number of groups included in filaments also

drops (because a group with no edges leading from it is no longer part of the MST). Therefore

at b = 1 h�1 Mpc we are effectively sampling the distribution of group-group pairs that lie

70



4.2. Filaments and large scale structure

186182178174

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

RA (deg)

z

b = 15 h-1 Mpc

186182178174

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

b = 10 h-1 Mpc

186182178174

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

b = 5.75 h-1 Mpc

186182178174

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

b = 5 h-1 Mpc

186182178174

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

b = 1 h-1 Mpc

Figure 4.6: Filaments constructed from the same minimal spanning tree, but with different maximum
edge lengths, decreasing from left to right. Groups in the same filament are coloured in matching
colours. As the linking length increases, all galaxies tend towards being in one single huge filament,
while as it decreases, leaving only groups that are in close proximity to each other. The number of groups
in filaments also drops as b decreases, as groups with no links to other groups are not considered to be
filaments (a filament needs at least 2 groups).

within 1 h�1 Mpc of each other.

To make the selection of b as objective and unbiased as possible, the largest, brightest

groups should belong to filaments; this is assumption (1). A bright group is defined as one

with LGroup � 1011 L�h�2, where LGroup is given by the total group luminosity given in the

G3C (the TOTFLUXPROXY parameter). This value is roughly equivalent to the 98.65% quantile

in the total range of group luminosities in the sample used. The algorithm requires at least

90% of these brightest groups to be in filaments. Figure 4.7 shows the fraction of groups in

filaments as a function of log(Lgroup/L�h�2) for a different set of values for b. This process

gives b = 5.75h�1 Mpc as the minimum length at which the condition given above is fulfilled;

therefore edges longer than this value are trimmed. The MST and filaments shown in Figure
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Figure 4.7: Cumulative fraction of groups in filaments as a function of their total r-band group lumi-
nosity, shown for different maximum edge lengths in the minimal spanning tree (given by b). As b de-
creases only filaments between pairs of groups that are in extreme close proximity are constructed, and
the fraction of high mass groups in filaments drops to 0. Raising b to a much higher value results in all
groups being in a single giant filament. I therefore select the minimum value for b at which 90% or more
of galaxies with LGroup � 1011 L�h�2 are in filaments; or in other words, f (LGroup � 1011 L�h�2)� 90%.

4.5 are constructed with b = 5.75h�1 Mpc. As expected, as b increases, more groups are linked

to the same filament, finally leading to a single massive superstructure.

Filament morphology

Going from a series of links that groups together some points into a common structure, to a

rigorous description of the shape and morphology of that structure is non-trivial. One must

define where the edges of the structure are (it may be possible, for example, for a node to exist

72



4.2. Filaments and large scale structure

geometrically near other edges and nodes, but be a dead end itself) as well as the most central

part of the filament. To this end, we have developed an algorithm to analyse the structure of a

filament called walk. The purpose of this algorithm is to step (or ‘walk’) through the filament

and record, for each node, the number of steps required to exit the filament from the nearest

end; this is referred to as the count for that node. A second property that is recorded is the

so-called ‘branch order’ of each node; this value represents the number of branches, or forks

in the path, between the node and the nearest end. Nodes on branches with one end are said

to have a branch order of 1, and this value increases with each intersection or fork in the path.

The output of walk after going through this process is a simple table that contains, for each

node, the count value which represents a distance, in terms of nodes, between that node and

the nearest end of the filament, and its branch order. This approach of splitting filaments into

individual branches has previously been done by Colberg (2007).

The output of walk is fed into a secondary function called makebranch along with the

original list of links for the filament. In knowing the count and branch order of each node as

well as all the links in the filament, this function can travel along the branches of the filament

from any given starting point, and search ‘upwards’ or ‘downwards.’ This is a setting specified

by the user, and the direction refers to searching ‘up’ to find the centre of the filament, or ‘down’

to get to the nearest end; in other words, the algorithm walks along a path in ascending count

value, or descending count value. Potentially, therefore, a user could choose to start at the

ends of the filament and find the fastest way to the centre, or vice versa.

An important setting of makebranch allows the user to instruct the function to avoid

reusing nodes that have already been visited by the function. This option is important in

determining the primary branches of a filament, which is dubbed its backbone. To do this, I

run makebranchwithout avoiding nodes first to determine all possible paths that lead from the

ends of the filament to the filament centre. By then rearranging these branches in descending

order and rerunning makebranch, this time avoiding visited nodes, and starting from the two

biggest branches, it is possible to determine the longest primary filament that starts at an end,

travels to the centre, and moves to another end. In this case ‘longest’ can be determined either

by number of nodes, or physical distance. A detailed example of this process, as well as a

step-by-step analysis of how the algorithm ‘walks’ through the filament is now shown.
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Figure 4.8: An overview of the process by which the topology of a filament is determined. The top left
panel shows all nodes and links for an example filament (circles and lines respectively). In each panel,
green objects represent where the algorithm is, while blue ones represent visited objects and black
ones, unvisited objects. From here, walk identifies all the ends of the filament (shown in panel b) and
travels along them, stopping at intersections and merging all paths that reach the same intersection
(panels c and d). The algorithm associates a count value to each node (shown for the green nodes on
the top right in each panel), which is the number of steps required to reach the end of the filament. The
count of the centre of the filament at an intersection, the counts along each branch are summed up and
assigned as the count value for that node. Therefore, the node at which all branches meet will have the
highest count, and be determined to be the centre of the filament, as shown by the red node in panel
e. The output of walk is fed into makebranch, which analyses this output and uses it to construct
branches for the filament, and assign orders to them. These are shown in panel f, with first, second
and third order filaments shown in red, orange and yellow respectively. The backbone is then defined
as the single path that travels along the two first order branches.

Filament walker and finding backbones

The purpose of these functions is to be able to systematically determine the internal structure

of a filament; that is to say, where its edges are, where the most dense nodes of the filament

are, and how to travel from one region of the filament to another in the most efficient path

possible.

To illustrate the function of all of our algorithms, they are applied to an idealised 2D

filament, which is shown on the top left panel of Figure 4.8. In this schematic, each circular

point marks a galaxy group (or node) and lines represent links (or edges) between nodes.

4.2.2 walk

The most important algorithm in analysing the structure of a filament is walk. This algorithm’s

purpose is to start at the ends of the filament (defined as being nodes that have only one edge)
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and travel along all the links in the filament until they have all been visited. As described

above, for each node, walk assigns a count, which is effectively the number of steps required

to get from that node to the nearest filament end. The algorithm also keeps track of the order

of each node. Nodes at the filament ends are said to be of order 1, and this increases each time

the algorithm goes past an intersection; or a node with three or more edges that lead away

from it. In the example filament shown in Figure 4.8, the nodes shown in green in panel b

have orders of 1, while nodes shown in green in panel c have orders of 2. One important note

to make is that the count and branch order given for a particular node are not with respect to

the nearest end, but are a sum of all branches leading out from it.

Briefly, the walk algorithm works as follows:

• To begin with, walk identifies all nodes in the tree that have only one edge. This implies

that they lie at the ends of branches. In the example filament, these are the green nodes

in panel b.

• The algorithm then goes through each end node and progresses along that path until

it reaches an intersection. In the case of this example filament, the first intersections

are the green nodes in panel c, with the blue nodes and links representing the path the

algorithm has taken to reach those nodes.

• If an intersection has been reached by more than one branch, these are then merged,

before the algorithm continues to progress along the edges leading from them. Inter-

sections that have only been reached by one edge do not progress. In panel c, walk

will only continue walking from the green nodes circled in red, as these have two links

leading out of them.

• This pattern of stopping at intersections and merging branches continues until all nodes

have been visited. In panel d, the process is shown for the step at the intersection where

the final two pathways are about to meet - while these nodes had been reached by walk

as early as panel c, they have only now been arrived at from two links, meaning the

algorithm can walk along them now. In panel e, all paths have merged at the central

node, shown in red.

The output of walk after going through this process is a simple table that contains, for

each node, the count value which represents a distance, in terms of nodes, between that node
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and the end of the filament, and its branch order.

4.2.3 makebranch

The output of walk describes, for each node, how far away it is from the ends of the filament,

and how many intersections it takes to get from that node to the end. This information is

fed into an algorithm called makebranch that is capable of starting at any node specified by

the user and travel ‘upwards’ or ‘downwards’ along the links in the filament; that is to say,

from a given node it can either travel to the neighbouring node with a higher or lower count

respectively. Travelling downwards will lead it to the nearest filament end, while traveling

upwards will lead it to the filament centre.

To determine the location of the filament’s backbone, I first run makebranch by starting

it on nodes with only one edge and tell it to travel upwards; this gives all possible paths to the

filament centre. After rearranging these branches in descending order of counts to get to the

ends, makebranch travels along them again, this time avoiding revisiting nodes it has already

been to. By starting at the biggest branch and travelling to the centre, then doing the same for

the second biggest branch and so on, this algorithm is able to determine the longest continuous

path that goes from one end of the filament to the other while travelling through the central

node. This path is referred to as the first order branch or the filament backbone; any paths

that branch off from the backbone are second order branches, and so on. In other words, a

path that intersects with a branch of order n is assigned an order of n+ 1. This implies that

there will only be two branches of order 1, which are subsequently joined together to form the

backbone, but any number of higher order branches. The higher the number of branches in a

filament, the more complicated its morphology.

All the branches in the sample filament are shown in panel f of Figure 4.8. First order

branches are shown in red; therefore the single unbroken red path is the backbone of the

filament. Orange paths are second order branches, and the single yellow path is the third

order branch, as it is the only path that intersects with a second order branch.

With the backbone and branches for a given filament, it is possible to objectively look at its

morphology. The backbone will always represent the most central route through the filament,

and branches will always refer to links emerging from the backbone. The backbone therefore

serves as a good measure of the overall extent of the filament, while examining the lengths and
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sizes of branches, as well as their relative abundances, and provides a measure for the ‘spread’

of the filament. For example, a filament with one large backbone and few to no branches is

topologically the same as, or similar to, a straight line; while one with a short backbone and

many branches can be seen as less linear.

Galaxies near filaments

There is now a set of filaments, each of which contains a number of groups. To associate

galaxies with filaments, the structure finding algorithm now looks through each filament and

travels along all of its branches, identifying all galaxies within an orthogonal distance r from

the filament, with a function called Scooper. For each link along the filament, Scooper iden-

tifies all galaxies within a locus at a distance r from the straight line, or vector, that describes

that link. In three dimensions, this locus is a cylinder with hemispheres at each end. If the

distance of the galaxy d  r then the galaxy is considered to be associated with that filament.

Should a galaxy be within r of multiple branches, it is associated with the branch it is closest

to.

Note that in order to diminish the effects of redshift space distortions, in this step of the

process any galaxy (within the sample) that is known to be associated with a group within a

filament is automatically assigned to that filament and branch. Instead of the distance to the

filament, the distance to the iterative group centre is considered.

Tendrils and voids

To identify any underlying structure outside or between filaments, all elements belonging to

filaments from the data set are removed. These so called ‘isolated galaxies’ or unassociated

galaxies are shown in Figure 4.5 and are themselves used as points for another MST with a

maximum edge length q (the choice for q is detailed below). Once again, galaxies that are

part of a single uninterrupted chain of links are classified as being in the same tendril, which

are structures akin to filaments but on much smaller scales, formed entirely out of galaxies.

Characteristically they branch out from filaments and penetrate into voids, or connect two

distinct filaments. Tendrils are discussed in greater detail below. Void galaxies are the last

remaining galaxies – those that were rejected from the MST used to identify the tendrils after

the edge trimming. Tendrils and voids are shown as the green and red distributions of galaxies

in Figure 4.5.
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Constraining the maximum edge length q requires the second assumption: that void galax-

ies are only clustered on extremely small lengths. In other words, the spatial two point corre-

lation function of void galaxies should show less signal than the two point correlation function

of galaxies in and around filaments.

The two point correlation function is computed using the estimator from Landy & Szalay

(1993), namely:

⇠(r) =
Nr(Nr � 1)
Nd(Nd � 1)

DD(r)
RR(r)

� 2(Nr � 1)
Nd

DR(r)
RR(r)

+ 1 (4.1)

where ⇠(r) corresponds to the spherically averaged two point correlation function. DD(r),

DR(r), and RR(r) refer to the number of pairs separated by a distance r±dr for data-data pairs,

data-random pairs and random-random pairs, and Nr and Nd refer to the number of random

points and data points respectively. The random distribution is in the same geometric space

as each GAMA region, and is filled with 100,000 randomly generated points in a spherical

pointing; this is to match my volume limited sample. I calculate ⇠(r) for each GAMA field

separately and normalise results for each bin in distance. The resulting two point correlation

functions for galaxies in structures and voids are shown in Figure 4.9. An attempt to estimate

uncertainty in the two point correlation functions is made by jackknifing each GAMA region

into several sub-regions and recalculating the correlation functions for the whole GAMA field,

excluding one region at a time. The shaded areas in Figure 4.9 around each line show the

maximum range of different ⇠(r) for each jackknifed estimate. Because these different regions

are so correlated, strictly interpreting these regions as uncertainties is not advisable. Note that

when doing jacknife error analysis, it is important to ensure that the size of the area removed

is sufficiently large so as to minimise this correlation; in practice, a selection of a jacknife angle

✓ such that the geometric area it removes is around 100 h�1 Mpc is advisable.

All galaxies near filaments and in tendrils are classified as belonging to large scale structure

(filaments or tendrils), and voids are defined as being the remaining population of galaxies.

Running the entire algorithm, from generating the filaments to detecting tendrils and voids,

takes just over one minute (the most time consuming step is the scooping up of galaxies near

filaments). Because of this, it does not take long to generate a multitude of tendril and void

galaxy distributions using different values for r and q. The final values for r and q are chosen

such that they minimise the integral
R

R2⇠(R)dR, with ⇠(R) being the correlation function of
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Figure 4.9: Two point correlation functions as a function of comoving distance for two different galaxy
populations. The black line represents galaxies in groups that are in filaments, and within 4.56 h�1

Mpc of filaments; and the red line shows the function for galaxies in voids. By setting the maximum
edge length between filaments to be 5.75 h�1 Mpc and 4.13 h�1 Mpc between galaxies in tendrils, we
ensure that the resulting distribution of void galaxies has no correlation signal. The grey and pink
shaded areas show, for each bin, the range of values for two point correlation functions calculated by
sub-sampling the GAMA regions, with a jackknife method, and serve as uncertainty estimators.
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void galaxies. This is the expression for the volume average correlation function, i.e. ⇠(< R).

Optimising to minimise this integral gives r = 4.13 h�1 Mpc and q = 4.56 h�1 Mpc. The

final parameters used are b = 5.75h�1 Mpc, the trimming length for the MST that identifies

filaments, r = 4.13h�1 Mpc, the maximum distance allowed between a galaxy and a filament,

and q = 4.56h�1 Mpc, the trimming length for the tendril MST.

Note that the parameter selections are, to some extent, arbitary, just as there are no formal

definitions for filaments currently in the literature. The value for b is chosen such that we

maximise the number of groups included in our filaments while making sure that most of the

brightest galaxies are in filaments, and r and q are chosen such that the void galaxy correlation

function is minimised over large distances (� 20h�1 Mpc). While it is possible to change and

refine the parameter selection process, the overall hierarchy of the large scale structure is very

stable with respect to changes in b, r and q. Varying any of these parameters by ±1h�1 Mpc

results in a shift of approximately 5% of galaxies from filaments into tendrils, and tendrils into

voids and vice-versa. There is a negligibly small effect on the comparisons to mock filaments

discussed later in the chapter. The classifications are far more susceptible to survey depth; as

a preliminary version of the GLSSC made with GAMA I data (mr < 19.4 mag) had various

tendrils that were reclassified as filaments with the GAMA II (mr < 19.8 mag) version of the

GLSSC.

There is one final caveat to consider with this algorithm, which is that while it tries to

classify large scale structure as objectively as possible, it is still not making any assertions

about the actual structuring of galaxies and groups. That is to say, it is valid to claim that

group A belongs in a filament and group B doesn’t, or that galaxy C is in a void and galaxy D

is in a tendril; but I cannot claim that the filaments and tendrils that I detect are necessarily

the definitive structures found in space.

During all of these steps, galaxies and groups that are flagged for being within q h�1 Mpc

from the survey volume edges are kept track of. Any filament, branch, group or tendril that has

a constituent (group or galaxy) that is within this limiting edge is flagged. Therefore this data

is still usable, however a user can specify to discard all structures that contain elements that

are cut. GAMA contains a sufficiently large amount of data within its volume that flagging and

ignoring filaments near its edges in any study would still yield a very large amount of useable

data.
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4.2.4 Filament catalogue

The algorithm described above is run on all three equatorial GAMA fields, as well as the GAMA

mock catalogues. An ‘overhead’ view of all three equatorial GAMA regions, side by side, out

to z = 0.213 is shown in Figure 4.10. Here, cyan points show groups in filaments, blue points

correspond to galaxies near filaments, green points to galaxies in tendrils, and red points

to void galaxies. It is strikingly easy to visually discern the skeletal pattern traced out by

the filaments and their associated groups in blue, although at higher redshifts there will be

projection effects due to the cones spanning the entire declination range. Tendrils of galaxies

appear to be wispy, coherent structures that emerge from dense filamentary regions and either

bridge across to other filaments, or terminate within voids. They span a range of different

morphologies, as filaments do, with some being very linear (such as the tendril on the upper

right region of the top right panel in Figure 4.10) while others are more clustered (middle

right of the top left panel in Figure 4.10). Void galaxies lie in more isolated regions, and may

have undergone fewer dynamical and chemical interactions with other galaxies during their

evolution compared to galaxies in filaments.

While it is illuminating to identify large structures such as filaments, it is important to

remember that a group at the end of one massive complex-like filament will not necessarily

directly affect a group at the other end; however, both structures belong to the same superstruc-

ture and environment, therefore it is sensible to expect that they have evolved, dynamically

speaking, in similar circumstances.

The full catalogue contains just under 650 filaments, with each filament having on average,

8 groups in it. The average length of the backbone of the filament, or in other words, the

distance from the most extreme end of the filament to the other, is ⇠ 13 h�1 Mpc, while the

total of all the links in the filaments is close to 21 h�1 Mpc. Most filaments have 3 branches,

and contain, on average, 46 galaxies. Table 4.1 provides average values for the properties of

filaments in all three regions, and for the whole volume limited sample. The distribution of

filaments is similar between all three regions. On average, I find shorter filaments than those

detected in Tempel et al. (2013); however, this discrepancy is entirely to differences in data

and methodology (Tempel et al. use data from SDSS and a filament finder whereby cylinders

are linked together to form networks). The median redshifts for all filaments in the catalogue

are shown as a histogram in Figure 4.11, where I also highlight the region below z = 0.1 where
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Figure 4.10: Galaxy distribution in the three GAMA regions, colour coded according to their environ-
ment, with groups in filaments, galaxies near filaments, galaxies in tendrils, and void galaxies shown
in cyan, blue, green and red respectively. Groups, and galaxies near them form the bulky complexes of
large scale structure, tendrils spreading from them in filamentary structures into voids, which seem to
be populated by galaxies that appear to be almost uniformly distributed on large scales.
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Figure 4.11: Histogram showing the median redshifts for all the filaments in the final filament cata-
logue. The area shaded depicts the region below z = 0.1 where the number of filaments drops sharply
due to a smaller survey volume.

there are far fewer filaments due to a combination of the small survey volume at low redshift

and the absolute magnitude cut used.

The full catalogue is composed of the following sub-catalogues:

• Filaments

This lists all filaments composed of groups of galaxies, giving them a unique identifier

in FilID - the first digits of which correspond to the equatorial region the filament is in.

There is also information pertaining to the number of branches the filament has, as well

as the number of groups. The total length of all links in the filament is given, as well as
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the length of the backbone.

• FilBranches

This catalogue lists all branches present within filaments in FilCat. Each branch is given

a unique identifier and the filament it belongs to is identified as well. The order of the

branch is given, as well as the number of groups it has, and its length.

• FilGroups

This catalogue contains the groups that are within filaments. They are identified by their

GroupID as given in R11’s catalogue, as well as their RA, Dec and median redshift. The

groups’ 3D comoving cartesian coordinates are also provided, as well as the branch they

belong to, its order, and the filament they belong to.

• FilGals

In this catalogue, all galaxies that are within a certain orthogonal distance of filaments

are listed. The GAMA CATAID (an internal unique galaxy identifier) for each galaxy is

given, along with 3D comoving cartesian coordinates, as well as the orthogonal distance

to the nearest branch of a filament, whose IDs are given.

• FilLinks

This simply contains a list of links between groups used to construct the filaments. The

groups are identified by their GroupIDs. This catalogue can be used to reconstruct,

visually, the links between groups in filaments, but can also be used to identify groups

that are ‘intersections’ - that is to say, groups that have 3 or more links to other groups.

• Tendrils

Moving from groups to galaxies, this catalogue is analogous to FilCat in that it contains

the top level structures formed by galaxies that are not included in filaments. Each

tendril is given a unique ID, and their length and number of galaxies are specified.

• TendrilGals

This is the catalogue of all galaxies in tendrils. Their CATAID is given, as well as their

3D comoving cartesian coordinates, and the ID of the tendril they belong to.

• TendrilLinks
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Nfil L̄fil,BB L̄fil n̄group n̄branch n̄gal
G09 213 11.6 18.4 7.5 2.8 42.3
G12 200 14.7 23.6 9.2 3.4 51.6
G15 230 12.5 20.0 8.0 3.0 44.2
All 643 12.90 20.7 8.2 3.0 46.0

Table 4.1: Summary statistics of some basic properties of filaments in GAMA. Besides the number of
filaments, for each region the following averages are given, the backbone length, sum of the length of
all links, number of groups, branches, and galaxies per filament are given. All lengths are given in units
of h�1 Mpc. The final row contains these values across all three equatorial fields.

A second list of links, this time for the tendrils. Now, galaxies are identified by their

CATAIDs.

• VoidGals

Finally, this catalogue lists all galaxies that are not associated with any filaments or

tendrils.

Each catalogue links with each other using a series of unique identifiers for each type of

structure: filament, branch, group, and galaxy. Separate catalogues describe tendrils and the

galaxies in them in a similar way, and voids are isolated from them all. The links within

structures are also given (i.e. the links of the minimal spanning tree after edges are cut), both

for filaments and tendrils. All of this allows a user to fully reconstruct the large scale structure

of the GAMA regions easily. For example, a user may wish to identify all galaxies associated

with the longest filament in G09; this is easily done first by using Filaments to search for the

longest filament whose identifier begins with 9, then going to FilGals and selecting all galaxies

with a filament ID that matches the filament found.

A more detailed view of a region in the G12 (174�  ↵  186�) field is shown in Figure

4.12, with each panel representing a declination slice of 1�, for a redshift range of 0.15 z 
0.2. In this zoomed view it is possible to see the detailed interplay between filaments (blue)

and tendrils (green); with the latter branching out from the former and penetrating into voids.

It is also possible to see with detail the coherence of structure formed by individual galaxies in

tendrils; a notable example is in the top right area of the top right panel of Figure 4.12, where

a delicate string of galaxies is seen to be curving out of a filament. This is the same region as

plotted in Figure 4.1; notice how many galaxies that are outside of that group in that figure

are now shown to be tendril galaxies.

While there is no attempt made to identify actual voids in this catalogue, it is possible
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Figure 4.12: Group and galaxy distribution in G12 colour coded by environment in 4 declination
slices. Black circles represent groups in filaments, blue points are galaxies near filaments, green points
are galaxies in tendrils, and red crosses are galaxies in voids.
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Figure 4.13: A section of the G12 field with different galaxy populations shown in each panel. From left
to right the populations shown are galaxies in filaments with the filament minimal spanning tree (blue
and cyan respectively); galaxies in tendrils (green); galaxies in voids (red); and all three populations
in their respective colours.

to accurately recover galaxies within voids; these objects can be considered to be extremely

isolated with regards to their environment, and can be considered as a separate population of

galaxies. The distribution of void galaxies exhibits no inherent structure, although it must be

noted that this is in part due to design, as we have selected parameters for our filament finder

that produce such a result.

4.3 Tendrils

Figure 4.13, shows the different galaxy populations in a 1⇥ 12 degree slice of the G12 field,

with 0.15 z  0.2 – this is the same region as shown in Figure 4.12 in the previous chapter.

The left panel displays all filament galaxies in blue, with the MST links shown on top in cyan.

Tendril galaxies are shown in the next panel, voids in the third, and all four populations of

galaxies are shown together in the rightmost panel. This final panel shows once again that

tendrils generally branch off from filaments and penetrate into voids, often bridging separate

filaments together. Alternatively, they enter voids and end there. Most importantly, tendrils

arc across ranges of right ascension and declination as well as redshift, meaning that they are

not statistical alignments by chance or caused by redshift space distortions, but actual coherent

structures.

Tendrils are detected both in the observed GAMA data, as well as the GAMA mock cata-

logues. Figure 4.14 displays slices of the GAMA G09 and G15 fields from observed and mock

data (top and bottom row respectively), showing only tendril galaxies. In both the observed

and simulated cases, tendrils appear to be structures that are morphologically similar to fila-

ments, but at smaller scales, spanning shorter distances and containing fewer galaxies. They
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are also morphologically less complex. Tendrils in the observed and mock catalogues are not

only visually similar, but are also statistically indistinguishable from one another.

4.3.1 The excess line correlation of LSS

This subsection has been primarily written by Danail Obreschkow.

It is possible to quantify the filamentarity, defined as the linearity of structure, of the fil-

ament, tendril and void galaxies using their line correlation l(r). This correlation is an es-

timator of spatial statistics introduced by Obreschkow et al. (2013) to characterize the cos-

mic density field �(~r) or its Fourier transform (FT) �̂(~k). Since the isotropic power-spectrum

p(k)/ k�2
R

d� d✓ |�̂(~k)|2 exhaustively exploits the information contained in the amplitudes

|�̂(~k)| of a homogeneous and isotropic field, Obreschkow et al. chose to investigate the resid-

ual information in the phase factors defined as:

✏̂(~k)|�̂(~k) = ei arg[�̂(~k)] (4.2)

The inverse FT ✏(~r) has a vanishing two-point correlation ⇠2(r); thus the lowest non-

trivial correlations of ✏(~r) are three-point correlations. The line-correlation l(r) is defined as

a suitably normalised version of the isotropic three-point correlation of ✏(r) for three points

on a straight line, separated by r. Geometrically, it turns out that l(r) measures the degree

of straight filamentarity on length scales r in about the same way that ⇠2(r) measures the

clustering on scales r. Figure 3 in Obreschkow et al. (2013) displays l(r) for a series of density

fields and illustrates how l(r) can distinguish linear over-densities from spherical ones, unlike

⇠2(r) and more robustly than the traditional three-point correlation. A demonstration of how

the line correlation function measures structure in distinct density fields is shown in Figure

4.15. The isotropic line correlation function is defined as

l(r) =
V 1/2r3D/2

(2⇡)2D

ZZ

|k||q|⇡/r

dDkdDqwD(|k� q|r) B(k,q)
|B(k,q)| (4.3)

where D = 3 and wD = sin(x)/x , B(k,q) is the bispectrum (i.e. the power spectrum of the

three-point correlation function ⇠3(r)) with k and q representing the wavevectors in Fourier

space for ⇠2(r) and ⇠3(r).
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Figure 4.14: Tendril galaxies (shown as green points) for two observed GAMA fields and two mock
GAMA fields (top and bottom rows respectively). The top row shows tendrils for a slice of the G09 and
G15 fields, while the bottom row shows the same slice of sky from two separate volumes of the GAMA
mocks. The two populations of tendrils are visually indistinguishable.
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Figure 4.15: Examples of 2D density fields with their corresponding correlation functions ⇠2(r), ⇠3(r)
and l(r) shown in green, blue, and red respectively. Shaded regions represent 1� confidence intervals.
The density fields are purposely chosen to have the same two-point correlation function. From top to
bottom, the density fields are constructed by superposing 350 randomly oriented Gaussian plane waves;
200 symmetric Gaussian spherical profiles; 30 randomly oriented Gaussian spheres elongated to resem-
ble lines; and a superposition of (a) and (c). Figure reproduced with permission from (Obreschkow
et al., 2013).
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Given the non-cartesian volume of the GAMA cones and the varying number of galaxies

in each sample, the filamentarity is measured via the excess line correlation �l(r) = [l(r)�
l0(r)]
p

f . Here, l(r) is the line correlation of the galaxies, taken as points of equal mass,

truncated to distances larger than 400h�1 Mpc and fitted in a cubic box of 215 h�1 Mpc side

length. The reference function l0(r) is the line correlation of an equal number of points,

randomly distributed in an equivalent survey volume. The factor f is the volume fraction of

the GAMA cones within the cubic box. The term
p

f ensures that �l(r) is approximately

independent of the volume of the cubic box (according to Section 3.4 of Obreschkow et al.,

2013).

�l(r) is calculated separately for filament, tendril and void galaxies, as well as all galaxies

combined. This calculation is performed individually for each of the three equatorial GAMA

fields as well as for the GAMA mock catalogues. Figure 4.16 shows the functions �l(r) of the

observed data (solid lines) with measurement uncertainties (1� error bars). These uncertain-

ties arise from the limited number of independent Fourier modes in the finite survey volume.

They do not include cosmic variance due to correlated large scale structure. In turn, dashed

lines and their error bars represent the median and standard deviation of �l(r) of the nine

GAMA mock catalogs. These standard deviations naturally include both, uncertainties in the

measurements of �l(r) and cosmic variance in the survey volume. Since these error bars are

much larger than those of the observed data, cosmic variance is the dominant uncertainty in

�l(r) across all considered scales. There is remarkable agreement between data and mocks;

however the variations in mock data appear to be greater than the variation of the observed

l(r) between fields. This suggests a possible correlation of structure between fields that the

mock fields cannot capture, as they are randomly pointed lightcones within a simulation box.

Observed and simulated filaments, tendrils and voids show very similar values for �l(r)

on all scales across the three GAMA fields. In all cases, filament galaxies alone exhibit a higher

correlation �l(r) than all galaxies together. Void galaxies show very little excess line correla-

tion at all scales, indicating that for the magnitude limited sample in the GLSSC, void galaxies

are free from structure. Tendril galaxies show a clear intermediate line correlation, leaving

no doubt that those galaxies contain real filamentarity well beyond that of a random point

set. This example effectively demonstrates the usefulness of higher-order statistical estimators

such as l(r) to characterize large scale structure.
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Figure 4.16: Excess line correlation�l(r) shown for filament (blue), tendril (green) and void galaxies
(red), as well as all galaxies combined (black) across all three equatorial GAMA fields. The dashed
lines show the median�l(r) for the GAMA mock catalogues, for which we show both the formal�l(r)
error as typical error bars, and the spread between mock lightcones as solid lines with no arrowheads.
The function �l(r) roughly measures the probability of finding three equidistant points separated by r
on a straight line, in a density field that is analogous to GAMA but stripped of all two-point correlation.
Shaded regions show lengths where �l(r) is unreliable due to the limited declination range of the
GAMA cones (⇠ 40 h�1 Mpc on average). Galaxies in filaments show more excess line correlation than
all galaxies, void galaxies show very little excess line correlation, while tendrils have a distinct, inter-
mediate signature. There is excellent agreement between the data and the mock catalogue structures.
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The lack of signal in the excess line correlation for voids in Figure 4.16 is a strong indicator

that this work has reliably identified galaxies within voids in GAMA. It is also a reflection of the

parameter selection that requires r and q in the filament finding algorithm to be selected such

that void galaxies have a minimised signal in their two point correlation function. However,

there is ample room for future surveys to discover deeper structures embedded in and around

the void galaxies presented in the GLSSC. This is a somewhat plausible scenario, as an earlier

version of the GLSSC made with GAMA I (with a magnitude limit of mr < 19.4 mag instead

of mr < 19.8) data had several tendrils which were reclassified as filaments in the GAMA II

version of the catalogue. Furthermore, the excess line correlation function of voids in GAMA

I data shows a similar lack of signal across all distances.

4.3.2 Shrinking voids

Early observational and theoretical studies of voids (Joeveer et al., 1978; Gregory & Thompson,

1978; Kirshner et al., 1981) have been supplemented through more recent large galaxy redshift

surveys (Colless et al., 2001; Abazajian et al., 2009) that provide provide comprehensive and

complete pictures of voids, complemented by numerous void-finding techniques (e.g. El-Ad

& Piran (1997); Hoyle & Vogeley (2002); Aragon-Calvo et al. (2010). Voids are an easily

recognised (and, initially quite unexpected) feature of the Cosmic Web, spanning between 20

and 50 h�1 Mpc. We now know that the > 1h�1 Mpc environment of a galaxy in a void is very

empty relative to that of a galaxy in a dense cluster, making such objects ideal for studying

galaxy evolution independent of environmental processes. The few galaxies that do exist in

voids are subject to dynamics that are unique to these underdense regions due to the lack of

neighbouring galaxies (Blumenthal et al., 1992; Sheth & van de Weygaert, 2004). Voids can

serve as tools for constraining cosmological parameters, or for testing the accuracy of large

cosmological simulations, as shown in Dekel & Rees (1994); Lavaux & Wandelt (2010); Park

et al. (2012) and many other works.

In the GLSSC, a void galaxy is defined as a galaxy that is at least 4.13 h�1 Mpc away

from the nearest galaxy that belongs to a tendril (and tendril galaxies themselves must be at

least 4.56 h�1 Mpc away from the nearest filament), so they exist in the most underdense

regions of the GAMA fields. We do not determine where voids are, or their sizes, only the

galaxies that exist in very underdense regions. This is a significantly different way of defining

a galaxy in a void compared to the traditional approach of detecting voids using voidfinding
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algorithms (examples of which are given at the start of this chapter) that depend on locating

underdensities and selecting the galaxies within them as void galaxies.

Recently, Pan et al. (2012) have released a catalogue of void galaxies obtained from the

SDSS-DR7 data using a voidfinder similar to the one introduced by El-Ad & Piran (1997). In

Pan et al. (2012), voids are identified within a volume limited subsample of 120606 SDSS

galaxies with Mr < �20.09 mag and z < 0.107: galaxies are first determined to be within

the field or not, using the third nearest neighbour distance d3 and the standard deviation of

this distance �d3
. Any galaxy with d = d3 + 1.5�d3

> 6.3h�1 Mpc is considered to belong to

a part of large scale structure: a filament or a cluster. These galaxies are afterwards referred

to as ‘wall’ galaxies. All other galaxies are classified as ‘field galaxies’ and are removed from

the sample. The remaining wall galaxies are then gridded into cells of side 5 h�1 Mpc and all

empty cells are considered to be possible centres of voids. A sphere is grown from each cell

until it is bounded by four wall galaxies, and any two spheres with more than 10% overlap

are considered to belong to the same void. This process is continued iteratively until no more

spheres can be grown or merged. A sphere must have a radius of at least 10 h�1 Mpc to be

considered a void.

As the GAMA regions overlap with the SDSS, there are some voids in the Pan et al. (2012)

catalogue that lie in GAMA regions. In order to be as conservative as possible, a sample of all

GAMA galaxies that lie within the inner two thirds of SDSS voids in GAMA regions is taken.

This sample contains 1130 galaxies with 0.001 z  0.1 and Mr < �19.77. Of these galaxies,

132 are part of the GLSSC – that is to say that they were part of the sample that the algorithm

described on the preceding chapter was run. This small number is due to the fact that SDSS

is a more faint survey with a lower target density. Figure 4.17 shows all galaxies in the GAMA

large scale catalogue for the three equatorial fields in grey and circles the 132 galaxies that are

matched to the 1130 GAMA galaxies in the SDSS voids. The circles are coloured according to

the structures those galaxies are classified as being in the GLSSC: blue circles are galaxies in

filaments, green circles are galaxies in tendrils, and red circles are galaxies in voids. Only 25%

of the GLSSC galaxies found in SDSS voids are also galaxies that are identified to be in voids

in the GLSSC, with the vast majority (65%) considered to be in tendrils, and a further 11%

associated with filaments. For a subsample of 79 galaxies with Mr < �20.06 mag, 15% are

filament galaxies, 61% in tendrils and 24% in voids. This highlights the importance of using

a deep survey with a high target density when investigating the properties of void galaxies,
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Filaments Tendrils Voids
Mr < �19.77 11% 64% 25%
Mr < �20.06 15% 61% 24%

Table 4.2: Percentage of galaxies, grouped by large scale environment, matched with galaxies in voids
located in GAMA fields, for two different absolute magnitude cuts. It is interesting to note that when
moving from the brighter to the dimmer magnitude cut, many tendrils are reclassified as filaments, but
the fraction of voids remains largely the same.

as voids defined in a shallow survey may contain additional undetected galaxies. Despite the

differences in void galaxy definition, it is clear that regions considered to be empty in the SDSS

do in fact contain galaxies.

The implication of these results is that voids are largely susceptible to the diagnostics of

observational surveys used to detect them, and that it is not always advisable to use surveys

with a shallow magnitude limit for searching for these structures – and less so for characterising

the properties of galaxies that reside in them. Having said that, there is no evidence that there

will not be a future survey that revisits the GAMA regions with a much deeper magnitude

limit and finds that the voids presented in this work are just as full of more faint, less massive

objects. The fact that the excess line correlation function for voids in Figure 4.16 shows no

signal does seem to indicate that the void galaxies in the GLSSC are truly free from structures,

but this is not evidence that there are no more undected sources in the background. However,

the fact that the fraction of void galaxies in SDSS voids remains virtually unchanged when

moving from a Mr > �19.77 cut to a Mr > �20.06 cut might imply that there are not many

deeper void galaxies to find.

4.4 Comparison of LSS to mocks

I now concentrate on comparing the overall properties of filaments in the observed GAMA

data, to filaments generated from the mock galaxy and group catalogues. For both data sets,

the exact same algorithm is used with identical parameters b = 5.75h�1 Mpc, r = 4.13h�1

Mpc, and q = 4.56h�1 Mpc. The same sample selection process as described in Section 4.1.2

is used, and the same hierarchy of catalogues is generated, producing a total of 10 sets of

large scale structure catalogues for each region. Filaments in both data sets are largely the

same, aside from some very subtle morphological differences. Figure 4.18 shows the locations

and populations of the largest filaments in each field, for the observed data (shown in black)

and all 9 mock simulations for that region (shown in red). Most of the large filaments are

at higher redshift. A combination of effects causes this: the selected sample is such that at
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Figure 4.17: Each circled galaxy in this figure is a galaxy in the GAMA structure catalogue that is
located inside a void identified in SDSS-DR7 data. The colour of each circle represents the type of
structure it is thought to be in in the GAMA structure catalogue: blue circles represent galaxies in
filaments, green circles represent galaxies in tendrils, and red circles represent galaxies in voids. Only
a quarter of these matched galaxies are identified as voids in the GAMA structure catalogue. We note
that we show the full 5� declination for each field in this figure, resulting in increasing projection effects
at higher redshifts.
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Figure 4.18: Locations of largest filaments in the data (shown in black) and the mocks (shown in red)
for all three regions, with each row representing a region. The largest filamentary structures we detect
have complex geometries and morphologies, where one might expect long structures that lie along the
line of sight. With the exception of G15, all large filaments lie beyond z ⇡ 0.14, further highlighting
that the largest networks of galaxies span a large geometric area in two dimensions.

low redshift there are fewer galaxies, and at higher redshift the survey benefits from a wider

volume, which allows the MST to expand along three axes (RA, Dec and z). The largest

structures found with this method appear to be confluences of many filaments, or perhaps

even massive superclusters, or galaxy complexes. The largest filaments are also the most

morphologically complex filaments that exist.
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It is important to note that while I am making comparisons between real and mock fila-

ments, these comparisons can only apply to filaments found in the GAMA mocks; moreover,

these comparisons are applied on the basis that the algorithm is run on both data sets using

the same set of parameters to ensure consistency and that the GAMA mocks successfully repli-

cate the number density and luminosity function of the observed GAMA data. Since b, r, and

q depend most strongly on galaxy number density and luminosity, it is acceptable to use the

same values for these parameters across both data sets. To ensure that these assumptions are

valid, values of b, r, and q are calculated for each individual mock catalogue, and arrive at the

following values: b = 5.75±0.2, r = 4.3±0.8, q = 3.9±0.7 h�1 Mpc with errors of 1� about

the mean. The parameters all agree within their errors with values derived for the observed

data set.

A comparison of filament lengths is shown in Figure 4.19. This figure displays, for observed

and mock data (the black and red lines respectively), the binned abundance distribution of

the lengths of filament components as a function of the number density of filaments. The

backbone length is a good indicator of the overall span of a filament across its dominant axis as

it traces the longest possible path from one end of the filament to the other through its central

node. These are shown by the solid lines in Figure 4.19, with vertical error bars denoting 1�

uncertainty ranges from the variance between the mocks. The horizontal error bar on the final

point for the mock filaments marks the 1� distribution in maximum filament lengths across

mock filaments. This error highlights the uncertainty of these results at high values for length,

as one runs into sample variance (only one or two filaments are that long). For bins with only

one object, I calculate upper error limits based on Poisson statistics. To first order there is

a remarkably good agreement between the mock and observed filaments across 2 orders of

magnitude of scale; however, future comparisons of this nature may benefit from calculating

the variance in filament backbone lengths between fields.

An analogous analysis shows that this holds true for tendrils as well (see Figure 4.20).

Both statistically and visually, tendrils in simulations are identical to those in observations,

which is a surprising result as the GAMA mocks were not designed or created with tendrils

in mind – these appear to be just as much a consequence of the simulations as a naturally

occurring population of galaxies. Future incarnations of the GAMA mocks will have simulated

photometry and comparisons between the two populations will become far more interesting

and in-depth.
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Figure 4.19: The binned distribution of the number density of filaments as a function of length for
various components of filaments with Poisson errors, ranging from backbones (solid lines, top panel)
through to branches of order n = 2 and 3 (dashed and dotted lines, in the middle and lower panels
respectively). Black and red lines correspond to filaments from the data and mock regions respectively.
The x-axis positions of the points are the median values within that bin. The horizontal error bar on the
final point in the red line shows the 1� spread of the fifteen largest mock filaments across all regions
and volumes. Bins with no detections show only an upper limit derived from Poisson statistics. The
shaded region marks distances at which the geometry of the GAMA regions means the backbone lengths
are poorly constrained.
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Figure 4.20: Much like in Figure 4.19, the distribution of distances of tendrils are shown for tendrils in
observations (black) and tendrils in simulations (red). Error bars show 1� deviations about the mean
in each bin. Both populations of tendrils are statistically indistinguishable.
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Figure 4.21: Left: In the same manner to Figure 4.19, the number density of filaments with b = 5.75
h�1 Mpc as a function of backbone length is shown. The black, red and blue lines each correspond
to filaments in observed groups, groups recovered from simulations using the R11 groupfinder, and
the intrinsically known groups from the simulations. Right: The distribution of backbone lengths for
filaments with b = 1 h�1 Mpc. These filaments are all group-group pairs. Notably, we observe that
there are more short filaments of intrinsic groups compared to the observed and FoF groups.

Given that the G3C has been generated by calibrating the FoF algorithm against mock

galaxies whose intrinsic grouping is known, it is an interesting exercise to generate filaments

using haloes (whose grouping is known in the simulations) instead of groups. I apply the same

algorithm, with the same sample selection (I select haloes instead of groups of galaxies) and

generate filaments of haloes, whose backbone length is shown on the left panel in Figure 4.21

in blue. Using the same values for b, r, and q in this case ensures that any difference in results

for these filaments will be due to how the groupfinder in R11 breaks haloes apart into groups;

just like the caustic mass analysis done for halos and groups in the previous chapter. These can

be considered the ‘true’ mock filaments, as they are not subject to biases in the FoF algorithm.

Halo filaments are remarkably similar to mock and observed filaments, as shown in the left

panel of Figure 4.21. It is expected that FoF filaments are longer than halo filaments, however,

as the FoF algorithm will occasionally break a halo into multiple groups; this effectively means

that the MST has an extra stepping stone between two haloes and is therefore able to form

structures with shorter links that are less likely to be trimmed for a given value of b. There is

an equal chance for the groupfinding algorithm to merge multiple haloes into a single group,

depending on the halo mass range being considered.

Similarly by reducing the maximum edge length to 1 h�1 Mpc, one can begin to examine the

group-group pairs that are within 1 h�1 Mpc of each other; all the FoF filaments in this sample

consist of two neighbouring groups (most halo filaments are composed of 2 or 3 haloes). We
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can see in the right panel of Figure 4.21 that for intrinsic group filaments there exist shorter

group-pair filaments compared to the observed data. The GAMA mocks are known to have a

high value of �8, which may explain why halo-halo pairs are much closer to each other than

observed galaxy pairs

Both observed and simulated (FoF) data have filaments that grow larger in a similar way as

a function of number of groups. Figure 4.22 shows the length of the backbone of the filament

as a function of the number of groups in the backbone of the filament, for observed and mock

data in black and red respectively. The shaded regions about each point show 1� spreads

about the mean for the filaments in that length bin, and binning is made so that each contains

20 filaments. The growth of filaments is very similar between observed and mock data, with

no statistically significant differences.

In a similar way, it is possible to examine the complexity of filaments as a function of the

maximum linking length allowed between groups during the MST process. Here, complexity

refers to the overall intricacy of the topology of each filament; or the number of branches it

has. A filament with a single backbone is refereed to as a ‘simple’ filament, while one with

numerous branch orders (i.e. 4 or more) is thought of as being ‘complex.’ As the maximum

linking length in the MST tends towards smaller values, the complexity of filaments decreases,

as trees are only allowed to exist between very close group neighbours, and these tend to be

simple group-group pairs, as with the population of filaments shown in Figure 4.21. This does

not allow for many branches to be formed. In Figure 4.23, fractional complexities for filaments

are shown as a function of maximum linking length. By fractional complexity, I am referring

to the fraction of filaments with 1, 2, ... , n branches. As in Figure 4.6, these filaments are all

constructed from the sample of galaxies and groups, with only the MST parameter b varying.

The solid and dashed lines show the fractions for observed and mock data respectively; and

the colour of the line represents the branch order. Blue, purple, green, orange and red show

the fraction of backbones, second, third, fourth and fifth order branches. The errors for each

point confidence estimates on population proportions derived from a beta distribution1, as

described in Section 3 of Cameron (2011).

The points in the shaded region of Figure 4.23 show the relative branch fractions for the

1The beta distribution is derived from the measured success fraction, or the observed population proportion, de-
fined as k/n; or observing k successes in n observations. Cameron (2011) show that the beta distribution estimates
confidence intervals on population proportions with small sample sizes better than other estimation methods,
which is why it is used in this analysis.
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Figure 4.22: The relationship between backbone length and the number of groups in the backbone in
bins containing equal numbers of filaments for observed data and FoF mock groups, shown in black
and red respectively. The shaded regions denote 1� intervals around the mean; points with no shaded
region around them are single entries. This data is binned along the x-axis, and there are bins where
there is no data; in these cases the point is omitted.
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Figure 4.23: Comparing the ‘complexity’ of filaments in observed data and simulations; whereby com-
plexity we refer to the fraction of branches that are backbones, and higher order branches. The solid
lines represent data, and the dashed lines, mocks. Different coloured lines show increasing branch or-
ders, from first to fifth order. As b increases, more complex filaments with more higher order branches
are formed. At b = 5.75h�1 Mpc, shown by the shaded region, observed and mock filaments have
similar fractions of branches, aside from a slight overabundance of third order branches in observed
filaments. The error bars show 1� uncertainties about the population fraction.

same filaments displayed in Figures 4.19 and 4.21. The relative fraction of third order branches

is slightly higher for observed filaments, otherwise both sets of filaments are very similar in

their morphology. The difference between the two populations decreases sharply at lower

values of b and for b  5h�1 Mpc there is no difference between the data and the mocks,

however at b = 15h�1 Mpc there is a more notable difference between the fractions of some

components, most notably second and third order branches.
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Beyond the power of the two-point correlation function, this analysis confirms that the

GAMA mocks successfuly reproduced the observed distribution of galaxies on large scales. It

is very difficult to visually distinguish between real and mock data when looking at large scale

structure maps, as shown in Figure 4.24. Once again, figures 4.21 and 4.22 show the overall

similarity between observed and mock filaments.

4.5 Discussion and summary

This chapter has presented a method to systematically identify and categorise large scale struc-

tures in the Universe, as well as identify different populations of galaxies in different structural

environments. This algorithm is based on using minimal spanning trees to identify filaments

composed of groups, around which nearby galaxies are identifed and these are associated with

each filament. The remaining population of galaxies is then classified as tendril galaxies or

void galaxies using a second minimal spanning tree. The parameters used for this approach

are selected by optimising for a large scale structure that obeys two assumptions: that the

brightest groups be in filaments, and that the distribution of void galaxies show much less

structure than for filaments and clusters, particularly at large scales. Large scale structure cat-

alogues are generated for the three equatorial GAMA fields, as well as 9 mock galaxy volumes

for each field, adding to a total of 3 observed LSS catalogues and 27 mock LSS catalogues.

With GAMA we benefit from an extremely complete survey that has a very high target

density, revealing that there is far more underlying structure behind the brightest galaxies and

groups that form the skeletal signatures of filaments and large scale structure. This is the

largest, most complete, and deepest observational catalogue of large scale structure to date.

As we revisit the same patch of sky and conduct deeper, more complete observations, we find

more complex substructures, such as tendrils. Tendrils are a potentially new class of galaxy

large scale structure that connect filaments to each other, or emerge from filaments and extend

into underdense regions, terminating within voids. Tendril galaxies contain 23.8% of all stellar

mass (compared to around 70% for filaments) for a magnitude and mass limited sample of the

structure catalogue; however they are tenuous enough to be difficult to detect using structure

finders that rely on density smoothing (as most structure finders do), or only consider galaxies

in groups. These methods will not fully take into account less massive galaxies outside of the

most high density regions, and therefore miss out on these structures that contain a significant

amount of stellar mass.
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Figure 4.24: The same region in G09 with different galaxy populations (colour coded as in 4.12), with
observed data shown in the bottom right and the other panels consisting of mock data. The similarity
between all four fields is apparent, and serves to visually highlight the success of the mock catalogues
in reproducing large scale structure.
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4.5. Discussion and summary

As structures, tendrils appear to be morphologically distinct from filaments in that they are

less dense and span shorter distances. On average, a tendril will contain just under 6 galaxies

and measure roughly 10 h�1 Mpc. As with filaments, Figure 4.20 shows that the lengths of

tendrils in simulations match well with those in observations. The similarity of simulated and

observed filaments and tendrils is remarkable. When examining the filamentarity of tendrils

using the line correlation function l(r) we find that they are distinguished from filaments by

having an intermediate excess line correlation and are certainly distinguishable from voids.

A visual inspection of tendrils, shown as the green points in the second and fourth panels of

Figure 4.13, confirms that they are distinct structures to filaments. Galaxies in tendrils are

most likely in the intermediate stages of evolution from a low density galaxy to one in a high

density region. Figure 4.25 shows the distribution of stellar masses and colours for a mass

complete subset of galaxies in filaments, tendrils and voids, with contours enclosing the upper

95%, 50%, and 10% of galaxies respectively. From this Figure it is possible to see that voids

have a more distinct distribution of masses and colours compared to filaments and tendrils;

however, a far more detailed analysis is required to accurately measure these differences. This

analysis, as well studies of how other galaxy properties change as a function of environment

will be discussed in far greater detail in the following chapter.

To understand the impact of tendril galaxies on traditional void classifications, I identify a

subset of galaxies in the GLSSC that lie within voids found with a modified voidfinder algorithm

applied to the SDSS-DR7 data set. As the SDSS overlaps in space with GAMA, some of these

voids lie in GAMA fields. There are 1130 GAMA galaxies in these overlaps, 132 of which are in

the GLSSC. Only a quarter of these galaxies are determined to be void galaxies in the GLSSC,

and that almost 65% of them are in fact tendril galaxies. Given that tendrils show some linear

structure, it is important to ensure that any void galaxy selection only includes galaxies that

are as isolated as possible, in order to ensure that studies of isolated growth are conducted

on truly isolated galaxies. This result may go some ways to explaining the abundance of red

galaxies in voids in studies such as Kreckel et al. (2012). I stress the importance of selecting

isolated galaxies and voids from the same survey, and note that voids appear to be less empty

when observed at fainter magnitudes. Future void galaxy surveys will benefit from a deeper

target selection and a high target density in order to identify the most isolated galaxies in the

local Universe.

Overall, mock large scale structure strongly resembles observed large scale structure and is
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Figure 4.25: Contour plot of stellar mass versus colour for a mass complete sample galaxies in fila-
ments, tendrils, and voids. The contours are placed such that they contain the upper 95%, 50%, and
10% of the data respectively.
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4.5. Discussion and summary

virtually indistinguishable by eye (as shown in Figures 4.23 and 4.24). The filament analysis

also decodes the topology of filaments into a primary backbone of links that travels from one

end of the filament to the other across its centre, and various tributary branches that connect

up to this central spine. Figure 4.23 shows that filaments in simulations have complexities that

match very closely with observed filaments, for the value of b that we have used. If there are

any differences, they are subtle: the morphology of simulated filaments is marginally closer to

being less complex than observed filaments, hinting at some discrepancies in the simulations

used to generate the GAMA mocks. However, these differences are minor and difficult to prove.

The GAMA Large Scale Structure catalogue is an important tool for understanding the role

of environment on galaxy evolution. In the following chapter I will combine this catalogue with

several existing catalogues of observational properties available in GAMA, and investigate the

role of filaments and voids in the lifetime of a galaxy.
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5
The properties of galaxies as a function of

environment

The GLSSC provides an unprecedented catalogue of galaxies classified by environmental type.

The previous chapter examined voids in greater detail, as well as verifying the filamentarity

of tendrils using the excess line correlation function. While a detailed and thorough study

of the impact of environment on galaxy evolution would require a whole thesis itself, a very

preliminary quick-look exploration of the impact of environment on the properties of galaxies

is presented in this chapter.

The evolutionary fate of a galaxy is closely tied to its immediate surroundings, within 1

megaparsec (e.g. Hahn et al., 2007b). Many observable properties of a galaxy are greatly

influenced by the presence of other galaxies nearby; stellar populations in particular are very

susceptible to environment. The proximity of galaxies has been shown to trigger dormant re-

gions of gas within a galaxy into infall, leading to an increased rate of star formation (Porter

et al., 2008). The local environment of a galaxy has impact on many other properties, in-
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Chapter 5. The properties of galaxies as a function of environment

cluding colour (Kreckel et al., 2012), stellar mass (Chabrier, 2003), gas content (Beygu et al.,

2013; Benítez-Llambay et al., 2013), luminosity function (Croton et al., 2005; and morphology

(?Butcher & Oemler, 1984; Dressler et al., 1997).

As described in the introduction to this thesis, the variations of some galaxy properties with

local galaxy density are well understood. A few key facts are known about the impact of large

scale structure on galaxies: namely the apparent suppression of star formation as galaxies fall

into clusters (Lewis et al., 2002; Balogh, 2007). Norberg et al. (2002); Zehavi et al. (2005,

2011); Masaki et al. (2013) and others show links between galaxy clustering and luminosity

and colour. Robotham et al. (2013) show that star formation is suppressed in pairs. However,

there has been no broad look at galaxy evolution from filaments down to pairs in a single

survey. Following the mantra of always inspecting the data, I start this chapter by showing

postage stamps of randomly selected galaxies in filaments, tendrils, and voids in Figures 5.1,

5.2, and 5.3, with each galaxy placed according to its stellar mass and u� r colour. Each stamp

measures 500⇥ 500 h�1 kpc. The postage stamps are false colour images generated using Hig

band images from SDSS and UKIDSS imaging data. The galaxy images shown in the figures

suggest that the influence of environment will be subtle as all galaxy types and colours visible

in all panels. One possible exception however is the dearth of higher stellar mass systems

visible in the void environment, though this may simply be due to a smaller sample size.

In order to broaden our investigations beyond the simple filament, tendril and void sub-

samples and beyond stellar mass and colour we also look to now incorporate some of the

additional information available within the GAMA database, i.e., pairings and groups. The

environmental types examined in this chapter are therefore: filaments, tendrils, voids (as de-

fined in the GLSSC), galaxies in high mass halos, mid mass halos and low mass halos (defined

as MH � 1014M�, 1013  MH  1014M� and MH  1013M� respectively), galaxies not in

groups, galaxies in pairs, and galaxies not in pairs. Some later figures also examine the cen-

tral members of galaxy groups, as well as a small sample of morphologically classified galaxies.

However, this chapter is not intended to be an exhaustive study of this topic (which is beyond

the scope of this thesis) but to provide some early indication of trends worth exploring. Ul-

timately a detailed study of the gas content will also be required and this will commence in

mid-2014 via the ASKAP DINGO (Meyer, 2009) survey.
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Figure 5.1: Postage stamps of randomly selected galaxies in filaments, placed according to their stellar
mass and u� r colour. All postage stamps measure 500 ⇥ 500 h�1 kpc. The postage stamps are three
colour images generated from SDSS and UKIDSS Hig bands. The single overly red stamp towards the
bottom right is due to bad photometry in the u-band.
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Figure 5.2: Postage stamps of randomly selected galaxies in tendrils, as in Figure 5.1.

114



9 9.5 10 10.5 11 11.5
M* (log M�)

0.
5

1
1.

5
2

2.
5

u 
- r

 (m
ag

)

9 9.5 10 10.5 11 11.5

0.
5

1
1.

5
2

2.
5

Figure 5.3: Postage stamps of randomly selected galaxies in voids, as in Figure 5.1.
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Chapter 5. The properties of galaxies as a function of environment

5.0.1 GAMA catalogues

The work described in this chapter relies on a vast number of GAMA catalogues, available in

the GAMA database or through invidual GAMA members that have shared these catalogues

(referred to internally as data management units, or DMUs). They are as follows:

• FilamentFindingv01 (Alpaslan et al., 2014): The GAMA Large Scale Structure Cata-

logue.

• ApMatchedCatv03 (Liske et al., in prep): Aperture matched r-band photometry derived

using SEXTRACTOR in ugrizYHJK bands for GAMA II galaxies. A summary of how this

catalogue was prepared is provided in the appendix.

• StellarMassv08 (Taylor et al., 2011): This catalogues provides stellar masses, rest-

frame and extinction corrected photometry and colours, and other related stellar popu-

lation parameters for all z < 0.65 galaxies in the GAMA I sample.

• GroupFindingv02 (Robotham et al., 2011): This is the GAMA Galaxy Group Catalogue

and provides grouping information for GAMA II galaxies in the equatorial regions.

• SpecLineSFRv04 (Gunawardhana et al., 2013): This catalogue provides emission line

measurements from AAT and derived star formation rates for GAMA I galaxies.

• SersicPhotometryv07: (Kelvin et al., 2012): This catalogue provides single-component

Sérsic fits to GAMA I galaxies.

• GasMetallicitiesv01: (Maritza Lara-Lopez, priv. comm.): This catalogue contains

estimates of gas metallicities derived from line ratios for GAMA I galaxies.

• MultiBandPhotomv01: (Simon Driver, priv. comm.): This catalogue collects photome-

try for GAMA II galaxies in 20 bands (FUV, NUV, ugriZYJHK, W1-4, SPIRE 100, 160, 250,

350, 500).

• VisualMorphologyv01: (Rebecca Lange & Simon Driver, priv. comm.): This catalogue

contains eyeballed classifications of GAMA I galaxies with 0.013 > z > 0.1 as being

elliptical or non-elliptical from colour images.
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5.1 Sub-sample selection and mass normalisation

To ensure that any trends of galaxy properties are free from underlying mass selection effects,

it is important to define a mass and (ideally) volume limited sample of galaxies. Taking the

GAMA stellar masses from Taylor et al. (2011), Figure 5.4 shows the redshift-stellar mass

distribution for all GAMA galaxies. From this, a sub-sample of galaxies with z  0.1 and

M⇤ � 109.5M� is chosen for the analysis shown in this chapter. These limits in redshift and

stellar mass are chosen as many GAMA DMUs I wish to use are limited to z  0.1 (such

as VisualMorphologyv01). Samples with higher upper limits for redshift and stellar mass

were also tested, but yielded less statistically significant results; using a higher redshift cut

means that one moves into a narrow and high mass limited sample where galaxies become

very unimodal (i.e. all bright systems are mostly early-type E/S0a regardless of environment).

The high-mass end-points of galaxy evolution tend to be the same regardless of environment.

Note that the GLSSC is only mass complete to M⇤ � 1010.61M�. This means that for the low

mass sample, it is necessary to include galaxies that are not originally analysed by the filament

finding algorithm. This is done by associating each galaxy with z  0.1 and M⇤ � 109.5M�

not in the GLSSC as being in the same environment type as their nearest neighbour that is in

the GLSSC. For filaments and tendrils, 40% of the low mass sample galaxies are already in the

GLSSC. Only 4% of low mass void galaxies are also in the GLSSC galaxy sample. However, as

explained in the previous chapter, the definition of void galaxies in the GLSSC is very robust,

so it is likely that any galaxy near a pre-defined void galaxy is also within a void. The two point

correlation function of this sub-population of void galaxies shows a similar lack of structure as

in Figure 4.9.

Having defined a mass limited sample, I now look at the Galaxy Stellar Masss Function

(GSMF, Baldry et al., 2012), this is the mass equivalent of the galaxy luminosity function. It

gives the effective number of galaxies per unit volume in the stellar mass interval M + dM in

the form of a Schechter function (Schechter, 1976), and is typically shown in logarithm space.

The GSMF is given by the following expression:

�(M)dM = ln(10)�⇤10(M�M⇤)(↵+1) exp
�
�10(M�M⇤)� dM (5.1)

Figure 5.5 shows stellar mass functions for galaxies selected from distinct environments
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Figure 5.4: Stellar mass as a function of redshift for all GAMA I galaxies with z  0.1 and M⇤ � 109.5M�
coloured in grey. Redshift and mass limits are shown in red lines.
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5.1. Sub-sample selection and mass normalisation

(as indicated in the inset panel). The area shaded in grey denotes the mass range where

filament, tendril and void galaxy samples have been assigned by association as described at

the start of this chapter rather then via the formal filament, tendril, void analysis presented

in earlier chapters; all other populations are unaffected at this low mass range. To ensure

that the number densities plotted are completeness-corrected, StellarMassesv08 provides

limiting redshifts for each object. This redshift zmax is defined as the maximum redshift at

which each galaxy would be detected given the magnitude limits of GAMA I: mr < 19.4 mag

for the G09 and G15 fields and mr < 19.8 mag. These values are derived by Taylor et al.

(2011) by taking the single best fitting model spectrum for each galaxy and studying how the

k-corrected r-band magnitude varies with redshift. From zmax, one can calculate the effective

comoving survey volume Vmax in cubic megaparsecs for that particular galaxy and weight its

number count appropriately. It is only necessarily to apply Vmax corrections to the filament,

tendril and void galaxy populations, as all other samples are complete. The number densities

shown in Figure 5.5 have all been Vmax corrected and show the different mass regimes that

different environments span. Note that for the vast majority of galaxies the Vmax correction is

identical as the sample, except for some systems with extreme colours (mass-to-light ratios),

is volume selected: the Vmax uncorrected stellar mass function for all galaxies is statistically

indistinguishable from the one shown in Figure 5.5. The errors shown are
p
(N) Poisson noise

errors.

From Figure 5.5 it is easily visible that different environments contain galaxies with very

different stellar masses. Void galaxies are the most strikingly different population, containing

far fewer massive galaxies than all other distributions. As expected, high mass halos are dom-

inated by high mass galaxies. This variation in stellar mass as a function of environment is

likely driven by the expected higher-merger rates in the higher-density environments. A clear

progression is seen from voids to tendrils to filaments and a smaller but significant progression

from ungrouped to low to mid mass groups. This potentially suggests as well as local density

(Elbaz et al., 2007) and halo mass (Reddick et al., 2013; Cen, 2013), large scale structure is

also an important driver of stellar mass evolution.

The fit parameters for the stellar mass functions are given in Table 5.1. The errors in the

parameters are estimated via a jackknife resampling:
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Figure 5.5: Vmax adjusted stellar mass functions of galaxies in different environments by 0.1 dex bins
in log stellar mass. The region shaded in grey marks the mass range at which the galaxies selected for
filaments, tendrils and voids are below the mass completeness limit of the GLSSC. The black shaded
region denotes the lower mass limit for all environments.
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M ⇤ ↵1 �⇤1/10�3 ↵2 �⇤1/10�3 �2/⌫
R
�(M)dM

All 10.75± 0.04 �0.85± 0.08 3.30± 0.27 �2.00± 0.01 0.04± 0.09 1.12 100%
Filaments 10.79± 0.04 �1.48± 1.40 0.22± 2.41 �0.69± 1.25 0.002± 0.002 1.17 57%
Tendrils 10.59± 0.06 �0.68± 1.81 1.72± 2.26 �2± 1.85 0.03± 2.30 1.07 39%
Voids 10.13± 16.94 �2± 4.78 0.04± 6790 �0.19±�3.57 0.23± 0.56 2.52 4%
HiMass 11.16± 0.10 �1.06± 1.51 0± 0.05 �1.07±�0.69 0.28± 0.47 1.33 10%
MidMass 10.72± 0.017 0 1.08± 0.09 �1.13± 0.04 0.55± 0.05 1.42 24%
LoMass 10.74± 0.05 �0.19± 0.85 1.27± 0.44 �1.06± 0.97 0.96± 0.52 1.13 36%
Ungrpd 10.45± 0.09 �0.49± 1.47 1.92± 1.72 �1.89± 1.31 0.18± 1.71 1.32 30%
inPair 10.79± 0.09 �0.92± 2.36 1.03± 1.64 0± 2.91 0.43± 1.59 1.35 30%
notinPair 10.74± 0.04 �0.85± 1.09 2.91± 2.72 �1.99± 1.33 0.05± 2.75 1.01 70%

Table 5.1: Parameters for the double Schechter function GSMF fits shown in Figure 5.5. The columns
are the shared knee in the Schechter function (M⇤), the primary slope at the faint end of the function
(↵1), the primary normalisation for the fit (�1; in units of dex�1 Mpc�3), the secondary slope at the faint
end (↵2), and the secondary normalisation (�2), and the goodness of fit �2. The fractional integrated
stellar mass is also shown, for subdivisions of environment (marked by the horizontal lines in the table).
Errors are estimated from jackknifed resampling.

�2 =
N � 1

N

NX

i=1

(x j � x)2 (5.2)

where x is the best fit parameter and x j is the best fit parameter from a jacknife resampled

variant of the data set, and N is the number of jackknife volumes (set to 10). While most

of the fits are satisfactory, the fit for the void GSMF has notably large uncertainties. These

functions also give integrated mass densities
R
�(M)dM , which can be used to see which

environment contains the most stellar mass. These are calculated such that they add up to

100% for distinct subdivisions: filaments, tendrils, and voids; high mass, mid mass, low mass

halos and ungrouped galaxies; and pairs and unpaired galaxies.

Given the extreme variation in the stellar mass distributions it is obvious that comparison

of other properties may be driven more by stellar mass rather than the environmental marker

selected. In order to remove the role of stellar mass it is possible to mass normalise our samples

to tease out the specific influence of environment alone. By resampling the various galaxy

populations so that for a given stellar mass bin they match the void galaxy stellar mass function,

one is left with populations of galaxies that are not only mass complete, but have observed

mass distributions that are matched. This means that for this sub-sample, all comparisons

between the galaxy populations in different environments will be free from mass bias and will

not simply be recasting the differences in the GSMF. Note however that matching to the void

mass function means that the results shown in this chapter are confided to a small range of

stellar masses.

For this chapter, unless otherwise specified, all figures and results are for the sample shown
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Figure 5.6: Kernel density estimates for stellar masses in mass normalised galaxy populations (colour
coded in the same was as Figure 5.5).

in grey in Figure 5.4; i.e. z  0.1 and M⇤ � 109.5M�. If a sample is described to have

been ‘mass normalised,’ galaxies in different populations will have been mass normalised to

have the same mass distribution as void galaxies, as described above. The results of the mass

normalisation process are shown in Figure 5.6, where the kernel density estimates for stellar

masses in mass normalised populations are shown.

5.2 The impact of large scale structure on galaxy properties

Kreckel et al. (2012) show that for a sample of galaxies in voids, taken from the Void Galaxy

Survey (VGS), there is a tendency for galaxies in voids to be bluer and fainter than their
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Figure 5.7: u � r colour plotted against absolute r-band magnitude for mass normalised galaxies in
filaments and voids (black and red respectively). The distributions on the right and top of the figure
show distributions in colour and absolute magnitude respectively. Note that colours are extinction and
restframe corrected. This data has been taken from StellarMassesv08.

counterparts in overdense regions. This result is shown to hold for the mass normalised sub-

sample of galaxies in the GLSSC in Figure 5.7, where it is evident that galaxies in voids are

significantly less bright and bluer than their counterparts in filaments. The colour bimodality

is no longer present in void galaxies, which show an overwhelming tendency to be blue.

5.2.1 Broad 2D distributions

A wider comparison of various parameters can be seen in Figure 5.8 where effective radius,

ellipticity, absolute magnitude, u� r colour, and r-band Sérsic index are all compared against
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Chapter 5. The properties of galaxies as a function of environment

each other for galaxies in filaments, tendrils, and voids, which have been mass normalised.

Sections of this figure where observables are plotted against each other are not as informative

as the one dimensional distributions for individual parameters. Most two dimensional trends

and correlations between observables are reflected across all three populations of galaxies.

That differences exist implies that large scale structure does have some effect on the properties

of a galaxy, however there are no cases where a particular population of galaxies is the only

population taking up a certain area of the parameter space. This figure strengthens the case for

void galaxies being marginally later, fainter, and bluer. The properties of tendril galaxies are

more similar to those of filament galaxies, which is an indication that our tendrils are indeed

distinct structures more closely related to filaments and that large scale structure trends only

become evident at the extreme void environment. Coupled with the stellar mass distributions

seen in Figure 5.5 the suggestion might be that while the mechanisms and processes occurring

in filaments and tendrils drive towards the same properties, the process is more accelerated in

filaments (because of the advanced mass function).

This figure provides some insight into the ‘typical’ galaxy that resides in a filament or a

void. Galaxy properties most affected by large scale structure appear to be absolute r-band

magnitude, u � r colour, Sérsic index and ellipticity. A galaxy in a void tends to be bluer,

fainter, more ellipsoidal (flattened) and with a lower Sérsic index than a galaxy within a fila-

ment, or tendril. The difference between filaments and tendrils is a lot more subtle; this may

be an indication that these parameters are sensitive to galaxy growth in extremely isolated

environments.

5.2.2 Metallicity

Figure 5.9 displays the mass-metallicity relation for galaxies as a function of large scale struc-

ture, showing that all three populations have similar metallicities, with voids perhaps showing

slightly less chemical enrichment, but this is difficult to establish given the noise in the data.

The metallicity is taken from GasMetallicitiesv01 where it is calculated using the O3N2

index, which is defined as:

O3N2= log
Å
[OIII]�5007/H�
[NII]�6583/H↵

ã
(5.3)

from which it is possible to calculate the O/H metallicity indicator as [12+ log(O/H) = 8.73�
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Figure 5.8: Comparisons of effective radius, ellipticity, absolute magnitude, u� r colour, and r-band
Sérsic index for mass normalised galaxies in filaments, tendrils and voids (shown as blue, green and
red lines and points respectively). Each frame of this large mosaic plots two of these parameters
against each other, while the histograms show the distributions of each one individually. Note that
the most distinguishing differences are in these histograms. The data shown in this figure are taken
from SersicPhotometryv07.
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Figure 5.9: Metallicities and stellar masses from GasMetallicitiesv01 and StellarMassesv08

shown for mass normalised filament, tendril and void galaxies in blue, green and red respectively.

0.32 ⇥ O3N2 as per the prescription of Pettini & Pagel (2004). Line strengths are emission

measurements and have been corrected for dust attenuation; and this estimator does require

that there be emission in This estimator is selected in order to be able to compare GAMA

metallicities to provide the best comparison to SDSS metallicities (Lara-Lopez, priv. comm.).

5.2.3 1D distributions

Figure 5.10 shows the distribution of effective radius, ellipticity, r-band absolute magnitude,

u� r colour, and Sérsic index for galaxies split by three different types of environment: large

scale structure, group mass (and group membership), and presence in a pair. There is a ten-

dency for all galaxies outside of dynamically bound structures (i.e. in voids, or not in groups,

or not in pairs) to exhibit similar characteristics: lower luminosity, bluer colours, lower Sérsic

index, and higher ellipticity. This figure also shows that halo mass is not a very good predictor

of morphology (as both ellipticity and Sérsic index do not vary much with halo mass) and

that a galaxy’s presence within or without a group is more important in determining its shape.

Halo mass impacts colour, but presence within or without a halo has a much more prominent
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Figure 5.10: Effective radius, ellipticity, r-band absolute magnitude, u�r colour, and Sérsic index from
SersicPhotometryv07 for galaxies split by three different environment types: large scale structure
(top row), halo mass and galaxies not in groups (second row), and paired and unpaired galaxies (bot-
tom row). There is an overall trend for galaxies outside of structure (void galaxies, ungrouped galaxies,
and unpaired galaxies) to show similar characteristics.

impact on colour. Colour is also the only property where a difference between filament and

tendril galaxies is significant; for all other properties both populations of galaxies show the

same distribution, with only voids differing significantly.

An interesting feature of Figure 5.10 is that the variation of galaxy properties isn’t very

susceptible to halo mass, as shown by the coloured lines in the second row of the figure. This

is in agreement with recent work, e.g. Lopes et al. (2013), who find that halo mass (for haloes

1013  MH  1015 M�) has no impact on the colour, spectral type, and concentration of a

galaxy, and that the dominant process that impacts these parameters is local density; however,
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their analysis does not contain a similar mass normalisation approach as the one used in this

thesis. The authors argue that most of the changes to a galaxy interacting with a halo occur as

it falls into the halo. Valentinuzzi et al. (2011) show that the red sequence of galaxies within

a cluster do not depend on halo mass, but instead on local density. These results are at odds

with more recent work by Velander et al. (2014) who measure the relation between the halo

mass and baryonic mass of weak lensing galaxies and show that for red galaxies, the halo mass

increases with baryonic mass at a higher rate than for blue galaxies.

5.2.4 Elliptical fraction

The left panel of Figure 5.11 shows elliptical fractions as a function of halo mass for a set of

eyeballed GAMA galaxies with z  0.1, taken from VisualMorphologyv01. The trend is

for the fraction of elliptical galaxies within bins of halo mass to rise as halo mass rises, until

roughly 3⇥1013 M� where the trend stops and the elliptical fraction stays constant, implying

a limit to the impact of halo mass on the morphology of galaxies. The right hand panel of this

figure shows the elliptical fraction for mass normalised galaxies in variety of environments

and shows that filaments have higher elliptical fractions compared to voids, which have a

lower fraction of elliptical galaxies compared to any other environment type. Galaxies are

much more likely to be ellipticals if they are in a pair, and the fraction of ellipticals rises as a

function of halo mass; this echoes the result shown in the left hand panel. Filaments have a

higher fraction of elliptical galaxies than the entirety of the z  0.1, M⇤ � 109.5M� sample.

The errors for each point on both panels show confidence estimates on population proportions

derived from the Beta function, as described in Cameron (2011).

5.2.5 Total energy (CSED)

Figure 5.12 displays the total flux densities for a sub-sample of mass normalised galaxies in

filaments, tendrils and voids across 20 bands, taken from MultiBandPhotomv01. For each

filter, galaxies with flux detections in all bands (in other words, only galaxies in areas of the

sky that have coverage in all 20 bands) have their fluxes summed, and their errors summed in

quadrature. The resulting data shows the cosmic spectral energy distribution (CSED; Driver

et al., 2012) of each environment type. The CSED describes the energy of photons present

within a specific volume of space and provides a broad overview of the properties of galaxies

that contribute to this energy at a given epoch. All points are normalised by the K-band and
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Figure 5.11: Elliptical fraction of all galaxies in VisualMorphologyv01 with M⇤ � 109.5M� as a
function of halo mass shown in red. The fraction of non-elliptical galaxies is also shown, in blue (note
that this is just the 1� the elliptical fraction). The fraction of ellipticals rises steadily as a function of
halo mass until approximately 3⇥1013 M�, after which it remains relatively stable. Note that elliptical
fractions are calculated for halo mass bins of equal size. The right hand panel shows the fraction
of elliptical galaxies in a variety of environments. The error bars show 1� uncertainties about the
population fraction.
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Figure 5.12: Total flux densities in 20 bands for mass normalised galaxies in filaments, ten-
drils, and voids, shown in blue, green and red respectively. These flux values are taken from the
MultiBandPhotomv01 catalogue. The CSED shown in grey has been taken from Driver et al. (2012)
and represents the mean GAMA energy output, scaled to lie above the points.

plotted. The grey CSED above the points is taken from (Driver et al., 2012) and represents

the mean GAMA energy output, shown here for reference. It has been artificially scaled to lie

above the points. This figure shows a slight increase in flux in UV regime for void galaxies, as

well as slightly higher emission in the far infrared. This again suggests that the evolutionary

processes in tendrils and filaments are similar; one of star-formation suppression (quenching)

when compared to void systems.

5.3 Summary of results

Having access to such a complete catalogue of galaxies in pairs, groups, and large scale struc-

ture, as well as such a wide variety of uniformly generated catalogues of galaxy properties

allows this analysis to be very broad. These results build on the existing body of knowledge
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of galaxy environments, namely that galaxies are susceptible to their local environments. This

chapter has looked for correlations in a wide variety of galaxy properties as a function of

whether or not the galaxy is in a pair, group, void, tendril, or filament.

Galaxies in different environments show varying stellar mass functions, as shown in Figure

5.5, with void galaxies hosting a distinctly low stellar mass population. For this reason, in this

chapter all comparisons of galaxy properties are made for a mass complete subset of galaxies

with z  0.1 and M⇤ � 109.5M�. To further avoid any mass bias, each population of galaxies

is resampled such that its mass distribution matches the mass distribution of voids.

Figure 5.8 establishes the basic properties of void galaxies: blue, low luminosity, late-type

galaxies that tend to be smaller than filament and tendril galaxies, agreeing well with exist-

ing work (e.g. Kreckel et al., 2012; Pan et al., 2012). Filament galaxies contain the largest

fraction of bright, red, early-type galaxies (this is expected, as filaments are the most dense en-

vironments in the Universe and we know that the brightest galaxies tend to be more clustered

Zehavi et al., 2011) while tendril galaxies straddle between both populations, tending to be

more similar to filament galaxies. The total CSED of galaxies, shown in Figure 5.12 shows a

higher flux in the UV bands for void galaxies. Metallicity does not appear to be greatly affected

by large scale structure (Figure 5.9).

Beyond local density and stellar mass, the greatest discriminant of galaxy evolution appears

to be if a galaxy is part of a dynamically bound structure or not (a pair, a group, or a filament),

as shown in Figure 5.10. These isolated galaxies are more likely to be blue, faint, and are more

flattened (i.e. higher ellipticity) and have lower Sérsic index values. From Figures 5.11 and

5.10 one can estimate that the population of void galaxies appears to have the most extreme

values; or in other words, selecting a galaxy from a void is more likely to select the most blue,

faint, late-type galaxy compared to any other environment type.

The results in this chapter agree with recent work which asserts that the mass of the halo

that a group resides in has little impact on the luminosity and shape of the galaxies that reside

within it (for similar results, see Valentinuzzi et al., 2011; Lopes et al., 2013; Lacerna et al.,

2013). This is particularly evident in Figure 5.10, where the variation in Mr and nr vary

least as a function of halo mass; a conclusion which is perhaps somewhat unexpected, and

difficult to reconcile with similar studies done using weak lensing (Velander et al., 2014). One

important caveat of the work in this chapter is that the total CSED and many other DMUs on
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which the results in this chapter are based on are still very preliminary and are likely to evolve,

impacting on these quick look results. However, the figures indicate the merit of future studies

in this field, especially now that the robust group and large scale structure catalogues are in

place.

The preliminary analysis in this chapter shows some tentative trends of galaxy properties

with large scale environment. While stellar mass is known to correlate most strongly with

galaxy properties, halos and filaments are likely to be influencing galaxies during their infall

into such structures. Moreover, large scale structure appears to drive stellar mass, and so may

have some secondary impact on galaxy evolution via the mechanism driving mass growth in

such structures (such as mergers). The role of large scale structure in galaxy evolution will

expand by exploring the role of gas in driving the properties of galaxies in different environ-

ments, which will soon be possible with the advent of large radio surveys like ASKAP, followed

by the SKA. These will provide excellent opportunities to study the role of gas in voids, ten-

drils, and filaments; focusing particularly on how the underlying gas distribution influences

the associated galaxy population. Of particular interest is whether tendrils and filaments lie

atop the underlying gas density and are therefore potential tracers of the gas flow from voids

to cluster centres via tendrils into filaments. For this reason a detailed analysis of the role of

environment may only become clear with the inclusion of HI data.
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6
Conclusions and future work

In this thesis I have described the work that I have done on investigating the large scale struc-

ture of the nearby Universe using data from the GAMA survey.

As galaxy groups form the foundation of filaments and the most dense environments of

large scale structure, I began by verifying the masses of the groups in the GAMA Galaxy Group

Catalogue (G3C). This was done using the caustic mass measurement (Diaferio, 1999), which

is a complementary method to the dynamical masses measurements made for the G3C. By cal-

ibrating the mass measurement algorithm on the GAMA mock galaxy catalogues, I calculated

caustic masses for galaxies in the G3C and found there to be excellent agreement between

dynamical and caustic masses. While the caustic mass method was originally developed to be

used only on populous galaxy clusters with > 200 members, I was able to show that it can

accurately measure the mass of a group of galaxies with down to 5 members. Both the caus-

tic mass and dynamical mass measurements perform equally poorly when applied to groups

with 2 or 3 galaxies. Caustic mass measurements in particular appear to be very susceptible

to accurate velocity dispersion measurements.
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Having confirmed the accurate mass measurements of galaxy groups, I produced the GAMA

Large Scale Structure Catalogue, creating a new algorithm to do this in the process. This

algorithm differs from existing methods in that it is designed to work with observed data, and

to be mathematically and computationally simple; as well as identifying galaxies that reside

in underdense regions as well as filaments. The structure finder uses a three pass approach,

whereby groups of galaxies are first used to construct filaments using minimal spanning trees,

followed by the association of nearby field galaxies to their nearest filament within ⇠ 4.5 h�1

Mpc. All galaxies in and around filaments are then removed, and a new minimal spanning

tree is run on the remaining galaxies in order to identify underlying structures formed by

galaxies in the field; as well as extremely isolated galaxies that reside in voids. Comparing

the large scale structure identified in the observed GAMA data to the structures found by

running the algorithm on GAMA mock galaxy catalogues reveals that these simulations agree

remarkably well with observations. This provides a probe of higher order distribution statistics

not captured by the popularly used two-point correlation function. The GLSSC is the largest

ever observational catalogue of large scale structure to date, and will be available for public

use alongside the second data release of GAMA.

I have identified a new, third population of galaxies, straddling between filaments and

voids, that are referred to as ‘tendril’ galaxies. Tendrils are coherent structures formed by

isolated field galaxies that span, on average, 10 h�1 Mpc, emerging from filaments and pene-

trating into voids, or connecting to other filaments. Tendrils are both visually morphologically

distinct from filaments, and are also shown to have less linear correlation than filaments, by

measuring their line correlation function (Figure 4.16, Obreschkow et al., 2013). This mea-

surement reveals that galaxies in voids show very little line correlation, however it is unclear

if deeper measurements of the same region of space would reveal further underlying, unseen

structures around these void galaxies. What is certain, however, is that we must update cata-

logues of known voids to reflect surveys that have taken place after SDSS: examining GAMA

galaxies within SDSS voids shows that even when looking at only the inner two thirds of a void,

only 25% of the galaxies within it are actually considered to be void galaxies in GAMA. This

is an important result that highlights the necessity of deeper, more complete surveys of low

density regions, and the careful consideration of survey selection limitations when studying

the properties of voids.

The final portion of this thesis is a preliminary study of the properties of galaxies as a
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function of large scale structure and other large scale environments. Such a study has not been

possible in the past due to the lack of sufficiently complete catalogues of the diverse structures

in the Universe. To a first approximation, 72.6% of stellar mass of galaxies is contained in

filaments, while 23.8% and 8.1% are contained in tendril and void galaxies respectively. In

fact, galaxies in a variety of environments have distinct galaxy stellar mass functions as shown

in Figure 5.5. The CSED of void galaxies is shows higher flux in UV and IR bands. By examining

a set of galaxies in different environments that are mass complete and normalised to have

matching mass PDFs, I show that void galaxies tend to be blue, faint, less elliptical, and have

lower Sérsic indices when compared to galaxies in tendrils and filaments. Figure 5.10 shows

that galaxies in different environments behave in similar ways: objects in voids, outside of

groups, and outside of pairs are all overwhelmingly blue and faint, while halo mass is not

a great discriminator of colour and morphology. All of these results paint the picture of a

Universe where, secondary to the effects of stellar mass, local density and membership within

a pair, a galaxy’s presence within a large structure is more relevant to its properties than the

nature of the structure itself. It is important to note that many of these results do rely on

GAMA data catalogues that are preliminary and are subject to change, but do pave the way

for future studies.

6.1 Future work

My current research interests are to understand the impact of large scale structure on galaxy

evolution, and to further study my sample of void galaxies. I aim to continue my research by

gaining access to the wealth of deeper, greater resolution photometric data currently being

delivered by the VST KIDS and VISTA VIKING surveys as well as future data from the ASKAP

DINGO survey and upcoming deeper GAMA catalogues. I am particularly interested in revis-

iting the final chapter of the thesis once these more complete catalogues are in place. Future

avenues of research I am interested in are as follows:

Existing void galaxy surveys (e.g. Kreckel et al., 2012) show that void galaxies are more

faint and more blue than their counterparts in more dense environments. For the final chapter

of my Ph.D. thesis, I am exploring the effects of large scale structure on properties such as

luminosity, Sèrsic index, specific star formation rate, and colour. Using this deeper data and

combining it with existing work such as the GAMA Group Catalogue (Robotham et al., 2011),

I will be able to determine if it is the nearby halo environment, or large scale structure that has
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the greatest effect on galaxy properties. Figure 5.12 is a preliminary calculation of the cosmic

spectral energy density (CSED; Driver et al., 2012) of filament, tendril and void galaxies with

z  0.1 and M⇤ � 109.5M� from the GLSSC. This early work indicates at some differences

in the ultraviolet and far-IR energy outputs of void galaxies, and is based on an early version

of a 20 band GAMA photometry catalogue. I hope to generate similar CSEDs for galaxies in

different environments (different halo masses, central galaxies of groups, and within pairs) to

further understand what scale environment affects galaxies most. The structural catalogues

to do this work are already in place within GAMA and the improved full MAGPHYS DMU is

soon to be in place.

My sample of well-defined, isolated void galaxies presents an unprecedented opportunity

for the study of gas and dust in these low density environments. This data will provide new

insights into how stellar populations and star formations of galaxies are impacted by the dy-

namics of gas and dust in low density environments, especially when compared to galaxies in

filaments. Understanding the gas content of voids is crucially important to shed light on the

impact of galaxy evolution in underdense environments.

While measuring the excess line correlation function (Obreschkow et al., 2013) of GLSSC

void galaxies shows that they are not embedded in any kind of linear structure, it is important

to determine if a deeper survey would indeed reveal further underlying structure in voids, and

around void galaxies. It is therefore crucial to not only understand and quantify the impact of

observational survey parameters on the sizes of voids, but also to preemptively calculate line

correlation functions for galaxies in voids within simulations that mimic different observational

depths for surveys.

One of the most compelling results of the structure catalogue is the discovery of tendrils

of galaxies. Not only do these galaxies exist in a previously unexplored environment, but they

also challenge the current understanding of the sizes and shapes of voids, as they are largely

undetected in other galaxy surveys. By rerunning my filament-finding algorithm on existing

GAMA data with a lower magnitude and redshift cut, I will be able to detect filamentary struc-

tures at lower mass regimes close to M⇤, providing an insight into testing formation processes

of galaxies at the threshold of high density and low density environments when combined

with detailed simulations on the cluster scale. Figure 5.2 displays 500 ⇥ 500 kpc/h postage

stamps for galaxies in tendrils across their range of u�r colour and stellar mass, and highlights
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the large variety in morphologies and colours that these galaxies possess. New photometric

data from the KiDS survey will also help to underpin the nature of these objects, and HI data

from the ASKAP DINGO survey will help to reveal if these structures carry gas from voids into

filaments and clusters.
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A
IOTA and the aperture matched photometry

catalogue

A.1 Introduction

With GAMA being a large collaboration spanning multiple institutions and a large number of

individual researchers, it is very important to be able to maintain a central database containing

all of the research output of the team. This not only allows for a standardisation of all of our

data, but also makes it easier for collaborations within the team to be formed. To this end,

GAMA’s data has been organised into Data Management Units (DMUs), with one person being

in charge of each DMU. These range from stellar masses to a group catalogue, and many of

these data catalogues depend explicitly on the r-band aperture matched photometry catalogue,

which I was responsible for constructing and maintaining. Every DMU used in calculating the

observational parameters examined in Chapter 5 depend on this photometry, so it is important

to understand how it was put together. The work described in this appendix has been done in
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conjunction with Edward Taylor, Aaron Robotham, and Simon Driver.

Aperture matched photometry provides a reliable method for delivering photometry across

a large number of wavelengths for the same source. By fixing the aperture on the object in the

best possible image, one ensures that image degradation in other bands will have a lesser effect

on the quality of the photometry. It also ensures uniformity on parameters based on aperture

size, most notably measurements of object size and certain types of flux and consequently,

magnitude measurements. For the case of GAMA, whose imaging data at the time of the

making of this photometry catalogue is from the SDSS Seventh Data Release(ugriz Abazajian

et al., 2009) and UKIDSS LAS Early Data Release (EDR) (Dye et al., 2006) and First and Second

Data Releases (Lawrence et al., 2007; Warren et al., 2007; Warren et al., 2007 YJHK), the r-

band imaging data has been used to generate the survey’s input catalogue. Therefore all of

our sources are r-band selected, motivating the photometry to be matched to the r-band as

well.

GAMA brings together the results of a number of different surveys conducted using various

instruments and data reduction pipelines. A natural requirement of preparing this collection of

data for any further analysis is to homogenise it as much as possible. These data are provided

to the survey in their most raw form possible; as individual data frames typically consisting

of 2048⇥ 1489 pixels for SDSS and 2072⇥ 2072 pixels for UKIDSS LAS with pixel scales of

0.39600/pixel and 0.400/pixel respectively. Note that the entirety of the UKIDSS J and EDR

fields of the H and K bands are microstepped, with sizes of 4103⇥4103 pixels and 0.200/pixel

scales. The initial reprocessing of this data is described in great detail in Hill et al. (2011) and

a summary is given below.

A.2 Data processing and SWarps

After being downloaded from their respective databases (SDSS DR7 and ROE/WAFU), the

images are rescaled to a single uniform zero-point of 30 magnitudes. Following renormali-

sation, the data are convolved to a common seeing of 200. This is done to ensure a uniform

image quality across all images, and the value of two arceseconds is chosen such that 95%

of images experience a degradation of their PSFs (as increasing the quality of the PSF would

be impossible). This process is done via initially measuring the seeing values directly from

each frame using PSFEX (Bertin, 2011); each frame is then convolved, using FGAUSS from the
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FTOOLS package1 with a Gaussian whose full-width half-maximum is such that the measured

PSF is converted to 200. The seeing of each convolved frame is measured once again after the

convolution process, along with the pixel scale using WCS information from the header (this

is particularly important for determining which frames are microstepped when convolving

UKIDSS frames). The results of this process can be seen in Figure A.1. There is a slight offset

from the required value of 2 arcseconds; this is caused by virtue of the fact that we convolve

the seeing–which we assume is Gaussian–with another Gaussian, when in practice the profile

of the seeing is closer to a Lorentzian, rendering this assumption somewhat invalid. Due to

this, the final PSF of the convolved frames isn’t exactly centred on 2 arcseconds. Log files are

generated and kept for each step of this process, to ensure maximum reproducibility.

As part of the process of improving the overall quality of the GAMA mosaics, a visual in-

spection of all frames whose original PSF values were deemed to be unrealistic (> 300) was

undertaken. In the YJHK bands, we respectively discovered 33, 13, 49 and 48 frames (alter-

natively, we retain 95.2% of fields in the Y and J bands, and 97.5% in the H and K bands)

whose image quality had degraded past the point of acceptability, due to either star trails or

improper focusing. Examples of both of these are shown in Figure A.2. The origin or cause

of these poor images is not known, however they had been present in earlier versions of the

mosaics, so their removal has increased the overall image quality of the new GAMA mosaics.

Maps showing regions where frames are removed are shown in Figure A.3.

Once the remaining data have all been convolved, SWARP (Bertin et al., 2002) is used to

stitch frames together into large so-called mosaics. SWARP is an image resampling and co-

addition software that is designed to work primarily with FITS images, with the additional

capacity to stitch images together using a varied number of different projections. When run-

ning SWARP the user provides the program with a list of images to put together, as well as

a configuration file containing values for a number of parameters used in making the output

images. In addition to generating co-added images, it can also output weight-maps which are

analogous to the output images, but provide information on how accurate the flux reading at

each pixel is. Another important property of SWARP is background subtraction: this is to ac-

count for systematic large-scale gradients across individual frames caused by instrumentation.

Given that the flux at each pixel is some combination of signal and noise, it is important to

be able to accurately remove any noise components from the data. Without background sub-

1http://heasarc.gsfc.nasa.gov/lheasoft/ftools/
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Figure A.1: Three plots showing the initial distribution of PSF values for all frames in each band before
convolution (top panel) and after convolution (middle and lower panels). Note that the colour legend
remains unchanged in all three frames. Also note the drastic increase in sharpness of the distribution
of PSFs post-convolution, as shown by the scale of the y-axis.
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Figure A.2: Two examples of bad imaging quality in the raw UKIDSS frames. The left image, in the
H-band shows the commonly seen effect of star trails. On the right panel, this time in the K-band is
a distinctive ‘donut’-like shape that is present in almost all unfocused images. Note that these images
have not been altered past their original state except for having been renormalised to a zeropoint of 30
magnitudes.

Figure A.3: Coverage for the v2 mosaics in the YJHK bands, where each band is plotted with a declina-
tion offset. Blue areas show regions where there is no flux in the mosaics, indicating a removed frame
or missing data. We have not plotted this information for the ugriz data, as the SDSS mosaics are 100%
complete saved for masked regions.
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traction, a co-added image often displays a ‘patchwork’ style pattern where different frames

meet.

For each input image, prior to co-addition, SWARP begins the background subtraction pro-

cess by overlaying a grid onto the image, whose size is specified by the user. Within this grid,

the mean and � of the pixel values is computed, then iteratively clipped by discarding outliers

until convergence at ±3� abound the mean. If, during this entire process, the � value drops

less than 20%, the image is considered to be ‘not crowded’ and the background value is con-

sidered to be the mean. Alternatively, the background is set to be 2.5⇥ the median �1.5⇥ the

mean. The full background map is then computed by interpolating with a bi-cubic spline over

all grids covering the image. Optionally, the background map can be further smoothed with a

median filter by a second, smaller mesh. It is recommended to set a grid size that is greater

than the average size of the objects in each image; within GAMA we use background sizes of

512⇥ 512 pixels, with a smoothing size of the map of 3⇥ 3 pixels; the default value. These

parameters are specified using the BACK_SIZE and BACK_FILTERSIZE parameters for SWARP.

We generate one mosaic (consisting of a composite image and its corresponding weight-

map) per band per field, resulting in a total of 27 (9⇥3) frames for the current GAMA I fields.

These mosaics have resolutions of 0.33900/pixel, sizes of at least 193900⇥ 79700 pixels, and

are put together using a TAN projection centred on the given GAMA field being shown in the

mosaic. Alongside these SWARPed images we also create a set of corresponding weight maps,

which are primarily used to determine which sources are found in which frame.

A.3 IOTA

The Input/Output Tiling Analysis (IOTA) forms the backbone of the creation process for the

aperture matched photometry catalogue. Originally created using code written for the SIGMA

algorithm by Kelvin et al. (2012), this algorithm has since been heavily modified by the author

of this thesis. In brief, IOTA is a script and wrapper written with the R statistical programming

language built primarily around preparing imaging data to be fed into the Source Extractor

(SEXTRACTOR) software package (Bertin & Arnouts, 1996) and collating the output of the pro-

gram into a compact catalogue. Overall, the algorithm has two main parts: the first focussing

on creating cutouts from the master GAMA mosaics centred around the galaxy to be analysed,

and the second on running SEXTRACTOR in matched-aperture mode on all 9 bands and amal-
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gamating the outputs into a single catalogue. When running IOTA from the command line,

the user can specify a number of options, including how many processors the script runs on,

how the results are presented, if the code should only generate a subset of results, and which

input catalogue to use.

IOTA is designed to run through an input catalogue of objects and measure the photome-

try for each one individually. The code is designed to work around objects within the GAMA

database (which contain a unique GAMA ID), or from the SDSS catalogue (using their unique

OBJID identifier), however any input catalogue containing objects named with a unique iden-

tifier will do. Besides this identifying information, all IOTA needs are the RA and Dec of each

object, as well as the directories and filenames of the mosaics where it must perform the pho-

tometry.

The input catalogue used to generate the new aperture matched photometries was orig-

inally put together from GAMA’s TILINGCATV16 (Baldry et al., 2010), which contains science

targets for our spectroscopic observations, as well as other information from the SDSS survey.

This catalogue contains objects from the first phase of the survey; however the mosaics used to

measure the photometry are from the second phase, and therefore have better overall imaging

quality and are correctly processed to the right seeing. Furthermore, they encompass a larger

area. From TILINGCATV16 we pick out all objects whose SURVEY_CLASS parameter is � 3

(this is an internal GAMA variable that determines if an object belongs to the main survey or

not), giving 152,742 galaxies down to an r-band magnitude of 19.8 and an average redshift

of 0.22.

A.3.1 Source Extractor

SEXTRACTOR is an automated object detection and photometry program originally developed

as part of the TERAPIX pipeline for image processing of MEGACAM data. Nowadays it is

broadly used for performing high-speed photometric measurements for large datasets and FITS

files. It is a highly controllable piece of software, and is almost entirely user-configurable; this

carries the benefit that it will almost always work, but its results can often be nonsensical

without the proper configuration files. Besides its speed, the primary draw of SEXTRACTOR for

IOTA is its ability to detect sources in one image and do photometry in the other.

When running SEXTRACTOR the user specifies the location of a configuration file, within

145



Appendix A. IOTA and the aperture matched photometry catalogue

which one has previously specified the values and options for a large number of configuration

parameters, each of which governs one aspect of the program’s function; from object detec-

tion to background subtraction. The user must also specify a file which contains a list of the

output parameters desired–these are also wide ranging, measuring various kinds of fluxes and

magnitudes as well as a myriad of other photometric values.

For SEXTRACTOR to consider something to be an object, it must satisfy the following re-

quirements:

1. All pixels in the object must have flux values above a minimum threshold, specified by

the DETECT_THRESH parameter.

2. All these pixels must be adjacent to each other.

3. There must be more than a certain number of pixels in the object, specified by DE-

TECT_MINAREA.

The detection threshold parameter can be given in units of surface brightness, ADUs, or

relative to the background RMS; this final option is the default one and the one used in this

script. There is also the option of applying a filter to the image prior to detection. This has

the effect of smoothing the image, and is not used in IOTA. Following object detection, SEX-

TRACTOR examines groups of pixels to determine if they are indeed one object, or a blend

of multiple objects; this process is called deblending and is described in greater detail below.

SEXTRACTOR then performs its photometric measurements on what it has determined to be

objects, and outputs these variables as a catalogue in a number of possible formats.

A.3.2 Image preparation and CUTTERPIPE

Given the size of the input catalogue at roughly 150,000 galaxies, it would be prohibitively

computationally intensive to load up every single mosaic for each band into SEXTRACTOR for

every galaxy. Given that each mosaic is roughly 60GB in size and measures hundreds of thou-

sands of pixels in size, approaching the analysis this way would be highly inefficient. As a

workaround to this, IOTA utilises the CUTTERPIPE script first developed by Lee Kelvin for use

in the SIGMA pipeline (Kelvin et al., 2012) to generate cutouts of each galaxy in all 9 bands

from the master GAMA mosaics.

Following sample definition and preparation, described above, IOTA begins to loop over
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each galaxy in the sample. Initially, a tree of folders is created to house the outputs of CUT-

TERPIPE and SEXTRACTOR are created for the galaxy in question. IOTA then runs CUTTERPIPE

and generates a cutout from the master GAMA mosaics in all 9 bands, which are stored in the

folders that have been created. By using the WCS information contained in the header of the

mosaics to convert the RA and � of the target into x and y pixel coordinates, CUTTERPIPE is

able to create a 400⇥400 pixel cutout centred on the galaxy in each band; this corresponds to a

region of approximately 13500 ⇥13500, which is sufficiently large to encompass even the largest

galaxies in GAMA. Transferring these cutouts into SEXTRACTOR is considerably less resource-

intensive, and this workaround forms the single most time-saving feature of this routine. The

r-band cutout is referred to as the master cutout.

A.3.3 Source extraction and photometry

The cutout images are sequentially fed into SEXTRACTOR operating in matched aperture mode.

In this setting, the program takes two images; the first is used for object detection and the

placement of the aperture, and the same aperture in the same location is used on the second

image to take photometric measurements. As discussed previously, this method is preferred

over single band photometry as GAMA’s entire survey sample is defined on r-band imaging

from the SDSS. For each galaxy, IOTA runs SEXTRACTOR 9 times; first in single band mode for

the master cutout, followed by dual band mode for all other bands (ugizYJHK). The catalogue

output of each SExtractor run is saved as a separated comma separated variable (CSV) table,

from which the target object is extracted at the end of the run. Finally, all information from

each CSV table is collated into a single row and appended onto the master catalogue. Given

that our cutouts have areas of approximately 13500⇥13500, it is to be expected that SEXTRACTOR

will detect and analyse other nearby objects to the target galaxy. To ensure that IOTA only

catalogues results pertaining to the target galaxy, the results of the SEXCTRATOR object whose

position is the shortest distance away from the target galaxy’s position in x and y co-ordinates

is transferred to the master catalogue.

SEXTRACTOR is a highly customisable source extraction software that relies on a large num-

ber of input parameters to obtain its results. Of these, the most relevant to the work done by

IOTA are the parameters concerned with the issue of deblending objects that are visually close

to each other or overlapping. Following object detection (governed by parameters concerned

with thresholding), SEXTRACTOR goes on to break up the detections into different objects by
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Figure A.4: An illustration of a one-dimensional representation of how SEXTRACTOR goes through
the deblending process. Here the horizontal subdivisions in density represent the different levels de-
termined by DEBLEND_MINCONT, with the greyscale highlighting under the red curve showing the
DEBLEND_MINCONT fraction. Here, A is considered to be a branch because B is another branch at a
higher level, with a higher fraction of the total flux.

deblending them.

Deblending in SEXTRACTOR is based around a ‘tree’ analysis. For a given object (a collec-

tion of adjacent pixels whose flux value is above the one specified by the DETECT_NTHRESH

parameter), the program constructs such a ‘tree.’ A number of levels, whose quantity is deter-

mined by the DEBLEND_NTHRESH parameter are defined between the maximum flux count

of the object and the detection threshold. The tree’s branches are then regions of pixels

whose flux is above a certain fraction of the total flux count of the entire object, given by

DEBLEND_MINCONT. If there is at least one other branch above this level that is also above

this fraction, then both objects are deblended. This point is clarified in Figure A.4, where the

deblending process is illustrated in one dimension.

The deblending parameters chosen to be used in IOTA are such that SEXTRACTOR makes a

large number of deblending levels (DEBLEND_NTHRESH= 32) and the DEBLEND_MINCONT
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parameter is set to 0.00005 (where 0.001 correspond to 1% of flux). This ensures that when

objects are blended together, it is very likely that SEXTRACTOR will deblend them – these

settings would be rather ungainly for a blind source detection run as it would yield far too

many false deblends, but in the case of IOTA where we are seeking photometry on targeted

sources, it is ideal. More importantly, we must enforce a rigorous set of deblending parameters

to compensate for convolving our mosaics to a seeing of 2 arcseconds, which in many cases

will cause tightly clustered sources that would otherwise be separable in the higher quality

original data to overlap. To ensure optimal results, a vast number of different combinations

of these parameters were tested on a busy SDSS r-band field using the Graphical Astronomy

Image and Analysis Tool (GAIA)2. GAIA is an image viewer that is designed to work with FITS

files, but is also able to run its own internal version of SEXTRACTOR with the added benefit

of displaying the apertures placed around each object within the image viewer; this makes it

ideal to experiment with different configuration parameters.

Following source extraction in all bands with proper deblending parameters, IOTA collects

all 9 output catalogues and, from each, selects the row containing the object that is geomet-

rically closest (i.e. the target i for which
p
(xi � xcen)2 + (yi � ycen)2 is minimal) to the SDSS

target object on the SWARPED mosaic, as all other detections will be for untargeted objects.

The average pixel separation is⇡ 0.736 pixels. A full distribution of pixel separations for all of

IOTA is shown in Figure A.5 These 9 rows are then stitched together into a single catalogue en-

try(where all self-similar entries such as object position are removed) and added to the master

IOTA catalogue. A summary of results for the particular object is printed both onto the user’s

console screen and into a log file for record-keeping and investigation should an error occur.

As IOTA is designed to run through an input catalogue and analyses objects from it in

order, it is a rather simple process to parallelize. The option to split IOTA into any number of

sub-processes can be specified by the user as a start-up command. In generating the matched

aperture photometry catalogue, IOTA was run on a 16 processor computer at the University of

St Andrews, allowing us to spawn up to 16 IOTA sub-processes, greatly reducing the total run

time for the script.

2http://star-www.dur.ac.uk/ pdraper/gaia/gaia.html
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Figure A.5: The distribution of pixel separation values for all objects in IOTA. The transparent line
represents the smoothed density distribution of the values shown in the histogram, and the dashed
blue line lies on the mean value.

A.4 Matched aperture photometry catalogue

IOTA’s final result is the second version of the matched aperture photometry catalogue, dubbed

APMATCHEDCATV2, containing Kron and Petrosian photometry in 9 bands for all 152,742 ob-

jects in the input catalogue. Alongside these photometric parameters, the catalogue also con-

tains a number of other SEXTRACTOR outputs; most notably estimators on position angle and

object size (in pixels). Any SEXTRACTOR error flags are also kept.

The most immediate comparison one can make using this data is to plot it against the

photometry from the first version of the catalogue; this is shown in Figure A.6. In most cases,

particularly for the optical bands, there is excellent agreement between both versions of the

catalogue, however this is less the case for the NIR bands; this is to be expected due to the

reconstruction of the mosaics in these bands, from which the photometry is measured. Any

object falling above the green line is brighter (i.e. v2 > v1) in the v1 catalogue, while the

opposite is true for objects below the green line. The density plots shown on the right panels

are particularly useful for identifying this change, as they are not centred on 0.

Another visualisation of this comparison is to examine the relationship between photome-

try in different bands in both catalogues. In an ideal scenario, a PDF describing the distribution

of r � u magnitudes, for example, would be a Gaussian distribution. Introducing a source of

well understood, ideal errors, we would expect this Gaussian distribution to be spread out. It
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Figure A.6: Comparison of photometry between v2 and v1 of the matched aperture photometry cata-
logue in all 9 bands. The rotated density plots shown to the right of the scatter plots show a projected
distribution of all the data for that band, and are particularly useful for identifying upwards or down-
wards shifts in the photometry. The green dashed lines are drawn on the � mag = 0 line and the red
lines show means and standard deviations for the density plots.
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Figure A.7: Colour magnitude plots, with the red text in each panel displaying the bands being com-
pared. The blue and black lines show the distribution for v2 and v1 photometry catalogues respectively.
In a small number of cases, most notably for the z-band this distribution sharpens in the new version.

follows therefore that smaller errors would tighten up this Gaussian once again. By comparing

the PDFs of r � X band magnitudes (where X refers to all other bands) between v2 and v1

of the catalogues and looking for changes in the spread of both distributions, we can make

an assessment as to the presence of any improvement in our measurements and errors. This

comparison is plotted in Figure A.7.

In many cases, however, this difference is not seen. A tightening of the distribution is most

notable in the r � z case, where the version 2 photometry has a visibly higher central peak.

To a lesser degree, this is also visible in the r � i panel. The overall shift in the distributions

shown in the r � Y and r � J reflects the off-centre PDF for these bands shown on the right
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hand side of Figure A.6 and is a reflection on the reconstruction of the mosaics in these bands

– the effect is less noticeable in the H and K bands because this data contains fewer frames

that were microstepped. That the distribution has only shifted for the r � Y and r � J bands

indicates that correcting the mosaics has not changed the associated magnitude errors as much

as it has the photometry itself.

A.4.1 Errors

Much of the work in this subsection has been done in conjunction with Edward Taylor. The

errors for the catalogue come straight from SEXTRACTOR’s photometric errors, which them-

selves are calculated from flux errors and the noise measurements of each pixels. These errors

are often underestimates due to correlations of flux between neighbouring pixels; but if we

assume that the errors can be trusted to map variations in photometric noise as a function of

position or aperture size, then we can calibrate our errors. Assuming the SDSS and UKIDSS-

LAS surveys before us have adequately estimated photometric errors in their imaging data, we

can apply some corrections to our errors in order to match them to this data, as all catalogues

come from the same imaging data. In the case of the optical data, this scaling has been done

via the following expression:

�mf =
�
A2�mi � b2
�0.5

(A.1)

where �mf and �mi refer to the scaled and unscaled magnitude errors; and A and b are

to parameters that describe the transformation from SEXTRACTOR errors to SDSS-calibrated

errors. Had GAMA used the same aperture sizes as the SDSS, a mere object-object match would

have sufficed for error calibration. Instead, we must compare objects between SDSS and GAMA

whilst controlling aperture size and flux. We can therefore rescale IOTA uncertainties so that

they match SDSS errors within fixed bins of magnitude and aperture size, arriving at A and b.

A similar analysis for UKIDSS-LAS data is currently impossible, as this survey does not report

aperture sizes. We are therefore limited to rescaling our near-IR errors by a single factor to

match the two distributions of errors as closely as possible.

Where SEXTRACTOR fails to calculate a magnitude (for whatever reason) the default value

returned is 99. Any nonsensical results for flux, background measurements or the full-width

half-maximum of the image are usually caused by failures in SEXTRACTOR; in these cases
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one can consult the flags returned by the program, which are also present in the photometry

catalogue. In cases where objects are located in the frames removed by visual inspection, their

magnitude is set to -99, their fluxes to 0 and all associated errors to 1E99.
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Regős, E., & Geller, M. J. 1989, Astrophysical Journal, 98, 755

Rieder, S., van de Weygaert, R., Cautun, M., Beygu, B., & Portegies Zwart, S. 2013, Monthly
Notices of the Royal Astronomical Society, 435, 222

Rines, K., & Diaferio, A. 2006, Astrophysical Journal, 132, 1275

Rines, K., Geller, M. J., Kurtz, M. J., & Diaferio, A. 2003, Astrophysical Journal, 126, 2152

Robotham, A. S. G. et al. 2010, Publications of the Astronomical Society of Australia, 27, 76

——. 2013, Monthly Notices of the Royal Astronomical Society, 431, 167

——. 2011, Monthly Notices of the Royal Astronomical Society, 416, 2640

Ryden, B. S. 1995, Astrophysical Journal, 452, 25

163



Bibliography

Sahni, V., Sathyaprakash, B. S., & Shandarin, S. F. 1998, Astrophysical Journal, Letters, 495,
L5

Saunders, W. et al. 2000, Monthly Notices of the Royal Astronomical Society, 317, 55

Schechter, P. 1976, Astrophysical Journal, 203, 297

Schectman, S., Landy, S., Oemler, A., Tucker, D., Kirshner, R., Lin, H., & Schechter, P. 1995, in
Wide Field Spectroscopy and the Distant Universe, ed. S. J. Maddox & A. Aragon-Salamanca,
98

Serra, A. L., Diaferio, A., Murante, G., & Borgani, S. 2011, Monthly Notices of the Royal
Astronomical Society, 412, 800

Shectman, S. A., Landy, S. D., Oemler, A., Tucker, D. L., Lin, H., Kirshner, R. P., & Schechter,
P. L. 1996, Astrophysical Journal, 470, 172

Sheth, R. K., & van de Weygaert, R. 2004, Monthly Notices of the Royal Astronomical Society,
350, 517

Silverman, B. W. 1986, Density estimation for statistics and data analysis

Smith, A. G., Hopkins, A. M., Hunstead, R. W., & Pimbblet, K. A. 2012, Monthly Notices of the
Royal Astronomical Society, 422, 25

Sousbie, T. 2011, Monthly Notices of the Royal Astronomical Society, 414, 350

Sousbie, T., Colombi, S., & Pichon, C. 2009, Monthly Notices of the Royal Astronomical Society,
393, 457

Sousbie, T., Pichon, C., Colombi, S., Novikov, D., & Pogosyan, D. 2008, Monthly Notices of the
Royal Astronomical Society, 383, 1655

Springel, V. et al. 2005, Nature, 435, 629

Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini, M., Dickinson, M., & Giavalisco, M.
2003, Astrophysical Journal, 592, 728

Stoica, R. S., Martínez, V. J., & Saar, E. 2010, Astronomy and Astrophysics, 510, A38

Strauss, M. A. et al. 2002, The Astronomical Journal, 124, 1810

Sutter, P. M., Lavaux, G., Wandelt, B. D., & Weinberg, D. H. 2012, Astrophysical Journal, 761,
187

Tanaka, M., Hoshi, T., Kodama, T., & Kashikawa, N. 2007, Monthly Notices of the Royal Astro-
nomical Society, 379, 1546

Taylor, E. N. et al. 2011, Monthly Notices of the Royal Astronomical Society, 418, 1587

Tempel, E., Stoica, R. S., Saar, E., Martinez, V. J., Liivamägi, L. J., & Castellan, G. 2013, ArXiv
e-prints, 1308.2533

164



Bibliography

Thompson, L. A., & Gregory, S. A. 2011, An Historical View: The Discovery of Voids in the
Galaxy Distribution

Toomre, A., & Toomre, J. 1972, Astrophysical Journal, 178, 623

Tucker, D. L. et al. 2000, Astrophysical Journal, Supplement, 130, 237

Valentinuzzi, T. et al. 2011, Astronomy and Astrophysics, 536, A34

van de Weygaert, R., & van Kampen, E. 1993, Monthly Notices of the Royal Astronomical
Society, 263, 481

Velander, M. et al. 2014, Monthly Notices of the Royal Astronomical Society, 437, 2111

Vettolani, G. et al. 1997, Astronomy and Astrophysics, 325, 954

Warren, S. J. et al. 2007, ArXiv Astrophysics e-prints

Warren, S. J. et al. 2007, Monthly Notices of the Royal Astronomical Society, 375, 213

Watson, C. R. et al. 2009, Astrophysical Journal, 696, 2206

Weinmann, S. M., van den Bosch, F. C., Yang, X., & Mo, H. J. 2006, Monthly Notices of the
Royal Astronomical Society, 366, 2

White, S. D. M. 1979, Monthly Notices of the Royal Astronomical Society, 186, 145

White, S. D. M., & Rees, M. J. 1978, Monthly Notices of the Royal Astronomical Society, 183,
341

Williams, R. J., Mulchaey, J. S., Kollmeier, J. A., & Cox, T. J. 2010, Astrophysical Journal,
Letters, 724, L25

Yee, H. K. C. et al. 2000a, Astrophysical Journal, Supplement, 129, 475

——. 2000b, Astrophysical Journal, Supplement, 129, 475

Zappacosta, L., Nicastro, F., Maiolino, R., Tagliaferri, G., Buote, D. A., Fang, T., Humphrey, P. J.,
& Gastaldello, F. 2010, Astrophysical Journal, 717, 74

Zehavi, I. et al. 2011, Astrophysical Journal, 736, 59

——. 2005, Astrophysical Journal, 630, 1

Zel’dovich, Y. 1970, Astronomy and Astrophysics, 5

165


	Declaration
	Copyright Agreement
	Collaboration statement
	Abstract
	Filaments, voids, and the growth of large scale structure
	Large scale structure
	Constraining cosmology
	How does large scale structure impact galaxies?

	Filament finders
	Density based filament finders
	Friends-of-friends filament finders


	The Galaxy and Mass Assembly survey
	Galaxy and Mass Assembly
	The GAMA Group Catalogue
	The mock GAMA group catalogue


	Verification of the GAMA group catalogue masses and groupfinder effectiveness
	The caustic mass method - background
	The caustic mass method - algorithm

	Caustic mass estimates of groups
	Sensitivity to definition of group centroid
	Sensitivity to definition of group radius
	Caustic mass estimation in mock groups
	Caustic mass estimation in observed groups

	Summary and discussion

	The GAMA Large Scale Structure Catalogue
	Data
	GAMA Group Catalogue
	Sample selection

	Filaments and large scale structure
	Minimal spanning trees and Scooper
	walk
	makebranch
	Filament catalogue

	Tendrils
	The excess line correlation of LSS
	Shrinking voids

	Comparison of LSS to mocks
	Discussion and summary

	The properties of galaxies as a function of environment
	GAMA catalogues
	Sub-sample selection and mass normalisation
	The impact of large scale structure on galaxy properties
	Broad 2D distributions
	Metallicity
	1D distributions
	Elliptical fraction
	Total energy (CSED)

	Summary of results

	Conclusions and future work
	Future work

	IOTA and the aperture matched photometry catalogue
	Introduction
	Data processing and SWarps
	IOTA
	Source Extractor
	Image preparation and cutterpipe
	Source extraction and photometry

	Matched aperture photometry catalogue
	Errors


	Acknowledgements
	Bibliography

