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José A. Bengoechea4,5¤b, Richard E. Randall2, Juan Ortı́n1,5*

1 Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologı́a (CSIC), Madrid, Spain, 2 School of Biology, Centre for Biomolecular Sciences, University
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Abstract

The NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein
expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here
we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN
response upon infection. A random library of virus ribonucleoproteins containing circa 40 000 point mutants in NS1 were
transferred to infectious virus and amplified in MDCK cells unable to respond to interferon. Viruses that activated the
interferon (IFN) response were subsequently selected by their ability to induce expression of green-fluorescent protein (GFP)
following infection of A549 cells bearing an IFN promoter-dependent GFP gene. Using this approach we isolated individual
mutant viruses that replicate to high titers in IFN-compromised cells but, compared to wild type viruses, induced higher
levels of IFN in IFN-competent cells and had a reduced capacity to counteract exogenous IFN. Most of these viruses
contained not previously reported NS1 mutations within either the RNA-binding domain, the effector domain or the linker
region between them. These results indicate that subtle alterations in NS1 can reduce its effectiveness as an IFN antagonist
without affecting the intrinsic capacity of the virus to multiply. The general approach reported here may facilitate the
generation of replication-proficient, IFN-inducing virus mutants, that potentially could be developed as attenuated vaccines
against a variety of viruses.
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Introduction

The influenza A viruses are human pathogens causing annual

epidemics and occasional pandemics of respiratory disease that

have a large public health and economic impact [1,2]. As

members of the Orthomyxoviridae family they have a segmented,

single-stranded RNA genome of negative polarity [3]. These RNA

molecules are assembled into ribonucleoprotein particles (RNPs),

containing the viral polymerase and multiple nucleoprotein (NP)

monomers [4,5], that are responsible for viral transcription and

replication [6–8]. Interestingly, these processes take place in the

nuclei of infected cells, which implies numerous interactions with

the gene expression machinery of the cell [9–13]. In fact, viral

transcription is dependent on RNA polymerase II activity [14,15],

consistent with the use of cell-derived capped oligonucleotides as

primers for viral mRNA synthesis [16,17]. Viral RNA replication

generates progeny RNPs similar to those present in the virion [5–

8] that are exported from the nucleus by a CRM1-dependent

pathway [18,19].

The process of virus infection is detected by the cell using

sensors collectively named pattern recognition receptors -PRRs-

[20] that recognize virus-specific patterns (pathogen-associated

molecular patterns -PAMPs-). Among these sensors, RIG-I is

relevant during influenza virus infection [21–23] and recognizes

regions of dsRNA containing a 59-triphosphate [24,25]. Activated

RIG-I signals downstream by interacting with the mitochondrial

protein IPS-1/MAVS/VISA/Cardif, which leads to the activation

of IRF3 and NF-kB, and subsequently the production of type I

IFN (reviewed in [26]. Type I IFNs (IFN-a/b) are a group of

cytokines that bind the IFN-a/b receptor, resulting in activation of

the Jak/STAT pathway and subsequent transcription of many

IFN-stimulated genes (ISGs). Some of these genes, like Mx, OAS

and PKR, show direct antiviral activity and reduce the production

of virus progeny [27,28].

Most viruses have evolved countermeasures to limit or delay the

cellular innate immunity by blocking the activation or signaling of

PRRs, inhibiting IFN signaling from the IFN receptor or directly

inhibiting the activity of one or several antiviral ISGs (reviewed in

[28]. In addition, many viruses down-regulate transcription and/
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or translation of cellular genes and hence indirectly inhibit the

induction of IFNs and ISGs. In the case of influenza A viruses, the

anti-IFN response is polygenic as mutations in many viral genes

diminish viral replication efficiency in IFN responsive cells [29]

and it has been reported that alterations in the polymerase or PB1-

F2 genes appear to modulate the response [30,31]. However, the

multifunctional and non-structural NS1 protein is the principal

IFN-counteracting factor of influenza viruses; thus, viruses lacking

NS1 protein expression can not multiply in normal cells but are

viable in cellular systems deficient in innate immunity (although

viral yields are reduced) [32,33]. NS1 can bind many proteins and

RNAs, and although it is non-essential for virus replication, it has

roles in viral protein synthesis, viral RNA replication, virion

production and can modulate cellular post-transcriptional RNA

processing and transport [34–38] (reviewed in [39]. The anti-IFN

action of NS1 is exerted through a combination of several possible

NS1-host cell interactions, such as: (i) down-regulation of new

cellular transcription elongation and post-transcriptional RNA

processing after infection [40–42], (ii) inhibition of RIG-I

activation [21–23,43], (iii) interference with the IFN signaling

[44,45] and (iv) direct inhibition of specific ISGs, like PKR and

RNAse L [46–48].

Here we report a random mutagenesis approach to identify

positions in the influenza A NS1 protein that can modulate the

IFN response upon infection. Individual mutant viruses were

selected using a reporter cell-line in which GFP expression was

under the control of the IFN-b promoter. Isolated viruses led to

increased levels of IFN expression and a reduced capacity to

counteract exogenous IFN during infection. Sequence analysis

revealed that these viruses contained mutations throughout the

NS1 protein.

Materials and Methods

Biological materials
The influenza A strains A/Victoria/3/75 (VIC) and DNS1 [32]

were used throughout. Encephalo-myocarditis virus (EMCV) was

used for IFN bioassay. The MDCK cell line was purchased from

the ATCC and the A549 cell line [49] was obtained from J.A.

Melero. The generation of MDCK-V2 and A549/pr(IFN-b).GFP

cells [50–52] has been described. The A549/pr(ISRE).Luc cells,

stably expressing luciferase under an ISRE promoter were

obtained from G. Adolf, Boehringer Ingelheim, Austria. They

were further engineered to express BVDV/NPro (A549/pr(IS-

RE).Luc-BVDV-Npro) to render them IRF3-deficient and unable

to generate IFN [53]. Antibodies used included monoclonal

antibodies specific for b-actin (Sigma) and phospho-Akt (Ser473;

Cell Signaling Technology) as well as polyclonal antibodies to

ISG56 (Santa Cruz), MxA (Santa Cruz), phospho-IRF3 (Ser396;

Cell Signaling Technology), Akt (pan; Cell Signaling Technology),

cleaved Caspase-3 (Asp175; Cell Signaling Technology) and Stat1

(Cell Signaling Technology). The specific anti-NS1 and anti-NP

rabbit antibodies [54,55], anti-M1 mouse antibodies [56], anti-

NS1 rat antibodies [35] and anti-V2 antibodies [51] have been

described previously.

Virological techniques
Influenza virus plaque assay was carried out on MDCK cells as

described [57]. Viral plaques were revealed either by staining with

crystal violet or by immunocytochemistry using sheep anti-

influenza sera (anti-X31; Diagnostics Scotland) [58]. The antiviral

activity of culture supernatants was determined by cytopathic

effect (CPE)-reduction bioassay. Culture supernatants from cells

infected at 5 PFU/cell were harvested at 24 hpi and centrifuged at

15006g for 10 min to eliminate cellular debris. After UV-

treatment to inactivate residual virus, the supernatants were

serially diluted 2-fold and added to A549/BVDV-Npro cell

monolayers for 24 h prior to infection with ECMV at 0,05 PFU/

cell. The monolayers were fixed 2–3 days thereafter and CPE was

determined by crystal violet staining. The number of wells

protected from infection were converted to IFN bioassay units

using an IFN-a standard.

Generation of a mutant virus library
A NS segment mutant library was generated by mutagenic PCR

using 19.4 mM dPTP and 1.5 mM 8-oxo-dGTP. Amplification was

performed for 10 cycles comprising 400/55uC and 1 min/72uC
followed by a final step of 7 min/72uC using as primers the terminal

sequences of NS segment (59-AGCAAAAGCAGGGTGACAAA-39

and 59- ACAAGGGTGTTTTTTATCAT-39). The mutated PCR

product was used as template for a 30-cycles PCR reaction in the

same conditions but without mutagenic analogues, in which the

primers contained BsmB1 terminal sequences (59- GTCACGTCT-

CATATTAGTAGAAACAAGGGTGTTTTTTATC-39 and 59-

CTGACGTCTCAGGGAGCAAAAGCAGGGTGACAAAGAC-

39). The final PCR product was cloned into the BsmB1 sites of

pHH21 vector [59] and the plasmid library was amplified by high-

density colony plating. The plasmid mutant library was used to

generate recombinant NS RNPs by co-transfection of HEK293T

cells with plasmids expressing viral NP, PB1, PA and his-tagged PB2

[60]. The recombinant RNP library was purified from the

transfected cells by Ni2+-NTA agarose affinity chromatography as

described earlier [60]. To rescue the recombinant RNPs into

infectious virus, cultures of HEK293T cells were first transfected

with a mixture of plasmids expressing PB1, PB2, PA and NP [60]. At

24 hours post-transfection, the cells were further transfected with a

mixture of virion RNPs purified by glycerol density centrifugation

[61] and a molar excess of purified recombinant NS RNPs, using

cationic liposomes [62]. Finally, at 16 hours post-transfection of

RNPs the cells were trypsinised, mixed with a 10-fold excess of

MDCK-V2 cells and plated. When the mixed culture formed a

monolayer, trypsin was added to final concentration of 2.5 mg/ml

and the cells were incubated until complete cytopathic effect was

apparent.

Mutant virus screening
For cell sorting, A549/pr(IFN-b).GFP cells were infected at

0.04 FPU/cell. At 8 hpi, cells were trypsinised, resuspended in

Mg2+- and Ca2+-free PBS and passed through a 30 mm pore filter

to obtain single-cell suspensions. Cell sorting was carried out using

an Influx cell sorter (BD Bioscience) equipped with 5 solid-state

lasers. eGFP was excited with 488 nm laser and collected through

a 517/30 filter. A Forward Scatter versus Side Scatter plot was

used for excluding debris. Data from list files of 10.000 events were

analyzed using Summit 4.3 Software (DAKO). FACS analysis was

performed with A549/pr(IFN-b).GFP cells trypsinised to obtain

single-cell suspension and fixed in PBS/1% formaldehyde. GFP

expression was examined using a BD FACScan flow cytometer

and data were analyzed using FlowJo (Treestar).

Protein analyses
Western blotting and immunofluorescence were carried out as

described previously [63,64]. For immunofluorescence, the

cultures were washed with PBS, fixed with 1% paraformaldehyde

and permeabilized with 0.5% Triton X100 for 5 min. The cells

were blocked with PBS-3%BSA and incubated with primary

antibody diluted in PBS-0.1% BSA, for 1 h at room temperature.

After washing with PBS, the preparations were further incubated
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with goat anti-rabbit, or goat anti-rat antibodies bound to Alexa 488

or Alexa 594 fluorochromes. The preparations were mounted in

Prolong reagent and analyzed by confocal microscopy using a Leica

TSC SP5 microscope. For luciferase assay A549/pr(ISRE).Luc or

A549/pr(ISRE).Luc-BVDV-Npro were infected at 5 FPU/cell and

7 hours later were treated or not with IFN-a (Roferon A, Roche) at

Figure 1. Diagram of the generation of a library of virus mutants affected in the NS RNA segment. (A) A NS cDNA segment was
mutagenised by PCR and cloned into the pHH21 genomic vector [59]. Recombinant NS RNPs were obtained by co-transfection of the plasmid library
with plasmids expressing the polymerase subunits and the NP into HEK293T cells. (B) The recombinant NS mutant RNPs were purified by Ni-NTA-
agarose chromatography and co-transfected into HEK293T cells together with purified wt virion RNPs. The transfected HEK293T cells were then co-
cultured with an excess of MDCK-V2 permissive cells until cytopathic effect was apparent. (C) Diagram of the steps carried out for the generation of
virus mutant library and the subsequent virus selection.
doi:10.1371/journal.pone.0098668.g001
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104 units/ml. At 13 hours post-infection luciferase expression was

determined using the Luciferase Assay System (Promega).

RNA analyses
Virion RNA was purified by treatment with 0.5% SDS and

200 mg/ml proteinase K in TNE for 30 min at 37uC followed by

extraction with phenol-chloroform-isoamylalcohol-hydroxyquino-

lein and ethanol precipitation [65]. Purified RNA was used for

RT-PCR using segment-specific terminal oligonucleotides and the

Titan One PCR system. The reverse transcription reaction was

performed for 30 min at 42uC and then the PCR was performed

for 30 rounds of 94uC for 30 s, 55uC for 30 s, and 68uC for 2930 s

with a final extension time of 7 min at 68uC.

Results and Discussion

Generation and screening of a library of virus mutants
affected in the NS RNA segment

As the NS1 protein is the main countermeasure used by

influenza A viruses to overcome cellular innate immune responses

(reviewed in [26,39], we used it as a target to generate mutants

potentially compromised with regards to the virus interplay with

these cellular responses. The experimental strategy involved

random mutagenesis, rescue of replication-proficient mutants in

cells deficient in the IFN response and subsequent screening for

viruses with an enhanced capacity to induce IFN upon infection.

We first generated a library of mutants affected in the NS segment,

that encode NS1 and NS2, by mutagenic PCR. cDNA of influenza

A/Victoria/3/75 (H3N2) (VIC) virus segment 8 was PCR

amplified using the appropriate concentrations of pPTP and 8-

oxo-dGTP to obtain an average of 4 nucleotide changes per

molecule, as determined by sequencing random plasmid clones

obtained after cloning the PCR product in the pHH21 vector [59].

A NS plasmid library containing approximately 40.000 indepen-

dent clones was amplified by high-density plating and used to

generate a library of recombinant NS RNPs by replication in

HEK293T cells expressing a His-PB2-tagged polymerase complex

and NP (Fig. 1A). The mutants present in this RNP library were

transferred to infectious virus by RNP competition as described

[35], i.e. cultures of HEK293T cells were co-transfected with

purified VIC virion RNPs and an excess of the His-purified

Figure 2. Induction of IFN-dependent GFP by infection with
virus mutants. Cultures of A549/pr(IFN-b).GFP cells were infected at
5 FPU/cell and at 8 hpi they were trypsinised to obtain single-cell
suspension, fixed in PBS/1% formaldehyde and subjected to FACS
analysis as indicated in Materials and Methods.
doi:10.1371/journal.pone.0098668.g002

Table 1. Mutations detected in individual virus mutants.

MUTANT POSITION NT CHANGE AA CHANGE NS1 CONSERVATION
AA CHANGE
NS2 CONSERVATION

1 551 A-G - - K18S 1N/4828

584 A-G - - N29S 4S/4828

7 408 A-G I128V 3A/6667 n/a -

740 A-G STOP238W 0W/6667 E81G 1D/4828

780 T-C n/a - - -

10 844 T-C - - F116L 5L/4828

11 393 A-G I123V V n/a n/a

496 T-C V157A 3/6667 n/a n/a

609 T-C S195P 0/6667 - -

12 152 C-A - - n/a n/a

540 G-A E172K 7/6667 - -

14 94 T-C V23A V n/a n/a

16 229 T-C I68T 0/6667 n/a n/a

261 A-G M79V 0/6667 n/a n/a

392 A-G - - n/a n/a

476 C-T - - n/a n/a

557 A-G - - Q20R 22/4828

The mutations detected in individual virus mutants are presented. The nucleotide changes observed in the NS segment are indicated, as well as the corresponding
amino acid substitution in the NS1 or NEP ORFs. The conservation of these positions in the influenza sequence database is presented as the number of instances that
the mutant amino acid observed appears among the total number of sequences screened.
doi:10.1371/journal.pone.0098668.t001
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recombinant NS RNP mutant library. The co-transfected cells

were then plated onto MDCK-V2 cells to allow virus amplification

(Fig. 1B). These cells express the V protein of parainfluenza virus

type 2 (PIV2) and are insensitive to IFNa/b, since STAT1 is

degraded and IFN signaling is blocked (Supplementary Fig. S1)

[52]. Under the conditions used neither the generation of the RNP

library nor its transfer to infectious virus would restrict the genetic

complexity of the original plasmid library and control experiments

showed that around 70% of the virus rescued contained a mutant

instead of the wt VIC NS segment (data not shown). To identify

potential virus mutants affected in viral IFN antagonism, the virus

mutant library was used to infect A549 cells engineered to express

GFP under control of IFN promoter (A549/pr(IFN-b).GFP cells)

[50] at low multiplicity of infection, using wt virus as a control.

Under these conditions the possibility of cell coinfection by two

mutants or by potential defective-interfering (DI) particles present

in the sample was diminished. The infected cell population was

sorted for GFP expression and individual positive cells were plated

on microcultures of MDCK-V2 cells. From around 600 positive

cells plated, 93 gave rise to a normal infection in MDCK-V2 cells.

These were subjected to preliminary characterization by flow-

cytometry after high-multiplicity infection of A549/pr(IFN-b).GFP

cells, by determining the relative virus yield in MDCK-V2 versus

MDCK cells and testing for ISG induction. As a result 12 virus

mutants were chosen for sequencing, seven of which contained

mutations in the NS segment and 5 did not. This observation is

not surprising, as a small amount of wt virus-infected cells led to

GFP expression above background levels (see Fig. 2 below), and

was interpreted as the result of spontaneous IFN-inducing

mutations present in the virus population. Finally, 4 virus mutants

(ns 11, 12, 14 and 16) were considered most interesting and were

selected for further analyses. The induction of GFP observed after

high-multiplicity infection is presented in Fig. 2. Particularly

relevant were the results obtained after infection with mutant 12,

that produced a proportion of GFP-positive cells almost as high as

that induced by infection with DNS1 virus mutant [32], used as a

control.

Genotypic and phenotypic analyses of the selected virus
mutants

The sequence analysis of the virus clones containing alterations

in the NS RNA segment was consistent with the mutagenesis used,

i.e. each mutant contained 1 to 5 nucleotide changes, some of

which led to amino acid changes. Among these, 9 mutations were

detected in NS1 and 5 in NEP(NS2) protein. All but one of the

Figure 3. Efficiency of virus replication in IFN-responsive and
IFN non-responsive cells. Cultures of either MDCK or MDCK-V2 cells
were infected with the various viruses at a moi of 0.001 pfu/cell. At
various times after infection samples of the supernatant media were
withdrawn and virus titer was determined in MDCK-V2 cells. (A) The
ratio of maximal titers obtained from MDCK-V2 versus MDCK infected
cells is presented. The values are averages and standard deviations of 3
independent experiments. (B) Kinetics of virus growth in MDCK-V2 (red
lines) or MDCK (blue lines) as determined by plaque-assay in MDCK-V2
cells. The titers are averages and standard deviations of 3 independent
experiments. * p-value,0.05. ** p-value,0.01.
doi:10.1371/journal.pone.0098668.g003

Figure 4. Secretion of antiviral factors by wt and mutant virus
infection. Cultures of A549 cells were infected at a moi of 5 pfu/cell
and at 24 hpi the culture supernatants were collected and their activity
to interfere with ECMV infection of A549/BVDV-Npro cells was
determined by end-point dilution, using purified alpha-IFN as standard.
**** p-value,0.0001.
doi:10.1371/journal.pone.0098668.g004
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mutations affecting NS1 protein were mapped to positions very

conserved phylogenetically (Table 1), suggesting that these could

be relevant for the mutant phenotype.

First, the replication efficiency of the selected mutant viruses in

cells proficient or deficient in IFN response was ascertained by

determination of the kinetics of virus multiplication in low-

multiplicity infections. The relative maximal yield in MDCK-V2

versus MDCK cells for several experiments are shown in Fig. 3A.

All mutants produced higher titers in IFN-deficient cells and were

fully competent for replication in MDCK cells, although mutant

14 showed a protracted kinetics (Fig. 3B). To analyze to what

extent these mutations modified the virus infectious cycle in IFN

competent cells, the accumulation and localization of NS1 protein

were determined. No major alterations in NS1 protein localization

were observed, although mutant 12 NS1 protein accumulated to

slightly reduced levels (Fig. S2). These results are consistent with

the normal replication kinetics and high titers obtained with most

of these mutant viruses (Fig. 3B) and confirm that they show good

replication fitness.

Interaction of the NS1 virus mutants with the host innate
immune system

The screening method used to identify the viral mutants, and

the induction of GFP after infection with those selected for analysis

(Fig. 2), suggested that they induced a strong IFN response. To

directly test this prediction, the interfering IFN activity in the

supernatants of cells infected with the mutants was compared to

the activity in supernatants from cells infected with wt or DNS1

viruses. The results are presented in Fig. 4 and indicate that all

mutants induced at least ten-fold higher levels of IFN than wt

virus. Consistent with the GFP expression data, mutant 12 led to

an antiviral activity similar to that obtained with DNS1 virus.

Next, we tested the downstream consequences of the antiviral

activity observed after infection with the mutant viruses. To assay

the induction of IFN-stimulated gene (ISG) expression, cultures of

A549 ISRE-Luc cells, that express luciferase under control of an

IFN-inducible promoter, were infected with wt or each of the

mutants and the amount of luciferase activity was determined. No

increase in luciferase expression above background levels could be

detected in wt virus-infected cells, yet all virus mutants induced

Figure 5. Induction of IFN-dependent luciferase by wt and
mutant viruses. Cultures of A549/pr(ISRE).Luc (A) or A549/
pr(ISRE).Luc-Npro cells (B) were infected at a moi of 5 pfu/cell with
the mutants indicated, wt virus as reference or mock infected. At 7 hpi
IFN was added to the indicated samples and at 13 hpi total cell extracts
were prepared and the luciferase activity was determined as indicated
in Materials and Methods. The progress of influenza infection was
verified by determination of NP accumulation, using b-actin as loading
control. * p-value,0.05. ** p-value,0.01. *** p-value,0.001.
doi:10.1371/journal.pone.0098668.g005

Figure 6. Cell-signaling activation by the infection of wt or
mutant influenza viruses. The induction of ISGs (MxA, ISG56) and
the activation of cell signaling (p-IRF3, p-Akt, c-Casp3, STAT1 and p-
eIF2alpha) was analyzed by WB with specific antibodies in cells infected
with the mutant viruses indicated, using uninfected cells (UI) and cells
infected with wt or DNS1 viruses as references. The progression of virus
infection was controlled by WB with antibodies specific for NS1 and NP,
using b-actin as loading control.
doi:10.1371/journal.pone.0098668.g006
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luciferase in excess over wt virus, particularly mutants 11 and 12

(Fig. 5A). These results, together with those presented in Fig. 4,

suggest that the mutants 11 and 12 are not only able to induce IFN

but also are unable to block signaling downstream of the IFN

receptor. To verify this hypothesis we used A549 NPro/ISRE-luc

cells, which also express IFN-inducible luciferase but cannot

produce IFN due to the expression of BVDV NPro protein that

targets the IRF3 transcription factor for degradation; as such,

none of the viruses used was able to induce luciferase expression in

these cells (Fig. 5B). However, when exogenous IFN was added to

the medium, large amounts of luciferase were expressed in the

absence of infection and this induction was effectively blocked by

wt virus infection. As predicted by the results shown above,

mutants 11 or 12 were unable to block luciferase induction by IFN

while mutants 14 or 16 did so partially, but much less efficiently

than wt virus.

To get a deeper understanding of the mutant phenotype in

regard to the IFN response, a number of critical elements for IFN

expression and signaling were further analyzed. As presented in

Fig. 6, all mutants induced the phosphorylation of IRF3 to varying

degrees. Mutant 12 did so as strongly as DNS1 virus, consistent

with the IFN expression data presented in Fig. 4. Both DNS1 and

mutant 12 viruses additionally induced high expression of ISG56/

IFIT1, which is induced by activated IRF3 in an IFN-independent

manner, as well as directly by IFN [66]. DNS1 and all mutants,

but not wt virus, induced the expression of MxA, in agreement

with the luciferase expression described in Fig. 5A. In addition, wt

virus (and partly mutant 11) induced the expression of MxB

protein, but this phenomenon was not analyzed further. We

observed AKT phosphorylation with all our virus mutants,

indicating that the ability of these NS1 mutants to bind and

activate PI3K [67] was retained, unlike the situation in DNS1-

infected cells where activation of the Akt pathway is eliminated

due to lack of NS1 expression [67–69]. Furthermore, among the

point mutants studied, only mutant 12 lead to a slight increase in

apoptosis as indicated by caspase-3 cleavage.

In order to verify whether the mutations identified in the NS1

mutants were relevant for the observed phenotype, some of them

were rescued in infectious virus, using the VIC virus genetic

background. Specifically, rescue of mutations NS1-I68T, NS1-

E172K and NS1-I68T/E172K was attempted and all rescued

viruses were viable. The expression of luciferase under control of

an ISRE promoter was used to analyze the phenotype of these

recombinant viruses and the results are presented in Fig. 7A. All

three recombinant virus mutants showed luciferase expression

above those observed for wt virus and, furthermore, they were less

efficient than wt virus at counteracting the luciferase expression

upon addition of exogenous IFN (Fig. 7B).

The NS1 protein: A versatile blocker of the innate
immune response

The influenza NS1 protein is the main virus factor counteract-

ing the cellular innate immune response [26,32,39,40,47]. NS1

exerts this function by one or several mechanisms, depending on

the particular virus strain considered [70], including inhibition of

RIG-I activation [21–23,43], down-regulation of new cellular gene

expression after infection [40,71], blocking IFN signaling [44] or

avoiding the activation of some ISGs, like PKR [47] or 29-59 OAS

[48]. In this report we took an unbiased genetic strategy to define

features in the NS1 gene that may be relevant for blocking the IFN

induction or for counteracting IFN activity. The experimental

approach included the generation of a large library of NS1 mutant

viruses that are proficient for replication in IFN non-responsive

cells and subsequent screening for those able to induce IFN-

dependent GFP expression (Fig. 1). Using this approach,

mutations that had deleterious affects on virus replication would

be selected against. Indeed, although the selected mutant viruses

replicated more efficiently in IFN-non-responsive cells than in

their normal counterparts they still replicated to relatively high

titers in MDCK cells (Fig. 3B). As expected, the mutant viruses

induced higher levels of IFN and ISGs (Figs. 4, 5A and 6), and

were compromised in their capacity to block the effects of added

IFN (Fig. 5B). In previous work a number of mutations in NS1

have been described that affect interactions with dsRNA, RIG-I,

PKR, TRIM25 or CPSF and reduce the capacity of the protein to

counteract the innate immune response [43,46,47,72–78]. These

mutations localize to the RNA-binding domain or the effector

domain and are depicted in Fig. 8B, C, as well as in the flexible

linker sequence between them. In this study we used the VIC

strain as parental virus that contains the conserved amino acid

residues at all positions known to be involved in NS1 mediated

IFN antagonism. The mutations obtained in this study did not

Figure 7. Induction of IFN-dependent luciferase by wt and
recombinant viruses. Cultures of A549/pr(ISRE).Luc (A) or A549/
pr(ISRE).Luc-Npro cells (B) were infected at a moi of 5 pfu/cell with the
rescued recombinant mutants indicated, wt virus as reference or mock
infected. At 7 hpi IFN was added to the indicated samples and at 13 hpi
total cell extracts were prepared and the luciferase activity was
determined as indicated in Materials and Methods. * p-value,0.05.
** p-value,0.01. *** p-value,0.001.
doi:10.1371/journal.pone.0098668.g007
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Figure 8. Localization of the NS1 mutations affecting the counteraction of the innate immune response to influenza infection. (A)
Diagram showing the NS1 coding region including the position of the NLSs, the NES and the binding regions of NS1 interaction partners (dsRNA,
PABP1, RIG-I, E1B-AP5, Nucleolin, TRIM25, eIFG1, PKR, CPSF and PABP2). The positions of the mutations identified in this report are indicated with red
arrows, which are long for the positions evolutionary conserved among influenza viruses and short for those variable. The NEP coding region is also
presented, including a mutation reported. (B) Atomic structure of the RNA-binding domain NS1 dimer showing the amino acids responsible for RNA
binding [77,78](R38 and K41, green), the position mutated in a temperature-sensitive mutant defective in PKR block [46](K62, blue), as well as those
identified in this study as present in IFN-inducing viruses (A23, I68, red). (C) Atomic structure of the effector domain NS1 dimer showing the amino
acids responsible for TRIM25 binding [43] (E96, E97, green), PKR binding [47,74](123–127, purple), CPSF binding [72,73,75,76](103, 106, 184–188,
yellow) and those identified in this study as present in IFN-inducing viruses (I123, V157, E172 and S195, red).
doi:10.1371/journal.pone.0098668.g008
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affect these positions but, rather, they were localized elsewhere

along the RNA-binding, linker and effector regions of the protein

(Fig. 8A). The only exception was mutation I123V that affects one

of the positions described in the PKR-binding region and alters the

kinetics of viral RNA synthesis [47,74]. Most of the mutations

detected alter positions in NS1, which are very conserved in the

sequence database (Fig. 8A, long arrows; Table 1), suggesting that

they are relevant for the observed phenotype. Consistent with this,

the introduction of these mutations into wt virus by reverse

genetics led to enhanced ISG expression and defects in IFN

counteraction similar to those observed in the original mutant

viruses (Fig. 7).

All together, the results presented in this report indicate that, in

the genetic background of the VIC strain, the NS1 protein as a

whole is important for counteracting the innate immune response.

Thus, mutations at either the RNA-binding domain (I68T) or the

effector domain (E172K) diminish the capacity of the protein to

perform optimally against IFN action. These results also constitute

proof-of-concept showing that the approach described can yield

mutant viruses that are replication-proficient in IFN non-

responsive cells, but in IFN-competent cells induce high levels of

IFN and fail to block the induction of ISGs by IFN. Furthermore,

the general approach of using reporter cell-lines to select for

viruses that are deficient in their ability to circumvent the IFN

response but which are still replication competent may be

applicable to other virus systems, thereby facilitating the isolation

of attenuated vaccine candidates against a variety of viruses.

Supporting Information

Figure S1 Characterization of MDCK-V2 cells. (A)

Cultures of either MDCK-V2 (red lines) of MDCK (blue lines)

cells were infected with wt (full line) or DNS1 (dotted line) virus at

0.001 pfu/cell. At the times indicated, samples of the supernatants

were withdrawn and virus titres were determined in MDCK-V2

cells. (B) Extracts from MDCK or MDCK-V2 cells were treated or

not with dog IFN and analysed by Western blot using anti-

STAT1, anti-MxA, anti-V2 or anti-actin antibodies, as indicated.

(TIF)

Figure S2 Intracellular localization of NS1 in wt- or
mutant virus-infected cells. Cultures of A549 cells were

infected with wt or mutant viruses at 5 pfu/cell. At the times

indicated the cultures were fixed and processed for immunoflu-

orescence using antibodies specific for NS1. The figure shows

projections of representative fields.

(TIF)
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