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ABSTRACT

Observations have shown that transverse oscillations are present in a multitude of coronal structures. It is generally
assumed that these oscillations are driven by (sub)surface footpoint motions. Using fully three-dimensional MHD
simulations, we show that these footpoint perturbations generate propagating kink (Alfvénic) modes which couple
very efficiently into (azimuthal) Alfvén waves. Using an ensemble of randomly distributed loops, driven by footpoint
motions with random periods and directions, we compare the absolute energy in the numerical domain with the
energy that is “visible” when integrating along the line of sight (LOS). We show that the kinetic energy derived
from the LOS Doppler velocities is only a small fraction of the actual energy provided by the footpoint motions.
Additionally, the superposition of loop structures along the LOS makes it nearly impossible to identify which
structure the observed oscillations are actually associated with and could impact the identification of the mode of
oscillation.
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1. INTRODUCTION

Historically, the dissipation of (MHD) waves and oscillations
in the corona has been invoked as one way to provide (some of)
the energy needed to account for the unexpectedly high coronal
temperatures (several orders of magnitude higher than the solar
surface; see reviews by, e.g., Walsh & Ireland 2003; Klimchuk
2006; or Taroyan & Erdélyi 2009). Although direct observations
of waves and oscillations in the solar corona were absent for a
long time, recent observations have revealed that a variety of
small amplitude oscillations is present in almost all coronal
structures. Alongside their possible role in coronal heating,
MHD waves can be used as a seismological tool (Uchida
1970; Roberts et al. 1984) to provide estimates of local plasma
parameters that are difficult to obtain by direct measurements
(see reviews by, e.g., De Moortel 2005; Nakariakov & Verwichte
2005; Erdélyi 2006; Banerjee et al. 2007; or De Moortel &
Nakariakov 2012). The recent confirmation of the ubiquitous
presence of waves and oscillations in the solar atmosphere by,
for example, Tomczyk et al. (2007) and McIntosh et al. (2011), is
likely to substantially widen the possible application of coronal
seismology and has reopened the debate on the role of wave
heating in the solar atmosphere. The identification of the correct
mode and the estimate of the energy budget will play a crucial
role in both of these applications. Of particular interest in the
coronal heating debate are the observations in the past few years
of transverse oscillations propagating along the magnetic field
in a variety of structures such as prominences (Okamoto et al.
2007), X-ray jets (Cirtain et al. 2007), spicules (De Pontieu et al.
2007; He et al. 2009a, 2009b), and coronal loops (Tomczyk
et al. 2007; Tomczyk & McIntosh 2009; McIntosh et al. 2011).
Also, Jess et al. (2009) reported on the possible detection of
torsional Alfvén waves in the lower solar atmosphere, with an
energy budget that could be sufficient to account for the coronal
heating requirements.

As the solar corona is optically thin, line-of-sight (LOS)
integration means that in any given pixel of, for example, an
EUV image, several coronal structures are likely to be present
and this has to be taken into consideration when interpreting the

observations. For example, the effect this LOS integration has
on the appearance of coronal structures in EUV observations
is discussed by DeForest (2007). Tomczyk et al. (2007) have
shown that small amplitude transverse oscillations are likely
to be present in a large number of (off-limb) coronal loops
and Tomczyk & McIntosh (2009) briefly discuss the effect
of the LOS superposition and resolution on the estimated
energy budget. Similarly, McIntosh et al. (2011) point out
that the estimated energy budgets they report are likely to
be lower limits, due to LOS superposition. Cooper et al.
(2003) considered the effects of LOS integration on a single
loop and demonstrated how this could potentially complicate
the identification of observed oscillations. For example, the
largely incompressible kink mode could still be associated
with perturbations in the emission, depending on the angle
between the loop and the LOS. Terradas et al. (2008) look
at resonant absorption in a similar multistrand model but these
authors focus on the actual resonant absorption process and do
not consider the consequences of the LOS integration. In this
paper, we investigate the effects of LOS superposition in a three-
dimensional (3D) numerical model of a multistrand structure.
We make a qualitative, order of magnitude comparison between
the “observed” energy budget (from Doppler shift oscillations),
which will be greatly reduced due to the LOS superposition,
with the energy budget actually present in the loop oscillations.
We also address the issue of mode identification, especially
in light of the recent observations of ubiquitous Doppler shift
perturbations propagating in coronal loops.

The paper is organized as follows. The setup is described in
Section 2, the results are analyzed in Section 3, and a discussion
and conclusions are presented in Section 4.

2. MODEL SETUP

We consider a straight magnetic field in the (vertical)
z-direction and choose the background plasma β = 0.01 to
be small, appropriate for the solar corona. Our density profile
is composed of 10 loops, with random positions and density
contrasts. The number of loops (10) was chosen on order of
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Figure 1. Contours of a horizontal cross section of the density (i.e., as a function
of x and y). The horizontal dashed and vertical dot-dashed lines represent the
locations of density enhancements which appear to be loop structures when
integrating over x or y, respectively (see also Figure 2).

(A color version of this figure is available in the online journal.)

magnitude grounds, i.e., sufficiently high to actually allow for
LOS superposition but small enough for the numerical resolu-
tion to be sufficiently high to resolve the mode coupling process.
A high numerical resolution is needed to ensure that the phase-
mixed Alfvén waves (generated by the mode coupling process)
do not reach scales below the grid resolution. Each individual
loop is set up as in Pascoe et al. (2010); a vertical cylindrical
tube, with a core region of constant density, surrounded by an
inhomogeneous layer (referred to as the tube boundary or shell
region). The density is ρ0 in the core region and ρe in the ex-
ternal region (r > a). We choose density contrasts ρ0/ρe in the
range 2.5–4, and an inhomogeneous layer thickness l/a = 0.75.
Figure 1 shows a contour plot of the cross section of the den-
sity at the base of our simulation (z = 0). The 10 loops with
different density contrasts are clearly identifiable. Note that we
are considering a coronal volume in our numerical simulations
as the aim of this paper is to illustrate how estimates of the
energy budget derived from observed coronal Doppler shift os-
cillations (Tomczyk et al. 2007; Tomczyk & McIntosh 2009)
are affected by the optically thin LOS superposition. Each loop
has a temperature profile similar to that for density: T0 in the
core region, Te in the external region, and varying linearly in
the inhomogeneous region. We choose a temperature contrast
ratio of T0/Te = 1.1 for all loops. In order to produce an equi-
librium for our hot and dense loops, we vary the magnitude of
the magnetic field strength so as to satisfy the condition of to-
tal pressure balance. Consequently, the magnetic field strength
is up to 2% smaller inside the loops than outside. Inside the
loops, the plasma β rises up to 0.043. All variables have been
non-dimensionalized using typical values for the magnetic field
strength B0, the density n, and a typical lengthscale L0.

2.1. Driver

The driving condition is applied to the lower z boundary to
simulate excitation by random footpoint motions. Our driver
generates transverse velocity perturbations propagating along
field lines. By placing our driver at the bottom of the coronal
domain, we are trying to mimic observed Doppler shift oscil-
lations. Although we are implicitly assuming these footpoint
motions are related to solar surface motions, we do not consider

the propagation of these oscillations through the atmosphere.
Theoretically, our driver corresponds to moving the loop foot-
point back and forth about its initial position, which is a very
general perturbation that could be generated by a number of pro-
cesses. The time dependence of our driver is based on a single
period displacement of the loop axis as in Pascoe et al. (2010)
and is applied from t = 0 to t = P0. This lower boundary
driving generates a non-monochromatic propagating wavetrain
along each loop, with the dominant period of oscillation in a
Fourier spectrum being P ≈ 2

3P0. Each loop has its own par-
ticular value of driving time P0, randomly chosen in the range
13.5–16.5. A single pulse has been chosen rather than (possibly
more realistic) continuous or quasi-periodic driving to keep the
perturbations and their associated energy budgets tractable. Al-
though continuous driving would be a more accurate reflection
of solar surface motions, the effect of the optically thin LOS
integration on the estimated energy budget and the mode iden-
tification will be essentially the same. Indeed, the single pulse
used in this study to illustrate the LOS effects could be seen as a
single wavelength (or driving period) of a (harmonic) wavetrain
or quasi-periodic wavepacket and the mode coupling process
has more or less the same effect on a single wave pulse as it
does on a harmonic wavetrain. The spatial dependence of the
driver is based on a two-dimensional dipole (see Pascoe et al.
2010, 2011) and each loop has a direction of oscillation ran-
domly chosen in the x–y-plane. The maximum amplitude of the
transverse velocities at the lower boundary is chosen to be small
(u0/CAe = 0.01) to approximate a linear regime.

The simulations are performed using the MHD code Lare3D
(Arber et al. 2001) with 400 × 400 × 300 grid points for
a numerical domain of 70 × 84 × 500 Mm. The boundary
conditions are periodic in the x- and y-directions, and are placed
sufficiently far away to not affect the results. Initially the lower
z boundary is driven, but after our driving phase (t � P0) the
driver is turned off and the z boundaries also become periodic.
This avoids the need for a large domain in the field-aligned
direction by allowing the wavetrain to propagate out of the top
of our domain and re-enter at the lower boundary. We remind
the reader that, throughout this manuscript, non-dimensional
values of all parameters are used. Dimensional quantities can
be obtained by assuming a normalizing value of the magnetic
field B0, a typical lengthscale L0, and number density ρ0 (see
Arber et al. 2001). For example, using a value of B0 = 10 G,
L0 = 10 Mm, and ρ0 = 1015 m−3 gives a timescale of t0 = 14.5
s. Hence with this normalization the periods of 13.5–16.5 would
correspond to 200–240 s.

3. EFFECTS OF LINE-OF-SIGHT INTEGRATION

3.1. Density (Intensity) Structures

Ten different flux tubes are present in the numerical domain
and these 10 individual structures are clearly identifiable in
the horizontal cross section shown in Figure 1. However,
superposition along the LOS effectively means summing some
of these structures together. To simulate optically thin intensity,
the top panel of Figure 2 shows a cross section of the density
squared, integrated along the x-direction (and subsequently
divided by the appropriate number of gridpoints to avoid
artificially high values of density). As indicated by the vertical
dashed lines, there are four clearly distinct maxima and hence
when the x-direction coincides with the LOS (i.e., an observer
is placed further along the x-axis), only 4 loops would be
visible, rather than the 10 loops which are actually present in
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Figure 2. Cross section of the average density squared (i.e., divided by the
number of gridpoints) integrated along the x-direction (top panel) and y-direction
(bottom panel). The vertical dashed (dot-dashed) lines identify the maxima and
correspond to the horizontal dashed (vertical dot-dashed) lines in Figure 1. The
dotted lines correspond to the maximum value of the density squared in the 3D
numerical domain at each y (x).

the 3D domain. Similar integration along the y-direction reduces
the number of “visible” loops to two as indicated by the dot-
dashed lines in the bottom panel of Figure 2. The positions of
the maxima in the LOS integrated intensities (density squared)
are also presented in Figure 1 as horizontal dashed lines
(corresponding to the x-LOS integration) and vertical dot-
dashed lines (y-LOS) to illustrate how the summations have
reduced the number of visible structures to four and two,
respectively. Generally, the locations of the peaks in the averaged
densities do not correspond exactly to the locations of the center
of the loop structures present in the 3D domain. In no case does
an LOS integrated “loop” actually correspond to a single loop
in the 3D domain. Also shown in Figure 2 by the dotted lines is
the maximum value of the density squared in the 3D numerical
domain at each y (x). Comparing the dotted lines, which reflect
the actual intensity contrast (ρ0/ρe)2 present in the domain, with
the solid lines, we notice that the LOS summation does not only
confuse the location of the actual structures but substantially
reduces the intensity contrasts. This is especially noticeable for
the y-LOS, where the averaged LOS intensity appears almost
uniform. Hence, a region which appears nearly uniform, or
with very low intensity contrast, could actually be a bundle of
closely spaced loops with substantial density contrasts, implying
that seismologically inferred density contrasts (from observed
damping lengths) might not correspond well with the density
(intensity) contrast visible in the LOS integrated observations.

3.2. LOS Doppler Velocities

As described in Section 2, each of the 10 structures is
now subjected to an oscillatory displacement at the base of
our numerical domain. For a single loop, the resulting mode
coupling is described comprehensively by Pascoe et al. (2010,
2011); such perturbations travel along the loop and efficiently

couple to an azimuthal Alfvén wave in the tube boundaries.
This mode coupling process has been investigated in great
detail recently (Pascoe et al. 2010, 2011; Terradas et al. 2010;
Verth et al. 2010; Soler et al. 2011a, 2011b). What is important
for our current investigation is that the damping length of
the central, transverse displacement is (mainly) governed by
the period of the footpoint driver, the density contrast ρ0/ρe,
and the relative thickness of the tube boundary (Hollweg &
Yang 1988; Goossens et al. 1992; Ruderman & Roberts 2002;
Pascoe et al. 2010; Terradas et al. 2010). The width of the
shell region is the same for all 10 loops but the driving
periods and density contrasts are different for each of the loop
structures. Hence, they will each have different damping lengths,
implying that at any given height, a mixture of transverse
displacements and/or azimuthal Alfvén waves, at different
phases of oscillation, will be present: at low height, the velocity
perturbations will be dominated by the transverse (kink) modes
whereas at large heights, only the azimuthal Alfvén waves will
remain. At intermediate heights, both modes will be present and
hence an integration along a given LOS will capture velocity
perturbations that are a mixture of the transverse displacements
and azimuthal Alfvén modes, as both are linear combinations
of vx and vy . To illustrate this, Figure 3 shows the horizontal
velocity vectors in two different horizontal planes, at z = 1
(top) and z = 165 (bottom) at t = 15 and t = 100, respectively.
It is clear that the lower height (top panel) is dominated by
the randomly directed, transverse displacements induced by
the bottom boundary driver, whereas the higher plane (bottom
panel) is dominated by the azimuthal perturbations in the loop
boundaries. In other words, the energy has moved from the cores
of the loops to the outer shell regions due to mode coupling of
the driven kink modes to the (azimuthal) Alfvén modes.

The LOS summation will make it difficult to uniquely identify
individual structures (irrespective of the additional question of
whether current observations actually resolve such structures)
and hence it is already clear that it will be non-trivial to actually
associate observed Doppler velocities with a given structure
in the LOS. Additionally, as illustrated below, loop structures
and their associated oscillations could line up in such a way
as to make the (azimuthal m = 1) Alfvén waves in the tube
boundaries appear as larger bulk motions in the LOS integrated
density structures.

In Figure 4, the LOS velocities that would be observed either
along the x- or y-axis are shown. These LOS velocities have
been calculated by averaging the density-squared weighted
velocity components along the LOS, i.e., 〈ρ2vx,y〉/〈ρ2〉 for
the x, y LOS and where 〈· · ·〉 represents the average along
the appropriate LOS. Zacharias et al. (2011) have shown (see
their Figure 4) that this intensity-weighted velocity accurately
reflects Doppler shifts of optically thin emission lines. The first
two panels of Figure 4 correspond to the x-axis being the
LOS and the colored contours represent vx , integrated over
x. Observationally, these perturbations would correspond to
periodic Doppler velocities traveling along magnetic structures
(loops). As oppositely directed perturbations in the LOS will
cancel each other out, the resulting Doppler velocities will be
much smaller than the actual values in the numerical domain.
For the x-LOS, the resulting Doppler velocities appear to line
up reasonably well with the apparent density structures, even
though the maxima in the velocities do not always correspond
to the actual maxima in the density structure. However, for
the y-LOS (right panels), there is a strong velocity perturbation
which is not actually associated with a loop structure (the central
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Figure 3. Velocity vectors in the horizontal plane at t = 15 (z = 1) and
t = 100 (z = 165). The line contours correspond to the density and outline the
loop structures. Note that the vectors in both panels have not been scaled to a
common maximum.

(A color version of this figure is available in the online journal.)

oscillations), but would appear to be occurring in the wing of
a wide structure (see the bottom panel of Figure 2). At early
times, both the x and y integrated velocities would mainly
correspond to the (bulk) transverse loop motions induced by
the footpoint driver. At later times (i.e., higher heights), the
remaining velocity perturbations are much weaker and mostly
situated in the tube boundaries, as illustrated in the bottom
panel of Figure 3. However, when integrated along the LOS,
the azimuthal motions in the shell regions of neighboring loops
could appear as bulk motions of the central part of an integrated
loop. This has occurred in the x-LOS where, at y = 5.2, an
apparent bulk motion is still visible at later times. However,
closer inspection of the planar velocities at, e.g., z = 27.5
reveals that what appears to be a bulk Doppler velocity along
the LOS loop centered on y = 5.2 is mainly composed of
the azimuthal Alfvén waves in the boundary of the flux tube

centered on [x = 1.4, y = 4.9] (see horizontal dashed line in
the bottom panel of Figure 3).

3.3. Energy Budget

Finally, we focus on the effect of the LOS integration on
the (apparent) energy budget. Figure 5 shows the evolution of
the horizontal kinetic energy, i.e., only the horizontal velocity
components vx and vy have been taken into account. The solid
line corresponds to this horizontal kinetic energy integrated over
the full 3D numerical domain at each timestep. The dashed and
dot-dashed lines represent the LOS kinetic energies, obtained
by using the LOS intensity-weighted velocity components (the
summed 〈ρ2vx,y〉/〈ρ2〉), multiplied by the appropriate average
density (see Figure 2). It is clear that using the observed Doppler
velocity along either LOS combined with the averaged density
will underestimate the energy that is actually present in the
3D domain, by as much as an order of magnitude. In the y-
direction, the kinetic energy is never more than 40% of the total
kinetic energy present in the 3D domain, whereas the x-LOS
only gives about 10%. In addition, the transverse driving of
the loop footpoints will also result in magnetic perturbations
and hence magnetic energy. The magnetic energy present in
the numerical domain is of the same order as the kinetic
energy, implying that the total energy contained in the transverse
perturbations is double of the kinetic energy alone (see the
dotted line in Figure 5). Hence, the (kinetic) energies estimated
from the LOS Doppler velocities would only capture 5%–20%
of the energy actually present in the 3D domain. It is clear
that energy estimates based on observed Doppler velocities
could underestimate the actual energy present in footpoint-
driven (transverse) loop oscillations by at least one, possibly
two if more loops are considered, orders of magnitude. It is
important to keep in mind that the LOS integrated energy cannot
easily be associated with the different wave modes (either the
transverse, propagating kink waves or the azimuthal Alfvén
waves generated by the mode coupling). Indeed as shown by
Pascoe et al. (2010) (see their Figure 9), there is a gradual
energy transfer for each loop from the transverse mode in the
core to the Alfvén waves in the shell region. Hence, apart from
the very lowest heights in our numerical domain, where almost
all the energy will be in the boundary-driven kink mode, the
LOS integrated energy will contain a mixture of the kink mode
and Alfvén wave contributions until all the energy from the kink
mode in the core has been transferred to the azimuthal Alfvén
waves in the shell regions.

4. DISCUSSION AND CONCLUSIONS

Even though their interpretation has been under debate, it
has become clear that propagating, transverse oscillations are
present in most observed coronal structures. Having success-
fully been modeled as coupled kink and (azimuthal) Alfvén
waves (e.g., Pascoe et al. 2010; or Terradas et al. 2010), these
“Alfvénic” waves appear to contain sufficient energy to account
for the quiet-Sun and solar wind requirements (McIntosh et al.
2011). As they appear to be present all the time, in large num-
bers, these transverse oscillations also have the potential to be
a powerful seismological tool. Indeed, with a large number of
observed examples, statistical studies of the seismologically de-
rived properties become possible, which will allow a more thor-
ough evaluation of the properties so far derived from a relatively
small sample of observations.
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Figure 4. LOS velocity perturbations integrated over x (left panels) and y (right panels) at t = 30 (panels 1 and 3) and t = 100 (panels 2 and 4). The colored contours
correspond the integrated vx and vy values. The vertical (dot-)dashed lines correspond to the maxima in the averaged LOS densities as indicated in Figure 2. Note that
the maxima in the panels at later times have been scaled to half the value of the maxima at earlier times to make the perturbations visible.

(A color version of this figure is available in the online journal.)

Figure 5. Normalized energy as a function of numerical timesteps. The solid line
correspond to the kinetic energy in the 3D numerical domain whereas the dotted
line corresponds to the total energy, i.e., kinetic plus magnetic energy, in the 3D
numerical domain. The dashed and dot-dashed lines correspond to the kinetic
energy resulting from the x- and y-LOS integrated velocities, respectively.

Using a simple model of 10 randomly distributed loops,
driven by randomly directed footpoint displacements, our sim-
ulations are intended to demonstrate how the LOS integration
of optically thin emission lines could affect the identification
of observed oscillations as well as the energy budgets. As sev-
eral loop structures in the LOS are likely to be superimposed,
associating observed Doppler velocities (i.e., the components
of the velocity perturbations which are directed (anti-)parallel
to the LOS) with specific structures is non-trivial. Additionally,
the dependence of the damping length of the driven kink mode
(through mode coupling) on the density contrast, driving period,
and loop (transverse) structure means that the perturbations will

have different damping lengths in different loops and hence
integrated velocities are likely to contain a mixture of (bulk)
transverse velocities from the cores of the loops and (azimuthal)
Alfvén perturbations from the loop boundaries. The interpreta-
tion of these oscillations as “Alfvénic” appears attractive not
only from a theoretical point of view (to reflect the generic cou-
pled character of the mode) but also from an observational point
of view (as the observed Doppler shift oscillations are likely to
contain a mixture of kink and azimuthal Alfvén waves at any
given height). In this study, estimating the energy based only
on the integrated LOS intensity-weighted velocity components
(representing Doppler shifts of optically thin emission lines) un-
derestimates the energy actually present in the 3D domain, by
as much as an order of magnitude (and possibly two orders of
magnitude if the magnetic energy associated with the perturba-
tions is included in the full 3D energy budget). In any case, there
will be more energy available to couple to the Alfvén waves in
the loop boundaries and ultimately, through the process of phase
mixing, to heat the coronal loops than LOS estimates based on
observed coronal Doppler shift oscillations might suggest.

Using only 10 loops (or loop threads) in our numerical
domain, we have demonstrated some of the effects the LOS
integration, inevitable in an optically thin environment, could
have on the identification of structures and their associated
oscillations, as well as the energy budget contained in these
perturbations. The magnitude of these effects however is very
dependent on the setup, in particular on the period and structure
of the boundary driver, the number of loops in the LOS, and the
density contrast of the individual loops with the background
coronal environment. In the present study, we considered a
relatively small range of density contrasts and driving periods,
chosen specifically to mimic the COMP observations (Tomczyk
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et al. 2007; Tomczyk & McIntosh 2009). The damping lengths
of the propagating, transverse perturbations (or in other words
the rate at which energy will be transferred from the transverse
oscillations in the core to the Alfvén waves in the shell regions of
the loop) strongly depend on the period and the density contrast.
Higher frequencies and stronger density contrasts will lead to
shorter damping lengths. Hence, considering a wider range of
these parameters will result in a wider range of damping lengths
present in the domain. This would imply that, at any given
height, an even greater mixture of the kink and azimuthal Alfvén
waves would be present in the LOS. The structure of the driver
will also play a crucial role. In our setup, we considered a driver
with a spatial scale equal to the cross section of the individual
loop strands. As the direction of the transverse driving for each
loop was chosen randomly, this leads to significant cancellation
of the velocity perturbations along the LOS. If on the other
hand all loops are driven in the same way, i.e., the spatial scale
of the driver is considerably larger than the cross section of
the loop strands, then all the loops will oscillate in phase and
there will be no cancellation of velocity perturbations along
the LOS. A final important factor is of course the number of
loops present along the LOS. This will depend both on the
location of the loop oscillations and on the spatial resolution of
the observations. For off-limb loop oscillations and instruments
with lower spatial resolution (COMP) the effects will be biggest
as there is likely to be a large number of loops present along the
LOS and within a single pixel. For on-disk observations of, e.g.,
a quiet-Sun region, the effects are likely to be much smaller.
This is consistent with the findings of Tomczyk & McIntosh
(2009) and McIntosh et al. (2011): the energy flux contained
in off-limb COMP (lower spatial resolution) observations of
quasi-periodic Doppler shift oscillations was found to be several
orders of magnitude smaller than similar quiet-Sun observations
of transverse perturbations made by SDO/AIA.

In summary, the effects of the LOS integration depend on a
large number of factors. It is likely that, in reality, far more than
10 loop strands will be present in the LOS, especially in active
regions and/or off-limb observations and additional effects such
as curvature would also have to be taken into account. Indeed,
more complicated (curved) structures will further enhance the
effects we have described. Our results also imply that properties

derived through coronal seismology are likely to reflect averaged
properties of an ensemble of coronal loops.
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