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Abstract

Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The
bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a
serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative
intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with
macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of
function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify
a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion
systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic
analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection
biology, including apoptosis, formation of actin ‘tails’ and multi-nucleation within treated macrophages. The detailed
analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host
macrophages and thus further elucidate this critical part of its infection cycle.
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Editor: Stefan Bereswill, Charité-University Medicine Berlin, Germany

Received November 5, 2010; Accepted November 22, 2010; Published December 22, 2010

Copyright: � 2010 Dowling et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the UK government under BBSRC grant BB/E021182/1 to R.H.ff-C and N.R.W. and by the European Community Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 223328 (GAMEXP) to R.H.ff-C and N.W. The funders had no role in the study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ajd211@exeter.ac.uk

Introduction

The Gram-negative bacterium Burkholderia pseudomallei is a

serious environmental pathogen of man and the causative agent

of the often fatal disease melioidosis. Disease occurs following

exposure to contaminated water or soil, usually through cuts in

the skin or via inhalation, but the underlying mechanisms of

pathogenicity of B. pseudomallei to humans remain poorly

understood [1–3]. B. pseudomallei is endemic to S.E. Asia and N.

Australia where infections are associated with both antibiotic

resistance and high mortality rates (,50%). The ability of this

pathogen to infect via inhalation has necessitated its listing as a

potential bio-warfare agent [4]. The high rates of infection and

subsequent patient mortality therefore make B. pseudomallei a high

priority for research and vaccine development as no effective

vaccine currently exists [3,5]. During the establishment of success-

ful infection B. pseudomallei adheres to, survives and replicates

within host epithelial cells and macrophages by somehow

interfering with the cellular mechanisms which would otherwise

destroy them. Known bacterial factors affecting the interaction

with host cells include the bacterial capsule, and effectors delivered

by the type III and type VI secretion systems (T3SS and T6SS)

[5]. The Bsa T3SS and its delivered effector BopE is associated

both with invasion of non-phagocytic cells and also subsequent

vacuolar escape [6–10]. Type VI secretion system-5 (T6SS-5) is

specifically induced upon exposure to macrophages and also

appears to play a role in intracellular survival [11]. Once inside the

macrophage the pathogen induces macrophage cell fusion leading

to the formation of so called Multi-Nucleated Giant Cells or

MNGCs, a process key to both intracellular replication and

bacterial persistence but one for which the molecular basis is

obscure [12]. Once intracellular replication of the pathogen has

reached a critical point the bacteria induce host cell death, again

by an unknown mechanism, and subsequently escape host cells to

establish secondary infections [3]. Importantly, different Burk-

holderia strains show a wide range of different interactions with

human macrophages, ranging from no effect, to host cell apoptosis

and capase-1-dependent lysis [3,13]. This range of different

responses to macrophages suggests that the complement of anti-

macrophage virulence factors encoded by the genome of different

strains may differ dramatically and may also indicate potential

functional redundancy amongst such factors. Importantly, con-

ventional genomic analysis has failed to identify homologues of

known toxins in B. pseudomallei [14]. Thus for example whilst a

cytolethal exotoxin has been identified in the culture filtrate of B.

pseudomallei the toxin remains to identified and encoding gene
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characterised [15]. Here we therefore perform a simple gain of

function screen in recombinant Escherichia coli to identify the full list

of loci potentially encoding toxins, or other factors, with anti-

macrophage activity.

To perform the screen we chose the strain B. pseudomallei

K96246, a clinical isolate, whose genome, of two chromosomes,

has been fully sequenced [14]. Chromosome 1 (4.07 Mb)

represents 56% of the genome and contains a higher proportion

of coding sequences (CDSs) than the smaller chromosome 2

(3.17 Mb). The CDSs on chromosome 1 are thought to be largely

involved in housekeeping functions, such as metabolism, whereas

those on chromosome 2 appear to encode accessory functions

facilitating adaptation to atypical conditions, osmotic protection,

secondary metabolism, iron acquisition and gene regulation [14].

There are predicted to be at least 16 horizontally acquired

genomic islands located in the B. pseudomallei genome which often

contain genes encoding hypothetical virulence factors [16].

Libraries of recombinant E. coli each carrying end-sequenced

B. pseudomallei genomic fragments (fosmids or Bacterial Artificial

Chromosomes (BACs)) were used to identify loci encoding factors

cytotoxic to the murine macrophage cell-line J774-2. The end-

sequences of multiple positive clones recovered from the screens

were aligned on to the sequenced genome in order to identify

and confirm the precise configuration of the loci involved [14].

Such a rapid and simple gain of function screen proves an

extremely useful tool for dissecting pathogens displaying func-

tional redundancy of multiple virulence factors and toxins. Such a

multiplicity of bacterial virulence factors encoded within a single

genome can frustrate attempts to dissect virulence via conven-

tional mutagenesis. For example, targeted knock-out of the toxin

Mcf1 in Photorhabdus bacteria does not dramatically decrease anti-

insect virulence due to the remaining copy of a second toxin

encoding gene Mcf2 and a host of other remaining virulence

factor encoding genes that remain unaffected [17]. Such ‘func-

tional redundancy’ can therefore potentially mask the important

role of specific gene candidates if other virulence factors com-

pensate for the expected change in the resulting single mutant

phenotype. Given the wealth of potential genes encoding putative

virulence factors in the different genomes of B. pseudomallei, here

we use this gain of function screening technique to reveal over

100 loci encoding anti-macrophage factors scattered across

the two different chromosomes of this bacterial genome. Such

analyses will facilitate the identification and follow-up of effec-

tor proteins and small molecules that influence the potentially

complex interaction between Burkholderia bacteria and host

macrophages.

Results

Loci encoding anti-macrophage factors are distributed
over both chromosomes

We screened genomic libraries of B. pseudomallei K96243 in BAC

and fosmid clones for activity towards J774-2 macrophages. To

identify and confirm anti-macrophage encoding loci in the B.

pseudomallei genome the end-sequences from positive library clones

(clones shown to reduce macrophage viability by .40 %) were re-

assembled onto the sequenced genome. Each locus was defined by

the minimum region of genetic overlap formed by a cluster of

two or more positive clones. Using these criteria, a total of 59

anti-macrophage encoding loci were identified on chromosome 1

and 54 on chromosome 2. Details of the loci, the predicted

open reading frames that they contain and associated BLAST

matches are provided in detail in the supporting information

(Table S1 and S2).

The screen reveals a broadly even distribution of anti-

macrophage associated loci across both chromosomes with some

notable exceptions (Figure 1). For example, on chromosome 1

there is a 0.6 MB region between 2,016,700 and 2,634,300 bp

containing only a single region of interest. The overall density of

hits is higher on chromosome 2, especially in view of its smaller

size. Interestingly, target loci were found either directly within, or

closely associated with, 11 out of the 16 genomic islands of strain

K96243. Further, almost all of the hits are associated with regions

of low G+C content (Figure 1). Both of these observations are

consistent with the anti-macrophage loci being associated with

genomic islands (GIs) and/or being recently horizontally trans-

ferred. A large cluster of positive loci are associated with GI 8 on

chromosome 1 and GI 16 on chromosome 2. GI 8 is described as

an island containing various virulence related factors including

hemolysin, YadA, transport and several regulatory proteins [14].

GI 16 contains a hemagluttinin-related protein (BPSS2053)

mutation of which has been shown to reduce adherence to human

buccal epithelial cells [18]. However, approximately 35% of the

genes contained within the B. pseudomallei GIs encode hypothetical

proteins and their exact functions therefore remain unknown [18].

Several broad functional classes were repeatedly predicted for

the anti-macrophage loci identified (Figure 2): There are 14

predicted regions in K96243 containing putative secondary

metabolite synthesis genes, 3 on chromosome 1 and 11 on

chromosome 2. Six loci isolated by the screen contained clusters of

genes predicted to encode non-ribosomal peptide synthetases

(NRPSs) and polyketide synthases (PKSs). Genes involved in signal

response and regulation (methyl-accepting chemotaxis proteins,

two-component sensor systems, AraC and LysR family regulators)

were also repeatedly detected. Numerous phage-related elements

flank positive loci indicating that these may be mobile elements

associated with insertion events, and could be responsible for the

potential transferral of virulence factors between B. pseudomallei

strains. A number of genes which could promote the survival of B.

pseudomallei in host cells were also identified in the regions of

interest including genes encoding factors responsible for resistance

to drugs, heavy metals and reactive oxygen species (sodB and katB).

Regions associated with anti-macrophage activity also include

CDSs relating to adhesion (hemagglutinin, YD repeat proteins)

and biofilm formation (lipopolysaccharide, acetolactate synthase).

However the largest predicted function categories associated with

the anti-macrophage loci were either toxin/enzyme related

(hemolysins, proteases, phospholipases) with 44 associated CDSs

within loci, or proteins involved in transport/secretion (ABC

transporters, efflux transporters, and proteins involved in type III

and VI secretion) with 84 related CDSs within positive loci.

Several of the anti-macrophage loci encode putative toxins. For

example, BPSS1993 encodes a metalloprotease A, termed MrpA,

a 47 kDa protein negatively regulated by QS molecules, a putative

hemolysin with homology to Bacillus cereus hemolysin III

(BPSS0803) and LasA elastase from Pseudomonas aeruginosa

(BPSL0624). One locus also contains a gene (BPSS0067) encoding

phospholipase – PLC-3 a putative non-hemolytic phospholipase C

with an N-terminal twin-arginine translocation (Tat pathway

signal sequence) which was transcriptionally up-regulated in a

hamster model of infection and increases the LD50 of test animals

dramatically [19]. Interestingly, the phospholipases PLC-1

(BPSL2403) and PLC-2 (BPSL0338) were not detected in this

screen.

The genome of B. pseudomallei K96243 contains six gene clusters

encoding putative T6SSs [11]. Whilst, again, the host E. coli used

in the library screens were not armed with any specific type III or

type VI secretion systems, several positive loci encode putative

Anti-Macrophage Factors from Burkholderia
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Figure 1. The distribution of positive loci on chromosomes 1 and 2. Outer pair of concentric circles represents both coding strands of the B.
pseudomallei genome. The next ring in shows the location of current genomic islands (dark blue) and putative genomic islands (turquoise) and the
innermost ring the location of the anti-macrophage associated loci (red). Also shown is the percentage of G+C content and the GC deviation plot
(.0% = olive, ,0% = magenta).
doi:10.1371/journal.pone.0015693.g001

Figure 2. Distribution of features within positive loci on chromosome 1 and 2. Graph showing the number of CDSs for different functional
classes found within anti-macrophage loci identified by the screen on both chromosomes. The majority of CDSs identified within positive loci are
associated with exoprotein/ enzymic activity and transport or secretion systems.
doi:10.1371/journal.pone.0015693.g002
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VgrG-like T6SS-related proteins. Some VgrG effector proteins

have been inferred to induce host cell toxicity by ADP-ribosylation

of actin, as well as performing a role in formation of the secretion

machinery itself [20,21]. B. pseudomallei T6SS-5 is induced upon

exposure to macrophages and plays an important role in the

intracellular survival of the pathogen [11]. However, a genomic

clone containing the entire T6SS-5 cluster was not detected in the

current study, presumably as either it did not fit entirely within one

of the cloned library fragments or because other elements

necessary for its production in the recombinant E. coli used were

absent.

There are a total of 105 predicted functional ABC systems

encoded within the genome of strain K96243 [22] and 22 of these

were identified within our list of anti-macrophage encoding loci

(14 on chromosome 1 and 8 on chromosome 2). Within this

category of hits the positive ABC transporter encoding loci include

two class I export systems. One region of interest detected contains

the LPS biosynthetic operon BPSL2672-BPSL2688 containing the

class I wzt ABC transporter, confirming the potential role of LPS

in interaction with macrophages [23,24] and suggesting that an

active form of LPS can be correctly assembled by the host E. coli

used for library construction. The second class I ABC system

detected, BPSL3092-BPSL3094 is classified as involved in

hemolysin export, however there are no identified hemolysins

associated with this system in K96243 [22]. However, this ABC

system neighbors two putative peptidase encoding genes whose

products may be exported. Further, we note that many of the

predicted proteins from positive candidate regions are thought to

encode outer membrane proteins, again consistent with their

potential interaction with host macrophages and their presumptive

display on the outer membrane of the recombinant E. coli used in

the screen. In summary, given that the host E. coli used in the

screen (DH10B and EPI-300-T1R) lack the specific secretion

machinery (e.g. T3SS or T6SS) necessary for delivery of many

types of known effectors, the clusters of anti-macrophage loci

uncovered here appear to be able to reconstitute toxicity in the

recombinant E. coli either using systems still present (e.g. type 1

secretion) or by using transporters (e.g. ABC) or synthetic

machinery (e.g. liposaccharide biosynthesis) also encoded within

the positive clones/clusters.

Cellular phenotypes of anti-macrophage factors
In order to begin to characterize the range of likely cellular

phenotypes caused by this plethora of new candidate anti-

macrophage factors we focused on the four positive clusters

diagrammed in Figure 3. These clusters carry CDSs encoding

factors related to secondary metabolism (NRPS/PKS), candidate

enzymes, bacterial adhesins and unclassified hypothetical proteins.

The NRPS/PKS encoding region BPSS1263-BPSS1269 has

homology to the Syringolin A (SylA) producing NRPS cluster

from the plant pathogen Pseudomonas syringae [25]. SylA is a

proteome inhibitor and is cytotoxic to a number of mammalian

cell types, including carcinoma derived cell lines, such compounds

are therefore of interest as potential anticancer drugs [25,26].

Macrophages treated with positive clones containing the SylA-like

NRPS cluster show aberrations in nuclear morphology, with

nuclei becoming enlarged and showing an irregular (here termed

‘corrugated’) perimeter. The cytoskeleton of the treated cells also

becomes amorphous, punctate and collapses around the nucleus

itself (Figure 4 C).

Thirty of the anti-macrophage loci contained ‘hypothetical

proteins’ whose potential functions cannot be predicted from

homology with known virulence factors. BPSL0590 and

BPSL0591 are CDSs found in a positive locus on chromosome 1

which encode such hypothetical proteins. However closer

examination of protein predictions from these two CDSs does

reveal some limited homology to known toxins from other

bacterial pathogens suggesting they may encode novel toxins.

Position-specific-iterative blast (psi-BLAST) reveals that this

putative membrane protein also has a central region similarity to

the Rhs associated core sequence (1.98e-10) and to the middle N

and C-terminal domains of a Photorhabdus luminescens insecticidal

Toxin complex (Tc) component protein, specifically TcdB N and

C terminal regions (7.87e-36 and 7.90e-29 respectively). The N-

terminal region of BPSL590 has homology to the N-terminal of

Salmonella enterica plasmid virulence associated protein SpvB (1.03e-

09). The function of the N-terminus of SpvB remains unknown but

shares sequence similarity to the N-terminal domain of P.

luminescens toxin TcaC, the function of TcaC is largely unclear

but is thought to act as a potentiator modifying other toxin

components and it is required to reproduce full toxicity of the

Toxin complexes via recombinant expression [27,28]. The

catalytic domain of SpvB responsible for ADP-ribosylation of host

cell actin is located at the C-terminus. Depolymerisation of host

cell actin by SpvB causes destruction of cytoskeletal structure and

cell death via apoptosis [28,29]. Structural predictions for SpvB

suggest that the C-terminus is linked to the N-terminus via a poly-

proline region. This suggests that it could represent a class of

modular toxins in which the active/enzymic region is linked to the

N-terminus whose function remains undefined.

The neighbouring hypothetical protein BPSL0591 also displays

predicted homology to a P. luminescens insecticidal Tc protein,

specifically TccB. Macrophages treated with lysate from clones

encompassing these toxin-like genes show both formation of

multinucleated cells and apoptotic nuclei, (Figure 4B). These results

suggest that this is an exciting new genomic island encoding toxins

with putative activity on the actin cytoskeleton or the small GTPases.

The third cluster chosen for further phenotypic analysis

(Figure 3C) carries a gene predicting a protein with putative

phospholipase D activity (BPSS1381), neighbouring an endonu-

clease/exonuclease/phosphatase family protein (BPSS1382). This

positive gene cluster also contains a putative membrane magne-

sium transporter protein. Macrophage monolayers treated with a

preparation of clones (E. coli cells, whole cell lysate and

supernatant) containing this region of interest show a dramatic

decline in cell density, indicating a potent degree of cytotoxicity.

Macrophages surviving such treatment become distended with

little remaining cytoskeletal or nuclear structure (Figure 5A).

The fourth cluster chosen for follow up analysis contains two

CDSs encoding a putative hemagglutinin and with homology to

the large filamentous hemagglutinin precursor, FhaB, (BPSS1727)

and hemolysin activator-like protein precursor, FhaC (BPSS1728)

of Bordetella pertussis (Figure 3D). The B. pertussis filamentous

hemagglutinin (FHA) is an adhesin and facilitates attachment to

the host cell during infection following secretion which is

dependent on FhaC [30]. Alongside this role in attachment,

FHA is also described as having accessory functions, including

pro-apoptotic activity towards macrophages [31]. Macrophages

exposed to preparations of clones containing the B. pseudomallei

hemagglutinin-like gene display a very interesting phenotype with

formation of dramatic actin projections or ‘tails’ extending towards

neighboring cells from shrunken cell bodies containing condensed

nuclei.

Fractionation of bioactivity from the SylA-like gene
cluster

Finally, to demonstrate how bioactivities from positive gene

clusters can be further confirmed and fractionated, we carried out

Anti-Macrophage Factors from Burkholderia
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a more detailed analysis of the gene cluster encoding the

Burkholderia ‘SylA’ homolog, here termed BylA. The SylA gene

product is a small molecule secreted into the supernatant of

cultures of P. syringae bacteria [32]. Cell-free supernatants from

recombinant E. coli clones carrying the Burkholderia BylA encoding

cluster also show strong cytotoxic activity and remaining

macrophages from treated monolayers display a shrunken and

rounded phenotype (Figure 6). Such activity is absent from the

cytosolic fraction of the same preparations showing that the

bioactive component, BylA, is secreted.

Discussion

The bacterium B. pseudomallei has a complex and poorly

understood infection cycle involving periods in the environment

and periodic infection of man. Although a serious human

pathogen many of the virulence mechanisms of B. pseudomallei

remain to be elucidated. Burkholderia infect and replicate within

host macrophages and subsequently induce macrophage cell death

but the mechanisms whereby they effect anti-macrophage activity

are not completely understood. Here we have described a gain of

function screen which successfully and rapidly detected over 100

anti-macrophage encoding gene clusters within genomic libraries

of B. pseudomallei expressed in recombinant E. coli. This screen pulls

out genomic factors either equipping E. coli with toxic elements

which kill macrophages or an improved ability to evade them or

improve growth, thus killing the cells by overwhelming/ nutrient

depletion (e.g. hydrogen peroxide scavenging, drug export or

biofilm formation). In this light we will now briefly discuss three

aspects of the data and its generation. First, the overall distribution

of the screening hits across the two chromosomes of B. pseudomallei.

Second, the problems and pitfalls associated with the delivery of

Figure 3. Genetic maps of four putative regions of interest. Genomic organisation of four anti-macrophage loci isolated by the screen
representative of the main functional classes identified. Genes putatively involved in anti-macrophage activity are highlighted in red and roles of
other genes in the region are provided in the figure legend based on the original genome annotation and BLASTX analysis. The number of
overlapping positive clones isolated by the screen that identify these as regions of interest are shown in blue below the ORF maps. BPSS1263-
BPSS1269 encodes NRPS/PKS genes involved secondary metabolism including a putative efflux system and have homology to the SylA producing
genes of P. syringae. BPSL0584-BPSL0591 encodes two hypothetical proteins (BPSL0590 and BPLS0591) with some homology to known toxins
including SpvB of Salmonella enterica and Toxin complex components of Photorhabdus luminescens and may represent a novel toxin cluster. These
genes neighbour phage-related elements suggesting possible horizontal acquisition. A Phospholipase D-like protein is represented (BPSS1381),
flanked by hypothetical proteins and core genome genes and a hemagglutinin/hemolysin related region BPSS1720-BPSS1728 with similarity to the
filamentous hemagglutinin FHA of Bordetella pertussis.
doi:10.1371/journal.pone.0015693.g003
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potential effectors from the recombinant E. coli and their uptake by

the target macrophages. Third, and finally, we will spend some

time discussing the likely nature of the positive clusters themselves

and how they may inform our future understanding of Burkholderia

infection biology.

Distribution of positive gene clusters
The genomic locations of the gene clusters encoding anti-

macrophage effectors and compounds are worthy of brief

discussion before a detailed discussion of the clusters themselves

and their potential role in infection biology. Thus although

positive loci are distributed relatively uniformly across the two

chromosomes of B. pseudomallei many are specifically associated

with genomic islands and/or regions of altered GC content.

Genomic islands are often linked to symbiosis or pathogenicity

[16] and the co-location of anti-macrophage clusters within, or

next to, GIs may confirm their suspected roles as pathogenicity

islands. An alternative explanation for the association of positive

loci with regions of low % GC could be that the DNA encoding

them is closer to the % GC content of the host E. coli, and

therefore these regions may be more preferentially expressed in

comparison to those with high %GC.

Secretion from recombinant E. coli and effector uptake
by macrophages

Given the relatively crude and simple nature of the screen and

given that the recombinant E. coli are not in any way secretion

proficient or enhanced (e.g. via the addition of a T3SS), it is

interesting to speculate how the anti-macrophage factors (proteins,

small molecules or modified external structures such as LPS) are

released from the host E. coli and indeed how they are taken up by

(or contacted by in the context of ‘displayed’ molecules such as

LPS) the target macrophages in cell culture. In this latter respect it

is critical to note that the presence of some intact E. coli in the

crude lysates applied to the macrophages appears necessary for

toxicity in some cases, possibly by facilitating uptake of, or

response to, recombinant factors. In contrast to much of the

previous work on the three T3SSs in Burkholderia we would not

expect T3SSs or their effectors to be recovered as positives in this

system for a number of reasons. First, given that the size of the

Figure 4. Cytotoxicity of positive clones containing regions encoding hypothetical toxin-like proteins and a SylA-like small
molecule. Macrophages treated with crude lysate prepared from E. coli carrying vector only control (A) and those treated with clones expressing
hypothetical toxin-like proteins with homology to the N-terminal of SpvB of S. enterica and Toxin complex components of P. luminescens (B) and a
SylA-like component (C) for 24 h and stained with TRITC-conjugated phalloidin (red) and Hoechst 33258 (blue) to reveal cytoskeletal and nuclear
structures. Macrophages treated with clones encoding the toxin- like homolog display both multi-nucleation (white arrow) and apoptosis (yellow
arrow). Macrophages treated with the SylA-like (BylA) clone lysates are shrunken and display a punctate actin cytoskeleton with regions of
condensation (white arrows). Scale bars = 10 mm.
doi:10.1371/journal.pone.0015693.g004

Anti-Macrophage Factors from Burkholderia
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gene clusters encoding a complete T3SS can be extensive we were

not expecting to recover T3SS related hits in the size range

genomic fragments currently used (10–40 kb). More importantly

we did not ‘arm’ the recombinant E. coli used in the library

screening with a functional T3SS and we therefore also did not

expect to identify any T3SS delivered effectors (in the absence of a

clone encompassing an entire native T3SS). Finally, in relation to

secretion, a number of positive clusters on chromosome 2 contain

T6SS related CDSs. The precise role of T6SSs are largely

uncharacterized but expression of one system has been shown to

be induced upon invasion of macrophages. However mutation

studies showed no alteration in invasion or intracellular survival

suggesting a role in another area of pathogenesis [11]. In

conclusion, and as predicted, the T3SS and T6SSs involved in

invasion were not detected by this screen which focused on non-

T3 and T6SSs largely by virtue of their predicted absence from the

average size of cloned genome fragments.

Cluster composition and likely effectors
In reference to the genetic composition of the clusters

themselves, phenotypic analysis of four regions of interest detected

by the screen begin to link activity of the gene products to some of

the important phenotypes associated with Burkholderia infection and

may allow us to begin to answer how bacterial cells persist within

and spread between infected macrophages. Several of these

positive gene clusters are therefore worthy of further discussion

here. The first such region contains homology to the B. pertussis

filamentous hemagglutinin or FHA. FHA is an adhesin which

facilitates attachment to host cells during infection. Alongside this

role in attachment, FHA also has other accessory functions,

including pro-apoptotic activity towards host macrophages [31]

and it is suggested that this may be used to combat the host cell-

mediated immune response whilst infection is being established.

Positive clones recovered in our screen, and containing a B.

pseudomallei region homologous to FHA, cause dramatic actin

protrusions from macrophages and apoptotic nuclei. It should be

noted that B. pseudomallei travel down actin protrusions in order to

spread to neighboring cells via actin based motility [12] and that

the effector, BimA, has been observed as required for this activity

as mutants in this gene do not induce formation of actin tails [33].

Figure 5. Disruption of macrophages by clones encoding a phospholipase D-like and hemagglutinin-like effector. Treatment of
macrophages with lysate from clones carrying a putative phospholipase D gene for 24 h results in a loss of cytoskeletal structure and abnormalities
within the nucleus (A). In contrast, macrophages treated with lysate containing a hemagglutinin-like protein for 24 h (B) suffer severe alterations in
their actin cytoskeleton producing pronounced actin filaments (white arrows). Scale bars = 10 mm.
doi:10.1371/journal.pone.0015693.g005

Figure 6. Bioactivity of clones encoding the SylA homolog is
associated with the cell free supernatant. Fraction screening of
clones containing the SylA-like region reveals that cytotoxicity is not
present in the cytosolic fraction. F-actin cytoskeleton staining of the
treated cells reveals an intact macrophage monolayer (x10) with cells
displaying a normal phenotype. Cytotoxicity is found in the bacterial
cell-free supernatant a clear reduction in the number of macrophages in
the monolayer can be seen. Higher magnification reveals cytoskeletal
collapse and cell shrinkage implying that the anti-macrophage moiety is
secreted. Scale bars: x10 = 50 mm, x60 = 10 mm.
doi:10.1371/journal.pone.0015693.g006

Anti-Macrophage Factors from Burkholderia

PLoS ONE | www.plosone.org 7 December 2010 | Volume 5 | Issue 12 | e15693



These FHA homolog induced actin protrusions may therefore play

a central role in regulating the actin cytoskeleton for adherence of

B. pseudomallei to the host cell or perhaps act as an effector, like

BimA, involved in the process of intracellular spread itself.

Following attachment, B. pseudomallei is capable of invading and

replicating within both phagocytic and epithelial cells either

entering via cell mediated phagocytosis or via the combined effects

of Bsa T3SS and its internally delivered effector, BopE [9]. Once

inside the host cell B. pseudomallei cells exhibit actin based motility

and induce host cell fusion, resulting in the formation of ‘multi-

nucleated giant cells’ or MNGCs. Here we have described both a

MNGC-like and pro-apoptotic phenotype linked to a novel toxin

cluster containing genes predicting proteins with homology to the

Salmonella enterica virulence associated protein SpvB and different

components of the Toxin complexes (Tcs) of the insect pathogen

Photorhabdus luminescens. Whilst we have not designated specific

phenotypes to specific genes within this novel cluster we suggest

that these genes are responsible for reorganization of the actin

cytoskeleton possibly directly or via effects on the small Rho

GTPases. Further, this suggests that the formation of MNGCs in

Burkholderia infected hosts can be induced by a single factor,

independently of the actin-based motility mechanism. Further

work addressing the process of secretion and mechanism of action

of this novel toxin cluster will be important in understanding the

role this region plays in MNGC formation.

Anti-macrophage activity is also seen in response to positive

clones containing a phospholipase D domain protein. A PLD gene

encoding a protein with phospholipase D activity is associated with

phagosomal escape in Rickettsia prowazekii [34]. Mutants of PLD in

Rickettsia show attenuated virulence in guinea pigs, and animals

immunized with the mutant strain are protected from subsequent

challenge with the wild-type strain. Phospholipase D is also a

major virulence determinant of Corynebacterium pseudotuberculosis and

plays a key role in macrophage death [35]. Mutation of PLD genes

in the pathogens Corynebacterium pseudotuberculosis and Rickettsia

prowazekii have therefore shown promise as a strategy for

development of attenuated strain vaccines [34,36]. Again the role

of the PLD-like gene in the interaction of Burkholderia with host

macrophages therefore warrants further attention.

Finally, many of the positive gene clusters are associated with

the production of NRPS/PKS systems which are predicted to

make small molecules or peptides. Whilst it is often possible to

predict the likely structure of the small molecules made via the

unique combinations of PKS modules present, the role of these

gene products in bacterial virulence is often less clear. We focused

on one such positive region in B. pseudomallei which appears to

encode a molecule similar to the proteome inhibitor SylA from P.

syringae, which we term BylA here. SylA is of extreme interest as it

shows good activity against carcinoma derived cell lines and BylA

may therefore be similarly interesting and important. We have

shown that gene clusters encoding BylA produce an active

compound cytotoxic towards macrophages when expressed in

recombinant E. coli. Moreover, this bioactivity can be localized to

the supernatant of the recombinant E. coli culture suggesting that it

does indeed correspond to a secreted small molecule similar to

SylA.

Conclusions and outlook
Current models for studying the factors involved B. pseudomallei

virulence include gene knockout within the pathogen and

subsequent testing for avirulence using in vivo models. However,

B. pseudomallei has a large genome with high genomic plasticity

between strains and subspecies, and is designed to survive in a

diverse array of environmental settings. Different strains of B.

pseudomallei possess very different genetic complements suggesting

there may be a variety of mechanisms for producing the same

disease outcome. These factors imply that functional redundancy

is highly likely among the mechanics of infection and that other

genes may compensate for those mutated, and therefore mask the

loss of virulence associated with any single gene knock-out or

knock-down. The gain-of-function screen described here allows us

to look at the effects of single factors provided that their potency

can be reconstituted in recombinant E. coli. Characterisation of

such leads will allow us to understand poorly understood

mechanisms behind the pathogenicity of this organism and also

present us with putative targets for vaccine and drug development.

For screening other bacteria, such as Gram-positives, and indeed

other microbes, such as fungi, we can envisage that such gain of

function screens could be conducted in alternative and more

appropriate hosts such as Bacillus or indeed yeast. Such studies

would then allow for the rapid and facile screening of other

microbial genomes for virulence factors for which similar assays

can be derived.

Materials and Methods

Genomic library construction
A combination genomic BAC and fosmid libraries, were used in

these experiments. The BAC library was constructed in E. coli

DH10B containing pBACe3.6 with an average B. pseudomallei

DNA insert size of 20 kb originally employed for the Sanger

genome sequencing project [14]. The Fosmid library was created

using the CopyControl Fosmid Library Production Kit with E. coli

EPI-300-T1R (Epicentre) with an average insert size of 40 kb.

BAC and fosmids libraries were arrayed into 96 well microplates

to give ,10X coverage of the genome. All clones in the libraries

were then end-sequenced to facilitate location of their paired ends

in the genome.

Macrophage Toxicity Screening
Library plates were replicated into 96 well microplates

containing 100 ml Luria Bertani medium plus 12.5 mg ml21

chloramphenicol as the selective antibiotic for both the BAC and

Fosmid library clones. Replicate library plates were grown for 24 h

at 350 rpm, 37uC and cultures were subsequently harvested by

centrifugation at 4,000 rpm for 10 minutes. 80 ml of supernatant

aspirated the remaining bacterial pellet and supernatant mixed

thoroughly with 80 ml 1 mg ml21 lysozyme in Phosphate Buffered

Saline solution. Plates were then incubated at room temperature

for a minimum of 1 h, followed by three freeze-thaw cycles before

centrifugation at 3,000 rpm for 10 minutes. 80 ml of the crude

lysates were removed and applied to 96 well plates containing

confluent monolayers of the BALB/c monocyte macrophage cell

line J774-2 (from The European Collection of Cell Cultures,

ECACC) in Dulbecco’s Modified Eagles Medium (DMEM)

supplemented with 10% foetal bovine serum, 5% non-essential

amino-acids and 5 mg ml21 chloramphenicol. Crude lysates and

macrophages were co-incubated for 24 h (37uC, 5% CO2). Media

on the macrophages was then replaced with phenol red-free

DMEM containing an antibiotic cocktail: ampicllin 100 mg ml21,

gentamicin 50 mg ml21, penicillin 100 U ml21, streptomycin

100 mg ml21, kanamycin 100 mg ml21 and tetracycline 5 mg ml21

and incubated with the macrophages for 2 h (37uC, 5% CO2) to

destroy live bacteria which would otherwise affect the readout of

the cell viability assay. Macrophage cell viability was assessed using

the XTT assay [37]. Candidate positive BAC and Fosmid library

clones were selected for their ability to reduce viability by 40% or

more comparative to untreated cells.
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Candidate Identification
BAC and fosmid end sequences were aligned to the Burkholderia

chromosomes using SSAHA2 version 2.5 [38] and the output

exported in gff format. The alignments were manually checked to

verify their integrity and to ensure the correct distance (10–20 kb)

between mate-paired sequences. Once the gff had been edited it

was uploaded to a custom Burkholderia GBrowse database, and the

BAC and fosmid sequences were displayed as separate tracks in

the GBrowse detail panel. This allows for the identification of

‘clusters’ of clones containing putative virulence factors. These

positive ‘clusters’ form due to the multiplicity of genomic coverage

within a fosmid library, for example, up to ten clones encoding an

anti-macrophage toxin might be recovered from a library

possessing 10X genomic coverage. The minimum region of

genetic overlap within clusters was examined for candidate CDSs

or operons using the annotated K96243 genome and BLASTX

analysis [6]. The distribution and location of positive loci on

chromosome 1 and 2 were diagrammed using DNAPlotter [39].

Characterisation of Cellular Phenotypes
Confluent monolayers of J774-2 macrophages on glass cover-

slips were treated with equivalent volumes of crude lysates

(prepared as described above) from clones identified as containing

regions of interest and co-incubated for 24 h. Coverslips were then

washed in sterile 1X PBS before fixing with 4% paraformaldehyde

(w/v) in PBS for 15 min. Coverslips were then washed in 1 X PBS

and immersed in a fresh solution of ammonium chloride in 1X

PBS (13.3 mg/ml) for 15 minutes, at room temperature followed

by washing in 1X PBS. Macrophages were permeabilised by

covering with 0.2% Triton X-100 in 1X PBS for 15 minutes.

Staining of the filamentous actin cytoskeleton was carried out with

TRITC conjugated phalloidin (Sigma), at a 1/500 dilution in 1X

PBS by inverting the coverslip onto a 60 ml drop of the staining

solution and incubating at room temperature in the dark for 1 h.

Following incubation the coverslips were washed 365 minutes in

1X PBS with the first wash containing 0.12 mg/ml21 Hoechst

33258 (Sigma) to stain the nuclei. A final wash by brief immersion

2X in distilled water is then made and coverslips mounted onto

slides using ProLong Gold Antifade (Molecular Probes, Invitrogen)

before visualization using fluorescence microscopy. For fraction

screening of the SylA homolog a single colony of a BAC library

clone containing the SylA region of homology was picked and

grown for 24 h in LB plus 12.5 mg ml21 chloramphenicol.

Bacteria were harvested by centrifugation at 7,000 rpm for 5

minutes and the culture supernatant removed. Cell-free superna-

tant was prepared by filter-sterilising with a 0.22 mm syringe-

driven filter unit (Millipore). The cytosolic fraction was prepared

by re-suspending the bacterial pellet in 1X PBS and sonicating the

mixture. The resultant sonicated product was centrifuged at

10,000 rpm for 15 min. to remove cell debris from the cytosol

preparation. Supernatant and cytosol fractions were applied to

J774 macrophage monolayers at 1:5 (v/v) supernatant or cytosol:

culture media and co-incubated for 24 h before fixing and staining

as described.
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