A planar dianionic ditelluride and a cyclic tritelluride supported by $\mathbf{P}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}}$ rings \dagger

Andreas Nordheider, ${ }^{\text {a,b }}$ Tristram Chivers, ${ }^{\mathrm{a}^{*}}$ Ramalingam Thirumoorthi, ${ }^{\text {a }}$ Kasun S. Athukorala Arachchige, ${ }^{\text {b }}$ Alexandra M. Z. Slawin, ${ }^{\text {b }}$ J. Derek Woollins ${ }^{\text {b }}$ and Ignacio Vargas-Baca ${ }^{\text {c }}$
${ }_{5}$ Received (in $\left.X X X, X X X\right)$ Xth $X X X X X X X X X ~ 20 X X$, Accepted Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

Oxidation of alkali metal derivatives of $\left[\operatorname{Te}\left({ }^{t} \operatorname{BuN}\right) P(\mu\right.$ $\left.\left.\mathbf{N}^{t} \mathbf{B u}\right)_{2} \mathbf{P}\left(\mathbf{N}^{t} \mathbf{B u}\right) \mathbf{T e}\right]^{2-}$ with \mathbf{I}_{2} produces the intermediate ditelluride dianion $\left[\mathrm{Te}\left({ }^{t} \mathrm{BuN}\right) \mathbf{P}\left(\mu-\mathbf{N}^{t} \mathbf{B u}\right)_{2} \mathbf{P}\left(\mathbf{N}^{t} \mathrm{Bu}\right) \mathrm{Te}\right]_{2}{ }^{2-}$ with a ${ }_{10}$ planar PTeTeP conformation and, subsequently, the cyclic tritelluride $\left[\left({ }^{t} \mathbf{B u N}\right) \mathbf{P}\left(\mu-\mathbf{N}^{t} \mathbf{B u}\right){ }_{2} \mathbf{P}\left(\mathbf{N}^{t} \mathbf{B u}\right)(\mu-\mathrm{TeTeTe})\right]$.

In their pioneering studies of inorganic macrocycles that incorporate $\mathrm{P}_{2} \mathrm{~N}_{2}$ rings, ${ }^{1}$ Wright and co-workers have employed cyclocondensation to generate NH - or O-bridged systems of ${ }_{15}$ various sizes involving $\mathrm{P}^{\mathrm{II}}{ }_{2} \mathrm{~N}_{2}$ rings ${ }^{2,3}$ and a reductive method for the synthesis of a hexamer in which monoselenido ($-\mathrm{Se}-$) units span $\mathrm{P}^{\text {III }} \mathrm{P}^{\mathrm{V}} \mathrm{N}_{2}$ rings. ${ }^{4}$ Recently, we have applied a mild oxidative approach to generate the trimers $\left[{ }^{t} \mathrm{BuN}\right) \mathrm{P}\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}\left(\mathrm{N}^{t} \mathrm{Bu}\right)(\mu-\mathrm{E}-$ $\mathrm{E}-)]_{3}$ with a planar $\mathrm{P}_{6} \mathrm{E}_{6}(\mathrm{E}=\mathrm{S}$, Se$)$ framework in which 20 dichalcogenido ($-\mathrm{E}-\mathrm{E}-$) groups are linked by perpendicular $\mathrm{P}^{\mathrm{V}}{ }_{2} \mathrm{~N}_{2}$ rings. ${ }^{5}$ The synthesis of these polychalcogen macrocycles involves the two-electron oxidation of the dianions $\mathbf{1 a}$ and $\mathbf{1 b}$ with I_{2}. We now report a detailed investigation of the oxidation of the tellurium analogue $\mathbf{1 c}$ that provides important insights into the ${ }_{25}$ initial oxidation process, as well as a notable difference in the final outcome of the oxidation compared to that observed for 1a and 1b. Specifically, we have identified and structurally characterised (a) the dianionic ditelluride $\left[\mathrm{Te}\left({ }^{\mathrm{t}} \mathrm{BuN}\right) \mathrm{P}(\mu\right.$ $\left.\left.\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}\left(\mathrm{N}^{t} \mathrm{Bu}\right) \mathrm{Te}\right]_{2}{ }^{2-}(\mathbf{2})$, with an unusual planar conformation, as ${ }_{30}$ the product of one-electron oxidation of $\mathbf{1 c}$ and (b) the cyclic tritelluride $\left[\left({ }^{t} \mathrm{BuN}\right) \mathrm{P}\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}\left(\mathrm{N}^{t} \mathrm{Bu}\right)(\mu-\mathrm{TeTeTe})\right]$ (3) as the result of further oxidation. DFT calculations were carried out in order to determine the reason(s) for the unusual planarity of the PTeTeP unit in the ditelluride 2.
${ }_{35}$ The oxidation of the dianion $\mathbf{1 c}$ (as its dilithium derivative) ${ }^{6 \mathrm{a}}$ with a one-half molar equivalent of I_{2} led to the isolation of extremely sensitive black crystals, which were identified by Xray crystallography as $[\mathrm{Li}(\text { tmeda })]_{2} 2$ (Eq. 1). ${ }^{7}$ As depicted in Fig. 1, the dianion $\left[\mathrm{Te}\left({ }^{t} \mathrm{BuN}\right) \mathrm{P}\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}\left(\mathrm{N}^{t} \mathrm{Bu}\right) \mathrm{Te}\right]_{2}{ }^{2-}$ (2) is ${ }_{40}$ comprised of a central ditellurido unit that links two $\mathrm{P}^{\mathrm{V}}{ }_{2} \mathrm{~N}_{2}$ rings, each of which has exocyclic Te and $\mathrm{N}^{t} \mathrm{Bu}$ substituents that are $N, T e-$ chelated to the tmeda-solvated Li^{+}counterions. The ${ }^{31} \mathrm{P}$ NMR spectrum of $[\mathrm{Li}(\text { tmeda })]_{2} \mathbf{2}$ in d_{8}-toluene exhibits singlets at $\delta=-78.5$ and -117.0 with ${ }^{1} J(\mathrm{P}, \mathrm{Te})=1670$ and 1219 Hz , ${ }_{45}$ respectively, reflecting the disparity in the $\mathrm{P}-\mathrm{Te}$ bond lengths $[\mathrm{d}(\mathrm{P} 2-\mathrm{Te} 2)=2.396(2)$ and $\mathrm{d}(\mathrm{P} 1-\mathrm{Te} 1)=2.497(2) \AA]$. The $\mathrm{Te} 1-$ Te1' bond length in 2 is $2.777(3) \AA$, cf. 2.70-2.71 \AA for typical aryl ditellurides, ${ }^{8} 2.75-2.76 \AA$ for ditellurides supported by an intramolecular $\mathrm{Te} \cdots \mathrm{N}$ interaction, ${ }^{9}$ and $2.77 \AA$ for the bulky ${ }_{50}$ derivative $(\mathrm{TpsiTe})_{2}\left(\mathrm{Tpsi}=\operatorname{tris}\left(\right.\right.$ phenyldimethylsilyl)methyl. ${ }^{10}$

$\mathbf{1 a}(E=S), \mathbf{1 b}(E=S e)$
2 1c ($\mathrm{E}=\mathrm{Te}$)
Atypically, the ditelluride $[\mathrm{Li}(\text { tmeda })]_{2} \mathbf{2}$ is perfectly planar (< $\mathrm{P}-\mathrm{Te}-\mathrm{Te}-\mathrm{P}=180.0^{\circ}$). The only other examples of antiperiplanar ditellurides are bis(chloro-2-pyridyl) ditelluride ${ }^{11}$ and the diacyl ${ }_{55}$ ditelluride $\left(2-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{COTe}\right)_{2}$, ${ }^{12}$ which exhibit intramolecular heteroatom-tellurium interactions and $(\mathrm{TpsiTe})_{2}$ for which the antiperiplanar conformation is imposed by the bulky substituents. ${ }^{10}$ The $\mathrm{Te} 1 \cdots \mathrm{Te} 2$ ' distance in $\left[\mathrm{Li}(\text { tmeda) }]_{2} \mathbf{2}\right.$ $(3.884 \AA)$ is shorter than the sum of van der Waals radii for Te $60(4.12 \AA) .{ }^{13}$ Moreover, the closely related neutral ditelluride $\left[\left({ }^{t} \mathrm{BuNH}\right) \mathrm{P}\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}\left(\mathrm{N}^{t} \mathrm{Bu}\right) \mathrm{Te}\right]_{2}$ (4), which has a similar steric environment for the $\mathrm{Te}-\mathrm{Te}$ linkage, exhibits a dihedral angle of -123.8° and a $\mathrm{Te}-\mathrm{Te}$ bond length of 2.7204(9) \AA (Fig. S1). ${ }^{14}$ In view of these observations, DFT calculations were carried out to ${ }_{65}$ probe whether the conformation of $[\mathrm{Li}(\text { tmeda })]_{2} \mathbf{2}$ is stabilized by intramolecular $\mathrm{Te} 1 \cdots \mathrm{Te} 2$ ' secondary bonding interactions ($3.884 \AA$ A) . Satisfactory structures were obtained from geometry optimizations (PBE-D3, TZP, ZORA) for planar and synclinal models of $[\mathrm{Li}(\text { tmeda })]_{2} \mathbf{2}$ and $\mathbf{4}$ simplified using Me groups in lieu 70 of ${ }^{t} \mathrm{Bu}$. In both instances the planar conformations were higher in energy, by 8 and $37 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the models of $\left[\mathrm{Li}(\text { tmeda }]_{2} \mathbf{2}\right.$ and 4, respectively. Preferred $\mathrm{P}-\mathrm{Te}-\mathrm{Te}-\mathrm{P}$ torsion angles are 98° for the former and 90° for the latter. The small difference of energy suggests that the conformation observed in the crystal structure of
${ }_{75}[\mathrm{Li}(\text { tmeda })]_{2} \mathbf{2}$ is imposed by packing forces. Further analysis on the electronic structures of the $[\mathrm{Li}(\text { tmeda })]_{2} 2$ models failed to identify a particular orbital interaction or contribution from dispersion that would help stabilize the antiperiplanar geometry.

$$
\begin{equation*}
{ }^{80} 2[\mathrm{Li}(\text { tmeda })]_{2} 1 \mathbf{c} \xrightarrow[-2 \mathrm{Lil}]{\mathrm{I}_{2}}[\mathrm{Li}(\text { tmeda })]_{2} \mathbf{2} \tag{1}
\end{equation*}
$$

In order to provide a direct comparison of the oxidation of $\mathbf{1 c}$ with that of $\mathbf{1 a}$ and $\mathbf{1 b}^{5}$, we have developed a synthesis of the sodium salt $[\mathrm{Na}(\text { tmeda })]_{2} \mathbf{1 c}$ via the metallation-telluration sequence illustrated in Scheme 1. Yellow crystals of

Scheme 1 Synthesis of the cyclic tritelluride 3
$[\mathrm{Na}(\text { tmeda })]_{2} \mathbf{1 c}$ suitable for an X-ray analysis were obtained from n-hexane at $-30^{\circ} \mathrm{C}$ and the molecular structure is illustrated in Fig. 2. ${ }^{15}$ In contrast to the lithium analogue $[\mathrm{Li}(\mathrm{thf})]_{2} \mathbf{1 c}$ in which 10 the dianionic ligand is coordinated to the Li^{+}cations asymmetrically ($T e, T e^{\prime}$ and $N, T e$ chelation), ${ }^{6 a}$ the sodium salt $\left[\mathrm{Na}(\text { tmeda) }]_{2} \mathbf{1 c}\right.$ adopts a symmetrical structure ($T e, T e^{\prime}$ and N, N^{\prime} coordination). ${ }^{17}$ The mean $\mathrm{P}-\mathrm{Te}$ distance of $2.420(2) \AA$ in $[\mathrm{Na}(\text { tmeda })]_{2} \mathbf{1} \mathbf{c}$ is shorter by ca. $0.03 \AA$ than that involving the 15 two-coordinate Te in $[\mathrm{Li}(\mathrm{thf})]_{2} \mathbf{1} \mathbf{c} .{ }^{6 a}$ Consistently, the ${ }^{1} J(\mathrm{P}, \mathrm{Te})$ coupling constant of 1583 Hz for $[\mathrm{Na}(\text { tmeda })]_{2} \mathbf{1 c}$ is substantially larger than the values of 1309 and 1467 Hz found for the lithium analogue. ${ }^{6 \mathrm{a}}$ A doublet is observed in the ${ }^{125} \mathrm{Te}$ NMR spectrum of $[\mathrm{Na}(\text { tmeda })]_{2} \mathbf{1 c}$ at -148.7 ppm , cf. -289 and -87 ppm for the ${ }_{20}$ inequivalent Te environments in $[\mathrm{Li}(\mathrm{thf})]_{2} \mathbf{1} \mathbf{c}{ }^{6 \mathrm{a}}$

Fig. 1. Molecular structure of $[\mathrm{Li}(\text { tmeda })]_{2}$ 2. Hydrogen atoms have been omitted for clarity. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Te} 1-\mathrm{Te} 1^{\prime}$ 25 2.7768(8), Te1-P1 2.4970(18), Te2-P2 2.3957(18), N4-Li1 2.008(9), Te2-Li1 2.848(12), P1-N1 1.510(6), P2-N4 1.566(5), P-N $\mathrm{N}_{\text {bridging }}($ range $)$ 1.679(4)-1.712(4), N5-Li1 2.171(9), P1-Te1-Te1' 104.41(4).

Treatment of $[\mathrm{Na}(\mathrm{tmeda})]_{2} \mathbf{1} \mathbf{c}$ with an equimolar quantity of I_{2} in toluene produced a dark red-black solid, which was ${ }_{30}$ recrystallised from pentane to give black crystals that were identified as the tritelluride $\left[\left({ }^{t} \mathrm{BuN}\right) \mathrm{P}\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}\left(\mathrm{N}^{t} \mathrm{Bu}\right)(\mu\right.$ TeTeTe)] (3) by single-crystal X-ray analysis. ${ }^{18}$ Higher yields (41\%) of $\mathbf{3}$ are obtained via metathesis of $[\mathrm{Na}(\text { tmeda })]_{2} \mathbf{1} \mathbf{c}$ with $\mathrm{TeCl}_{2} \cdot$ tmtu in toluene (Scheme 1).
${ }_{35}$ As shown in Fig. 3, the molecular structure of $\mathbf{3}$ is comprised of a tritelluride ligand bridging the $\mathrm{P}^{\mathrm{V}} \mathrm{N}_{2}$ ring. Compound $\mathbf{3}$ is a rare example of a cyclic tritelluride, the only other representative being the $\mathrm{Sn}^{\mathrm{IV}}$ complex $\left[\mathrm{ArSn}(\mu-\mathrm{Te})_{2}(\mu-\mathrm{TeTeTe}) \mathrm{SnAr}\right](\mathrm{Ar}=2,6-$ bis(2,4,6-triisopropylphenyl)phenyl). ${ }^{19}$ Structurally characterised

Fig. 2. Molecular structure of $[\mathrm{Na}(\mathrm{tmeda})]_{2} \mathbf{1 c}$. tert-Butyl groups and hydrogen atoms have been omitted for clarity. Selected bond distances (A) and angles (${ }^{\circ}$): P1-Te1 2.418(2), P2-Te2 2.422(2), Na1-Te1 3.047(4), Na2-Te2 3.049(3), Na-N (range) 2.451(8)-2.750(9), P1-N3 45 1.576(7), P2-N4 1.566(7), P-N ${ }_{\text {bridging }}$ (range) 1.697(7)-1.719(7); P1-Te1Na2 80.41(8), P2-Te2-Na2 80.35(8), Te1-Na2-Te2 125.1 (1), N3-Na1N4 101.2(2), N5-Na1-N6 72.6(3), N7-Na2-N8 76.5(3).

Fig. 3. Molecular structure of 3. Hydrogen atoms have been omitted for 50 clarity. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$: P1-Te1 2.5317(10), P2-Te2 2.5405(10), Te1-Te3 2.7155(4), Te2-Te3 2.7158(4), P1-N1 $1.508(3), \mathrm{P} 2-\mathrm{N} 41.507(4), \mathrm{P}-\mathrm{N}_{\text {bridging }} 1.679(3)-1.694(3) ; \mathrm{P} 1-\mathrm{Te} 1-\mathrm{Te} 3$ 95.63(2), P2-Te2-Te3 96.06(3), $\mathrm{Te} 1-\mathrm{Te} 3-\mathrm{Te} 2$ 104.50(1).
acyclic tritellurides incorporate either bulky substituents ${ }_{55} \mathrm{RTeTeTeR} \quad\left(\mathrm{R}=\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{3}\right)^{20}$ or intramolecular $\mathrm{N} \cdots \mathrm{Te}$ coordination (2-pyridyl- $\mathrm{C}_{6} \mathrm{H}_{5},{ }^{21}{ }^{8}-\mathrm{Me}_{2} \mathrm{NC}_{10} \mathrm{H}_{7}{ }^{22}$); the thermally unstable dication $\left.{ }^{t} \mathrm{Bu}_{3} \mathrm{PTeTeTeP}^{t} \mathrm{Bu}_{3}\right]^{2+}$ has also been identified. ${ }^{23}$ The mean $\mathrm{Te}-\mathrm{Te}$ bond length of $2.716(1) \AA$ and $\mathrm{Te}-$ $\mathrm{Te}-\mathrm{Te}$ bond angle of $104.50(1)^{\circ}$ in $\mathbf{3}$ are comparable to the ${ }_{60}$ corresponding values of 2.705(2) \AA and $104.02(5)^{\circ}$ found for $\left[\mathrm{ArSn}(\mu-\mathrm{Te})_{2}(\mu-\mathrm{TeTeTe}) \mathrm{SnAr}\right] .{ }^{19}$ The $\mathrm{P}-\mathrm{Te}$ bond length of $2.536(1) \AA$ is notably longer (by ca. $0.12 \AA$) than the mean value for $[\mathrm{Na}(\text { tmeda })]_{2} \mathbf{1 c}$ indicating a weak $\mathrm{P}-\mathrm{Te}$ bond in $\mathbf{3}$. Consistently, the ${ }^{1} J(\mathrm{P}, \mathrm{Te})$ coupling of 1030 Hz observed in both
the ${ }^{31} \mathrm{P}$ and ${ }^{125} \mathrm{Te}$ NMR spectra of $\mathbf{3}$ in d_{8}-toluene is among the lowest reported for $\mathrm{P}-\mathrm{Te}$ compounds. ${ }^{24}$ The ${ }^{125} \mathrm{Te}$ NMR spectrum of $\mathbf{3}$ is comprised of a well-separated pseudo-doublet of doublets at $-442.8 \mathrm{ppm}\left({ }^{1} J(\mathrm{P}, \mathrm{Te})=1031 \mathrm{~Hz},{ }^{3} J(\mathrm{P}, \mathrm{Te})=41 \mathrm{~Hz}\right)$, and a ${ }_{5}$ pseudo-triplet centred at $+361.9\left(\mathrm{t},{ }^{2} J(\mathrm{P}, \mathrm{Te})=35 \mathrm{~Hz}\right)$; these resonances are assigned to the equivalent pair of tellurium atoms $\mathrm{Te} 1, \mathrm{Te} 2$ and the unique tellurium centre Te 3 , respectively (Fig. 3). The heterocycle $\mathbf{3}$ is the first structurally characterised neutral $\mathrm{P}-\mathrm{Te}$ ring, although the cation $\left[\mathrm{N}\left(\mathrm{P}^{i} \mathrm{Pr}_{2} \mathrm{Te}\right)_{2}\right]^{+}$embodying a five${ }_{10}$ membered $\mathrm{NP}^{\mathrm{V}}{ }_{2} \mathrm{Te}_{2}$ ring is known. ${ }^{25}$

In summary, the formation of the ditellurido linkage in 2 is comparable to the generation of neutral dichalcogenides upon one-electron oxidation of the PNP-bridged monoanions $\left[\mathrm{EPR}_{2} \mathrm{NPR}_{2} \mathrm{PE}\right]^{-} \quad\left(\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te} ; \mathrm{R}={ }^{i} \mathrm{Pr},{ }^{t} \mathrm{Bu}\right) .{ }^{26}$ The 15 identification of the acyclic intermediate $\mathbf{2}$ provides an important discernment into the process involved in the construction of $\mathrm{P}^{\mathrm{V}}{ }_{2} \mathrm{~N}_{2}$-bridged polychalcogen macrocycles via the oxidation pathway. ${ }^{27}$ It also supplies an incentive for investigations of the sulfur and selenium analogues, which are potentially versatile 20 building blocks for the construction of $\mathrm{P}^{\mathrm{V}}{ }_{2} \mathrm{~N}_{2}$-stabilised macrocycles that incorporate main group elements or transition metals in addition to dichalcogenido linkages.

Notes and references

$25{ }^{a}$ Department of Chemistry, University of Calgary, Calgary, AB, Canada T2N 1N4.E-mail: chivers@ucalgary.ca; Fax: +1 403-289-9488; Tel: +1 403-220-5741
${ }^{b}$ Department of Chemistry, University of St Andrews, St Andrews UK, KY16 9ST
$30^{\text {c }}$ Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada L8S 4M1
${ }^{\dagger}$ Electronic supplementary information (ESI) available: Experimental and crystallographic data in pdf format. CCDC references numbers 909218909222 for $\left([\mathrm{Na}(\text { tmeda })]_{2} \mathbf{1 c}\right)$, ([Li(tmeda) $\left.]_{2} \mathbf{2}\right), \mathbf{3}, 4$ and $\left[\mathrm{Na}_{4}\left(\mathrm{P}_{2}(\mu-\right.\right.$ $\left.\left.\left.{ }_{35} \mathrm{~N}^{\prime} \mathrm{Bu}\right)_{2}\left(\mathrm{~N}^{\prime} \mathrm{Bu}\right)_{2}\right)_{2}\right]$

1. For a review, see E. L. Doyle, L. Riera and D.S. Wright, Eur. J. Inorg. Chem., 2003, 3279.
2. (a) A. Bashall, A. D. Bond, E. L. Doyle, F. Garcia, S. Kidd, G. T. Lawson, M. C. Parry, M. McPartlin, A. D. Woods and D. S. Wright,
40 Chem. Eur. J., 2002, 8, 3377; (b) F. Garcia, J. M. Goodman, R. A. Kowenicki, I. Kuzu, M. McPartlin, M. A. Silva, L. Riera, A. D. Woods and D. S. Wright, Chem. Eur. J., 2003, 10, 6066.
3. S. G. Calera, D. J. Eisler, J. M. Goodman, M. McPartlin, S. Singh and D. S. Wright, Dalton Trans., 2009, 1293.
45 4. S. Gonzáles-Calera, D. J. Eisler, J. V. Morey, M. McPartlin, S. Singh and D. S. Wright, Angew. Chem. Int. Ed., 2008, 47, 1111.
4. A. Nordheider, T. Chivers, R. Thirumoorthi, I Vargas-Baca and J. D. Woollins, Chem. Commun., 2012, 48, 6346.
5. (a) G. G. Briand, T. Chivers and M. Parvez, Angew. Chem. Int. Ed., ${ }_{50} \quad 2002,41,3468$; (b) G. G. Briand, T. Chivers, M. Parvez, and G. Schatte, Inorg. Chem., 2003, 42, 525.
6. Crystal data for $[\mathrm{Li}(\text { tmeda })]_{2} \mathbf{2}: \mathrm{C}_{50} \mathrm{H}_{110} \mathrm{~N}_{12} \mathrm{Li}_{2} \mathrm{P}_{4} \mathrm{Te}_{4}, M=1818.12$, triclinic, space group $P-1, a=13.760(3), b=14.301(3), c=$ 14.481(3) $\AA, \alpha=60.533(5), \gamma=65.043(5) \beta=69.151(5)^{\circ}, V=$ $55 \quad 2209.3(7) \AA^{3}, Z=1, \rho_{\text {calcd }}=1.366 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=1.423 \mathrm{~mm}^{-1}, \mathrm{~T}=93 \mathrm{~K}$, 14563 reflections collected (θ range 3.04-25.37$)$), 7868 unique ($R_{\text {int }}=$ $0.0517), R_{1}=0.0424$ for 5839 reflections with $\left.I>2 \sigma(I)\right]$ and $w R_{2}=$ 0.1182 (for all data).
7. (a) G. Llabres, O. Dideberg and L. Dupont, Acta Crystallogr., 1972, ${ }_{6} 0$ Dupont, Acta Crystallogr., 1979, B35, 1727; (c) E. S. Lang, R. A Burrow and E. T. Silveira, Acta Crystallogr., 2002, C58, o397; (d)A.
L. Fuller, L. A. S. Scott-Hayward, Y. Li, M. Bühl, A. M. Z. Slawin and J. D. Woollins, J. Am. Chem. Soc., 2010, 132, 5799.
65 9. (a) S.C. Menon, H. B. Singh, J. M. Jasinki, J. P. Jasinki and R. J. Butcher, Organometallics, 1996, 15, 1707; (b) J. E. Drake, M. B. Hursthouse, M. Kulcsar, M. E. Light and A. Silvestru, J. Organomet. Chem., 2001, 623, 153; (c) G. Mugesh, A. Panda, S. Kumar, S. Apte, H. B. Singh and R. Butcher, Organometalics, 2002, 21, 884.
${ }^{70}$ 10. T. M. Klapötke, B. Krumm. H. Nöth, J. C. Gálvez-Ruiz, K. Polborn, I. Schwab and M. Suter, Inorg. Chem., 2005, 44, 5254.
8. The acute $<\mathrm{C}-\mathrm{Te}-\mathrm{Te}$ angle of $85.8(1)^{\circ}$ for this derivative suggests a significant intramolecular $\mathrm{N} \cdots$ Te interaction, but this parameter is not discussed in the paper. T. Junk, K. J. Irgolic and E. A. Meyers, Acta Crystallogr., 1993, C49, 975.
9. The planarity of this derivative is attributed to intramolecular nonbonded interactions between the carbonyl oxygen atoms (rather that the methoxy oxygen atoms) and the tellurium atoms. O. Niyomura, S. Kato and S. Inagaki, J. Am. Chem. Soc. 2000, 122, 2132.
80 13. N. W. Alcock, Adv. Inorg. Chem Radiochem., 1972, 15, 1.
10. Red crystals of the neutral ditelluride $\left.\left[{ }^{(} \mathrm{BuNH}\right) \mathrm{P}\left(\mu \mathrm{N}^{\prime} \mathrm{Bu}\right)_{2} \mathrm{P}\left(\mathrm{N}^{\prime} \mathrm{Bu}\right) \mathrm{Te}\right]_{2}$ (4) were obtained from the decomposition of $\left[\mathrm{Li}(\text { tmeda })_{2} \mathbf{2}\right.$ and identified by an X-ray structural determination (see ESI).
85 15. Crystal data for $[\mathrm{Na} \text { (tmeda) }]_{2} \mathbf{1 c}: \mathrm{C}_{28} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{P}_{2} \mathrm{Te}_{2} \mathrm{Na}_{2}, M=880.02$, monoclinic, space group P21/n, $a=11.1830(5), b=$ 30.2640(12), $c=12.5750(5) \AA, \alpha=\gamma=90.00, \beta=95.151(1)^{\circ}, V=$ 4238.7(3) $\AA^{3}, Z=4, \rho_{\text {calcd }}=1.379 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=1.500 \mathrm{~mm}^{-1}, \mathrm{~T}=173(2)$ $\mathrm{K}, 12267$ reflections collected (θ range $1.4-27.5^{\circ}$), 7193 unique ($R_{\text {int }}$
$90 \quad=0.0436), R_{1}=0.0644$ for 6017 reflections with $\left.I>2 \sigma(I)\right]$ and $w R_{2}$ $=0.1771$ (for all data).
11. The new reagent $\left[\mathrm{Na}_{2}\left\{{ }^{\prime} \mathrm{BuNP}\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{PN}^{\prime} \mathrm{Bu}\right\}\right]_{2}$ was shown to be a dimer by a single-crystal X-ray structural determination (see ESI).
12. The sulfur and selenium analogues of $[\mathrm{Na}(\mathrm{tmeda})]_{2} \mathbf{1 c}$, in which
13. M. Saito, H. Hashimoto and T. Tajima, Acta Crystallogr. Section E, 2010, E66, m 885.
14. F. Sladky, B. Bildstein, C. Rieker, A. Gieren, H. Betz and T. Hübner, J. Chem. Soc., Chem. Commun., 1985, 1800.
15. T. A. Hamor, N. Al-Salim, A. A. West and W. R. McWhinnie, J. Organomet. Chem., 1986, 310, C5.
16. J. Beckmann, J. Bolsingerand and A. Duthie, Organometallics, 2009, 28, 4610.
115 23. N. Kuhn, H. Schumann and R. Boese, J. Chem. Soc., Chem. Commип., 1987, 1257.
17. A P-Te bond distance of $2.605(1) \AA$ with ${ }^{1} J(\mathrm{P}, \mathrm{Te})=780 \mathrm{~Hz}$ has been reported for the tricyclohexylphosphine adduct of a 1,2,5telluradiazolium cation. J. L. Dutton and P. J. Ragogna, Inorg. Chem., 2009, 48, 1722.
18. (a) J. Konu, T. Chivers and H. M. Tuononen, Chem. Commun., 2006, 1634; (b) J. Konu, T. Chivers and H. M. Tuononen, Inorg. Chem., 2006, 45, 10678.
19. (a) T. Chivers, J. S. Ritch, S. D. Robertson, J. Konu and H. M. Tuononen, Acc. Chem. Res., 2010, 43, 1053; (b) T. Chivers, D. J. Eisler, J. S. Ritch and H. M. Tuononen, Angew. Chem. Int. Ed., 2005, 44, 4953; (c) J. S. Ritch, T. Chivers, D. J. Eisler and H. M. Tuononen, Chem.-Eur. J., 2007, 13, 4643.
20. Wright and co-workers have invoked the involvement of an acyclic intermediate in the formation of NH-bridged $\mathrm{P}^{\mathrm{III}} \mathrm{N}_{2}$ macrocycles on the basis of detailed ${ }^{31} \mathrm{P}$ NMR studies. F. Garcia, J. M. Goodman, R.

> A. Koweneicki. I. Kuzu, , M. McPartlin, M. S. Silva, L. Riera, A. D.

Woods and D. S. Wright, Chem. -Eur. J., 2004, 10, 6066.

