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Abstract

Species Distribution Modelling (SDM) plays a key role in a number of biological applications:

assessment of temporal trends in distribution, environmental impact assessment and spatial

conservation planning. From a statistical perspective, this thesis develops two methods for

increasing the accuracy and reliability of maps of density surfaces and provides a solution

to the problem of how to collate multiple density maps of the same region, obtained from

differing sources. From a biological perspective, these statistical methods are used to analyse

two marine mammal datasets to produce accurate maps for use in spatial conservation

planning and temporal trend assessment.

The first new method, Complex Region Spatial Smoother [CReSS; Scott-Hayward et al.,

2013], improves smoothing in areas where the real distance an animal must travel (‘as the

animal swims’) between two points may be greater than the straight line distance between

them, a problem that occurs in complex domains with coastline or islands. CReSS uses esti-

mates of the geodesic distance between points, model averaging and local radial smoothing.

Simulation is used to compare its performance with other traditional and recently-developed

smoothing techniques: Thin Plate Splines (TPS, Harder and Desmarais [1972]), Geodesic

Low rank TPS (GLTPS; Wang and Ranalli [2007]) and the Soap film smoother (SOAP;

Wood et al. [2008]). GLTPS cannot be used in areas with islands and SOAP can be very

hard to parametrise. CReSS outperforms all of the other methods on a range of simula-

tions, based on their fit to the underlying function as measured by mean squared error,

particularly for sparse data sets.

Smoothing functions need to be flexible when they are used to model density surfaces

that are highly heterogeneous, in order to avoid biases due to under- or over-fitting. This
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issue was addressed using an adaptation of a Spatially Adaptive Local Smoothing Algorithm

(SALSA, Walker et al. [2010]) in combination with the CReSS method (CReSS-SALSA2D).

Unlike traditional methods, such as Generalised Additive Modelling, the adaptive knot

selection approach used in SALSA2D naturally accommodates local changes in the smooth-

ness of the density surface that is being modelled. At the time of writing, there are no other

methods available to deal with this issue in topographically complex regions. Simulation

results show that CReSS-SALSA2D performs better than CReSS (based on MSE scores),

except at very high noise levels where there is an issue with over-fitting.

There is an increasing need for a facility to combine multiple density surface maps of

individual species in order to make best use of meta-databases, to maintain existing maps,

and to extend their geographical coverage. This thesis develops a framework and methods

for combining species distribution maps as new information becomes available. The methods

use Bayes Theorem to combine density surfaces, taking account of the levels of precision

associated with the different sets of estimates, and kernel smoothing to alleviate artefacts

that may be created where pairs of surfaces join. The methods were used as part of an

algorithm (the Dynamic Cetacean Abundance Predictor) designed for BAE Systems to aid

in risk mitigation for naval exercises.

Two case studies show the capabilities of CReSS and CReSS-SALSA2D when applied

to real ecological data. In the first case study, CReSS was used in a Generalised Estimating

Equation framework to identify a candidate Marine Protected Area for the Southern Res-

ident Killer Whale population to the south of San Juan Island, off the Pacific coast of the

United States.

In the second case study, changes in the spatial and temporal distribution of harbour

porpoise and minke whale in north-western European waters over a period of 17 years

(1994-2010) were modelled. CReSS and CReSS-SALSA2D performed well in a large, topo-

graphically complex study area. Based on simulation results, maps produced using these

methods are more accurate than if a traditional GAM-based method is used. The resulting

maps identified particularly high densities of both harbour porpoise and minke whale in an

area off the west coast of Scotland in 2010, that might be a candidate for inclusion into the

Scottish network of Nature Conservation Marine Protected Areas.
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Chapter 1

General Introduction

The most common definition of ecology is the study of the distribution and abundance

of organisms [Andrewartha and Birch, 1954]. For hundreds of years, biologists have con-

ducted field studies to determine the distribution of plants and animals, yet little is known

about this for many species. This is, in part, because the fieldwork required to obtain

this information takes time, costs money, tends only to occur in accessible areas and rarely

covers the entire range of a species. Even when appropriate data have been collected, sum-

marising these data and providing a clear insight into the factors which may determine the

distribution of a species remains a challenging task.

Species Distribution Modelling (SDM) has provided a set of analytical tools that can

be used to create models of a species distribution using the environmental characteristics

of the locations where it is known to be present (and, sometimes, where it is absent).

These models, which are usually statistical in nature, can be used to extrapolate species

distributions to unsurveyed areas and to document changes in distribution over time. If the

fit between the model predictions and the species’ distribution is good, the model can also

provide insight into the species’ environmental tolerances or habitat preferences. SDM also

allows the opportunity for prediction to locations or time-scales not surveyed.

The term SDM has been applied to both niche modelling [e.g. Rotenberry et al., 2006]
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and habitat suitability or distribution modelling [e.g. Hirzel and Le Lay, 2008, Guisan and

Zimmerman, 2000]. An ecological niche is the ecological role and space that an organism

fills in an ecosystem, and niche modelling attempts to identify the characteristics of this

niche. Niche models may estimate:

• a species fundamental (or potential) niche, which is the full range of environmental

conditions and resources it can occupy and use;

• its realised (or actual) niche, which is the part of the fundamental niche that an

organism currently occupies as a result of limiting factors, such as competition;

• or its climatic niche, the area in which the climate is suitable for the species to succeed.

Habitat suitability modelling is based on the concept of a resource selection function,

which describes the factors which determine the probability that a species will occur in a

particular habitat [Manly et al., 2002]. In practice, these functions can relate the probability

of occurrence to one or more environmental covariates.

Franklin [1995] describes SDM as “geographical modelling of biospatial patterns in re-

lation to environmental gradients”, and it is the definition I have adopted for this thesis. It

encompasses both species distribution modelling and predictive [distribution] mapping.

SDM is generally applied to presence data because much of the historical data from

observational studies or taxonomic records was of this type. However, many studies are

now designed to record both species absences and presences at a given location, and, in

some cases, the number of individuals of each species. SDM uses models to link, usually

sparse, data on species occurrence and abundance with data on environmental covariates,

which is often plentiful. There are three main modelling approaches:

• Profile methods (which use presence data): these use the ranges of the environmen-

tal covariates that limit the occurrence of a species to define distribution. Values of
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covariates at a given location are compared with the values of those covariates ob-

served at locations where the species is known to occur, and this comparison is used

to determine the suitability of a habitat. One example of this approach is climate

envelope modelling, which is based on the climatic niche of a species [Elith et al.,

2006]. Geographic models use the location of occurrence points, but not the value

of environmental covariates at these locations. The probability of occurrence at a

particular point is assumed to be related to the distance of that point from the closest

known presence point. Geographic models are not commonly used in SDM because

they only describe the survey data itself and have limited predictive ability.

• Regression methods (which use presence/absence or count data) include Generalised

Linear Models [GLMs; e.g. Guisan et al., 2002, McCullagh and Nelder, 1989] and

Generalised Additive Models [GAMs; e.g. Embling et al., 2010, Hastie and Tibshirani,

1990]. Regression methods assume a continuous relationship between the response

data and a set of environmental covariates.

• Machine learning methods use presence/absence or presence/pseudoabsence data, and

are also known as data mining methods. The distinction in the literature between ma-

chine learning methods and regression methods is not at all clear. Both are distinct

from profile methods in that they can be used with data other than presence-only.

Regression models typically assume that the data are generated by a pre-specified

stochastic model, whereas machine learning methods use algorithmic models and as-

sume that the mechanism which generated the data is unknown. GAMs are very

flexible regression models that can be used to fit complex and essentially arbitrary

functions to the data. This makes them similar to machine learning methods, in-

dicating that the distinction between regression and machine learning methods is

blurred. The most common machine learning method used in SDM is MaxEnt [Max-

imum Entropy; Phillips et al., 2004, 2006, Elith et al., 2011], which is used to model
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presence-only data. Further information on machine learning methods can be found

in Hastie et al. [2009] and Breiman [2001].

1.1 Why map species distribution?

Distribution maps generated by SDM can be used to:

• improve understanding of the ecology of a species,

• predict species occurrence at locations where survey data are lacking,

• assist in conservation planning and reserve design,

• assess a species’ status by comparing past and current maps,

• predict the effects of climate change,

• evaluate the potential impacts of invasive species, to develop ecological restoration

programmes,

• and to carry out environmental impact and risk analyses [Franklin and Miller, 2009].

One of the earliest examples of the application of SDM dates back to 1924, when John-

ston (cited in Guisan and Thuiller [2005]) used it to predict the spread of the invasive

cactus (Opuntia sp.) in Australia using correlations between the species’ distribution and

climate-related covariates. According to Guisan and Zimmerman [2000] and Zimmermann

et al. [2010] the use of computers in SDM began in the 1970s when, for example, Nix (1977)

made niche-based predictions of the spatial distribution of crop species in Australia [Nix

et al., 1977].

Guisan and Zimmerman [2000] provides a review of ‘predictive habitat distribution

modelling’ using a variety of regression based methods. They discuss the idea that the

choice of model should not depend solely on statistical considerations but should include
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some thought about the nature of the species’ response. As with most modelling, there

is a trade-off between optimising accuracy and optimising generality (i.e. fitting a model

perfectly to the data vs finding the underlying function that generated the data). They

propose a framework for building an SDM [Figure 1 in Guisan and Zimmerman, 2000] that

involves identifying a conceptual model based on the literature or laboratory experiments,

this model is then used to inform both sampling design and statistical formulation. A formal

version of the model is then fitted to the data, diagnostics are checked, predictions made

and model performance evaluated. The same general framework was used in this thesis to

analyse the datasets in Chapters 4 and 6.

An international workshop on SDM in 2000 resulted in two special issues of journals, one

on the technical aspects of predictive habitat modelling using GLMs and GAMs [Guisan

et al., 2002], and the other on the applications of SDM to a variety of terrestrial species data

[Lehmann et al., 2002]. The first of these includes papers that discuss the use of GLMs and

GAMs for building resource selection functions, whilst others describe the usefulness of these

models for zero-inflated datasets that include a higher proportion of zeros than expected,

presence-only and remote-sensed data, and problems associated with the incorporation of

prediction uncertainties. Some of the applications of SDM in the second special issue include

modelling historic distributions, modelling the response of species to climate change, and

spatial conservation planning. These are common applications of SDM that are described

further in the following sections.

In 2005 Guisan and Thuiller [2005] wrote a detailed review of the ecological principles

and assumptions underpinning SDM and highlighted some critical limitations of the ap-

proach. They suggest that more care be taken to include information about competition

and dispersion, because the boundary of a species’ distribution may be determined by com-

petition as well as environmental covariates. Furthermore, there may be issues because of

a mismatch between the scales at which species distribution and environmental covariate

data have been collected. Similar issues arise when predicting the effects of climate change
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on species distribution at a local scale. The predictions for climate change are likely to be

on a coarser scale than those relating to competition or dispersion. In conclusion, Guisan

and Thuiller [2005] believe that SDMs should be developed out of a collaboration between

different aspects of biology, ecology, statistics and geography to ensure that they are ‘better

rooted in ecological theory, more dynamic and multispecific’ .

Araújo and Guisan [2006] identified the additional issues of model parameterisation and

model selection. A multitude of modelling techniques can be applied to species distribution

data and all will give different results. Additionally, even different implementations of the

same technique can give different results. This leads to the issue of model selection, both in

terms of which implementation and which covariates to select. Model selection should be

based both on biogeographical and ecological theory and how much each covariate explains

the distribution of the data. One must also accept that there are likely to be strong drivers

of distribution that are unavailable or unknown for use as covariates. The issues of model

and parameter selection are discussed further throughout this thesis.

Recently, Hawkins [2012] identified a number of assumptions that are made when

analysing spatial data. One of particular interest to this thesis is that spatial (and tempo-

ral) autocorrelation is widespread in the data used in SDM, but is often ignored. The main

issue is a lack of independence in residuals (a common assumption of regression models),

which leads to underestimation of standard errors if correlation is positive, and hence an

overestimation of the significance of covariates. As Hawkins points out, this is only an issue

if selection is done by significance tests. However, we must also consider that any estimates

of the uncertainty associated with results, such as plots of confidence intervals, may be

misleading. For example, these will be too narrow if correlation is positive. There is further

discussion of autocorrelation and appropriate methods in these cases in Chapters 4 and 6.

This thesis focuses on the development of regression methods for modelling cetacean

distributions. The aim is to create predictive distribution maps that are as accurate as pos-

sible. Clearly, highly accurate maps of any species can be produced if the location of every
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individual is known. However, this is an almost impossible task, for highly mobile and/or

rare species, such as cetaceans. In practice, the information we have on the distribution of

such species is patchy. The distribution of such species can still be estimated using modern

statistical techniques, although a lack of understanding of their potential flaws may intro-

duce unanticipated biases [Araújo and Guisan, 2006, Potts and Elith, 2006, Hawkins, 2012].

For example, many methods require unlikely assumptions about linearity or the indepen-

dence of residuals. Other common problems with data collected on marine species that may

lead to unrealistic measures of precision include autocorrelation and overdispersion. Both

these issues arise in datasets analysed in this thesis and will be discussed in later chapters.

In the following sections, I describe how SDM can be used for three primary applica-

tions: analysing temporal trends, environmental impact assessment, and spatial conserva-

tion planning. In each application, statistical models that relate species presence/absence

or abundance to environmental variables are derived from biological survey data, and these

models are then used to fill in gaps in a species’ distribution.

1.2 Temporal Distribution Trends

SDM is often used to create an atlas of species’ distributions [e.g. Reid et al., 2003] or to

map potential future distributions, given a change in environmental conditions [e.g. Teixeira

and Arntzen, 2002]. A modelling process, which uses dynamic variables as the basis for

mapping, enables prediction of trends and is therefore more flexible than simply mapping

the occurrence of species.

Range maps showing the presence/absence of species have long been in use by organ-

isations such as the British Trust for Ornithology or the Royal Society for the Protection

of Birds. These have been used to assess historical changes in distribution and as the basis

for predictions of future distributions.

Climate change is considered the single greatest long-term threat to birds and other
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wildlife, with mid-range climate warming scenarios predicting between 15% and 37% of

species world-wide will be ‘committed to extinction’ by 2050 [Thomas et al., 2004]. These

predictions rely on data about the relationship between species distribution and tempera-

ture. For example, Teixeira and Arntzen [2002] simulated the potential impact of climate

warming on the range of the Iberian endemic Golden-striped salamander, Chioglossa lusi-

tanica, using distribution models created using GLMs. They produced maps of species

distribution extrapolated to the years 2050 and 2080 (equivalent to a rise in temperature

of 2oC and 3oC), which predicted a substantial range reduction. Similarly, Ferrier et al.

[2002] used GLMs to study the effect of climate change on biodiversity in northeast New

South Wales, Australia and Pearson et al. [2002, 2004] coupled artificial neural networks

with a climate-hydrological process model to identify bioclimatic envelopes for plant species

in Great Britain. Araújo et al. [2005] used data on the distribution of 116 species of British

breeding birds collected over the last 20 years to compare the performance of different

methods for predicting shifts in range. They concluded that artificial neural networks and

GAMs provided more accurate predictions than GLMs or classification tree analysis.

Lastly, SDMs have become an established tool for identifying locations where invasive

species are likely to become established [Andersen et al., 2004] and for predicting the spread

of pest and disease organisms [e.g. Kelly and Meentemeyer, 2002].

1.3 Impact Assessment

Environmental Impact Assessments (EIA) are mainly used to predict or document the

potential effect on wildlife of the construction and operation of developments such as oil

rigs, wind farms (both marine and land-based), bridges and roads. Ideally, these studies

involve a designed survey that is carried out before any construction begins, and is repeated

during and after construction. However, many studies only have access to ‘before’ (or ‘after’)

data for assessing what species occur in an area that may be impacted by the development.
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SDM can play an important role in providing spatially explicit predictions of animal presence

before or after the development, and for comparing these distributions.

EIAs have traditionally used a Before-After-Control-Impact design [BACI; Green, 1979,

McDonald et al., 2000, Smith, 2002, Fox et al., 2006] in order to determine whether a

development has resulted in a significant change in the abundance or distribution of the

species likely to be affected. However, it is often difficult to define the area over which a

development may have an effect and to find a suitable control area that replicates this. Fur-

thermore, BACI designs have little or no power to detect a re-distribution or displacement

of animals within an impact area [Underwood, 1992]. It is more realistic to use a Before-

After-Gradient (BAG) design [Mainstream, 2009, Barton et al., 2011] which assumes that

the effect of a development will decline with increasing distance from the source [Ellis and

Schneider, 1997, Morrison et al., 2008], and thus adds some element of spatial structure to

the analysis. Displacement and/or habitat loss effects can then be detected [Guillemette

and Larsen, 2002]. BACI designed analyses rarely use mapping as an output, but BAG

designed analyses use before and after maps to indicate if there has been a re-distribution

of the affected species [Petersen et al., 2006, 2011, Barton et al., 2011, Fox et al., 2006],

even if the absolute abundance of the species remains the same. Differences in the density

estimates can be used to calculate the magnitude of any avoidance effect, not just within

the immediate vicinity of the development but also around the edges of the development

area. This means there is no need to define a specific ‘impact’ area, as is required for a

BACI.

Camphuysen et al. [2004] describe how high resolution large scale mapping of bird den-

sities in marine waters is required to assess the potential impact of offshore wind turbine

installations. They suggested that spatial and temporal modelling are the most appropri-

ate methods for assessing changes in seabird distribution and abundance, weather effects,

foraging areas and habitat disturbance and loss.

Petersen et al. [2011] highlighted the importance of spatial mapping in the assessment
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of the environmental effects of an offshore wind farm in the Nysted area of Denmark.

They analysed the distribution of long tailed ducks (Clangula hyemalis) before and after

construction using a GAM based model with spatially adaptive smoothing. There was no

change in the absolute numbers of ducks in the study area after construction, but the SDM

showed a marked decrease in the number of birds within the footprint of the wind farm.

They also detected an increase in numbers in deeper waters. Long tailed ducks are known

to prefer shallow waters, where they dive for their food [Nilsson, 1972]. Birds that are

displaced to deeper water will probably use more energy in diving and may gain less energy

from their prey. The re-distribution and subsequent energy budget issue would not have

been identified without the help of SDM.

1.4 Spatial Conservation Planning in the Marine Environ-

ment

Results from SDM are often used to develop management frameworks for individual species.

These frameworks may include the identification of areas which require protection because

the species occurs at high density, or because they are of particular importance to some life

history stages [Hoyt, 2012]. Mapping of species distribution plays a particularly important

role in the decision making process for the designation of such protected areas [e.g. Embling

et al., 2010, Ashe et al., 2010].

Halpern et al. [2008] concluded that “no area [of our oceans] is unaffected by human

influence and that a large fraction (41%) is strongly affected by multiple drivers”. The

United Nations Environment Programme’s Global Synthesis report suggests that there has

been progress in the establishment of Marine Protected Areas (MPAs) in all parts of the

world. However, only 1.17% of global ocean surface and 4.32% of continental shelf areas are

currently designated MPAs, which falls well short of the 10% target set at the 7th Conference

of Parties to the Convention on Biological Diversity in 2004 [UNEP, 2010]. Thus there is
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still an urgent need to designate more MPAs.

The UK and Scottish governments have recently begun the process of identifying can-

didate MPAs (now known as marine conservation zones in England and Wales) to comply

with the Marine Scotland Act (2010) and the Marine and Coastal Access Act (2009; Eng-

land and Wales). Prior to this, they had designated Special Areas of Conservation (SACs)

for three of the four marine mammal species listed on Annex II of the EU Habitats and

Species Directive (92/43/EEC). The UK government uses the International Union for the

Conservation of Nature’s (IUCN) definition of an marine conservation zone: “any area of

intertidal or subtidal terrain, together with its overlying water and associated flora, fauna,

historical and cultural features, which has been reserved by law or other effective means to

protect part or all of the enclosed environment”. A variety of other types of protected area,

such as marine nature reserves and no-take zones, also fall within this definition. A key

aspect of MPAs is that they need to be large enough to be biologically relevant but small

enough to be managed in a cost effective way.

Designation of MPAs is best achieved through a multidisciplinary approach [Meffe, 1999].

Hoyt [2012] provided a checklist of twenty points for consideration in identifying good MPAs.

Many of these points, such as assessing distribution and abundance, commissioning field

studies, and determining critical habitat and prey preferences, are related to a species’

distribution and can be addressed using SDM. However, local laws and policies, stakeholder

involvement and human interactions must also be considered.

MPAs can be a valuable tool for cetacean conservation, but they cannot guarantee a

positive conservation result. Rather, they should be considered as part of marine spatial

planning process in a broad ecosystem-based management approach. Gormley et al. [2012]

describe how the establishment of an MPA for Hector’s dolphin (Cephalorhynchus hectori)

in the Banks Peninsula Marine Mammal Sanctuary in New Zealand has resulted in a 90%

probability that survival of Hectors Dolphins has improved between the pre-sanctuary and

post-sanctuary periods, with survival increasing by approximately 5%. However, this was
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the result of a long term study (21 years), which suggests that MPAs should be established

with a commitment to long term monitoring. It is also important to manage other potential

threats to cetaceans such as overfishing, by-catch, pollution and noise.

At least two marine mammal species, the Yangtze River Dolphin (Lipotes vexillifer), in

China, and the Vaquita (Phocoena sinus) in the northern Gulf of California, have declined

dramatically despite some protection, via the creation of MPAs [Hoyt, 2012]. In both

cases, the MPA did not adequately cover the species’ range and bycatch was not sufficiently

controlled.

Examples where SDM has been used to select candidate MPAs for marine mammals

include the proposal of a site for the endangered southern resident killer whales (Orcinus

orca) [Reynolds III et al., 2009] on the west coast of North America [Ashe et al., 2010]

and proposed MPAs for harbour porpoise off the west coast of Scotland [Embling et al.,

2010]. Ashe et al. [2010] used observations of feeding behaviour to delineate the proposed

area, whereas Embling et al. [2010] used animal density. Specifically, Ashe et al. [2010] used

a GAM to model the distribution of observations of feeding killer whales in the inshore

waters around San Juan Island, Washington State (USA) and adjacent Canadian waters.

This model was combined with information on the levels of boat traffic, which may affect

feeding behaviour.

Harbour porpoises are the only marine mammal species on Annex II of the 1992 EU

Habitats Directive (92/43/EEC) for which the UK government has not designated an SAC.

Embling et al. [2010] fitted a GAM to data collected off the west coast of Scotland over a

three year period and used this model to identify areas of persistently high relative density

of porpoise groups across years.

SDM has also been used to identify regions needed to protect a variety of other ma-

rine species. Sanchez et al. [2008] used GAMs combined with environmental variables to

model the larval distribution of squid (Loligo vulgaris) in the northwest Mediterranean Sea.

Louzao et al. [2009] and Rayner et al. [2007] used GLMs to establish habitat associations
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for Cory shearwater (Calonectris diomedea) and the endangered Cook’s petrel (Pterodroma

cookii) respectively. Rayner et al. [2007] showed that predictive habitat models offer an

improvement on the more traditional population census methodologies for birds.

SDM can provide information on the distribution of species over time through the in-

clusion of temporal components. However, as with all statistical models, the accuracy of

the resulting models must be taken into consideration. Standard mapping techniques may

involve over-simplistic smoothing or violation of standard assumptions, thus introducing

biases in the predictions. Furthermore, many studies lack, or have inadequate, estimates of

uncertainty.

The chapters that follow focus on the use of SDM for conservation planning and temporal

trend assessment. However, the same techniques can also be used for EIA, as described in

the Conclusions (Chapter 8).

The distribution of a species may change over time, so there is a need to update the

maps used for management decisions at regular intervals. To assist this process, a number

of projects have attempted to archive all cetacean survey data in single, large databases,

where they can be accessed by all interested parties. For example, OBIS SEAMAP is a

web-based database that contains raw survey data for many different cetacean species [Read

et al., 2011]. Users of OBIS SEAMAP can refine searches using regions and/or species and

download raw data. Hoyt [2005] suggests that the first step in cetacean management is to

use this database to identify the available information in an area of interest. There may be

several surveys in the same area and results from these surveys have probably been modelled

separately to give species distributions. However, ignoring the fact that the surveys overlap

is both wasteful of effort and useful information, and limits the coverage of data in the

area of interest. It would be useful to combine all the overlapping surveys in some way to

provide the user with the distribution needed to begin MPA designation. This issue was also

highlighted at a recent meeting of scientists studying turtle distributions off the east coast

of the USA (Borchers pers. comm.), where multiple, overlapping surveys have been carried
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out by separate groups. That meeting concluded that a dedicated method for combining

survey outputs, such as that developed in Chapter 7, would be a useful tool in assessment

of turtle distribution off the east coast of the USA.

This thesis focuses on the development of statistical methods, particularly regression

based, for mapping the distribution of marine species. However, the methods developed

could equally be applied in many other contexts, including terrestrial ecology [e.g. Maggini

et al., 2002, Ferrier et al., 2002, Teixeira and Arntzen, 2002] and demographic studies for

example, income data from the 1996 Canadian census [Ramsay, 2002] or foreign resident

distribution in Italy [Marra et al., 2011].

1.5 Statistical Issues

A problem frequently encountered when producing distribution maps for marine species is

the presence of coastlines or islands with complex topography. This complex topography

may exclude animals from certain areas, which are referred to here as ‘exclusion zones’.

The two case study analyses presented in this thesis (Chapters 4 and 6) are both in regions

with complex topography.

Thin Plate Splines (TPS; Harder and Desmarais, 1972), which are currently the method

of choice for constructing the density surfaces that form the basis of generalised additive

SDM use the Euclidean distance between points to represent similarity. These methods can

struggle to produce reliable distribution maps if animal densities are highly variable across

exclusion zones [Ramsay, 2002, Wang and Ranalli, 2007, Wood et al., 2008], because the

Euclidean distance is not always a realistic representation of the true distance an animal

must travel between two points (Figure 1.1). This can result in ‘leakage’ in the model

predictions, where high or low densities in one body of water can unduly influence the

density estimates in another body of water from which it is separated by a land mass. The

resulting prediction bias is an artefact of the distance measure. An example of this can be
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Figure 1.1: An example of 3 equidistant points, where the Euclidean distance between two
of the points (triangle and square) crosses an exclusion zone. Realistically the similarity in
these two points is the distance between the two without crossing the exclusion zone.

seen in Figure 1.2. The top plot is a simulated ‘horseshoe’ shaped region [Ramsay, 2002]

with a zone between the two arms from which animals are excluded by topography. The

bottom plot shows a TPS fit to a sample of 500 observations with low observation error.

It is clear that the high values in the upper arm have been under-estimated (yellow at the

lower edge of the arm) and the low values in the lower arm have been over-estimated (pale

blue at the upper edge of the arm).

Recent alternatives to the TPS method are designed to respect complex boundaries. For

example, Finite Element L-Splines (FELS, Ramsay, 2002) utilises a mesh that is constrained

to the domain and the observed points within it. The FELS approach has been shown to

be a marked improvement over TPS [Ramsay, 2002]. Further details of this method can be

found in Chapter 2.

The Geodesic Low rank Thin Plate Spline method (GLTPS; Wang and Ranalli, 2007),

involves a mixed model representation of the TPS basis and uses local neighbourhoods

around points to estimate geodesic inter-point distances (see Section 2.4.4 for more details).

The amount of leakage that is permitted by GLTPS can be small if the size of the chosen

neighbourhood is also small, but there is no inherent constraint to prevent leakage across

boundaries. This method also requires that a grid is chosen prior to modelling, and the final

solution may be sensitive to this choice. Additionally, GLTPS uses a global basis function,

meaning individual points can be influential over the entire surface. If the influence of
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Figure 1.2: A horseshoe shaped simulated region from Ramsay [2002] containing an ex-
clusion zone between the two arms (a). (b) shows a TPS fit to a sample of 500 low noise
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individual points is reduced to an area less than the area of the entire surface around each

point, the basis function is termed a local basis function.

SOAP film smoothing (SOAP; Wood et al., 2008) uses a specific basis function to model

the domain interior, alongside a cyclic penalised cubic regression spline to model each

boundary. This method respects boundaries and employs at least two tuning parameters:

one global parameter for the interior, and one for each boundary. It has been shown to

perform well compared with TPS and FELS, but it has not yet been compared with the

GLTPS method. Like TPS and GLTPS, this method is globally acting.

1.6 Thesis Outline

This thesis aims to address some of the problems involved in collating and analysing data on

the abundance and distribution of individual marine species using regression based SDM. I

review current methods for smoothing in complex areas and introduce a new, and relatively

simple method, the Complex Region Spatial Smoother (CReSS), which respects boundaries.

I also develop a process by which two overlapping density surfaces can be merged to produce

a single, composite density surface.

This thesis relies heavily on smoothing methods and much of the following Chapter

(2) is devoted to introducing this topic. Chapter 3 introduces the new CReSS method

and compares its performance to that of three other methods using the two dimensional

benchmark surface shown in Figure 1.2(a). An additional simulation surface which contains

an island is introduced in Chapter 4. I also investigate the effects of data sparsity in a

simulation setting. The end of the chapter comprises a case study for designation of an

MPA based upon an analysis of feeding behaviour of killer whales off the west coast of

North America. The methods and simulations from Chapters 3 and 4 are now published as

Scott-Hayward et al. [2013].

In Chapter 5 I investigate improvements to the CReSS model that allow a spatially
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adaptive surface to be used. In Chapter 6, the methods of Chapters 3 and 5 are used to

model the distribution of harbour porpoise and minke whale (Balaenoptera acutorostrata) in

northern European waters using the Joint Cetacean Protocol (JCP) data resource. Finally,

Chapter 7 develops a process for combining two density surfaces using data from the Relative

Environment Suitability (RES) database [Donovan et al., 2011] as a template. An index

of acronyms and statistical terminology can be found in Appendix A, whilst, appendices E

and F, associated with Chapter 6, can be found on the accompanying CD.



Chapter 2

Background Methodology

Smoothing is a dominant theme throughout this thesis and so most of this chapter is devoted

to a general review of smoothing techniques. Most of the methods described are extensions

of the linear model, however, kernel smoothing is also discussed. Smoothing methods are

useful in cases where a line or a surface is sought that is a smooth representation of the

data. The goal of smoothing is to produce a graphical approximation of the underlying

relationship that is less variable (or smoother) than the data themselves. This allows us to

see past the random noise in the data and makes it easier to understand the relationship

between response and predictor.

The methods described here begin with linear models and their generalised form (Gen-

eralised Linear Models (GLMs); McCullagh and Nelder, 1989) and then move on to Gen-

eralised Additive Models (GAMs; Hastie and Tibshirani, 1990), which allow non-linear

relationships between predictor variables and the response (Section 2.2). Both GLMs and

GAMs are very useful methods and are commonly used to model species distributions

[Guisan et al., 2002, Guisan and Thuiller, 2005, Elith et al., 2006]. Different types of splines

for use in GAMs are discussed, followed by a section detailing one and two-dimensional

kernel smoothing (Section 2.3). I then discuss bivariate smoothing using TPS (Section 2.4)

and focus on complex smoothing methods that are able to deal with the issue of smoothing

19
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in topographically complicated regions without producing the leakage artefacts mentioned

in Chapter 1. The last section of this chapter deals with methods for selecting among

competing models (Section 2.5).

2.1 Generalised Linear Models

This section begins with a brief recap of multiple regression linear models, which are a special

case of a Generalised Linear Model (GLM, McCullagh and Nelder, 1989) with Gaussian

errors and identity link function. Let’s assume we have n observations consisting of a

response variable, y, and covariates x1, ..., xp, then the linear regression formula is:

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi (2.1)

where εi ∼ N(0, σ2ε ). This can be written in matrix form as y = Xβ + ε, where y is a

response vector of length n, X is an n x (p + 1) covariate matrix, β is a coefficient vector

of length p+ 1 and ε is a vector of unobserved errors with length n.

The least squares estimator of β is also the maximum likelihood estimator (for normally

distributed errors), which is the basis for generalising the linear model. The least squares

solution can be obtained by [McCullagh and Nelder, 1989]:

β̂ = (X′X)−1X′y (2.2)

and therefore

ŷ = Xβ̂ = X(X′X)−1X′y = Hy (2.3)

H is known as the hat matrix and the least squares residuals are found using this matrix,

e = y − ŷ = (1−H)ε.

GLMs [McCullagh and Nelder, 1989] are useful when the errors are known to have a

distribution other than the Normal. A GLM consists of a random component specifying
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the distribution of the errors, a linear predictor ηi = β0 + β1xi1 + β2xi2 + ...+ βpxip and a

link function g(·). The distribution specified for the errors is from the exponential family,

for example, normal (linear model), exponential, gamma, Bernoulli, binomial, Poisson,

multinomial and negative binomial. The link function connects the mean response to the

linear predictor.

Since the data to be used in Chapters 4 and 6 are count data, the Poisson distribution

is shown as an example.

y ∼ Pois(λ)

The Poisson distribution allows the variance to increase with the mean and if a log link

function is used, for example, the predictions are required to be non-negative. A Poisson

model with log link function can be written in terms of the response, y, and p covariates as:

yi = eηi = eβ0+β1xi1+β2xi2+...+βpxip + εi (2.4)

or on the scale of the log link function:

g(λi) = log(λi) = ηi = β0 + β1xi1 + β2xi2 + ...+ βpxip (2.5)

This shows that the response on the link scale is linearly related to the covariates and,

therefore, still a model which is linear in its parameters. The mean and the variance are

assumed to be the same and equal to λ (E[y] = V (y) = λ). However, a common problem

in practice when applying a Poisson regression to count data is that the variance increases

at a faster rate than the mean (λ < V (y)). This means that the variance of the response is

greater than the variance assumed by the model, a situation known as overdispersion. If this

occurs the Poisson model will underestimate the uncertainty in the regression coefficients,

leading to potentially misleading inferences. For example, a covariate may appear to be

a significant predictor when it is not. The glm function in R [R Development Core Team,
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2009] allows a quasi-Poisson family which is able to adjust the uncertainty depending on the

amount of over/under dispersion seen in the data. For quasi-Poisson models, the variance

is assumed to be proportional (rather than equal) to the mean:

V (y) = φλ

where φ is the dispersion parameter, which is estimated during the modelling process.

For overdispersion (φ > 1) the standard errors are rescaled, leading to wider confidence

intervals and larger p-values for the intercept and slope parameters, relative to the Poisson

model.

2.2 Generalised Additive Models

Generalised Additive Models (GAMs; Stone, 1985) are an extension of GLMs that allow

the relationship between the response and a covariate to be non-linear. This is achieved

through the use of parameter anonymous smooth functions. Smoothing splines typically

carry out the smoothing in GAMs, frequently constructed from basis functions (Section

2.2.1). The generalised part of a GAM is the same as for a GLM and refers to the allowance

of non-normal errors to be specified.

2.2.1 Basis Functions

Basis functions are a series of functions that collectively span the predictor data range, and

are combined linearly to give an appropriate curve for the data. A simple example of a set

of bases is a polynomial basis:

b(x) =

M∑
m=1

xm

where M is the degree of the polynomial. For example, a degree 3 set of polynomial
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basis functions is:

b(x) = x+ x2 + x3

Each of these three bases span the entire x-range and are known as ‘global’ bases.

These can perform well but are restricted by their global nature; i.e. when fitting these as

an ordinary multiple regression, the fitted curve at any point in the x-range is affected by the

fitted curve elsewhere. This makes polynomials rather inflexible, but this can be alleviated

to some extent by increasing the order of the polynomials. However, high degree polynomials

show some oscillatory behaviour [Silverman, 1985]. To alleviate this, polynomial regression

can be extended to a series of piecewise polynomials that join smoothly at break points,

known as knots [Eilers and Marx, 1996]. For now, the knot locations are assumed given

(equidistant, and increasing in x) but in reality their number and location is quite important

(see Sections 2.3.1, 2.3.3 and 2.5.1).

There are two main types of knot based bases: truncated power series and b-splines and

I will describe each of these in turn.

Let’s assume we have a single covariate, x, and want polynomials in x up to degree 3.

A truncated power series basis [Hastie et al., 2009] can be expressed as:

b(x) = x+ x2 +

T∑
t=1

(x− κt)3

where κ1 < ... < κT are fixed knots. This gives a third degree polynomial on each

interval between two consecutive knots and with two continuous derivatives everywhere.

These cubic bases are bounded below (by knot location) but not explicitly above, which

can result in very large basis values for large x-ranges. B-splines tend to be preferred since

they are positive over only a small subset of the data and between 0 and 1. They are

calculated using a recursive relationship [de Boor, 2001].
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bt,j(x) =
x− κt

κt+j−1 − κt
bt,j−1(x) +

κt+j − x
κt+j − κt+1

bt+1,j−1(x)

where

bt,1(x) =

{
1 κt 6 κt+1

0 otherwise

This means that the tth 1st order (j = 1) B-spline will have a value of 1 between the two

knots κt and κt+1. and zero elsewhere. First order bases (degree 0) are piecewise constants,

second order (degree 1) are piecewise linear and give triangular bases between κt and κt+2

[Eilers and Marx, 1996]. Figure 2.1 shows an example of degree 1, 2 and 3 B-spline bases

with 5 knots each. The bases are shown alongside fit to some simulated motorcycle accident

data [Silverman, 1985].

Now that basis functions have been discussed, we can see how they fit into a GAM

framework. Let’s suppose we have response, y and a single predictor x, we can write the

formula for a GAM as follows:

yi = β0 +
T∑
t=1

βtbt(xi) + εi (2.6)

where bt are basis functions such as the ones previously described and the βs are the

model coefficients. The model residual term, ε, may follow any of the exponential dis-

tributions mentioned in the GLM section. The additive part is the addition of function

terms.

According to Faraway [2006] there are three ways of fitting GAM models in the statistical

computing environment, R [R Development Core Team, 2009]. The gam package is based

upon the work of Hastie and Tibshirani [1990]. The mgcv package is part of the basic

packages that comes with the default installation of R and is based upon work by Wood
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Figure 2.1: An example of 5 knot B-spline bases of degree 1, 2 and 3 (left). The figures
on the right are splines fitted to simulated motorcycle accident data from Silverman [1985],
depicting acceleration vs time to an impact event.
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[2000]. The gam package allows more choice of smoothers (e.g. moving average, local

regression, smoothing spline) and a back-fitting algorithm, while the mgcv package has

wider functionality, uses a penalised smoothing spline approach for fitting and penalised

least squares for estimation. The third package is gss [Gu, 2002], which takes a smoothing

spline based approach. These types of spline smoother are covered in Section 2.3.

I have focused on the methodology of mgcv as this package is used throughout the thesis.

A brief description of gam, the other commonly used package, can be found in Faraway

[2006]. In mgcv, splines are the only choice of smoother and the amount of smoothing is

typically chosen internally. Whilst automatic selection avoids the work and subjectivity of

making the selection by hand, it can also fail and human intervention may sometimes be

necessary. The user must also choose which spline basis to use for each covariate. Some of

the commonly used splines included in this package are the cubic regression spline, cyclic

cubic regression spline and the thin plate regression spline.

The implementation of GAMs in statistical software packages such as R has simplified

the application of the models and led to their increased use in applied fields. Consequently

GAMs are frequently presented in the environmental and ecological literature as the final

model, often without critical assessment. Despite this, however, GAMs can easily be mis-

specified, for example, through an inappropriate choice of smoothness parameter.

The next few sections will describe some alternative smoothing approaches including,

regression splines, smoothing splines and penalised regression splines, all of which can be

used in a GAM framework, and lastly non-parametric kernel smoothing.

2.3 Smoothing Methods

We consider here a regression problem, where a functional relationship is sought between

a single response variable and a set of covariates: the observed data are n observations

consisting of the covariate matrix x (e.g. for 2 covariates, xi = [x1,i, x2,i], i = 1, ..., n) and
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the corresponding scalar response yi. The general model assumed is yi = s(xi)+ei, and the

problem consists of approximating the underlying function s from the data in the presence

of noise (ei). The surface approximation, ŝ, can then be used for prediction or to explain

the systematic process generating the observations.

2.3.1 Regression Splines

The parametric approach is to assume that s(x) belong to a parametric family of basis

functions. For example, s(x) = β0 + β1x gives a simple linear regression. The paramet-

ric approach is quite flexible because we are not constrained to just linear terms, like in

this example. We can add many different types of terms, such as polynomials and other

functions of the variable, x, to achieve flexible fits, whilst still in a linear framework. Fur-

thermore, this approach has the advantage that parameters may have intuitive interpreta-

tions. Non-parametric methods do not have an easily interpretable equation and therefore

the relationship between predictors and the response may have to be described graphically.

Since, we can write down the parametric formula, the information required for prediction

is greatly reduced from the observed data, to the estimated model parameters. This means

that extrapolation and interpolation are both easier with this kind of model.

Using the truncated power cubic basis function discussed in Section 2.2.1 we can con-

struct a cubic regression spline as follows:

s(x) = β0 + β1x+ β2x
2 +

T∑
t=1

β2+t(x− κt)3

where the β’s are regression coefficients and κ1 < ... < κT are fixed knots. This gives

a third degree polynomial on each interval between two consecutive knots and have two

continuous derivatives everywhere. The flexibility of the cubic regression spline, for example,

relies entirely upon the number and location of the knots, therefore knot specification is of

great importance. Too many knots and the model will be over-fitted, resulting in a surface
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that fits too closely to the data and is therefore too ‘wiggly’ (Figure 2.2, 50 knots). Too few

and the result will be a model that is too smooth (Figure 2.2, 3 knots) and leaves pattern

in the noise. Ideally, we would like to find, and fit closely to, the underlying function

driving the process that generated the noisy data. Furthermore, the fit of the model tends

to depend strongly on the locations chosen for the knots. Typically, knots are either spaced

evenly throughout the range of x or at quantiles of the distribution of unique x values as in

Figure 2.2 [Wood, 2006, Faraway, 2006], but other automated and data-driven methods are

discussed in Section 2.5. The degree of smoothing for regression splines is determined by

the number and placement of knots but, as is discussed in the next section, we could also

use some penalty to determine overall smoothness.
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Figure 2.2: An example of cubic regression spline smoothing using three different numbers
of knots (3, 10, 50). The data are simulated motorcycle accident data from Silverman
[1985], depicting acceleration vs time to an impact event.
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2.3.2 Smoothing Splines

Smoothing splines are very similar to regression splines but avoid the knot selection issues

encountered with regression splines by having a knot at each unique x-value and adding a

penalty term to prevent over-fitting to the data. s(x) can be approximated by minimising

sums of squares and a penalty function [Reinsch, 1967]:

min
( n∑
i=1

{yi − s(xi)}2 − λ
∫
{s′′(x)}2dx

)
where λ > 0 is the smoothing parameter and

∫
[s′′(x)]2dx is a roughness penalty. A

large value of λ means the roughness measure dominates the function to be minimised,

resulting in a very smooth curve. Alternatively, a small value of λ results in a very ‘wiggly’

curve, which in the extreme will be an interpolating spline passing through each observation

(assuming unique x-values; Green and Silverman, 1994). Therefore, we can balance fit

against smoothness. The solution for ŝ using this roughness penalty is a cubic spline, so ŝ

is a piecewise cubic polynomial in each interval (xi, xi+1). Knots need not be chosen but

λ must be specified or estimated. This choice can be made using Cross Validation (CV),

which is a popular general-purpose selection method [Faraway, 2006]. Ideally we would use

the minimum Mean Squared Error (MSE) to determine fit but this requires the unknown

true function s(x). Leave-one-out CV has been shown to be a good approximation of MSE

[Hastie et al., 2009]. However, this method of CV is computationally expensive and the

more efficient Generalised Cross Validation (GCV; Craven and Wahba, 1979) is commonly

used instead [Hastie et al., 2009]. For large sample sizes this has been shown to minimise

the MSE but does have a tendency to overfit [Ruppert, 2002]. Methods for selecting the

smoothing parameter, including CV and GCV, are discussed further in Section 2.5. It is

also worth a note at this point that λ is global and therefore one value dictates model

smoothness for the whole x-range. This is not good for approximating a function with

locally varying smoothness.
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2.3.3 Penalised Regression Splines

Penalised Regression Splines (PRS; Parker and Rice [1985], Wahba [1990], Eilers and Marx

[1996]) are a compromise between regression splines and smoothing splines. Therefore, the

flexibility of PRS is determined by both knots and λ. They use less knots than one at

every unique x-value but still use a penalty to help avoid over-fitting. Generally knots

are placed at equally spaced quantiles (see Section 2.5.1 for more on knot selection) and λ

is typically chosen using GCV [Eilers and Marx, 1996, Ruppert, 2002]. All chosen knots

(number of knots, T < number of data points, n) are included but the influence of each

knot is constrained. In matrix form these splines can be written

‖y −Xβ‖2 + λ2βTSβ (2.7)

where the first term assesses model fit and the second term penalises models that are

too ‘wiggly’. The trade-off between the two is controlled by the smoothing parameter λ. As

for smoothing splines, λ = 0 gives us an unpenalised regression spline, whilst λ→∞ leads

to a straight line estimate for s. λ is squared here to allow the properties of λ to remain

the same if a transformation occurs in the x variable [Ruppert et al., 2003]. Matrix S is the

penalty matrix diag(0, 1T ) of size (T + 2, T + 2) where T is the total number of knots.

For a given λ the penalised least squares estimator of β, is

β̂ = (XTX + λS)−1XTy (2.8)

and therefore, similar to a GLM [Ruppert et al., 2003],

ŷ = Xβ̂ = X(XTX + λS)−1XTy = Hy (2.9)

where H is known as the hat or influence matrix. So long as there are enough knots to

make the basis more flexible than we think we need, it is now the choice of λ that determines
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the flexibility of the model. As for smoothing splines, this choice is typically made using

CV or GCV.

PRS are a cross between regression splines, where knots are manually chosen and

smoothing splines, where every datum is a knot point and over-fitting is addressed us-

ing a roughness penalty. Penalisation shrinks all basis coefficients toward zero, whereas

knot selection shrinks some coefficients to zero and leaves others unshrunk. Ruppert et al.

[2003] showed that, provided the knots in a penalised spline cover the range of x values, the

number and position of the knots makes little difference to the results, assuming however,

that we are not trying to approximate a function with locally varying smoothness. Once

the knots and λ are selected, one must also decide what spline basis to use, for example a

truncated power function or B-spline. Often in practice, when n is large, software that uses

smoothing splines may actually use PRS. For example, in the R function gam (in the mgcv

library) this limit is set to 200, above which the smoothing spline becomes a PRS, and this

would seem to have little effect on the end result [Wood, 2006].

2.3.4 Kernel Smoothing

To choose s from some smooth family of functions, we make some assumptions about s,

so that it has some degree of smoothness and continuity. With no formulaic output, the

relationship between predictors and the response is usually described graphically or as a set

of predictions. An advantage of the non-parametric approach over the parametric approach

is that less is assumed about the model so we reduce the bias from, for example, the wrong

choice of model form.

This section begins with kernel smoothing in one-dimension (one covariate), for sim-

plicity, and then extends the discussion to two-dimensional smoothing (two covariates).

Two-dimensional spline smoothing is discussed in the next section. Kernel smoothing fits

a different, simple model, separately at each observation point using only those observa-

tions closest to the target point. A simple kernel approach is to construct the local mean
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estimator using observed data denoted by {xi, yi; i = 1, ..., n},

ŝ(x) =

∑n
i=1w(xi − x;h)yi∑n
i=1w(xi − x;h)

first proposed by [Nadaraya, 1964] and [Watson, 1964]. The kernel function w((xi−x);h)

is usually a smooth positive function which peaks at (xi−x) = 0 and decreases monotonically

as (xi − x) increases in size. The basic idea is to give the most weight to the observations

whose covariate values xi lie close to the point of interest x and less to those that are remote.

More is discussed about types of kernel later in this section. The smoothing parameter, h,

controls the width of the kernel function and hence the degree of smoothing applied to the

data. As the smoothing parameter increases, the resulting estimator may smooth over local

features of the data, but if the smoothing parameter is too small, the function will simply

interpolate between the observed points, resulting in a very wiggly surface.

The local mean estimator shows some artificial flattening at the boundaries (edges of

covariate space) which leads to large bias in this region [Fan, 1993]. An alternative approach,

with minimal boundary bias, is to fit a local linear regression and the issue now becomes a

least squares problem.

minα,β

n∑
i=1

{yi − α− β(xi − x)}2w(xi − x;h) (2.10)

The solution to which, is the local linear estimator ˆs(x) [Cleveland, 1979]:

ˆs(x) =
1

n

n∑
i=1

{f2(x;h)− f1(x;h)(xi − x)}w(xi − x;h)yi
f2(x;h)f0(x;h)− f1(x;h)2

where fr(x;h) = {
∑

(xi − x)rw(xi − x;h)}/n. A useful property of this local linear

estimator is that as the smoothing parameter, h, becomes very large, the curve estimate

approaches the fitted least squares regression line. The local mean estimator converges to

a straight line parallel to the x axis, with intercept ȳ, when h is large.
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This thesis is mainly concerned with two-dimensional smoothing of space and the local

linear approach can easily be extended to non-parametric regression in two dimensions. For

observed data denoted by {x1i, x2i, yi; i = 1, ..., n} the weighted least squares formulation is

an extension of Equation 2.10.

minα,β,γ

n∑
i=1

{yi − α− β(x1i − x1)− γ(x2i − x2)}2w(x1i − x1;h1)w(x2i − x2;h2) (2.11)

where h1 and h2 are smoothing parameters associated with each weight function (one for

x1 and one for x2). More on smoothing parameter selection is discussed later in this section.

A more general two-dimensional kernel function could be used but Bowman and Azzalini

[2003] suggest the product of two separate weight functions for each covariate is sufficient.

It is often simpler and more compact to define the estimator in matrix notation. Let X

denote an n x 3 matrix whose ith row consists of the elements {1, (x1,i − x1), (x2,i − x2)}

and W an n x n matrix of zeros with a product of two separate weight functions for each

covariate, w(x1,i − x1,1;h1)w(x2,i − x2,1;h2), for each of the n observations down the lead

diagonal.

Thus the local linear estimator can be written as the first element of the least-squares

solution (XTWX)−1XTWy, where y denotes a vector of responses of length n.

I have outlined the general framework for a local linear approach to kernel smoothing,

that will be used in Chapter 7. However there are two parameters which must be chosen

a priori ; the weight function, w, and the smoothing parameter, h. Ideally, we would like a

weight function that meets two conditions. Firstly, a smooth weight function results in a

smooth estimate and secondly, a weight function that is non-zero only on a bounded interval

is preferred to one, for example, approaching zero as (xi − x) gets large. This means that

observations with near zero weight can be ignored, significantly reducing computational

speed. The uniform kernel, for example, is compact in its support (Figure 2.3) but can
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produce a stepped fit, which is, therefore, not smooth (Figure 2.4). For convenience, a

Gaussian density function is commonly used as the kernel. K(u) represents a kernel function

and for all examples here u = (xi − x)/h.

K(u) =
1√
2π
e−

1
2
u2 =

1√
2π
e−

(xi−x1)
2

2h2 (2.12)

where h denotes the smoothing parameter and controls the width of the kernel function

(Figure 2.4). This results in a smoother looking fit compared with the uniform kernel (Figure

2.4), but does not appear to meet the second of our desired properties: compact support

(Figure 2.3). In theory, the contribution of every point must be calculated. However, for the

Gaussian kernel, h is the standard deviation of the normal density function and therefore

we can show that observations within an effective range of 3h in the covariate axis will

contribute to the estimate. Observations out-with this range are deemed to have weight

near zero and need not be computed.

Another common choice for kernel is the Epanechinikov kernel:

K(u) =


3
4(1− u2) |u| < 1

0 Otherwise

This kernel shows some smoothness, is non zero on a bounded interval (Figure 2.3) and

is computationally rapid. Many kernels will produce similar results and so the choice of

kernel is not crucially important.

However, the choice of h is critical to the performance of the estimator [Bowman and

Azzalini, 2003]. The aim is to produce an estimate that is as smooth as possible whilst

maintaining the ‘wiggliness’ of the underlying function. This becomes an issue of a bias-

variance trade off. As h increases the bias increases due to the inclusion of points far from

the point of interest, and the variance decreases due to the effects of averaging. The opposite

occurs as h decreases. Ideally, we would like to choose h such that we minimise the Mean
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Figure 2.3: Figure showing three types of kernels; Uniform, Gaussian and Epanechinikov
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Figure 2.4: An example of kernel smoothing using a uniform kernel (left) and a Gaussian
kernel (right). Each type of kernel has been fitted with two different smoothing parame-
ters, h. The data is simulated motorcycle accident data from Silverman [1985], depicting
acceleration vs time to an impact event.
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Squared Error (MSE).

MSE(x) = E(s(x)− ŝh(x))2 (2.13)

However, this cannot be found in practice since it involves the unknown function s(x),

which represents the true underlying function that produced our noisy data.

There are three designs of smoothing parameter; fixed, nearest-neighbour and variable.

Fixed selection means that h is constant across the surface but often leads to large changes in

variance of ŷ due to large changes in the density of the data in the covariate axis, particularly

at the limits. Fixed neighbourhoods also tend to contain less points on the boundaries

whereas nearest-neighbourhoods get wider to encompass more points. This means the bias

for nearest-neighbours is much reduced, particularly in areas of data sparsity. A variable

smoothing parameter is one that can vary with x and allow some parts of the curve to be

smoother (large h) than others. This is particularly useful for locally adaptive smoothing,

when the true s varies a lot, but comes at a cost. Finding an optimal h for every xi becomes

a very computer intensive problem.

Fixed and nearest-neighbour smoothing parameters can be chosen automatically using

CV, which is discussed, along with the less computationally expensive GCV method, later

in the chapter (Section 2.5). Parameter h is chosen such that this criteria is minimised.

Unfortunately, in practice the minimum CV does not always correspond with the minimum

MSE and visual assessment is also recommended [Bowman and Azzalini, 2003]. It is im-

portant to note that in bivariate smoothing, h must be found for x1 and x2, resulting in h1

and h2, thus further increasing the computational burden.

Having discussed one and two-dimensional kernel smoothing, we now return to spline

based smoothing to discuss both simple and complex bivariate methods.
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2.4 Bivariate Smoothing Splines

A spline basis can be used that allows for interaction terms between covariates and so

the bt(x) in Equation 2.6 can be replaced or supplemented with a bivariate basis, bt(x1, x2).

Since, one of the aims of this thesis is to look at mapping techniques, we consider a bivariate

smooth that allows, for example, an interaction between Latitude and Longitude.

Firstly, the most common bivariate smooth, a thin plate spline, is discussed. There

after, the discussion focuses on bivariate smoothing in topographically complex regions.

2.4.1 Thin Plate Regression Splines

Thin Plate Splines (TPS) are a well studied generalisation of a smoothing spline, providing

a flexible smooth function in multiple dimensions [Harder and Desmarais, 1972, Green and

Silverman, 1994]. Only two-dimensional penalised low rank thin plate regression splines are

considered here, where the number of underlying basis functions is less than the set of n

observations. As with one-dimensional regression splines, a low rank TPS requires some

decision as to the number and location of basis functions - referenced spatially by points

called knots, κt (t = 1, .., T ). Since each basis is defined to be symmetric about its knot, κt,

they are a type of radial basis function. TPS can be used to estimate the smooth surface,

s, by finding the function ŝ(x) that minimises Equation 2.7, page 31.

Figure 2.5 shows a graphical example of a TPS basis and the structure can be written:

b(di,t) = d2i,t log di,t = (‖κt − xi‖)2 log(‖κt − xi‖) (2.14)

where xi = [x1,i, x2,i]
T and κt = [κ1,t, κ2,t]

T are coordinates in R2. Variable di,t rep-

resents the distance, in this case Euclidean, between the tth knot (κt) and ith datum (xi)

[Harder and Desmarais, 1972, Green and Silverman, 1994].

Given κ, the regression spline equation in a GAM framework for the smooth surface ŝ

at a point xi using this low rank radial basis is
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Figure 2.5: A graphical representation of a single thin plate spline basis function
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ŝ(xi) = β̂0 + β̂1x1,i + β̂2x2,i +

T∑
t=1

δ̂tbt(di,t) (2.15)

where the β̂’s and δ̂’s are estimated coefficients. Knots, κ, must be chosen a priori

and selection procedures are discussed in Section 2.5.1. This method does not address the

problem of leakage, as seen in Figure 1.2, Chapter 1. Several new methods exist for dealing

with this and they are described next.

2.4.2 Review of Complex Bivariate Smoothing Methods

The methods described so far do not address the problem of ‘leakage’ in the model pre-

dictions. As we saw in Figure 1.2 (Chapter 1), ‘leakage’ occurs when high or low densities

in one area can have undue influence across a boundary, such as a coastline, into another

area. This section describes three methods that are designed to model these complex to-

pographical areas and are therefore referred to as ‘complex’ methods. The performance of

these methods, alongside TPS, is assessed in Chapters 3 and 4 .

Finite Element L-Splines (FELS, Section 2.4.3) allow for complex topographies by using

a mesh that is constrained to the domain and the observed points within it [Ramsay, 2002].

The FELS approach has been shown to work very well [Ramsay, 2002] but it requires the

estimated function to meet the boundary at right angles. More on this condition is discussed

in the next section.

Another recent alternative, the Geodesic Low rank Thin Plate Spline method (GLTPS;

Wang and Ranalli, 2007), involves a modification to the TPS basis and uses the neighbour-

hood around each point to estimate geodesic distance between points when constructing

the TPS basis (see Section 2.4.4 for more details). The amount of leakage that is permitted

by GLTPS can be small if the size of the neighbourhood chosen is also small, but there is

nothing to explicitly prevent leakage across boundaries. This method also requires that a

grid is chosen prior to modelling and the resolution of this grid partly determines the extent
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of leakage. Another drawback of their implementation of this method is that it uses a basis

function which is global in nature and model coefficients are estimated using observations

both near to and far from the specified knot locations.

The most recent alternative to conventional TPS is SOAP film smoothing (SOAP; Wood

et al., 2008) which uses a soap basis to model the interior alongside a cyclic penalised cubic

regression spline to model an unknown boundary (Section 2.4.5). This method respects

boundaries and has been shown to perform well compared with TPS and FELS but has

not yet been compared with the GLTPS method. Additionally, it respects boundaries

but employs a global smoother which may struggle to approximate surfaces with spatially

varying complexity. We will now discuss each method in turn in more detail.

2.4.3 Finite Element L-Splines (FELS)

FELS [Ramsay, 2002] utilise a mesh that is constrained to the domain and the observed

points within it. The FELS approach has been shown to be a marked improvement over

TPS [Ramsay, 2002]. The FELS method uses a bivariate L-spline and then finite element

analysis is used to find a solution to the resulting partial differential equations. The domain,

A, is covered by a system of triangles, and the basis functions are piecewise quadratics that

have a value of one at a vertex and decrease to zero on each of the distal edges [Ramsay

and Silverman, 2005]. A description of L-splines can be found in Wahba [1990].

The L-spline smoothing function is a tool for estimating smooth univariate curves from

data of the form {(xi, yi), ..., (xn, yn)} and is contained within the roughness penalty. For

two dimensions the bivariate L-spline approximation to s is the function ŝ which minimises

the functional
n∑
i=1

(yi − ŷi)2 + λ

∫
A

(Lps)dA (2.16)

Lp is a Laplacian operator, ∆, with possibly non-constant coefficients [Heckman and

Ramsay, 2000] and must be chosen carefully so that the minimiser to Equation 2.16 does



43

not depend upon the choice of coordinate system (Ramsay 1999). ∆ is defined by ∆s =

sx1x1 + sx2x2 for all s [Ramsay, 1999]. Finite element analysis is used to find the simplest

bivariate L-spline function, that will minimise Equation 2.16. A more detailed description

of this method can be found in Ramsay [2002].

The major disadvantage of the FELS method is the strong boundary condition. The

normal derivative of s must be zero on the boundary of A and therefore the contours of

the estimated function must meet the boundary at right angles. Whilst FELS outperforms

TPS in complex regions, the boundary condition limits its performance compared to other

complex region methods.

I included, here, only a brief description of FELS since a comparison is not included

in this thesis because the conclusions drawn are very similar to those of Wang and Ranalli

[2007] & Wood et al. [2008]. Specifically, GLTPS (Section 2.4.4) and the SOAP (Section

2.4.5) both clearly outperform the FELS method.

2.4.4 Geodesic Low-Rank Thin Plate Splines (GLTPS)

The geodesic distance between two points xi and xj in a region A, in R2, is the length of

the shortest path between xi and xj that lies within A. If A is convex then the geodesic

distance equals the Euclidean distance. Wang and Ranalli [2007] describe GLTPS within a

mixed model framework using a modified version of low rank thin plate splines (regression

splines), where an estimated geodesic distance is used to determine the similarity between

all observations and knot locations.

The calculation of an accurate estimate of geodesic distance can be complicated and

time consuming. Wang and Ranalli [2007] estimate the geodesic distance by viewing the

data set of n points as a set of vertices in a graph. Edges are included between every data

point and its w closest data points (using Euclidean distance to measure closeness). This

permits calculation of a matrix of distances between the (i, j)th pair of points, restricted to

paths involving this set of edges. The resulting restricted inter-point distances are equal to
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the Euclidean distance if there is an edge between them, and infinity otherwise.

Floyds algorithm [Floyd, 1962] is then used to establish the shortest path between

points based upon this restricted distance matrix. Floyds algorithm is described in detail

in Appendix B. Wang and Ranalli [2007] recommend using the smallest w for which there

are no infinite values in the shortest path distance matrix (all points can be reached from

every other point).

The mixed model representation of low rank TPS with geodesic distances is

y = Xβ + Z∗u + ε (2.17)

where matrix Z∗ is defined:

Z∗ = [C(|xi, κt|G)][C(|κt, κt′ |G)]−1/2 = [g2i,t log gi,t][g
2
t,t′ log gt,t′ ]

−1/2 (2.18)

κt are the knot locations | · |G denotes geodesic distance, i = 1, .., n and t = 1, ..., T .

The function C is the same as the TPS basis function in Equation 2.14, but with geodesic

distance (gi,t) between the tth knot (κt) and ith datum (xi) or between two knots (κt, κt′),

replacing di,t. For a given number of knots, knot placement is chosen using a space-filling

design by John et al. [1995].

While the GLTPS technique has been shown to perform better than TPS and FELS

it does not preclude the shortest distance between two points crossing a boundary. The

choice of w is fixed for the entire surface and represents a trade-off between accuracy and

computational feasibility. Ideally, w is small so that in areas where the exclusion area

between boundaries is small, the possibility and extent of leakage is also small. However, if

w is too small, the points in the network may be poorly connected and result in distances

larger than they should be. Furthermore, if w is too big then points are connected directly

by Euclidean distance and boundaries will be breached.

To alleviate problems associated with relatively small w, Wang and Ranalli [2007] use
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a pre-defined grid over the region. The finer the grid, the greater the likelihood of the

distances between points converging on the true geodesic distance. While this provides a

lower likelihood of leakage, grid resolution is, in practice, constrained by computational

resources. Notably, Wang and Ranalli [2007] do not explicitly include the boundary points

in the grid.

Owing to leakage and plotting artefacts created using distances calculated by Wang and

Ranalli [2007], the GLTPS method in this thesis uses an alternative method of calculation

of geodesic distance (Section 3.2). Thus, the modelling framework of GLTPS is assessed

without being compromised by geodesic distance calculations.

2.4.5 Soap Film Smoother (SOAP)

SOAP uses the same GAM framework for fitting as the TPS but specifies a soap basis rather

than a TPS basis [Wood et al., 2008, Wood, 2010]. SOAP smoothing is constructed using

two sets of basis functions; one for the interior region of interest and one for finding values

on each boundary. These are then summed to form

s(x1, x2) =

J∑
j=1

αjaj(x1, x2) +

T∑
t=1

γtgt(x1, x2) (2.19)

where the γk and αj are the parameters to be estimated. The boundary basis is the first

part in Equation 2.19, where aj are known cyclic cubic spline basis functions for J knots.

For the internal part of the smooth, a set of functions ρ(x1, x2) are found such that they

are each solutions to the Laplace’s equation in two dimensions

δ2ρ

δx12
+

δ2ρ

δx22
= 0

except at each one of the knots. Then Poisson’s equation is solved in 2-dimensions
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δ2gt
δx12

+
δ2gt
δx22

= ρt(x1, x2)

for T knots. When the boundary condition ρt(x1, x2) = 0 is applied, the set of basis

functions for the soap film smoother, gt(x1, x2) is found.

Therefore, knots must be chosen for the internal basis and for every boundary basis

constructed. For further details of this method refer to Wood et al. [2008].

2.5 Model and Parameter Selection Methods

This chapter has, so far, been concerned with descriptions of several different methods of

smoothing. However, we must be able to determine the performance of each of our models

to find the best combination of parameters that gives the best trade-off between fit to the

data and the underlying function. This is a form of model selection and attempts to achieve

a balance between goodness of fit and parsimony. Better fits to the data can be achieved by

adding more parameters but parsimony gives us simpler and easier to interpret models. We

could exactly work out model fit if we knew the underlying function that gave rise to the

data we have. For most data this is unknown and we must make use of an empirical (data-

based) information-theoretic approach. When we simulate data as in Chapters 3 and 4 we

know the underlying function and therefore we can make use of the MSE (Equation 2.20).

This considers differences in predictions from the underlying function and can be calculated

for data points and out-of-set prediction locations. Out-of-set refers to prediction points

that are not also data points. MSE is calculated at each location and a mean taken to get

an average fit for the whole surface. For simulations this is calculated for a given set of

model parameters, θ (e.g. knot number, h, λ):

M̂SE(θ) =
1

n

n∑
i=1

{ŷ(xi; θ)− y∗i }2. (2.20)



47

where y∗i is the true function value at xi. However, we don’t usually know the true

function and must assess our model in another way. We can calculate the fidelity of the

model to the data, using Residual Sums of Squares (RSS, Equation 2.21). This is a measure

of predictive ability at the data points, is relatively simple and does not require knowledge

of truth.

R̂SS(θ) =
n∑
i=1

{ŷ(xi; θ)− yi}2. (2.21)

where yi are the observed response values i.e. y∗ + error. Unfortunately, RSS is not very

suitable for model selection because it measures fit to the data and not to the underlying

function or data unseen by the model. This is because the minimiser for RSS is at the

interpolant (ŷi = yi), which leads to the smooth that is closest to interpolation (smoothing

parameter = zero). CV achieves a solution to this problem by splitting the data into two

sets. The model is fitted to the first set (training set) and predictions are made to the

second set (validation set). The process is repeated for multiple training and validation

sets. The predictions can then be compared to the actual observations in the validation set.

The model of choice is the one that minimises some summary of the error. Leave-one-out

CV has a training set of n− 1 data points and a single validation point. It is defined as:

CV(θ)score =
1

n

n∑
i=1

{ŷ−i(xi; θ)− yi}2 (2.22)

where y−i is the estimate calculated with the current values of the control parameters, θ

(number of knots, h or λ), from all of the data points except the ith. This formula requires

n models to be fitted and is therefore a computationally expensive process. Another more

efficient type of CV is k-fold CV where, for example, in 10-fold CV 10% of the data is

removed for fitting and then used for prediction. This is repeated 10 times, rather than n,

where each validation set is 10% of the data, sampled without replacement. Thus the data

set is split into 10 unique validation sets each containing 10% of the data. The formula for
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10-fold CV is:

10-fold CV(θ) =
1

10

10∑
f=1

∑
q

{ŷq(xi; θ)− yq}2 (2.23)

with q being an index providing a random sample of 10% of the data, without replace-

ment. Maggini et al. [2006] showed k-fold CV to be the best compromise between model

stability and performance. However, efficiencies can be made [Hastie et al., 2009] using an

approximate CV called Generalised Cross Validation (GCV) first developed by Craven and

Wahba [1979] for smoothing splines.

GCV (θ) =
n
∑n

i=1{ŷi(xi; θ)− yi}2

[tr(I−H)]2
(2.24)

where I is the identity matrix, H is the hat matrix (see Section 2.3.3) and the trace of

(I−H) represents the effective number of parameters.

There are several other selection criterion that trade off fit (RSS) against smoothness

in various ways. Two common-used criteria used are Akaike’s Information Criterion (AIC;

Akaike [1973]) and Bayesian Information Criterion (BIC; Schwarz [1978]). These are useful

for selecting the best model, but if all models are poor the one model picked to be best will

still be poor in a general sense because they are relative measures. The AIC estimates the

expected, relative distance between the fitted model and the unknown true function that

generated the observed data. It is defined as follows:

AIC(θ) = −2log(L(θ̂|y) + 2K (2.25)

where L(θ̂|y) is the likelihood of the estimated model parameters (θ̂) given the data (y)

and K is the number of estimable parameters (number of covariates + intercept + σ for

a simple regression). The first part of the equation measures fidelity to the data and the

second penalises for the number of parameters estimated in the model. AIC has a tendency
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to over-fit and therefore may select a model that is more complex than necessary [Rust

et al., 1995]. The BIC has a stronger penalty based upon sample size, n, and thus the

second part of the equation above is now Klog(n). This penalty eliminates the over-fitting

seen for AIC but has a tendency to under fit [Burnham and Anderson, 2010, Hastie et al.,

2009].

2.5.1 Knot Selection

Knot selection is particularly important for regression splines and is typically done by select-

ing quantiles of the data, where the maximum number of knots is found using min(14n, 35)

[Ruppert et al., 2003]. This method does not use any information in the data other than

the sample size, n.

Ruppert et al. [2003] describe two types of automated knot selection; Myopic Algorithm

and Full Search. The myopic algorithm, proposed by Ruppert [2000], takes a set of trial

knot values, for example T = (5, 10, 20, 40, 80, 120). The model is fitted for T = 5 and

T = 10. Then, using GCV selection, if GCVT=10 < 0.98GCVT=5 the model with the lowest

GCV score is used. Otherwise, the GCV score for T = 20 is calculated and compared with

GCVT=10. The process is continued until the GCV scores are within 2% of each other, or

the maximum knot number is reached (T = 120 in this case). The disadvantage of this

algorithm is that it never looks beyond T , which means that it might stop too early.

The second method proposed by Ruppert [2002] is the full search algorithm. In this

method, the GCV is computed for all T values. The value of T that minimises the GCV

score is selected. This is computationally more expensive than the myopic algorithm but

fitting regression splines is reasonably efficient so this is not really a problem. Furthermore,

the advantage over the myopic algorithm is that it completes a thorough search.

These two methods will automatically select knot number but they do not provide

means of placing the knots. The knots could be placed using quantiles, as mentioned

earlier, or some kind of space-filling algorithm such as those proposed by Johnson et al.
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[1990], John et al. [1995], Nychka and Saltzman [1998]. However, it would be useful to be

able to choose both knot number and knot placement in one automated step. Recently,

Walker et al. [2010] proposed a Spatially-Adaptive Local Smoothing Algorithm (SALSA)

that automatically chooses the location and number of knots to be used in the spline model.

The first approach to this problem was by Friedman and Silverman [1989] who developed

a forward and backward knot selection algorithm (Turbo). The advantage of SALSA is

that the forward/backward selection step is restricted, reducing the number of models to

be evaluated. Whilst this reduces the computational burden these methods are still quite

computationally expensive. SALSA is described in further detail in Chapter 5.

2.6 Summary

The best choice of smoother will depend on the characteristics of the data and knowledge

about the true underlying relationship. The choice will also depend on whether the fit is to

be made automatically or with manual input. Furthermore, the effectiveness of a smoother

is often more related to the selection of the smoothness parameter than the selection of a

particular form of smoother.

If pure regression splines are used the number of knots must be chosen for each covariate.

This and their location determines the flexibility in the surface. With no penalty the GAM

model structure can be written and fitted as an ordinary GLM, where each basis enters

the model as an additional covariate. However, some care needs to be taken not to have

too many bases and thus over parameterise the problem. This method is of particular

importance for the method development in Chapter 3.

In Chapter 7 kernel smoothing is used as no interpolation, extrapolation or parameter

interpretation is required. In order to develop a new method to deal with complex topogra-

phies regression splines are used and compared with TPS, GLTPS and SOAP methods.

SALSA is not currently available as a knot selection method for a two-dimensional smoother
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so knot placement is done using a space-filling algorithm, for all methods, and the number

of knots determined using a full search algorithm. In Chapter 5 we begin to develop the

SALSA method for two dimensions.

A reference list for all parameters and acronyms may be found in Appendix A. Fur-

thermore, all the coding work in this thesis is developed using the statistical computing

environment R [R Development Core Team, 2009].
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Chapter 3

Modelling Species Distribution in

Complex Topographies

3.1 Introduction

This chapter describes a new smoothing method, the Complex Region Spatial Smoother

(CReSS), and demonstrates its ability by comparison with existing and recently developed

methods, Thin Plate Splines (TPS; Section 2.4.1), Geodesic Low Rank Thin Plate Splines

(GLTPS; Section 2.4.4) and a SOAP film smoother (SOAP; Section 2.4.5), using a simu-

lated benchmark surface first developed by Ramsay [2002]. Three of these four methods

(GLTPS, SOAP and CReSS) are designed for use in areas where animals must travel around

land/water (e.g. islands or lakes); areas referred to as exclusion zones. The reasons for ex-

clusion from an area can vary widely. For example, these could include a particular depth

contour or altitude, an isotherm, a river system or main roads.

TPS in a Generalised Additive Model (GAM) framework are commonly employed to

construct density surfaces in the field of ecology [e.g. Guisan et al., 2002, Ashe et al., 2010].

However, this method has been shown to leak across boundaries [Ramsay, 2002, Wang and

Ranalli, 2007, Wood et al., 2008] and are therefore used here to complete the review. Finite

53
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Element L-Splines (FELS) have a major boundary issue (see Section 2.4.3) and SOAP has

been shown to perform better than the FELS approach and so FELS are not considered

here.

Why is a new method needed when we have the other complex methods available?

The motivation for CReSS development was multi-faceted. While other recently developed

methods model data for complex regions, SOAP is complicated, new and largely untested

and GLTPS uses an estimated geodesic distance that could still give leakage (see Chapter

1 for details of leakage) and the smooth is globally acting. The CReSS method uses a more

accurate estimate of the geodesic distance than Wang and Ranalli [2007] and allows the

choice of a local or global radial basis function. Additionally, in contrast to the TPS and

GLTPS methods, we use points on the domain boundary in the function construction. This

explicitly constrains connections between points to be within the domain, allowing distances

to be determined more accurately, even for sparse data sets.

More specifically, this chapter will describe the CReSS method, which involves estima-

tion of geodesic distance, locally varying radial basis functions and model averaging (Section

3.2). The method is tested and compared with other methods using the horseshoe bench-

mark region designed by Ramsay [2002] (Section 3.3). The details of the CReSS method and

much of the simulation results in Section 3.3 and 4.2.2 can also be found in Scott-Hayward

et al. [2013].

3.2 Methodological Details

CReSS contains elements similar to the three methods described previously. Like TPS and

SOAP, it uses the GAM framework. It uses a different basis to TPS, but the type is still

a radial function. As with GLTPS, a geodesic distance metric is used. However, unique to

CReSS, a model averaging approach is adopted, which has proven very successful in map-

ping animal densities in complex regions (the application that motivated its development).
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Described here in more detail are the main components of the CReSS method, beginning

with the method of estimating the geodesic distance.

3.2.1 Improved Geodesic Distance Estimation

Before fitting a model using the CReSS method we must first calculate geodesic distances

between data locations and knot locations. As explained in section 2.4.4, to determine the

geodesic distance between points, GLTPS constructs a network with vertices at the points.

In CReSS we also build a network to estimate geodesic distances, but our vertex set includes

the corners of the boundary polygons and the knot locations, as well as the data points.

Polygons are used to identify the boundary of the exclusion zone, for example a coastline.

This boundary is defined by one or more polygons, the vertices of which are included in the

network to accommodate the calculation of the geodesic distance between the pairs of data

points. Thus the edge set is made up of all line segments between distinct pairs of vertices,

with the length of all edges that do no cross the exclusion zones being calculated using the

Euclidean norm, and all other edges being assigned infinite length. In the case when the

edge between two data points is infinite, the geodesic distance is calculated using non-infinite

edges (see example in Figure 3.1). Floyds algorithm Floyd [1962] is used to determine the

shortest distance through the network between all pairs of data points, knot points, and the

boundary points (which GLTPS does not explicitly include). Floyds Algorithm is described

in detail in Appendix B. The use of the polygon points in this process means the estimation

of geodesic distance using this method is as accurate as the definition of the exclusion area

polygons.

3.2.2 Basis Structure

A local radial basis can more easily accommodate spatially varying complexity than a

globally acting TPS basis (Equation 2.14). Although the local basis is globally defined

it is not globally acting, since the radial basis is effectively zero after a certain point. A
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a b c

Figure 3.1: An example of graph construction using the CReSS method. The grey areas
represent exclusion zones, filled circles represent the polygon vertices and lines represent
edges. (a) the Euclidean distance between two points (open circles). (b) the distance
network created by CReSS for these two points and (c) the geodesic distance between the
two points using only the edges shown in (b).

test region (Figure 3.2), which includes a triangular exclusion zone, is used to show the

global nature of TPS, using one of the usual TPS basis functions (Figure 3.3(a)). For

instance, when choosing a new basis, the behaviour of many radial basis functions near

the boundaries is cause for concern [Fornberg et al., 2002]. The values of the TPS basis

increase with distance from each knot location. This can often lead to errors at the edges of

the plot [Fornberg et al., 2002], and give rise to pronounced edge-effects. These effects are

exaggerated when non-Euclidean distances are used, since the furthest distance from a knot

point is no longer at the edge of the plot and the radial pattern may no longer be guaranteed

if distances are modified to accommodate boundaries. In some cases, the basis is distorted,

leading to areas of reinforcement (Figure 3.3(b)) where large distances compound. This
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Figure 3.2: Underlying function used to show the problems of reinforcement

could lead to large prediction errors (mean squared error) and make some surfaces difficult

to approximate (Figure 3.3(d)). A local basis restricts the distance from each knot over

which the basis is effective and reduces the likelihood of reinforcement occurring (Figure

3.3(c)).

Thus, CReSS replaces the global radial basis function bt(θ), (Equation 2.14, page 39)

with

bt(g, r) = exp(−g/r2) (3.1)

where r dictates the decay of this Exponential function with distance [Rathbun, 1998], and

thus the extent of its local (or global) nature. Notably g indicates a geodesic distance which

in practice will be between some t-th knot and i-th data location, indexed accordingly as

git. Parameter r takes values such that if r is small that model will have a set of local basis

functions and if r is large that model will have a set of global basis functions. However, the

exact values of r are dependent upon the range and units of the spatial covariates. We have
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Figure 3.3: Graphical representations of one basis function (out of a possible 30 knots) for
(a) TPS, (b) global exponential basis (large r) and (c) local exponential basis (small r).
The global basis shows reinforcement at the top of the triangle and (d) the area of greatest
prediction error (shown as mean squared error) for the surface in Figure 3.2.
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removed the planar parts of Equation 2.15 (page 41) since a linear trend in x1 or x2 could

be based on unrealistic Euclidean distances. Thus the equation for the smooth surface, s,

at point xi, parameter r and T knots using the CReSS method is

ŝr(xi) = β̂0 +
T∑
t=1

δ̂tbt(git, r).

3.2.3 Model Averaging

Rather than using predictions from a single ‘best’ model, we find the relative merits of a

set of models and average the results. For each model in the set we change the number of

knot locations and/or the size of parameter r.

For model selection we use frequentist model averaging [Claeskens and Hjort, 2009,

Buckland et al., 1997], with AICc [Hurvich and Tsai, 1989] for model weights. AICc is a

small sample AIC and Burnham and Anderson [2002] recommend it be used when the ratio

n/k < 40, where n is the sample size and k is the total number of estimated regression

parameters (including the intercept and σ2). For values of this ratio > 40 AIC and AICc

converge. Other information criteria may be substituted for AICc.

The full set of models is limited to models with ∆AICc < 10 since Burnham and

Anderson [2002] suggest that a model with ∆AICc > 10 shows no empirical support for

that model. This reduced set of models is the candidate model set (M), and the relative

merits of these models is found by calculating weights [Claeskens and Hjort, 2009, Buckland

et al., 1997] using

wm =
exp(−1

2∆m)
M∑
m=1

exp(−1
2∆m)

(3.2)

where m = 1, ...,M and ∆ is the difference in AICc between model m and the best model

(lowest AICc). If the Bayesian information criterion is used, Equation 3.2 becomes the

Schwarz [1978] approximation of the Bayes factor. Predictions are made for all models in
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model set M and their weights, wm, are used to calculate a weighted sum of predictions

to get an overall prediction. To calculate predictions, we calculate the geodesic distance

between prediction locations and knot locations, using the method described in section

3.2.1, and use these to generate the bases.

A range of knot sets is considered where each set contains a different number of knots

and a range of values for parameter r. For example, 10 knot sets (τ = 10) and 5 r’s (R = 5)

results in 50 possible models. Of these models, the candidate knot set, M , is some number

≤ 50. Figure 3.4 gives an overview of the CReSS algorithm.

CReSS:
Inputs

spatial coordinates,
geodesic distance matrix (data to knot locations),
τ knot sets,
and basis ‘range’ parameter r (R values in total considered)

Model Fitting
τ ×R candidate models calculated
for j in 1: τ

for k in 1:R
Calculate locally radial basis functions for given r and knot set, j
Fit models for given k and j using maximum-likelihood as per GAM
Retrieve AICc score (or other fit statistic)

Model Selection
Calculate model weights for models with ∆AICc < 10 (M models, M ≤ τ ×R)

Model Prediction
Calculate weighted sums of predictions (using AICc weights) from M models using

geodesic distances from prediction locations to knot locations.

Figure 3.4: Pseudocode outlining the structure of CReSS.

3.2.4 Choice of knots and r

Knot placement in this paper follows Wang and Ranalli [2007] by using a space filling de-

sign, such as that of John et al. [1995] from the FIELDS package [Furrer et al., 2010]. The
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knot sets therefore represent a range of different numbers of knots, whose locations in each

case are determined by the space filling algorithm. The knots for all methods were gener-

ated from the observed data so any simulation run comparing methods has the same knot

choices. Parameter r was chosen such that the smallest value can pick up local trends, but

not so small as to cause discontinuities, and the largest value for r must be large enough to

approximate a plane.

Notes on the Development of CReSS:

Several other methods were trialled during the development of CReSS, but they gave poor

results. Ridge regression [Hastie et al., 2009] and mixed models [Ruppert et al., 2003] using

geodesic distances were the main alternatives but both were unstable. In both cases we

hoped to effectively shrink the coefficients for some of the bases but not others to allow

the surface to be locally varying. There was also a tendency for methods to perform well

on a simple simulation with low or medium noise, but to perform poorly on complicated

and noisy surfaces. For each of the methods tried, including the final version of CReSS, we

also assessed the performance of a variety of local basis functions (for example: Gaussian,

Exponential and Wendland [Wendland, 2005]). The exponential function was generally

found to give the best results; with ‘best’ determined using mean squared error.

3.3 Simulation

The performance of CReSS was evaluated using two simulation studies and compared with

TPS, GLTPS and SOAP. The first simulation employs the horseshoe benchmark function

[Ramsay, 2002, Wang and Ranalli, 2007] (Figure 3.5), which is commonly used in complex

smoothing literature. The second simulation is inspired by a land reclamation project in the

Persian Gulf near the coast of the United Arab Emirates (Figure 4.1) and is described in

Chapter 4. Both are examples of areas with irregular shaped boundaries and sharp changes
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in the response across these boundaries, though the latter exhibits more complexity.

3.3.1 Horseshoe Simulation

The horseshoe (Figure 3.5) varies smoothly from approximately 4 to -4 from the right

hand end of the top arm to the right hand end of the lower arm and was established by

Ramsay [2002]. Three test scenarios were generated by adding a normal errors noise term

with standard deviation 0.05, 1 and 5 to the function values (low, medium and high noise

respectively) and randomly choosing n = 600 points from each noisy surface. Predictions

were obtained on a grid of N = 3584 points (a regularly spaced grid, with points removed

outwith the benchmark area). For the GLTPS method, the estimated geodesic distances

calculated using code provided by Wang and Ranalli [2007] were poor and led to plotting

artefacts. Therefore, the improved estimates of geodesic distance, calculated using the

method in Section 3.2, were used for both GLTPS and CReSS. SOAP was constructed

using a cyclic penalised cubic regression spline (40 knots) to estimate the unknown boundary

values [Wood et al., 2008] and since there is no guidance for boundary knot allocation, the

same knot numbers as used in Wood et al. [2008] were also used here. For CReSS, parameter

r took 134 values between 2 and 10,000 for basis calculation (r = 2 to 20 by 1, 25 to 95, by 5

and 100 to 10,000 by 100), which gave a range of bases with local (small r) to global effects

(large r). All methods employ between 10 and 100 knots (by 5) generated using the space-

filling algorithm. As per authors’ recommendations, model selection was performed using

GCV for TPS and SOAP, AIC for GLTPS and AICc for weights calculation for CReSS.

Table 3.1 gives all parameter values for each simulation scenario.

Two measures were employed to determine the relative performance of each of the

methods: estimation bias, b̂ and Mean Squared Error (MSE). MSE is described in Chapter

2. The estimation bias, b̂, is a vector of bias evaluations b̂j at each of N points, xj

(j = 1, ..., N):
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Figure 3.5: The underlying function on the horseshoe region, first seen in Ramsay [2002].

b̂j = 100−1
100∑
p=1

ẑp(xj)− z∗(xj) for j = 1, ..., N, (3.3)

where ẑp(xj) is the method’s estimate of the true value, z∗(xj), at replicate p (random

data realisations from a surface with noise) for p = 1, ..., 100. MSE considers differences

between predictions and the underlying function and is calculated for out-of-set prediction

locations (locations unseen by the fitting process) for each replicate.

A Wilcoxon paired signed rank test [Wilcoxon, 1945] was used to see if MSE scores

for TPS, GLTPS and CReSS were significantly different to SOAP (until CReSS, the most

recently developed method).

3.3.2 Results

CReSS, SOAP and GLTPS all perform substantially better than TPS in this trial, at all

noise levels (Table 3.2 and Figure 3.6). Beyond this distinction it is difficult to visually
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Table 3.1: Horseshoe Simulation settings. The Gaussian noise (σ) is taken from a N(0, σ2)
distribution and added to P realisations of the Horseshoe function values. Each realisation
is of size n. The selection criteria are specific to each method and chosen based on authors
recommendations.

Parameters All methods

Gaussian Noise (σ) 0.05, 1, 5

# realisations (P ) 100

Prediction grid size (N) 3584

Sample size (n) 600

# knots (10, 15, ... , 95, 100)

# knot sets (τ) 19

CReSS SOAP GLTPS TPS

Selection Criterion AICc GCV AIC GCV

Extra Parameters r = 2:10000 kouter = 40 - -

(134 values)

appreciate the extent of any differences between the methods (Figure 3.6), so a Wilcoxon

paired signed rank test [Wilcoxon, 1945] tested for differences between all methods and

SOAP. CReSS had the best mean MSE score (and smallest variance) at high noise and

performed significantly better than SOAP (Table 3.2). At other noise levels the methods

were very similar, with SOAP marginally but significantly better at low noise than all of the

other methods. However, in real terms, the magnitude of any differences between methods,

for the low noise simulated sets, were insignificant. At medium noise, GLTPS performed

significantly better than SOAP and there was no significant difference between CReSS and

SOAP.

Consistent with other analyses [Ramsay, 2002, Wang and Ranalli, 2007, Wood et al.,

2008] the main error for TPS is along the inner edges of the two arms, while GLTPS, SOAP

and CReSS show their greatest error in the elbow region (Figure 3.7-3.9). The range of the

estimation bias, b̂, is comparable for all of the complex region methods, but slightly lower
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for CReSS at high noise (Figure 3.7-3.9). CReSS also described the increasing function

along the arms better than SOAP or GLTPS (Figure 3.9).

Table 3.2: Mean MSE scores and standard deviation for all methods at all noise levels on
the horseshoe simulation. A * indicates the MSE results of a method are significantly better
than SOAP (p < 0.05; Wilcoxon paired signed rank test), a † indicates that the results for
SOAP are significantly better. The bold scores represent the best average for each statistic
at each noise level.

Method Low Medium High

µ σ µ σ µ σ

TPS 0.24608† 1.69x10−2 0.2925† 0.0224 1.163† 0.285

GLTPS 0.00062† 1.54x10−4 0.0261∗ 0.0064 0.365 1.198

SOAP 0.00055 7.68x10−5 0.0294 0.0114 0.458 0.358

CReSS 0.00073† 2.23x10−4 0.0286 0.0100 0.327∗ 0.258
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Figure 3.6: Boxplots of MSE scores for 100 simulations on the horseshoe (a) Low noise (σ
= 0.5), (b) Medium noise (σ = 9) and (c) High noise (σ = 50).
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Figure 3.7: Bias for low noise, (a) TPS, (b) GLTPS, (c) SOAP and (d) CReSS
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Figure 3.8: Bias for medium noise, (a) TPS, (b) GLTPS, (c) SOAP and (d) CReSS
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Figure 3.9: Bias for high noise, (a) TPS, (b) GLTPS, (c) SOAP and (d) CReSS
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The choice of knots, parameter r and number of models averaged over the different noise

levels in CReSS are shown in Table 3.3. In general both the number of models averaged

and the size of r increase as noise increases. More specifically, Figure 3.10 shows the range

of values used for r and their frequency of being averaged. As the noise increases the range

of r averaged increases with a distinct shift in distribution to larger values. The number of

knots is similar across noise levels, although there appears to be a tendency for more knots

to be chosen at low noise.

A single model tended to be chosen at low noise using CReSS, but for high noise many

more were chosen and averaged (Table 3.3). The behaviour of the MSE score was examined

as the number of models averaged increases. Within high noise between 58 and 653 models,

of a possible 2546 (19 knot number choices and 134 possible r’s), were averaged. Figure

3.11 shows the effect this has on MSE score: as the number of models averaged increases,

the MSE score decreases.

Table 3.3: Parameter choices made by CReSS for each of the three noise levels averaged over
100 simulation realisations. The parameters include the mean number of models averaged
per realisation, the mean for parameter r and the mean number of knots. Numbers in
brackets show the minimum and maximum.

Low Medium High

Mean Number of Models Averaged 24.45 91.34 471.40

(1, 127) (11, 250) (58, 653)

Mean r 68.71 976.5 2513

(3, 600) (2, 3000) (2, 4400)

Mean Number of Knots 75.57 45.03 54.48

(30, 100) (10, 100) (10, 100)
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Figure 3.10: Distribution of parameter r chosen using 100 simulation realisations for (a)
low, (b) medium and (c) high noise levels. The allowed choice of r ranged from 2 to 10,000.
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Figure 3.11: Variation in MSE with the number of models averaged. The line represents
a locally weighted polynomial regression smooth of the data. The total number of models
that could be averaged is 2546.
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3.4 Discussion

This chapter introduced a new method for dealing with ‘leakage’ problems in topographically

complex regions such as those with complex coastlines. On this simple horseshoe shape, the

performance of CReSS was comparable with or better than other complex region methods

(GLTPS and SOAP). The CReSS method is a novel hybrid of three techniques used in

spatial modelling; geodesic distances, local radial basis functions and model averaging. The

estimation of geodesic distance was improved by making our estimation as accurate as the

description of the exclusion zone, compared with that of Wang and Ranalli [2007], which

does not preclude the shortest distance between two points crossing a boundary. In fact,

for a fair comparison to the GLTPS method we used our improved geodesic distances.

The use of locally varying basis functions allowed the method to accommodate local

smoothing requirements. As the noise level increased, the range of these basis functions

tended towards being global, much like a thin plate spline, in order to smooth through the

noisy data. At low noise much smaller r were chosen allowing the model to fit more closely

to the data. These choices were all automated, based on AICc score, from the same set of

r’s for each noise level, removing the need for decisions by the user.

The last technique to complete the CReSS method was model averaging. The im-

provement that CReSS provides over other models at high noise may be a result of model

averaging; as noise level increased, more models were averaged. The results showed that

there was a clear advantage in terms of MSE score to average many models. If some of the

models in the set, which are averaged, under or over-fit to the data, their effect is averaged

out in the final surface. This allows the final surface to better approximate the underlying

function and not over or under-fit to the noise, especially at high noise levels.

The calculation of geodesic distance required for both CReSS and GLTPS is computa-

tionally expensive but need only be done once. GLTPS was the fastest method for model

fitting, but SOAP was quickest if time for distance calculation is included. However, the
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authors of SOAP provide no guidance on how to select the number of boundary knots. Here

the number used was the same as in Wood et al. [2008], but if this was chosen by trial and

error, the process would be more time consuming. Whilst CReSS computes multiple mod-

els, each one is a simple, computationally efficient GLM (since a CReSS model is linear in

its parameters) and, excluding distance calculation, takes roughly the same time as SOAP

to complete one simulation run. Therefore, on this simple, planar simulation region, any

one of the three complex methods could be used to get similar results, and the choice comes

down to user-friendliness and convenience. SOAP is not particularly user friendly and is

complicated to understand but is conveniently packaged for use in R [R Development Core

Team, 2009] alongside the well-used mgcv package [Wood, 2000]. CReSS is a very simple

method to understand and can be fully automated with few user inputs. It is currently be-

ing applied to analyses for spatial modelling of impact assessment data and will be packaged

as part of a Marine Scotland funded project.

It was clear from the results of the TPS analyses that there is a need for complex region

methods since the errors from ‘leakage’ can be large. The results of the horseshoe trial

do not provide compelling evidence for the introduction of a new method, in part because

the horseshoe is rather easy for the methods to approximate. The next chapter challenges

these methods with a topographically more complicated area that contains an island, which

means there are at least two ways to get to any point on the surface. This may cause

problems with reinforcement, discussed in Section 3.2.2, for global smoothing methods such

as TPS and GLTPS. Thus, with further simulations using the CReSS method, any future

directions for this research are reserved for the following chapter.



Chapter 4

Modelling Species Distribution

Using Complex Topography

Methods Including Islands

4.1 Introduction

The simulation used to evaluate the performance of CReSS and other smoothing approaches

in Chapter 3 has become a widely-accepted standard for a complex two dimensional problem.

However, it is relatively simple; it is a plane bent around in a horseshoe shape. In this

chapter, we evaluate the performance of the same methods using a more complex region

inspired by the palm structures in the Persian Gulf off the coast of Dubai (Figure 4.1). The

upper island and edge pieces represent the outer breakwater with two channels, whilst the

inner segment represents a palm leaf with three fronds on each side. The manufactured

surface varies smoothly from approximately -40 to 110 units and is constructed using the

definitions in Table 4.1 and the zones in Figure 4.1. It was created to test the performance of

the method when the function changes greatly across small exclusion areas and in particular

75
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where there is an island. Furthermore, it was designed to test for the reinforcement issue

outlined in Section 3.2.2.

This chapter will use simulation to investigate two questions: how do the methods

developed in this thesis perform in a complicated region, and how do they perform when

data are sparse? The same questions are subsequently addressed in Section 4.3 using a

sparse and topographically complex data set on killer whale feeding behaviour.
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Figure 4.1: The underlying function on the simulated palm region. The letters refer to the
regions in Table 4.1 used to construct the function.
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Table 4.1: The benchmark surface, F , seen in Figure 4.1 is defined by functions for each
region as shown. We denote the geodesic distance between two points x1 and x2 as d(x1, x2).
The leftmost red dot at coordinate (2,5) we denote by L. The rightmost dot at coordinate
(14,5) we denote by R.

Region F(X) = F(x1,x2)

A d(X, L)− (x1 − 2)2

B d(X, L) + (x1 − 2)2 + (x1 − 4)3

C d(X, L) + (x1 − 2)2

D d(X, L) + (x1 − 2)2 + (4− x2)3 + (x1 − 4)4

E d(X, L) + (x1 − 2)2 + (4− x2)3 − (x1 − 4)4

F d(X, L) + (x1 − 2)2 + (4− x2)3

G d(X, R)− (14− x1)2

H d(X, R)− (14− x1)2 − (12− x1)3

I d(X, R) + (14− x1)2

J d(X, R) + (14− x1)2 + (4− x2)
K d(X, R) + (14− x1)2 + (4− x2)− (12− x1)2

L d(X, R) + (14− x1)2 + (4− x2)− (12− x1)
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4.2 Simulation

The following section describes the two simulations (data rich and data sparse) on the palm

shape. All complex region methods are applied along with TPS.

4.2.1 Methods

Six test cases were generated by randomly choosing n = 500 (data rich scenario) or n = 100

(data sparse scenario) points from the surface and adding a Normal error term with standard

deviation 0.5, 9 and 50 to the function values. The noise was added such that the signal-

to-noise ratio was similar to that of the horseshoe simulation used in Chapter 3. The

signal-to-noise ratio was calculated using var(y)/var(y − yn), where y is the underlying

function and yn is the underlying function with noise added. Predictions were obtained on

N = 2518 points.

CReSS, SOAP, GLTPS and TPS based models were all compared using these simulation

data. SOAP was constructed with unknown boundary values but there is no published or

available guidance for selecting the number of boundary knots. The default value (10 knots)

is too small in many situations. Boundary knots were therefore selected using an extensive

but non-exhaustive trial and error search to give the best results possible. For the data

rich simulation (n = 500), we used 50 knots for the outer boundary and 40 for the island.

However, for the data sparse simulation, there were not enough degrees of freedom available

for these knot numbers. After a non-exhaustive search, 10 knots were chosen each for both

the inner and outer boundaries. As for the simulation study in Chapter 3, parameter r,

for the CReSS method, took 134 values between 2 and 10,000. For all methods a choice

of 10 to 100 knots was allowed for the data rich trials and 10 to 75 for the data sparse

trials. These varying model complexities were discriminated between using GCV (TPS and

SOAP), AIC (GLTPS) and AICc (CReSS). In the case of SOAP these knots were allocated

to the interior soap basis. A summary of the simulation settings for all methods can be
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Table 4.2: Palm Simulation settings. The Gaussian noise (σ) is taken from a N(0, σ2)
distribution and added to P realisations of the Palm function values. Each realisation is
of size n. The selection criteria are specific to each method and chosen based on authors
recommendations.

Parameters All methods

Gaussian Noise (σ) 0.5, 9, 50

# realisations (P ) 100

Prediction grid (N) 2518

Sample size (n) 100 500

# knots (10, 15, ... , 70, 75) (10, 15, ... , 95, 100)

# knot sets (τ) 14 19

CReSS SOAP GLTPS TPS

Selection Criterion AICc GCV AIC GCV

Extra Parameters r = 2:10000 n=100: (kouter = kisland = 10) - -

(134 values) n=500: (kouter = 50, kisland = 40)

found in Table 4.2.

As with the horseshoe simulation in the previous chapter, model fit was assessed using

estimation bias and Mean Squared Error (MSE). In a simulation setting we know truth so

we can calculate MSE, however in reality we need a measure that mirrors the MSE score

without knowing truth. This analysis uses 10-fold Cross Validation (CV) because it assesses

fit to data unseen by the model (see Chapter 2 section 2.5 for details). A Wilcoxon paired

signed rank test [Wilcoxon, 1945] was also used to see if MSE scores for TPS, GLTPS and

CReSS were significantly different to SOAP (the most recent method).

The results for the data rich and data sparse simulations are presented separately in the

following two sections.
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4.2.2 Data Rich Results

CReSS exhibited the best performance and lowest MSE scores at low and medium noise

across all model types and TPS gave the worst performance to both the data and under-

lying function across all noise levels (Table 4.3 and Figure 4.2). It is difficult to see, from

Figure 4.2, any differences in MSE scores between methods, so a Wilcoxon signed rank test

[Wilcoxon, 1945] was used to test for significant differences between all methods and SOAP

(the most recent method). At both medium and high noise CReSS performed significantly

better than SOAP (p < 0.05) and while CReSS performed significantly better than SOAP

on average at low noise, it was statistically indistinct for that noise level. SOAP did not

perform best at any noise level and at low and high noise had the highest variances for MSE

scores. Given that SOAP was statistically no worse than CReSS or GLTPS at low noise,

the high variance indicates that when SOAP performed badly, it performed very badly.

In comparison with GLTPS, CReSS performed better at low and medium noise but not

at high noise levels. However, there were some fitting artefacts that led to GLTPS being

numerically good but graphically poor at high noise, which are mentioned further later.

Table 4.3: Mean MSE scores and standard deviation (sd) for all methods at all noise levels
for the palm simulation using 500 data points. A * indicates the MSE results of a method
are significantly better than SOAP (p < 0.05, Wilcoxon signed rank test), a † indicates that
the results for SOAP are significantly better. The bold scores indicate the best average for
each statistic at each noise level.

Method Low Medium High

mean sd mean sd mean sd

TPS 97.48† 7.42 101.95† 7.92 213.47† 33.43

GLTPS 10.51 9.95 24.18† 4.78 131.45∗ 29.54

SOAP 21.47 81.52 22.70 3.73 188.24 51.33

CReSS 7.70 2.70 21.97∗ 5.49 167.26∗ 38.53
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CV was able to distinguish TPS from the other methods at low and medium noise, but

no clear distinction could be made at high noise levels or between complex methods at any

noise level (Figure 4.2). A Wilcoxon signed rank test [Wilcoxon, 1945], comparing the CVs

for SOAP to all other methods revealed the best methods at low noise were CReSS and

SOAP, SOAP at medium noise and GLTPS at high noise. These results were similar to

the MSE results except for medium noise, indicating that 10-fold CV is not necessarily a

good measure for selecting between methods. As a mirror for the MSE score, CV also did

not perform very well. An investigation into the difference in MSE scores for CReSS and

SOAP and the difference in CV scores between the two methods revealed that CV correctly

classified the rank of one method over the other 58% of the time for low noise, and 45% and

46% for medium and high noise levels respectively. These numbers are much lower than

would be expected if CV was to be used as a ranking measure in practice.

The lack of fit of TPS became more pronounced as noise increased, mainly due to leakage

across the island, where the difference in underlying function values is greatest (Figures

4.3(a), 4.4(a), 4.5(a)). At high noise there was also some evidence of leakage through the

palm fronds from the hotspot at the top of the simulated surface. As expected, there was

no evidence of leakage for GLTPS, SOAP or CReSS, however, all methods (including TPS)

struggled to model the high and low function values to the left of the stem (Figures 4.3 -

4.5). These errors may be due to lack of coverage by the data points or an inflexibility in

knot number and/or placement.

CReSS respected all the boundaries, keeping the high values below the breakwater and

the low values above it without leakage. However, CReSS exhibits some negative bias

just under the breakwater and just above the central palm shape (Figures 4.3(d) - 4.5(d)).

These are two areas where perhaps the radial nature of CReSS struggles to approximate

the striations of the underlying function. SOAP dealt well with the outer breakwater, but

there was some evidence of errors on the ends of the upper fronds and, as noise increases, on

the upper edge of the central palm shape (Figure 4.5(c)). GLTPS showed a good numerical
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fit, particularly at high noise, but exhibited some artefacts (striations) to the upper right

and left of the island. These are particularly apparent on a prediction plot for a single

realisation with medium noise (Figure 4.6(b)). We consider that this is due to reinforcement

issues arising from the global basis function and that the local concentration of errors and

associated artefacts made it a poor choice in practice.
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Figure 4.2: Boxplots of MSE (left) and CV scores (right) for 100 simulations on the palm
function. (a, b) Low noise (σ = 0.5), (c, d) Medium noise (σ = 9) and (e, f) High noise (σ
= 50)
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Figure 4.3: Bias for low noise a) TPS, (b) GLTPS, (c) SOAP and (d) CReSS
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Figure 4.4: Bias for medium noise (a) TPS, (b) GLTPS, (c) SOAP and (d) CReSS
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Figure 4.5: Bias for high noise, (a) TPS, (b) GLTPS, (c) SOAP and (d) CReSS
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Figure 4.6: Example predictions for medium noise, (a) TPS, (b) GLTPS, (c) SOAP, (d)
CReSS (iteration 80)
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In general, as noise level increased, the models for averaging became more smooth; the

number of models averaged by CReSS and the value of parameter r increased and the mean

number of knots decreased (Table 4.4). Figure 4.7 shows the distribution of r for medium

and high noise. For low noise, only two values of r were ever chosen and so there is no

distribution to represent in a figure. Many more values of r were chosen for high noise and

the distribution was shifted to higher values. However, a number of models using small r

were still chosen.

In contrast to the horseshoe simulation (Chapter 3), the MSE score did not necessarily

improve because more models were averaged (Figure 4.8). With high noise levels, between

3 and 497 models, of a possible 2546 (19 knot number choices and 134 possible r’s), were

averaged and Figure 4.8 shows the effect this has on MSE score. The effect is not as con-

vincing as was the case for the horseshoe simulation, although there may be some advantage

in increasing the number of models averaged to about 200. Above this level, the MSE score

increased with the number of models averaged. Figures are not presented for low or medium

noise as only a few models were averaged in each case (Table 4.4).

Table 4.4: Parameter choices made by CReSS for each of the three noise levels averaged over
100 simulation realisations. The parameters include the mean number of models averaged
per realisation, the mean for parameter r and the mean number of knots. Numbers in
brackets show the minimum and maximum.

Low Medium High

Mean Number of Models Averaged 1.45 4.95 132.07

(1, 4) (1, 13) (3, 497)

Mean r 2.75 2.97 2211

(2, 3) (2, 6) (2, 6100)

Mean Number of Knots 92.5 60.2 45.4

(65, 100) (20, 100) (10, 100)
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Figure 4.7: Distribution of parameter r chosen using 100 realisations of the simulation for
(a) medium and (b) high noise levels. Results from the low noise trials are not shown
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Figure 4.8: Variation in MSE with the number of models averaged for models fitted to high
noise. The points represent how many models were averaged and the resulting MSE score
for each of the 100 simulation realisations. The line represents a locally weighted polynomial
regression smooth of the data. The total number of models that could be averaged is 2546.
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4.2.3 Data Sparse Results

The results for n = 100 are much more conclusive. Numerically CReSS provided the best

fits and was more stable (low standard deviation) at all noise levels than any of the other

methods (Table 4.5 and Figure 4.9). CReSS had the lowest MSE scores of all methods

and was significantly better than SOAP at all noise levels (p << 0.05; Table 4.5). Due

to the skewed nature of the results, particularly for SOAP and GLTPS, the median MSE

is also included. At low noise, the results for SOAP and GLTPS are surprisingly variable

(Figure 4.9) and the MSE and CV plot has been limited on the y-axis to give a better

comparison with other methods. At medium and high noise, CReSS and GLTPS are both

significantly better than SOAP and a Wilcoxon signed rank test [Wilcoxon, 1945] between

the two indicates that CReSS performs better than GLTPS at low (p < 0.05) and high noise

(p < 0.1). TPS was consistently the worst performing method, however at high noise, it

was significantly worse than SOAP at the 5% but not the 10% level of significance.

Table 4.5: Mean and median MSE scores and standard deviation (sd) for all methods at all
noise levels for the palm simulation using 100 data points. A * indicates the MSE results
of a method are significantly better than SOAP (p < 0.05, Wilcoxon signed rank test), a †
indicates that the results for SOAP are significantly better. The bold scores indicate the
best average for each statistic at each noise level.

Method Low Medium High

mean (median) sd mean (median) sd mean (median) sd

TPS 130 (119) 36.6 152 (142)† 40.5 499 (152)† 477

GLTPS 1745 (121)† 5926 144 (78.4)∗ 363 383 (191)∗ 343

SOAP 1806 (99.3) 11207 141 (107) 181 521 (348) 423

CReSS 35.7 (33.2)∗ 13.3∗ 81.6 (75.2)∗ 27.8 344 (125)∗ 323

10-fold CV was unable to distinguish between the models (Figure 4.9) at any level of

noise and the patterns from Wilcoxon signed rank tests bear little resemblance to those seen
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from the boxplots of MSE scores. As a mirror for the MSE score, CV also did not perform

very well. An investigation into the difference in MSE scores for CReSS and SOAP and the

difference in CV scores between the two methods revealed that CV correctly classified the

rank of one method over the other 89% of the time for low noise, and 49% for both medium

and high noise levels. Whilst the classification for low noise is good, the other noise levels

show a much lower correct classification rate than would be expected if CV was to be used

as a ranking measure in practice.

In general, the estimation biases were higher, for a given method and noise level, than

those for the data rich results (Figures 4.10 to 4.12). TPS showed high levels of leakage

across the breakwater and this increased with higher noise. As expected, there was no

evidence of leakage for GLTPS, SOAP or CReSS, however, all methods (including TPS)

struggled to model the high and low function values to the left of the stem (Figures 4.10 -

4.12). Like the data rich simulation it is thought that these errors may be due to lack of

coverage by the data points, which was much poorer in this simulation, or an inflexibility

in knot number and/or placement. Similar to the data rich simulation, the GLTPS method

shows striations, which are particularly prevalent at low noise (Figure 4.13(b)) and are

also apparent in the figure showing example predictions at medium noise (Figure 4.13).

Therefore, the fit assessment for all methods should involve both numerical and visual

assessment.

The SOAP method dealt well with the breakwater but was hard to parametrise; increas-

ing the number of boundary knots from the default (10 knots) did not improve performance.

With low noise, the use of 20 knots for both the inner and outer boundaries resulted in a

mean (317132), median (200) and standard deviation (3x106) of MSE scores that were

higher than those obtained with 10 boundary knots. Furthermore, increasing the number

of boundary knots meant that fewer parameters were available for the number of knots

within the domain. There seemed to be an increase in errors around the boundary in com-

parison with the data rich simulation (Figure 4.10(c) versus Figure 4.3(c)), particularly
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around the ends of the palm fronds. This is possibly due to a smaller number of boundary

knots for this simulation.

CReSS respected all the boundaries, dealt well with the breakwater and the pattern of

biases for was consistent with that seen in the data rich simulation. Specifically, CReSS

exhibits some negative bias just under the breakwater and just above the central palm shape

(Figures 4.10(d) - 4.12(d)).
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Figure 4.9: Boxplots of MSE (left) and CV scores (right) for 100 simulations on the data
sparse palm function. (a, b) Low noise (σ = 0.5), (c, d) Medium noise (σ = 9) and (e,
f) High noise (σ = 50). The plots for low/medium noise have been limited on the y-axis
for ease of viewing (MSE, low: GLTPS (1 point at 4000) and SOAP (2 points at 80,000).
MSE, medium: GLTPS (1 point at 3000) and SOAP (1 point at 2000). CV, low SOAP (1
point at 15,000) and CReSS (2 points at 7000). CV, medium: SOAP (1 point at 1000)).
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Figure 4.10: Bias for data sparse low noise a) TPS, (b) GLTPS, (c) SOAP and (d) CReSS
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Figure 4.11: Bias for data sparse medium noise (a) TPS, (b) GLTPS, (c) SOAP and (d)
CReSS
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Figure 4.12: Bias for data sparse high noise, (a) TPS, (b) GLTPS, (c) SOAP and (d) CReSS
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Figure 4.13: Example predictions for low noise, (a) TPS, (b) GLTPS, (c) SOAP, (d) CReSS
(iteration 20)
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In keeping with the data rich simulation, as noise level increased, the models for av-

eraging became more smooth; the number of models averaged by CReSS and the value of

parameter r increased (Table 4.6). However, in contrast to the data rich results there was

no clear relationship between the noise level and the number of knots chosen (Tables 4.4 &

4.6). Figure 4.14 shows the distribution of the r values for low, medium and high levels of

noise. Many more different values of r were chosen when there was high noise, and there

was a definite shift in the distribution towards higher values. However, a number of models

were chosen, at high noise, using small values of r.

Similar to the data rich results the MSE score did not necessarily improve because more

models were averaged (Figure 4.15). When noise levels were high, between 56 and 1200

models, out of a possible 2010 (15 knot number choices and 134 possible r’s), were averaged

and Figure 4.15 shows the effect this had on MSE score. There may be some advantage

in increasing the number of models averaged to about 600, but thereafter the MSE score

increased.

Table 4.6: Parameter choices made by CReSS for each of the three noise levels averaged
over 100 realisations of the simulation. The parameters include the mean number of models
averaged per realisation, the mean for parameter r and the mean number of knots. Numbers
in brackets show the minimum and maximum.

Low Medium High

Mean Number of Models Averaged 3.14 15.96 621.6

(1, 19) (1, 83) (56, 1200)

Mean r 73.15 680.7 5451

(2, 2100) (2, 5100) (2, 10,000)

Mean Number of Knots 39.74 28.85 43.90

(15, 75) (10, 80) (10, 80)
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Figure 4.14: Distribution of parameter r chosen using 100 realisations of the simulation for
(a) low, (b) medium and (c) high noise levels. The allowed choice of r ranged from 2 to
10,000.



101

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

200 400 600 800 1000 1200

20
0

30
0

40
0

50
0

60
0

70
0

Number of Models Averaged

M
S

E
 S

co
re

Figure 4.15: Variation in the MSE score with the number of models averaged. The points
represent how many models were averaged and the resulting MSE score for each of the 100
simulation realisations. The line represents a locally weighted polynomial regression smooth
of the data. The total number of models that could be averaged is 2010.
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4.2.4 Discussion

These trials were conducted to determine how the methods perform when there is an island,

and how they perform when there is very little data. The performance of TPS, SOAP and

CReSS with the data rich complex simulation was similar to their performance with the

horseshoe simulation in the Chapter 3. The narrow breakwater highlighted the issue of

leakage for the TPS method, and the benefits of SOAP and CReSS in avoiding this are also

clearly visible. However, GLTPS suffered from fitting artefacts, seen by visual assessment

and caused by reinforcement, rendering the numerical results meaningless. SOAP became

quite unstable when there was very little data and the increase in errors around the bound-

aries highlighted the sensitivity of SOAP parametrisation for boundary loops. CReSS was

more stable at all noise levels, in part because it takes advantage of model averaging. In

contrast, the high variance in the predictions made by SOAP and GLTPS in the data sparse

trials was notable; when they went ‘wrong’ they went very badly wrong. Therefore, the

recommendation is that both the GLTPS and SOAP methods are used with caution on

sparse data sets.

The Cross-Validation (CV) method used here (10-fold) was not suitable for distinguish-

ing between methods. It might have been better to use 5-fold CV but the choice is difficult.

For 10-fold CV, the model uses lots of data for fitting (90%) and little for predicting (10%)

so whilst 10 scores are averaged, the variance of those scores could be high. Five-fold CV

averages fewer scores but each score is calculated from 20% of the data making them less

variable. If the CV scores were very skewed, the median of the 10 values might be a better

choice. AICc was used to choose between models during the model averaging process for

the CReSS method and picked good models (according to MSE scores) so it must be better

at fitting models to out-of-set data than the CV calculated in this analysis.

A closer look at the CReSS results yields some interesting parameter choices. On aver-

age, across all noise levels, many more models and much larger values of r were chosen in
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the data poor trials than in the data rich ones. Given the potential reinforcement problems

with global bases it was surprising to find models with such large r selected, but this may

be a further indication of the advantages of model averaging. However, even when large

values of r predominated, many small values were also chosen, even at high noise, which

added some flexibility to the surface. Even greater surface flexibility could be obtained by

having a different r for each knot location (rather than for a set of knots), but this might

be difficult to implement. Comparing the choice of r results for the data rich simulation

with those from the equivalent in the horseshoe simulation (Chapter 3) illustrates how the

method adapts to different surfaces. Large, global bases (large r) were chosen for the simple

horseshoe and more models were averaged to accommodate this. Small, local bases were

chosen for the complex palm simulation, and fewer models were averaged.

CReSS is able to choose the most appropriate size bases for the surface and noise level.

Choosing the right value for r seems less important than providing a sufficient range of

choices. In the future, the procedure for selecting r (the range and resolution to step over)

could be automated, so that the user need not worry about providing values for r. This

could be linked with the use of variable r for each knot, mentioned above.

The results from this analysis, together with those from Chapter 3, suggest that CReSS

performs best in a wider range of scenarios compared with the other complex methods

evaluated here. CReSS can be used successfully on simple or complex regions, when data

are rich or sparse, and at low or high levels of noise.
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4.3 Case Study: Killer Whale (Orcinus orca) Behavioural

Study

4.3.1 Introduction

So far this thesis has concentrated on assessing the performance of new statistical methods

using simulated data. However, an important assessment of a new method is to examine

its performance on real data. In this section CReSS is applied to a killer whale (Orcinus

orca) data set that was introduced in Chapter 1.

The size of a killer whale population is often estimated using mark recapture analysis of

photo-identification data [Ford et al., 2010, Ward et al., 2009]. This can provide accurate

estimates of overall population size but a single number cannot reveal how killer whale

density varies spatially, or the spatial distribution of different behaviours. However, accurate

maps of the distribution of densities and the occurrence of behaviours would make decisions

regarding spatial planning better informed.

The data analysed here were collected to aid effective decision making in the conservation

of the endangered ‘Eastern North Pacific southern resident’ killer whale stock, by identifying

areas where critical life-history processes such as breeding, weaning or feeding take place.

Southern resident killer whales, hereafter referred to as SRKW, consist of three distinct

social units (J, K and L) that return each year to feed on salmon returning from the Pacific

to spawn. There has been a recent decline of SRKW, which led to the species being listed

as endangered under the Canadian Species at Risk Act 2001 [Baird, 2001], and which may

have been caused by a decline in prey abundance [Williams et al., 2011] and vessel-based

disturbance [Williams et al., 2006, NMFS, 2006]. The main diet of SRKW is the Chinook

salmon, Oncorhynchus tshawytscha [Ford and Ellis., 2006, Ford et al., 1998], which also

happens to be the least common salmonid in the SRKW habitat [Quinn, 2005]. There are a

many possible reasons for the decline in chinook salmon stock, for example habitat loss [eg:
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Bilby and Mollot., 2008], harvesting [eg: Hoekstra et al., 2007], hydro damming of rivers [eg:

Waples et al., 2007] and pollutants [eg: Missildine et al., 2005]. Furthermore, current levels

of vessel disturbance (commercial and recreational whale watching), with typically 14-28

whale-watching vessels following a group [Erbe, 2002], have been shown to decrease the time

killer whales spend feeding, and to have a lesser effect on other activities such as resting or

socialising [Lusseau et al., 2009, Williams et al., 2006]. Lusseau and Higham [2004] make an

important observation, that anthropogenic activity does not necessarily affect all behaviours

evenly and so information about what is most affected and where certain behaviours take

place is key.

One way to mitigate the effects of these anthropogenic activities is to identify areas which

are particularly important for specific activities and restrict human activities there. In May

2011 a rule was introduced in inland waters of Washington State to prohibit vessels from

approaching within 200 yards of killer whales and from parking in their path; there were

also discussions for the establishment of a no-go zone [NMFS, 2011]. More information

pertaining to this killer whale stock can be found in a research report by the National

Oceanographic and Atmospheric Association [NOAA, 2011]. Since 1982 there has been a

Marine Protected Area (MPA) for the Northern RKW population situated in Robson Bight,

British Columbia, Canada, which was put in place to protect a rare rubbing behaviour on

a particular smooth pebble beach Ford et al. [2000]. This was an obvious area to conserve

due to the limitation of available beaches for this behaviour. However, there is no area for

SRKWs in which a rare behaviour takes place. Ashe et al. [2010] suggested a candidate MPA

site South of San Juan Island to protect feeding areas (Figure 4.16). This site was defined

by both local knowledge (interviews with local environmental education coordinators) and

spatial assessment of feeding behaviour. There is already an MPA, the Haro Strait exclusion

zone [WDFW, 2013], in this area for sea cucumbers and sea urchins but there is no restriction

on salmon fishing or other human activities.
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A previous spatial assessment by Ashe et al. [2010] of the SRKW data used a simple two-

dimensional Thin Plate Spline (TPS) smooth of Latitude and Longitude in a Generalised

Additive Model (GAM) framework to predict probability of feeding at particular locations.

This section improves on this by accounting for both spatial autocorrelation and the geo-

graphic complexity of the study area (multiple islands). The potential problem of leakage

seen with extrapolating TPS (Chapters 3 and 4), and the large number of islands present

in the region mean that the killer whale dataset benefits from the methods developed in

this thesis. Like Ashe et al. [2010] we focus on a simple model that uses a two-dimensional

smooth of spatial coordinates to predict the probability of feeding.

Figure 4.16: Figure 3 from Ashe et al. [2010] showing the predicted probability of feeding
by SRKW. The box to the south of San Juan Island has since been proposed as an MPA
to protect killer whales feeding.
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4.3.2 Methods

The inshore waters around San Juan Island, Washington State (USA) and adjacent Cana-

dian waters (British Columbia) form a complex area of coastline with at least 15 major

islands (Figure 4.17). The killer whale data used in this analysis were collected by small

boat from May to August 2006 from which five observers searched for killer whales and

recorded their location. Once a pod was identified it was followed and the main activity

of the pod was recorded every 10 minutes. There were four recorded activity states: trav-

elling/foraging, resting, socialising and feeding. Definitions of each of these states may be

found in Ashe et al. [2010].

The data consist of n = 763 pod sightings, where pod size ranged from 1 to 50 and all

three social groups (J, K and L) were observed during the study. Each observation has an

associated binary indicator, for example, p = 1 for feeding or p = 0 for non-feeding (con-

sidered to be travelling/foraging, resting or socialising). Of the 763 data points, travelling

and foraging was the most common (n = 485) activity and socialising the least common

(n = 28). Of the remainder, 188 observations were of feeding and 62 of resting. The ob-

served data for each activity state are presented in Figure 4.17 and illustrate proportions

rather than the observed binary values; each cell on the plot is approximately 1 km2 and

the colour of each cell represents the mean of the data points recorded within it. Pod size,

identification of individuals within each pod and social group (including mixed pods) was

also recorded.

This analysis focuses on feeding, given the known effect of anthropogenic disturbance

on this activity [Williams et al., 2006, Lusseau et al., 2009]. Therefore the proportion

of groups in a feeding state per km2 was modelled using spatial coordinates as the only

covariate. A more descriptive surface might be produced by including other covariates,

such as depth or chlorophyll, however the two-dimensional smooth used here was designed to

show the potential value of CReSS and to allow a direct comparison with the results of Ashe
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(a) (b)

(c) (d)

Figure 4.17: Raw proportions for (a) feeding/non-feeding, (b) travel or forage/ not travel
or forage, (c) socialising/non-socialising and (d) resting/not resting of killer whales off the
West coast of the USA/Canada. The grid cell size is approximately 1 km2.
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et al. [2010]. The coordinates were projected to UTM10U (Universal Transverse Mercator

projection), since, at the latitude of the survey area, the scales of latitude and longitude

are quite different and this has consequences for the distance metric. The coordinates are

subsequently referred to as Eastings and Northings. Furthermore, due to the repeated

measures on killer whale pods and data collection through time, it is likely that there will

be correlation within the model residuals. Therefore, Generalised Estimating Equations

(GEEs) [Hanley et al., 2003, Liang and Zeger, 1986, Hardin and Hilbe, 2002, Harrison

and Hulin, 1989] were used to allow for any autocorrelation in the residuals. This is a

common way to deal with autocorrelation, for example Panigada et al. [2008] where GAM

based methods were employed to model the mean and with GEEs to generate measures of

precision, such as standard errors. The CReSS method is modular and easily implemented

in this framework.

4.3.2.1 Generalized Estimating Equations (GEEs)

GEEs were particularly useful in this analysis because the repeated binary measures on

the killer whale groups were likely to be spatially and/or temporally auto-correlated. For

example, the probability of killer whales feeding at any particular location in space and

time are likely to be more similar for points close together in time compared with points

distant in time due to environmental/prey conditions. Additional covariate information

could be used to explain this but it is often unavailable or unknown. If a pod is feeding at a

particular time step, this is likely to increase the likelihood that it will be feeding at the next

time step, leading to positive auto-correlation and, if unexplained by the model, sequences of

positive or negative residuals, rather than the random scatter assumed under a GLM/GAM.

If the assumption of independence of consecutive residuals is violated, because of positive

autocorrelation, then this invalidates all model-based estimates of precision (e.g. standard

errors). The point estimates from a GEE can be the same as for an equivalent GAM/GLM

(depending on the correlation structure chosen for the GEE) but the uncertainty is inflated
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(for positive autocorrelation) using a GEE.

To check that autocorrelation is present in model residuals, a runs test (e.g. runs.test

from the R library lawstat) [Mendenhall, 1982] can be used to test for statistically significant

levels of spatio-temporal auto-correlation in model residuals. Generally, data are ordered

through time and so the runs test will check for temporal auto-correlation by comparing the

number of sequences (runs) of positive or negative residuals with the number that would be

expected under the assumption of independence. If positive correlation is present there will

be fewer uninterrupted runs (few long strings of positive or negative residuals) than would

be expected and results in a negative test statistic and small p-value (p <0.05).

The GEE approach requires the specification of a panel variable. Residuals within

panels are correlated but they are assumed to be independent between panels [Hardin

and Hilbe, 2002]. GEEs allow the estimation of standard errors to be adjusted for the

autocorrelation in the panel residuals. Panels, also known as the blocking structure, can be

chosen using information about survey design and/or autocorrelation function (acf) plots

[Venables and Ripley, 2002]. The latter illustrate the autocorrelation for a variety of lags

between measurements. Data collected at the same point in time are assumed to have

identical residuals, correlation =1, and this correlation is then estimated for various time

lags between points. In a GEE the nature of the correlation within a panel can either

be assumed to follow a particular model chosen by the user (e.g. AR1, Exchangeable) or

data based sandwich estimates of variance can be used. Both here, and again in Chapter

7, empirical standard errors were used, so specific details of correlation structures is not

included. Hardin and Hilbe [2002] provide a comprehensive review of correlation structures.

An assessment of survey design led to the killer whale social group on any given day

being used as the panel variable, since behaviour for the same social group within days,

and behaviour for different pods within social groups (on any given day) are likely to be

correlated. There were eight social group factor levels (J, K, L and some mixed groups) and

40 survey days. Therefore, group-day was used to define the panels within which residuals
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were permitted to be correlated. There were between 1 and 31 observations on each group-

day (j = 1, .., 31) and 58 group-days overall (i = 1, ..., 58). The runs test for the killer

whale feeding data showed a significant level of positive autocorrelation (p << 0.01) and an

acf plot, illustrating the mean correlation across panels for each time lag (Figure 4.18(a)),

showed the correlation to decay to approximately zero, even within the smallest panels

(Figure 4.18(b)). This meant that group-day was a suitable panel variable for this data.

Due to the binary nature of the data, a Binomial based model was used for this analysis

with a logit link to ensure predictions lay between 0 and 1. A two dimensional smooth term

was used to model the distribution of feeding behaviour inside the GEE framework:

ηij = β0 + s(Xi,j) (4.1)

where ηij represents the additive predictor, s is a smooth function and X is a matrix (n×2)

of spatial co-ordinates observed for panel i at time j. Many flexible models can result

from this specification, and in this analysis a CReSS basis expansion was used for the two

dimensional smoother which results in a predictor (with T terms) which is linear in its

parameters:

s(pij) = log

(
pij

1− pij

)
= ηij = β0 +

T∑
t=1

δtbtij (4.2)

where pij is the probability of a pod feeding for panel i and time j and btij represents a set of

basis functions (btij , t = 1, ..., T ) for panel i at time j for a two-dimensional smoother. This

equation is similar to the GLM formulation in Equation 2.5, Chapter 2, for a Poisson model

with log link function. GEEs can allow for overdispersion by estimating the dispersion

parameter (φ; Chapter 2), however overdispersion is not possible for binary data [Faraway,

2006] and so φ = 1 for this analysis.
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(a)

(b)

Figure 4.18: Auto-correlation plots for the killer whale feeding model residuals. (a) The
mean correlation across panels for each time lag. (b) The correlation for each individual
panel, where each line is a panel.
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4.3.2.2 CReSS

The CReSS method is used inside the GEE framework and so the smooth function in Equa-

tion 4.1 and b in Equation 4.2 is the local exponential radial basis function seen in Chapter

3. The GEE enables the estimation of model coefficients and the associated uncertainty

(that accounts for the positive correlation in the residuals).

The local basis function requires the input of geodesic distances due to the complex to-

pography in the survey region, in addition to the r parameter which influences the effective

range of each radial basis and is permitted to vary across candidate models. For the calcu-

lation of geodesic distance, 17 exclusion polygons (defining the coastline) were considered

in the analysis and a range of 20 r values (rmin = 120, rmax = 2907) were considered for

each of the candidate models. Model selection criteria were used to discriminate between

the different models.

Parameter r dictates the effective range of the radial basis; a large value for r returns a

relatively global basis function while a small value for r returns a locally acting basis. Since

r is always unknown, multiple values of r were considered and the resulting models were

averaged using model weights (Equation 3.2) calculated from the information criterion used

to determine model fit. The information criterion used for this analysis is detailed in the

next section.

To allow for a range of candidate models with different flexibilities, models with different

knot sets consisting of different numbers of knots in each set (T = 5, 10, ..., 55, 60) were

considered for selection. To maximise spatial coverage for any particular knot number, the

knot locations for any given knot set were chosen using a space-filling algorithm [John et al.,

1995].

The model for each knot set is re-fitted using different values of r and so the model

averaging is calculated over all r and all knot sets. Twelve knot sets were used and 20 r’s,

thus of 240 models (20× 12) were fitted and available for averaging.
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4.3.2.3 Prediction and Inference

Model-averaged predictions were obtained by generating predictions onto a grid based on

each candidate model and averaging these predictions in line with model weights. There

is much debate over the choice of fit statistic to use for GEE models [Pan, 2001a,b]. The

fitting procedure is based on a quasi-likelihood, so model selection criteria should also

be based on quasi-likelihood, rather than maximum likelihood based scores. Therefore, the

weighting procedure was governed using an AIC analogue for GEEs: Quasi-likelihood under

the independent model Information Criterion (QICu) [Hardin and Hilbe, 2002, Pan, 2001a]

statistic;

QICu = −2Q+ 2q

which for Binomial data has quasi-likelihood, Q =
∑n

i=1

∑ni
j=1 yij log

(
pij

1−pij

)
+ log(1− pij).

Here, y is the binary outcome (feeding/not feeding), p are the fitted values evaluated at the

quasi-likelihood estimates under the GEE model and q represents the number of estimated

coefficients. Based on the QICu scores the associated model weights (wm) for the m-th

model (m = 1, ..., 240) were obtained using Equation 3.2. Like AIC, smallest values of

QICu are preferred.

Percentile based 95% confidence intervals for each grid cell were also obtained by gen-

erating 1000 parametric bootstrap realisations from each GEE based model and averaging

these in line with their QICu weights each time. The central 95% of these values across all

models were then used to delineate the upper and lower confidence limits for each grid cell.

Diagnostics for binary data are notoriously tricky, however we can assess predictive

power of the final model using deviance R2 and confusion matrices [Pearce and Ferrier,

2000]. The deviance R2 is calculated as follows:
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R2 =
1− exp

(
D−Dnull

n

)
1− exp

(
−Dnull

n

)

where D is the deviance of the model of interest, Dnull is the deviance of the null model

and n the number of observations. R2 takes values between zero and one and a value close

to one indicates the model fits well to the data.

To construct a confusion matrix, a threshold, p, is chosen to turn the predicted pro-

portions, p̂it, into binary feeding (1) or not feeding (0). There are various subjective and

objective approaches to determining this threshold, for example, index, data or prediction

based methods [see Liu et al., 2005, for a review of methods]. In this analysis the mean of

the fitted values was used [Hosmer and Lemeshow, 1989, Cramer, 2003]. This is particularly

useful when there is an inequality in the number of zeros and ones in the data. The binary

fits were then used to construct a confusion matrix, which specifies the number of ones in

the data predicted as ones and the number of zeros predicted as zeros. False positives and

false negatives are specified in a similar way (Table 4.7). Each of the cells in the table (a,

b, c and d) can be used to calculate three useful indices; sensitivity, specificity and over-

all prediction success. Sensitivity is the proportion feeding correctly predicted as feeding

(a/(a + c)), specificity is the proportion of not-feeding correctly predicted as not-feeding

(d/(b + d)) and Overall Prediction Success (OPS) is the percentage of correctly allocated

predictions ((a+d)/(a+ b+d+ c)). OPS can be deceptively high when frequencies of zeros

and ones in the data are very different [Pearce and Ferrier, 2000] as we have in this analysis;

only a quarter of the data are ones.

4.3.3 Results

The best model (QICu = 795) used 10 knots and r = 641.8. However there were 59 models

that had a delta QICu<6, above which the weight of the models is effectively zero and they
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Table 4.7: The output of a confusion matrix.

True Values

1 0

Predicted 1 True Positive (a) False Positive (b)

Values 0 False Negative (c) True Negative (d)

were not part of the set for model averaging. These 59 models ranged from 10 to 45 knots

(mean = 17.54) and used values of parameter r from 141.7 to 2907 (mean = 935.3). Figure

4.19 shows the distribution of chosen models with parameter r with each knot number. The

weighted average of QICu scores was 796.3.

The deviance R2 for the averaged models was quite low at 0.141 and the models only

explained 9.9% of the deviance. The predicted outcomes were converted into feeding/not

feeding (1/0) predictions by assigning each predicted probability a zero or a one using a

threshold, above which takes a one and below a zero. The threshold used here was the

mean probability of the averaged fits, 0.246. The confusion matrix (Table 4.8) was used

to calculate the three indices. The averaged models predicted the probability of feeding to

be one, when a one was observed, 66% of the time (sensitivity). Conversely, a zero was

predicted 64% of the time a zero was observed (specificity). The overall prediction success

was 66%.

Figure 4.20 shows the fitted values and point estimate predictions for the probability of

feeding. The fitted values (Figure 4.20(a) and 4.20(b)) correspond reasonably well to the

observed values (Figure 4.17). The predicted outcomes were also converted into feeding/not

feeding (1/0) predictions using the threshold above. These converted plots are more easily

compared with the data and may enable easier delineation of feeding zones. The prediction

plots show a high probability of feeding to the far south west and south east of the survey
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Figure 4.19: Parameter r and knot number of the models in the candidate model set.

region and to the south of San Juan Island (the main island in the centre). Percentile based

95% confidence intervals from the GEEs are shown in Figure 4.21. Much of the pattern

seen in the point estimate surface is retained both at the lower and upper confidence limits.
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Table 4.8: Confusion matrix for the averaged models.

True Values

1 0

Predicted 1 125 198

Values 0 63 377
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(a) (b)

(c) (d)

Figure 4.20: Fitted values (a) and (b) and predictions (c) and (d) for the probability of
feeding (1=feeding, 0=not feeding). The probability cut-off for (b) and (d) is 0.246.
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(a) (b)

(c) (d)

Figure 4.21: Percentile based 95% confidence intervals for predictions for the probability of
feeding (1=feeding, 0=not feeding). The probability cut-off for (c) and (d) is 0.246.
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Comparison to standard GAM model

Figure 4.22 shows predictions from the CReSS model using the same thresholds as those

used in Figure 3 (Figure 4.16) of Ashe et al. [2010]. The surface for CReSS is more flexible

than the original but still shows a high probability of feeding to the south of San Juan

Island.

Figure 4.22: CReSS predictions for the probability of feeding (1=feeding, 0=not feeding)
using the threshold values in Ashe et al. [2010].

The model presented in Ashe et al. [2010] was re-fitted using gam from the R package

mgcv [Wood, 2006] so that uncertainty could be evaluated. This was a binary GAM model

containing a two dimensional smooth of space with binomial errors. The AIC score was
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807, adjusted R2 = 0.122 and 9.8% of the deviance was explained by the model. Using the

confusion matrix (Table 4.9), 59% of the ones were correctly predicted (sensitivity), which

was worse than the CReSS model but more of the zeros were correctly predicted (specificity,

71%). The OPS was 68%, but as mentioned above this is likely to be high due to the large

number of correctly specified zeros.

Table 4.9: Confusion matrix for the GAM model.

True Values

1 0

Predicted 1 111 164

Values 0 77 411

The predictions here are very similar to those in the original paper, however uncertainty

was calculated using 95% confidence intervals (Figure 4.23) and autocorrelation, which can

be seen in the residuals, was not accounted for in this analysis. This would lead to wider

confidence intervals, so the upper 95% limit could predict feeding for most of the surface.

Like the CReSS method, a high probability of feeding is predicted to the south of San Juan

Island, however there is also a high probability of feeding to the east of this island that

could indicate some ‘leakage’ of this hotspot. With no data in this area, this cannot be

confirmed.

4.3.4 Discussion

These results show that CReSS is a useful and flexible modelling tool for assessing the

spatial distribution of behavioural states, such as feeding. Whilst the GAM model had a

better specificity and overall prediction success the CReSS model had a better sensitivity

(ones predicted as ones). The ones are the observed feeding locations so, in terms of an MPA
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(a) (b)

(c) (d)

Figure 4.23: Predictions for probability of feeding using the 0/1 threshold (a), the Ashe
thresholds (b) and 95% confidence intervals for the probability of feeding (1=feeding, 0=not
feeding) (c) and (d).

for feeding behaviour, it is more important to predict these well rather than the non-feeding

locations. When there is an inequality in zeros and ones in the data, in favour of zeros, it

is easier for a model to predict more of the zeros, particularly for a model, such as GAM,
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that spreads the modelling effort over the whole survey region. The CReSS model, through

model averaging and local bases, is a more focused approach leading to better prediction

of ones. The CReSS model also had a better fit to the data using deviance explained and

deviance R2 than the GAM model.

Graphically CReSS produced similar results to those reported in Ashe et al. [2010] and

also supported the case for an MPA in the same area. However, CReSS was able to present

the uncertainty in the predicted surface and gave a more structured surface than the GAM

model. With GAM re-fitted to provide 95% confidence intervals, these were wider than

those seen for the CReSS model, and would have been even wider if autocorrelation had

been accounted for. A comparison of a GLM with Eastings and Northings as covariates with

an equivalent GEE showed a 27% increase in the standard error of the intercept estimate.

Therefore, the upper limit for the GAM predictions could show the probability of feeding

to be one across nearly the whole study region. However, even assessing only the lower 95%

interval, there is still a high probability of feeding just under San Juan Island for both the

GAM and CReSS models. There is some evidence of ‘leakage’ through the south east of

this island from the GAM model, which would be unsurprising given the Euclidean distance

metric, but unfortunately there are no data to support this conclusion.

On a statistical note it is interesting that the feeding surface for CReSS is more struc-

tured than that for the GAM, which is indicative of the variable smoothness allowed by

CReSS across the surface, and is achieved by averaging models with different range param-

eters. GAMs have only one smoothness parameter that cannot change across the surface,

so complex structure in some areas of the data may be smoothed through based on smooth

needs in others, creating a simpler probability surface. The range of r parameters selected

was surprisingly wide for a surface with so many islands. However, the potential issue of re-

enforcement with global bases has not arisen (see Chapter 3 for details on re-enforcement).

A map showing only the probability of feeding is probably not sufficient for identifying a

potential MPA. The model use here was based only upon locations were animals were seen
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and, whilst there may be a high probability of feeding in a particular area, the probability

of presence may be very low, leading to an area where killer whales are rarely seen being

identified as a hotspot for feeding. Hauser et al. [2007], used kernel density estimates of

location data from 1996 to 2001 to identify areas which were used intensively by the three

social groups of SRKW. They showed that the area to the south of San Juan Island is

commonly used by all three social groups, which spend a disproportionate amount of time

there. This suggests that an MPA sited in this area would benefit all three social groups.

They also showed that an area to the far west of the study region (the northern parts of the

Strait of Juan de Fuca), another area where there was a high probability of feeding seen in

the results, was commonly used by the L social group. Hauser et al. [2007] also questioned

the behavioural use in these areas and it is hoped that the results here are able to provide

a greater insight into this.

The CReSS model suggests a high probability of feeding in an area to the far south east

of the study area, however results from [Hauser et al., 2007] imply that this is not commonly

visited by SRKW. The raw data indicate that when whales were seen in this area they were

either feeding or travelling/foraging (Figure 4.17), which fits with the suggestion that they

are infrequently present but travel there to feed. The high feeding probability area to the

north, almost entirely surrounded by one island (Orcas Island), does perhaps seem a little

unrealistic. There are no data to support the high probability of feeding and no previous

studies suggest a high presence of SRKW in this area. This could be a limitation of the

model through extrapolation and/or the limited covariates used.

There is a deep channel just to the south and west of San Juan Island with steep sides

on the coastal side (see Appendix C), where high densities of killer whales were recorded

in both Lucas [2009] and Hauser et al. [2007]. This suggests there may be a relationship

between SRKW feeding and water depth. Furthermore, the main prey of SRKW, Chinook

salmon, prefer deeper water at night than some other salmonid species [Candy and Quinn,

1999, Walker et al., 2007], so SRKW may prefer such areas for feeding. Candy and Quinn
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[1999] also showed that the differences in depth use by Chinook salmon by day and by night

were small, which is useful given the sightings for feeding are collected during the day. Thus

depth could be one of a number of reasons why the San Juan area (Haro Strait) is a good

feeding ground for SRKW. The inclusion of environmental covariates, such as depth, might

improve predictions in areas that are shallow such as the area within Orcas Island. However,

given this analysis was based only on locations where animals were seen it would be advisable

to use the feeding map produced in conjunction with a presence/absence map (that may be

based on multiple environmental covariates). If presence within the Orcas Island was low

then it is unlikely that an MPA would be sited here based on a high probability of feeding.

Ultimately, protecting areas that are used as feeding grounds by SRKW may be of little

benefit if Chinook salmon stocks continue to decline. Hanson et al. [2010] collected faeces

of SRKW, particularly in the San Juan Islands area, and used genetic analysis to identify

the specific spawning rivers used by the salmon they had consumed. More recently, Ayres

et al. [2012] investigated the effects of vessel disturbance and inadequate prey and suggest

that ‘identification and recovery of strategic salmon populations are important to effectively

promote SRKW recovery’. These studies suggest focusing conservation efforts for the prey

species and are a good example of how creation of an MPA could have little effect if other

factors are not also taken into consideration.

4.4 Summary

The initial simulations with the palm surface showed that CReSS is effective in areas with

islands and in both data rich and sparse areas. Of the other complex methods, GLTPS

showed re-inforcement issues (see Section 3.2.2, page 55 for details) leading to questionable

surfaces even though numerical results were good. SOAP was difficult to parametrise for

this example and gave numerical results that were worse than CReSS, particularly when

data were sparse.
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The analysis of the feeding distribution of SRKW demonstrated the use of CReSS in

practice. It is a flexible modelling tool that can be used for quantitative aspects of spatial

conservation planning. It is likely that use of GLTPS or SOAP for this analysis would have

led to re-enforcement and parametrisation issues respectively [Scott-Hayward et al., 2013].

The model for this analysis may have been improved by the inclusion of environmental

covariates (e.g. depth) and information on the actual distribution of killer whales.

Finally, the knot locations used for both the simulation and case study could be im-

proved. A space-filling design does not easily allow flexibility to vary across the surface.

The smoothness of the surface we are trying to approximate may vary, requiring more flex-

ibility, and therefore more knots, in some regions than in others. In the next chapter, we

investigate how CReSS can be combined with a spatially adaptive knot placement algorithm

to accommodate locally varying complexity more easily.
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Chapter 5

Spatially Adaptive Models for

Complex Topographies

In certain cases, the space-filling knot placement approach used so far in this thesis does not

always achieve good results. Results of previous analyses also suggest that knot placement

is of great importance, with knots in different locations giving quite different outcomes.

Here we present an extension of a Spatially Adaptive Local Smoothing Algorithm (SALSA;

Walker et al., 2010), which is used in combination with the CReSS method to address the

knot location side of this model selection issue.

5.1 Introduction

Traditional approaches to smoothing tend to have a single parameter that defines the

smoothness across the surface. This means that there is a tendency in some areas of the

surface to be over smooth or over wiggly in order to accommodate an average smoothness

measure. To illustrate a single smoothing parameter at work, Figure 5.1 shows an example

using gam from the mgcv library [Wood, 2006] in R. The underlying function is flat in one

part and very wiggly in another. A model of spatial coordinates alone with five degrees

129
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of freedom (Figure 5.1(b)) produces a surface that is overly smooth all over, whereas an

increase in knots to accommodate the bumpy parts induces bumps in the flat part of the

surface (Figure 5.1(c)).

A spatially adaptive approach allows more flexibility in some areas of a surface than

others. Varying the smoothness in a one dimensional regression spline is akin to varying

the smoothing parameter in a smoothing spline. Pintore et al. [2006] successfully applied

spatially adaptive smoothing parameters to traditional one-dimensional test functions, but

unfortunately their method was neither general nor well automated. SALSA is the most

current method for one-dimensional smoothing and performs as well as, if not better than,

competing frequentist methods [Crainiceanu et al., 2007, Ruppert, 2000, Baladandayutha-

pani and Carroll, 2005, Donoho and Johnstone, 1994, Pintore et al., 2006]. More specifically,

the SALSA algorithm uses an adaptive knot-selection approach, with the number and lo-

cation of the knots being determined in the solution process. Furthermore, it naturally

accommodates local changes in smoothness across the covariate range.

Currently there is no version of spatially adaptive knot placement for two-dimensional

problems with complex topography. However, there is a method that uses penalised re-

gression splines in a mixed model framework (similar to that of Wang and Ranalli [2007]),

where the fixed effects are spatial coordinates, random effects are TPS of spatial coordinates

and the coefficients of the random effects are allowed to have spatially variable smoothing

parameters [Krivobokova et al., 2008]. The authors also produced an R package called

AdaptFit for fitting these models so here after, this method is referred to as ‘AdaptFit’.

There does not seem to be an allowance in this method for topographically complex regions

and the use of the TPS basis function suggests that the method is likely to succumb to

similar leakage issues to a conventional TPS.

Based on its relative performance with other spatially adaptive one-dimensional meth-

ods, SALSA was considered worthy of developing into multiple dimensions for data with

complex topography. Further, this model selection routine appeared to fit well with the use
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of two-dimensional local regression splines in the CReSS method (Chapter 3). SALSA has

been adapted, from its one-dimensional form [Walker et al., 2010], in two ways: Firstly, we

use a two-dimensional spline basis, and thus knots can move to a set of locations within

a two-dimensional coordinate space; secondly, the basis structure used for model fitting

is calculated using the Exponential function and geodesic distances (Equation 3.1), as is

done in the CReSS method. SALSA is run for a choice of parameter r (Equation 3.1),

and the subsequent models are averaged using BIC weights. BIC is used in keeping with

authors recommendations from the one dimensional SALSA paper [Walker et al., 2010].

Hereafter, cases where one-dimensional splines are fitted [Walker et al., 2010] are referred

to as SALSA1D and the use of two-dimensional splines, SALSA2D.
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(a)

(b) (c)

Figure 5.1: An illustration of fitting smoother-based methods with a single smoothness
parameter. (a) the underlying function with noisy data overlaid (red points). (b) a GAM
model fitted to the noisy data using five degrees of freedom and (c) a GAM model fitted
with 75 degrees of freedom.
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5.2 SALSA2D Method

The SALSA2D algorithm uses the same three steps that form the backbone of SALSA1D

(Figure 5.2). These steps are Exchange (change a knot location), Improve (make local knot

movements) and Drop (remove a knot). However, unlike the one-dimensional version there

is no allowance for heteroscedastic errors so there is not a window of half width parameter

(refer to Walker et al. [2010] for further details). There are a number of parameters to

increase the users ability to control basic characteristics of the final model. These include

gap - the minimum allowable geodesic distance between two knots

maxknots - maximum allowable number of knots

minknots - minimum allowable number of knots

startknots - used to calculate the number of start knots

Other inputs required are the data (x1, x2, y), a regular grid of knots (x1,t, x2,t) and a

geodesic distance matrix for distances between data and knots and pairs of knots.

SALSA2D:
Initialise

Initialise knots T with legal knot locations
Repeat

Repeat Exchange step while (fit measure improves)
Repeat Improvement step while (fit measure improves)
If (|T | >minknots)

Perform Drop step
End If

While (an improvement in fit measure is made by one of the above steps)

Figure 5.2: Pseudocode outlining the structure of SALSA2D (adapted from Figure 1 Walker
et al. [2010]), where T is the number of knots used for fitting.
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The initialisation process selects legal knot positions at random until the specified num-

ber of starting knots is reached or there are no legal positions left. ‘Legal’ knots must be

contained within the region of interest, with a minimum gap between knots greater than

specified by the gap parameter. The initial model is fitted using these knots and a fit

criterion (e.g. AIC, BIC, QAIC) is calculated. After initialisation the CReSS-SALSA2D

algorithm is made up of four main steps; exchange, improve, drop and model averaging.

• Exchange The Exchange step allows the solution to move away from a local opti-

mum. Knots are allowed to move to a new position, as near to the maximum residual

as possible (but still on the knot grid), or an additional knot is included at this grid

position. During this process there must be a legal position (gap observed and exclu-

sion zones respected) for a knot to move to or be added. For each move, or addition,

the fit statistic is calculated and compared with the step before to see if an improve-

ment can be made. After all possible exchanges have been made, the algorithm moves

to the Improve step.

• Improve The Improve step makes local improvements by moving knots around their

current position. The algorithm considers relocating each knot, in turn, to each of

its eight possible neighbours on the grid, provided the move is legal. For instance,

a move to the left may place the knot in an island or within gap of another knot,

rendering the position illegal. After all knots have been through the Improve step,

the algorithm moves to the Drop step.

• Drop The Drop step allows for simplification by removing knots as long as the number

of knots is greater than minknots. Each knot is cycled through in turn to determine

if the fit score can be improved by dropping it. As soon as a knot is dropped the

algorithm returns to the Exchange and Improve steps.
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Termination of the SALSA2D algorithm occurs if there are no improvements in fit

statistic in any of the three steps above. Furthermore, the SALSA2D algorithm ter-

minates if no knots are dropped in the Drop step or minknots is reached.

• Model Averaging SALSA2D arrives at a single model for each choice of parameter r

and gap. These models are then averaged using fit statistic weights (calculated using

Equation 3.2) to obtain a single set of predictions. Where before we used AICc to

calculate weights, the same equation may be used for BIC or QAIC weights.

5.3 Simulation

The palm simulation (Chapter 4) was used to compare the performance of CReSS-SALSA2D

to other methods, in particular, CReSS. Data were randomly chosen from the palm surface,

n = 500, and a normal errors noise term with standard deviation 0.5 (low), 9 (medium)

and 50 (high) were added to the function values. Predictions were obtained on N = 2518

points.

For efficiency, possible choices for parameter r were restricted to between 2 and 5,

based upon previous simulation results (Section 4.2.2). Furthermore, in line with earlier

simulations, the minimum number of knots was set to 10 and the maximum to 100. A grid

of 693 possible knot locations was included, containing 543 positions within the region of

interest. Other parameters chosen were startknots = 24 and gap = 0.2, 0.6, 1.14. The

grid of knots had a spacing of approximately 0.4 units so a gap of less than 0.4 means a legal

knot position can be next to another knot on the grid. Assuming that Euclidean distance

equals geodesic distance (meaning there are no exclusion zones nearby), a gap of 0.6 means

the eight locations surrounding a knot (top, bottom, left, right and diagonals) are illegal.

CReSS-SALSA2D was used to establish knot number and location for each combination of

r and gap. Thus, with a choice of seven different r and three different gaps, the model

averaging step contained 21 models.
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5.4 Results

This section mainly shows the results of the simulation study but begins with a quick

comparison of the adaptive penalised splines using the AdaptFit package with CReSS-

SALSA2D.

5.4.1 AdaptFit Comparison

One simulated data set at medium noise was used for this comparison, the results of which

made it unnecessary to continue a full set of simulations. To fit the adaptive penalised

splines, the maximum number of iterations had to be increased to 100 for the mean func-

tion (default=20) and 1,000 for the variance of the random effects (default=50) to achieve

convergence. The numbers of knots were left as the default settings (in the absence of

any guidance to the contrary), which were 50 knots for the regression function and 12

for the penalty function. The results were very similar to those for the TPS method in

Chapter 4 (section 4.2.2) but with a little less leakage across the outer breakwater (Figure

5.3), presumably due to the spatially adaptive nature of the knots. Visually the results for

CReSS-SALSA2D are far superior and this was seen numerically too (Figure 5.3 and Table

5.1). The MSE score for the predictions was about seven times that of CReSS-SALSA2D

and almost the same as for TPS. The lack of information about boundaries in this method

made it very poor on this palm region and so a full simulation was not carried out. The

remainder of this section compares CReSS-SALSA2D results with the CReSS simulation

from Chapter 4 and discusses results of the two methods in more detail.
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Table 5.1: MSE scores for three different methods from one simulation realisation (n=500)
at medium noise.

TPS AdaptFit CReSS-SALSA2D

103 101 14
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(a)

(b)

Figure 5.3: Predictions for (a) AdaptFit and (b) CReSS-SALSA2D from one simulation
realisation (n=500) at medium noise.
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5.4.2 Simulation Results

Numerically, the results for low and medium noise CReSS-SALSA2D showed a significantly

improved fit (p < 0.05; Wilcoxon signed rank test) compared with CReSS (Table 5.2).

However, this was only the case for low noise when one simulation realisation, which gave

a very bad result, was removed. For this particular realisation the MSE score for the

data was 1.10, whereas the MSE score for the predictions was 1324, a thousand times

greater. This implies the model fits extremely well to the data but performs poorly when

extrapolating (i.e. the model over-fits). For this reason, Table 5.2 shows the results with

and without this realisation (represented by Low and Low* respectively) and Figure 5.4a

is shown without this result. Figure 5.4 shows boxplots of the differences in MSE scores

between the two methods and bias plots for CReSS-SALSA2D. The greatest bias was under

the outer breakwater and in the very tips of the fronds on the left hand side. However, the

bias in the fronds is much less than that seen for CReSS alone (Figure 5.4 and for example,

Figure 4.4).

In order to assess why there was one bad data realisation, the individual result was

plotted in Figure 5.5. The prediction problem appeared in the bottom left of the central

palm, where the predictions change rapidly from 0 to -910 units. Two knots were placed

in this region, but it is an area without any observed data. The rest of the surface shows a

very good fit to the underlying function.

CReSS-SALSA2D does not perform as well as CReSS on data with high noise (Table 5.2

and Figures 5.4(e) and (f)). The mean MSE score was much greater than for CReSS alone.

Almost every simulation realisation gave a negative difference in the pairwise comparisons

(Figure 5.4(e)), which implies CReSS-SALSA2D usually gives a worse fit. At all noise levels,

the variance of the mean MSE scores was larger when SALSA was used.

Figure 5.6 shows where CReSS-SALSA2D moved the knots in comparison with space-

filled knots for one single simulation realisation. At low noise, one model was chosen by
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Table 5.2: Mean and Median MSE scores and standard deviation for SALSA2D at all noise
levels for the palm simulation. Low* represents results with one problematic realisation
removed and is therefore for 99 simulations. Results of a wilcoxon signed rank test are
represented by ∗ and †, where ∗ indicates CReSS-SALSA2D was significantly better than
CReSS and †, CReSS was significantly better.

CReSS-SALSA2D CReSS

Noise Level µ σ µ σ

Low 19.08 131.84 7.20 2.70

Low* 5.91∗ 4.33 - -

Medium 16.79∗ 7.44 21.97 5.49

High 259.67† 82.92 167.26 38.53

CReSS-SALSA2D and used far fewer knots than space-filled CReSS (27 vs. 90). Further-

more, the knots were mainly located under the hat shaped island and the convex ends

of the palm fronds (Figure 5.6(a)). The MSE score improved from 9.14 (CReSS) to 3.25

(CReSS-SALSA2D). At medium noise CReSS model averaged two models of 20 knots (r

= 2, 3). CReSS-SALSA2D averaged 5 models with between 12 and 17 knots (r = 2-4).

Figure 5.6(b) represents the strongest weighted model of the five (weight = 0.92) with 15

knots. The MSE score improves from 54.61 (CReSS) to 24.51 (CReSS-SALSA2D). There

is no plot for high noise since both CReSS and CReSS-SALSA2D averaged more models

than at low/medium noise, making graphical representation of knot locations difficult. In

general, fewer knots were chosen per model when noise was high, but more models were

averaged (Table 5.3).
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Figure 5.4: (a, c, d) Boxplots of differences in MSE score between CReSS and CReSS-
SALSA2D. A positive number represents a better model fit for CReSS-SALSA2D. (b, d, f)
on the right are bias plots for CReSS-SALSA2D. (a and b) Low noise* (σ = 0.5), (c, d)
Medium noise (σ = 9) and (e, f) High noise (σ = 50). * The low noise figure represents
only 99 simulations. One extreme case was removed for better comparison.
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Figure 5.5: The low noise simulation realisation that results in a very bad prediction MSE
score. The surface represents the predicted values based upon the model chosen. The grey
dots are the data points, the black dots are the knots chosen by CReSS-SALSA2D.
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Figure 5.6: A single simulation realisation for low noise (left) and medium noise (right)
depicting knot number and location. Black crosses are space-filled knots used in CReSS
and red circles are spatially adaptive knot locations chosen using CReSS-SALSA2D.
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As noise level increased, the number of models averaged by CReSS-SALSA2D and the

value of parameter r increased, while the number of knots decreased (Table 5.3). Figure 5.7

shows the distribution of parameter r for low, medium and high noise. Many more different

values of r were chosen for high noise and there was a definite shift in distribution to higher

values. However, a number of models using small r were still chosen. There was no striking

relationship between the noise level and the number of knots chosen.

We also looked at the behaviour of the MSE score as the number of models averaged

increased. Within high noise between 1 and 21 models, of a possible 21 (3 gap choices

and 7 possible values for r), were averaged. Figure 5.8 shows the effect this had on MSE

score. Generally, as the number of models averaged increased, the MSE score decreased.

Therefore, there may be some advantage in increasing the number of models averaged at

high noise.

Table 5.3: Parameter choices made by CReSS-SALSA2D for each of the three noise levels
averaged over 100 simulation realisations. The parameters include the mean number of
models averaged per realisation, the mean for parameter r and the mean number of knots.
Numbers in brackets show the minimum and maximum.

Low Medium High

Mean Number of Models Averaged 1.14 3.98 9.49

(1, 3) (1, 13) (1, 21)

Mean r 2.59 2.89 3.26

(2, 4) (2, 5) (2, 5)

Mean Number of Knots 27.18 18.55 11.80

(22, 38) (11, 33) (10, 21)

Mean gap 0.22 0.48 0.66

(0.2, 0.6) (0.2, 1.14) (0.2, 1.14)



144

Parameter r

F
re

qu
en

cy

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
10

20
30

40
50

(a)

Parameter r

F
re

qu
en

cy

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
20

40
60

80
10

0

(b)

Parameter r

F
re

qu
en

cy

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
50

10
0

15
0

20
0

(c)

Figure 5.7: Distribution of parameter r chosen using 100 simulation realisations for (a) low,
(b) medium and (c) high noise levels. The allowed choice of r ranged from 2 to 5. If each
r was averaged for all knot numbers in every realisation, the frequency would be 300.
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represents a locally weighted polynomial regression smooth of the data. The total number
of models that could be averaged is 21.
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5.5 Discussion

Whilst there is an alternative two-dimensional adaptive smoothing method, AdaptFit, there

is not one that can deal with topographically complex areas. CReSS-SALSA2D was found

to be far superior to AdaptFit on this simulation and, overall, CReSS-SALSA2D showed

a marked improvement over CReSS for low and medium noise simulations. Knots were

moved to places where we would expect more flexibility to be needed. For example, more

knots were placed under the hat-shaped island, where radial bases have to approximate

the straight lines of the hotspot, and in the ends of the fronds on the left side where the

surface changes rapidly. Fewer knots were placed in the flatter corner areas of the surface.

In general CReSS-SALSA2D used fewer knots than CReSS alone.

The reason the problematic low noise realisation was chosen by the algorithm was due

to a very good BIC score. The fit to the data was exceptional but the predictions were

poor. The BIC score only ‘sees’ the data and so is based upon the residual sums of squares

fit to the data observations. This led to the model over-fitting the data. CReSS-SALSA2D

placed two knots in a location outside the range of the data, in two-dimensional geodesic

space. Perhaps this was an indication that knots should only be allowed where there is

data support. A simple fix would be for the user to check the output and either remove

the offending knot(s) and re-fit, or to use a new pseudo-data point to tie down the bases

at the edge. The new data point could be a repeat of the last data point, but shifted to

the boundary edge. An alternative is to make knot points outside the data range illegal,

so that no knot can be placed there, or to have a requirement for data between knots.

Further analysis is required to assess why knots are placed in ‘bad’ positions since it could

be an indication that BIC is not the right measure of fit. Since writing this chapter, the

SALSA method has been applied to modelling the distribution of Tern species around the

UK [Mackenzie and Scott-Hayward, 2012, Mackenzie et al., 2012]. The data collected were

in transects (unlike the data cloud presented here) and so the issue of knot placement away
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from the data became quite apparent. The solution was to make the knot grid fine enough

for knots to be represented on all of the transects and then make locations between transects

unavailable to the selection process. Additionally, model selection was achieved using five-

fold Cross Validation (CV), which is better at choosing models that fit well to data unseen

by the model. These changes appeared to reduce the issue of a knot location far away from

the data locations falsely raising or lowering the surface in that area.

The results obtained with CReSS-SALSA2D were not good when data with high noise

were used. This could be due to over-fitting - the model fits too closely to the noisy data and

therefore fails to find a good approximation to the underlying function for the surface. The

Exchange step in the SALSA algorithm moves a knot to the highest residual; this allows

flexibility in areas where the fit is poor but may have a tendency to fit the model too closely

to very noisy data points. The raw residuals were used in this simulation, but this is not ideal

and the use of standardised residuals would be preferable. These are residuals that have

been adjusted for the variance assumed under the model. It is a lengthy process to repeat

the simulation using standardised residuals. Running the first 5 simulation realisations for

high noise, showed an improvement in a few MSE points over using raw residuals, but not

close to the results obtained using CReSS only. This suggests that the use of inappropriate

residuals is not the primary cause of the over-fitting at high noise levels. The simulations

here used Gaussian errors, and the choice of an appropriate type of residual may be more

important when the error distribution is not Gaussian. In the next chapter the use of a

quasi-Poisson error distribution is investigated.

There may be other reasons for the problems with CReSS-SALSA2D at high noise. For

example, the results in Chapter 4 showed the need for larger r, particularly at high noise,

and this could be why CReSS-SALSA2D performed worse at high noise than CReSS. The

choice made the simulation more efficient but perhaps too restrictive (i.e. a greater range

for r could be allowed). Other factors that may reduce the performance at high noise are

that BIC may not be a suitable measure of model fit, and that there may not be enough



148

models to average. We could try another information criterion such as AICc or CV, and

by averaging over many more models by keeping a track of all the models fitted as part

of the knot placement algorithm. This would provide multiple models for each r and gap

combination, rather than the ‘best’ output currently used. As the models are already fitted

in the current version of CReSS-SALSA2D, such an approach would require no additional

computational effort. Allowing a greater range for r would also increase the number of

models available for averaging.

5.5.1 Future of SALSA2D

The SALSA algorithms are a work in progress. To date we have tried to improve fit and

speed of the two-dimensional algorithm. The next major development will be to improve

the locally adaptive nature of the algorithm. Currently each knot has the same parameter

r as every other knot for a single model. A new version of CReSS-SALSA2D could allow r

to vary, which would allow each individual knot to act globally (large r) or locally (small

r). The plan is to initialise with all knots having r equal to the middle of a predetermined

range. Models would then be re-fitted with bigger or smaller values of r for each initialised

knot in turn. The model with the lowest BIC score would then be retained. Once each knot

has an appropriate r, the Exchange, Improve and Drop steps would be executed. If a knot

is moved (Exchange step) then r would be re-calculated for the new location. However,

since the movements are local in the Improve step, the same r may be used for the new

knot. If a knot is dropped, r would be re-calculated for all knots to prevent possible gaps in

the basis function coverage. At present, the range of parameter r is determined manually,

but developments to the CReSS method (Chapter 3) to automate this, could be added to

CReSS-SALSA2D.

To speed up the process, SALSA could be initialised at knot locations for a known model

fit. For example, the algorithm could be initialised using space-filled knot locations, rather

than random ones. This might reduce the number of global moves the algorithm iterates
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through and thus speed up the process.

A second development would be to combine the SALSA1D and SALSA2D algorithms

to allow additional covariates with one- or two-dimensional smooths. This development is

at an early stage but it is intended to pave the way for production of an R package to run

models using SALSA1D and CReSS-SALSA2D and include model selection.

It is also worth noting that there are several other versions of SALSA in development,

which include using mixed models, variable radii and extended model averaging.

In order to fully demonstrate their value as a tool for biologists, CReSS-SALSA2D and

CReSS need to be applied to real biological datasets. In the next chapter we use both

these methods in a more advanced model framework for analysing a large topographically

complex data set of cetacean abundance in north-western European waters.
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Chapter 6

Case Study: Spatial Analysis of

the Joint Cetacean Protocol Data

for Harbour Porpoise and Minke

Whale in North-western European

Waters.

6.1 Introduction

Article II of Council Directive 92/43/EEC on the Conservation of Natural Habitats and

of Wild Fauna and Flora (henceforth referred to as the EU Habitats Directive) requires

the EU Member states to report on the conservation status of, among others, all cetacean

species occurring in their waters every 6 years. This report must contain information on

trends in species’ range and abundance over the preceding period. The Joint Cetacean

151
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Protocol (JCP) data resource, a collection of survey data from 1969-2010 covering north-

western European waters, is one of the databases used by the UK government to provide

this information. The data in the JCP have been gathered by various governmental organ-

isations, private sector companies and non-governmental organisations using a variety of

surveying techniques. It contains information on sightings of all cetacean species made in

this area, but this chapter focuses on the most commonly seen small cetacean, the harbour

porpoise (Phocoena phocoena) and the most commonly seen baleen whale, the minke whale

(Baelenoptera acutorostrata). The aim of the analyses reported here is to assess changes

in their distribution and abundance in north-western European waters between 1985 and

2010 using spatial density maps.

Harbour porpoise, sometimes known as the common porpoise, are the smallest and most

numerous cetacean found in the region of study. Females grow to about 160cm in length

and are generally larger than males which grow to about 145cm [Reid et al., 2003]. Typi-

cally they occur in small groups of one to three animals and their surfacings are generally

inconspicuous. This, combined with their small size, makes detection of this species partic-

ularly low in choppy sea states. Palka [1996] found that the detection of harbour porpoise

decreased by up to 75% in a Beaufort sea state of 3 compared with Beaufort sea state of

0. They are found mainly in inshore waters [Embling et al., 2010, Marubini et al., 2009]

and are reported to have a preference for water depths between 50-100m [MacLeod et al.,

2007a, Marubini et al., 2009, Booth, 2010].

According to a report from the Agreement on the Conservation of Small Cetaceans of

the Baltic and North Sea [ASCOBANS; Reijnders et al., 2009] entanglement in fishing

gear (particularly gillnets) is the greatest threat to harbour porpoises in European waters,

and Vinther and Larsen [2004] has suggested that bycatch in Danish waters exceeds a

sustainable level. In addition, harbour porpoises appear to be particularly sensitive to

acoustic disturbance emanating from shipping noise [Palka and Hammond, 2001], naval

exercises [Parsons et al., 2000], marine renewable installations [Teilmann and Cartensen,
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2012] and acoustic deterrent devices [Booth, 2010].

In contrast to harbour porpoise, minke whale (family Balaenopteridae) grow to a length

of 7-8.5m. In the northeast Atlantic, they range from the Barents Sea to Portugal and into

the Mediterranean during the summer [Reid et al., 2003]. Their winter range is not known,

but is thought to include waters from the southern North Sea to the Straits of Gibraltar

[Rice, 1998]. They are often seen singly or in pairs but occasionally, when feeding, they

may form groups of 10-15 individuals and associate with other cetaceans such as harbour

porpoises [Reid et al., 2003]. The conservation status of the minke whale in the northern

hemisphere is listed as of least concern by IUCN. However, like all other cetaceans, it is

likely to be affected by chemical pollution and acoustic disturbance [Parsons et al., 1999],

not to mention the effects of commercial exploitation in Norwegian and Icelandic waters.

It is thought that the main determinant of minke whale distribution is prey distribution

[Anderwald et al., 2012, Macleod et al., 2004]. However, depth [Skov et al., 1995, Hooker

et al., 1999], sediment type [Naud et al., 2003, Macleod et al., 2004], the location of oceano-

graphic fronts [Kasamatsu et al., 2000, Bjørge, 2001], sea-surface temperature [Anderwald

et al., 2012, Kasamatsu et al., 2000, Hamazaki, 2002] and the extent of sea ice [Kasamatsu

et al., 2000] have all been shown to be related to distribution. Furthermore, the relationship

between distribution and some covariates varies seasonally. Macleod et al. [2004] demon-

strated seasonal patterns for prey preference and sediment type and Anderwald et al. [2012]

for sea-surface temperature, chlorophyll and prey distribution.

6.1.1 Large scale assessments of cetacean distribution in north-western

European Waters

There have been two large scale studies on cetaceans conducted in north-western European

waters: the Small Cetacean Abundance in the North Sea (SCANS) surveys I [Hammond

et al., 2002] and II [Hammond et al., 2013]. There is also a large database of opportunis-

tic cetacean sightings collected as part of the European Seabirds at Sea project [ESAS
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Northridge et al., 1995a, Erratum: Northridge et al., 1995b]. Data from both SCANS-I and

ESAS were summarised in the atlas of cetacean distribution in north west European waters

compiled by Reid et al. [2003]. SCANS-I and -II and ESAS have all been included as part

of the JCP data resource.

The ESAS data were collected mainly from platforms of opportunity (e.g. research ves-

sels, ferries, seismic vessels and oil rig supply vessels) to map the offshore distribution of

sea birds in European waters. At the same time, data were collected on cetacean sightings

and Northridge et al. [1995a, Erratum: Northridge et al., 1995b] analysed these data to

map the distribution and relative abundance of harbour porpoise, minke whale and white-

beaked dolphin (Lagenorhynchus albirostris). At the time, it was the largest and most

comprehensive effort-related sightings database for the north-eastern Atlantic and covered

the period from 1979-1990. Sightings were adjusted for detectability, based on seven differ-

ent sea states, and overlaid on maps of effort data using a 1o grid. The maps indicate that

the main concentrations of porpoise sightings were in the north and central North Sea, west

coast of Scotland, southern Irish Sea and south of the coast of Ireland. There was also a

seasonal trend, with higher sightings rates in the summer months, peaking in August. The

main concentrations of minke whale sightings were off the Hebrides and the north-east coast

of England. Sightings rates of minke whale were much lower than for harbour porpoise and

peaked in June.

SCANS-I [Hammond et al., 2002] and SCANS-II [Hammond et al., 2013] took place in

1994 and 2005 respectively and were the most comprehensive design-based cetacean surveys

to cover north-western European waters. Sightings of all cetacean species, including harbour

porpoise and minke whale, from boat and aerial surveys were analysed using Distance

sampling for line transect methods [Buckland et al., 2001]. Estimated counts (raw counts

inflated for detectability) were analysed using a Generalised Additive Model (GAM) with

quasi-Poisson errors, because there was evidence of over-dispersion [Wood, 2006, Hammond

et al., 2013].
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SCANS-I covered the North Sea, parts of the Baltic Sea, the Channel and the Celtic

Sea (Figure 6.1). Hammond et al. [2002] reported that the highest densities of harbour

porpoise were found in the central North Sea, whilst the highest densities of minke whale

were recorded in the north-western North Sea and in the Celtic Sea (Figure 6.1). SCANS-

II extended the SCANS-I survey area to included offshore waters to the west of Scot-

land and Ireland, the northern Bay of Biscay and the Iberian shelf (http://biology.st-

andrews.ac.uk/scans2). Table 6.1 shows the final models for harbour porpoise and minke

whale densities from both surveys.

Table 6.1: Models from the SCANS-I (year 1994) and SCANS-II (year 2005) surveys relating
harbour porpoise and minke whale density to environmental covariates [Hammond et al.,
2013]. Models were fitted using gam from the mgcv package in R [Wood, 2006]. All spatial
smooths were restricted to a maximum of 14 degrees of freedom and other covariate smooths
to a maximum of 5.

Model Term Estimated df

Harbour porpoise 2005

s(latitude, longitude) 12.8

depth 1

s(distance to coast) 3.3

Minke whale 2005

s(latitude, longitude) 12.9

s(depth) 4

s(distance to coast) 3.5

Harbour porpoise 1994
s(latitude, longitude) 12.1

depth 1

Minke whale 1994
s(latitude, longitude) 12.9

slope 1

The density surface maps produced for each of the two species and surveys suggest that

there had been a marked change in harbour porpoise distribution between 1994 and 2005

from the central North Sea toward the southwest North Sea (Figure 6.1). Over the same

period, the main areas of minke whale abundance shifted from the east of Scotland toward

the central North Sea, with high densities also being found off the south coast of Ireland
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(Figure 6.1).

In 2003, Reid et al. [2003] published an Atlas of cetacean distribution in north-west

European waters which was based on an analysis of data from ESAS, SCANS-I and the Sea

Watch Foundation. The Sea Watch Foundation data spanned the early 1960s to late 1980s

and were based on opportunistic sightings collected from land and offshore. Data for 25

species, collected from 1979-1997, were analysed for the atlas to varying degrees of accuracy

depending, for the most part, on data sufficiency. The maps for minke whale and harbour

porpoise depict the distribution, relative abundance and associated survey effort for each

species. However, effort is presented as a background to the maps (similar to the ESAS

analysis in 1995), which may allow the casual reader to ascribe undue confidence to areas of

apparently high relative density where there is little effort. Thus, as the authors mention,

the maps can only provide ‘general statements about relative animal densities at a regional

level’ [Reid et al., 2003]. The areas of highest density for harbour porpoise were to the

east of Denmark and in the north-western North Sea, with lower densities off south-west

Ireland, south-west Wales and the west coast of Scotland. Harbour porpoise also appeared

to show a preference for depths shallower than 100m. The highest relative abundance of

minke whales was recorded in the western North Sea, west coast of Scotland and a small

area in the central North Sea. There was also an area of high relative abundance off the

south coast of Ireland. There was some evidence that minke whales preferred waters less

than 200m deep.

This chapter describes a unified analysis of all of the sightings data from harbour por-

poises and minke whales contained in the JCP data resource. The analytical tools developed

in previous chapters are used to map changes in the spatial distribution of the two species

over time, and to identify areas of particularly high and consistent abundance.

Thanks to the Joint Nature Conservation Committee (JNCC) for allowing the use of

the JCP data resource in this chapter (T. Dunn pers. comm.).
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Figure 6.1: SCANS-I (left) and II (right) results for harbour porpoise (top) and minke
whale (bottom). Figures taken from Hammond et al. [2013].
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6.2 JCP Data Resource

Collation and correction of the data in the JCP data resource involved combining data sets

collected from a variety of sources and adjusting the data to account for under-detection (the

fact that observers do not see all of the available animals) and availability (the fact that not

all animals are at the surface and available for observation). Distance sampling [Buckland

et al., 2001] uses the distribution of observed animals to estimate their detectability by

creating a detection function, which describes the way in which the probability of detection

varies with distance from the trackline for animals at the surface. This function is then

used to adjust the raw counts for under-detection. One of the key assumptions of Distance

sampling is that all animals on the trackline are available and detected. This assumption

is often violated for cetaceans because they may be difficult to detect, even when they

are on the trackline, and they may be submerged for long periods. When suitable data

(such as observations from two or more independent observers or from telemetry) had been

collected, it was possible to estimate the probability of detecting an animal on the trackline.

Availability bias was corrected for by using information about diving times. Despite the

bias corrections employed, not all biases may have been accounted for and so the estimated

abundances from this process are referred to as relative abundances.

Each transect of survey effort was divided into approximately 10 km long segments, and

the number of animals detected along this segment, corrected for detectability and avail-

ability, was summed to create spatially referenced count data used as input for modelling.

The collated data covered the period from 1994 to 2010 and consisted of 88734 segments for

harbour porpoise and 131448 segments for minke whale, covering an area of approximately

1.09 million km2 (Figure 6.2). There are fewer segments for harbour porpoise because

data collected when the sea state exceeded Beaufort 2 were not included due to the low

detectability of this species in poor sea conditions. Data collected prior to 1994 were not

considered for any species due to the small number of sightings and poor spatial coverage.
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Further details of data collation methods and the corrections employed can be found in

Appendix 2 of Paxton et al. [2013].

6.2.1 Explanatory Variables

The environmental covariates used in the analyses were Depth, Slope and sea surface temper-

ature (SST ). Depth was either recorded at the time or taken from the ETOPO2: 2 minute

resolution relief data available from the National Oceanographic and Atmospheric Adminis-

tration (NOAA). Slope was estimated as a function of the north-south and east-west depth

gradients. SST was at 1 degree resolution, weekly averages and was also obtained from

NOAA. Each environmental covariate was indexed by geographic location in latitude and

longitude. However, for modelling purposes, the coordinates were projected to UTM31U

(Universal Transverse Mercator projection) and these are subsequently referred to as East-

ing and Northing. Temporal covariates were used to aid identification of any seasonal or

long term change; these included day of the year (DoY ) and Year of survey.
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(a)

(b)

Figure 6.2: Effort across all years for harbour porpoise (a) and minke whales (b) available
in the JCP resource.
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6.3 Methods

6.3.1 Overview

The modelling methods used in this chapter are based upon CReSS (Chapters 3 and 4),

for use in topographically complex areas such as this study area (Figure 6.2), and SALSA

(Chapter 5) to allow spatially adaptive targeted smoothing. This approach permits smooth

functions to be used for each environmental and temporal covariate and the spatial compo-

nent. Additionally, the spatial component, used to determine similarity between observa-

tions, was constructed using at-sea distance (geodesic). In conjunction with these methods

a Generalised Estimating Equation (GEE) framework [Hardin and Hilbe, 2002] was imple-

mented to account for any residual autocorrelation (see Chapter 4 for details). Residual

autocorrelation was thought likely to be present when considering the survey design, since

data from multiple aerial and boat surveys are likely to be spatially and temporally cor-

related and the model is unlikely to explain this correlation in full. If positive residual

autocorrelation is ignored, the uncertainty in the model parameters is underestimated lead-

ing to an underestimate of overall model uncertainty. Uncertainty in the entire modelling

process was incorporated using a parametric bootstrap technique [Davison and Hinckley,

2007] and GEE based standard errors. This accounted for uncertainty in the detection func-

tion modelling and uncertainty in the model parameter estimation, but not model selection

uncertainty, since the density surface model was not re-chosen for each bootstrap resam-

ple produced as part of the detection function process. Geo-referenced confidence intervals

based on the estimated uncertainty were then produced for each density surface to provide

a range of plausible surfaces based on the data. An overview of the methods process can

be seen in Figure 6.3.
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Figure 6.3: An overview of the data collation (orange), modelling process (blue) and uncer-
tainty estimation (red) for analysis of the JCP data resource.

6.3.2 Modelling Framework: GEEs

Given the methods of data collection, it is likely that the data are correlated in time. Fur-

ther, if some of the covariates which explain this correlation are missing from the model,

then GEEs, described in Chapter 4, section 4.3.2.1, are a suitable framework for modelling

the remaining correlation in the residuals. A runs test [Mendenhall, 1982] on residuals

from the final harbour porpoise model showed significant levels of positive correlation (H0:

independent residuals, p << 0.0001). This justified the consideration of non-independence

(based on GEEs), because there are fewer runs of residuals than would be expected (each

run is long, resulting in fewer runs) if the residuals were independent. GEEs require a panel

variable to be specified, within which the residuals are permitted to be correlated. Con-

versely, independence is assumed between panels. Based on the survey design and the fact
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that the data set is a combination of results from multiple surveys, the panel variable (see

Chapter 4, section 4.3.2.1 for more on panels) was specified using model residuals belonging

to segments from the same day of survey and same observation vessel (survey-day-vessel).

These residuals within panels were permitted to be correlated but were deemed independent

between survey-day-vessels. This panel variable specification allowed the standard errors to

be based on the autocorrelation within each panel. The panel structure led to 4835 panels

for harbour porpoise and 6317 panels for minke whale, with the number of points in each

panel ranging from 1 to 395.

The data are estimated counts per segment and are non-negative, so a log link function

was used. While Poisson errors might be routinely assumed for data of this type (see

Chapter 2, section 2.1 for Poisson GLM formulation) the high numbers of zeros in the data

means that the expected relationship between the mean and variance for a Poisson model

was not likely to hold (i.e. V (y) >> µ). For this reason a dispersion parameter, which

forms part of the GEE parameter estimation process, adjusts the variance appropriately.

A varying degree of survey effort contributed to each estimated count and so an offset

term was included to model counts per unit effort. The area of each segment (in km2) was

used as an effort term and so the results of any predictions are animals per km2.

6.3.3 Smoothing Details

The one dimensional covariates were each modelled non-linearly using cubic B-splines [see

section 2.2.1 and Faraway, 2006] except for DoY which was modelled using a cyclic cubic

regression spline [Wood, 2006]. Cyclic cubic splines have an extra condition that the fitted

curve at the boundary knots at either end of the covariate range join smoothly. In the case

of DoY, this ensures that day 1 and day 365 do not have a sharp change in relationship.

SALSA1D [Walker et al., 2010] was used to choose the number and location of knots for

these covariates, but was restricted to an upper bound of df = 5 (3 internal knots, 2

boundary knots) to prevent overly complicated models (in much the same way as is done
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when using the gam function in mgcv).

The two dimensional spatial smooth was modelled using CReSS, with the flexibility of

the surface determined by both the number of knots and the range coefficient (r) for each

knot. SALSA2D was used to determine the number and location of these knots. A 60km x

60km grid of points provided good coverage of the survey area from which candidate knots

were chosen. SALSA2D was initialised using a space-filling algorithm [Johnson et al., 1990]

on the data locations and selected locations were snapped to the candidate knot grid to give

starting knot locations. Subsequent knot moves or changes were governed by SALSA2D.

However, since the SALSA2D algorithm does not search all possible knot locations, several

start points were considered (6, 8, 10 & 12 knots, Table 6.2).

A recent addition to the SALSA2D algorithm described in the discussion of Chapter 5

meant that once the final number and location of knots was selected, an appropriate value

for the parameter r could be chosen for each knot in turn. As in knot selection, any changes

were governed by a chosen fit criterion. Four candidate values of r were chosen that allowed

a variety of local to global smoothing gradients (Table 6.2). The smallest value rmin gave

basis function values close to zero (very local influence) and rmax was chosen to give basis

function values close to 1 (global influence). The following formula was used to calculate

rmin and rmax, and thus the range of r:

rmin =

√
−gmin

log(0.05)

rmax =

√
−gmax

log(0.99)

where gmin is the maximum of either the minimum geodesic distance between pairs of

knots or the minimum geodesic distance from a candidate knot to a data point, and gmax

is the maximum geodesic distance from a knot to a data point. A sequence of values was

created using log(rmin) and log(rmax) and exponentiated to give the sequence of r’s used
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in the analysis (Table 6.2). The log scale enabled the sequence to have more values for

locally acting radii than for the globally acting ones. Simulations on the horseshoe and the

palm regions using this more general method of calculating r gave similar results to those

in Chapters 3 and 4 [Scott-Hayward et al., 2013].

A summary of the modelling parameters used in the analysis for both harbour porpoise

and minke whale can be found in Table 6.2.

Table 6.2: Table of model parameters for the JCP analysis for both harbour porpoise and
minke whale.

Parameter Value

1D knots 1,2 and 3

2D start points 6, 8, 10 and 12

r 461, 1454, 4585 and 14462

Fit statistic BIC

Error structure Poisson

6.3.4 Model Selection Process

Initially, models were fitted to each one-dimensional covariate to establish the strength of

any relationship between them and the counts per unit effort on the link scale. These models,

together with the uncertainty about the relationships (via percentile based GEE confidence

intervals), established an order of ‘best’ predictors, using an appropriate fit criterion. Any

co-linearity between these covariates was also identified at this stage and one or other of the

co-linear variables removed. Furthermore, any covariate that exhibited prohibitively large

confidence intervals (including infinity) was also eliminated from the next stage. To obtain

a single model, the remaining covariates were combined in order of predictive power. Since

one of the main aims of the analysis was to assess temporal trends, Year was included by

default and the remaining covariates were added one by one (conditional on improvement

to the model fit) in order of predictive power. In all cases, SALSA1D was used to adjust
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the knots for each covariate as it was added.

Once an appropriate model containing one-dimensional terms was determined, a two-

dimensional CReSS smooth of spatial coordinates, with knots selected by SALSA2D, was

included in the model, conditional on an improvement in the fit statistic. If the data

allowed, and there was an improvement in fit statistic, then an interaction term between

the spatial surface and Year was also added. This allowed the distribution of animals to

change substantially from year to year, rather than the whole surface moving up/down for

each year. However, the spatial distribution of effort was extremely patchy, and some areas

were only surveyed once or twice making it more difficult to fit an interaction (year-space)

for one of the two species analysed.

Model selection was governed by the BIC statistic [Schwarz, 1978, see Chapter 2 for

details], rather than based on p-values, because the latter relies on accurate estimates of

standard errors. In this case, GEE models were fitted with a working independence corre-

lation structure and empirical standard errors were used for model inference [Hardin and

Hilbe, 2002]. This approach to the analysis does not assume that residuals within panels

are independent, but uses the observed residual correlation within panels to return standard

errors rather than rely on a specified model for the correlation structure. It also returns

model coefficients which are identical to those obtained under independence and this equiv-

alence means each model could be fitted as a GAM with Poisson errors, for the purposes

of selection, and the final model re-fit as a GEE to estimate uncertainty. The BIC was

used to govern both selection of knots and selection of covariates. This guarded against

fitting models for the underlying model process that were overly complicated, which could

occur using AIC, for example. However, the penalty added per parameter was based on the

apparent sample size and not the effective sample size, which is likely to be smaller when

autocorrelation is present. If the effective sample size was used then the penalty would

probably be smaller and this would likely lead to more complex models being selected.
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Five-fold cross-validation was also considered as a model selection alternative but in prac-

tice returned overly simplistic models that failed to identify cetacean concentrations that

persisted over time. Model selection for GEEs is a current research area and while basic

analogues to AIC are available (e.g. QICu and QICr) the use of cross-validation to perform

model selection for correlated data is not well studied [Pan, 2001b, Koper and Manseau,

2012].

6.3.5 Model Predictions and Inference

Model predictions were generated for each species on a 5 x 5 km resolution grid covering

the survey area outlined in Figure 6.2 for four days (days 45, 136, 227 and 315, representing

the four seasons) each year (1994 - 2010), using the best model chosen by BIC.

Percentile based 95% confidence intervals for each grid cell were generated using a two

stage parametric bootstrap approach to include uncertainty from the detection function

and the spatial modelling processes (see Figure 6.3 for an overview). Empirical (data-

based) standard errors were used to represent parameter uncertainty at the modelling stage

because these are robust to mis-specification of the correlation structure [Hanley et al.,

2003]. Specifically 500 sets of estimated counts (N̂) for each segment were generated based

on 500 parametric bootstrap realisations of the detection function parameters. The best

model, fitted using the real estimated counts and chosen using BIC, was re-fitted 500 times,

each time with one of the sets of bootstrapped N̂ ’s using a GEE fitting framework. From

each model the variance-covariance matrix of the regression coefficients was then used to

generate one parametric realisation of the model parameters. These parameters were then

used to predict densities for the grid described above, resulting in 500 sets of predictions

- each one relating to a different set of bootstrapped detection function input data (N̂s).

Confidence intervals were created by finding the lower 2.5th quantile and the upper 97.5th

quantile for each of the 500 values in a grid cell.

This work forms part of a larger project [Paxton et al., 2013] for which I was the
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principle analyst for the spatial modelling and prediction aspects. I did not conduct the

analysis for combining multiple sources of data to form the JCP data Resource (the source

of the spatial modelling data), nor did I conduct the inference analysis (owing to it requiring

SAS software). The points of discussion, in this chapter, both statistical and biological are

my own.

6.4 Results

Table 6.3 shows the models selected for each species. Both models contain the same one di-

mensional covariates (Year, Depth, DoY, Slope and SST ). All the covariates, except Year for

minke whale, use three knots (which was the maximum permitted) and suggests that more

knots might have been allowable. The two-dimensional smooth of Easting and Northing

was low dimensional and chose 12 knots for harbour porpoise and just 11 knots for minke

whale. The model for harbour porpoise also contains an interaction term between Year and

geographic space (s(Easting, Northing):s(Year)). The covariates in the table are presented

in the order in which they appeared in the model, and thus their order of importance based

on the BIC scores of the individual models.

Results for both species are presented for the years 1994, 2005 and 2010. Plots showing

seasonality can be found in Appendix D and the remainder of the time series for each species

can be found in Appendix E. Maps corresponding to each of the EU Habitats Directive

reporting periods (1994 - 2000, 2001 - 2006, 2007 - 2010), are in Appendix F. Appendices

E and F are on the accompanying CD.

6.4.1 Harbour Porpoise

Many (n= 10093) of the 88734 harbour porpoise segments contained non-zero estimated

counts, resulting in a high mean sightings rate, relative to other cetacean species, of 0.87 por-

poises per km2. All of the available covariates were successfully fitted with one-dimensional
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Table 6.3: Table showing the best selected model, based on BIC, for each species. bs =
B-spline, cc = cyclic cubic and CR = CReSS basis. The numbers in brackets are the number
of knots selected (for df one additional df for each boundary knot). X and Y represent
the covariates Easting and Northing and the order of covariates is the order in which they
entered the model.

Species Model

Harbour porpoise bs(Year, 3) + bs(Depth, 3) + cc(DoY, 3) + bs(Slope, 3) + bs(SST, 3) +
CR(X, Y, 12) + s(Year, X, Y, 36)

Minke whale bs(Year, 1) + cc(DoY, 3) + bs(SST, 3) + bs(Slope, 3) + bs(Depth, 3) +
CR(X, Y, 11)

smooth functions and selected the maximum flexibility available (3 knots) for the smooth

term (Figure 6.4). Co-linearity was not evident at this stage and so the order of best pre-

dictors, based on the BIC, can be seen in Table 6.4. Depth was the single best covariate

for predicting harbour porpoise counts per km2. Figure 6.4 shows the relationship of each

covariate with animal counts. Harbour porpoise show a preference for shallow water < 50m

deep, a slope of more than 0.5 and a SST between 5oC and 15oC. The temporal covariates

indicate a sharp decline in density over the prediction region in the late 1990s followed

by an increase until about 2008, with some evidence of a decline thereafter, although the

confidence intervals become wider after 2007. The relationship with day of the year indi-

cates the lowest numbers of animals were counted in the summer months. However, these

are plots of models fitted to a single covariate, and so there is no account of the effect of

other covariates on the response. Furthermore, the covariates and models selected were

chosen based on their predictive ability, and not a priori based on biological interpretation.

Therefore, biological inference from these plots should be measured.

The addition of each covariate to the model gave an improvement in BIC score. The

final model contained a two dimensional smooth of Easting and Northing and an interaction

between this two dimensional smooth and Year. SALSA2D chose 12 knots, the maximum

permitted, for this spatial term and their locations can be seen in Figure 6.5. These knots
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Table 6.4: Order of the best single covariate predictors for the harbour porpoise data. Order
is calculated based on BIC scores for each of the models where each model contains a single
covariate.

Covariate ∆ BIC

Depth 0.00

Day of year 14100

Year 15600

Slope 20500

Sea surface temperature 26400

were fixed across all years.

Predicted density plots for harbour porpoise in the years 1994, 2005 and 2010 are shown

in Figures 6.6, 6.7 and 6.8. The raw count data from time periods around the year of

prediction are shown alongside the point estimates, together with the GEE-based lower and

upper 95% intervals. The colour scale used is taken from Hammond et al. [2013] with some

additions at the upper limit to allow for the uncertainty plots. More effort was focused

on coastal UK waters toward the end of the study period, which makes the uncertainty in

some areas of the study region, for example, the Kattegat/Skagerrak (Figure 6.8(d)), quite

high in 2010. If there was no interaction term, then the latter years could borrow strength

from good coverage in the early years. However, any temporal shifts in distribution would

not be identified. The two areas with the greatest uncertainty in 2010 are the west coast of

Ireland and the Kattegat/Skagerrak, where there are no data for the year of prediction or

the two preceding years. There seems to be a shift in high density areas from the central

North Sea in 1994 to the coast off East Anglia in 2005 and 2010. This shift is also evident

in the upper confidence interval surface. The model fits the estimated raw counts well at

the beginning and end of the temporal range (Figures 6.6 and 6.8) but not in the mid

range (Figure 6.7). In 2005 there are very few non-zero predictions in the North Sea, which

appears to be an area of high density in the estimated raw counts. This is likely due to
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restricted spatial coverage (mostly coastal) in the years pre and post 2005 and the very

high estimated observed densities off the west coast of Scotland down through the Irish Sea

(Figure 6.9).

Figures 6.10 and 6.11 show harbour porpoise density predictions for winter, spring,

summer and autumn 2010. There is a striking lack of coverage of effort in winter and

autumn compared with spring and summer. Even in spring and summer the coverage of

effort is poor with most effort occurring in UK coastal waters. Figure D.1 in Appendix D

shows the effort for each season across all years. It is clear that most of the data (41%)

were collected in the summer months. GEE based 95% confidence intervals for these 2010

season density plots are also presented in Appendix D.

Figure 6.12 shows the change in relative abundance for the whole study region during

the study period. The total abundance in each year was calculated by summing over each

prediction grid cell, which differs to Figure 6.4.1, where one estimate (a mean) was predicted

for each year (and year was the only covariate). Here, the confidence intervals are quite

wide, making inference difficult, but there is some indication of an increase in numbers from

about the year 2000.
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(a) (b)

(c) (d)

(e)

Figure 6.4: The relationship between each covariate and harbour porpoise counts per km2 (density
on the y-axis); (a) Year, (b) Day of the Year, (c) Depth, (d) Slope and (e) Sea surface temperature.
The plots show a cubic B-spline (or cyclic cubic in the case of DoY ) with GEE-based 95% confidence
intervals (grey shading) for each covariate. The tick marks at the bottom show the distribution of
the data and the grey dashed lines show the location of the knots. Three internal knots were selected
by SALSA1D for each covariate.
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Figure 6.5: A map of the study area showing the prediction grid (grey points) and the knot
locations chosen by SALSA2D for the two dimensional smooth of Easting and Northing in
the harbour porpoise model.
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(a) (b)

(c) (d)

Figure 6.6: Predicted harbour porpoise densities for summer (day 227) in 1994. (a) The
estimated raw densities for summers in 1994 - 1996 that are drawn upon to make predictions
for 1994. (b) Point estimates of harbour porpoise density. (c) and (d) are the lower and
upper 95% GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure 6.7: Predicted harbour porpoise densities for summer (day 227) in 2005. (a) The
estimated raw densities for summers in 2004 - 2006 that are drawn upon to make predictions
for 2005. (b) Point estimates of harbour porpoise density. (c) and (d) are the lower and
upper 95% GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure 6.8: Predicted harbour porpoise densities for summer (day 227) in 2010. (a) The
estimated raw densities for summers in 2008 - 2010 that are drawn upon to make predictions
for 2010. (b) Point estimates of harbour porpoise density. (c) and (d) are the lower and
upper 95% GEE based percentile intervals.
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(a) (b)

Figure 6.9: (a) The estimated raw densities for summers in 2003 - 2004 and (b) the estimated
raw densities for summers in 2006 - 2007.
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(a) (b)

(c) (d)

Figure 6.10: Harbour porpoise densities and predicted densities for 2010 in winter (top)
and spring (bottom). The plots on the left are the estimated raw densities for winter or
spring in 2008 - 2010 that are drawn upon to make predictions for 2010. The plots on the
right are predictions for 2010 in winter and spring. Plots of confidence intervals for these
estimates are in Appendix D.
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(a) (b)

(c) (d)

Figure 6.11: Harbour porpoise densities and predicted densities for 2010 in summer (top)
and autumn (bottom). The plots on the left are the estimated raw densities for summer
or autumn in 2008 - 2010 that are drawn upon to make predictions for 2010. The plots on
the right are predictions for 2010 in summer and autumn. Plots of confidence intervals for
these estimates are in Appendix D.



180

Figure 6.12: Harbour porpoise predictions of relative abundance summed over the whole
survey area for each year in the summer (day 227). This excludes the area of the Kattegat
and Skagarrak to the east of 8.2 x 105 Easting due to very high uncertainty in this region
for 2010. Red lines are 95% GEE based percentile intervals from the parametric bootstrap
process (Figure 6.3).
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6.4.2 Minke Whales

Counts of minke whales were estimated in 1152 out of the 131448 segments, resulting in a

relatively low mean sightings rate of 0.022 whales per km2. All of the available covariates

were successfully fitted with one-dimensional smooth functions and all, except Year, with

the maximum available flexibility (3 knots) for the smooth term (Figure 6.13). Co-linearity

was not evident at this stage and the order of best predictors, based on the BIC, can be

seen in Table 6.5. DoY was the single best covariate for predicting minke whale counts

per km2. Figure 6.13 shows the relationship of each covariate with animal counts. Minke

whales show a preference for seabed Depth of 100-200m, slope between one and 1.5, and

SST of around 14 oC. The temporal covariates suggested there was a decline in numbers

over the survey period and that most animals were seen in the late summer. As discussed

in the harbour porpoise results section, it would be unwise to use these figures for biological

inference.

Table 6.5: Order of the best single covariate predictors for the minke whale data. Order is
calculated based on BIC scores for each of the models.

Covariate ∆ BIC

Day of year 0.00

Sea surface temperature 434

Slope 631

Year 9650

Depth 12900

The addition of each covariate to the model gave an improvement in BIC score and

the final model also contained a two dimensional smooth of Easting and Northing. Based

on BIC scores, a two-dimensional smooth with 11 knots, whose locations were chosen by

SALSA2D, was the best model. The SALSA2D algorithm was initialised with 12 knots but

removed one knot to improve model fit. The locations of the chosen knots were fixed across

years and they are shown in Figure 6.14.
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Figures 6.15, 6.16 and 6.17 show predicted plots of the density of minke whale in 1994,

2005 and 2010. The raw count data from the whole study period, together with GEE-based

lower and upper 95% percentiles are shown alongside the point estimates. The colour scale

used is taken from Hammond et al. [2013] with some additions at the upper limit to allow

for the uncertainty plots. The highest densities of minke whale were recorded in the west

and north North Sea, off the west coast of Scotland, off the south coast of Ireland and

around the Isle of Man. No interaction term was used in the model because this resulted in

high uncertainty (unrealistic values) in the extra parameters estimated. The distribution

patterns identified therefore persisted throughout the study period, although there was an

apparent general decrease in density through time.

The highest densities were recorded off the west coast of Scotland in the summer (Figures

6.18 & 6.19). The mean sightings rate in the whole study area was 0.030 whales per km2.

In the autumn and winter, the sightings rate dropped to 0.0036 whales per km2 and this is

reflected in the low densities shown in Figures 6.18 & 6.19. The best and most even coverage

of effort was in spring (29% of total effort) and summer (43% of total effort). However, the

coverage is better in winter and autumn than for harbour porpoise because data collected

in sea states greater than Beaufort two were included.

Figure 6.20 shows the change in relative abundance for the whole study area over the

study period. There is some suggestion that minke whale numbers were at a maximum

around the year 2000, but the confidence intervals associated with this time period are wide

making inference difficult.
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(a) (b)

(c) (d)

(e)

Figure 6.13: The relationship between each covariate and minke whale counts per km2 (density on
the y-axis); (a) Year, (b) Day of the Year, (c) Depth, (d) Slope and (e) Sea surface temperature.
The plots show a cubic B-spline (or cyclic cubic in the case of DoY ) with GEE-based 95% confidence
intervals (grey shading) for each covariate. The tick marks at the bottom show the distribution of
the data and the grey dashed lines show the location of the knots. Three internal knots were selected
by SALSA for each covariate except Year which had only one.
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Figure 6.14: A map of the study area showing the prediction grid (grey points) and the knot
locations chosen by SALSA2D for the two dimensional smooth of Easting and Northing in
the minke whale model.
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(a) (b)

(c) (d)

Figure 6.15: Predicted minke whale densities for summer (day 227) in 1994. (a) The
estimated raw densities for all years. (b) Point estimates of minke whale density. (c) and
(d) are the lower and upper 95% GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure 6.16: Predicted minke whale densities for summer (day 227) in 2005. (a) The
estimated raw densities for all years. (b) Point estimates of minke whale density. (c) and
(d) are the lower and upper 95% GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure 6.17: Predicted minke whale densities for summer (day 227) in 2010. (a) The
estimated raw densities for all years. (b) Point estimates of minke whale density. (c) and
(d) are the lower and upper 95% GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure 6.18: Minke whale densities for 2010 in winter (top) and spring (bottom). The plots
on the left are the estimated raw densities for winter or spring in all years. The plots on the
right are predictions for 2010 in winter and spring. Plots of confidence intervals for these
estimates are in Appendix D.
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(a) (b)

(c) (d)

Figure 6.19: Minke whale densities for 2010 in summer (top) and autumn (bottom). The
plots on the left are the estimated raw densities for summer or autumn in all years. The
plots on the right are predictions for 2010 in summer and autumn. Plots of confidence
intervals for these estimates are in Appendix D.
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Figure 6.20: Minke whale predictions of relative abundance summed over the whole survey
area for each year in the summer (day 227). Red lines are 95% GEE based percentile
intervals from the parametric bootstrap process (Figure 6.3).
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6.5 Discussion

The aim of this chapter was to assess changes in the range and relative abundance of harbour

porpoise and minke whale over the period 1994 - 2010 using methods developed in this thesis

(CReSS and SALSA2D). The analysis shows these methods are capable of analysing large

quantities of data with multiple covariates in a topographically complex region.

However, modelling these data was a challenging exercise; survey effort was often poor

and only a limited number of covariates were available for modelling. For instance, survey

effort was limited in some years and there was uneven survey coverage in others. This

uneven coverage made it difficult to provide wide-ranging long term estimates with any

reliability, because the uncertainty associated with density estimates in poorly sampled

areas tends to be much greater than for well sampled areas. The highest levels of sampling

effort were exerted in 2010, but even these surveys had poor spatial coverage (relative

to the area under study) and the sampling was almost entirely confined to coastal areas.

The limited number of covariates available for modelling is likely to have restricted the

predictive power of the models. However, additional covariates can only be included if they

have spatial and temporal coverage suitable for an analysis of this scale. In particular,

the inclusion of more biologically meaningful covariates, such as the presence and direction

of tidal currents and prey distribution, might have improved the models ability to explain

patterns in the distribution of animals. Embling et al. [2010] showed that tidal currents were

a strong predictor of harbour porpoise density off the west coast of Scotland and several

authors have suggested that prey distribution is key to explaining the distribution for minke

whales [Macleod et al., 2004, Anderwald et al., 2012]. Furthermore, the covariates used in

this study, as in many others, probably only served as proxies for the ‘real’ relationship

a species has to its environment. Prey availability seems a likely candidate to drive the

observed distribution of a species but information on prey distribution is rarely available.

Environmental covariates such as depth and sea-surface temperature are likely to affect
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primary productivity and therefore influence the distribution of prey and their predators.

6.5.1 Methodological comparisons

The 1995 ESAS study [Northridge et al., 1995a] and the cetacean atlas [Reid et al., 2003]

plotted sightings rates with effort overlaid, rather than employing any spatial modelling

techniques. For instance, Northridge et al. [1995a] pooled data over 12 years and ad-

justed sightings rates (animals per km of trackline) for Beaufort sea state and month using

a generalised linear model. Similarly, the atlas [Reid et al., 2003] reports sightings rates

(individuals sighted per unit time) adjusted for sea-state corrected effort based on approxi-

mately 20 years of data and comprised of three data sets. For this reason, the ESAS and the

cetacean atlas pool data over time, effectively giving mean sighting rates over the duration

of each study period.

The SCANS surveys provide snapshots of cetacean distribution in the north-western

European waters in the years in which surveys were conducted. Here the JCP analysis

used Year as a covariate, which allowed temporal trends to be identified and a better

understanding of the animals use of space through time. The full set of temporal distribution

maps (1994-2010) was not presented here but can be found in Appendix E, along with mean

estimates for each reporting period.

The SCANS surveys were well-designed line transect surveys and so sightings were

corrected for detectability using Distance sampling [Buckland et al., 2001]. Spatial models

using a GAM were then fitted to the corrected animal counts to produce distribution maps

over the survey area. Similar to this JCP analysis, animal counts were modelled using a

quasi-Poisson distribution however, only a few covariates were available for model selection,

and correlation in the residuals was not considered as part of the modelling. Furthermore, a

single smoothing parameter was used across the entire study region, restricting the surfaces

to be uniformly flexible across the study area.

This was not the first analysis conducted on the JCP data resource. Two previous
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preliminary analyses (Phase I and Phase II) were conducted over differing temporal and

spatial scales [Paxton and Thomas, 2010, Paxton et al., 2011]. Broadly speaking, each

phase consisted of two parts; data collation and spatial modelling. Table 6.6 shows the

main differences in the spatial distribution modelling sections of the two phases.

Phase I was analysed by Paxton and Thomas [2010] and was conducted as a test to

see if the JCP data resource could be useful. They used a subset of sightings data from

1980-2009 in the Irish Sea. A two stage modelling process was used: the presence versus

absence or each species was modelled using a logit-link based Generalised Additive Model

(GAM), while the non-zero segments in the data were modelled separately using a GAM

with Gamma errors.

Phase II [Paxton et al., 2011] was an extension of Phase I and encompassed a wider

geographical area that included the Celtic Sea, the continental shelf to the west of Britain

and extended to the longitude of the Hebrides. In this phase, the spatial coordinates were

modelled using a CReSS approach underpinned with geodesic distances. This additional

model complexity, compared with the Phase I approach, was deemed necessary to avoid

unrealistic leakage in hotspots across land forms (and peninsulas) and to permit some areas

of the surface to be more flexible than others (based on a choice of locally to globally acting

bases for fixed knot locations). This latter issue was thought to be crucial since assuming

uniform flexibility across the extended survey area seemed even more unrealistic.

This analysis, Phase III, extended the spatial range even further and covered north-

western European waters to the 300m depth contour. In contrast to earlier analyses however,

the temporal range was necessarily reduced due to poor effort prior to 1994 in newly consid-

ered areas. The modelling approach was improved by using an automated model selection

process (SALSA) inside CReSS to include spatially adaptive knot placement. Additionally,

an updated version of CReSS allowed automated selection of the ‘range’ parameter and the

inclusion of SALSA permitted spatially adaptive knot placement for both one- and two-

dimensional covariates. Furthermore, improvements to the SALSA algorithm allowed the
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‘range’ parameter to vary across the surface within a given model. These improvements

focused the modelling effort into areas with greatest need and were implemented to prevent

over smoothing in highly structured areas of the surface and under smoothing in the flatter

areas. In practice, the modelling approach used here reduced the chance of underestimating

densities in hotspot areas and overestimating densities in areas where animals were rarely

seen (e.g. off-shore areas for a primarily coastal species). Furthermore, the occurrence

of ‘leakage’ was extremely small (limited by the accuracy of the boundary specification)

further reducing the chance of high density predictions near coastal regions biasing/being

biased by low density areas previously deemed to be nearby and vice versa. If a traditional

method, such as an ordinary GAM, was used for modelling these highly uneven surfaces

it is easy to see how a hotspot in the data could be smoothed out and be overlooked as a

high use area in the fitted surface. This could result in popular areas being excluded from

consideration as areas of special conservation interest. While the fitted surfaces for each

species are of primary interest, it is also important to give perspective to these predictions

by considering the uncertainty in these predictions and the plausible range of geo-referenced

values for these underlying surfaces. The treatment of uncertainty in model predictions was

improved over the JCP analysis phases. For instance in Phase I, spatio-temporal residual

autocorrelation was not modelled explicitly but was included by using a computationally

intensive non-parametric bootstrap procedure. This was carried out alongside the modelling

process in Phases II and III using GEEs [GEEs; Hanley et al., 2003, see Chapter 4, section

4.3.2.1 for details] which were used to account for correlation in the model residuals, within

panels.
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Table 6.6: Table of main differences in the spatial density modelling between JCP phases I
and II [Paxton and Thomas, 2010, Paxton et al., 2011]. If unspecified, the covariates were
fitted using cubic B-splines.

JCP Phase 1 JCP Phase 2

Time span 1980-2009 1985-2010

Region covered Irish Sea

Celtic Sea and continental shelf to west
of Britain and the longitude of the He-
brides

Species Modelled

Harbour porpoise

Minke whale

Bottlenosed dolphin

Common dolphin

Rissos dolphin

- White beaked dolphin

Modelling Frame-
work

Logistic GAM for presence/absence
GEE with Poisson errors

GAM for non zero segments (Gamma er-
rors)

Covariates

Spatial coordinates (thin plate spline) Spatial coordinates (CReSS)

Year Year

Day of year (cyclic cubic spline) Month (discrete)

Survey Mode Availability

Depth Depth

- Slope

- Sea surface temperature (SST)

Modelling Details

two stage model 20 - 100 2D knots were space-filled,

unmodelled spatial correlation dealt
with in bootstrap

50 range parameters,

GCV to choose smoothness Geodesic distances,

QICu to choose between models with
different knots/range parameters.

Harbour porpoise
model

0/1: s(lon, lat) + s(Year) + s (DoY) +
s(Depth) + s(Survey) s(Easting, Northing) + s(Year) +

s(Month) + s(Depth) + s(Avail)Non zero: s(lon, lat) + s(Year) +
s(DoY) + s(Survey)

Minke whale model

0/1: s(lon, lat) + s(Year) + s (DoY) +
s(Depth) + s(Survey) s(Easting, Northing) + s(Year) +

s(Avail) + s(SST)Non zero: s(lon) + s(Depth)
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6.5.2 Technical aspects

This section discusses some of the technical aspects of the modelling process and any im-

provements that might be made. The analysis presented here shows the use of CReSS-

SALSA to be a suitable tool in mapping the distribution of cetacean species using large

datasets in topographically complex areas.

Knot selection, as described earlier in this thesis, can have a large effect on the results

of spatial modelling. Therefore, SALSA1D and SALSA2D were employed to allow spatially

adaptive one- and two-dimensional splines. Knots provide an opportunity to push a surface

up or pull it down, and so some knots will be in high density areas and some in low density

areas. Unfortunately, one of the limitations of SALSA2D is that the locations of the knots

cannot change year to year so these points of flexibility are fixed across time. For models

with no interaction term, like that for minke whales, the location of the knots does not vary

through time and the knot coefficients simply adjusts the whole surface up or down in a

given year. This means that the location of knots is supported by all the data across the

whole temporal range, and the limitation of SALSA2D is not an issue. However, for the

harbour porpoise model, which contains an interaction term, there are coefficients for every

knot-year combination. This allows some parts of the density surface to be pulled up whilst

others are pulled down in a given year.

The limitation of SALSA2D is particularly noticeable in the harbour porpoise results

where the survey effort is very patchy in some years. The two areas of greatest uncertainty

in 2010 (west coast of Ireland and the Skagerrak/Kattegat) coincide with the location of

two knots, but there was no survey effort in these regions in any season after 2008. As a

result, the model struggles to support a convincing relationship between harbour porpoise

density and the covariates in these areas and the uncertainty in the coefficients greatly

increases. It is quite likely that the best knot locations are in different places in different

years, particularly if there is an interaction effect. Therefore, more work on SALSA2D is
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required to allow knots to be placed only in areas with good coverage across time, or to

allow their locations to be changed from year to year. However, the latter improvement

is likely to be computationally expensive, and in some cases the gain in model fit may be

relatively small.

The method of selecting the order in which the covariates enter the model could be

improved. Year was constrained to enter the model first, whether it was a significant

covariate or not, because the main focus of the analysis was to detect tends over time. It

may have been better to add Year as the last covariate to see if there was any unexplained

variability left in the model that could be explained by temporal trends. Alternatively, it

may have been better, once all one dimensional covariates were added, to go back to the

first covariate (in this case Year) and see if should still be included and whether the number

of knots decreased given all the other covariates in the model. This could be repeated up

to the last covariate in the model in a form of forwards and backwards covariate selection

procedure.

A slight adaptation to this selection procedure could be to add the covariates in a specific

order that relates to previous knowledge about relationships of each species with specific

covariates. Covariates known to affect, or be a useful proxy for, distribution could enter the

model first, followed by other covariates. For example, previous studies have shown that

harbour porpoise prefer shallow water, so Depth could be specified to enter the model first

and then the next covariate of interest. This would add more biological relevance to the

selection of covariates rather than the model fit based procedure used here.

Model selection uncertainty was not included in this analysis. During the knot selec-

tion procedures many models are fitted, but only the best, based on fit statistic, is used

subsequently. All of the other fitted models are discarded, regardless of how similar they

were to the best model. Furthermore, covariates were kept in the model if the fit statistic

improved, regardless of how little it may have improved. One way of dealing with model

selection uncertainty could be to use model averaging [see Chapter 3 and Burnham and
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Anderson, 2010]. This weights all of the models based upon a fit criterion and uses these

to calculate weighted predictions for a candidate set of models. The candidate set could

include models with or without certain covariates or models with varying knot numbers and

range parameters.

One key aspect when interpreting the results of these analyses is at what spatial scale

the time-averaged estimates may be reliably interpreted over. The adjusted counts (inputs

to the modelling stage) were modelled with spatial smooths and so it is expected that at

small spatial scales local fluctuations in the density will be smoothed over. Therefore, there

will be systematic over- and under-prediction and non-zero averaged residuals on very small

spatial scales. For this reason Paxton et al. [2013] undertook a preliminary analysis to assess

at what spatial scale, the averaged residuals approximate zero (little systematic over- or

under-prediction; Appendix 5 of Paxton et al. [2013]). They analysed the residuals for a

common species, harbour porpoise, and a rare species, Rissos dolphin (Grampus griseus),

and the results indicate that, predictions in the order of 500-1000km2 are reliable but at

smaller scales, estimates can be biased and absolute residuals relatively large (unreliable

inference). The residual analyses can only take place where there is data available so

a further warning should be made that in areas of little or no data, inference might be

unreliable irrespective of the size of the search area. The areas of high density for harbour

porpoise and minke whale and each of the protected areas discussed in the following sections

are all greater than 1000km2. However, many Scottish candidate MPAs are smaller than

500km2 and thus, using these results at that scale is unwise.

6.5.3 Harbour porpoise distribution

The harbour porpoise results for 1994 show a preference for the central and north-western

North Sea, western Scottish and Irish waters and waters to the east of Denmark. In 2005

there was a shift towards the southern North Sea and a greater concentration in the Irish

and Celtic Seas down to the coast of France, confirming the findings of the original SCANS
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I and II analyses [Hammond et al., 2013]. There appears to have been a general decline in

relative abundance by 2010, but the confidence intervals are wide, making inference difficult.

The preliminary JCP analyses both found an increasing trend in overall abundance in their

respective study regions, with a peak in 2005 and then a decline. This does not match

with the overall abundance results seen here but those analyses were for a much smaller

study region (Irish and Celtic Seas). Investigation into this smaller region suggests a similar

pattern was found in this analysis.

The spatio-temporal interaction in the harbour porpoise analysis makes it difficult to

compare the maps presented here with the ones presented in [Reid et al., 2003], but does

highlight the issue of pooling data over a number of years. The cetacean atlas map shows

a maximum sighting rate over 20 years and therefore indicates that harbour porpoise have

a widespread distribution, but with no indication of when that sightings rate was achieved.

The JCP resource data pooled over 17 years would give a mean surface that was neither

historic nor current distribution, but something in between. The usefulness of this kind

of surface, particularly in marine conservation planning is limited. For instance, a recent

change in distribution, such as seen here for harbour porpoise, could be masked by historic

patterns and lead to the wrong areas being considered important conservation areas.

The three plots corresponding to the three EU Habitats Directive reporting periods

(section F.1, Appendix F) indicate three main areas of high density for harbour porpoise

that change in importance over time: the west coast of Scotland, the Welsh coast and an

area off the coast of East Anglia. Further, these hotspots in the point estimates are also

evident in the lower confidence limits for the surface for two of the three areas (west coast

of Scotland and the coast of Wales). During reporting period two, the area of high density

extends from the west coast of Scotland down through the Irish sea to Lands End, and there

is a second localised high density area off the coast of East Anglia. This second hotspot

persists in reporting period three but stretches further north into the Thames and Humber

shipping forecast areas (see Appendix G for a key to forecast areas). Other hotspots are



200

seen off the west coast of Scotland and west Wales (similar to reporting period one). The

area off the coast of Wales was not included in SCANS-I and was identified as a medium

density area in SCANS-II. However, both the cetacean atlas [Reid et al., 2003] and the

ESAS analysis [Northridge et al., 1995a] show sightings in this area. Furthermore, Baines

and Evans [2009] analysed aerial, vessel and vantage point data collected from the Irish Sea

and Welsh coast between 1990-2000, and showed high sightings rates of harbour porpoise

in this area.

Northridge et al. [1995a] describe a seasonal distributional difference in harbour porpoise

sightings rates that suggests high rates occur in the North Sea in winter and spring and a

shift to coastal regions of Scotland in summer/autumn. The seasonal pattern for harbour

porpoise seen in the analysis reported here is not consistent with this finding and suggests

that more harbour porpoises are seen in north-western European waters in the winter/spring

than in the summer. The highest densities were recorded in winter, off the west coast of

Scotland, in the Moray Firth and off East Anglia, however these estimates are based on

small amounts of survey effort. A further reason for this inconsistency might lie in the

differing coverage of water depths surveyed across seasons. For example, the mean depth

of the data segments in the winter surveys was 28m, which is close to the preferred water

depth found in this analysis (Figure 6.4(c)), whereas the mean water depth for the summer

segments was 49m. This could have artificially inflated the density of harbour porpoises

seen in winter because most of the areas surveyed were in habitat preferred by this species.

Generally, the highest densities were found off the west coast of Scotland in all seasons.

Seabed depth has been shown to be important in explaining harbour porpoise distribu-

tion in several studies [Booth, 2010, Embling et al., 2010, Embling, 2007, Marubini et al.,

2009, Hammond et al., 2013]. However, harbour porpoises have been found frequently in

both shallow water [30-60m; Shucksmith et al., 2009, Todd et al., 2009] and deeper shelf

waters [> 100m Raum-Suryan and Harvey, 1998, Booth, 2010]. This study suggested the

strongest preference for shallow waters with another small peak around 150m and although



201

consistent with what was previously known for this species, the covariate relationships seen

in this study should be used with caution. Depth alone is unlikely to drive distribution

and was primarily used here as a proxy for un-measured/un-measureable environmental

covariates such as prey distribution. It is likely that the distribution of prey or some

lower trophic level is determined by depth and this manifests itself in the distribution of

porpoises. Recently, Jansen et al. [2012] analysed strandings along the Dutch coast and

suggest that porpoises feed offshore on pelagic, schooling species (e.g., poor cod, mackerel,

greater sandeel, and sprat) and closer to shore on more benthic and demersal species (e.g.,

gobies, whiting, herring, and cod). Harbour porpoise are one of the smallest marine mam-

mal predators, with limited energy storage capacity, and it is therefore assumed that they

must feed frequently. Therefore, their distribution is likely to be closely linked to that of

their prey [Fontaine et al., 2007, Read, 1999].

6.5.4 Minke whale distribution

The maps for minke whale provided by this analysis are similar to the maps of relative

abundance in Reid et al. [2003] and Northridge et al. [1995a]. Minke whales are most

abundant in the western part of the North Sea (Tyne and Dogger shipping forecast areas;

see Appendix G for a key to forecast areas) and west coast of Scotland, with the highest

densities in the middle of the North Sea. There is also an area of high density off the south

coast of Ireland in both these analyses. SCANS-I and -II [Hammond et al., 2002, 2013] also

recorded higher densities in western areas of the North Sea, and SCANS-II recorded high

densities off the south coast of Ireland.

The lack of a significant interaction term in the model between space and year indicated

that there was no shift in minke whale distribution over time, although there is a suggestion

in the raw data (estimated counts), of a shift in distribution southward (Figures in section

F.2 Appendix F). This led to low predicted numbers in the Firth of Forth, which was

the area of highest density in SCANS-I, and a large number of sightings in the JCP data
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resource. A model with an interaction term predicted high densities in this area, but the

confidence intervals were high over the whole surface making interpretation impossible.

Further efforts in this area might result in a lower dimensional interaction term and may

produce a fitted surface which more closely resembles the movement of this species over

time.

The highest JCP-based density estimates for minke whales were in the summer months,

particularly around the west coast of Scotland. Although the data used by Northridge et al.

[1995a] included rather few sightings of minke whales from the west coast of Scotland, their

maps also suggest that high densities occur there in the spring and summer months.

In terms of total relative abundance over the whole survey area, there is some evidence of

a slight increase in minke whale numbers from 2005 to 2008, followed by a decline. However,

the confidence intervals on total relative abundance are imprecise so as a result we cannot

conclude that there was a significant change in abundance over the 17 year study period.

Depth was not a significant predictor of minke whale density in the SCANS I or JCP

Phase II analyses. However, Reid et al. [2003] suggests that minke whale are found pre-

dominantly in waters of 200m or less. This conclusion is supported by the analysis in this

chapter, although, as with harbour porpoise, the covariate relationships seen in this study

should be used with caution. Anderwald et al. [2012] showed there was seasonality asso-

ciated with depth preference, at least in waters off the west coast of Scotland. This may

explain why it is not always selected as a covariate. Furthermore, Anderwald et al. [2012]

show that in June minke whales occur in areas where there is a high probability of sandeel

occurrence, but do not do so later in the season. Sandeels prefer depths of 30-70m [Wright

et al., 2000] and this may account for the peak in minke whale density at this depth range

found in this analysis. Later in the season, minke whales on the west coast of Scotland

feed on sprat [Anderwald et al., 2012] and pre-spawning herring [Macleod et al., 2004] at

deeper depths. Minke whales are a highly mobile species with a highly variable diet. Their

preferred prey differs across the north east Atlantic [Haug et al., 1995] and they readily
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switch diets when the availability of any preferred prey species is low [Macleod et al., 2004,

Anderwald et al., 2012]. An interaction term between season/year and space/depth would

account for such a temporally and spatially varying distribution and should be included in

future analyses of these data.

6.5.5 Identification of Candidate SACs

Member states are required to designate Special Areas of Conservation (SAC) for all species

that are listed on Annex II of the EU Habitats Directive, which includes harbour porpoise.

The guidelines for designation of an SAC state that it must be an area of persistent presence

or a high population density (relative to other local areas) or where there is a high ratio of

young to adults at certain times of year [Pinn, 2009]. Minke Whales and harbour porpoise

are both recognised as a priority species within the UK Biodiversity Action Plan (UK BAP;

as of July 2012, now the UK Post-2010 Biodiversity Framework) and are on Annex IV of

the Habitats Directive for species in need of strict protection. In this section I describe how

the results of this analysis can be used to identify candidate SACs for harbour porpoise,

and whilst not a requirement for minke whale I asses if any current or potential SACs would

indirectly benefit this species.

At the time of writing, the only marine protected areas for whales dolphins and por-

poise around the UK are the Moray Firth SAC, Cardigan Bay SAC and Lleyn Penin-

sula and Sarnau SAC [Hoyt, 2012]. The Cardigan Bay SAC (off the coast of Wales)

(www.cardiganbaysac.org) was designated primarily to protect bottlenose dolphins (Tur-

siops truncates), Atlantic grey seal (Halichoerus grypus), river and sea lamphrey (Petromy-

zontidae spp.), reefs, sandbanks and sea caves. The Lleyn Peninsula and Sarnau SAC was

designated to protect a variety of habitat types, not the species living within them. How-

ever, marine species that indirectly benefit from this area are bottlenose dolphin, otter

(Lutra lutra) and grey seal. The Moray Firth SAC was designated to protect bottlenose

dolphin.
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There are currently no sites in UK waters designated primarily to conserve harbour

porpoise or minke whale (http://jncc.defra.gov.uk/ProtectedSites/SACselection). The UK

government has been told by the European Commission that it must propose some harbour

porpoise SACs or face a fine for failing to do so.

Based on the results of this analysis, none of the existing SACs for other marine species

or habitats would adequately conserve harbour porpoise or minke whale. The main areas

where both lower and upper confidence intervals show high densities of harbour porpoise

in summer 2010 are the west coast of Scotland, the Moray Firth and north of the Norfolk

coast. However, a species must show persistence in the area considered for SAC status.

For harbour porpoise, the west coast of Scotland, the west coast of Wales and the coast of

Norfolk, extending northward (section F.1, Appendix F) showed consistently high densities

over the period 2007-2010. The Scottish Government is currently considering designating a

number of locations as MPAs (Figure 6.21) for species including minke whale but excluding

species on Annex II of the Habitat’s Directive, which includes harbour porpoise. The most

suitable of these MPAs, that might indirectly conserve harbour porpoise, would seem to

be the whole of the Skye to Mull (STM) search location and the channel to the north of

Skye, which is not a proposed conservation area. The Moray Firth SAC does not extend

far enough eastward to capture most of the area used by harbour porpoise in 2010. The

highest densities of harbour porpoise off the coast of Wales occurred further south than

the boundaries of the two Welsh SACs (section F.1, Appendix F), so the species could be

protected either by an extension of the Cardigan Bay SAC or the creation of a new marine

conservation zone (MPA equivalent for Wales).

The areas with the highest lower and upper confidence limits for minke whale density

in summer 2010 are the west coast of Scotland, central western North Sea (off the coast

of Yorkshire) and a small area to the west of the Isle of Man. Because there is no spatial

interaction with year in the model, the same areas are identified in all years (section F.2,

Appendix F). None of the proposed marine protected areas off the west coast of Scotland
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Figure 6.21: Proposed MPA sites and search locations for Scottish territorial waters as of
2012. Image taken from a Marine Scotland report [Marine-Scotland, 2011].

are adequate for minke whale despite this species being included in the Scottish government

search criteria. Minke whale are included in the STM and Southern TRench (STR) search

locations but again neither are adequate based on this analysis. However, an area similar to

that described for harbour porpoise, extending north-eastward from the Skye to Mull search

area would encompass the highest density area for minke whale. At the time of writing,

there are no proposed protected sites for cetaceans off the Yorkshire coast or around the

Isle of Man.

All of the proposed sites for SACs in Scottish and Welsh waters are quite small, given

the transient nature of cetaceans and their wide geographic range. Perhaps we should

be considering sites that are much larger and appropriate on a global scale. One large

conservation area in each place seems more realistic for large transient species that do not

seem to have a particular affinity for any one location in these areas.
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6.5.6 Future analyses of the JCP data resource

The JCP data resource is an excellent collaborative database and potentially a useful tool

for assessing temporal and spatial distributions of cetaceans. However, the quality of any

analysis lies in the data which underpins it and, for this analysis, the lack of effort in certain

locations and at certain times of year is a major issue. It would be of great benefit if data

from other countries could be used to eliminate the coverage gaps in this dataset. For

example, surveys are known to have taken place around Germany and Denmark in recent

years, and the results of these could improve the models in these areas. Furthermore, there

are several types of data that were not included, such as tagging, acoustic and vantage point

(static points such as cliff tops or offshore platforms) data. However, inclusion of these is

difficult, because of the way each type of data is collected. For vantage point data it is

hard to disentangle the effect of declining detectability of animals away from the vantage

point and the true distribution of animals in space. Traditional distance sampling methods

cannot be used here. However if something is known about habitat preference (for example,

from an independent survey) then a new R package nupoint [Cox et al., 2013] could be used

to infer something about the true distribution of animals and allow the inclusion of this

type of data into the JCP resource.

This analysis established trends on a large scale. A next step is to identify smaller

areas for analysis, for example Scottish waters or specific developer areas. As mentioned

earlier, this allows a greater variety of covariates for modelling, which might describe the

data better and reduce uncertainty. It might also improve the identification of hotspots.

The data could also be re-analysed by dividing the whole study region into many slightly

overlapping areas, each of which could be modelled separately. This would allow more or

alternative covariates to be used. For example, different environmental covariates could be

used to describe animal distributions in off-shore and coastal areas. The results of these

separate analyses could then be combined smoothly to create a comprehensive atlas. The
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following chapter (Chapter 7) describes a method that could be used to achieve this aim.

Data from a number of other cetacean species were analysed as part of the JCP project.

The results of these analyses could be compared in order to identify areas where the distribu-

tions of different species overlap. For example, data from harbour porpoise and bottlenose

dolphins, which are known to attack harbour porpoise [MacLeod et al., 2007b, Ross and

Wilson, 1996], could be analysed together to determine the probability of interactions be-

tween them. Similarly, data of the distribution of fishing boat track data could be overlaid

with the different species maps to identify areas of high interaction between the fishing

industry and cetaceans. Since 2005, all vessels in excess of 15m are legally required (under

EU legislation 404/2011) to automatically transmit vessel identification, date, time, posi-

tion, course and speed either hourly or 2 hourly as part of the Vessel Monitoring Scheme

(VMS). In the UK, this is coordinated by the Marine Management Organisation (England

and Wales), Marine Scotland and the Department of Agriculture and Rural Development

(Northern Ireland). Unfortunately, these data are considered personal data and falls under

the Data Protection Act, which makes access difficult. Herr et al. [2009] were able to use

VMS data from the German Bight region of the North Sea to investigate association and

overlap between fisheries and harbour porpoise. They concluded that especially in the sum-

mer there was evidence of resource competition with the sandeel fishery and some evidence

in spring of overlap with plaice and sole fisheries. The JCP analysis provides results over a

much larger area including UK waters, and with access granted to use depersonalised UK

VMS data would result in an interesting study of the interactions of UK fishing vessels and

cetaceans.
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Chapter 7

Combining Density Surfaces

7.1 Introduction

Cetacean species distribution maps are used in various applications such as the identification

of proposed Marine Protected Areas (MPAs), environmental impact assessment, monitor-

ing, and the planning of military activities, seismic surveys and offshore renewable energy

developments. All of these applications require maps that are comprehensive, up-to-date

and include realistic estimates of uncertainty. Often, individual results from existing sur-

veys do not cover the region of interest or are too small to be useful. However, there are

many independent surveys of the marine environment taking place all over the world, many

of which are documented in the OBIS-SEAMAP database [Read et al., 2011], but each of

which has been analysed separately resulting in multiple maps. A number of these maps

when looked at together could have enough information to be useful for the applications

above, avoiding the need for new, dedicated surveys, which are both expensive and time

consuming to implement. Even if a new survey is conducted for a specific area, its utility

may be improved if supplemented with other existing mappings of the region.

Even considering overlapping survey data alone, just combining the raw survey data

is insufficient, due to different collection techniques and the need to consider uncertainty

209
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if inference is to be drawn. Therefore a method is needed that combines the density and

precision estimates from multiple analyses to give a single density surface with an aggregate

measure of precision. In general, seeking to combine a variety of overlapping density infor-

mation (estimates and uncertainties) for the purposes of prediction and inference, requires

a rigorous statistical approach. The need for such a method is commonplace and some

specific examples follow.

The analysis of data from the Joint Cetacean Protocol data resource, described in the

previous chapter, showed how difficult it can be to model raw survey data from a variety of

sources in a single analysis. If an approach were available, each data set could be modelled

separately and the resulting surfaces could be combined into one unifying map to create a

species distribution atlas.

For military planning a useful starting point is the database described by Harris [2013], in

which survey data are used in combination with habitat suitability to predict the density of

marine mammals on a global scale. That database is based on one by Kaschner et al. [2006]

who employed a fundamental ecological niche model (described in the General Introduction)

based on environmental covariates, such as sea bed depth, sea surface temperature and ice

edge association, to obtain global Relative Environmental Suitability (RES) indices. This

kind of data is particularly useful for areas/species where there is limited, or no systematic

data.

For other applications, such as identifying hotspots or areas for future research, such an

index may be suitable by itself. Often though, absolute numbers of animals, rather than

relative indices, are required to determine population level consequences of, for example,

anthropogenic activities. Thus, Harris [2013] combined the RES index from Kaschner et al.

[2006] with information from observed densities from dedicated surveys to produce global

marine mammal density estimates. If such databases are to be useful in risk assessment

analysis of military exercises, for example, then they must not become fixed at the time

point they were created, but must be updated when new information becomes available.
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New information could come from recent surveys or the output of a dynamic predictive

model [for example Read et al., 2009, Barlow et al., 2009]) using current environmental

conditions as inputs. New information may cover too small a geographic area to be useful

and may be subject to sampling variability specific to the temporal period of collection. In

these cases, combining new densities with the database creates a current database which

takes account of the long-term average distribution of animals.

Combined maps can also be used in spatial conservation planning decision support

software, such as Marxan [Ball et al., 2009, Ardron et al., 2010], which requires good data

coverage. This software cannot distinguish between zeros (locations where no animals were

observed) and areas where there was no survey effort; it also shows bias toward data rich

areas (Lieberknecht cited in Ardron et al., 2010). If data from multiple surveys are available

from regions where reliable distribution maps are required, the most effective way to provide

this information is to combine all available survey data for each species of interest and fit

a model to ‘fill in the gaps’ where there is no survey effort. Packages such as Marxan

could then be used to generate, evaluate and compare different MPA options using these

composite maps.

Williams et al. [2011] recently compiled information on cetacean distribution in the

north-eastern Pacific Ocean as part of the process of developing proposals for cetacean-

oriented MPAs. The authors highlighted problems in applying Marxan and the need for

good data coverage. Their suggested solutions included conducting new, wide ranging

surveys, use of RES data only [RES; Kaschner et al., 2006], or extrapolation of densities

from RES to un-surveyed areas using relationships between RES and survey data. New

surveys are expensive and time consuming, and any kind of extrapolation is a potentially

dangerous process, as seen in the killer whale case study in Chapter 4.

It could be argued that only the most recent information available should be considered

rather than investing in long-term historic data such as the database by Harris [2013]. There

will be situations, of course, where combining density surfaces is deemed not appropriate,
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for example where there is a large discrepancy between the existing data and the new survey

data, and the time lapse between the two is extensive. It could also be argued that the

historic data has little relevance to current-day predictions and ought to be abandoned in

favour of a very recent survey noting, however, that there is a loss of information about

temporal variability, which might be important for some applications.

However, each survey is a snapshot in time and is susceptible to being an unusual

estimate due to sampling variability. Long-term historic averages might be more robust to

sampling variability but require updating with new information to be considered current.

Whilst the case for temporally combining survey data with historical data may be un-

clear at times, there is most definitely a good spatial argument. For example, if you have

survey A and survey B and you need to consider an area covered partly by A alone, B alone

and A & B combined. In this case, one or other survey cannot be used alone so it must be

decided how best to merge the individual surveys in a statistically robust manner.

Reflecting the issues described above, this chapter describes a method for combining

existing density surfaces with new data and provides an example of its use as part of an

algorithm called the Dynamic Cetacean Abundance Predictor (DCAP). Section 7.2 de-

scribes the methodology for combining competing density estimates (Section 7.2.1) and a

smoothing method to smooth the potential transition from a combined surface to the non-

overlapping regions (Section 7.2.2). These methods were originally developed for a military

planning application, and it is this use that is described here (Section 7.3). The DCAP

implementation is described (Section 7.3.1) and the test scenarios used to validate it are

presented (Section 7.3.2). The results of the DCAP algorithm are presented and discussed

(Section 7.3.3), followed by a discussion of the methods and results (Section 7.4). The work

in this chapter formed part of the Marine Mammal Alert, Awareness and Response System

(MMAARS) project, conducted by BAE Systems for the US Navy, which was awarded a

silver medal in the 2009 BAE Chairman’s Awards. I was the principle developer behind the

statistical methodologies of the DCAP algorithm part of the MMAARS project.



213

7.2 General Methods

This section describes a new method for combining two density surfaces both of which have

an associated measure of uncertainty. There are two broad problems to solve. The first is to

combine the estimates from the two data sources and the second is to smooth the junctions

where the two surfaces meet. The two data sets could be the results from two independent

surveys or a database, such as the one based on RES values, and a survey. Figure 7.1(a)

shows an example involving a coarse resolution density map based on historical data and

a fine resolution density map based on survey data that overlap. Although the process

described later is for a two-dimensional density surface, for clarity this figure shows the

problem in a single dimension. Furthermore, for ease of explanation, the values contained in

one density surface are referred to as ‘existing data’ and the other as ‘new data’ (representing

new data to be added to the current situation, which may be model outputs from survey

data or a dynamic predictive model).

Section 7.2.1 describes the process of combining the two data sources (Figure 7.1(b))

and Section 7.2.2 describes the method for smoothing the edges where the two data sources

meet. This additional smoothing step is required to prevent un-naturally sharp changes in

density between the combined surface and those parts of the existing surface that have not

been changed (Figure 7.1(c)).
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(a)

(b)

(c)

Figure 7.1: A one dimensional example of two overlapping density surfaces for updating; (a)
the existing surface (black) and the new survey results (blue). (b) The mean (weighted by
uncertainty) of the two sets of data points (red crosses), shown at the resolution of the new
survey data and extended by a buffer into the area covered by existing data. (c) a kernel
smooth (black line) with varying bandwidth of the red cross data. The y-axis is density
and the x-axis is location.
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7.2.1 Combining Competing Estimates at a Point

The aim of this step is to combine two density surfaces; one deemed existing data and the

other new data. More specifically, there are two expected values (two estimates of density)

to be combined, each with an associated degree of precision. A Bayesian approach is used to

combine the estimates considering that there is some existing hypothesis, which is updated

through the acquisition of additional information. Here it is assumed that the existing

view is our prior (hypothesis) and the new data provides some evidence to modify this,

which results in a posterior density (combined existing view and new density data). The

Coefficient of Variation (CoV; note this is different to the commonly used CV due to its

use in this thesis for Cross Validation) for the prior distribution and the new indicates how

informative each source of information is, and thus how much weight each should be given

when being combined.

This approach resembles the Best Combined Spatial Predictor (BCSP), which is regu-

larly used in geostatistical analyses Hengl [2009]. For BCSP the two data sets are assumed

to be independent and normally distributed. However, in the example presented here the

data are assumed to be lognormal and the measure of precision is the CoV, but standard

deviation or variance could also be used.

Let y be the new data estimate of density with coefficient of variation CoVy, and assume

that y is lognormally distributed:

log(y) ∼ N(θ;σ2log(y))

Where,

σ2log(y) = log(CoV2
y + 1)

The lognormal distribution is commonly used to describe data, such as those obtained

from surveys, with a low mean, high variance and values that cannot be negative [Limpert
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et al., 2001]. Assume a prior distribution for θ, the mean log density, such that,

θ ∼ N(µθ;σ
2
θ)

To use this prior we need to specify µθ and σ2θ using the information we have in our

existing information source: i.e the current estimate of density (µ0) and its coefficient of

variation (CoV0). Since θ is normal and eθ is lognormal we can use these estimates to

parameterise the distribution of eθ:

eθ ∼ logN(µ0; (CoV0 × µ0)2) (7.1)

Where,

σ2θ = log(CoV2
0 + 1)

and the mean,

µθ = log(µ0)−
1

2
log(CoV2

0 + 1)

Parameters µ0 and CoV2
0 are the densities and squared CoVs in the existing density

surface. On the log scale the combination of log(y) and µθ (the new survey density and the

existing density on the log scale) equates to a weighted average, where the weightings are

given by the level of uncertainty.

The posterior distribution for θ is:

θ|y ∼ N(µ1;σ
2
1)

where the posterior mean (µ1) and variance (σ21) for a Normal distribution with known

variance [Murphy, 2007] are defined as
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µ1 =
σ−2log(y) × log(y) + σ−2θ × µθ

σ−2log(y) + σ−2θ

σ21 =
1

σ−2log(y) + σ−2θ

These are re-expressible as the mean and CoV of θ (new mean and the CoV of the

lognormal distribution in Equation 7.1) and thus the density and variance for the combined

data:

combined density = e(µ1+
σ21
2
)

combined variance = (e(µ1+
σ21
2
))e2µ1+σ

2
1

To get back to CoV, take the square root of the combined variance divided by the

combined density. These combined estimates become the prior for eθ (Equation 7.1) for

any further modifications from the addition of new information.

Notably, after the densities have been combined there may be an unnaturally sharp

transition between the combined density surface and the existing density surface (Figure

7.1(b)). The next section describes a method to alleviate this effect.

7.2.2 Smoothing the Transitions between Datasets

The one-dimensional example in Figure 7.1(b) shows that once the overlapping densities

have been combined there may be an unnaturally sharp transition from the new, combined

density surface to those parts of the existing surface that have not been updated. This

section describes a method to smooth this transition, the results of which can be seen in

Figure 7.1(c).

The densities in the area to be smoothed are referred to as y, where some of the y are
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products of multiple data sources and some may not be. There will always be a potential

for a discontinuity when moving from a surface generated by combined data to one based on

data from only one source. The aim is to reduce these discontinuities by some sort of local

averaging. The data are two dimensional, and denoted by {x1i, x2i, yi; i = 1, ..., n} to which

kernel regression smoothing (Section 2.3.4) was applied to smooth the y’s. This provides a

smoothing parameter, which can be adjusted to decline to zero at some distance from the

edge of the combined density region (i.e. to reduce the smooth to an interpolator).

Using the two dimensional kernel smoothing method in Section 2.3.4, the local estimator

is (XTWX)−1XTWy, where X is an n×2 matrix of spatial coordinates. Matrix W (n×n)

is the product of two Gaussian kernels, one in each x dimension, of the form

w(xi − x1;h) =
1√
2π
e−

(xi−x1)
2

2h2 (7.2)

where h denotes the smoothing parameter, controlling the width of the kernel function

and for simplicity will be considered separately for each x dimension. When h represents the

standard deviation of normal densities, then observations within 3h of the evaluation point

in the covariate axis will contribute to the estimate, and coordinates out with this range

have effectively no contribution. Every coordinate at which there is a ŷ to be estimated

requires an input of an h; in two dimensions this requires specification of an h1 and h2

corresponding to x1 and x2. We used an Auto-Correlation Function (acf ) to find h1 and

h2 for each coordinate at which there was a ŷ to be estimated. The principle is that if

the surface is highly variable, the correlation between points is small and the smoothing

parameters err on the side of interpolation. Conversely, if the combined densities are at a

consistent level, correlation is high and the smoothing will result in a smooth surface. The

acf function was calculated as follows:

AutoCorr = min

(∑N−k
i=1 (yi − ȳ)(yi+k − ȳ)∑N

i=1(yi − ȳ)2

)
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where yi is the density at point i, N is the number of points in the row/column (N.B.

data are on a regular grid), ȳ is the mean density along that row/column and k is the lag.

A range of lags were used where, for example, a lag of 4 calculates the correlation between

points 4 steps apart. Since the grid is regular, the lag is proportional to distance so the

value of interest k, which minimises the acf (i.e. the lag which is required for data points

to be uncorrelated), is proportional to the distance at which data points are uncorrelated.

The area of combined densities and the single data source are said to be independent at

the point where the data points are uncorrelated, and no further smoothing is required.

To find the smoothing parameter, h, the number of points that minimises the acf, kmin, is

converted to distance on the covariate axis using the resolution of the data, gr, and then

divided by 3 so that h equates to the standard deviation of the normal density:

h =
kmingr

3
(7.3)

Points 3h apart are, therefore, deemed to be independent because it is at this range that

points on a normal distribution are considered to be. The acf can be used to determine

the size of the area outside the boundary of the new survey which will be smoothed to

alleviate unnaturally sharp changes in density. This region will be referred to here as the

‘buffer zone’ and the values of the lag (distance) at the edges of the survey region are used

to determine its size. The smoothing parameter in this area decreases from the value of

h at the edge of the survey area to effectively zero at the edge of the buffer zone, where

the smoothed combined density surface joins the existing density surface. Returning to the

one-dimensional example from earlier, Figure 7.1(c) shows the combined densities in the

region of the new data and a smooth of these data into the existing data (to the edge of the

buffer) to smooth the change in densities between the combined data and existing data. The

smoothed estimates, within the buffer/survey region, form the aggregate estimate, which

may be subject to modification in the same way with the addition of new information.
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This section has described two generic methods for combining and smoothing two sources

of spatial density information, one considered to be a map of existing density estimates and

associated precision and one considered to be new data. The next section describes a specific

implementation of these methods designed to aid in the planning of naval exercises, where

potential impacts on local fauna are of interest.

7.3 Example

The example described here formed part of Phase 1B of the Marine Mammal Alert Aware-

ness and Response System (MMAARS) project developed by BAE Systems for the US

Navy to help in the mitigation of the potential risk to marine mammals from military sonar

[Donovan et al., 2010]. MMAARS uses a risk assessment algorithm, developed previously

in conjunction with BAE Systems, which requires up-to-date density surfaces for a large

number of cetacean species. These surfaces are derived from a global database of density es-

timates for 115 marine mammal species developed by Kaschner et al. [2006]. Donovan et al.

[2011] extended the work carried out by Kaschner et al. [2006] by establishing a relationship

between Kaschner’s RES index and observed densities from dedicated surveys. The struc-

ture of the data follows specifications defined by the United Kingdom Hydrographic Offices

(UKHO) Integrated Water Column product, which has a spatial resolution of 0.5o grid

cells, with Latitude and Longitude fields representing the centre of each grid cell. Each cell

contains a density estimate and an associated uncertainty value. Most of the species have

just one density map applicable for the entire year, but quarterly estimates are available for

46 species. These 0.5o density surfaces constitute the existing data information source of

the method in section 7.2.1. In the example described here, these are to be combined with

simulated data representing the output of an analysis of new survey data.
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7.3.1 Implementation: DCAP

DCAP (v0.1.0) is a set of functions written in R [R Development Core Team, 2009], that

implement the methods for combining and smoothing density data described in sections

7.2.1 and 7.2.2. This section provides details of their specific implementation in DCAP.

Other than the existing density surface, two types of input to the DCAP software are

possible. The user may choose to use the output from a predictive model that provides

improved spatio-temporal resolution over specific geographical regions and time periods.

The alternative is to use the results from recent surveys of a particular geographic area of

interest.

There are three steps to the DCAP algorithm: “initialise” checks the data inputs; “com-

bining” merges the existing density surface with the new survey results; and “smoothing”

alleviates any discontinuities between the new and existing density surfaces. An overview of

the DCAP algorithm is given in Figure 7.2 and the R code to implement the main features

can be found in Appendix H.

DCAP:
Initialise

Data and constraints check
Transfer of data to a grid
Output Figures showing inputs

Combining Estimates
Combine existing density surface and new survey data by weighted average
using coefficients of variation
Output combined densities and associated coefficients of variation

Figures showing combined density surface
Smoothing Edges

Perform kernel smooth of combined density region and buffer zone
Output Smoothed densities

Figures showing buffer zone and combined density surface smoothed
into the existing density surface

Figure 7.2: Overview of the structure of DCAP.
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Initialise Step

For the combining and smoothing steps to function correctly, the data must be entered in

the correct style. The initialise step checks that the data are described correctly, identifies

the type of data present and transfers all existing and new density data to a common,

integer-based grid system. This transfer is described in Appendix I. The new survey data

may be stratified (single density for a geographic region(s)) or in the form of a density

surface, which may be any shape and may include islands. Each grid point must have only

one density and one uncertainty value.

Combining Step

This step uses the method for combining density estimates from Section 7.2.1. In the DCAP

implementation of the methods the existing data are based upon the RES database. The new

data to be combined are either from the results of survey analysis or a dynamic predictive

model, the key elements being density estimates and an associated level of precision. The

outputs could be used directly, within the region of the merge, or smoothed into the existing

data to form an updated database, described next.

Smoothing Step

This step uses the smoothing method described in Section 7.2.2. The time taken to complete

this step is important if DCAP is to be used for real time planning of a navy exercise, so

some changes to the overall approach should be made to improve efficiency. Firstly, the

number of points used to estimate density can be reduced. This is possible since much of

matrix W is sparse, due to the relatively small size of h. We can therefore restrict the

number of points used to estimate the density, ŷi, at coordinate x = (x1,1, x2,1). Figure 7.3

shows the weights, W, of one coordinate. The box depicts an area 3h x 3h within which

points have influence on the estimate of ŷi (the density at the centre of the grid cell, which

is the quantity we are interested in).

Another improvement in computational efficiency can be made in the multiple calcula-

tion of the acf. Rather than computing this for all rows and columns in the data, which
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Figure 7.3: Visual depiction of the weights of one coordinate. The box depicts an area 3h
x 3h within which points have influence on the estimate of ŷi (the coordinate at the centre
of the box)
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increase in length as the area/resolution of the survey increases, the calculation can be

restricted to a subset of the cells and the rest extrapolated. Firstly, the combined data area

is made rectangular by including data points from the existing density surface, if needed.

Then, with a subset of 10 rows and 10 columns of data (Figure 7.4), the acf is used to return

an autocorrelation value for each row/column. The acf for the first and last row/column,

which form the edges of the survey area, is used to calculate the size of the buffer zone.

In Figure 7.4 the boundary of the buffer zone (shown in red) is parametrised using r, l, b

and t for the right, left, bottom and top dimensions respectively. Parameter r is calculated

from the tenth column (h110), l from the first column (h11), b from the first row (h21) and

t from the tenth row (h210).
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Figure 7.4: An example of the grid used to find the smoothing parameters h1 and h2, and the
size of the buffer zone. Parameters t, b, l and r are top, bottom, left and right respectively
and represent the number of grid points the buffer zone extends to on a particular edge of
the squared off survey area.
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One value of h is found for each of the 10 rows (h1) and columns (h2) and this is linearly

extrapolated across the combined density surface (Fig 7.5). Within the buffer zone, the

smoothing parameter decreases from the value of h at the edge closest to the new survey

area to effectively zero at the edge furthest from it (Figure 7.5), where the smooth density

surface (combined and buffer regions) joins the existing density surface. Ideally the corners

of the buffer zone should radiate from the survey area, but the current implementation saves

computation time by being very simplistic and makes little difference to the final smoothed

outcome.

Visual outputs showing the combined density surface, the area used for smoothing and

the final smoothed surface are provided. An example output is shown in Figure 7.6 where

the existing density surface is shown as half degree grid cells and, the new survey covered

an area around the west coast of Ireland and Scotland.
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(a)

(b)

Figure 7.5: An example of smoothing parameters, h1 (a) and h2 (b) using test case 2e (see
section 7.3.2). The buffer zone has dimensions t=3, r=1, b=6 and l=7.
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(a)	   (b)	  

(d)	  (c)	  

(e)	  

Survey	  on	  Prior	  Surface	   Updated	  Survey	  on	  Prior	  Surface	  

Survey	  (black)	  squared	  off	  (Red)	  
Squared	  off	  survey	  (black)	  with	  

Buffer	  (Red)	  

Smoothed	  Updated	  Surface	  with	  Prior	  Surround 

Figure 7.6: An example of the results of applying the combining and smoothing procedures of
DCAP to the results of a survey off the west coast of Ireland and Scotland. (a) The existing and
new survey densities shown on a Latitude and Longitude grid, (b) the combined densities overlaid
on the existing data grid, (c) the area of survey (black) squared off (red) at the resolution of the
survey, (d) squared survey area with buffer zone and (e) the combined density surface smoothed into
a buffer and embedded in the existing un-updated density surface.
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7.3.2 Test Cases

A number of test data sets were generated to assess the performance of the DCAP algorithm

(Table 7.1). For most of the tests, the existing density surface was based on data for common

dolphins from the UKHO database (Delphinus spp.), as this is an abundant species with

a global distribution. Results from a number of simulated surveys were generated using

Wisp (v1.2.6-1; Zucchini et al., 2007) and then the predicted densities were rescaled to

resemble those in the existing density surface. All the simulated survey results had a grid

resolution of 0.25o except when the effects of a change of resolution was being tested.

As listed in Table 7.1 surveys 1a-1n confirm that the DCAP application works in simple

and complex areas within the Latitude/Longitude coordinate system and with respect to

geographical features. Surveys 2a to 2f tested the effect of geometrically complex survey

areas, such as complicated coastlines. The shape of these complex areas was based on two

real survey areas taken from the Small Cetacean Abundance Survey in the North Sea - phase

II (SCANS-II) project [Hammond et al., 2013]. Surveys 4a & 4b tested how the algorithm

copes when one of the input datasets (existing data or new data) has an expectation of zero

and the other has a positive density. Survey 5 assessed the algorithms performance when

there is variable smoothness in two-dimensions, for example, a species whose distribution

is strongly influenced by bathymetric feature, such as the shelf edge. In this case, densities

will vary smoothly in one dimension but discontinuously in the other. Surveys 6a-6c were

included to test whether there are any conflicts when updating a region with data from

multiple surveys that are partially overlapping and have different resolutions. Surveys

7a-7c test the algorithm’s performance with surveys from the same location but different

spatial resolutions, to assess the relationship between computational time and the size of the

survey dataset. Two examples, of differing resolutions were used. These were based upon

humpback whale (Megaptera novaeangelis) sightings around the islands of Hawaii. The

density surfaces for these data were also generated using Wisp (v1.2.6-1; Zucchini et al.,
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2007) and based on estimated animal density from 4 years of surveys [Mobley, 2008]. The

existing density surface was derived from the same database used in the common dolphin

examples.

Further description of the test data can be found in a technical report by Burt [2010]

and the software testing procedure in a report by Scott-Hayward et al. [2010].

Table 7.1: Survey test data used to assess the performance of the DCAP algorithm. * The

northern and southern longitude limit is 60o. S and D indicate whether the survey input

is a stratified surface or a density surface. + SCANS-II is the Small Cetacean Abundance

survey in the North Sea - phase II.

ID Objective Density(D) or Stratified (S)

Open Ocean

1a D

1b S

1c S (2 strata)

Land

1d top D

1e bottom D

1f right D

1g right S

1h left D

1i islands D

Lat/Lon
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– continued from previous page

ID Objective Density(D) or Stratified (S)

1j Northern limit* D

1k Southern limit* D

1l Crossing the equator D

1m Crossing 0o longitude D

1n Crossing -180/180 longitude D

Survey Regions - simple geometric shapes

2a Diamond D

2b S (2 strata)

2c L-shpae D

2d M shape D

Survey regions - complicated shapes

2e SCANS-II B+ D

2f SCANS-II Q+ D

Non-overlapping data D

4a Existing density surface 0/survey density positive D

4b Existing density surface positive/ survey density 0 D

Variable smoothness in 2D

5 Step change in survey density D

Multiple Surveys

6a Several overlapping surveys D



232

– continued from previous page

ID Objective Density(D) or Stratified (S)

6b D

6c D

Survey grid size (degrees)

7a 0.25 D

7b 0.1 D

7c 0.05 D

Humpback data around Hawaii

3a 0.25o D

3b 0.0167o D

7.3.3 Results

Simple visual inspection of the output from the DCAP algorithm can provide a good in-

dication that there is nothing overtly wrong with this implementation and the results are

consistent with the theory presented. For the combining step, we expect the estimates of

density and uncertainty to fall within the original ones; there should be no clearly erroneous

values (e.g. infinity) from either the combining or smoothing steps; the smoothed data must

return to the values of the existing data at the edge of the smoothed region. Further, the

smooth surface would not be expected to remove patterns apparent in the two information

sources, unless there was a marked mismatch in precisions. Conversely, under-smoothing

would not be expected such that the step between the two surfaces is pronounced.
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Figure 7.6 shows the results from one complete run using survey 2f, which involves a

complex survey area. The surface is first combined in the region of the survey area (Figure

7.6b), the output of this process may then be used as an input to another process, or

smoothed (Figure 7.6e). The survey area is not rectangular, and so the region must be

squared off for smoothing to occur (Figure 7.6c) and before the size of the buffer zone can

be estimated (Figure 7.6d). This increases the number of data points for which smoothing

must take place and thus increases computational time. Finally, the smoothed surface

is embedded in the existing density surface (Figure 7.6e). These results are considered

acceptable using the visual inspection specifications noted above.

The original RES based data represents long-term historical averages of distribution

both in terms of the environmental covariates feeding into the RES model and the additional

density data which spanned a 25 year period. Thus the updated densities achieved using the

methods here are useful for keeping such a far-reaching database current in areas that are

surveyed further, whilst also maintaining historical information in areas not yet (re-)visited.

This means that the database presents information in a predictable form (estimates and

precision) for inference, regardless of whether the information is from a single source or from

a patchwork of sources. The resolution in the database may also become variable, with the

addition of new, finer scale information, rather than the original 0.5o. Furthermore, even if

the initial interest was only in the survey region, insight can be gained into the surrounding

area by embedding this into the far-reaching database. Changes in density can be seen in

the maps presented here and a similar map showing uncertainty could be produced to show

how this varies from the combined region to the existing.

Harris [2013] suggested that the existing database be used with caution in coastal areas

and that perhaps data collected on a local scale (fine scale in the region of interest) should

be used in conjunction. The methods here provide an excellent way of combining this

information to increase the resolution and usefulness around the coast. Figure 7.7 shows

the results from a simulated survey in a coastal area (test case 1d). The DCAP algorithm
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was able to combine the density estimates and smooth the new surface even in the presence

of a complex coastline.

The methods for combining estimates and smoothing edges worked as expected but there

were a number of technical issues. Each of the test cases was designed to generate types

of data input that might cause problems for the DCAP algorithm. A full log of the test

results, containing timings, pass/fail and comments for each simulated survey, can be found

in Appendix J. The algorithm was considered to have passed a test when all calculations

were completed successfully, and the combined and smoothed surfaces were as expected

given the theory and data inputs. For both test case 7c and 3b, the high resolution data set

was too large for the computer being used and an error message was returned (the computer

specifications are given in Appendix J).

The existing distribution could be rapidly combined with stratified survey results since

there is no change in resolution to the existing data. The DCAP algorithm took longer to

combine the densities if the existing data had “holes” because of the presence of land. Table

7.2 shows the results of increasing the spatial resolution of the test surveys. Unsurprisingly,

the more data points (i.e. finer the grid), the longer the algorithm took to complete the

combining and smooth procedures.

Table 7.2: Timings for the DCAP algorithm for three data sets of increasing spatial resolu-
tion.

ID Grid Size Number of Time

(degrees) data points (sec.)

7a 0.25 240 12

7b 0.1 412 1600

7c∗ 0.05 5096 6400
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Figure 7.7: An example of the combining and smoothing procedure of DCAP where the
new data come from a survey close to the coast (ID: 1d). (a) The existing density surface,
(b) the surface produced by combining the new survey data and the existing surface and
(c) the smoothed, combined density surface. Note: the apparent gap in the survey data in
(a) is a plotting artifact due to the presence of land.
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7.4 Discussion

This chapter has described a process for merging two partially/fully overlapping density

surfaces to create a consistent composite map that gives both combined estimates and pre-

cisions. The process consists of two stages: first combining the density estimates, whilst

accounting for precision, and secondly smoothing the joins between the two combined sur-

faces. It was illustrated using software developed for the US Navy to allow a global database

of cetacean abundance to be combined with new survey data.

One of the most obvious applications of the DCAP algorithm is in assessing the poten-

tial impacts of acoustic disturbance associated with military exercises or seismic surveys.

The sound produced by these devices may travel hundreds of kilometres from the source

[e.g. Nieukirk et al., 2004, Jasny, 2005], potentially causing disturbance over areas that are

too large to be covered by individual surveys. Results from multiple surveys, stored in large

databases (such as the marine mammal surfaces held in the UKHOs Integrated Water Col-

umn product referred to above) are therefore required to assist in risk mitigation. However,

it is important that the density surfaces generated using information from these databases

are updated when new density information becomes available so that the long-term average

is maintained to the present. Furthermore, the precision of the density surface is very im-

portant so that this may propagate through to the estimate of precision for any identified

risk.

The MMAARS project [Donovan et al., 2010] requires a large scale database of animal

densities with associated uncertainty for parts of the risk assessment software to work.

Assuming, therefore, that keeping this database up-to-date is also a requirement, one could

consider several ways for this to be achieved. Simple means of the existing and new data,

or cutting holes and inserting new information are both viable solutions. However, taking

means does not consider the uncertainty associated with each density and making holes

ignores the historic data, creates edge issues (though one could use the smooth step to
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alleviate this) and assumes the survey is not an unusual year. The DCAP algorithm is a

solution based on statistical theory for combining estimates in light of their precision and

the combining of their precisions also. The smoothing step proposed here is a pragmatic use

of kernel smoothing with bandwidth varying in line with correlation in the surface to achieve

the desired effect. The solution presented is effective as it retains historical information,

includes composite estimates of uncertainty and smooths the edges between the existing

and new data.

Given the specific application of DCAP shown here, this algorithm has the ability to

improve the existing database in a number of ways:

• The historical long-term average densities are kept current through use of recent survey

information, whilst maintaining historical data elsewhere to ensure broad coverage.

This is a necessity where the mitigation considerations are over very broad areas,

outstripping localized survey and modelling information sources.

• Improvement of resolution, assuming the survey resolution is finer than that of the

existing data. This is particularly useful in areas around coastlines which are known

to be problematic in the existing data [Harris, 2013].

• Our best guesses of existing distribution, in the absence of any previous survey data,

can be improved as new information is provided.

• There may be an improvement in precision, particularly if the new survey is in an

area that the existing database values are entirely the result of model extrapolations,

similar to the previous point. Harris [2013] used survey data to convert relative density

into absolute density and if no survey information was available, the absolute densities

were predicted. Therefore, the associated uncertainty for these data points was larger

in order to reflect this estimation.
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7.4.1 Limitations

Computational time may become an issue in real-time planning (e.g. military exercises)

when a dynamic predictive model, rather than a survey, is used to update the existing data

to predict the present/future distribution of species. Real-time planning is possible if data on

current environmental conditions are used as the input to the predictive model. Depending

on the size of the update, current density estimates could be produced, visualised and used

as input for risk management software very rapidly. However, the test case results for DCAP

showed a severe computation problem with large data sets. A waiting time of nearly two

hours may not be feasible if decisions on activities are required. Larger datasets (that cover

a wider area or are at a finer resolution) are quite likely and would increase the waiting

time further. However, the time issue might be improved with the availability of better

computing power or further development of the code to run some of the computations in

parallel, which often improves computation time. Furthermore, there are several R packages

for dealing with large datasets, which could be incorporated.

The methodologies described in this chapter cannot distinguish between poor and good

quality survey estimates; precise inputs do not necessarily imply good quality data. There-

fore, external vetting of these data and the way in which they were analysed is required to

ensure that poor inputs have limited or no influence at a given spatial point (N.B. the vari-

ance of estimates dictates the influence they have). For example, as described in previous

chapters, ignoring positive correlation could lead to levels of uncertainty that are too small.

If the input data were the results of such an analysis then those density estimates might

get too high a weight when combined with the existing data. Therefore, knowledge of how

the input data were analysed is a useful way to assess the quality of the data.

There are some considerations if the database being updated has a temporal aspect. For

example, there are 46 species in the database used for the DCAP example for which there

are 4 seasonal density estimates. If there are multiple temporal surfaces, such as seasonal
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density estimates, updating a single temporal surface may lead to discontinuities in time

much like we saw with discontinuities in space. A future addition to this methodology

would allow smoothing across time as well as space to reduce temporal discontinuities in

the database. However it must be noted that if the results of the new survey contain seasonal

estimates and each season is updated with the new information, in the same geographic area,

this should not be an issue.

No formal tests of the method were conducted. Instead, testing here has been with

regards to pragmatic implementation and inspection of some outputs in light of theoretical

construction. A simulation process could be used to determine how well the smoothing

method compares with some other approach. However this was outside the scope of the

project and something to be considered for the future. For example, the current imple-

mentation of the smoothing step does not take account of the distribution of land, which

is simply modelled as a hole in the data. As was seen in chapters 3 and 4, this could lead

to the leakage of predictions around land resulting in biases in the estimates of density in

coastal areas. This could have important consequences for the identification of candidate

MPAs. It is not a problem if the value 3h is smaller than the size of the land hole, because

there will be no influence of points across land. However, h is calculated using an auto-

mated procedure and we cannot guarantee that this will be the case. The CReSS method

described in Chapter 3 has been shown to be an effective way of dealing with the issue of

leakage, and the next stage in the development of the methods in this chapter would be to

integrate this into the smoothing step.

7.4.2 Potential Applications

So far discussion has centred on using the methods presented here to keep a database up-

to-date by utilising new survey information. Another potential use of the algorithm is in a

process referred to here as ‘quilting’. I define the term quilting as a process used to generate

a comprehensive map for a region that is covered by multiple overlapping surveys, none of
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which covers the entire region. This is not to be confused with the technique of tessellation,

which is the tiling of a plane with no overlaps and no gaps. The current version of DCAP

can only be used to combine an existing density surface with one additional overlapping

survey, however the general methodology presented permits multiple updates. For example,

one could combine the first density surface with the density surface from another survey,

and then this combined surface could be merged with the results of a second survey, and so

on.

There is a general trend [Kaschner et al., 2012] toward using existing data for a purpose

for which they were not necessarily intended; to draw inference about large-scale cetacean

distribution or trends over time. The key to this is to develop post-hoc methodologies, such

as the solution developed in this chapter, to maximise the use of available data. This allows

large-scale distributional trends to be identified or conservation issues to be addressed. The

‘quilting’ process described above is an appropriate method for combining density surfaces

from surveys that have been carried out by independent organisations or in situations where

it is sensible to model the results from each survey separately. For example, multiple surveys

of turtles off the east coast of North America have been carried out by separate groups, and

an overall distribution is required to aid management decisions (Borchers pers. comm.).

Similarly, Williams et al. [2011] identified for the need for comprehensive spatial coverage of

cetaceans density estimates in the north-eastern Pacific to identify candidate MPAs. The

area covered by most individual surveys in this particular region is small relative to the size

of the region itself.

Sometimes it may be appropriate to analyse a large dataset in small sections and combine

the results afterward. For example, different covariates, such as tidal state or bottom type,

may be good predictors of distribution in inshore areas, but may not be available on a

larger geographic area, due to poor coverage, and cannot be included in the model. Thus

the DCAP algorithm provides another way of analysing the JCP data resource described in

Chapter 6. In that Chapter, data from all available surveys were combined using distance
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sampling methods and modelled in a single analysis. As an alternative, each survey could

be analysed separately both to enable the inclusion of more appropriate covariates and to

allow species to have slightly differing relationships with certain covariates depending on

geographic location. The results of each survey could then be combined using the methods

described in this chapter.
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Chapter 8

Conclusions

The main aim of this thesis was to develop several methods that would allow the production

of more accurate maps of marine species in areas of complex topography. Such maps

are a key component of Species Distribution Modelling (SDM), which is concerned with

understanding the factors that determine the distribution of species, and predicting how

their distribution may change as a result of natural and anthropogenic factors.

This thesis presents the development and use of two novel methods for spatial smoothing

in SDM: the Complex Region Spatial Smoother [CReSS; Chapter 3 and Scott-Hayward

et al., 2013] and the bivariate Spatially Adaptive Local Smoothing Algorithm (SALSA2D;

Chapter 4). In Chapter 1 I described three different broad applications for maps produced

using SDM: estimating temporal trends in distribution, Environmental Impact Assessment

(EIA), and spatial conservation planning. Chapters 4 and 6 used CReSS and CReSS-

SALSA2D, respectively, to analyse data for two of these applications: the maps produced

in Chapter 6 were used to assess changes in the spatial distribution of cetacean species from

1994 to 2010, and the maps of feeding probability for Southern Resident Killer Whales

(Chapter 4) were used to identify candidate Marine Protected Areas (MPAs) that would

protect important feeding grounds. Furthermore, both CReSS and SALSA2D are now being

considered by Marine Scotland as part of a series of workshops on EIAs (the third broad

243
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application of SDMs) that will have a target audience of both industry and academia. The

aim is to allow practitioners to conduct better assessments and managers to make better-

informed decisions.

The thesis dealt with two issues commonly encountered when applying SDM to the

distribution of marine organisms: (1) leakage across exclusion zones, defined as a geographic

area which an animal may not cross (e.g. land) and (2) adaptive smoothing across a spatial

surface. Leakage may occur when SDM is used to model data on a species abundance

in areas of complex coastline and is caused when data on one side of an exclusion zone

could lead a model to predict that nearby [as the crow flies] areas on the other side are

similar in value. Failing to address this can produce misleading results with often severe

consequences, such as prioritizing the wrong habitat for protection or constraining human

activities in places that are actually not important to wildlife. There are recently developed

statistical methods that deal with leakage but they are not suitable for all situations and can

be difficult to employ, as explored through the extensive simulations presented in Chapters

3 and 4. Adaptive smoothing allows the smoothness of a density map to vary across the

surface, unlike traditional penalised smoothing methods, which only allow one smoothing

parameter. If the surface to be modelled is very smooth in one area and very wiggly

in another, then a single smoothing parameter will tend to over smooth the wiggles and

under smooth the flatter areas. The only existing method for spatially adaptive smoothing

[AdaptFit; Krivobokova et al., 2008] does not deal with leakage across exclusion zones,

which is an important issue in producing accurate species distribution maps. The solutions

provided in this thesis, which are applicable to a variety of ecological problems, are simpler

and more appropriate than existing methods.

An additional issue, once density maps have been created, arises from the disconnect

between the vast quantity of small-scale, independent, and often overlapping, survey analy-

ses and the requirement for large-scale maps for use in applications such as risk assessment.

For example, in regions such as US and European coastal waters, where the number of
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independently conducted and analysed surveys has increased rapidly in recent years, there

is a need for combining maps to allow large-scale management decisions. There are two

issues here (1) how to combine competing estimates from differing density surfaces, given

their precision, and (2) what to do at the join of the two surfaces to reduce the presence

of un-naturally sharp transitions. Currently, there is no published method for dealing with

these problems. This thesis contains solutions, based on statistical theory, for both com-

bining of overlapping maps, to provide increased geographic coverage, and smoothing, to

avoid any discontinuities in density where different maps join.

The remainder of this chapter summarises the statistical developments in this thesis

(Section 8.1), and then explores some potential avenues for further statistical research (Sec-

tion 8.2). Lastly, the two case studies presented in this thesis are discussed (Section 8.3).

8.1 Statistical Developments

Spatial models should be adjusted to account for the fact that animals have to swim around

an island, because better descriptions/predictions of habitat use will lead to better area-

based management tools (e.g. critical habitat designation, marine protected areas and risk

assessments). Chapter 3 introduced a new method for smoothing in areas with complex

topography CReSS [Scott-Hayward et al., 2013] - that addresses some limitations to cur-

rent methods of smoothing and improves the accuracy of density maps. CReSS deals with

issues such as the use of biologically meaningless distances in complex regions, global versus

local smoothing and model selection/averaging. Firstly, it introduces a biologically realis-

tic measure of inter-point similarity based on the geodesic distance between points, which

reflects the distance an animal must travel between the points. Failing to address this can

lead to very biased predictions when the ‘biological’ and Euclidean distances are markedly

different. Secondly, CReSS employs a locally varying basis function to accommodate local

smoothing requirements and alleviate problems with reinforcement around exclusion zones.
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These two modifications are made prior to, or at, the basis function construction stage of

the fitting process and therefore allows the basis to be used in a wide variety of statisti-

cal models, including maximum likelihood and quasi-likelihood fitting engines. Thirdly, a

model-averaging framework is used to reduce sensitivity to small changes in model param-

eters, such as the basis range parameter or the number of knots.

After a thorough comparison under a variety of simulation settings CReSS was shown

to perform as well, or better than other complex region methods (Geodesic Low Rank Thin

Plate Splines [GLTPS Wang and Ranalli, 2007] and SOAP film smoothers [Wood et al.,

2008]) and much better than Thin Plate Splines [TPS Harder and Desmarais, 1972]. Both

GLTPS and SOAP have been previously compared with TPS but no direct comparison

between the two has been published until now [Scott-Hayward et al., 2013].

The first simulation in Chapter 3 used a simple, horseshoe-shaped surface, which has

already appeared in the literature [Ramsay, 2002]. For this (unrealistically) simplistic trial

surface there was little practical difference in the fits between the complex region modelling

methods (all were better than TPS) and there was no compelling evidence for any complex

region method.

All the methods were then compared using a more topographically complex region that

included an island, and with limited and noisy data (Chapter 4). CReSS had the lowest

mean squared error at all noise levels and the lowest mean squared error variance across

all trials in a sparse data simulation. I concluded that GLTPS should not be used in

areas with islands due to its global basis function, and that choosing the dimension of

the internal and boundary smooths in SOAP is problematic, particularly with increasing

numbers of boundary loops, such as those caused by islands. Using traditional TPS-based

techniques that ignore the presence of land, led to biases in predictions, under-estimation

of density in hotspots, and overestimation in areas of low density.

Model selection is an important aspect of regression based spatial smoothing when

structural components (or generally model complexity) are data-driven, rather than set
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a priori. For example, the location and number of knots or basis functions. CReSS, as

it was initially implemented, was based on a space filled design, evenly distributing the

knots across the surface [Scott-Hayward et al., 2013]. This is clearly sub-optimal for highly

heterogeneous surfaces, where a spatially adaptive approach may be more appropriate.

Penalised smoothing methods traditionally may have only one smoothing parameter, for

example gam, from the mgcv library in R [Wood, 2006], which makes heterogeneously smooth

surfaces overly smooth in wiggly areas and overly wiggly in smooth areas (i.e. locally

biased through systematic under-/over-smoothing). Several adaptive approaches exist in

one dimension, the most current being the Spatially Adaptive Local Smoothing Algorithm

[SALSA; Walker et al., 2010], which uses knot number and location to vary the flexibility of

the fitted surface. However, I have found only one approach for two dimensional smoothing,

AdaptFit [Krivobokova et al., 2008], and none that deal with complex topography. The

development in this thesis furthers the use of SALSA for bivariate smoothing, referred to

here as SALSA2D to distinguish it from the original, and may be used in combination with

CReSS (CReSS-SALSA2D) to allow for complex topography.

CReSS-SALSA2D performed better than CReSS at both low and medium noise levels.

However, CReSS-SALSA2D performed badly at high noise, most likely due to over-fitting

or an error in the specification of the range of r, which determines the local nature of

the exponential basis. SALSA2D is currently the only option in topographically complex

regions and it is being further refined for modelling surfaces with underlying heterogeneous

smoothness. For example, I am currently researching ways to refine the selection of r in

high noise situations and to ‘factor-interactions’ in the placement of knot locations, an issue

identified in Chapter 6.

Current major issues in conservation, such as determining wide range effects of anthro-

pogenic sound on cetaceans [e.g. Knoll et al., 2011], show there is a mismatch between the

historical reasons for conducting many surveys and the use for which these surveys are now

being considered. For such far-reaching issues there is a real need for large-scale maps to
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aid in the assessment of risk. There is no clear published method for combining information

from multiple sources into a single cohesive information source. Chapter 7 developed meth-

ods for combining competing density estimates at a point, given their respective precision,

and a smoothing process to alleviate sharp changes between the competing surfaces. Both

methods address these problems with statistical tools: the combining method makes use

of a Bayesian approach to give a merged density estimate weighted by the precision of the

original estimates; the smoothing is evaluated by kernels, where the smoothing parameter

is determined by the correlation between data points.

A specific application of these methods, the Dynamic Cetacean Abundance Predictor

(DCAP), was developed to form part of software for environmental risk assessment by the

US Navy. It is an algorithm created to take a global database of cetacean densities and

associated precision, based on a combination of Relative Environmental Suitability (RES)

indices and observed densities [Harris, 2013], and uses results from new surveys to keep the

database current, specifically, making use of the combining and smoothing steps.

There are a number of current applications where the large-scale composite maps pro-

duced by the methods (combining and smoothing) are necessary, as required by software

packages used to identify candidate MPAs, such as Marxan [Ball et al., 2009, Ardron et al.,

2010]. Other applications require this combination of multiple surveys in order to provide a

better understanding of a species distribution over a large geographic range. To emphasise

the relevance of the methods in the latter applications, consider two large-scale projects,

the Joint Cetacean Protocol (JCP; Chapter 6) and the Protection of Marine Mammals

(PoMM).

The JCP project is funded by the UK government and its main aim is to assess changes in

the distribution and abundance of seven cetacean species in north-western European waters

using the JCP data resource Paxton et al. [2013]. This resource is a collection of survey data

from 1969 to 2010 gathered by various governmental organisations, private sector companies

and non-governmental organisations using a variety of survey techniques. Similarly, PoMM
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is a project funded by the European Defence Agency which is being conducted by the

Ministries of Defence for Germany, Italy, the Netherlands, Norway, Sweden and the United

Kingdom [Knoll et al., 2011]. The aim is to protect marine mammals against the impact

of active sonar. One of the main objectives of the project is to create a comprehensive

marine mammal database consisting of an encyclopaedia, observations, and maps of species

distribution and noise sources in areas of operational interest to European navies.

Both these applications involve combining multiple surveys that were designed differ-

ently and can have markedly different outputs, in line with their varied remits. The JCP

analysis showed what a complex task it is to do this [Paxton et al., 2013], and in the case

of PoMM, it is not clear how the distribution maps will be created. In both cases, DCAP

could be used to combine multiple surveys whilst maintaining estimates of the uncertainty

associated with the density estimates. The methods for combining density surfaces would

be a good solution for PoMM and something to be considered for a future analysis of JCP.

8.2 Future Statistical Developments

Whilst I have been able to demonstrate that the methods developed in this thesis perform

well, there is still much that can be achieved through further improvements. The following

sections detail some avenues of research for each of the three methods developed in this

thesis.

8.2.1 CReSS

It is anticipated that CReSS will be added to the software package DISTANCE [Thomas et al.,

2010], which is used to analyse distance sampling data [Buckland et al., 2001]. DISTANCE

was used to generate the data inputs in Chapter 6 and the creation of density surfaces

was done separately. However, within DISTANCE there is a density surface modelling engine

which allows a variety of smoothers. The inclusion of CReSS as an option will improve the
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accuracy of the species density maps in topographically complex study regions as was seen

through extensive simulations in Chapters 3 and 4. The developers of DISTANCE estimate

there are over 1000 regular users, with 5000-10000 casual users, in over 100 countries, to

analyse survey data from many taxa, including birds, mammals, reptiles, amphibians, plants

and even litter. The density maps produced from DISTANCE analyses are often used to

aid the conservation of species, so their accuracy is important. As a starting point to this

process, both CReSS and CReSS-SALSA2D are being turned into an R package to make

them user-friendly and more widely available. This is currently underway as part of a

Marine Scotland contract, which will also include some basic DISTANCE analysis.

Another future use of CReSS is in the analyses of data, where the direction of potential

movement between points is important. The geodesic distance used by CReSS assumes

that the distance from one point to another is the same in both directions. However, a

situation could arise where an animal could pass easily from one point to another, but

returning could be more difficult. For example, in streams and rivers fish may easily move

downstream, but rarely move upstream. This means that upstream data points should

influence downstream points but not vice versa. It is not possible to add this information

to the current distance matrix, as it contains only one distance for each pair of points. One

solution would be to run two models with different distance matrices for each direction,

and then use model averaging to produce the final spatially referenced estimates. This

could be particularly useful for modelling the distribution of environmental contaminants,

for example the leaching of heavy metals into soil, or of marine organisms in areas with

strong currents.

8.2.2 SALSA2D

Both CReSS and CReSS-SALSA2D benefit from allowing the range parameter of the CReSS

basis (r) to be varied for each knot location; a development which was presented in Chapter

6. Further simulation work needs to be carried out to investigate the robustness of both this
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approach and SALSA2D, under a range of conditions and using a variety of model selection

criteria (e.g. AIC, BIC, CV). Chapters 3 and 4 showed the advantage of model averaging

when knots were space-filled, particularly if data are sparse. The capability of SALSA2D

to target smoothness to areas where it is particularly required may limit the effectiveness

of model averaging, but this is purely speculative and some investigation is required to see

if it provides the same advantage that is observed when knots are fixed.

Benchmark functions were used to assess the performance of CReSS and SALSA2D un-

der a variety of scenarios. They allow assessment of model fit to the underlying function,

rather than relying on cross-validation techniques where the truth is unknown. The ‘palm’

simulation, introduced here, provides a more challenging benchmark data set for assessing

the performance of two-dimensional spatial modelling techniques than the relatively simple

‘horseshoe’ [Ramsay, 2002] that is conventionally used for this purpose. More benchmark

data sets, particularly ones constructed from biological data, are needed to assess the prac-

tical consequences of challenges that often arise in ecological data, such as over-dispersion

and autocorrelation.

8.2.3 Combining Density Surfaces

The kernel method for smoothing the junction between two density surfaces is limited

because it does not respect biological/geodesic distances. This would be solved through

using elements of CReSS. However, of the two processes for combining density surfaces

the smoothing step is more computationally expensive and with the inclusion of CReSS is

likely to become more so. Nevertheless, the problem is amenable to parallelisation due to

several coding loops where the results are independent of one another, for example the acf

calculations for each grid row/column do not depend on the results of any other row/column

and could be computed concurrently. Accessible software tools for parallel computing are

now readily available (e.g. parallel, snow and multicore packages in R; R Development

Core Team, 2009) and multi-core computers (e.g. off-the-shelf 6 core hyperthreaded = 12
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effective cores) are commonplace.

8.3 Case Studies

A number of specific case-studies are considered where the applicability of the methods

developed here can be viewed in relation to real conservation/biological problems.

In Chapter 3 CReSS was employed to model data on the behaviour of Southern Resident

Killer Whales (SRKW) off the North American west coast. These data were collected to

produce maps of the distribution of specific behavioural activities, such as feeding or resting.

The maps in this thesis represent an improvement on those produced by Ashe et al. [2010]

using the same data, because they account for geodesic distances, include an assessment

of uncertainty, and allow for correlation in the model residuals. They also illustrate that

CReSS is a flexible modelling tool that is transferable to situations where there are error

distributions other than Gausian (e.g. quasi-Poisson) or correlated errors and can be used

for quantitative aspects of spatial conservation planning. These maps of the probability

that whales would be observed feeding, in combination with density maps from Hauser

et al. [2007], were used to identify a candidate MPA for SRKW to the south of San Juan

Island. However, as mentioned in the General Introduction (Chapter 1), there is more to

identifying candidate MPAs than distribution mapping alone. Other considerations are the

conservation of prey species, local laws and policies, and human interactions.

In Chapter 6, the techniques developed in Chapters 3 and 5 (CReSS and SALSA2D)

were used to model the distribution of harbour porpoise and minke whale in north-western

European waters using data from the JCP resource. No off-the-shelf methods could deal

with such a large, correlated, topographically complex and heterogeneously smooth data

set. CReSS, SALSA2D and SALSA1D [SALSA for univariate smooths; Walker et al., 2010]

were used to model animal densities as a function of a variety of environmental and temporal

covariates. SALSA1D was used to adjust the flexibility of one-dimensional smooths, which
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were fitted using cubic B-splines, and CReSS combined with SALSA2D was used to add a

two-dimensional smooth of space to the model. Based on the simulation results presented in

Chapters 3 - 5, CReSS was used to reduce the chance of underestimating hotspot areas and

overestimating density in areas where animals were rarely seen, whilst SALSA reduces the

risk of oversmoothing highly structured areas and undersmoothing areas where density was

less variable. An update to CReSS, automated selection of r, was also added in this chapter,

and simulation results, updated to represent this change, were presented in Scott-Hayward

et al. [2013].

The maps produced for harbour porpoise and minke whale were similar to those pro-

duced by previous studies [Paxton and Thomas, 2010, Paxton et al., 2011, Hammond et al.,

2002, 2013] that analysed subsets of the data. High densities of harbour porpoise were ob-

served off the west coast of Scotland and off the coast of East Anglia in 2010. The area off

Scotland was a persistent hotspot for the whole study period (1994-2010), whereas a shift

in distribution was identified in the North Sea from central areas to the south west during

this time. For minke whale, the main high density areas were on the west coast of Scotland

and the western North Sea, but temporal shifts were not investigated due to limitations

of the data. The west coast of Scotland appears to be an important area for both species

and should perhaps be considered a focal point for further studies of this data resource.

Although legislation in Scotland requires the designation of MPAs for harbour porpoise

(Marine Scotland Act, 2010), one sited in this region would protect both species. As Ferrier

et al. [2002] have noted ‘assessments at global or continental scales can help focus attention

on broad regions of particular conservation concern, [but] a more detailed assessment is

usually required to guide decisions on the actual location of conservation areas’. This view

is reflected in the next phase of the JCP project, which aims to identify candidate MPAs

for harbour porpoise and bottlenose dolphins.

If I were to re-analyse the JCP data resource to identify candidate MPAs I would consider

the ‘quilting’ method described in the discussion of Chapter 7. The region of interest can
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be divided into overlapping tiles enabling the effect of environmental covariates, that are

not available or appropriate at a larger scale, to be investigated. For example, analyses

of tiles near to the coast would use tidal state as a covariate, whereas this might not be

appropriate for tiles in open water. Tiles from sub-regions could be assessed individually

to identify candidate MPAs and satisfy the suggestion of Ferrier et al. [2002] for a detailed

(fine-scale) assessment, or all the tiles could be combined in one unifying map, using the

methods from Chapter 7. A single unified map could be used on a small scale for spatial

conservation planning and on a larger scale in risk assessment for military or construction

activities.

In both the case studies, the issue of autocorrelation was addressed using Generalised

Estimating Equations [GEEs; Hardin and Hilbe, 2002]. Autocorrelation is often overlooked

or ignored in SDM [Araújo and Guisan, 2006, Hawkins, 2012] and it cannot be addressed

with standard implementations of GAMs. Therefore, the confidence intervals associated

with the predictions from any models will be too narrow if positive autocorrelation is present

and ignored. Combining CReSS or CReSS-SALSA2D with GEEs deals with this issue.

At the start of this thesis I highlighted the need for accurate maps and the need to

update existing maps when new information becomes available. Recent legislation (Marine

Scotland Act, 2010 and Marine and Coastal Access Act, 2009) requires the creation of a

network of MPAs in UK seas to protect biodiversity and geodiversity. The UK and national

governments need tools that can be used to identify candidate MPAs. This thesis has shown

how biases in the predictions of animal density that result from ignoring geodesic distance

or spatial heterogeneity can be reduced, and how data from multiple overlapping surveys

can be combined to create unified maps covering large geographic areas.
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8.4 Current studies using CReSS and SALSA2D

CReSS-SALSA2D has been used to model the distribution of tern species (Sternidae spp.)

around the UK [Mackenzie and Scott-Hayward, 2012, Mackenzie et al., 2012] and it is

being used to investigate home range distribution of stoats (Mustela erminea) and leopards

(Panthera pardus; Mackenzie, Borchers and Walker pers. comm.). The local, radial nature

of CReSS and the spatially adaptive nature of SALSA make them particularly suitable for

assessing the potential impact of wind farm construction, and there are plans to use them

to analyse the potential impacts of Danish wind farms at Nysted, [Petersen et al., 2011]

and Röesand in Denmark.

These methods, along with GAMs [Wood, 2006] and GAMMs [Mixed Models; Brown

and Prescott, 1999], are currently being assessed by Marine Scotland for use in determining

the environmental impact of wind and wave turbine developments on seabird and cetacean

species. CReSS and SALSA2D will form part of the software to be taught at workshops

on EIAs with a target audience of both industry and academia. The aim is to allow

practitioners to conduct better analyses and managers to make better-informed decisions.

Furthermore, a suite of benchmark data is being created based on an off-shore line-transect

analysis and a vantage point analysis (data is collected from an observer on a cliff-top).

The data is both over dispersed and correlated, and describes a variety of impact scenarios

(no effect, overall decrease and redistribution of animals).

8.5 Final Remarks

Some of the work presented in this thesis has advanced methods for SDM to address certain

key statistical issues. The methods improved the accuracy of maps to designate a candidate

MPA for SRKW and establish long-term distributional trends for harbour porpoise and

minke whale. However, the methods developed are notably not limited to the applications

presented in the case studies; they may be applied to other geographic regions or species
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(including terrestrial) and, outside the field of biology may be implemented for many spatial

regression problems, for example demographic studies [Ramsay, 2002, Marra et al., 2011].

There is a good case for the CReSS and SALSA methods developed here to become

standard tools for analysing ecological data and not just in topographically complex regions.

CReSS may include geodesic distance, but need not if Euclidean distance is appropriate;

may be spatially adaptive, with the inclusion of SALSA-1D and -2D; may use a GEE

framework and thus a variety of error distributions (e.g. Binomial, Poisson, quasi-Poisson)

and may employ model averaging to improve the robustness of results.

However, uptake of these approaches will require careful dissemination so that they may

be understood and applied by scientists not familiar with the details. Development of an R

package is underway, to ease use, and a workshop is set for late 2013 to teach the methods,

initially to a limited number of EIA practitioners but it is hoped to a wider audience in

2014.



Appendix A

Index of Acronymns and Notation

Table A.1: Index of Acronyms

Acronym Description

ACF AutoCorrelation Function

AIC Akaike’s Information Criterion

AICc corrected Akaike’s Information Criterion

ASCOBANS Agreement on the Conservation of Small Cetaceans of the Baltic and North Sea

BACI Before-After-Control-Impact

BAG Before-After Gradient

BIC Bayesian Information Criterion

CV Cross Validation

CoV Coefficient of Variation

CReSS Complex Region Spatial Smoother

DCAP Dynamic Cetacean Abundance Predictor
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– continued from previous page

Acronym Description

EIA Environmental Impact Assessment

ERMC Environmental Risk Management Capability

ESAS European Seabirds At Sea

FELS Finite Element L-Spline

GAM Generalised Additive Model

GCV Generalised Cross Validation

GEE Generalised Estimating Equation

GLM Generalised Linear Model

GLTPS Geodesic Low-rank Thin Plate Spline

JCP Joint Cetacean Protocol

MPA Marine Protected Area

MSE Mean Squared Error

NOAA National Oceanic Atmospheric Administration

OPS Overall Prediction Score

P-IRLS Penalised Iteratively Re-weighted Least Squares

PRS Penalise Regression Spline

QAIC Quasi likelihood based AIC

QAICc corrected Quasi likelihood based AIC

RES Relative Environment Suitability

RSS Residual Sums of Squares
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– continued from previous page

Acronym Description

SAC Special Area of Conservation

SALSA Spatially Adaptive Local Smoothing Algorithm

SCANS-II Small Cetacean Abundance in the North Sea, phase II

SDM Species Distribution Modelling

SRKW Southern Resident Killer Whale

SOAP SOAP film smoothing method

SST Sea Surface Temperature

TPS Thin Plate Spline

UK United Kingdom

UKHO United Kingdom Hydrographic Office

USA United States of America

Table A.2: Index of Notation

Parameter Description

A region or domain

b̂ vector of estimation bias

b() basis function

D deviance

di,t Euclidean distance (i = 1, · · · , n), (t = 1, · · · , T )
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– continued from previous page

Parameter Description

ei vector of errors (i = 1, · · · , n)

g() link function

gi,t Geodesic distance (i = 1, · · · , n), (t = 1, · · · , T )

gr grid resolution

G Geodesic distance matrix

h bandwidth/smoothing parameter

H Hat matrix

k autocorrelation lag

K number of estimable parameters (P + 2)

K() kernel smooth

M polynomial degree or candidate model set

N prediction grid size

n number of data points

P number of covariates

R number candidate models

r determines radius of exponential function

s() smooth function

S penalty matrix

T number of knots

w number of nearest neighbours
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– continued from previous page

Parameter Description

w() weights function

W weights matrix (n x n)

xi vector of covariate values (i = 1, · · · , n)

X covariate matrix (n x (P+1))

yi response value at data point i

y∗i true function value at data point i

ȳ mean of y

yn true function with noise added

β regression model coefficient

ε error values from a specified distribution

η() linear predictor

θ general model parameters

κ knot vector (κ1,t, κ2,t) (t = 1, · · · , T )

λ Poisson parameter or smoothing parameter

µ mean

µ̃ median

τ knot sets

σ standard deviation

φ dispersion parameter
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Appendix B

Description of Floyd’s Algorithm

I use Floyds Algorithm [Floyd, 1962] for the calculation of the shortest distance between

data points. Generally speaking, the points are vertices on a graph which may be connected,

and have an associated weight, or unconnected. In the case of shortest distance calculation

for this thesis, the starting matrix is populated using the Euclidean distance between points.

Any distances where the Euclidean connection between the two is invalid, by crossing land

for example, are represented by infinity in the matrix.

Imagine four data points with distances between each given in the matrix below. The

distance between point one and point four is infinite suggesting that the Euclidean distance

between these points is invalid.

G(0) =



0 4 2 ∞

4 0 7 1

2 7 0 4

∞ 1 4 0


The general principle is to look at one entry and see if the sum of two others is smaller or

larger. If it is smaller then the entry is replaced, otherwise it is left as is.
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Round 1:

In the first round, we use the distances from column one and row one (shaded above), to

see if the other distances can be made smaller.

First we look at G(0)2,2 and compare that distance entry with the sum of the two shaded

numbers in the same row/column (G(0)2,1 and G(0)1,2 ).

G(0)2,2 = 0

G(0)2,1 +G(0)1,2 = 4 + 4 = 8

the zero remains.

then,

G(0)2,3 = 7

G(0)2,1 +G(0)1,3 = 4 + 2 = 6

thus, the G(0)2,3 entry is replaced with 6.

then,

G(0)2,4 = 1

G(0)2,1 +G(0)1,4 = 4 +∞ =∞

the 1 remains.

then,

G(0)2,4 = 4

G(0)3,1 +G(0)1,4 = 4 +∞ =∞

the 4 remains.

That is the upper half complete (we need not check the zeros) and since the original

matrix was symmetric, we can fill in the bottom half the same. So, after round one the
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updated distance matrix is:

G(1) =



0 4 2 ∞

4 0 6 1

2 6 0 4

∞ 1 4 0


Round 2:

Again, we use the shaded row/column to evaluate the shortest distance between two points

(an unshaded entry)

First we look at G(1)1,1 and compare that distance entry with the sum of the two shaded

numbers in the same row/column (G(1)2,1 and G(1)1,2 ).

G(1)2,2 = 0

G(1)2,1 +G(1)1,2 = 4 + 4 = 8

the zero remains.

then,

G(1)1,3 = 2

G(1)2,3 +G(1)1,2 = 4 + 6 = 8

the 2 remains.

then,

G(1)1,4 =∞

G(1)2,4 +G(1)1,2 = 4 + 1 = 5

thus, the G(1)1,4 entry is replaced with 5. Data points one and four are not directly
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connected (represented by ∞), but if you travel through point 2, then you can get there in

five units.

then,

G(1)3,4 = 4

G(1)2,4 +G(1)3,2 = 6 + 1 = 7

the 4 remains.

That is the upper half complete and since the original matrix was symmetric, we can fill in

the bottom half the same. So, after round two the updated distance matrix is:

G(2) =



0 4 2 5

4 0 6 1

2 6 0 4

5 1 4 0



Nothing changes for round 3, so the matrix at the end looks the same:

G(3) =



0 4 2 5

4 0 6 1

2 6 0 4

5 1 4 0
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For round four, the sixes are updated to fives.

G(4) =



0 4 2 5

4 0 5 1

2 5 0 4

5 1 4 0


This is one loop through the matrix. The above ‘four round’ process is repeated until a

complete set of rounds makes no further changes. In this example, data point one and four

were not originally connected. After this loop through the matrix, the distance between

points one and four is five units. In this way, from an starting matrix describing which points

are connected, we can use Floyds Algorithm to calculate the shortest distance between all

data points.
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Appendix C

Bathymetry map for the San Juan

Islands area.
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Figure C.1: Seafloor baythmetry map for the San Juan Islands area taken from Greene
et al. [2007]



Appendix D

Extra plots of the Joint Cetacean

Protocol Analysis - Seasonality

D.1 Harbour Porpoise Seasonal Plots
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(a) (b)

(c) (d)

Figure D.1: Harbour porpoise density data for all years in (a) winter, (b) spring, (c) summer
and (d) autumn. 16% of data was collected in winter, 29% in spring, 41% in summer and
14% in autumn.
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(a) (b)

(c) (d)

Figure D.2: Harbour porpoise densities for 2010 in winter. (a) The raw densities for winter
in 2008 - 2010 that are drawn upon to make predictions for 2010, (b) point estimates of
harbour porpoise density for winter 2010, (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure D.3: Harbour porpoise densities for 2010 in spring. (a) The raw densities for spring
in 2008 - 2010 that are drawn upon to make predictions for 2010, (b) point estimates of
harbour porpoise density for spring 2010, (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure D.4: Harbour porpoise densities for 2010 in summer. (a) The raw densities for
summer in 2008 - 2010 that are drawn upon to make predictions for 2010, (b) point estimates
of harbour porpoise density for summer 2010, (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure D.5: Harbour porpoise densities for 2010 in autumn. (a) The raw densities for
autumn in 2008 - 2010 that are drawn upon to make predictions for 2010, (b) point estimates
of harbour porpoise density for autumn 2010, (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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D.2 Minke Whale Seasonal Plots

(a) (b)

(c) (d)

Figure D.6: Minke whale densities for 2010 in winter. (a) The raw densities for winter
in 2008 - 2010 that are drawn upon to make predictions for 2010, (b) point estimates of
minke whale density for winter 2010, (c) and (d) are the lower and upper 95% GEE based
percentile intervals.
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(a) (b)

(c) (d)

Figure D.7: Minke whale densities for 2010 in spring. (a) The raw densities for spring
in 2008 - 2010 that are drawn upon to make predictions for 2010, (b) point estimates of
minke whale density for spring 2010, (c) and (d) are the lower and upper 95% GEE based
percentile intervals.
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(a) (b)

(c) (d)

Figure D.8: Minke whale densities for 2010 in summer. (a) The raw densities for summer
in 2008 - 2010 that are drawn upon to make predictions for 2010, (b) point estimates of
minke whale density for summer 2010, (c) and (d) are the lower and upper 95% GEE based
percentile intervals.
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(a) (b)

(c) (d)

Figure D.9: Minke whale densities for 2010 in autumn. (a) The raw densities for autumn
in 2008 - 2010 that are drawn upon to make predictions for 2010, (b) point estimates of
minke whale density for autumn 2010, (c) and (d) are the lower and upper 95% GEE based
percentile intervals.



Appendix E

Extra plots of the Joint Cetacean

Protocol Analysis - Full time series

E.1 Harbour Porpoise

281



282

(a) (b)

(c) (d)

Figure E.1: Predicted harbour porpoise densities for summer (day 227) in 1994. (a) The
raw densities for summers in 1994 - 1995 that are drawn upon to make predictions for 1994.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.2: Predicted harbour porpoise densities for summer (day 227) in 1995. (a) The
raw densities for summers in 1994 - 1996 that are drawn upon to make predictions for 1995.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.3: Predicted harbour porpoise densities for summer (day 227) in 1996. (a) The
raw densities for summers in 1995 - 1997 that are drawn upon to make predictions for 1996.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 96%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.4: Predicted harbour porpoise densities for summer (day 227) in 1997. (a) The
raw densities for summers in 1996 - 1998 that are drawn upon to make predictions for 1997.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 97%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.5: Predicted harbour porpoise densities for summer (day 227) in 1998. (a) The
raw densities for summers in 1997 - 1999 that are drawn upon to make predictions for 1998.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 98%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.6: Predicted harbour porpoise densities for summer (day 227) in 1999. (a) The
raw densities for summers in 1998 - 2000 that are drawn upon to make predictions for 1999.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 99%
GEE based percentile intervals.



288

(a) (b)

(c) (d)

Figure E.7: Predicted harbour porpoise densities for summer (day 227) in 2000. (a) The
raw densities for summers in 1999 - 2001 that are drawn upon to make predictions for 2000.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.8: Predicted harbour porpoise densities for summer (day 227) in 2001. (a) The
raw densities for summers in 2000 - 2002 that are drawn upon to make predictions for 2001.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.9: Predicted harbour porpoise densities for summer (day 227) in 2002. (a) The
raw densities for summers in 2001 - 2003 that are drawn upon to make predictions for 2002.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.



291

(a) (b)

(c) (d)

Figure E.10: Predicted harbour porpoise densities for summer (day 227) in 2003. (a) The
raw densities for summers in 2002 - 2004 that are drawn upon to make predictions for 2003.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.11: Predicted harbour porpoise densities for summer (day 227) in 2004. (a) The
raw densities for summers in 2003 - 2005 that are drawn upon to make predictions for 2004.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.



293

(a) (b)

(c) (d)

Figure E.12: Predicted harbour porpoise densities for summer (day 227) in 2005. (a) The
raw densities for summers in 2004 - 2006 that are drawn upon to make predictions for 2005.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.13: Predicted harbour porpoise densities for summer (day 227) in 2006. (a) The
raw densities for summers in 2005 - 2007 that are drawn upon to make predictions for 2006.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.14: Predicted harbour porpoise densities for summer (day 227) in 2007. (a) The
raw densities for summers in 2006 - 2008 that are drawn upon to make predictions for 2007.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.15: Predicted harbour porpoise densities for summer (day 227) in 2008. (a) The
raw densities for summers in 2007 - 2009 that are drawn upon to make predictions for 2008.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.16: Predicted harbour porpoise densities for summer (day 227) in 2009. (a) The
raw densities for summers in 2008 - 2010 that are drawn upon to make predictions for 2009.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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(a) (b)

(c) (d)

Figure E.17: Predicted harbour porpoise densities for summer (day 227) in 2010. (a) The
raw densities for summers in 2009 - 2010 that are drawn upon to make predictions for 2010.
(b) Point estimates of harbour porpoise density. (c) and (d) are the lower and upper 95%
GEE based percentile intervals.
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E.2 Minke Whale
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(a) (b)

(c) (d)

Figure E.18: Predicted minke whale densities for summer (day 227) in 1994. (a) The raw
densities for summers in 1994 - 1995 that are drawn upon to make predictions for 1994.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.19: Predicted minke whale densities for summer (day 227) in 1995. (a) The raw
densities for summers in 1994 - 1996 that are drawn upon to make predictions for 1995.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.20: Predicted minke whale densities for summer (day 227) in 1996. (a) The raw
densities for summers in 1995 - 1997 that are drawn upon to make predictions for 1996.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 96% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.21: Predicted minke whale densities for summer (day 227) in 1997. (a) The raw
densities for summers in 1996 - 1998 that are drawn upon to make predictions for 1997.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 97% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.22: Predicted minke whale densities for summer (day 227) in 1998. (a) The raw
densities for summers in 1997 - 1999 that are drawn upon to make predictions for 1998.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 98% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.23: Predicted minke whale densities for summer (day 227) in 1999. (a) The raw
densities for summers in 1998 - 2000 that are drawn upon to make predictions for 1999.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 99% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.24: Predicted minke whale densities for summer (day 227) in 2000. (a) The raw
densities for summers in 1999 - 2001 that are drawn upon to make predictions for 2000.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.25: Predicted minke whale densities for summer (day 227) in 2001. (a) The raw
densities for summers in 2000 - 2002 that are drawn upon to make predictions for 2001.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.26: Predicted minke whale densities for summer (day 227) in 2002. (a) The raw
densities for summers in 2001 - 2003 that are drawn upon to make predictions for 2002.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.27: Predicted minke whale densities for summer (day 227) in 2003. (a) The raw
densities for summers in 2002 - 2004 that are drawn upon to make predictions for 2003.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.28: Predicted minke whale densities for summer (day 227) in 2004. (a) The raw
densities for summers in 2003 - 2005 that are drawn upon to make predictions for 2004.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.29: Predicted minke whale densities for summer (day 227) in 2005. (a) The raw
densities for summers in 2004 - 2006 that are drawn upon to make predictions for 2005.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.



312

(a) (b)

(c) (d)

Figure E.30: Predicted minke whale densities for summer (day 227) in 2006. (a) The raw
densities for summers in 2005 - 2007 that are drawn upon to make predictions for 2006.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.31: Predicted minke whale densities for summer (day 227) in 2007. (a) The raw
densities for summers in 2006 - 2008 that are drawn upon to make predictions for 2007.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.32: Predicted minke whale densities for summer (day 227) in 2008. (a) The raw
densities for summers in 2007 - 2009 that are drawn upon to make predictions for 2008.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.33: Predicted minke whale densities for summer (day 227) in 2009. (a) The raw
densities for summers in 2008 - 2010 that are drawn upon to make predictions for 2009.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.
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(a) (b)

(c) (d)

Figure E.34: Predicted minke whale densities for summer (day 227) in 2010. (a) The raw
densities for summers in 2009 - 2010 that are drawn upon to make predictions for 2010.
(b) Point estimates of minke whale density. (c) and (d) are the lower and upper 95% GEE
based percentile intervals.



Appendix F

Extra plots of the Joint Cetacean

Protocol Analysis - Reporting

periods

F.1 Harbour Porpoise
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Figure F.1: Predicted harbour porpoise densities for summer (day 227) in reporting period
one (1994-2000). (top left) The raw densities for summers in 1994 - 2000 that are drawn
upon to make predictions. (top right) Point estimates of harbour porpoise density. (bottom
left) and (bottom right) are the lower and upper 95% GEE based percentile intervals.
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Figure F.2: Predicted harbour porpoise densities for summer (day 227) in reporting period
two (2001-2006). (top left) The raw densities for summers in 2001 - 2006 that are drawn
upon to make predictions. (top right) Point estimates of harbour porpoise density. (bottom
left) and (bottom right) are the lower and upper 95% GEE based percentile intervals.



320

Figure F.3: Predicted harbour porpoise densities for summer (day 227) in reporting period
three (2007-2010). (top left) The raw densities for summers in 2007 - 2010 that are drawn
upon to make predictions. (top right) Point estimates of harbour porpoise density. (bottom
left) and (bottom right) are the lower and upper 95% GEE based percentile intervals.
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F.2 Minke Whale

Figure F.4: Predicted minke whale densities for summer (day 227) in reporting period one
(1994-2000). (top left) The raw densities for summers in 1994 - 2000 that are drawn upon
to make predictions. (top right) Point estimates of minke whale density. (bottom left) and
(bottom right) are the lower and upper 95% GEE based percentile intervals.
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Figure F.5: Predicted minke whale densities for summer (day 227) in reporting period two
(2001-2006). (top left) The raw densities for summers in 2001 - 2006 that are drawn upon
to make predictions. (top right) Point estimates of minke whale density. (bottom left) and
(bottom right) are the lower and upper 95% GEE based percentile intervals.
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Figure F.6: Predicted minke whale densities for summer (day 227) in reporting period three
(2007-2010). (top left) The raw densities for summers in 2007 - 2010 that are drawn upon
to make predictions. (top right) Point estimates of minke whale density. (bottom left) and
(bottom right) are the lower and upper 95% GEE based percentile intervals.
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Appendix G

UK Shipping Forecast Areas

325



326

Figure G.1: Map of UK shipping forecast areas taken from www.metoffice.gov.uk



Appendix H

R Code for Combining Density

Surfaces Chapter

H.1 Combining Code using the Bayesian Update Procedure

# this function evaluates the ‘posterior’; it updates the existing density surface

# with the information associated with the new data

#

# inputs:

# data_new_y = new data

# data_new_cv = new data, cv values (between 0 and 25)

# data_prior_y = prior data (existing data)

# data_prior_cv = prior data (existing data), cv values (between 0 and 25)

#

evaluatePosterior<- function(data_new_y, data_new_cv, data_prior_y, data_prior_cv){

no_el<- length(data_prior_y)

post_y<- vector(length=no_el)

post_sigma<- vector(length=no_el)

post_cv<- vector(length=no_el)
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for(i in 1:no_el){

y = data_new_y[i]

if(is.na(y)==T){

post_y[i]<- NA

post_sigma[i]<- NA

post_cv[i]<- NA

}

else{

if(y==0){

y<- 1e-20

}

sigma2logy = log(data_new_cv[i]^2+1) # variance of log(y) (taken as known)

# prior mean and cv of lognormal

# prior mean for theta=mean[log(y)]

mutheta = log(data_prior_y[i]) - 0.5*log(data_prior_cv[i]^2+1)

sigma2theta = log(data_prior_cv[i]^2+1) # prior variance for theta=mean[log(y)]

# calculate posterior on log scale

taulogy = 1/sigma2logy # precision of logy

tau0 = 1/sigma2theta # precision of mean[log(y)]

taupost = taulogy + tau0 # posterior precision of mean[log(y)]

# posterior mean of mean[log(y)]

mupost = (taulogy*log(y) + tau0*mutheta)/taupost

# posterior variance of mean[log(y)]

sigma2post = 1/taupost

# convert posterior of mean[log(y)] to posterior of exp{mean[log(y)]}

# (i.e. posterior on scale of y)

estpost = fromNorm2logNorm(list(mun=mupost, sigma2n=sigma2post))

post_y[i]<- estpost$muln

post_sigma[i]<- estpost$sigma2ln



329

post_cv[i]<- sqrt(estpost$sigma2ln)/estpost$muln # calculate posterior cv of y

}

}

return(list(post_y=post_y, post_cv=post_cv, post_sigma=post_sigma))

}

H.2 Smoothing Code

#

# -- 2D Nonparametric Regression (Kernel Smoothing) --

# [A.W. Bowman and A. Azzalini, "Applied Smoothing Techniques for Data Analysis",

# Oxford, Clarendon Press, 1997, pag. 53]

#

# this function calculates the regression estimate for each point ‘p’ and

# bandwiths ‘h1’ and ‘h2’;

#

# inputs:

# p = point (coordinates) at which to calculate the regression estimate

# y = original value of the parameter associated with the point ‘p’

# loc = locations (matrix of coordinates)

# Y = data to be smoothed

# h_values = bandwidths

# ind = index of points to use to calculate the regression estimate

#

evaluate2DNonParamRegression<- function(p, y, loc, Y, h_values, ind){

# number of points to use for the calculation

no_el<- length(ind)

# define the ‘design matrix’ (or ‘X matrix’)

x_mx<- matrix(NA, no_el, 3)
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x_mx[,1]<- rep(1, no_el)

# distances in X direction

x_mx[,2]<- loc[ind,1] - p[1]

# distances in Y direction

x_mx[,3]<- loc[ind,2] - p[2]

# check for column of zeros in ‘x_mx’ which would lead to singularities;

# in this case, return the original value

if(length(which(x_mx[,2]==0))==dim(x_mx)[1] | length(which(x_mx[,3]==0))==dim(x_mx)[1]){

y

}

else{

# define the ‘weight matrix’ (or ‘W matrix’)

w_mx<- matrix(0, no_el, no_el)

# calculate the weights

w1<- evaluateGaussianKernel(p[1], loc[ind,1], h_values[1])

w2<- evaluateGaussianKernel(p[2], loc[ind,2], h_values[2])

diag(w_mx)<- (w1 * w2)

# make kernel estimate

solve((t(x_mx) %*% w_mx %*% x_mx)) %*% t(x_mx) %*% w_mx %*% Y[ind]

}

}

#

#

# this function carries out the kernel smoothing

#

# inputs:

# gpoints = grid points (locations)

# data_y = data Y to be smoothed

# data_h = bandwidths

# data_id = IDs associated with the data Y
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# hole_id = IDs associated with the holes

#

doKernelSmoothing<- function(gpoints, data_y, data_h, data_id, hole_id){

no_el<- length(data_y)

no_cols<- length(unique(gpoints[,1]))

no_rows<- length(unique(gpoints[,2]))

# define data structure for the smoothed data

data_sm_y<- vector(length=no_el)

for(i in 1:no_el){

if(is.na(data_y[i])){

data_sm_y[i]<- NA

}

else{

h_values<- data_h[i,]

# find IDs of points in box around point of interest ‘i’

roi_id <- evaluateROI_SFD(c(no_cols, no_rows), i, round(max(h_values)*3/res_min))

if(is.null(hole_id)==F){

# make sure any holes in the data are given NA’s in corresponding vector of ID’s

for(j in 1:length(roi_id)){

for(s in 1:length(hole_id)){

if(data_id[roi_id[j]]==hole_id[s]){

roi_id[j]<- NA

break

}

}

}

}

# if there are not enough points to smooth just use the original data

if(length(na.omit(roi_id))<4){

data_sm_y[i]<- data_y[i]
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}

else{

data_sm_y[i]<- evaluate2DNonParamRegression(gpoints[i,], data_y[i],

gpoints, data_y,

h_values, na.omit(roi_id))[1]

}

}

}

return(data_sm_y)

}



Appendix I

DCAP Pre-processing Method

This is a general description of the pre-processing method for DCAP (v0.1.0), Chapter 7.

• Data enters the algorithm as .csv files. For density data there is one prior file and one survey file

each containing a grid of regularly space points with an associated density and CoV. For stratified

data, there is one prior file containing a regular grid of points. The survey file contains a row for each

strata and consists of a strata ID, density and CoV. There is also a boundary file that denotes the

polygon for each strata (separated by NA’s).

• The first check is to see if there are points that cross the date line from -180o to 180o. If so then the

data is stitched together at the date line and only increasing values of degrees are allowed.

• The prior surface may be quite large so to aid computation, the relevant section of prior surface is

extracted out for working with. For the DCAP algorithm, the section is the size of the survey area

plus 3 degrees in all directions.

• Next, the data is transformed to a grid where the bottom left corner is point (1,1), this point also

has associated ID=1. The IDs increase by row, for example, ID=2 on a grid of 0.25 resolution would

be (1.25, 1).

• Search for holes in the survey data, which indicate land.

• The new data structure is (gridx, gridy, density, CoV, ID)

• Repeat transformation for prior data and insert NA’s for land

• Put both data sets at the same resolution so that they overlap exactly. For example, each data point

at 0.5 resolution becomes 4 points at 0.25 resolution. The density remains the same as the single point
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for the 4 points but the CoVs change. The CoV for each new point is: CoVnew =
√

(CoVold/number

of new cells).

• The two data sets are now ready for updating.



Appendix J

DCAP Log
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Table J.1: DCAP log. All timings relate to use of a computer with the following specifications: Windows Dual Core, 2.40
GHz CPU, 2.00 GB RAM.

ID Objectives INPUT FILES DCAP Version Computation Time Test Result Notes / Comments

Prior survey Survey data (s) (Pass/Fail)

1a Open ocean Prior1 Surveyds1 0.3.0 12.42 P

1b Surveyst1 0.3.0 3.5 P

1c Surveyst2 0.3.0 3.5 P

Land

1d Top Prior3 Surveyds3 0.3.0 31.83 P

1e Bottom Prior4 Surveyds4 0.3.0 31.69 P

1f Right Prior1 Surveyds1a 0.3.0 17.04 P

1g Surveyst4 0.3.0 1.58 P

1h Left Surveyds1b 0.3.0 17 P

1i Islands Surveyds1f 0.3.0 29.87 P

Lat/Lon

1j Northern limit1 Prior2c Surveyds2c 0.3.0 22.45 P

1k Southern limit1 Prior2d Surveyds2d 0.3.0 22.48 P

1l Crossing the equator Prior2 Surveyds2 0.3.0 22.45 P

1m Crossing 0o longitude Prior2a Surveyds2a 0.3.0 23.29 P

1n Crossing 180/180o longitude Prior2b Surveyds2b 0.3.0 23.75 P

Survey regions

- simple geometric shapes

2a Diamond Prior1 Surveyds1c 0.3.0 9.1 P

2b Surveyst3 0.3.0 1.25 P

2c L shape Surveyds1d 0.3.0 12.69 P

2d U shape Surveyds1e 0.3.0 11.8 P

- complicated shapes

2e SCANS-II B Prior1 Surveyds1g 0.3.0 87.98 P

2f SCANS-II Q Surveyds1h 0.3.0 1657.7 P

Non-overlapping data

4a Prior density 0/survey density positive Prior2 Surveyds2f 0.3.0 31.63 P

4b Prior density positive/survey density 0 Prior1 Surveyds1j 0.3.0 11.61 P

Variable smoothness in 2D

5 Step change in survey density Prior1 Surveyds1i 0.3.0 14.3 P

Multiple updates

6a Several overlapping surveys Prior1 Surveyds1k 0.3.0 13.05 P

6b Surveyds1l 0.3.0 F unable to store/retrieve output

6c Surveyds1m 0.3.0 F from previous update

Survey size

7a Increase resolution of ds (0.1) Prior1 Surveyds1n 0.3.0 411.96 P

7b (0.05) Surveyds1o 0.3.0 5095.86 P

7c (0.01) Surveyds1p 0.3.0 F Dataset too big (160000 points)

Demonstration data

3a Humpback data around Hawaii Priordemo Surveydsdemo1 0.3.0 35.88 P

3b Surveydsdemo2 0.3.0 F Dataset too big (51895 points)
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