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Traveling-wave solutions of the inviscid Burgers equation having smooth initial wave profiles of
suitable shapes are known to develop shocks �infinite gradients� in finite times. Such singular
solutions are characterized by energy spectra that scale with the wave number k as k−2. In the
presence of viscosity ��0, no shocks can develop, and smooth solutions remain so for all times
t�0, eventually decaying to zero as t→�. At peak energy dissipation, say t= t�, the spectrum of
such a smooth solution extends to a finite dissipation wave number k� and falls off more rapidly,
presumably exponentially, for k�k�. The number N of Fourier modes within the so-called inertial
range is proportional to k�. This represents the number of modes necessary to resolve the dissipation
scale and can be thought of as the system’s number of degrees of freedom. The peak energy
dissipation rate � remains positive and becomes independent of � in the inviscid limit. In this study,
we carry out an analysis which verifies the dynamical features described above and derive upper
bounds for � and N. It is found that � satisfies ���2�−1�u���

2�1−����−���/2u��2, where ��1 and
u�=u�x , t�� is the velocity field at t= t�. Given ��0 in the limit �→0, this implies that the energy
spectrum remains no steeper than k−2 in that limit. For the critical k−2 scaling, the bound for �
reduces to ���3k0�u0���u0�2, where k0 marks the lower end of the inertial range and u0=u�x ,0�.
This implies N��3L�u0�� /�, where L is the domain size, which is shown to coincide with a
rigorous estimate for the number of degrees of freedom defined in terms of local Lyapunov
exponents. We demonstrate both analytically and numerically an instance, where the k−2 scaling is
uniquely realizable. The numerics also return � and t�, consistent with analytic values derived from
the corresponding limiting weak solution. © 2010 American Institute of Physics.
�doi:10.1063/1.3327284�

I. INTRODUCTION

In 1948, Burgers1 introduced the equation

ut + uux = �uxx, �1�

as a model for fluid turbulence. Here, u�x , t� is a one-
dimensional velocity field and ��0 plays the role of viscos-
ity in a usual fluid. On the one hand, this model captures the
two most fundamental features of fluid dynamics by its qua-
dratic advection and viscosity terms. On the other hand, Eq.
�1� lacks a pressure term, thus governing a hypothetical com-
pressible fluid without pressure. The absence of a pressure-
like term makes Eq. �1� integrable by the Cole–Hopf
method.2,3 This renders Eq. �1� and its generalization to
higher dimensions poor models for fluid turbulence. Despite
this apparent shortcoming, the Burgers equation has been
widely studied for a variety of applications.4–13

The development of shock waves or discontinuities �in-
finite gradients� from suitable smooth initial velocity profiles
is an intrinsic property of the inviscid Burgers equation.
Given a differentiable initial profile u�x ,0�=u0�x�, Eq. �1�
with �=0 is implicitly solved by the traveling-wave solution

u�x,t� = u0�	� = u0�x − ut� . �2�

By taking the spatial derivative of Eq. �2� and solving the
resulting equation for ux one obtains

ux =
u0�

1 + tu0�
, �3�

where u0��	� denotes the derivative of u0�	�. It follows that ux

diverges �ux→−�� provided that u0��	��0 for some 	. The
earliest time t=T for this to occur is T=−1 /u0��x0�, where
u0��x0� is the steepest slope of u0�x� occurring at x=x0. This
steepest slope travels at the speed u0�x0� and gets ever
steeper as t→T, becoming infinitely steep when t=T at
x=x0+u0�x0�T=x0−u0�x0� /u0��x0�. In summary, the space-
time coordinate of the shock is

�x,t� = �x0 −
u0�x0�
u0��x0�

,
− 1

u0��x0�� . �4�

Such a singular solution is characterized by an energy spec-
trum E�k� that scales with the wave number k as E�k�
k−2,
which is the spectrum of a step function.

Under the effects of viscosity, the shock is suppressed,
and the solution remains smooth and decays to zero in the
limit t→�. This statement is true however small the viscos-
ity. This means that the maximally achievable �peak� energy
dissipation rate, hereafter denoted by �m, remains positive in
the inviscid limit �→0. For fixed ��0, the velocity gradient
	ux	 can achieve a finite maximum only. Presumably, the cor-
responding energy spectrum would retain the k−2 scaling up
to a finite dissipation wave number k�, around which the
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dissipation of energy mainly takes place and beyond which a
more rapid decay, probably exponential decay, occurs. Given
this scaling, �m scales as �k�. It follows that the number N of
Fourier modes within the wave number range k�k�, the so-
called inertial range is

N 
 k� 

�m

�
, �5�

for dimensionally appropriate proportionality constants. This
is the number of modes necessary to resolve the dissipation
scale and can be considered the system’s number of degrees
of freedom.

In this study, we carry out an analysis that quantitatively
confirms the dynamical features described above. It is found
that �m satisfies

�m � �2�−1�u���
2�1−����− ���/2u��2, �6�

where ��1, � is the Laplace operator, u�=u�x , t�� is the
velocity field at the time of peak energy dissipation t= t�, and
� · �� and � · � denote L� and L2 norms, respectively. Given
that �m�0 in the limit �→0, this result implies that the
energy spectrum E�k , t�� becomes no steeper than k−2 in
that limit. For this critical scaling, �m is found to satisfy
�m��3k0�u����u��2��3k0�u0���u0�2, where u0=u�x ,0� and
k0 is the wave number that marks the lower end of the energy
inertial range. This result further implies k���3�u0�� /�. It
follows that N��3L�u0�� /�, where L is the domain size,
which is shown to coincide with a rigorous estimate for the
number of degrees of freedom defined in terms of local
Lyapunov exponents. Note that one can identify the upper
bound for N with the Reynolds number Re as in the case of
a real fluid. Thus, the system’s number of degrees of freedom
scales linearly with Re. We demonstrate both mathematically
and numerically an instance where E�k , t��
k−2 is uniquely
realizable. The numerics also return the values of �m and t�,
which are consistent with those derived from the correspond-
ing limiting weak solution.

II. ENERGY DISSIPATION AND DISSIPATION
WAVE NUMBER

For simplicity, we consider periodic solutions of Eq. �1�
having period 2�L and vanishing spatial average. The usual
Lp norm of u �and of its derivatives�, for all p�0 including
p=�, is defined by �u�p= 
	u	p�1/p, where 
 · � denotes a do-
main average. The advection term of the Burgers equation
conserves �u�p. Under viscous effects, �u�p decays for p�1
and is governed by

d

dt
�u�p = − ��p − 1��u�p

1−p
	u	p−2ux
2� . �7�

Since we are dealing with L2 and L� norms only, we omit the
subscript p=2 in the former for convenience. The decay of
the energy �u�2 /2 is governed by

1

2

d

dt
�u�2 = − ��ux�2. �8�

This section is mainly interested in optimal estimates for the

decay rate ��ux�2, particularly in the limit of small �, and
related issues concerning the energy inertial range.

The governing equation for the velocity gradient ux is

uxt + uuxx + ux
2 = �uxxx. �9�

By multiplying Eq. �1� by uxx �or Eq. �9� by ux� and integrat-
ing the resulting equation over the domain we obtain the
evolution equation for the mean-square velocity gradient
�ux�2,

1

2

d

dt
�ux�2 = 
uxxuux� − ��uxx�2 � �u���ux��uxx� − ��uxx�2

=
�uxx�2

�ux�2 ��u��

�ux�3

�uxx�
− ��ux�2� , �10�

where the inequality is straightforward. The final line of Eq.
�10� can be used to derive an upper bound for the energy
dissipation rate ��ux�2. For this purpose, consider the in-
equality �see Eq. �7� of Ref. 14�

�ux�3

�uxx�
�

��− ���/2u�1/�1−��

�ux��2�−1�/�1−�� , �11�

where ��1 is a parameter, which can be varied for an op-
timal bound, and � is the Laplace operator. The fractional
derivative �−���/2 is a positive operator and is defined by

�−���/2û=k�û, where �−���/2û and û are the Fourier trans-
forms of �−���/2u and u, respectively. Upon substituting Eq.
�11� into Eq. �10� and noting that d�ux�2 /dt=0 at the time of
peak energy dissipation t= t�, we can deduce that

�m � �2�−1�u���
2�1−����− ���/2u��2, �12�

where �u��� is bounded by its initial value, but ��−���/2u��
can be large, depending on both E�k , t�� and �. In Sec. IV,
we demonstrate both analytically and numerically that in the
limit �→0, t� is independent of � and, in general, not related
to the singularity time T of the corresponding inviscid solu-
tion.

Equation �12� confirms the fact that �m�� �and
hence �ux���� for ��0 as one can set �=0 and obtain
�m� �u���

2 �u��2 /�� �u0��
2 �u0�2 /�. This bound can be highly

excessive, and a more optimal estimate is possible by vary-
ing the “optimization” parameter � within the permissible
range ��1. Observe that the spectrum of ��−���/2u�2 /2 is
k2�E�k�. So, if the energy spectrum E�k , t�� is strictly steeper
than k−2, then ��−���/2u�� is bounded for some ��1 /2. If
this were the case for all �, including the limit �→0, then the
upper bound for �m in Eq. �12� would vanish, thereby con-
tradicting the fact that �m�0 in that limit. This rules out
energy spectra steeper than k−2. In Sec. IV, we mathemati-
cally demonstrate an instance where energy spectra shal-
lower than k−2 are also ruled out. Thus the scaling k−2 is
uniquely realizable. This suggests that in general, the most
plausible scenario is that in the inviscid limit, E�k , t�� ap-
proaches the k−2 critical scaling.

Now, suppose that E�k�=Ck−2 /2, for k� �k0 ,k��,
where C�0 is a constant. Note that k0 is not necessarily the
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lowest wave number 1 /L. We then have �u�2=C�k0

k�k−2dk, so
C=k0�u�2. Thus, E�k�=k0�u�2k−2 /2. For this case, a direct
estimate of the ratio �ux�3 / �uxx� is

�ux�3

�uxx�
= �3k0�u�2. �13�

By applying this equation to u� and substituting the resulting
estimate into Eq. �10�, we deduce the upper bound

�m � �3k0�u����u��2 � �3k0�u0���u0�2. �14�

We find later by an example for the parameter values
�u0��=1, �u0�2=1 /2, and k0=1 that �m=0.1061, which gives
us a sense of the sharpness of the derived upper bound
�3k0�u0���u0�2=�3 /2. The dissipation wave number k�,
which marks the end of the k−2 inertial range is found to
satisfy

k� �
�3�u0��

�
. �15�

It follows that the number N of Fourier modes within this
inertial range is bounded by

N �
�3L�u0��

�
= Re, �16�

where Re is the Reynolds number. Note that this estimate
also includes the modes corresponding to k�k0. The linear
dependence of N on Re is interesting and is rigorously veri-
fied, without reference to E�k , t�� in what follows.

III. LYAPUNOV EXPONENTS AND NUMBER
OF DEGREES OF FREEDOM

This section derives a rigorous estimate for the number
of degrees of freedom, which is defined as the minimum
number of greatest local Lyapunov exponents �of a general
trajectory in phase space� whose sum becomes negative. This
number, denoted by D, is the dimension of the linear space
�spanned by the corresponding Lyapunov vectors�, which
can adequately “accommodate” the solution locally, and is
essentially the so-called Lyapunov or Kaplan–Yorke
dimension.15,16 Its estimate is found to agree with that for N
obtained earlier in Sec. II. This agreement is not coincidental
and can be considered as analytic evidence for the expected
k−2 energy spectrum used in the estimation of N. Like N, D
can be thought of as the number of Fourier modes necessary
to resolve the steepest velocity gradient during the course of
evolution, particularly around t= t�. We follow the procedure
formulated by Tran and Blackbourn17 in the calculation of
the number of degrees of freedom for two-dimensional
Navier–Stokes turbulence. For a detailed discussion of the
significance of D, see Refs. 17 and 18 and references therein.

Given the solution u�x , t� starting from some smooth ini-
tial velocity field u0�x�, consider a disturbance v�x , t� satis-
fying the same conditions as u�x , t�, i.e., periodic boundary
condition and zero spatial average. The linear evolution of
v�x , t� is governed by

vt + uvx + vux = �vxx. �17�

The governing equation for the norm �v� is

�v�
d

dt
�v� = − 
v�uvx + vux�� − ��vx�2

= 
uvvx� − ��vx�2 � �u���v��vx� − ��vx�2

� �u0���v��vx� − ��vx�2, �18�

where we have used 
v2ux�=−2
uvvx� by integration by parts
and the inequalities are straightforward. Dividing both sides
of Eq. �18� by �v�2 yields


 =
1

�v�
d

dt
�v� � �u0��

�vx�
�v�

− �
�vx�2

�v�2 , �19�

where 
 is the exponential rate of growth �
�0� or decay
�
�0� of the disturbance norm �v�.

The set of n greatest local Lyapunov exponents


1 ,
2 , . . . ,
n� and the corresponding orthonormal set of n
most unstable disturbances 
v1 ,v2 , . . . ,vn� can be derived by
successively maximizing 
 with respect to all admissible dis-
turbances v subject to the following orthogonality constraint.
At each step i in the process, the maximizer v is required to
satisfy both �v�=1 and 
vv j�=0, for j=1,2 , . . . , i−1, where
v j is the solution obtained at the jth step. Since each normal-
ized solution �
i ,vi� satisfies Eq. �19�, we have

�
i=1

n


i � �u0���
i=1

n

�vx
i � − ��

i=1

n

�vx
i �2

� �u0���n�
i=1

n

�vx
i �2�1/2

− ��
i=1

n

�vx
i �2

= ��
i=1

n

�vx
i �2�1/2��u0��n1/2 − ���

i=1

n

�vx
i �2�1/2�

� �n�
i=1

n

�vx
i �2�1/2��u0�� −

�n

cL
� , �20�

where c is a constant independent of the orthonormal set in
question. In Eq. �20�, we have applied the Cauchy–Schwarz
inequality �i=1

n �vx
i �� �n�i=1

n �vx
i �2�1/2 and used the estimate

�
i=1

n

�vx
i �2 �

n3

c2L2 , �21�

which is a consequence of the Rayleigh–Ritz principle. By
this principle, the left-hand side of Eq. �21� is not smaller
than the sum of the first �i.e., smallest� n eigenvalues of −�.
These eigenvalues are 1 /L2 ,22 /L2 , . . . ,n2 /L2 and sum up to
n�n+1��2n+1� / �6L2�. Hence, Eq. �21� follows with c tend-
ing to �3 for large n. Now the condition �i=1

n 
i�0 is satis-
fied when n�cL�u0�� /�. It follows that

D � c
L�u0��

�
. �22�

This estimate agrees with the upper bound �16� for N, which
was derived by assuming the energy spectrum E�k�
k−2.

037102-3 Energy dissipation and resolution of steep gradients Phys. Fluids 22, 037102 �2010�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

138.251.14.57 On: Thu, 09 Jan 2014 12:13:51



This agreement provides us with confidence in the plausibil-
ity of the k−2 scaling.

The term on the right-hand side of Eq. �22� is the
Reynolds number Re defined earlier with c=�3. Thus D
scales linearly with Re. For a comparison, D scales as
Re�1+ln Re�1/3 and Re9/4 for two-dimensional and three-
dimensional turbulence, respectively. The former has re-
cently been derived,17 while the latter is a classical result
deduced from the Kolmogorov theory. These scalings reflect
the intrinsic characteristics that the dynamics of the two-
dimensional vorticity gradient and three-dimensional vortic-
ity are effectively linear and quadratically nonlinear,
respectively.18,19 The present finding of an exactly linear de-
pendence of D on Re is somewhat unexpected as the Burgers
velocity gradient dynamics are quadratically nonlinear, just
as in three-dimensional vorticity dynamics. Nonetheless, this
is not a total surprise if the dimension of the physical space,
which plays a significant role in the scaling of D with Re, is
taken into account.18 Note that in all three cases, D scales
linearly with the domain volume, given all else is fixed. This
is in accord with the notion of extensive chaos.20–22 The lin-
ear scaling of D with Re for the Burgers case is fully justified
in the numerical simulations reported in Sec. IV, where we
observe that the ratio D /Re is best kept fixed �at order unity�
for various resolutions. Hence, doubling the resolution �i.e.,
doubling D� allows the viscosity to be halved, given all else
is fixed. This allows the exponential dissipation rate �k2 at
the truncation wave number to grow as Re. On the other
hand, this same linear scaling of D with Re in two-
dimensional turbulence means that numerical simulations
can be performed using a fixed dissipation rate �k2 at the
truncation wave number, for different resolutions. Thus, dou-
bling the resolution �i.e., quadrupling D� allows the viscosity
to be reduced by a factor of 4. This fact is well known to
numerical analysts. The scaling of D as Re9/4 in three-
dimensional turbulence implies that the dissipation rate �k2

at the truncation wave number should be proportional to
Re1/2. This means that doubling the resolution �i.e., octupling
D� allows the viscosity to be reduced by at most 2−4/3.

IV. A CASE STUDY

In this section, we analytically and numerically consider
an example that confirms the results derived in the preceding
sections. In addition, we prove that no power-law energy
spectra other than k−2 are realizable, thus giving an exact
result of the slope of E�k , t�� rather than a constraint for this
particular case. We also determine by numerical simulations
the viscosity-independent maximum dissipation rate �m and
the corresponding time t= t� when this occurs. The numerical
values of these dynamical parameters agree with those de-
rived from the corresponding limiting weak solution.

A. Analytical consideration

We consider the periodic domain �−� ,��, i.e., L=1, and
u0�x�=−sin x. This initial profile was used in a computational
study13 of the Burgers equation, using 4096 grid points. In
the next subsection, we report results from simulations using
up to 4�104 Fourier modes. It can be readily seen that Eq.

�1� admits odd functions as solutions. In other words, if
f�x , t� is a solution, then f�−x , t� is also a solution provided
that f�x , t�=−f�−x , t�. Hence, for the initial profile under con-
sideration, u�x , t� remains odd for all t�0. We can then ex-
press u�x , t� in terms of an odd Fourier series

u�x,t� = �
k

uk�t�sin kx , �23�

where k=1,2 ,3 ,¯ are the wave numbers. The gradient ux is
given by

ux�x,t� = �
k

kuk�t�cos kx . �24�

The origin is “stationary” and has the steepest negative
slope, initially equalling �1, which is given in terms of uk by

ux�0,t� = �
k

kuk�t� . �25�

The third derivative uxxx�0, t� is

uxxx�0,t� = − �
k

k3uk�t� . �26�

By substituting Eqs. �25� and �26� into Eq. �9�, one obtains

�

�t
�

k

kuk = − ��
k

kuk�2
− ��

k

k3uk. �27�

In the inviscid case, ux�0, t�→−� as t→T=1. This can be
seen either by solving Eq. �27� with �=0 or directly from Eq.
�4�. Figure 1 illustrates the viscous solution �for �=0.02� at a
few selected times before, near and after the inviscid singu-
larity time �t=1�.

The evolution of the Fourier coefficients uk�t� is gov-
erned by

�

�t
uk =

k

4
uk/2

2 �
k

2 �
m��=k

umu� − �k2uk, �28�

where the sum is over all pairs of wave numbers m and �,
including m=�=k /2 when k is even, satisfying the triad con-
dition m��=k. Within each individual wave number triad,
the energy is conservatively transferred from each of the two
lower wave numbers to the third and higher wave number or
vice versa. It can be seen that all wave numbers are initially
excited in such a way that uk�0. Plausibly, no particular
modes would become completely depleted of energy during
the subsequent evolution. This means that uk does not change
sign and remains negative. This fact is verified below in the

−π π0
−1

0

1
t = π/8 π/2t =

πt =

x

y

FIG. 1. A viscous solution to Burgers equation starting from
u�x ,0�=−sin x, for �=0.02, and shown at times t=� /8, 5� /16�1, � /2,
3� /4, and �.
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numerical simulations. As a consequence, the transfer of en-
ergy to ever-smaller scales is irreversible, and each Fourier
mode contributes to the steepness of the slope ux�0, t� as
there are no cancellations in the sum �kkuk. The nonlinearity
can be said to operate at “full strength,” without “depletion.”
This is consistent with the fact that ux�0, t� quickly diverges
if �=0; indeed ux�0,1�=−�. This observation prompts us to
take uk�0 for all k in what follows.

Consider the inertial range scaling uk=−c�k−�, for
0���3 /2 and c��0, which corresponds to the energy
spectrum E�k�=c�

2k−2� /2. By substituting this scaling for uk

into the right-hand side of Eq. �27� we obtain

�

�t
�

k

kuk = −
c�

2k�
4−2�

�2 − ��2 + �
c�k�

4−�

4 − �

= k�
1+�� �3 − 2���m

c��4 − ��
−

c�
2k�

3−3�

�2 − ��2� , �29�

where �m=�c�
2k�

3−2� / �3−2�� has been calculated from
the above spectrum. The fact that both �kkuk→−� and
0��m�� as k�→� requires �=1, which is the only possi-
bility allowed by Eq. �29�. Indeed, if ��1 �which has al-
ready been ruled out in general�, then the second term in the
brackets of Eq. �29� could be made arbitrarily small for suf-
ficiently large k� and the right-hand side would become posi-
tive. This contradicts the fact that �kkuk→−�. On the other
hand, if ��1, then the second term in the brackets of Eq.
�29� could be made arbitrarily large for sufficiently large k�

and the right-hand side would become negative. The gradient
at the origin �kkuk would diverge for k���, which is not
possible.

We now consider the energy dissipation rate in the invis-
cid case due to the lack of smoothness of solution after wave
breaking at t=1. This consideration allows us to determine
the energy dissipation rate, among other things, of the vis-
cous case in the inviscid limit. For t�1, the traveling-wave
solution becomes multivalued in a neighborhood of x=0 as
the respective portions u�0 and u�0 of u cross over the
vertical axis, invading the region x�0 and x�0 �see Fig. 2�.
Consider the weak solution consisting of two disconnected
traveling-wave branches u+�x , t� and u−�x , t� given by

u+�x,t� = �− sin�x − u+t� for − � � x � 0,

0 for 0 � x � � ,
� �30�

and

u−�x,t� = �− sin�x − u−t� for 0 � x � � ,

0 for − � � x � 0.
� �31�

These terminate on the vertical axis at u+�0, t�=U�t� and
u−�0, t�=−U�t�, where the �half� shock width U�t� is given
implicitly by U=sin�Ut�. Evidently, limt→1+

U�t�=0 and
U�� /2�=1, the latter of which is the global maximum. The
evolution of the energy corresponding to this solution is gov-
erned by

1

2

d

dt
�u�2 = −

1

2���−�

0

u+
2�u+�xdx + �

0

�

u−
2�u−�xdx�

= −
1

6���−�

0

�u+
3�xdx + �

0

�

�u−
3�xdx� = −

U3

3�
.

�32�

The energy dissipation rate U3 / �3�� tends to zero as t→1+

and achieves its maximum of 1 / �3�� at t=� /2 when
U�� /2�=1. For t�� /2, this rate decreases monotonically to
zero as t→�. Since the viscous solution approaches this
�unique� weak solution in the limit �→0, the limiting energy
dissipation rate for t�1 is U3 / �3��. The maximum dissipa-
tion rate corresponds to U=1, i.e., �m=1 / �3��, occurring at
t= t�=� /2. Note that t� differs from T and is the time for
the extrema �initially at x= �� /2� to arrive at the stationary
shock position x=0. In the next subsection, we recover
both values of �m and t� with high precision by numerical
simulations.

An interesting feature of the present problem is that in
the inviscid limit the energy commences its decay from
t=1, while the maximum velocity does so from t=� /2, upon
which the energy dissipation reaches its peak. This lag in the
dissipation of �u�� can be readily appreciated by the follow-
ing observation. For the energy, the dissipation rate is domi-
nated by 	ux�0, t�	, which becomes sufficiently large at t=1,
upon which the transition between nondissipative and dissi-
pative phases takes place. For the maximum velocity, by tak-
ing the limit p→� of Eq. �7� we obtain

d

dt
�u�� = − � lim

p→�
�p − 1��u�p

1−p
	u	p−2ux
2� . �33�

The dissipation rate on the right-hand side of Eq. �33� is
dominated by 	ux	 in the vicinity of the maximum velocity.
Evidently, as the maximum velocity approaches the vertical
axis, 	ux	 in its vicinity becomes greater �see Fig. 1�. The
transition between inviscid and viscous dynamics of �u�� at
t=� /2 implies that 	ux	 in this vicinity is not sufficiently
large until t=� /2. A similar behavior has been observed nu-
merically in two-dimensional turbulence, whereby the vortic-
ity supremum remains virtually unchanged until �and even
after� the dissipation rate of the mean square vorticity has
achieved its maximum value.23

The weak solution provides a convenient way for calcu-
lating the dissipation rate d�u�� /dt for t�� /2. In the limit

u

x
−π

π

U
t = sin−1 U/U

t = 1

���
��

FIG. 2. A schematic description of energy loss after wave breaking at t=1
for the traveling-wave solution u=−sin�x−ut� of the inviscid Burgers equa-
tion. The energy dissipation rate is U3�t� / �3��, where 2U�t� is the shock
width. This rate is zero upon wave breaking and grows to its maximum of
1 / �3�� at t=� /2.
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�→0, one can identify �u�� with U=sin�Ut�. By taking the
time derivative of this expression and solving the resulting
equation for dU /dt=d�u�� /dt we obtain

d

dt
�u�� = −

�u���1 − �u��
2 �1/2

1 + t�1 − �u��
2 �1/2 . �34�

In the present example, −ux�x ,0� peaks at an isolated
point, namely at x=0. The weak solution is a step function
with U�T�=0 and the energy dissipation rate tends to zero as
t→T+. Similarly, consider a smooth initial profile u�x ,0� for
which −ux�x ,0� achieves a positive maximum at a finite
number, say N0, of isolated points. Such a profile evolves
into a piecewise smooth solution having N0 steps, each with
U�T�=0. For this case, the energy dissipation rate also tends
to zero as t→T+. When the said maximum occurs over an
extended interval, say �x1 ,x2�, then U�T�= �x1−x2�ux�x1 ,0�
�0. The energy dissipation rate upon wave breaking jumps
from zero to a positive value.

B. Numerical results

We now turn to results of a numerical analysis of the
Burgers equation. We have simulated the initial value prob-
lem described by Eq. �28�, where u1�0�=−1 and uk�0�=0 for
k�1, for several different resolutions up to kmax=4�104.
For this given initial condition and c=�3, Eq. �22� becomes
D��3 /�. The viscosity �=2.5 /kmax has been chosen in ac-
cord with this estimate to ensure that kmax lies well within the
dissipation range. Our choice turns out to yield adequate dis-
sipation, thus providing evidence for the sharpness of Eq.
�22�. We have used a standard fourth order Runge–Kutta
method with the viscosity exactly incorporated through an
integrating factor. The adapted time step �t=−0.01 /�kkuk

has been used to account for the highly sensitive nature of
the problem when t� t�.

Figure 3 shows the plots of log�−uk�t��� versus log k for
the three highest-resolution simulations. These exhibit a clear
slope of �1 in the inertial range, thus implying the scaling
k−2 for the energy spectrum. Evidently, the inertial range be-
comes wider for higher Re and a careful inspection of data

also shows a clear trend that the inertial range becomes shal-
lower, approaching the critical scaling k−1 as expected.

Figure 4 shows the evolution of the energy dissipation
rate ��t�=��ux�2=��kk

2uk
2 /2 from t=0 to t=�. The dissipa-

tion rate remains small for t�1 �evidently tending to zero in
the inviscid limit�, only to grow considerably when t=1,
consistent with the result �32� for the limiting weak solution.
This rate continues to increase for t�1 and achieves a maxi-
mum at t= t�=1.571, which is very close to the analytic value
� /2. This value of t� has been observed to be very robust
with respect to independent variations of the Reynolds num-
ber and the time step. The maximum dissipation rate is
�m=0.106 05 for the three highest Reynolds numbers. This
suggests that the convergence of �m as �→0 is rapid. Indeed,
Fig. 5 shows that �m differs only by approximately 0.39�
from the theoretical limiting value 1 / �3��. The curve in this

0

−2

−4

−6

0 1 2 3 4 5

10log

k10log

k −1

= 1/8000ν

= 1/4000ν

(−u )k

ν = 1/16000

FIG. 3. Spectra �−uk vs k� at t=� /2 for the three smallest values of viscosity
considered, �=1 /4000, 1/8000, and 1/16000 �computed at resolutions
kmax=10 000, 20 000, and 40 000, respectively�. Note that the spectra differ
negligibly, except in their high wave number tails, and are well fit by a k−1

slope in the inertial range. 0 ππ/2

= 0.000625

= 0.02ν

= 0.000625ν

ν = 0.02

ν
0.1

0.05

0

t

ε

1

FIG. 4. Evolution of the energy dissipation rate ��t� for a series of six
simulations differing in � by factors of 2 �the extreme values of � are
indicated�. Also, the inviscid singularity time �t=1� is indicated by the ver-
tical dashed line.

m

ν

log10 ν
−4 −3 −2

0.43

0.42

0.40

0.39

0.41

1/3π − ε

FIG. 5. Least-squares quadratic fit �1 / �3��−�m� /�=0.3911+0.9102�
+40.50�2 to the numerical results indicated by the diamonds.
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figure shows the least-squares quadratic fit �1 / �3��−�m� /�
=0.3911+0.9102�+40.50�2 to the numerical results indi-
cated by the diamonds.

We now discuss the results from a second set of simula-
tions, differing from the first only in the initial condition:
u2�0�=−1 and uk�0�=0 for k�2. In physical space this cor-
responds to u�x ,0�=−sin 2x. For this case, only even wave
numbers can be excited. Initially, the steepest slope is �2
occurring at x= �� ,0, where the inviscid solution blows up
simultaneously when t=T=1 /2. One would expect �m to be
twice as great as that in the previous case because the com-
bined contribution to �m at both x=−� and x=� is equivalent
to that at x=0. Furthermore, since the local extrema are � /4
away from the �stationary� locations of wave breaking,
one would expect t�=� /4. These are actually what we
have observed. More precisely, the numerics have returned
�m=0.2121 and t�=0.7856. The spectrum plot is the same as
Fig. 3 and is not shown.

In passing, it is worth mentioning that for the present
example, �m can be made arbitrarily large by changing the
initial condition. Given u��0�=−1 and uk�0�=0 for k��,
which corresponds to u�x ,0�=−sin �x in physical space,
only the wave numbers � ,2� ,3� ,¯ can be excited. Initially,
the steepest slope is −� occurring at x=2�n /� for n
=0, �1, �2,¯ and 	n	�� /2, where the inviscid solution
blows up simultaneously when t=T=1 /�. The local extrema
are � / �2�� away from the �stationary� locations of wave
breaking. One can expect �m=� / �3�� and t�=� / �2��, which
we have actually observed �within small errors as the cases
reported above� for several different values of �. Note that
although �m can be made arbitrarily large by increasing �,
Eq. �14� does hold as both of its sides are proportional to �
�k0=� /L�. The scaling E�k , t��=Ck−2, starting from k=�, has
been observed to prevail for all cases, with C
�.

V. CONCLUSION

In summary, we have studied both analytically and nu-
merically one-dimensional viscous Burgers flows decaying
from smooth initial conditions. The results obtained include
upper bounds for the energy dissipation rate and number of
degrees of freedom and constraints on the spectral distribu-
tion of energy. Given that the maximally achievable energy
dissipation rate �m remains finite and positive in the inviscid
limit �→0, it is found that energy spectra steeper than k−2

are ruled out in that limit. For this critical scaling, �m satisfies
�m��3k0�u0���u0�2, where k0 is the lower wave number end
of the energy inertial range and u0 is the initial velocity field.
This further implies the upper bound k���3�u0�� /� for the
energy dissipation wave number k�. It follows that the num-
ber N of Fourier modes within the energy inertial range sat-
isfies N��3L�u0�� /�, where L is the domain size. This re-
sult coincides with a rigorous estimate, using no assumption
of power-law spectra, for the number of degrees of freedom
D defined in terms of local Lyapunov exponents.

As an illustrative example, we have considered both ana-
lytically and numerically the Burgers equation in the periodic

domain �−� ,�� with the initial condition u0�x�=−sin x. In
the former approach, we have tightened up the constraint on
the spectral distribution of energy by pointing out that no
power-law energy spectra other than k−2 are realizable. A
detailed examination of the �unique� limiting weak solution
has provided an explanation why the maximum velocity is
better conserved than the energy. In the latter approach, we
have demonstrated the exact k−2 scaling and have numeri-
cally determined the viscosity-independent dissipation rate
and time of maximum energy dissipation. These are consis-
tent with analytic results derived from the limiting weak
solution.
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