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Abstract

Thanks to a range of discovery methods that are sensitive to different regions of parameter

space, we now know of over 900 planets in over 700 planetary systems. This large popula-

tion has allowed exoplanetary scientists to move away from a focus on simple discovery, and

towards efforts to study the bigger pictures of planetary system formation and evolution.

The interactions between planets and their host stars have proven to be varied in both

mechanisms and scope. In particular, tidal interactions seem to affect both the physical and

dynamical properties of planetary systems, but characterising the broader implications of this

has proven challenging. In this thesis I present work that investigates different aspects of tidal

interactions, in order to uncover the scope of their influence of planetary system evolution.

I compare two different age calculation methods using a large sample of exoplanet and

brown dwarf host stars, and find a tendency for stellar model fitting to supply older age

estimates than gyrochronology, the evaluation of a star’s age through its rotation (Barnes,

2007). Investigating possible sources of this discrepancy suggests that angular momentum

exchange through the action of tidal forces might be the cause.

I then select two systems from my sample, and investigate the effect of tidal interactions

on their planetary orbits and stellar spin using a forward integration scheme. By fitting the

resulting evolutionary tracks to the observed eccentricity, semi-major axis and stellar rotation

rate, and to the stellar age derived from isochronal fitting, I am able to place constraints on

tidal dissipation in these systems. I find that the majority of evolutionary histories consistent

with my results imply that the stars have been spun up through tidal interactions as the planets

spiral towards their Roche limits.

I also consider the influence of tidal interactions on the alignment between planetary

orbits and stellar spin, presenting new measurements of the projected spin-orbit alignment

angle, λ, for six hot Jupiters. I consider my results in the context of the full ensemble of mea-

surements, and find that they support a previously identified trend in alignment angle with

tidal timescale, implying that tidal realignment might be responsible for patterns observed in

the λ distribution.
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1
Introduction

The thirteen years since the turn of the century have been an exciting period for astronomy

and astrophysics. The last year alone has seen the discovery of a new class of supernova (Foley

et al., 2013), hints at the nature of dark matter (Aguilar et al., 2013; CDMS Collaboration

et al., 2013), and a refined estimate of the age of the Universe (Planck Collaboration et al.,

2013). That is only the tip of the iceberg though; since the beginning of the millennium

astronomers have a found evidence that Mars used to have substantial quantities of water on

its surface (Weitz & Parker, 2000; Fassett & Head, 2008; Rennó et al., 2009), confirmed that

our Galaxy is a barred spiral (Churchwell et al., 2009), found evidence of water ice on the

Moon (Pieters et al., 2009), observed a gas cloud spiralling into a black hole (Gillessen et al.,

2012), and taken the first images of an extra-solar planet (Chauvin et al., 2004). There have

been so many amazing discoveries that it is difficult to keep up with them. We have indeed,

to misquote an old proverb, been living in interesting times.

From my own perspective the most exciting development has been the continued, rapid

1
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rise of extra-solar planetary science to a position of prominence amongst astronomical re-

search. In the course of my PhD I have seen the tendrils of exoplanet1 research gradually

infiltrate other areas of astrophysics, so that more and more of astronomy seems to relate

back to these mysterious bodies. I have also witnessed public perception and excitement

about planets outside the Solar system grow with each new discovery as we uncover the full

diversity of other worlds.

1.1 A brief history of exoplanets

The idea that there might be planetary sized bodies outside of the Solar system has a long

history. The first real indication that they might exist was the discovery of circumstellar discs

(e.g. Smith & Terrile, 1984). After all, if there were discs of material around stars, then

surely that material could form planets and other bodies? But it took a lot longer until proof

was found that there really were other planets out there. That proof arrived from Wolszczan

& Frail (1992), who carefully measured variations in the pulse timing of the binary pulsar

PSR1257+12 and concluded that the observed variation was due to the presence of at least

two planet sized companions.

Following Wolszczan & Frail’s announcement, it was three years before the first planet

around a main sequence star was discovered. When 51 Pegasi b was announced (Mayor &

Queloz, 1995) it was very different to what had been expected: a Jovian-type gas giant orbit-

ing with semi-major axis smaller than that of Mercury. With the Solar system being the only

known example up to that point, it was naturally assumed that other planetary systems would

follow a similar pattern, with small rocky planets closer in and large, gaseous or icy planets

further out. 51 Pegasi b was therefore a surprise.

Astronomers were forced to reassess their assumptions and models of the formation and

configuration of planetary systems. Targeted searches for Jupiter-like planets, using specifi-

cally designed instruments, had been running for several years, and astronomers scrambled

to reanalyse the data from these programs. Other potential planetary signals were found and,

with the benefit of hindsight, some previously posited close-in brown dwarf companions were

considered in a new light. One example of such a process is the HD114762 system (Latham

et al., 1989), in which the radial velocity signal of a substellar companion was originally

1Throughout this thesis I shall use extra-solar planet and exoplanet interchangeably.
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thought to be a brown dwarf. It is now counted amongst the known extra-solar planets.

In the years since then the number of known planets has increased, with the rate of dis-

covery accelerating towards the present day. The current tally of known extra-solar planets

stands at 927, in 715 systems 2. The majority of these have been detected through radial

velocity monitoring or photometric transit observations, but contributions to this tally have

also been made by micro-lensing, direct imaging, and timing measurements.

There are actually approximately twenty different signatures by which the presence of an

extra-solar planet may be inferred (Perryman, 2000). Current instrumentation lacks the preci-

sion required to detect a significant fraction of these, but cutting-edge technology is bringing

more of them within our reach. The method with which I am most familiar is detection

through observations of photometric transits, the discovery rate from which initially lagged

behind that from radial velocity surveys. But the launch, and outstanding success, of the

Kepler space mission (Borucki et al., 2008) has led to greater parity between the two.

In the last few years the focus of exoplanet research has moved away from discovery

towards attempts look at elements of the bigger picture: characterisation of the systems, anal-

ysis of the global properties of the full population, and simulations of possible routes for the

formation and evolution of planetary systems. That’s not to say that discovery projects are

completely obsolete, as there will always be a drive for a larger data set (i.e. more planetary

systems). Rather that large-scale search projects require greater justification as far as their

science goals and required sample size are concerned. As such they are now more specialised,

and aimed at pushing into specific regimes that have yet to be fully explored. There are ongo-

ing and planned programs using the photometric transit (e.g. Borucki et al., 2008; Wheatley

et al., 2013) and radial velocity (e.g. Ge et al., 2008) methods, not to mention gravitational

micro-lensing (e.g. Dominik et al., 2008; Kains et al., 2013) and transit timing (Mazeh et al.,

2013). Each is able to make a unique contribution to our exoplanet census thanks to the

disparate sensitivity regimes of the different methods.

1.2 Planetary transits

The transit of a planet across the face of its host star causes a distinctive reduction in the flux

emitted by the star for the duration of the transit. This repeats every time the planet returns

2as listed on www.exoplanet.eu as of 2013 August 7th
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Figure 1.1: An illustration of the detectable changes that are caused by the transit of a star by an extra-
solar planet. The points t1, t2, t3, and t4 are known as the contact points, and mark the points at which
the star enters/leaves the stellar disc, and the start/end of the period during which the planet is completely
in front of the stellar disc. The impact parameter, b, is the shortest distance between the centre of the star
and the transit chord. The change in stellar flux is defined as ∆F, and causes a detectable photometric
signature.
A spectroscopic signature is also produced, and is visible in the stellar radial velocity curve. This arises
owing to the occultation by the planet of the blue-shifted and red-shifted stellar limbs, which affects the
radial velocity measurement.

to the same point in its orbit, and thus the orbital period can be determined if multiple transits

are detected. Knowledge of the period then enables the orbital separation of the planet from

its host star to be determined using Kepler’s third law.

The depth of a transit is defined as the difference between the average-in and -out of tran-

sit fluxes, divided by the average out-of-transit flux. This provides the ratio of the planetary
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and stellar radii, and varies with impact parameter (and observational wavelength) owing

to limb darkening. Accurately accounting for the effect of limb darkening on the transit

lightcurve remains a significant problem; no single model has proven most successful at char-

acterising limb-darkening, as the coefficients that are used depend on the wavelength being

used (the effect becomes stronger as the wavelength decreases), and require data with a high

signal-to-noise ratio (SNR) if they are to accurately replicate the observed variation in transit

depth. Nevertheless, there are some models which are widely used throughout the literature

(e.g. Claret, 2000, 2003, 2004a).

Until relatively recently transit searches were exclusively carried out from the ground by

wide-angle survey telescopes such as SuperWASP (Pollacco et al., 2006) and HATnet (Bakos

et al., 2002). However the vagaries of observing from the ground implicitly limit the SNR

and precision that are achievable by such instruments. In 2006 the COROT (COnvection,

ROtation and planetary Transits) satellite (Bordé et al., 2003) was launched, followed in 2009

by NASA’s Kepler mission (Borucki et al., 2008), which was designed specifically to search for

transiting terrestrial planets.

1.2.1 The WASP project

The Wide Angle Search for Planets (WASP) project is, to date, the most successful ground-

based transiting planet survey. It has discovered more than 100 planets; the majority of these

are similar in mass and radius to Jupiter, but the survey has also found several Saturn and

Neptune size objects, as well as one or two brown dwarfs.

WASP uses two survey telescopes to carry out its initial scan for potential transit signa-

tures: SuperWASP, on the Canary Islands, and WASP-S, in South Africa. Each consists of eight

off-the-shelf camera lenses, and measures the flux from thousands of stars every night. These

data are processed by an automatic search algorithm which identifies the most probable or-

bital and physical solution for the system based on the available data (Collier Cameron et al.,

2006, 2007).

This initial phase is an important one, and provides the first validation step for poten-

tial transiting planets. Four parameters are directly measurable from transit lightcurves: the

change in flux (∆F); the total duration (t4 − t1); the width of the ‘flat’ section of the transit

(t3− t2), and the orbital period (P). From these it is possible to derive ratios of the planetary

5



Chapter 1. Introduction

Figure 1.2: Photometric transit observations for the exoplanet WASP-93, obtained by the author using
the James Gregory Telescope at the University of St Andrews Observatory.

and stellar radii (Rp/Rs), and of the stellar radius and orbital semi-major axis (Rs/a), as well

as the impact parameter b. By using Kepler’s 3rd law it is then possible to determine the stellar

density (ρs) and, if the stellar mass is known, the stellar radius (Rs). For WASP candidates an

estimate of the stellar mass is made using the (J-K) colour of the target as listed in the 2MASS

database (Skrutskie et al., 2006). Planetary and orbital parameters then follow, and enable a

decision to be made regarding the plausibility of the transit being planetary in origin.

1.2.2 Candidate confirmation

To confirm that the signals detected by transit searches are truly planetary in origin, follow-

up observations are usually made. Precise photometric observations (see Figure 1.2) can be

used to pin down the stellar and planetary radii, as well as the ephemeris of the orbit, whilst

radial velocimetry is used in conjunction with this to obtain the mass of the planet. This

follow-up work is an essential part of the discovery process, as there are a variety of false

positive signals which can impersonate the effect of a planetary transit; eclipsing binary stars,

background blends, and hierarchical triple systems are just some of the examples of such

mimic sources (Collier Cameron et al., 2007). Some can often be easily ruled out through

either the shape of the transits, the depth of the transits, or a combination of both, and there

have been attempts to create diagnostics which can help to distinguish true planetary events

from binary star transits (e.g. Tingley & Sackett, 2005).
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Not all planet discoveries are able to be followed up. (Micro-lensing events, for exam-

ple, are non-repeatable, but a great deal of care is taken to ensure that the detections are

robust.) This is particularly a problem for Kepler as it pushes towards smaller and smaller

planets. Kepler discoveries are too small, or require too much telescope time, for traditional

follow-up to be viable. Thus the long list of Kepler ‘candidates’ as compared to their list of

‘planets’; many of the former are very strong candidate planets, but cannot be confirmed at

this time using the instruments that are available. The Kepler science team have managed to

create some very interesting, innovative methods for discovery confirmation (for example the

BLENDER routine, Torres et al. 2011), but for some of their candidates even these are unable

to completely rule out all false-positive scenarios.

SuperWASP follow-up

During my PhD I have been heavily involved in the follow-up program of the WASP project,

and have carried out both spectroscopic and photometric observations of extra-solar planet

candidates.

The main contribution that I made to the follow-up program was through photometric

candidate confirmation using the James Gregory Telescope at the University of St Andrews

observatory. Figure 1.2 shows an example of photometric transit observations that I made

as part of this program. Over the course of more than 70 nights I observed more than 45

candidate transiting systems; to date 5 have been confirmed as planetary in nature, while

several others remain strong candidates but require spectroscopic follow-up observations to

fully cement their planetary status.

I also made contributions to the radial-velocity program through observing runs at the

Observatoire de Haute-Provence (OHP) and at ESO’s La Silla site. My nine night run at the

OHP made use of the SOPHIE spectrograph, and directly led to confirmation of at least one

WASP planet. My two runs at La Silla were for ten nights and eight nights, using the HARPS

instrument.

1.3 What can transits tell us?

As well as the basic information already discussed, a transiting planet can provide a wealth of

detail about the stellar system that it is part of. The combination of photometric detection and
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radial velocity follow-up is a powerful one that can reveal a whole host of useful information.

1.3.1 Physical properties

One of the most important properties of a transiting system is the limited range of possible

system geometries that is imposed - since transits are visible the inclination of the system must

be well constrained. It is this which allows us, in combination with the aforementioned follow-

up observations, to place excellent limits on a planet’s mass and radius. This in turn provides

us with the information needed to determine planets’ bulk compositions. A remarkable range

of exoplanetary structures have been deduced, from gas giants similar to Jupiter or Saturn, to

planets with greatly extended atmospheres, massive cores, or a significant proportion of their

mass in the form of ices. The existence of ‘ocean planets’, which would have the majority of

their bulk composed of water, has also been postulated (Léger et al., 2004), and some may

have been discovered (Kaltenegger et al., 2013). Thanks to the contribution of the Kepler

satellite, we have even found planets with masses down to a few times that of the Earth,

including bodies which appear to be rocky in nature (e.g. Fressin et al., 2012; Barclay et al.,

2013).

The planetary interior models used to determine these compositions are commonly de-

rived from models of the Solar system planets, for which the composition is well known, with

the details of each layer varying from planet to planet depending on their observed proper-

ties (Baraffe et al., 2010). The majority of the Jovian exoplanets appear to follow a similar

structure: outer envelopes of hydrogen and helium, with some heavier metal enrichment, and

a core of heavy elements such as carbon, nitrogen, and oxygen in their volatile, molecular

forms. Some studies (e.g. Sudarsky et al., 2000) have also postulated the presence of silicate

and iron cloud decks, and it is thought that phase transitions may exist within planetary inte-

riors, particularly where hydrogen and helium are present (Chabrier, 2009), which can create

challenges for theoretical models of planetary structure.

Eclipse events, both primary (transits) and secondary, can also provide information on the

atmospheric composition and structure of the exoplanet involved. During a transit some of

the light from the star passes through the atmosphere of the planet, and spectroscopic obser-

vations of this light can reveal some of the atmosphere’s constituents. The height at which the

atmosphere is opaque to tangential rays is wavelength dependent, which leads to similarly

wavelength dependent changes in the ratio of the in- and out-of-transit spectra (Brown et al.,

8
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Figure 1.3: Left: Planetary mass as a function of orbital semi-major axis. Right: Planetary radius as
a function of orbital semi-major axis. In both plots the axes use logarithmic scales. Plots are taken from
www.exoplanet.eu
In both plots it is apparent that there are certain regions of parameter space which are more densely
populated than others. Planets found inside the red region in the left-hand panel were generally discovered
by wide, shallow, ground-based transit searches. The planet marked in blue is WASP-19, one of the systems
which will be discussed in Chapter 4.
The advent of the Kepler space mission has pushed the limit of the distribution towards the lower left
corner of both plots, whilst micro-lensing experiments probe the parameter space at the opposite corner of
the figures.

2002). If the transit is observed to be deeper in a particularly bandpass, then that implies

that the species which corresponds to that bandpass is present in the planet’s atmosphere

(Charbonneau et al., 2002). Observations at different wavelengths allow the presence, or

otherwise, of different chemical species to be deduced. Once a set of measurements for a

given planet has been built up they can be compared to model atmospheric spectra to gain

further information about the planet. These measurements are very difficult to carry out, and

can be subject to controversy (e.g. Swain et al., 2009; Gibson et al., 2011), but there is still

great excitement about their potential (Barstow et al., 2013).

1.3.2 Orbital parameters

Geometrical and temporal arguments for the visibility of planetary transits imply a selection

effect in favour of large planets at small orbital separations. As previously noted, the fact

that transits are visible limits the range of orbital inclinations, with the limiting value being

dependent on a/Rs. There is also a generally accepted minimum number of transit detections

required before a signal is considered a candidate; the closer the planet is to the star, the more

rapidly these repetitions can be seen. Finally, the larger the planet relative to its host star, the

greater the change in flux/transit depth, and the lower the SNR for which the signal will be

detectable.

9
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It is therefore not surprising that a large number of such planets have been found by transit

search programs. Many of them have masses and radii similar to Jupiter, but orbit their host

stars with semi-major axes less than or equal to that of Mercury (see the area marked in red in

Figure 1.3). Known as ‘hot Jupiters’, they have been discovered down to very small semi-major

axes (e.g. Hellier et al., 2009; Hebb et al., 2010; Sasselov, 2003). A large fraction of the known

hot Jupiters have been found by wide, shallow, ground-based transit searches, of which they

constitute the main harvest. Whilst such surveys were dominant, it was hot Jupiters which

were the most common form of known planet. But they are poorly represented in the Kepler

sample, indicating that they are actually rather rare.

Current theories of planet formation are unable to produce hot Jupiters in situ, as the

protoplanetary disc close-in to the star would be too hot for sufficiently massive cores to

form, preventing the planet from accumulating sufficient gas (Melo et al., 2006). The com-

monly held view is therefore that hot Jupiters formed further out from the star before moving

inwards under the influence of some migration mechanism. There are several competing hy-

potheses for what this mechanism might be, but conclusive evidence for one or more of them

being dominant has yet to emerge.

In the near future it may be possible to distinguish between them using the spectroscopic

transit signature (see Figure 1.1). This phenomenon provides information on the alignment of

the planetary orbit to the rotation of the host star, and will be discussed further in Chapters 5

and 6. When the angle between the orbital and rotation axes is measured, it is used to classify

the system as ‘aligned’ or ‘misaligned’ according to some pre-existing criterion (e.g. Winn

et al., 2010a).

Observations by the Kepler satellite have revealed a fascinating variety in the architecture

of planetary systems. Examples with almost every conceivable combination of single and

multiple planets, both gaseous and terrestrial, and with a wide range of orbital distances,

eccentricities, and periods have been found. The possibilities seem to be endless.

1.4 Star-planet interactions

Some hot Jupiters exhibit evidence of interactions with their host stars. There are three main

forms of such an interaction: magnetic; radiational, and gravitational. These can affect the

fundamental parameters of the star and/or planet, and can even change the course of the
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system’s evolution.

Examination of the minimum orbital separation for hot Jupiters reveals that the inner

limit of the distribution is at approximately twice the Roche limit, the orbital separation at

which a planet fills its Roche lobe and is tidally disrupted (Ford & Rasio, 2006). This agrees

with models of the distribution expected if the formation process leaves hot Jupiters on highly

eccentric orbits that are later circularised (Ford & Rasio, 2006; Rice et al., 2008). It has also

been suggested that the limit results from tidal forces, or from extreme irradiation-induced

mass loss that causes planets to ‘evaporate’ before they reach the Roche limit (Ford & Rasio,

2006). It is likely that the true explanation is some combination of all of these explanations,

and of others that have yet to be determined.

1.4.1 Magnetic fields: chromospheric spots

Very close in hot Jupiters might interact with a star through their respective magnetic fields.

The stellar coronal field and the planet’s magnetosphere can interact to produce bright chro-

mospheric spots on the surface of the star. In the Solar system this has been observed in

the Jupiter-Io system, but the situation in hot Jupiter systems is analogous, and it has been

suggested that such spots might explain modulation in the chromospheric activity of some

extra-solar planets.

The chromospheric spots have been claimed to rotate in phase with the orbit of the planet,

rather than the rotation of the star, suggesting that they are induced by the planet rather than

resulting from a process within the star itself (Shkolnik et al., 2003, 2005). However, the

spots show an offset in phase compared to the longitude of the planet, with the magnitude of

the offset varying from system to system (Shkolnik et al., 2008). Moreover the modulation

phenomenon is not consistently observed, and in some cases the level of stellar activity was

found to be higher outside of the observed events than during them.

Several models have been proposed for chromospheric signature generation, including

Alfven waves and magnetic reconnection. Currently the latter seem to be provide the best

explanation, through energy dissipation in loops connecting the magnetic fields of the two

bodies (Lanza, priv. comm.). The available data are limited and few in number though, and

whilst it is clear that something is occurring, the root cause remains uncertain.

One alternative might be intermittent, excess absorption of the chromospheric activity
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indicators. A small number of very-hot Jupiter hosts have been found to be under-active

compared to other stars of similar spectral type, and it has been posited that a tail of material,

produced through atmospheric blow-off, might be the cause. (Fossati et al., 2013)

1.4.2 Radiation: atmospheric blow-off

One of the most obvious ways in which stars and planets can interact is through the star’s

radiation. The stellar wind radiates outwards from the star, and can interact with the planet’s

magnetosphere. Examples of this interaction are abundant in our own Solar system (e.g. the

Aurora Borealis), but the more extreme conditions that are found in many exoplanet systems

produce correspondingly more impressive results.

The mass and radius of a hot Jupiter can be strongly affected by the properties of its host’s

stellar wind, with the X-ray emission derived wind in particular having a large impact through

irradiation of the planet. The incident X-ray flux slowly strips the atmosphere away from the

planet by exciting molecules such that their velocities are greater than the planet’s escape

velocity. In principle this is easily detectable, as the stripping of the atmosphere will produce

an observably extended radius, which in turn results in a deeper transit. This can easily be

misconstrued as simply a bigger planet, with a correspondingly lower density, but in the case

of atmospheric stripping the depth of the transit will be wavelength dependent.

Such an effect has been observed for the exoplanet HD209458 (Vidal-Madjar et al., 2003),

which has been confirmed to be undergoing atmospheric loss owing to stellar irradiation

(Ehrenreich et al., 2008, and references therein). It has been suggested that the planet WASP-

12 b might be undergoing similar irradiation-induced mass loss (Fossati et al., 2013), but

alternative suggestions for the unusual transit profile have also been put forward (Vidotto

et al., 2010).

Other examples of atmospheric blow-off can be found in the literature.

1.4.3 Gravitation: tides

Some hot Jupiters are close enough to their host stars to be undergoing tidal interactions,

in a fashion analogous to the Earth-Moon system. There is a long history (Darwin, 1880) of

research into tides within the Solar system, as well as in binary stars. This has been extended

to hot Jupiter systems in recent years, with some interesting results. I will discuss this further
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in Chapter 3, and my own work on this area is the subject of Chapter 4.

1.5 Conclusion

As I alluded to at the start of the Chapter, it is an interesting and exciting time to be working

in the field of exoplanetary science. New discoveries are being made, new avenues of research

opened up, and new ideas put forward and tested every day. So much is in flux as our knowl-

edge of planets outside of the Solar system continues to evolve. We are gradually learning that

dynamical processes can shape planetary systems in chaotic and unpredictable ways, leading

to a bewildering variety of outcomes, some of which are catastrophic. By studying the evolu-

tionary paths to the various planetary end products, we can also learn about the importance

of catastrophic dynamical events such as the Late Heavy Bombardment in the history of our

own Solar system, and in the assembly of the one habitable planet that we know of.

In this thesis I will investigate one of the most consequential of these processes: the tidal

interactions between a planet and its host star. Using hot Jupiter systems, I will show that their

influence on the geography and history of planetary systems is marked. Figure 1.3 offers clues

that tides are gradually eroding the inner boundary of the planet distribution, but how severe

is this erosion? When does it happen? How long does it take? To answer these questions, we

must first study the host stars to establish ages for systems which offer an insight into tidal

processes. Only once these have been determined can we ascertain the role of tides in the

evolution of many of the physical and orbital parameters of extra-solar planetary systems.

Nota Bene

Throughout this thesis I have used the UTC time standard and Barycentric Julian Dates. My

results and analyses make use of the equatorial Solar and Jovian radii and masses, taken from

Allen’s Astrophysical Quantities. When discussing inclinations relative to the line of sight, I

use i to refer to the inclination of the planetary orbit, and I to refer to the inclination of the

stellar rotation axis.
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2
Age determination for exoplanet host stars

Facets of the stellar model fitting work presented in this Chapter have appeared in a

range of WASP discovery publications. All work discussed is my own.

Stellar ages are generally poorly understood, and poorly characterised. The root of the prob-

lem is that stellar age determination is a notoriously difficult exercise, owing to our incomplete

knowledge regarding the intricacies of stellar structure. Yet they are becoming increasingly

important as a stepping stone to a better understanding of planetary systems. As the focus of

the exoplanet community shifts from discovery to characterisation, the evolution of exoplanet

systems has become a hot topic. In order to fully comprehend the timescales involved in such

processes as planetary formation and destruction, orbital migration and circularisation, and

intra-system dynamical interactions, it is vital that we are able to accurately assess the ages of

exoplanet host stars.

A wide range of methods exist for the evaluation of stellar age. At first glance they seem

to use a disparate array of phenomena: X-ray activity; Hα emission; Ca II H and K emission;
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asteroseismology; lithium abundance; stellar rotation period, and Galactic space velocity are

just some of the examples. Yet on closer inspection the physical situation underlying this

assortment of techniques is both more simple and more complex than it might appear on the

surface, and many of the plethora of metrics and parameters can be traced back to the same

physical underpinnings: stellar rotation, and convective zone depth. Does this lead to broad

agreement between the different methods, or do they produce a broad span of estimates? Are

some of the methods more suitable, or reliable, in a given context than others? Is that even a

valid question to ask?

In this Chapter I will address these questions for two age estimation methods, stellar model

fitting and gyrochronology. I will apply these methods to a large sample of planetary systems,

and look at the overall properties of the set of results that I obtain. My sample consists of

137 planetary and brown dwarf systems. The majority (97) of these are the host stars for

the complete set of sub-stellar companions discovered by the WASP project as of 2013 March

1st, including many which have yet to be published but for which I was able to obtain data

through my collaborators. The remainder are systems with measured spin-orbit alignment, as

listed in the Holt-Rossiter-McLaughlin database of René Heller 1 as of 2013 January 10th.

2.1 The importance of spectral type

The temperature of a star determines its spectrum, from which both its broad-band colours

and spectral type can be found, thus determining many of its physical properties. Mass, radius,

and temperature, not to mention the very structure of the star, are governed by the spectral

type. The last of these has particularly far-reaching consequences. Is the star fully convective,

or does it have a radiative core? How large and massive is the surface convective zone com-

pared to the global mass and radius of the star? These points plays a role in many observable

quantities, including tidal strength (Zahn, 1977), the properties of the stellar magnetic field

and wind, stellar activity (Noyes et al., 1984a), and the mixing processes that govern stellar

abundances.

The effects of spectral type on the physical properties of a star can be characterised

through the use of theoretical models of stellar evolution. In fact the global properties of

a star are entirely determined by its mass, age, rotation, and chemical composition (Vogt,

1www.aip.de/People/RHeller
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1926; Russell, 1927). Many different sets of models are available for determining these prop-

erties, but they are all predicated on the same basic idea. A choice of input physics is made,

and a set of initial parameters chosen. These parameters are then evolved according to the

chosen physical principles, and the evolution of the stellar parameters recorded at each time

step. This is repeated for a large number of initial parameter sets to build up a grid results

such that the parameters of a star of a particular spectral type at a particular age can be found.

Although different sets of stellar models may appear to be very different, Southworth

(2009) noted that they are often based on the same, or similar, physical underpinnings as

each other, differing only in their implementation of said physics.

2.1.1 Stellar model fitting

Stellar model fitting (also known as isochrone fitting) as a means of stellar age estimation is

fairly ubiquitous. This method’s widespread use probably originates from its adaptability, and

from the relative simplicity of its implementation. At its core the method simply compares

measured stellar parameters to theoretical models appropriate for the metallicity, [M/H], of

the star being examined. The underlying physics, however, can be complex, as these models

require detailed knowledge (or assumptions) of stellar structure. For some other methods,

such as asteroseismology, this is not the case.

When used for this purpose, the model data are usually presented as isochrones, lines of

constant age with varying spectral type, rather than as lines of constant mass with varying age

(mass tracks). [Fe/H] is widely used, including for the work presented herein, as an easily

available proxy for overall metallicity, assuming that all other elemental abundances follow

Solar ratios; this is not strictly correct, and there is evidence (e.g Edvardsson et al., 1993)

that the Solar [M g/Fe], [O/Fe], and [Al/Fe] differ from mean field star values. However

the creation of stellar models requires that assumptions be made regarding Solar abundances,

for which the commonly assumed values have changed over time, and are in fact still debated

(Asplund et al., 2006; Lodders, 2010; Basu & Antia, 2013). I use a value of Z� = 0.0189.

There is also a well-established trend between iron abundance and overall metallicity in both

field stars and exoplanet hosts (e.g Bodaghee et al., 2003; Gilli et al., 2006), although recent

studies show that the latter are overabundant in metals (Neves et al., 2009; Adibekyan et al.,

2012).
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Traditionally, the effective temperature, Teff was measured from high resolution spectra

and, in conjunction with the absolute stellar magnitude Mv, interpolated through the theo-

retical data to obtain estimates of the stellar radius, stellar mass, and stellar age for the star

(e.g. Edvardsson et al., 1993; Lachaume et al., 1999). For cases in which the distance to

the object is poorly known, some studies replaced Mv with the stellar surface gravity, log(gs)

(e.g. Konacki et al., 2005; Bouchy et al., 2005). This can often be difficult to determine pre-

cisely however, even with very high quality spectra, but transiting planets offer an alternative

choice of parameter space. The geometry of a transit means that the stellar density can be

constrained to high precision using high signal-to-noise transit photometry (Seager & Mallén-

Ornelas, 2003). Modern attempts at isochronal analysis in exoplanetary studies therefore tend

to use the parameter space of [Teff, (ρs/ρ�)−1/3] (Sozzetti et al., 2007).

Limitations

As previously mentioned, one of advantages of the stellar model fitting procedure is its sim-

plicity. Very little data is required, and it is easily extendable through variation in the choice

of stellar models used. The method is also applicable to a broad range of spectral types, in

principal. But in reality, there are regions of parameter space in which it is difficult to obtain

useful results.

In particular, it can be hard to find the ages of stars with spectral type later than mid-late G.

These stars have nuclear burning timescales that are longer than the age of the Galactic disc.

Such stars evolve very slowly, and have effective temperatures such that they fall into regions

of parameter space in which theoretical isochrones are closely spaced (see Figure 2.1). This

makes determining accurate and precise ages very difficult, even if the physical parameters

of the star are well constrained, as even small error bars in Teff and ρ−1/3 can cover a wide

range of ages. As far as exoplanet hosts are concerned, Triaud (2011) suggested that stars with

Ms < 1.2 M� were particularly problematic. The complex shapes of isochrones, particularly

near the main-sequence (MS) turn-off, can also present issues, and interpolating through

them is not always a valid approach owing to their non-uniform spacing (Soderblom, 2010).

In addition, the less pronounced radius increase (and therefore density decrease) during the

MS lifetime, τMS, of low mass stars compared to their more massive relations has an impact

on age estimates.

One also has to be aware of the limits on the area of parameter space that the chosen

18



2.2. Stellar rotation as a fundamental parameter

stellar models cover, and of the format of those models. The minimum and maximum stellar

mass are rarely problematic given the propensity for the host stars of transiting exoplanets

to be of F or G spectral type and therefore broadly similar to the Sun (Bentley e.g. 2010, for

WASP targets; Batalha et al. e.g. 2010, for Kepler targets). However the lower and upper

limits on the stellar age are much more likely to come into play, and in some sets of stellar

models the maximum isochrone age is greater than the currently accepted age of the Universe!

In addition, most stellar model formulations struggle with very young systems, as close to the

zero-age MS the isochrones compact, leading to similar problems as experienced with K- and

M-dwarfs.

The choice of stellar model being used can have a large impact on the derived properties

of planetary systems, particularly through the introduction of systematic errors (Southworth,

2009). This suggests that multiple sets of stellar models should be used if at all possible, in

preference to relying on a single formulation.

2.2 Stellar rotation as a fundamental parameter

Stellar rotation plays a central role in governing many of emergent properties of the stars that

we observe. Several of the metrics that are used for determining stellar age can be traced

back to stellar rotation, and in some sense are merely acting as its proxies.

Research linking stellar rotation to activity, for example, has a long history. Vaughan

et al. (1981) noted that many ‘cool’ stars appeared to exhibit quasi-periodic variation in their

chromospheric activity level, as measured using emission in the Ca II H and K spectral lines.

This was followed up by Noyes et al. (1984a,b), who found that the period of the activity cycle

could be linked to the rotation period through the convective turnover time. They also found

that, for slowly rotating stars, there was an additional dependence on stellar structure as

parametrized by spectral type. These results are not surprising, as stellar activity is known to

be correlated with the surface magnetic field, which is influenced by rotation (via convection

within the star as a result of the stellar dynamo) and spectral type. The Noyes et al. equation,

Pcyc ∝ P(1.25±0.5)
rot (2.1)

linking the cycle period of chromospheric activity, Pcyc, and rotation period, Prot, is merely the

fundamental expression of these interdependencies.
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In light of this relationship, stellar activity is often used as a proxy for stellar age (e.g.

Soderblom et al., 1991; Donahue, 1993; Mamajek & Hillenbrand, 2008), although many for-

mulations provide implausible ages for both very active and very inactive stars (Mamajek &

Hillenbrand, 2008). In this way it is possible to indirectly use stellar rotation as a proxy for

age. But it is also possible to use the rotation of a star to directly infer its age.

Although it had been suggested by several authors that stellar rotation could change over

time (Parker, 1958; Schatzman, 1962; Kraft, 1967), the link between rotation and age was

first characterised by Skumanich (1972) in the well-known Skumanich law,

Prot ∝ tζ, (2.2)

which relates stellar rotation period to time. Since that landmark paper a substantial body of

work has built up that looks at the relationship between stellar rotation and age (see Barnes

& Kim (2010) for an excellent summary of the history of stellar rotation studies), and the

Skumanich law continues to provide a solid foundation for such work.

2.2.1 The Skumanich exponent, ζ

Skumanich (1972) suggested a value for the Skumanich exponent of ζ = 0.5, but more re-

cent work has shown that no single value of the exponent is able to correctly reproduce the

observed rotational period distributions for all stellar populations. For example, the period

distributions of stars in open clusters are not adequately described using ζ = 0.5, and a dis-

continuity in the relationship between Prot and spectral type has been observed in the Hyades,

Praesepe, and M37 clusters. In the Hyades this break appears at spectral types K8-M2 (Scholz

& Eislöffel, 2007), in Praesepe it seems to occur at around M1 spectral type (Covey et al.,

2011), or 0.3− 0.65 M� (Delorme et al., 2011a; Scholz et al., 2011), and in M37 it is found

at around 0.8 M� (Hartman et al., 2009). It seems likely that these breaks arise as a result of

the aforementioned difference in structure between very low mass stars and earlier spectral

types, although the loss of the radiative core happens at lower stellar mass than the break in

rotational period.

It is possible to determine a value for ζ using stellar cluster data. By plotting stellar (B-V)

colour as a function of rotation period, Prot, and fitting a curve to the data, the period-colour

relation for a given cluster can be determined (Stepien, 1988). This has been done for both the
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Hyades (Radick et al., 1987) and Pleiades (Hartman et al., 2010) clusters, and in combination

with their respective ages this allows a value of ζ to be calculated. This period-colour-age

relation can then be calibrated using data from other stellar clusters. The Coma-Berenices

cluster, for example, has also been studied (Collier Cameron et al., 2009), and an almost

linear relationship, similar to that for F, G, and K stars in the Hyades, found between (J-K)

colour and Prot. Using the Hyades to calibrate their observations, Collier Cameron et al. found

only a small deviation from the standard Skumanich exponent, obtaining ζ = 0.56. This

value has since been used by Delorme et al. (2011b) to analyse Praesepe in a similar manner.

These, and similar studies for other clusters such as NGC2301 (Sukhbold & Howell, 2009),

M34 (James et al., 2010), NGC6811 (Meibom et al., 2011), and M35 (Meibom et al., 2009),

show that although stars of any given spectral type can be born with disparate rotation rates,

the Prot distribution becomes narrower over time. This occurs owing to the fact that magnetic

braking affects rapidly rotating stars more strongly than slower rotators, so that the rate of

spin down increases with increasing initial rotation rate.

There is also evidence that the Skumanich exponent is not constant across the full colour

range. A value of ζ = 0.35 has been suggested for stars with 0.5 ® (J − K) ® 0.8 in Praesepe

(Agüeros et al., 2011), whilst a different study found that an exponential braking law,

Prot ∝ et/τ, (2.3)

with a mass-dependent τ reproduces the data for very low mass stars (Scholz et al., 2011).

Whatever the exponent, or indeed the precise equation, the principle behind the Sku-

manich law remains the same. The rotation of a star slows down as it ages. This fundamental

stellar property arises owing to the action of magnetic braking on isolated stars (Weber &

Davis, 1967)

2.2.2 Magnetic braking

Magnetic braking is most potent for stars with very strong magnetic fields, but it can be seen to

be acting on any star with a convective zone. This segment of the stellar structure is essential

for the generation, via the dynamo effect, of a star’s surface magnetic field (Reiners et al.,

2009), which couples to the rotation of the star. This generates a magnetic flux that in turn

couples to the stellar wind.

21



Chapter 2. Age determination for exoplanet host stars

Assuming a Weber-Davis model (Weber & Davis, 1967) for the stellar wind, then near the

stellar surface the magnetic field lines are radial. The stellar wind must follow these field

lines, and so the magnetic field exerts a torque on the wind. As the wind moves outward

the magnetic field (and therefore the applied torque) weakens, and the particles that make

up the stellar wind are free to travel along straight lines (when viewed in the initial frame

of reference). The wind particles effectively drag the stellar magnetic field lines with them,

forcing them into a spiral shape when viewed from above the rotation pole of the star. In the

co-rotating frame of reference it is motion of the stellar wind that is radial close to the star;

due to the reduced torque this particle outflow then curves backwards as the distance from the

stellar surface increases, conserving angular momentum and slowing the rotation of the star

(Reiners et al., 2009). Over the star’s main-sequence lifetime this causes the rotation period

to gradually increase, such that a precise measurement of the period can, given knowledge of

ζ, lead to an estimate of the stellar age through equation (2.2).

The strength of the magnetic braking torque is strongly dependent on the strength of the

stellar magnetic field, which is determined by the interior structure of the star (Scholz & Eis-

löffel, 2007). The size of the convective zone compared to the radiative core fundamentally

affects the dynamo action that generates the magnetic field; whilst fully convective stars are

capable of generating strong magnetic fields, the form of those fields is fundamentally differ-

ent to that found in stars with both convective and radiative components (Scholz & Eislöffel,

2007). It is also possible for the stellar dynamo to saturate at high rotation rates, restricting

the strength of the stellar magnetic field and therefore stetting an upper limit on the rate of

magnetic braking (Collier Cameron & Jianke, 1994). It is thought that for Sun like stars, this

saturation occurs at approximately ten times the solar rotation rate (Soderblom, 1998).

2.2.3 Gyrochronology

The strong link between stellar rotation and time that is encapsulated in equation (2.2) allows

rotation period to be used as a proxy for stellar age. Gyrochronology, a method for determin-

ing a cool star’s age through measurement of its rotation period and colour, was suggested by

Barnes (2003) and developed in Barnes (2007). It arose from observations showing that by

the age of the Hyades, the rotation of stars in stellar clusters tends to converge onto a single

period-colour-age relation. As a model independent method it can provide a useful alternative

to isochronal fitting, or to other age estimation procedures that require measurement of the
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distance to the star in question.

Calibrating with transiting planets

As well as being useful for stellar model fitting, planetary systems are also useful calibrators for

gyrochronology. The radial velocity follow-up which is carried out as part of the confirmation

process for most transiting planets (see Chapter 1, section 1.2.2) provides measurement of

the projected rotation velocity, v sin I , of the star. This is often constrained to high precision,

particularly for more rapidly rotating stars where the ambiguity of rotation as compared to

macroturbulence effects is reduced, and can therefore be used to provide reasonably well-

constrained rotation periods.

It is also sometimes possible to determine the rotation period from high-precision pho-

tometric follow-up. For active stars, the presence of star spots in the transit chord leads to

visible anomalies in the transit lightcurve. If the same starspot is present during consecutive

transits, then its movement through the transit can provide measurement of the rotation pe-

riod of the star (Silva-Valio, 2008; Dittmann et al., 2009; Sanchis-Ojeda et al., 2011). If the

host star is particularly active then rotational modulation can be seen in the out-of-transit

lightcurve (Alonso et al., 2008), and can be modelled to provide a measure of the rotation

period. If sufficiently precise photometry is available, for example from the Kepler satellite,

then this is nearly always possible unless the active-region lifetime is much shorter than the

stelar rotation period (or the stars are particularly inactive).

These direct measurements are obviously preferable to an indirect calculation based on

v sin I and Rs.

Strengths and weaknesses

Barnes (2007) showed that this method provides age estimates that are more self-consistent

than those from either stellar model fitting or activity-age relations, and it has been demon-

strated that, if rotation periods have been measured and the equations correctly calibrated,

gyrochronology can provide ages with an accuracy of 10 percent for F, G, K, and M spectral

types (Collier Cameron et al., 2009; Mamajek & Hillenbrand, 2008; Delorme et al., 2011a).

These are significant caveats though, and in my sample there are few systems with measured
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rotation period. For the other systems, the rotation period is inferred using

Prot =
2πRs

v sin I
sin i. (2.4)

This is not an ideal situation; measurement errors on Rs and v sin I can very quickly propagate

into large errors in the rotation period, whilst v sin I can be difficult to measure for slowly

rotating stars. Furthermore, the sine function itself causes problems when determining the

inclination i, with sin i = 0.99±0.01 allowing 79◦ < i < 90◦ (Soderblom, 1985). Finally, Vican

(2012) found that, for a sample of stars observed by the DEBRIS survey, gyrochronology ages

calculated using directly measured Prot and inferred Prot differed by an average factor of 1.6

(see their figure 2). However, Soderblom (2010) claim that the use of v sin I is reasonable if

stellar rotation is the dominant contribution to line broadening.

The use of derived rotation periods is thus far from perfect, but is necessary if a suitable

sample size is to be reached. Using directly measured rotation periods is not a perfect solution

either though, as differential rotation on the stellar surface can produce discrepancies between

the measured value and the true equatorial rotation period (Soderblom, 2010).

One major problem with gyrochronology is that it is only applicable if the natural rota-

tional evolution of the star is allowed to progress without any outside influence. There are

several factors which can prevent this from happening. The most relevant in the context of

this thesis are the torques that act on both the star and its close-in exoplanets as a result of

tidal interactions (see Chapter 4). If the mass ratio and orbital semi-major axis are sufficiently

small, then these torques may be strong enough to overwhelm the natural spin-down, at least

for short periods of time, and either cause it to accelerate or slow down. If this, or some other

outside influence is present and not acknowledged, then the calibration of the gyrochronology

equations can be incorrect.

Another detail to consider is the presence of the magnetic braking boundary at mid-to-

late F spectral type. A previously observed discontinuity in the relationship between mass

and rotation rate was confirmed by Kraft (1967). Stars later than this break appear to have

less angular momentum for their mass than stars earlier than the break. Several hypotheses

for the presence of this jump in rotation rate were put forward, including the observation

that it coincided roughly with the appearance of the surface convective envelope, which had

been suggested by Schatzman (1962) to be necessary for the magnetic braking phenomenon
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previously discussed. The exact position of the break was solidified when (Wolff et al., 1986)

showed that stars with earlier spectral type than F8 show little-to-no relation between Prot

and stellar age. This is significantly earlier than the breaks in rotation period at M spectral

types seen in young stellar clusters (and mentioned previously).

The applicability of gyrochronology to stars above this break is therefore non-existent,

a fact which is sidestepped in Barnes (2007) by limiting the method to “solar-type (FGKM)

stars”. In fact stars earlier than F8 are usually disregarded when modelling the spin-down

rate of low mass stars (Stepien, 1988), and any study using gyrochronology should be wary

of utilising it more broadly than this. It is worth noting though that the early spectral types

at which gyrochronology breaks down are those for which stellar model fitting can provide

strong age constraints, such that the two methods are nicely complementary.

2.3 Implementation

Given some of the problems discussed in sections 2.1.1 and 2.2.3, I made the decision to

limit the parameter space in which I was working. I restricted myself to working only with

those systems which fell between spectral types F7 and G9 (inclusive). This was carried

out using the effective temperatures given in table B1 of Gray (2008), leading to limits of

6226 K≤ Teff ≤ 5273 K. This accounted for both the magnetic braking boundary problem

and the K-dwarf τMS issue, whilst retaining the sweet spot for ground-based transit surveys.

Applying these limits reduced my sample from its original size of 137 systems to only 73

systems.

2.3.1 Stellar model ages

There are generally two ways in which stellar models are presented: either evolutionary tracks

with fixed mass and varying time, or isochrones of a fixed age with varying mass, although

the latter are derived from the former. Evolutionary tracks are calculated covering a range of

stellar masses, using variable time steps. The isochrones are then interpolated through the

evolutionary tracks. Since the primary characteristic that I am trying to determine is stellar

age, I choose to work with isochrones where they are available.

Based on the homogeneous analysis of Southworth (2009, 2010), who considers several

different stellar model formulations and compares their effectiveness, accuracy, and precision,
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Figure 2.1: An illustration of the effect of my limited Teff parameter space on the Yonsei-Yale stellar
models. Left: The full set of stellar models, for ages from 0.1 Gyr to 20 Gyr. Right: The parameter space
available after accounting for some of the factors discussed in sections 2.1.1 and 2.2.3. The region marked
in red (bounded at Teff = 6226 K) shows the region disallowed by consideration of the magnetic braking
boundary, whilst the area in blue (bounded at Teff = 5273 K) indicates those systems with predicted main-
sequence lifetimes longer than the age of the Galactic disc.

I have chosen to use five sets of stellar models in my analysis. These are the Padova isochrones

(Girardi et al., 2010; Marigo et al., 2008), the Yonsei-Yale (YY) isochrones (Demarque et al.,

2004), the Teramo isochrones and evolutionary tracks (Pietrinferni et al., 2004), the Victoria-

Regina (VRSS) isochrones and evolutionary tracks (VandenBerg et al., 2006), and isochrones

from the Dartmouth Stellar Evolution database (DSEP; Dotter et al. 2008). Figure 2.2 illus-

trates the subtle differences between the appearance of the different models.

The main difficulty of stellar model fitting is that it is an attempt to fit a single point to a

three-dimensional ([Fe/H], Teff, (ρs/ρ�)−1/3) parameter space in order to derive associated

parameters (age and stellar mass, Ms/M�). The problem can trivially be reduced to a two-

dimensional one by considering only a single metallicity value at a time, which I achieve by

neglecting the uncertainty in [Fe/H], but this does little to reduce the difficulty of the task.

There are many possible fitting procedures. The simplest is to merely take the closest

isochrone as the age of the system, but this often provides only crude estimates and has an

accuracy that is constrained by the ages for which isochrones have been provided. A more

involved approach would be to find the two closest isochrones and interpolate between them.

Other approaches include the Bayesian approach of Pont & Eyer (2004).

I have chosen to describe the [Teff, (ρs/ρ�)−1/3] surface to which the stellar data is being
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Figure 2.2: Isochronal fits to four different sets of stellar models for the hot Jupiter host star WASP-19.
The solid black lines are isochrones of constant age, whilst the dashed red lines are evolutionary tracks
of constant mass. Stellar data and associated errors are shown in blue. Top left: Padova stellar models
of (left to right) 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0, 5.0, 6.3, 7.9, 10.0, and 12.6 Gyr, with interpolated
evolutionary tracks of (right to left) 0.9, 1.0, and 1.1 M� Top right: Yonsei-Yale stellar models of 1− 15
Gyr in 1 Gyr increments, with interpolated evolutionary tracks of 0.8, 0.9, 1.0, and 1.1 M�. Middle
left: Teramo stellar models o f1− 15 Gyr in 1 Gyr increments (omitting 4 Gyr) and evolutionary tracks of
0.7−1.1 M� in 0.1 M� increments. Middle right: VRSS stellar models of 1−15 Gyr, in 1 Gyr increments,
and evolutionary tracks of 0.7−1.1 M� in 0.1 M� increments. Bottom: DSEP stellar models of 1−15 Gyr,
in 1 Gyr increments, and evolutionary tracks of 0.8, 0.9, and 1.0 M�.
These figures illustrate the differences between the five stellar model formulations, particularly the differing
age ranges that they cover, and their varied appearances in the Teff−ρ−1/3 parameter space used to carry
out the fits.
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fit, and then to use this description to define a small plane over which I can interpolate the

stellar data. For this purpose I use a Delaunay triangulation, computed for a sub-region of

the full stellar model parameter space that is centred on the measured stellar parameters.

Computing the triangulation for the complete set of isochrones or evolutionary tracks is time-

intensive, and restricting the routine to this sub-region decreases runtime significantly.

Delaunay triangulation

Delaunay triangulation is a particular method for creating a triangular mesh for a set of data

points. It is built upon work by Delaunay (1934), but has since been heavily developed (e.g.

Pál & Bakos, 2006; Lin & Manocha, 1996). I have used the implementation of J. Bernal (see

Bernal 1988, 1991, for example ).

There are several specific properties of a Delaunay triangulation that distinguish it from

other triangulation methods (see Figure 2.3). First, it maximises the minimum angle within

the triangulation, avoiding distorted, ‘skinny’ triangles. Second, no data other than the ver-

tices of a given triangle may lie within its circumcircle. Third, for any pair of triangles, the

sum of the angles opposite their common side must be less than 180o. This last property is

particularly useful, as it allows the use of a technique known as “edge swapping”. If a pair

of triangles does not meet the third criterion, then swapping the common side such that it

bisects those angles creates a Delaunay pair (Figure 2.4). In my implementation, which incre-

mentally expands the triangulation by adding a single triangle at a time, this process is used

to optimise the initially computed triangulation.

Calculating age

Once the triangulation is complete the task of interpolating for the measured stellar data is

simplified. I use one of the triangulation routines to identify the component of the triangula-

tion that encloses the measured parameters that I am trying to fit to the model data. I then

linearly interpolate through the selected triangle, using a method described in (Press et al.,

2007), to identify the age that would be associated with a model data at the same location as

the measured parameters.

The ‘centroid’ of a triangle lies at the intersection of the lines joining the triangles vertices

to the midpoints of their opposing sides (see Figure 2.5) By definition it is the point where the

areasA (abM),A (bcM), andA (caM) are equal, and it’s coordinates are given by
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Figure 2.3: A schematic example of Delaunay triangulation as applied to stellar isochrones. The black
circles represent the model data that make up the isochrones (red lines), whilst the blue square, point q,
represents the measured stellar data. The triangulation is computed such that the minimum angle across
all of the triangles produced is as large as possible. The grey arcs show the circumcircles of the triangles;
each circumcircle contains only the data that form the vertices of the corresponding triangle.
Once this triangulation is complete, the triangle containing point q is identified. The vertices of this triangle
are then used to interpolate the measured stellar data (see Figure 2.5).
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Figure 2.4: An example of the edge swapping procedure used to check for Delaunay compliance, and to
optimise the final triangulation. Left: The sum of angles α and γ is greater than 180◦. This pair of
triangles is therefore not a Delaunay pair. Middle: The circumcircles of the two triangles intersect with the
fourth vertex in the pair, also rendering the triangulation non-Delaunay. Right: Swapping the line D-B to
the line A-C makes this pair of triangles Delaunay compliant. The opposing angles now add up to less than
180◦, and the two circumcircles contain only the vertices of their respective triangles.
As each datum is added to the triangulation, the new triangles that are created are checked for Delaunay
compliance, and modified if necessary using this procedure. Once the triangulation is complete, edge
swapping is used to optimise the solution.

Mi=0,1 =
1

3
(ai + bi + ci). (2.5)

By extension, any point in the plane defined by the triangles vertices can be defined as a linear

combination of the three vertices, with coefficients that sum to unity:

q= αa+ βb+ γc (2.6)

For any given point, the coefficients (weights) can be determined using the areas of the plane

and of the three component triangles:

α = A (bcq)/A (abc) (2.7)

β = A (caq)/A (abc) (2.8)

γ = A (abq)/A (abc) (2.9)

Since the [Teff, (ρs/ρ�)−1/3] coordinates for the vertices of the triangle enclosing the mea-

sured parameters are known, it is trivial to calculate these weights. The ages known to cor-

respond to the same vertices can then be used alongside the weights to calculate the age cor-

responding to the measured parameters using equation (2.6). This method provides a unique
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Figure 2.5: An illustration of the coordinates used for my age interpolation routine. a, b, and c, the black
circles, are the vertices of the triangle that has been selected from Figure 2.3 as containing the measured
stellar parameters, which are found at point q, the blue square. M is the ‘centroid’ of the selected triangle.
Each vertex is given a weight according to the ratio of the areas of the component triangles (abq, bcq, and
caq) to the area of the enclosing triangle (abc). These weights are then used to interpolate the age at q
according to equation (2.6).

solution, as the three vertices of the triangle define a unique plane in three dimensions (Press

et al., 2007).

The specific property of the Delaunay triangulation to maximise the minimum angle of all

triangles is particularly important in this context, as the stellar model data are not distributed

uniformly in [Teff, (ρs/ρ�)−1/3] parameter space. Making the triangles as equi-angular as

possible helps with the interpolation process, as it decreases the chance that two vertices will

share an age.

Uncertainties in the calculated age are determined by following the same interpolation

procedure using data corresponding to eight points around the error ellipse. These are the

extremes of the error bars on Teff and (ρs/ρ�)−1/3, and the points at 45◦ between the error
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bars. The shape of the isochrones and evolutionary tracks is such that simply using the error

bars can underestimate the uncertainty in the age; using the intermediate points helps to

alleviate this. Using additional points around the error ellipse would obviously increase the

accuracy of the uncertainties, but would also decrease the efficiency of the fitting routine.

After determining the age of the system, an estimate for the stellar mass and its associ-

ated uncertainties is produced in the same fashion. If separate evolutionary tracks are avail-

able then the triangulation and search procedure is repeated using these, otherwise data

from the isochrones is interpolated. Note that this is carried out in a 2-dimensional plane in

[Teff, (ρs/ρ�)−1/3] parameter space for a specified [Fe/H]; the uncertainty in the metallicity is

not accounted for in this analysis.

2.3.2 Gyrochronology calculations

I have used three different formulations of the Prot-colour-age relation to calculate ages for

the systems listed in Table A.1. The first is from Barnes (2007), but uses updated coefficients

from Meibom et al. (2009) and James et al. (2010) that were derived from studies of the M35

and M34 clusters respectively.

log(t/G yr) =
1

0.5344

�

log(P)− log(0.770)− 0.553 log(B− V − 0.472)
�

(2.10)

The second formulation was derived from the period-colour relation for the Coma-Berenices

cluster by Collier Cameron et al. (2009):

t = 591
�

P

9.30+ 10.39(J − K − 0.504)

�
1

0.56

Myr (2.11)

The third and final formulation is similar to equation 2.11, but was derived by Delorme

et al. (2011b) using a study of the Hyades cluster:

t = 625
�

P

10.603+ 12.314(J − K − 0.570)

�
1

0.56

Myr (2.12)

To calculate the ages I used data from the papers listed as references in Table A.2. Broad-

band colour indices for the WASP systems were derived using data from NOMAD (Zacharias

et al., 2004) and 2MASS (Skrutskie et al., 2006) for the (B-V) and (J-K) colours respectively,
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whilst those for the other systems were taken from the SIMBAD online data repository2.

For systems with available stellar rotation period measurements, I created a Gaussian

distribution with mean and variance set to the listed value and 1σ error respectively. The

distribution was sampled 10,000 times, and for each sample I calculated age estimates using

equations (2.10), (2.11), and (2.12). The age estimates in Table A.2 were then calculated

by sorting the results, calculating the median, and finding the values which encompassed the

central 68.3 percent of the dataset.

For the majority of the planetary systems in my sample there exists no direct measurement

of the stellar rotation period. For these cases I sampled Gaussian distributions for the projected

stellar rotation, v sin I , the orbital inclination, i, and the stellar radius, Rs, 10,000 times in the

same manner as described previously. For each set of sampled data I calculated the rotation

period using equation (2.4), assuming that the systems are aligned along the line of sight such

that i = I , and then used the gyrochronology equations to calculate age estimates. The values

for Prot and age listed in Table A.2 are all the medians of their respective sampled datasets,

with 1σ error bars as before.

2.4 Results and discussion

I calculated stellar ages for all of the systems in my sample using all five of the stellar model

sets, and all three gyrochronology formulations. The results that I obtained can be found in

Appendix A.

In the discussion that follows I will concentrate on the results for the Yonsei-Yale stellar

models, and for my second gyrochronology formulation (Equation 2.11). Similar analysis for

the other combinations can be found in Appendix B. All comparisons between different meth-

ods utilise only those systems with valid results for both methods. The maximum permitted

age for any star was set to the current best estimate of the age of the Universe (Planck Col-

laboration et al., 2013, and other papers in the series); systems with calculated ages greater

than this were disregarded. This is perhaps a somewhat unrealistic upper bound; the age of

the Galactic disc might be more suitable, and is thought to be somewhat younger than the

Universe, but using that introduces its own set of problems. Do the thick and thin discs have

the same age, and if not, which should be used? Or should the sample be split up by popula-

2http://simbad.u-strasbg.fr/simbad/
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tion, and if so how would that be done (disc component membership is a difficult attribute to

characterise)? For simplicity, I have stuck to the age of the Universe.

2.4.1 Comparing the methods

My initial point of comparison between the two methods was a simple scatter plot. The

dashed line in Figure 2.6 denotes y = x , and in the case where the two methods provided

similar answers, I would expect a tightly correlated sequence centred on the line (within

errors). However there are a preponderance of points lying towards the isochronal side of

the line, suggesting that stellar model fitting tends to return ages that are older than those

preferred by gyrochronological methods.

Another interesting facet of Figure 2.6 is the distribution of the points along both axes.

More than half of the systems lie within a region defined by agegyro < 4 Gyr and ageiso <

6 Gyr. This is not entirely surprising given the region of parameter space to which I have

restricted the study. Rough estimates of τMS for stars at the limit of my parameter space are

τMS = 3.5 Gyr for an F7 star and τMS = 11.4 Gyr for a G9 star (using masses from table B1

of Gray 2008). A drop-off after roughly 4 Gyr is consistent with this, as systems at the hotter

end of the parameter range start to evolve off the MS, and are therefore no longer targeted

by transit search programs.

In terms of the different methods, 75 percent of the gyrochronology estimates are less

than 4 Gyr, with the youngest and oldest systems being 0.14 and 9.68 Gyr old respectively.

For the stellar model fitting estimates, 68 percent are younger than 6 Gyr, with the estimates

ranging from 1.45 to 13.4 Gyr. It therefore seems that gyrochronology tends to return stellar

age estimates which occupy a slightly more narrow range, and which are more biased towards

younger ages than the results from stellar model fitting.

The distributions for the different methods highlight the difference between the stellar

model fitting and gyrochronology methods. Binning the data in 1 Gyr increments produced

the distributions shown in Figure 2.7. Both show a similar overall structure, with a peak at

the lower end of their age range followed by a tail towards older systems, but the peaks

and median values of the two distributions differ by around 2 Gyr, with the gyrochronology

distribution clearly peaking at a younger age. A 2D Kolmogorov-Smirnov (KS) test on the two

datasets indicates that there is a less than 1 percent probability of the two having a common
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Figure 2.6: Gyrochronology age, calculated using equation (2.11), as a function of stellar model fitting
age, found using the Yonsei-Yale isochrones. The dashed line denotes y = x; systems clustered around
this line show similar age values for different methods of calculation. The maximum age on both axes
is set to the age of the Universe. Direct measurements of the stellar rotation period were available for
systems marked in blue. For systems marked in black, Prot was inferred from v sin I and Rs. It appears that
gyrochronology tends to return younger system ages than stellar model fitting.

parent distribution.

One drawback of the KS test is that it fails to account for the uncertainties in my age

estimations. I therefore evaluated the χ2 goodness-of-fit of my data to the line ageGyro =

ageIso,

χ2 = Σ
(ageGyro− ageIso)

2

σ2
Gyro+σ

2
Iso

, (2.13)

where σGyro and σIso are the average uncertainties in each value of the gyrochronological

and isochrone fitting ages respectively. I found that χ2 = 698.2, with a reduced value of

χ2
red = 9.8, suggesting that my ages are a poor fit for the null hypothesis that the two methods

return the same age values. The P-value for this result is P(χ2) ∼ 0, a strong indication of

significance.

2.4.2 ∆age analysis

To further investigate this bias, I calculated the differences between the two ages for each of

the systems in my sample. I then binned the results in 0.1 Gyr increments and produced a

cumulative probability distribution, Figure 2.8. If the two methods were producing broadly

similar results, then I would expect that the distribution would pass through the intersection
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Figure 2.7: Age distributions for the results that I obtained from stellar model fitting using the Yonsei-Yale
isochrones, and from gyrochronology using equation (2.11). The gyrochronology (blue, open) distribution
seems to peak at a younger age than the distribution for stellar model fitting (black, hashed). Thick,
vertical lines denote the medians of the distributions, and show the same offset.

of the lines ∆age = 0 and probability = 0.5. Given the preliminary results from the previous

section this is unlikely to be the case, but the deviation from this ‘ideal case’ will be interesting

to characterise.

Figure 2.8 shows an apparent offset towards positive ∆age, in line with the conclusion

from the previous section that stellar model fitting is returning ages which are slightly older

than those from gyrochronology. The distribution passes through probability= 0.5 at 2.3 Gyr,

which roughly corresponds to the offset between medians seen in Figure 2.7. The average

upper and lower error bars on ∆age are 4.2 and 2.1 Gyr respectively, so this is a 1.1σ effect.

For comparison, all the other possible combinations of stellar models and gyrochronology

equations also show positive offsets of between 2.2 and 4.1 Gyr, giving significance of between

1.2σ and 2.7σ for the effect.

It seems that there might be a disagreement between the ages that are produced by gy-

rochronology and stellar model fitting. Does this correlate with a physical parameter in the

systems that I am studying? Is it that stellar model fitting is overestimating ages, or that

gyrochronology is underestimating ages (or a combination of the two)?
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Figure 2.8: A cumulative probability distribution for the difference between the age results obtained by
stellar model fitting using the Yonsei-Yale isochonres, and by gyrochronology using equation (2.11). The
dotted lines denote ∆age = 0 and probability = 0.5. If the two methods produced similar stellar age
distributions, the plot would pass through the intersection of these lines. The x -axis range is ± the age of
the Universe. There is an apparent offset towards positive∆age, again suggesting that stellar model fitting
is returning ages which are older than those from gyrochronology.

2.4.3 The influence of tidal interactions

One possibility might be that the spin rate of the star is being modified somehow. As noted

in Section 2.2.3, gyrochronology is only applicable if no external factors act to modify the

natural stellar spin-down, but if hot Jupiter host stars are rotating more rapidly than expected

then their age would be underestimated.

Angular momentum exchange between the star and the planet’s orbit provides one route

by which such a scenario might play out. The chief method of angular momentum exchange

within planetary systems is through tidal interaction, which has well-documented conse-

quences for stellar spin. This process will be investigated further in Chapter 4; in the context

of this Chapter, I am interested in the possibility of a link between the strength of the tidal

interactions and the magnitude of the difference between my age estimates.

To investigate this possibility I calculated the theoretical tidal timescale for each of my sys-

tems using equations from Albrecht et al. (2012b). They present two different approaches for

estimating the tidal evolution timescales for hot Jupiter systems, and calculate said timescale

for a large sample of planets for which the Rossiter-McLaughlin effect has been measured. In
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their paper they present two approaches. In the first they consider a bimodal sample of planet

hosting stars: those with convective envelopes, and those with radiative envelopes. In the

second approach they consider the mass of the convective envelope, which they link to stellar

effective temperature. Unfortunately this second approach relies on an unspecified propor-

tionality constant, and the relation between Teff and MCZ that they derived is also unknown.

I therefore consider their first approach, which is encapsulated in the equations

1

τCE
=

1

10 · 109 q2
�

a/Rs

40

�−6

(2.14)

and
1

τRA
=

1

0.25 · 5 · 109 q2 �1+ q
�5/6

�

a/Rs

6

�−17/2

, (2.15)

where q = Mp/Ms is the ratio of the planetary and stellar masses, a is the planet’s orbital

semi-major axis, and Rs is the stellar radius. Both equations return a timescale in years. τCE

is the tidal timescale for alignment through dissipation in convective envelopes, whilst τRA

is the equivalent dissipation in radiative envelopes. The choice of which to apply to any

given system is determined by its effective temperature. For systems with Teff < 6250 K I use

equation (2.14), whilst for the remaining systems I use equation (2.15).

In Figure 2.9 I plot∆age as a function of tidal timescale. If angular momentum exchange is

the cause of the discrepancy between the two age estimation methods, then I would expect the

difference to be greatest for systems with the shortest tidal timescales (i.e. the strongest tides).

Unfortunately the evidence is inconclusive. For the main body of the sample, there might be

a slight tendency for ∆age to increase as τtidal decreases, but the size of the uncertainties on

the former mean that any conclusion is tentative at best. The slight trend is also countered

somewhat by a single system for which both quantities are large, although∆age for the system

is only an upper limit.

Considering only the stars in my sample with directly measured rotation period (the blue

data in Figure 2.9) reveals a stronger trend, but a sample size of only seven systems means

that this must also, for the moment, remain a tentative conclusion.
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Figure 2.9: ∆age as a function of τtidal, the tidal realignment timescale. The shorter the timescale, the
stronger the tidal interactions within the system, and the greater the angular momentum exchange. There
appears to be a slight trend for ∆age to increase with decreasing τtidal, but the evidence is inconclusive.
Legend as for Figure 2.6.
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Figure 2.10: ∆age as a function of Teff, the stellar effective temperature. There is a clear trend for ∆age
to increase with decreasing Teff, towards later spectral types. Legend as for Figure 2.6.

2.4.4 A link with spectral type?

Another possible reason for the discrepancy between the two different methods might be some

bias with spectral type, which could affect either the isochrone or gyrochronology results. To

see whether any such trend is exhibited in my sample, I plotted∆age as a function of effective

temperature. Figure 2.10 shows a possible trend for the difference in age to increase as Teff

decreases.

From Figure 2.11 it seems that there might be some difference in the dependence on Teff

between the two methods. The gyrochronology results are distributed evenly across the tem-
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Figure 2.11: Age as a function of stellar effective temperature. Left: Ages calculated through stellar model
fitting using the Yonsei-Yale isochrones. Right: Ages calculated through gyrochronology using (2.11).
Legend as for Figure 2.6. Whilst the ages from stellar model fitting show the same trend with Teff as ∆age,
the ages from gyrochronology show no such trend.

perature range that I am considering, with a roughly equal number of both old and young

systems at all temperatures, although the uncertainty on the age estimates increases dramati-

cally for age¦ 4 Gyr. In contrast, the isochrone results seem to show a trend with Teff, with the

oldest stars also being the coolest; this is a selection effect, as old, hot stars will have evolved

off the main sequence. There is also a strong trend in the uncertainties on the isochrone

results, with the younger, hotter stars exhibiting more precise ages. The trend in ∆age with

temperature therefore seems to result entirely from the isochronal results.

This dependence of the stellar model fitting uncertainties on stellar effective temperature

concurs with a study by Pont & Eyer (2004), who noted that the size of the observational

uncertainties relative to the separation of the isochrones was an important parameter for

stellar model fitting, and one which was most favourable for young, hot, early-type systems.

My sample has revealed some interesting potential differences between the ages obtained

using the stellar model fitting and gyrochronology methods. Whilst the range of ages covered

by the two methods is broadly similar, the way that those ranges are occupied is somewhat

different. It therefore seems as though the questions that I asked at the start of this Chapter
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are indeed valid. Whilst gyrochronology might provide more precise age values, their ac-

curacy could be suspect for systems that are experiencing strong tidal interactions, leading

to discrepancies between the results from the two methods. This discrepancy appears to be

around 2 Gyrs on average, and might suggest that the stellar rotational clock of exoplanet

hosts is reset at approximately this age. If hot Jupiters form through Kozai migration followed

by tidal migration and circularisation (see Chapters 5 and 6), the discrepancy in age estimates

could provide useful information on the delay between the formation of the system and the

appearance of the hot Jupiter.

2.5 Systems with measured spin-orbit angles

An area of planet research where tides are widely thought to play a role is the angle of

alignment between the stellar spin axis and the planet’s orbital axis. Examining a sample of

planetary systems for which this angle has been measured might therefore be able to shed

more light on whether tidal interactions influence the estimation of stellar age.

The topic of spin-orbit angles will be the subject of Chapters 5 and 6 of this thesis, so I

will not dwell on the background here. Suffice it to say that for planetary systems we have

measured a variety of angles between the rotation axis of the host star and the orbital axis of

the planet. The most common method for measuring this angle, known as λ, is the Rossiter-

McLaughlin effect (Holt, 1893; Schlesinger, 1910, 1916; Rossiter, 1924; McLaughlin, 1924),

but the complementary method of Doppler tomography (Collier Cameron et al., 2010a) is also

gaining traction.

Once the angle has been measured, the system is classified as ‘aligned’ or ‘misaligned’

according to some criterion. For this Chapter I will be using that of Winn et al. (2010a), who

define a system as ‘misaligned’ if λ ≥ 10◦ to > 3σ. It is thought that tidal interactions are

involved in determining whether a system is ‘aligned’ or ‘misaligned’, with tidal realignment

thought to produce the evolution of orbits from one group to the other.

Planets with measured spin-orbit angles are particularly useful for calibrating gyrochronol-

ogy. The Rossiter-McLaughlin effect provides stronger constraints on v sin I than a stan-

dard radial velocity curve, thanks to the unique shape of the spectroscopic transit signature.

This leads to more precise derived rotation periods, which in turn provide more precise gy-

rochronology ages. Doppler tomography is an even more valuable method, however, as it is
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Figure 2.12: As Figure 2.6 for the sub-sample of systems with measured spin-orbit alignment angle, λ.
The dashed line denotes y = x, and the maximum age on both axes is set to the age of the Universe.
Black data denote systems which are judged to be ‘aligned’ according to the criterion of Winn et al. (2010a),
whilst blue data mark ‘misaligned’ systems. Filled triangles mark systems for which λ was measured
through Doppler tomography. Even for this reduced sample, there is a clear tendency for stellar model
fitting ages to be older than those from gyrochronology.

able to disentangle the true stellar rotation from the spectroscopic effects of turbulence in the

stellar photosphere.

From the sample that I have previously analysed, I selected all the systems for which I

was able to find measurements of λ in the literature. To do this I used the Holt-Rossiter-

McLaughlin database of René Heller3, as of 2013 January 10th. This selection procedure left

35 systems in my alignment sample.

Examination of Figure 2.12 reveals much the same picture as Figure 2.6. 76 percent of the

systems lie on the stellar model fitting side of the x = y delineation, and 72 percent of the

systems lie within the box bounded by agegyro < 4 Gyr and ageiso < 6 Gyr. For the full set of

systems with measured alignment angles it therefore seems as though the pattern is similar to

that found previously. This is supported by the age distributions (Figure 2.13), with the peak

in the gyrochronology distribution appearing 2 Gyr younger than the peak in the stellar model

fitting distribution; a KS test reveals that the probability of a common parent distribution is

less than 1 percent.

As with the full sample of results, I calculated the χ2 goodness-of-fit for this sample to

3www.aip.de/People/RHeller
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Figure 2.13: As Figure 2.7 for the sub-sample of planets with measured spin-orbit alignment angles.
Legend as for Figure 2.7. The gyrochronology distribution clearly peaks at a younger age than the stellar
model fitting distribution, and the median values are similarly offset.

the line ageGyro = ageIso using equation (2.13). I found χ2 = 287.5, χ2
reduced = 8.7, and

P(χ2)∼ 0, indicating that, to high significance, the data in this sample are again a poor fit to

the hypothesis that the different methods return the same ages.

Splitting the sample into ‘aligned’ (black data) and ‘misaligned’ (blue data) groups uncov-

ers some interesting differences though. The ‘aligned’ systems appear to show a bias towards

older stellar model fitting ages, with 84 percent of such systems lying to the right of the the

line denoting equal estimates. But the ‘misaligned’ systems are split evenly between those for

which stellar model fitting returned an older estimate, and those for which the reverse is true,

although the sample size is very small.

The cumulative probability distributions for these different groups again reinforce the

conclusions from the scatter plot. Figure 2.14 displays distributions for all of the systems with

measured λ (grey distribution), and for the ‘aligned’ (black distribution) and ‘misaligned’

(blue distribution) sub-samples. As expected given the preceding discussion, the distribution

for the ‘misaligned’ sub-sample passes through ∆age = 0.0, indicating that the results from

the two methods agree reasonably well. The other distributions still show offsets to positive

∆age of 1.8 Gyr for the full alignment sample and 2.3 Gyr for the ‘aligned’ sub-sample. A 2D

KS test on the ‘aligned’ and ‘misaligned’ distributions returns a probability of ∼ 20 percent

that they are drawn from the same parent distribution.
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Figure 2.14: As Figure 2.8 for the sub-sample of planets with measured spin-orbit alignment angles. The
dotted lines denote ∆age= 0 and probability= 0.5. The x -axis range is ± the age of the Universe.
The grey distribution was calculated for all of the systems in this sub-sample. The black distribution
and blue distribution were calculated for ‘aligned’ and ‘misaligned’ systems only. There is a clear offset
towards positive ∆age for the both the full distribution and the ‘aligned’ distribution, but the ‘misaligned’
distribution passes through ∆age= 0.

For the systems in the ‘aligned’ sampled, it is likely that the inclination of the stellar

rotation axis to the line of sight, I , is close to 90◦ (see the work of Schlaufman 2010). However

there is no such guarantee for the ‘misaligned’ systems, and in fact I may be significantly

lower than this value. This would affect the relationship between the measured v sin I and

the true rotation velocity such that the former would be much smaller than the latter, with

the true rotation period therefore being shorter than the value estimated using v sin I . Since

my gyrochronology estimates are based on the derived rotation period in most cases, they

will therefore be overestimated compared to the actual gyrochronology age; this could be

sufficient to bring them in line with the stellar model fitting estimates. Checking the results

of Schlaufman (2010) shows that all six of the ‘misaligned’ systems are, to varying degrees,

rotating more slowly than expected given their age, indicating misalignment of I and lending

support to this idea.

Looking at ∆age as a function of τtide (Figure 2.15), we see a similar pattern. The small

number of ‘misaligned’ systems (blue data) show no discernible trend with tidal timescale,

but the ‘aligned’ sample (black data) have two data which suggest that there might be a

correlation, with the biggest difference in age found in the systems with the strongest tides.

A note of caution must be sounded , however, as the two data which indicate the possibility
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Figure 2.15: As Figure 2.9 for the sub-sample of planets with measured spin-orbit alignment angles.
Legend is as for Figure 2.12.
The ‘misaligned’ systems show no trend, but the ‘aligned’ systems hint at a trend for ∆age to increase
with decreasing τtidal. This is based on two data points only though, one of which has substantial 1σ
uncertainties on the former quantity.

of a trend are the same as for Figure 2.9.

2.5.1 Discussion

Saffe et al. (2005) conducted a similarly motivated study of exoplanet host star ages. They fo-

cused on estimating age through the use of the chromospheric activity indicator, R′HK, but also

compared their results to the age as calculated using stellar model fitting, lithium abundance,

metallicity, and kinematics. Using a sample of over 100 systems, they found that isochrone
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ages tended to be older than chromospheric ages, both for their exoplanet host sample and a

sample of Solar neighbourhood stars, regardless of which calibration was used for their chro-

mospheric results. They caution though that the dispersions on the two distributions are such

that the difference could be nullified.

This provides an interesting comparison to the work that I have presented in this Chap-

ter. Chromospheric activity is known to be correlated with stellar rotation (e.g. Wilson, 1963;

Skumanich, 1972), so I would expect a similar pattern to emerge when comparing chromo-

spheric ages to isochrones as when looking at gyrochronology and isochrones. As such, the

broad similarity between my conclusion and that of Saffe et al. (2005) is encouraging. How-

ever Saffe et al. provide no suggestion for the source of the discrepancy, merely pointing out

that the characteristics of the various methods that they use inherently limit them to certain

age ranges. One factor might be a known bias towards older ages from isochronal analy-

sis, owing to the uneven spacing of data in stellar models near the zero-age MS (Soderblom,

2010).

A second potential explanation can be found in Alves et al. (2010). Their study of 147

stars with planets, with a comparison sample of 85 stars without detected planets, found that

stars with planets tended to have greater angular momentum at a given mass than stars with-

out planets. The difference was most pronounced in stars with Ms > 1.25M�, and the stars

with the most massive planets were found to have the greatest angular momenta relative to

the Sun. This would seem to support my tentative conclusion that angular momentum ex-

change as a result of tidal action is responsible for the discrepancy in age results. The increase

in the angular momentum of a star with one or more planets would in turn decrease its rota-

tion period compared to a star without planets, throwing off the gyrochronology calibration

which is carried out using stellar cluster members which have no known companions. Further

support comes from Lanza (2010), who suggests that gyrochronology may not always provide

accurate age estimates for planetary systems as plotting Prot t−ζ as a function of Teff for planet

hosting stars gives a poor fit to the period-colour relation of Barnes (2007). This implies that

exoplanet host stars are systematically faster rotators than stars with similar ages and prop-

erties that do not appear to have any associated planets, an implication which was also put

forward by Lanza (2010) who found that the rotation periods of hot Jupiter hosts were, on

average, a factor of 0.7 faster than non-planet hosting stars. Such a discrepancy would clearly

lead to underestimation of the gyrochronology ages of stars with known planets.
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However, another finding of Alves et al. (2010) was that stars with planets definitely

follow the established relation between rotation and mass that was described by Kraft (1967).

Rapid rotators are mostly those stars hotter than 5800 K, whilst slower rotators are cooler.

Furthermore, they carried out KS tests on the v sin I distributions of their two samples, finding

that the results were inconsistent with different origins. This would seem to contradict the

conclusions that I have drawn.

2.6 Conclusion

In this Chapter I have examined two methods for estimating the ages of exoplanet host star:

stellar model fitting, and gyrochronology. Using a sample of planet hosting stars, I have

shown that there seems to be a discrepancy between the results that I obtain with the two

methods, and that this discrepancy shows an apparent trend with stellar effective temperature.

Furthermore, I have shown that there are hints of a correlation between the tidal realignment

timescale for a system and the difference between the age estimates that are obtained. In

addition, I examined the same trends in the context of a sample of systems with measured

spin-orbit alignment angles, finding similar results for ‘aligned’ systems. ‘Misaligned’ systems

were found to have similar age estimates from the two methods. However, the sample sizes

that I have had access to are limited, particular when considering the sub-sample of systems

with measured spin-orbit alignment. Whilst the conclusions that I have drawn are interesting,

they must remain tentative and preliminary until the sample sizes can be increased.

In the coming Chapters, I will explore other aspects of exoplanetology on which tidal

interactions may have an effect. I will also use the ages that I have calculated to inform the

analysis that I carry out. As I stated in the introduction to this Chapter, these ages are vital for

understanding the timescales of certain processes, some of which I will explore in the rest of

this thesis.
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Tidal interactions: theoretical background

Tidal interactions between stars and planets were first studied in the context of the Solar

system, both as they pertained to star-planet coupling (Goldreich & Soter, 1966), and as

applied to planet-satellite systems (Darwin, 1880). Tides have also been extensively studied in

the context of binary systems (e.g. Hut, 1980), but the extension of theory to cover planetary

systems is comparatively recent, even by the standards of the exoplanets field. The Jovian

masses and small orbital separations of hot Jupiter planets make them ideal candidates for

studies of tidal theory.

Tidal interactions can lead to long-term changes in the orbital parameters of a hot Jupiter,

specifically the eccentricity and the semi-major axis (e.g. Mardling & Lin 2002; Jackson et al.

2008b; Barker & Ogilvie 2009b; Jackson et al. 2009). One possible end result of this process

is the spiral-in of the planet towards its host until it reaches the Roche limit, the orbital dis-

tance at which tidal forces on the orbiting body become strong enough to disrupt its structure

(Eggleton, 1983). At this point the planet undergoes mass transfer through the L1 point (Gu
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et al., 2003). Previous studies of such tidal evolution have generally focused on the effect

of tidal interactions on these two orbital parameters whilst neglecting the evolution of other

parameters that are involved, such as stellar spin. There are, of course, exceptions to this,

such as the paper of Dobbs-Dixon et al. (2004).

In Chapter 2 I discussed the possibility that tidal interactions might distort gyrochronolog-

ical ages of exoplanet host stars. In this Chapter, I will review the relevant theories of tidal

interactions in the context of a planet-satellite pair, before extending my discussion to binary

stars, and then hot Jupiter systems. I will finish by discussing some previous studies of tidal

interactions in hot Jupiter systems.

3.1 A simple picture of tidal interactions

Consider a two-body system consisting of a planet and satellite in circular, equatorial orbits

about their mutual centre-of-mass 1, and with the satellite orbiting asynchronously with the

planet’s rotation. The gravitational force exerted on the planet by the satellite is stronger on

the side of the planet that is closer to the satellite, leading to an elongation of the planet’s

shape. If the planet was perfectly elastic then we would expect that elongation to be sym-

metric about the line joining the centres of mass of the two bodies, but this is rarely the case.

Instead, internal friction within the planet introduces a ‘lag’ in the position of the tidal bulge

compared to the position of the satellite (note that this ‘lag’ can actually have the tidal bulge

leading the satellite).

Figure 3.1 shows the basic geometry of the system being considered. The offset of the

bulge axis by angle ε means that the gravitational forces on tidal bulges A and B are applied

along different lines. The different distances between the satellite and the two bulges mean

that these forces also have different strengths. These effects combine to produce a net torque

on the planet, which in turn leads to the exchange of angular momentum between the planet’s

rotation and the satellite’s orbit.

The direction of this angular momentum exchange depends on the relationship between

the rotation period of the planet, Prot,1, and the orbital period of the satellite, Porb,2. If

Prot,1 < Porb,2 then ε > 0 (i.e. bulge A leads the satellite, as in Figure 3.1) and the net torque

opposes the rotation of the planet, causing its period to increase and its angular momentum

1For the purpose of this discussion I shall neglect the rotation of the satellite, and assume that it is a rigid body.
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Figure 3.1: An illustration of the basic geometry of the tidal force exerted on a planet by its satellite. The
gravitational pull of the satellite on the planet causes its shape to elongate, but internal friction within the
planet means that tidal bulge A is closer to the satellite than bulge B. This leads to a stronger gravitational
force on one side of the planet than the other, producing a net torque on the planet which acts to modify
the spin period of the planet and, through angular momentum transfer, the orbital period of the satellite.
In the case illustrated here, the planet’s spin period is shorter than the orbital period, so the tidal bulge
is dragged ahead of the satellite’s orbit by an angle ε. This is known as the lag angle, and is the angle
between the line joining the centres of mass of the two bodies, and the long bulge axis of the planet. M1 is
the mass of the planet, m2 is the mass of the satellite, and a is the orbital distance of the satellite. Adapted
from Goldreich & Soter (1966). Figure not to scale.

to decrease. The planet-satellite system can be considered as a closed system, as the influ-

ence of other bodies (e.g. the star around which the planet orbits) will often be negligible2,

and therefore the total angular momentum of the system must remain constant. The angular

momentum of the satellite’s orbit must therefore increase.

The gravitational force exerted by the planet on the satellite must also be considered.

Again, the difference in distance between the satellite and the two tidal bulges leads to a net

force, this time in the satellite’s instantaneous direction of travel. This causes the satellite to

move into a higher orbit, increasing its orbital separation. By Kepler’s laws its orbital velocity

must therefore decrease, and its orbital period increases. The increase in orbital separation

outweighs the decrease in velocity such that orbital angular momentum increases, satisfying

the law of conservation of angular momentum. This occurs for any prograde orbit that fulfils

the relationship between the orbital and rotational periods, regardless of relative inclination

between the equatorial and orbital planes.

The converse case of the satellite orbiting more quickly than the planet is rotating (Prot,1 >

Porb,2) is analogous but with the outcomes reversed. The net torque is in the direction of the

planet’s rotation, causing it to accelerate and increasing its angular momentum. The satellite
2This is obviously only true in the simple two-body case. In the Solar system, the tidal effect on the giant planets
is more complex owing to the large number of satellites.
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feels a net force opposing its orbit, decreasing its orbital distance and increasing its orbital

velocity, with the orbital angular momentum of the satellite necessarily decreasing during this

inward movement. In this case, unless a restoring force is applied then the satellite’s orbit will

decay until it is destroyed through tidal disruption (Counselman, 1973).

There is, of course, an intermediate case in which the orbit is said to be synchronised:

Prot,1 = Porb,2. For a given rotation period this occurs at a specific orbital radius (the corotation

radius). It is possible for a system to evolve into this synchronised case, but it requires a careful

balance between the decay (growth) of the orbit, and the spin-down (spin-up) of the star, with

classical theories suggesting that this is impossible unless e = 0 (Ferraz-Mello et al., 2008).

Retrograde orbits present a slightly more complicated scenario, but will always lead to

the satellite moving inwards (Barker & Ogilvie, 2009b). As before, a torque acts to slow the

rotation of the planet, decreasing its angular momentum. But the retrograde orbit of the

planet means that its angular momentum vector is in the opposite direction, so it too must

therefore decrease in magnitude, and the satellite spirals inwards.

In the rest of this Chapter, I shall concentrate on the case of prograde orbital motion.

3.1.1 Energy dissipation

While the total angular momentum of the system is conserved during tidal interactions, the

total energy of the system is not. The internal friction responsible for the lag angle ε also

dissipates a significant quantity of energy within the planet’s interior, diminishing the total

energy of the system. This dissipation is often characterised through the so-called ‘tidal quality

factors’, Q1 and Q2. These are more correctly termed the ‘specific dissipation’ functions, and

define the level by which the tidal bulges distort the interacting bodies from perfect elasticity

or fluidity (Goldreich & Soter, 1966). They are linked to the lag angle by

1

Q
= tan(2ε)≈ 2ε, (3.1)

and represent the fact that the two bodies are undergoing forced oscillations, dissipating a

small amount of energy over each oscillation period. The Q parameters are thus analogous

to the quality factors in forced, damped harmonic oscillators (Murray & Dermott, 1999),

although this is strictly only correct over a narrow frequency range and for low-order analyses
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(Greenberg, 2009). The values of Q for a given system determine the timescales involved in

the orbital decay/growth that arises as a consequence of the tidal interactions (Counselman,

1973)

Although I have presented tidal interactions as cause and effect, in reality they are a set

of inter-linked and co-dependent processes, and the situation is far more complex than I have

implied. The precise internal structure of the planet has a strong influence, as it dictates the

tidal friction and energy dissipation qualities of the system (Goodman & Lackner, 2009). As

such, there can be substantial differences between tidal interactions involving gas giants, and

those involving terrestrial planets, and the values of Q can vary by orders of magnitude from

system to system. For example, Goldreich & Soter (1966) found that the values in the Solar

system separate into two broad groupings: values of 10 ® Qp ® 500 apply to the terrestrial

planets and the satellites of the gas giants, whilst the gas giants themselves have Qp ¦ 5×104

(6× 104− 2× 106 in the case of Jupiter; Yoder & Peale 1981).

It is common in the literature to see the ‘reduced’ tidal quality factors,

Q′ =
3Q

2k2
, (3.2)

where k2 is the 2nd order Love number of the body and measures the level of central conden-

sation of an object (objects which have their mass concentrated at their centre have low k2;

Ragozzine & Wolf 2009). For a homogeneous, fluid body k2 = 3/2 and Q′ reduces to Q. Use

of Q′ is usually implemented owing to the prevalence of the Q/k2 term in many tidal equation

formulations, and is a simple procedure as it is easy to calculate k2 for stars (Kopal, 1959)

and gas giants (Sterne, 1939a,b), assuming that the interior structure is known.

3.2 Binary stars

The simple scenario that I have outlined so far is only an approximation to the true situation.

I have neglected, for the most part, the effect of the tides raised on the secondary body by the

primary body, and have assumed negligible rotation of the secondary. In reality these are both

factors which must be considered, particularly when the two components are comparable in

size, mass, and angular momentum, as is common in close binaries (Alexander, 1973).

The possible range of potential tidal factors, Q′, is very different for binary stars than for
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the planet-satellite systems previously discussed. By modelling inertial waves in the outer

convective envelope and including turbulent viscosity as an energy dissipation source, Barker

& Ogilvie (2009b) found a large range of 108 ® Q′s ® 1012 for F-stars. It has been suggested

that the lower bound on Q′s might be as small as 106, but this would require extremely efficient

dissipation in order to meet known constraints from binary circularisation (Ogilvie & Lin,

2007). Accounting for differential rotation does not significantly affect Q′s, but introducing

Coriolis forces can reduce its value by up to 4 orders of magnitude (Ogilvie & Lin, 2007).

Tidal interactions between the stars in a close binary pair can be very complex. Two main

methods are generally used to model them. The first is the equilibrium tide, which approxi-

mates the star’s shape under the assumption of equilibrium with a time-dependent potential

(Eggleton et al., 1998). The second is known as the dynamical tide, which describes the

elastic response of the star to the deformation of the stellar surface. This second component

accounts for oscillations and resonances within the star that are set up by tidal forces (Zahn,

1989).

3.2.1 The dynamical tide

A major factor in binary star tides is the different composition of a star compared to planets

and satellites. The fluidic nature of a star, as opposed to the essentially solid nature of terres-

trial planets and satellites, means that it can oscillate. There are several normal modes which

can be excited in a star; all are damped, with the higher order modes decaying more rapidly

(Eggleton et al., 1998). They fall into two main categories: radial, and non-radial.

Radial pulsations are generated by sound waves resonating in the interior of the star, and

are standing waves with a node at the centre of the star and an anti-node at its surface. The

period of such waves is proportional to the square root of the star’s mean density. (Carroll &

Ostlie, 2006)

Non-radial pulsations are described by the real parts of the spherical harmonic func-

tions, with the two indices governing the radial and longitudinal contributions. P-modes

are sound waves, so called thanks to the restoring force provided by pressure, and are only

fully-described by the specification of both the radial and angular nodes. F-modes are sur-

face gravity waves, whilst g-modes result from internal gravity waves. These modes involve

large-scale motion of stellar material, particularly within the star. This separates them from p-
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modes, which are confined to the stellar surface (Carroll & Ostlie, 2006), and allows efficient

tidal dissipation at high frequencies (Ogilvie & Lin, 2007).

3.3 Hot Jupiter systems

Hot Jupiter systems share similarities with both the planet-satellite example with which I

opened this Chapter, and with the binary stars that I have just discussed. The primary similar-

ity with the latter is the consideration of stellar structure, whilst the mass ratio between the

two bodies has more in common with the interactions seen in the Solar system.

Observations of planetary systems indicate that values for Q′ could be several orders of

magnitude greater than those for planet-satellite pairs in the Solar system (Pont, 2009). Es-

timates from binary stars (Q′s ∼ 106 Barker & Ogilvie 2009b) are often used as an approxi-

mation in hot Jupiter systems, but it is becoming increasingly apparent that this is a poor fit.

In fact, Solar-type host stars and binary stars appear to have radically different Q′s, possibly

due to differences in the primary tidal forcing frequency, which falls in the range of inertial

waves for binaries, but outside the range for hot Jupiters (Ogilvie & Lin, 2007). Carone &

Pätzold (2007) found 2×107 <Q′s < 1.5×109 for OGLE-56, whilst Lanza et al. (2011) claim

4×106 <Q′s < 2×107 (assuming that the system started on the main-sequence already close

to synchronicity). Further analysis of planets with circular orbits will allow a firm upper limit

to placed on the range of possible values, as the circularisation timescale for such systems is

necessarily shorter than their age (Matsumura et al., 2008).

Q′p and k2 are generally poorly known for planetary systems owing to the uncertainty

surrounding hot Jupiter structures, although it is possible to estimate values using geophysical

and/or astrophysical models and seismic data. Q′p,Jupiter is sometimes assumed to be applicable

to hot Jupiters, but there is evidence that the value of Q′p could vary by several orders of

magnitude between systems. Matsumura et al. (2008) suggested that a range of 105 ® Q′p ®

109 would be sufficient to explain eccentric planet orbits, whilst Barker & Ogilvie (2009b) put

forward a range of 6×104 ®Q′p ® 2×106 and Gu et al. (2003) obtained theoretical estimates

of 108 for both Q′s and Q′p.

It has been suggested that tides might be responsible for the lack of close-in, massive

planets (Pätzold & Rauer, 2002). Once a planet with mass greater than some critical mass is

within the corotation radius of its host, then tidal friction will lead to rapid inward migration
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to the Roche limit. Tidal disruption of such massive planets might therefore be the source of

the observed ‘pile-up’ at Porb ∼ 3 days that is observed in the hot Jupiter population (Butler

et al., 2006). In addition, Rasio & Ford (1996) found a clear boundary in the mass-separation

diagram for extra-solar planets at twice the Roche limit. The lack of hot Jupiters with orbits

closer-in than this distance can be explained as a natural consequence of tidal circularisation

and migration from highly-eccentric orbits: those planets with initial periastron distances

inside their Roche limit are destroyed during the process, whilst the remainder evolve into

circular orbits with separation greater than or equal to twice the Roche limit.

Gu et al. (2003) added support to this idea by noting that eccentricity damping during

inward migration can easily provide sufficient energy to inflate a planet out to its Roche ra-

dius, making Roche lobe overflow a plausible mechanism for explaining the ‘pile-up’. Further

support came from Levrard et al. (2009), who noted that if the total angular momentum of

a system is less than some critical value, then there are no tidal equilibrium states and the

inspiral to disruption of the planet is inevitable, regardless of the specific tidal model used.

The survival time for the planet seems to largely depend on the dissipation within the star

(Matsumura et al., 2010), although Jackson et al. (2008b) noted that for large values of Q′s

(Q′p), system evolution was independent of the tides raised on the star (planet).

Energy dissipation within the interacting bodies by tidal friction primarily occurs through

conversion into heat. This has several interesting consequences for extra-solar planets. For

example, tidal heating can affect the habitability of terrestrial planets through several effects

such as increasing vulcanicity, and driving outgassing to replenish the planet’s atmosphere

(Jackson et al., 2008a). Tidal heating has also been suggested as a potential explanation for

the subset of planets with apparently inflated radii (Gu et al., 2003; Ibgui & Burrows, 2009),

although this is still debated (e.g. Leconte et al., 2010).

3.4 Modelling tidal interactions

There have been many approaches in the literature to modelling tidal interactions, but there is

currently no consensus on which is best, as no model can perfectly describe the tidal evolution

of a 2-body system.

All tidal models use the idea of a ‘forcing frequency’ at which the tidal potential drives

distortion of material within the tidally interacting bodies. For circular orbits there is a single
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frequency, but eccentric orbits introduce several additional components of the tidal poten-

tial, each of which acts at a different frequency. Inclined orbits similarly introduce additional

forcing frequencies, and considering higher order terms in either e or i also introduces ad-

ditional harmonic frequencies (Greenberg, 2009). The standard approach to calculating the

tidal effect in these systems is to adopt a ‘lag-and-add’ approach. Every component of the

tidal potential is considered to induce a separate response in the primary body, producing a

separate distortion with its own ε, at a different, very specific frequency that is different for

each component (Greenberg, 2009). The total response of the body is then assumed to be the

sum of the responses from the individual components.

It is possible to implement this idea in many different ways. The two most common are

the constant time lag model, and the constant phase lag model.

3.4.1 Constant time lag model

The constant time lag model of tidal interaction was first put forward by Darwin (1880), and

extended by Alexander (1973) and Hut (1980, 1981), among others. In this formulation

ε ∝ νforce, which is equivalent to assuming a constant time lag for all frequencies. τlag is an

intrinsic property of the tidally-forced body and is independent of the orbital configuration.

The idea of a constant time lag follows directly from the equations of motion of a tidally-

forced, viscous fluid body (the traditional equilibrium tide approach). Some assumptions

must be made however. First, we must assume that tidal dissipation results from a viscous

force proportional to the tidal flow velocity. Second, the equilibrium structure of the primary

body must be spherically symmetric. Third, the tidal dissipation is weak and non-resonant

(Socrates & Katz, 2012).

This model is widely used in the literature in a variety of guises and for a range of purposes

(e.g. Heller et al., 2010) Studies making use of the Hut equations tend to truncate them to

second order, but this is not valid for cases with e ® 0.2, for which the complete equations

must be used (Leconte et al., 2010).

3.4.2 Constant phase lag model

Described by Goldreich & Soter (1966) and subsequently developed by Jackson et al. (2008c),

Ferraz-Mello et al. (2008), and Heller et al. (2010), the constant phase lag model characterises
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the lag of the tidal bulge in terms of the angle ε. Under this model, ε is generally assumed to

be the same for all tidal components, regardless of forcing frequency, which greatly simplifies

the model and is generally equivalent to considering Q to be constant owing to equation (3.1).

However, this approach is only truly applicable for systems with e << 1 and ε << 1 (Leconte

et al., 2010).

3.4.3 Alternative approaches

The two approaches that I have already described are the most common methods for mod-

elling tidal interactions. There are, however, alternatives available in the literature. One such

example is that of Dobbs-Dixon et al. (2004), who describe an approach which utilises con-

stant Q′ factors to model the evolution of the stellar spin, the planetary spin, the semi-major

axis of the planet’s orbit, and the eccentricity of the orbit. This model is derived directly from

the early work by Eggleton et al. (1998).

It is possible that this approach might not be valid owing to the sensitive dependence

of Q′ on the detailed interior structure of the bodies involved (Ogilvie & Lin, 2004, 2007;

Miller et al., 2009; Matsumura et al., 2010). It has also been suggested that parametrizing

tidal evolution in this manner is not equivalent to the more traditional approaches that I

have described above (Leconte et al., 2010), as no simple relation exists between Q′ and ∆t

(Leconte et al., 2010).

Another alternative parametrization of tidal theory comes from Hansen (2010, 2012), who

used an equilibrium tide framework in conjunction with the model of Eggleton et al. (1998) to

develop an empirical model of tidal interactions, calibrated using the known distributions of

star and planet properties in planetary systems. Through the use of tidal dissipation constants,

σ, Hansen avoided the problems that arise from the frequency dependence of different tidal

components.

3.5 Discussion

Several of the studies mentioned in this Chapter have integrated their tidal equations back-

wards in time to determine the evolutionary history of the systems being studied. This is a

reasonable approach to take if one is to refrain from making assumptions regarding initial

conditions, but is not always a suitable method. The capture of orbiting bodies into resonance
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states is a hysteretic process, so integrating backwards should be avoided for systems which

are observed to be in synchronous or resonant orbits (Mardling & Lin, 2002).

Another factor that some early studies of tidal interactions in hot Jupiter systems failed

to account for was the natural spin evolution of the star, despite the well-known effect of

magnetic braking on the rotation period of isolated stars (see Chapter 2). This might have

been due to the Sun-like nature of many transiting planet hosts, for which mass loss through

the stellar wind is negligible and can often be neglected (Pätzold et al., 2004). In addition,

the strength of the magnetic braking contribution towards a system’s evolution is reduced for

systems with low mass ratio (e.g. binary stars or large planets around low mass stars) or in

which the spin of the primary body is particularly slow (Matsumura et al., 2010). However,

Barker & Ogilvie (2009a) found that the inclusion of stellar magnetic braking produced very

different evolutionary histories for exoplanet systems, concluding that it was vital to consider

the coupled evolution of orbit and stellar spin. They also noted that during stellar spin down

the rate of angular momentum loss through magnetic braking outweighed the tidal transfer

rate of angular momentum from planetary orbit to stellar spin. Other studies have looked at

the large scale effect of the presence of exoplanets on stellar rotation (e.g. Pont, 2009; Alves

et al., 2010; Lanza, 2010), and at the effect of tidal interactions specifically (e.g. Leconte

et al., 2010)

An exciting possibility was suggested by Ragozzine & Wolf (2009), who commented that

tidal bulges more than 2000 km high could produce additional dimming during a planetary

transit of up to 2× 10−4. Although this signal is likely to be degenerate with the unknown

limb-darkening coefficients, detecting this effect is possible with the precision achievable by

the Kepler spacecraft. Welsh et al. (2010), for example, have detected ellipsoidal variations

in the Kepler light curve of HAT-P-7. Another potentially observable consequence of tidal

interactions is orbital precession (e.g. Miralda-Escudé, 2002; Jordán & Bakos, 2008), although

it appears that even for very rapidly rotating systems this is, for the moment, unobservable

(Iorio, 2011).

3.6 Conclusion

In this Chapter I have described the basic theoretical background of tidal interactions, and the

differences between planet-satellite, binary star, and star-hot Jupiter systems. I have briefly
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outlined the different approaches that can be taken to modelling said interactions, and have

discussed some previous studies of tidal interactions in hot Jupiter systems.

Pont (2009) suggested that tidal effects were likely to have played a role in the fact that

exoplanet host stars are observed to be rotating faster than expected. Assuming that this was

the case, he posited that planets with Mp ∼ 2 MJup and Prot ∼ 3 days might exhibit strong

enough coupling to spiral into the Roche limit within a stellar lifetime. In the next Chapter

I discuss my investigation into this possibility, laying out my implementation of the Dobbs-

Dixon et al. (2004) model, and showing its application to two transiting hot Jupiter systems.
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4
Tidal-interaction governed evolution in the

WASP-18 and WASP-19 systems

This chapter uses material from Brown et al. (2011), MNRAS, 415, 605-618. This paper

was my own work, but built upon an undergraduate masters project by Cassie Hall

(supervised by Prof. Andrew Collier Cameron), and on a previous analysis of the WASP-

19 system by Leslie Hebb.

In this chapter I will discuss the methods that I have developed for modelling the tidal in-

teractions between hot Jupiter extra-solar planets and their host stars. To demonstrate their

use, I apply said methods to the WASP-18 and WASP-19 systems, investigating the effects of

tidal interactions on their orbital eccentricities, orbital semi-major axes, and planetary and

stellar rotation rates. By fitting the resulting evolutionary tracks to the observed parameters

of the systems, including the ages determined for the analysis in Chapter 2, I am able to place

constraints on the stellar and planetary reduced tidal quality factors, Q′s and Q′p, on the stellar
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ages, and on the remaining lifetimes of the two hot Jupiters. I further examine a range of

evolutionary histories consistent with my results, and find that the majority imply that both

stars have been spun up through tidal interactions as the planets spiral towards their Roche

limits. I end with a closer look at WASP-19 A’s age, concluding that the system is likely to be

old, and that WASP-19 b might be in the final stages of the spiral-in process. I am unable,

however, to rule out the possibility that it has a substantial remaining lifetime.

4.1 Tidal and wind evolution

Following Eggleton et al. (1998), Mardling & Lin (2002), and Dobbs-Dixon et al. (2004) tidal

energy is dissipated within a star and planet whose spin axes are aligned with the orbital axis

at rates defined by the tidal quality factors Q′s = 3Qs/2ks and Q′p = 3Qp/2kp, where ks and kp

are the tidal Love numbers of the two bodies. The eccentricity of the orbit evolves at a rate

(Dobbs-Dixon et al., 2004)
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The star and planet have masses Ms and Mp, radii Rs and Rp, and rotation rates Ωs and Ωp

respectively. The orbital frequency is defined by Kepler’s 3rd law, n2 = G(Ms +Mp)/a3.

If the system is fully aligned, then the total angular momentum of the orbit and the axial

rotation of the star and the planet, perpendicular to the orbit, is (Dobbs-Dixon et al., 2004)

Ltot = MpMs

È

Ga(1− e2)
Mp +Ms

+αsMsR
2
sΩs +αpMpR2

pΩp. (4.4)

The stellar and planetary moments of inertia are determined by their effective squared radii

of gyration, αs and αp.
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Angular momentum is carried away from the system via a magnetically-channelled, thermally-

driven stellar wind, at a rate described by a standard Weber-Davis model,

L̇wind =−IsκΩsMin(Ωs, Ω̃)
2, (4.5)

where the stellar moment of inertia Is = αsMsR
2
s (Weber & Davis, 1967). The physical scaling

of the braking rate is determined by the constant of proportionality κ, and Ω̃ is the ‘satu-

ration’ rotation rate above which the stellar magnetic field strength is assumed to become

independent of the stellar rotation rate.

I also used expressions from Dobbs-Dixon et al. (2004) to describe the tidal spin evolution

of the planet under the effect of the tidal torque,
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and the star under the influence of both tidal and wind torques:
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The polynomials f3(e) and f4(e) have the form
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The total angular momentum of the system evolves as

L̇tot = MpMs

È
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By setting this angular momentum loss rate equal to equation (4.5), dividing by the orbital
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angular momentum,

Lorb = MpMs

È

Ga(1− e2)
Mp +Ms

, (4.11)

and rearranging, an expression for the evolution of the orbital semi-major axis can be ob-

tained:
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Integrating this equation under the assumption of a circular orbit (e = 0), neglecting dissipa-

tion in the planet, and assuming a slowly-rotating star (Ωs/n << 1), leads to an estimate of

the time remaining to spiral-in for the orbiting planet,

tremain =
2Q′s

117n

Ms

Mp

�

a

Rs

�5

, (4.13)

giving a result almost identical to the estimate of the same quantity derived from a slightly

different formulation by Levrard et al. (2009). The quantity a/Rs is derived directly from the

transit duration for a transiting planet, enabling tremain to be estimated from directly-observed

quantities for a given value of Q′s.

Leconte et al. (2010) suggested that parametrizing the tidal evolution equations using

stellar and planetary tidal quality factors which are constant in time could, if truncated to

O(e2), produce both qualitatively and quantitatively incorrect evolutionary histories for sys-

tems with e > 0.2. Despite using a constant tidal quality factor model the tidal equations that

I used for this work are not truncated in this fashion, and thus do not suffer from the problems

that Leconte et al. describe.

4.2 Computational method

An estimate of the value of the scaling constant for magnetic braking, κ, is required to imple-

ment equation (4.5). Following the standard Weber-Davis model, the rate of change of the

rotation rate of an isolated star owing to magnetic braking can be described by

Ω̇s =−κΩ3
s . (4.14)
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Integrating this under the assumption that Ω2 << Ω1 and t2 >> t1 gives

κ=
Ω−2

2

2t2
, (4.15)

which leads to the standard power law for magnetic braking,

P ∝ tζ, (4.16)

with ζ = 0.5 (Skumanich, 1972). This neglect of the initial conditions is justified by the

observed strong convergence of spin rates to a narrow period-colour relation in the Hyades

(Radick et al., 1987), and in other clusters of similar ages. I set Ω2 = Ωs,Hyades, calculated

by scaling the Prot-(J-K) colour relationship found for the Coma-Berenices cluster by Collier

Cameron et al. (2009) and using J and K magnitudes taken from the SIMBAD on-line data

archive, to obtain an estimate for κ at the age of the Hyades. This value is assumed to be

constant throughout the evolution of the system. For simplicity, I assumed that in all cases

the planet’s rotation was initially tidally locked such that Ωp,0 = n, but Ωp was permitted to

evolve independently thereafter.

Recent work on tidal interactions has found that the braking law exponent, ζ, diverges

slightly from the ideal Skumanich value in some environments (see section 2.2.1, Chapter 2).

If equation 4.14 is generalised to raise Ω to the power β , then

κ=
Ω−

1
ζ

t/ζ
, (4.17)

a universal expression for κ with β = 1
ζ
+1, is derived. I calibrated my implementation of the

magnetic braking power law using the stars listed in table 4 of Collier Cameron et al. (2009),

finding that an exponent of ζ = 0.495± 0.002 gave good agreement between the measured

rotation periods and the evolved stellar rotation rates calculated using my method. I found

that there was little to differentiate the evolutionary tracks produced using values of α within

this range, and therefore adopted the central value of ζ= 0.495.

Starting from a given set of initial conditions (t0, e0,Ωs,0,Ωp,0, a0), I carried out forward

integration of the four equations (4.1), (4.6), (4.7), and (4.12) using a fourth-order Runge-

Kutta scheme, adapted from algorithms in Press et al. (1992). The unit of time was 1 Gyr,

and the integration was allowed to run for the approximate main-sequence lifetime, tMS '
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7(Ms/M�)−3 Gyr for a star of mass Ms, or until the planet reached the Roche limit, as defined

by Eggleton (1983). To calculate the stellar radius of gyration the metallicity and mass of the

star were used to select an appropriate table from Claret (2004b, 2005, 2006, 2007); at each

timestep the code interpolates through this data using the current time to derive a value for

αs. This is not an entirely accurate method, as the series of papers by Claret provides only

tables for discrete values of metallicity and stellar mass that in many cases do not coincide

with the metallicity of the systems being studied. In these cases the table that most closely

corresponds to the system parameters was used.

The observed values of e, Ωs and a, and their uncertainties, were used to evaluate the

goodness-of-fit statistic at each timestep according to

χ2(t) =
(eobs− e(t))2

σ2
e

+
(Ωs,obs−Ωs(t))2

σ2
Ωs

+
(aobs− a(t))2

σ2
a

. (4.18)

A Bayesian prior on the stellar age t was added to this to obtain the statistic

C = χ2(t) +
(tobs− t)2

σ2
t

, (4.19)

where tobs and σt are the stellar age estimated from the star’s density and effective temper-

ature (Sozzetti et al., 2007) (see Chapter 2), and its associated uncertainty. The age of the

system was taken to be the time of the step at which C was a minimum.

This forward integration method was built into two separate computational schemes: a

grid search that carried out the integration for each node in a four-dimensional grid in a0-

e0-log(Q′s)-log(Q′p) parameter space, and a Markov-chain Monte-Carlo (MCMC) optimisation

scheme to determine the posterior probability distributions of log(Q′s), log(Q′p), e0 and a0, and

to refine the estimates of the initial parameters returned by the grid search.

4.2.1 Grid Search method

A grid search is a very simple search algorithm that slowly and methodically covers the full ex-

tent of the parameter space that has been defined. It applies user-supplied evaluation routines

to find the best solution to the problem.

Each free parameter is assigned a stepsize. This is used in conjunction with that pa-

rameter’s permitted range to determine the number of grid points for that parameter. The
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algorithm works its way through all possible combinations of these points. At each node the

set of parameters corresponding to that node are evaluated, and the result stored for later

comparison.

The two downsides of this algorithm are its slow speed, and its discrete nature. The more

free parameters you have, the greater the number of nodes, and the slower the run time.

Moreover the algorithm only evaluates at those nodes, so if the best solution lies between two

or more nodes, then the grid search will return only an approximate solution. On the other

hand, a grid search is both reliable and easy to build.

In my implementation the set of parameters at each node are used as the starting condi-

tions for the integration scheme outlined above. Each node therefore acquires as an associated

parameter the minimum value of C found for that integration. The best-fitting set of initial

parameters, and thus the best-fitting evolutionary history, is taken to be that from the node

with the absolute minimum value of the associated C statistic values.

4.2.2 Markov-chain Monte-Carlo simulation

Markov-Chain Monte-Carlos (MCMCs) are a set of Bayesian analysis methods which take

advantage of the properties of Monte Carlo integration to accurately sample an unknown

distribution by drawing a large number of samples from it. The strength of MCMC is that

each step is predicated on the current state of the chain. Most commonly implemented in the

form of a random walk algorithm, the basic MCMC method has several available variations in

the way that the Markov chain is produced, and in which the sampling is carried out. For my

work I use the Metropolis-Hastings method (Metropolis et al., 1953; Hastings, 1970).

The premise of Metropolis-Hastings is that the parameter steps are taken from a known,

proposed distribution, and matched to the desired posterior distribution; a basic outline of

the method is shown in Figure 4.1. The new parameter set, Pk, is generated from the previous

set, Pk−1, and evaluated. In my case the proposed distribution for each parameter is taken to

be Gaussian, and the evaluation is carried out using the forward integration model described

in section 4.2. The C statistic value for the new parameter set is compared to that from the

previous set using∆C = Ck−Ck−1; if the fit is better (∆C < 0) then the new set of parameters

is accepted, and the chain moves to that point in parameter space. If the fit is worse, then the

step is accepted with probability e−∆C/2. If the step is rejected then the chain remains where
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Figure 4.1: A flowchart illustrating the basic working of the MCMC algorithm. When generating new pa-
rameters, the scale factor f is of order unity but tuned to provide an acceptance rate of roughly 25 percent.
The secondary check for acceptance allows the Markov chain to climb out of local minima, preventing
erroneous solutions and poor convergence.

it was, and saves another copy of the last successfully accepted parameter set1. Another set

of new parameters is then generated.

The purpose of the second acceptance checking phase is to try and prevent the chain from

falling into local minima in the C-surface. If the steps that the algorithm is taking are too small

then the algorithm could potentially become stuck in such a minimum for some time, leading

to a ‘poorly mixed’ chain and slow convergence. The random number comparison allows

the chain to climb back out of local minima before it gets stuck, although the success of this

approach still relies on the size of the steps that the algorithm is taking. This in turn depends

on the choice of proposed distribution, but can be modified through additional scaling. The

ideal rate of acceptance is roughly 25 percent (Tegmark et al., 2004).

There are two phases to an MCMC algorithm: the ‘burn-in’ phase, and the ‘production’

phase. Since the posterior distribution is unknown, the chain must be started from an arbitrary

combination of parameters; under my optimisation scheme, these coordinates are set to the

centre of the parameter space unless this lies within 3σC of the coordinates of the best-fitting

initial result from the grid search, in which case the origin coordinates are set to lie outwith the

1This becomes key when calculating uncertainties at the end of the MCMC run, as it affects the shape of the
posterior distribution.
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Figure 4.2: An illustration of the burn-in procedure and evaluation for my MCMC algorithm. The pro-
gression of the C statistic for the current step is shown by the solid, black line. The dotted, blue line marks
the progression of the median value of C. Note the importance of the ≥ 100 steps criterion in this situation,
as without it ‘burn-in’ would have been judged to be complete at the earlier plateau in C. Data taken from
my analysis of the WASP-18 system.

3σC contour in parameter space. The algorithm then randomly iterates around the available

parameter space according to the Metropolis-Hastings decision maker until the chain has

converged on the desired distribution. Once this has been achieved, the steps taken up to that

point are discarded (they were not drawn from the posterior distribution), and the chain is

said to have ‘burnt-in’. The production phase then begins, and the desired number of samples

are taken.

Determining when burn-in is complete is of the utmost importance. For my work, I use the

method of Knutson et al. (2008), judging this phase to be complete when the minimum value

of the test statistic from the current integration exceeds the median of all previous minimum

C statistic values for the first time, with the proviso that 100 successful steps must have been

completed (see Figure 4.2). This additional criterion is applied to ensure that the chain has

truly converged on the posterior distribution. Following the completion of burn-in I then

carry out an intermediate, ‘rescaling’ phase of 100 successful steps, using these to calculate

new error bars for my parameters that are fed into the algorithm at the parameter generation

phase.

My ‘production’ phase runs for 10000 successful steps, giving a total chain length of
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roughly 40000 steps when accounting for the optimum acceptance rate. The best-fitting set

of parameters are taken to be the median values of the respective posterior probability distri-

butions, with 1σ errors derived from the values that delineate the central 68.3 percent of the

distribution. I chose this approach over the absolute minimum, as the latter strongly depends

on the precise sampling of the parameter space by any given Markov chain. This set of pa-

rameters are then integrated forward in time to provide the best-fitting evolutionary history

for the system.

4.2.3 Defining my parameter space

I assumed that the orbit of the planet would monotonically shrink throughout the integration,

thus placing a lower limit on the initial semi-major axis of a0,min = aobs. The upper limit on

the same parameter was set at a0,max = 0.1 AU, a value which encompasses 80 percent of the

current distribution for transiting planets which have known semi-major axes. The ranges of

the tidal quality factors were set to 4.0 ≤ log(Q′p) ≤ 10.0 and 5.0 ≤ log(Q′s) ≤ 10.0 such that

the commonly accepted ranges of values (105 − 106 for Q′s, 107 − 108 for Q′p; Baraffe et al.

2010) were encompassed together with an additional section of parameter space.

The initial eccentricity distribution for the ensemble of exoplanets is the subject of much

discussion. A value of e0,max = 0.2 encompasses 81 percent of the present distribution and

limits my parameter space to the region of validity for the tidal equations defined by Leconte

et al. (2010). However Kozai scattering (Kozai, 1962), can pump orbital eccentricity to large

values, and it has been suggested that short period planets are captured at periastron from

such highly eccentric orbits. If this is the case then a much higher upper limit on e0 could be

justified.

It is important to consider the initial times at which the integrations commence. Meibom

& Mathieu (2005) carried out a survey of tidal circularisation in binary stars, and found that

open clusters show a characteristic orbital period at which binaries with the most common

initial eccentricity circularise (they define a circularised orbit as one with e = 0.01). This

period was found to vary with the age of the cluster. However it is questionable whether

exoplanets, owing to the much lower secondary mass, will tend to circularise at the same

orbital period. In fact Hansen (2010) applied the formalism of Meibom & Mathieu (2005) to

planetary systems, finding that circularisation periods were generally much shorter than for

stellar binaries. I therefore set e0,max = 0.8, a value encompassing 99 percent of the current
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distribution for transiting exoplanets, to allow for the possibility of eccentric orbits produced

by Kozai oscillations.

Note that stellar and planetary obliquities greater than 0.0 are not considered by the

integration methods that I used for this work owing to the algebraic formulation that underlies

my computational methods. I therefore assumed that the orbital and spin angular momentum

vectors were either aligned or anti-aligned.

4.3 The WASP-18 system

The hot Jupiter WASP-18 b orbits the star HD10069, an F6 star with an effective temperature

Teff = 6400± 100 K and a V magnitude of 9.3, situated approximately 100 pc from the Earth.

It was the first planet confirmed to have a period of less than a day, orbiting its host in just

0.94 days. A measurement of the Rossiter-McLaughlin effect by Triaud et al. (2010) showed

that the system is well aligned, with an angle of λ = 4.0± 5.0 ◦. On the other hand, Albrecht

et al. (2012b) found λ = 13± 7 ◦, indicating a slight misalignment. However any obliquity

resulting from this is likely to be small, and so the assumption of spin-orbit alignment required

for my analysis seems fairly well justified. In the absence of a measured rotation period for

WASP-18, I assumed that the inclination of the stellar axis is 90◦ such that sin I = 1.0 and

vrot = v sin I .

As shown in Appendix A, my isochrone fitting using the YY isochrones provides an age

of < 1.17 Gyr for this system. This can be further constrained using the observed lithium

abundance to∼ 0.6 Gyr, whilst Hellier et al. (2009) assigned the system an age of 0.5−1.5 Gyr.

One of the secondary aims of considering the tidal interactions in this system was to attempt

to improve upon these values.

An observed system age of 0.63± 0.53 Gyr was used for the calculation of the C-statistic

for this system, in line with previously discussed age estimates. WASP-18 b has a radius of the

order of that of Jupiter, but is significantly more massive. Lacking a means of calculating αp

however, I set αp = αJup as a reasonable estimate.

Since the observed system age is consistent with the age of the Hyades, I compared Prot,s

from Table 4.1 to Prot,s(t = tHyades), as calculated for my derivation of κ for the system, find-

ing the observed stellar rotation period to be shorter than the expected rotation period of

7.00 days at the age of the Hyades. I therefore set t0 = 150 Gyr≈ tM35, calculating Ωs,0 by
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Table 4.1: System parameters for WASP-18, primarily taken from Hellier et al. (2009). The rotation
period is taken from Table A.2, and the age is taken as the VRSS result from Table A.1. The J-K colour
was calculated using data taken from the SIMBAD on-line database, and λ was taken from Triaud et al.
(2010).

Parameter Value Units

Ms 1.25± 0.13 M�
Rs 1.216+0.067

−0.054 R�
J − K 0.278± 0.032
Teff 6400± 100 K
v sin I 10.77± 0.04 km s−1

Prot,s 5.58+0.94
−0.72 days

System age 0.66+1.02
−0.60 Gyr

Mp 10.30± 0.69 MJup

Rp 1.106+0.072
−0.054 RJup

a 0.02026± 0.00068 AU
e 0.0092± 0.0028
i 86.0± 2.5 ◦

Porb 0.94145299± 0.00000087 days

λ 5.0+3.1
−2.8

◦
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4.3. The WASP-18 system

Figure 4.3: Projection maps of the C-statistic probability density for WASP-18. The projections indicate
distinct ranges of log(Q′s), log(Q′p) and a0 that give high probability, corresponding to a low value of the
C-statistic. e0 provides a less clear cut high probability region, with several individual values giving good
results. The best-fitting initial parameters were found to be a0 = 0.0427 AU, e0 = 0.245, log(Q′s) = 7.00
and log(Q′p) = 7.50, giving a system age of 0.654 Gyr.

scaling the period colour relation of Collier Cameron et al. (2009) to this age.

The C-statistic values returned by the grid search were converted into probability densities

according to

P(C) = e−
C2

2 , (4.20)

and plotted as a set of projection maps (Fig. 4.3). These indicate regions of high probability,

and therefore low points in the C-statistic surface, for each pair of initial parameters, and

appear to show that there are a range of values for each parameter that could produce plau-

sible evolutionary histories with a good quality of fit. This is particularly noticeable in e0 and

log(Q′p), indicating that these parameters have a lesser impact on the orbital and spin evolu-

tion of the system than a0 and log(Q′s). This is, to a certain extent, unsurprising; the current

orbital eccentricity for WASP-18 b is more uncertain than the orbital separation, and so will

have less influence on the value of the C-statistic. It is also interesting to note the generally

sharp transitions in Fig. 4.3 between regions with P(C) > 0.4 and those with P(C) ≈ 0. This
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Figure 4.4: The posterior probability distributions of each pair of jump parameters produced by the MCMC
analysis of the WASP-18 system. Note the clear correlations between several of the integration parameter
pairs; these arise from the dependence of tidal energy dissipation on the orbital eccentricity, and from the
strong coupling that exists between the orbital eccentricity and the orbital separation. The location of the
best-fitting parameters are denoted by the dashed lines.

indicates that although the values of the initial parameters are somewhat uncertain, they are

generally well constrained to a smaller region of parameter space than I have allowed for.

The best-fitting combination of initial parameters in these projection maps was found to

be a0 = 0.0428 AU, e0 = 0.245, log(Q′s) = 7.00 and log(Q′p) = 7.50, indicating a system age

of 0.654 Gyr in good agreement with the broad estimates derived from stellar model fitting

in Chapter 2. However the gyrochronology estimate of 0.41+0.04
−0.03 Gyr that I calculated for

Chapter 2 is inconsistent with the age returned by the Grid Search. From the evolutionary

track I derived an extremely short remaining lifetime of 0.006 Gyr, implying that the planet is

currently spiralling in towards its host and is on the verge of reaching the Roche limit. This

seems incredibly short, and would mean that somehow WASP-18 b has been observed during

a very short window of opportunity. This result is, however, at odds with the results that I

obtained from my second integration method, the MCMC algorithm.

The posterior probability distributions produced by the MCMC integration scheme (Fig. 4.4)
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4.3. The WASP-18 system

indicate significant correlation between many of the pairs of initial orbital parameters, in par-

ticular a0 and log(Q′s) although it is also noticeable in several of the other distributions. Some

correlation is to be expected; the orbital circularisation time-scale depends on energy dissipa-

tion within both the star and the planet (Miralda-Escudé, 2002), and so a correlation between

the eccentricity and the quality factors that govern tidal energy dissipation is unsurprising.

The correlation between a0 and e0 may arise as a result of the strong coupling between ec-

centricity and separation noted by Jackson et al. (2008b). The rapidity with which the orbital

separation can decrease is intrinsically linked to the efficiency with which energy is dissipated

within the system, a process that is governed by the tidal quality factors. Moreover, inspection

of equation (4.12) indicates that ȧ ∝ Q−1, so the form of the correlation between a0 and

log(Q′s) that is observed is also as expected. In fact it is surprising that little to no correlation

is observed between a0 and log(Q′p)

The best-fitting parameters found using the MCMC code are set out in Table 4.2, and imply

a stellar age of 0.579+0.305
−0.250 Gyr, in agreement with all of the stellar model fitting age estimates

previously derived for the system. Fig. 4.5 displays the evolution of the stellar rotation for the

set of best-fitting parameters; it is important to recall that the age estimate is not evaluated

solely on the basis of this parameter, and that the observed orbital eccentricity and semi-major

axis play a part as well.

The value of log(Q′s) returned by the MCMC-derived integration scheme does not agree

with the best-fitting value obtained from the grid search of the defined parameter space. Nor

do the values of a0 and e0. I attribute this to the adoption of the set of median parameters

from the MCMC scheme to avoid chance encounters with local minima, as well as the discrete

nature of the grid search. Comparison of the solution with the lowest value of the C test

statistic shows a value of log(Q′s) that fits more closely to the grid search result, albeit still

in disagreement, although I note that the minimum test statistic value for the grid search is

an order of magnitude lower than that for the MCMC exploration of the available parameter

space. It is also worth noting that although Figs. 4.3 and 4.4 are broadly similar in form,

they differ somewhat in detail. The same correlations between parameters are visible in both

figures, but the cutoff in log(Q′s) occurs at a slightly greater value in Fig.4.4 than Fig. 4.3.

Additionally, the MCMC algorithm explores a narrower range of both a0 and e0 parameter

space than the grid search, but does explore the lower end of log(Q′p) space, a region which the

grid search suggests gives poor results. Again, this is probably attributable to the differences
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Table 4.2: The initial orbital parameters and tidal quality factors of the best-fitting tidal evolution histories
produced by the grid search and MCMC integration schemes for the WASP-18 system. The 1σ error bars for
the MCMC derived values are estimated from the parameter values that encompass the central 68.3 percent
of the final parameter distributions, and in some cases are inflated by the presence of short ‘tails’ in the
distributions.

Parameter Units Grid search MCMC

a0 AU 0.0427 0.0258+0.0052
−0.0044

e0 0.245 0.0399+0.1023
−0.0351

log(Q′s) 7.00 8.21+0.90
−0.52

log(Q′p) 7.50 7.77+1.54
−1.25

age Gyr 0.654 0.579+0.305
−0.250

tremain Gyr 0.006 0.076+0.790
−0.044

in the manner in which the two algorithms explore the delineated parameter space.

Using equation (4.13) with the data from Table 4.2 and the best-fitting value of log(Q′s)

from the MCMC scheme, I estimate that WASP-18 b will reach its Roche limit 0.086 Gyr from

now. The evolutionary track produced using the MCMC results implies a remaining lifetime

of < 0.818 Gyr for the planet, consistent with this value. These are, respectively, 2.40 and

< 22.84 percent of the expected main-sequence lifetime of the host star, which I estimate

to be 3.58 Gyr. These remaining lifetimes suggest that the WASP-18 planetary system might

have a short life expectancy, as found by Hellier et al. (2009). Although potentially quite

short, these values are far more reasonable than the value of 6 Myr derived from the grid

search.

The evolution of the stellar rotation period (Fig. 4.5) for the set of initial parameters re-

turned by the MCMC integration scheme indicates that the rotational evolution of the star

under the influence of tides initially differs little from my simulation in which the rotation

period is governed purely by a Skumanich-type magnetic braking law. However the evolution

of the rotation period rapidly diverges from this ideal case, with the rate of spin-down slowing

gradually as the star ages and the planet migrates towards its host under the influence of tidal

interactions. The final spiral-in of the planetary companion causes a rapid and substantial

spin-up of the star; during this process the stellar rotation period is reduced by almost a factor

of two from its maximum 6.26 day period to 3.16 days at the Roche limit, suggesting signif-

icant spin up of the host star. Furthermore, Fig. 4.5 clearly shows that, for the age estimate

returned by my MCMC integration scheme, the observed rotation period of the host star is
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4.3. The WASP-18 system

Figure 4.5: The evolution of the rotation period of WASP-18 from the best-fitting initial conditions found
by the MCMC exploration of the allowed parameter space (black, solid line), along with the evolution that
would occur in the absence of tidal interactions (red, dashed line). For reference, the observed parameters
are plotted with associated errors, and the best-fitting age given by the MCMC integration scheme is denoted
(black, dotted line). The tide-governed evolution diverges from the ideal rotational evolution early on, with
the effect of tidal interactions on the the rotation of the host star increasing with time until the rotation
period dramatically decreases during the final spiral-in of the planetary body.

inconsistent with the rotation period of 7.96 days that would be expected at the same age if

tidal interactions played no part in the evolution of stellar rotation.

Although the best-fitting parameters that I have adopted imply that WASP-18 b is in the

process of its final spiral in, the true picture is slightly more ambiguous, as evidenced by the

large upper uncertainty on the remaining lifetime. Within the 1σ parameter ranges there exist

combinations of the initial parameters that produce evolutionary tracks of a different form to

that displayed in Fig. 4.5. These evolutionary tracks follow the stellar rotation curve produced

by a purely magnetic braking scenario for a much longer period of time, and exhibit little

spin up of the host star. Furthermore, in semi-major axis space they indicate that the planet

stays at approximately the same semi-major axis for the duration of the star’s main-sequence

lifetime. In these cases the age of the system lies towards the lower end of the adopted range,

owing to the necessity of conforming to the calculated stellar rotation period, and the planet

has a long remaining lifetime. Note however that these solutions form only a minority of the

evolutionary tracks consistent with the parameter ranges that I adopt from the MCMC results.

More prevalent were tracks of the same form as that displayed in Fig. 4.5, but with the spin-

up taking place much later such that the stellar rotation implies an age consistent with the
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gyrochronological estimate and magnetic-braking only scenario.

I attempted to further constrain the range of possible tidal quality factors by visually fitting

to the observed parameters and their associated 1σ uncertainties. Starting from the best-

fitting initial orbital separation and eccentricity, I investigated the evolution of the system

across the range of values for both log(Q′s) and log(Q′p). I found that changing the value of

log(Q′p) made no difference to the evolution of the orbital separation or rotation period, but

had a strong effect on the eccentricity evolution of the planetary orbit. log(Q′s), in contrast,

strongly affected the evolution of all integration parameters. Moreover I found that changing

the initial semi-major axis, within the adopted range, made a significant difference to the

evolution of the stellar rotation period, whilst modifying e0 merely affected the evolution of

the orbital eccentricity. I therefore conclude that the two most important parameters with

respect to the stellar rotation are Q′s and a0. Hansen (2012) agrees with this, noting that in

the case of WASP-18 the stellar tides appear to be particularly important, and that they could

in fact have reversed the direction of stellar spin!

I was unable to constrain the permissible ranges of the two tidal quality factors any further,

owing to the range of values that a0 was able take, but found that for the majority of the

possible combinations the rotational evolution of WASP-18 A gradually diverges from that

expected of a purely magnetic braking scenario, and that the star is eventually spun-up by a

substantial amount during the final in-spiral of its planetary companion. Fig. 4.6 shows the

rotational period evolution resulting from several values of log(Q′s) within the permissible

range, with log(Q′p), a0, and e0 set to values adopted from the MCMC search.

4.4 The WASP-19 system

The transiting hot Jupiter WASP-19 b orbits a late G-dwarf star with an orbital period of

0.7888399± 0.0000008 days. The host star has been measured to have Teff = 5500± 100 K,

periodic sinusoidal flux variations that indicate a detectable level of intrinsic variability and

activity, and a metallicity slightly greater than solar at [M/H] = 0.1± 0.1 dex (Hebb et al.,

2010). Measurements of the Rossiter-McLaughlin angle for the system, which have yielded

λ = 4.6± 5.2 ◦ (Hellier et al., 2011) and λ = 15± 11 ◦ (Albrecht et al., 2012b), indicate that

the system is generally well-aligned.

The age of the system is still somewhat uncertain, with Hebb et al. (2010) only able to
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Figure 4.6: Evolutionary tracks for WASP-18 produced using several different values of log(Q′s) within
the range consistent with the observed system parameters. The tracks were calculated using the values of
e0, a0 and log(Q′p) adopted from the MCMC solution and, from left to right (at the end of the track):
log(Q′s) = 8.02, log(Q′s) = 8.21, log(Q′s) = 8.70 and log(Q′s) = 9.11. Left: The evolution of stellar
rotation period with time for WASP-18. The dashed line shows the evolution expected from a Skumanich-
type magnetic braking law. Changing the value of Q′p has no effect on the evolution of the rotation period
with time. Right: The evolution of the C test statistic with time for the tracks in the upper panel. The time
at which C is a minimum is taken to be the age of the system given the set of initial parameters used for
that evolutionary track.

determine a constraint of > 1.0 Gyr. Several studies (e.g. Hansen (2010); Weidner & Horne

(2010)), as well as the exoplanet encyclopedia2, cite an age of 0.6 ± 0.5 Gyr for the star

and attribute it to Hebb et al.. I believe that this originates from the abstract of Hebb et al.

which quotes that age as one of two possibilities. However the text of that paper favours

the older age constraint. For my analysis I used an age of tage = 5.5 ± 4.5 Gyr, consistent

with the isochronal fit and lower bound on the age quoted by Hebb et al., as well as my

own isochronal analysis of the system which suggests a much older age for the system (this

estimate is consistent with the lower bound on my isochronal estimates; see Appendix A), and

set αp = αJup = 0.26401. Comparing the stellar rotation period from Table 4.3 to the rotation

period expected at the age of the Hyades, I found that Prot,s > Prot,Hyades = 8.60 days and thus

set t0 = tHyades and Ωs,0 = Ωs,Hyades.

Fig. 4.7 shows the C-statistic probability density projection maps produced from the grid

search results for the WASP-19 system. They indicate a fairly small region of high probability

for log(Q′s) and log(Q′p), but appear to show that there are broader ranges of both e0 and

a0 that give strong solutions. The absolute maximum probability, and thus the minimum

value of the C statistic, was found to occur when the initial conditions were a0 = 0.0939 AU,

e0 = 0.735, log(Q′s) = 6.25 and log(Q′p) = 10.0, giving a system age of 2.11 Gyr that is

2www.exoplanet.eu
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Table 4.3: System parameters and 1σ limits for WASP-19, taken from the free eccentricity fit of Anderson
et al. (2013) with the exceptions of the J-K colour which is derived from data taken from SIMBAD, the age
which is taken from Hebb et al. (2010), and the rotation period (Collier Cameron, priv. comm.).

Parameter Value Units

Ms 0.969± 0.023 M�
Rs 0.993± 0.018 R�
J − K 0.43
Teff 5475± 98 K
v sin I 4.63± 0.27 km s−1

Prot 10.5± 0.2 days

System age 5.5+9.0
−4.5 Gyr

Mp 1.165± 0.023 MJup

Rp 1.383± 0.031 RJup

a 0.01653± 0.00013 AU

e 0.0019+0.0055
−0.0015

i 79.42± 0.39
Porb 0.78883951± 0.00000032 days

consistent with the existing literature constraint of > 1.0 Gyr from Hebb et al. (2010), but

which is younger than the ages that I obtained using stellar model fitting. Using the period-

colour relation of Collier Cameron et al. (2009) I calculated a gyrochronological system age

of 0.86± 0.03 Gyr (see Table A.2), immediately suggesting that gyrochronological analysis is

inappropriate for this system.

Comparing the sets of projection maps for the two systems, it is apparent that there are

similarities in the forms of Figs. 4.3 and 4.7, particularly in the a0 − log(Q′s) and e0 − a0

maps. However the range of probability values covered by the greyscale is slightly narrower

for WASP-19, where the maximum probability is approximately 0.8, compared to WASP-18,

where the maximum probability is almost 1.0. From this I deduce that the best-fitting orbital

solution for WASP-19 is less certain than my best-fitting grid search solution for WASP-18.

This lower maximum probability, coupled with the form of the projection maps, also suggests

that the range of tidal quality factors for which valid orbital solutions exist is greater for this

system than it was for WASP-18.

The posterior probability distributions produced by the MCMC algorithm exhibit a strong

correlation between a0 and log(Q′s), of a similar form to that observed for the WASP-18 system

albeit extended to lower values of log(Q′s). Also present is a correlation between e0 and a0
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Figure 4.7: C-statistic probability density projection maps for WASP-19. A small region of high probability
is clearly visible in log(Q′s) and log(Q′p) parameter space, but in a0 and e0 the range of values that give high
probability solutions are much broader. The point of maximum probability, indicating the minimum in
the C-statistic surface, was found to occur at parameter space coordinates of a0 = 0.0939 AU, e0 = 0.735,
log(Q′s) = 6.25 and log(Q′p) = 10.0, giving a system age of 2.11 Gyr.
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Figure 4.8: The posterior probability distributions of each pair of integration parameters produced by
the MCMC analysis of the WASP-19 system. The correlations between the parameters are substantially
different than those for the WASP-18 system, with that between log(Q′s) and a0 being the only particularly
noticeable correlation. The location of the best-fitting parameters are denoted by the dashed lines.
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that is somewhat similar to that apparent in Fig. 4.4, but the other correlations that were

present in the distributions for WASP-18 are absent for WASP-19. The region of parameter

space explored by the MCMC algorithm is also substantially greater for the WASP-19 system

than it was for the WASP-18 system, although this is not unexpected after the comparative

appearance of Figs. 4.3 and 4.7.

It is also interesting to note the relative lack of agreement between the results from the

grid search and the MCMC search methods for this system; the only search parameter for

which the two sets of results agree is log(Q′s). This is also apparent from inspection of Figs 4.7

and 4.8, as the region of greatest probability in the former does not match the location of the

adopted parameters in the latter. As for the WASP-18 system, I attribute this to the adoption

of the set of median parameters from the MCMC scheme; comparison of the solution with the

lowest value of the C test statistic shows that it more closely fits with the location of the high

probability region in Fig. 4.7. Fortunately the stellar tidal quality factor, the most important

parameter when considering the evolution of the stellar rotation, is relatively well constrained

in my MCMC-derived solution.

The probability distribution for the initial orbital eccentricity of the WASP-19 system also

shows weaker clustering than for the WASP-18 system, and the clustering that is present

encompasses a much smaller range of eccentricity values above e0 = 0. This may be symp-

tomatic of the fact that the eccentricity of the system is not well known; previous analysis of

the parameters of the system found little difference in the fit to the observed transit lightcurve

between the cases in which the orbit was forced to be circular, and in which the eccentricity

was allowed to float (Hebb et al., 2010). In the latter case, the best-fitting eccentricity value

was only 0.02+0.02
−0.01, and it is this value that I used in my calculation of the C statistic.

The best-fitting parameters given by the MCMC integration scheme, set out in Table 4.4,

imply a stellar age of 1.60+2.84
−0.79 Gyr, in broad agreement with the loose constraint of age >

1.0 Gyr found by Hebb et al. (2010). The gyrochronological age that I calculated for the sys-

tem also agrees with this age estimate but lies at the lower end of the range, suggesting that

gyrochronology provides a possible, if unlikely estimate for the age of WASP-19 A. The data

in Table 4.4 further imply a remaining lifetime for the planet of < 1.114 Gyr. One possibility

allowed by this is that WASP-19 b is in the final, spiral-in stage of its orbital evolution, a con-

clusion seemingly supported by the stellar rotation period evolutionary track that results from
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Table 4.4: The initial orbital parameters and tidal quality factors of the best-fitting tidal evolution histories
produced by the grid search and MCMC integration schemes for the WASP-19 system. The 1σ error bars for
the MCMC derived values are estimated from the parameter values that encompass the central 68.3 percent
of the final parameter distributions.

Parameter Grid search MCMC Updated Units

a0 0.0939 0.0317+0.0228
−0.0146 0.0317+0.0228

−0.0089 AU

e0 0.735 0.0017+0.0597
−0.0016

log(Q′s) 6.25 6.47+2.19
−0.95 6.47+0.67

−0.95

log(Q′p) 10.0 6.75+1.86
−1.77

age 2.11 1.60+2.84
−0.79 Gyr

tremain 0.0038 0.0067+1.1073
−0.0061 Gyr

integration of the best-fitting parameters (Fig. 4.9). As with the WASP-18 system I attempted

to further constrain the range of possible tidal quality factors by visually fitting to the observed

parameters; in this case I was able to reduce the upper limit on log(Q′s) and raise the lower

limit on a0 (these are accounted for in Table 4.4). Updating the limits on these parameters

had no effect on the 1σ limits of the age or remaining lifetime.

The observed spin rate of WASP-19 is inconsistent with evolution governed only by mag-

netic braking; Fig. 4.9 shows that, at the system age implied by my MCMC solution, the ob-

served period of 10.5± 0.2 days is substantially less than the period of 15.9 days implied by

the magnetic braking only model. It is possible that WASP-19 b is in the process of spiralling-in

to the Roche limit, spinning up its host as it does so.

Fig. 4.10 shows the rotational period evolution resulting from log(Q′s) values within the 1σ

limits returned by the MCMC search scheme. These are consistent with the idea that WASP-

19 b might be approaching its Roche limit; for the best-fitting tidal quality factors the end of

the evolutionary track is at Prot = 10.5 days compared to the observed Prot = 10.5± 0.2 day,

placing the planet precisely on the Roche limit and suggesting that the WASP project has been

fortunate to observe the planet at all.

Much as with the WASP-18 system though, this is not the entire picture presented by my

results. I have only been able to obtain an upper limit on tremain, the value of which represents

a significant 69.6 percent of the estimated age, and 13.7 percent of the MS lifetime of the host

star. As well as the possibilities already discussed, there must therefore also exist solutions

that more closely follow the stellar rotation evolution expected when only magnetic braking
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Figure 4.9: The evolution of the rotation period of WASP-19 from the best-fitting initial conditions found
by the MCMC exploration of the allowed parameter space (black, solid line), along with the evolution that
would occur in the absence of tidal interactions (red, dashed line). The tide-governed evolution follows the
gradual spin-down of the isolated evolution closely until spiral-in of the planet begins, at which point the
stellar rotation period rapidly decreases. The observed rotation period is plotted with associated errors, and
implies that WASP-19 b is in the final spiral-in stage of its orbital evolution. Furthermore it is irreconcilable
with the expected spin down from magnetic braking alone, and can only be explained by invoking spin-up
during tidal interactions.

Figure 4.10: The evolution of stellar rotation period with time for WASP-19 for a range of log(Q′s) values.
The dashed line shows the evolution expected from a Skumanich-type magnetic braking law, whilst the
three solid lines are the evolution that results from the best-fitting e0, a0 and log(Q′p) given by the MCMC
algorithm, and, from left to right (at the observed system age), log(Q′s) = 6.14, log(Q′s) = 6.47 and
log(Q′s) = 6.52. These tracks imply that WASP-19 b is very close to the Roche limit, and will reach it in
less than 10 Myr.
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is acting on the star. To investigate this I characterised the orbital evolutionary tracks for

each log(Q′s) − a0 node from the grid search that was consistent with my results from the

MCMC algorithm. Since my investigation into WASP-18 b’s future evolution led me to the

conclusion that e0 and log(Q′p) have little effect on the evolution of the stellar rotation, I set

these parameters to the MCMC values from Table 4.4.

I found that for each value of a0 there was only a very narrow range of log(Q′s) values

that gave solutions with an age ≥ 1.0 Gyr and a rotation period at that age consistent with

the observed value. In fact only 13 percent of the nodes investigated gave such solutions.

The majority of the nodes gave solutions that either did not reach an age of 1.0 Gyr, instead

showing the distinctive spiral-in signature at younger ages, or that followed the magnetic

braking-only track for much longer such that the spin-up induced by the final spiral-in was

insufficient to reduce the stellar rotation period back to the observed value. Tracks that fell

into this latter category often returned ages consistent with the gyrochronological calculation,

although some did return older ages consistent with the 1.0 Gyr lower limit owing to the

influence of the orbital eccentricity and semi-major axis.

This raises questions concerning WASP-19 A’s true age. The evidence from isochrone fitting

(see Appendix A) implies that the star is much, much older than 1 Gyr. This is supported by

the investigation of Hebb et al. (2010) into the space velocity of the star, which found that

65 percent of simulated stars with similar stellar properties in a small volume around WASP-

19 A were older than 1.0 Gyr. But the rotation period of WASP-19 A implies a younger age of

0.86± 0.03 Gyr through gyrochronology. The lithium abundance of log(A[Li]) < 1.0 quoted

by Hebb et al. is consistent with either estimate as it only constrains the age to greater than

0.6 Gyr. There therefore appear to be two main possibilities; either the star is old and has

been spun up by the infall of the planet, or the star is younger, still following its natural spin

down and more dense and/or hotter than expected for its age. Both of these are consistent

with the results that I obtained from the two search methods, so which is the more plausible?

4.4.1 Is W19 young or old?

I decided to consider my results for WASP-19 in the context of a larger ensemble of planetary

systems with similar stellar and planetary properties, assuming that the value of log(Q′s) =

6.47 adopted for WASP-19 is applicable to the other systems under consideration. I found

that for 7 of the 9 planetary systems in the sample (see Table 4.5) the projected remaining
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Table 4.5: A comparison of the WASP-19 system to a sample of transiting hot Jupiter systems
with Mp > MJup in close orbits around stars similar to, or cooler than, WASP-19 A. I calculate
the remaining lifetime for each planet using equation 4.13, assuming that the stellar tidal quality
factor of log(Q′s) = 6.47 adopted for WASP-19 A is applicable across the entire sample. Note that
the remaining lifetime for WASP-19 b quoted here does not agree with the value derived from the
evolutionary track displayed in Fig. 4.9.

System Mp /MJup Rp /RJup Ms /M� Rs /R� a /AU P /days tremain /Gyr Age /Gyr

WASP-19 1.14 1.28 0.95 0.93 0.0164 0.7888399 0.012 1.60+2.84
−0.79

WASP-2 0.847 1.079 0.84 0.834 0.03138 2.1522254 1.708 11.9+8.1
−4.3

a

WASP-4 1.12 1.416 0.93 1.365 0.023 1.3382282 0.017 7.0+5.2
−4.5

a

WASP-5 1.63 1.171 1.00 1.15 0.02729 1.6284246 0.080 3.0± 1.4 b

WASP-10 3.06 1.08 0.71 0.783 0.0371 3.0927616 1.818 0.8± 0.2 c

CoRoT-1 1.03 1.49 0.95 1.11 0.0254 1.5089557 0.093
CoRoT-2 3.31 1.465 0.97 0.902 0.0281 1.7429964 0.159
OGLE-TR-113 1.24 1.11 0.78 0.77 0.0229 1.4324772 0.224 > 0.7 d

TrES-3 1.91 1.305 0.92 0.813 0.0226 1.30618608 0.111 0.1+0.7
−0.0

a

(a)Southworth (2010) (b)Anderson et al. (2008) (c)Christian et al. (2009)
(d)Melo et al. (2006)

lifetime is < 1 Gyr. Furthermore I found that WASP-4 b has a remaining lifetime of 0.017 Gyr,

and calculated that it lies at a distance of only 1.4 times the Roche limit from its host star;

this places it in apparently similar circumstances to WASP-19 b. WASP-2 b and WASP-10 b

have remaining lifetimes at least one order of magnitude greater than those of the rest of the

sample, but they also have significantly longer orbital periods.

It is interesting to consider the range of the stellar tidal quality factor that produces certain

threshold values of tremain. I found that if I excluded the longer period WASP-2 and WASP-10

systems, log(Q′s) > 7.10 leads to an estimated tremain ≥ 1.0 Gyr for all planets in the sample,

whilst a remaining lifetime greater than 0.1 Gyr requires log(Q′s) > 6.12. For WASPs -2 b and

-10 b I found that the values required were 6.24 and 5.24, and 6.22 and 5.22 respectively.

The tidal evolution solution that I presented previously would seem to support the hypoth-

esis that the star is old, with stellar spin up accounting for the rotation period. But the results

in Table 4.5 would seem to add weight to the idea that the system is actually younger than ex-

pected. The likelihood of observing one system in such a condition is low, but to observe two

such systems as Table 4.5 implies has been done with WASPs -4 and -19, seems incredulous.

Considering the remaining lifetimes in the context of the total planetary lifetime suggests

a different scenario. Equation (4.13) can also be used to calculate the total planetary lifetime
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Figure 4.11: Remaining lifetime as a function of total planetary lifetime for the sample of transiting
planets in Table 4.5, as calculated using 4.13 assuming that the values of log(Q′s) and a0 adopted for
the WASP-19 system from my MCMC results apply universally. Displayed are the results for log(Q′s) =
5.52 (squares), log(Q′s) = 6.47 (circles) and log(Q′s) = 7.14 (triangles). The data for WASP-19 b are
denoted by filled symbols. The lines represent tremain = 1 percent (red, dash), 5 percent (green, dot-dash)
and 10 percent (dark blue, dot) of the total planetary lifetime. WASP-19 b is clearly separate from the rest
of the sample, indicating that it is in a unique situation.

if the initial semi-major axis is known. I calculated the total planetary lifetimes assuming that

the value adopted for WASP-19 b, a0 = 0.0317 AU applied unilaterally across the sample of

hot Jupiters, and in Fig. 4.11 remaining lifetime is plotted as a function of total lifetime. It

is immediately apparent that WASP-19 b is a special case, being clearly separated from the

rest of the sample. The remaining lifetime of WASP-19 b is only between 1 and 2 percent

of the total lifetime, whilst for all of the other planets in the sample this figure is greater

than 10 percent. The short remaining lifetime of WASP-4 b is thus somewhat misleading, as it

represents a significant portion (≈ 12.6 percent) of the total lifetime of the planet.

There are several ways in which the remaining lifetimes calculated here can be analysed,

one of which is to examine the probability that the system has actually been observed in its

present configuration. I calculated this for the systems in Table 4.5, disregarding those with no

literature age estimate. For WASP-19 I calculated the probability using both my own adopted

age estimate of 5.5 ± 0.45 Gyr, and the younger age of 0.6 ± 0.5 that can be found in the

literature. Fig. 4.12 displays the results for a range of log(Q′s) values consistent with the 1σ

limits derived from the MCMC posterior probability distributions. For the value of log(Q′s)

adopted from the MCMC solution I found that two systems, including WASP-19 at my older
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Figure 4.12: The probability of observing the systems in Table 4.5 in their present configuration, as a
function of log(Q′s) within the range encompassed by the 1σ errors from the MCMC results. Systems
without a stellar age in the literature were disregarded. The data are offset slightly from the true value
of log(Q′s) to aid clarity for the error bars. Systems for which P > 1 are plotted at P = 1. WASP-19
is denoted by filled symbols; triangles for the probability using the age estimate from the MCMC results,
squares for the probability calculated using the estimate of 0.6± 0.5 Gyr prevalent in the literature. At
log(Q′s) = 6.47 two systems, including WASP-19 with its older age, show a probability of observation
that is less than 1 percent. Increasing the stellar tidal quality factor increases the probability that I have
observed the systems in the state implied by their remaining lifetimes.

age estimate, have a probability of observation of less than 1 percent. Using the younger age

estimate for WASP-19 pushes the probability up to 2 percent, which is more plausible (see

analysis in Hellier et al. 2011). Increasing the value of log(Q′s) to my upper limit of 7.14

increases the probability of observing WASP-19 b to approximately 3.5 percent for the older

age, and approximately 9 percent for the younger age. If the lower limit of log(Q′s) = 5.52 is

considered then four systems, including both ages of WASP-19, have observation probabilities

less than 1 percent. This is an entirely implausible situation.

However this analysis assumes that all of the planets in my chosen sample started at the

same distance from their respective host stars, and that they experience tidal interactions

of the same strength. It seems somewhat unlikely that this accurately represents reality, as

the planetary systems in the sample show significant variation in their properties. Previous

studies (Matsumura et al., 2010; Hansen, 2010) have found that different planetary systems

are likely to experience different strengths of stellar and planetary tide, so describing these

systems with a single value is almost certainly unphysical. This would, of course, mean that

the observational probabilities for several of these hot Jupiters could be significantly greater.
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To further muddy the waters, the isochronal fits presented in Table A.1 add further evi-

dence for an old age for the star. Investigating the values of Teff and ρs required for a stellar

age of 0.6± 0.5 Gyr in the Padova and YY models, assuming the same metallicity. The results

are given in Table 4.6; it proved very difficult to reach such a low age. The correction required

to the effective temperature if the stellar density is correct is not improbable, but the converse

is not necessarily true. Modifying the stellar density by the amount that my results indicate

is required would mean a large change to either the stellar mass or radius, or both, either

of which would have a dramatic effect on my estimates of the planetary parameters. This is

notwithstanding the more likely case, which is that both the temperature and density are in

need of an adjustment.

For completeness I attempted to force an age of 0.6 Gyr by adjusting the stellar metallicity,

whilst leaving the effective temperature and stellar density at the values from Hebb et al.

(2010). I found that the upper limit of Z = 0.03 imposed on the Padova isochrones prevented

me from reaching such a low age, leaving a lowest estimate of 6.15+3.47
−1.75 Gyr which could be

consistent with a star of the age of the Hyades. When fitting to the Yonsei-Yale isochrones I

found that a value of [Fe/H] = 0.70 gave an age of 3.06+2.54
−1.40 Gyr, the lowest that I was able

to achieve. Fitting to the 0.6 Gyr isochrone itself would require a much greater metallicity,

but given that this value of the iron abundance is already 0.43 dex greater than the maximum

elemental abundance found by Hebb et al. (2010) (specifically the upper 1σ limit on the

Calcium abundance), it is clear that such a fit would be utterly inconsistent with the current

spectral analysis.

It therefore seems that a combination of increased elemental iron abundance, greater stel-

lar density and higher effective temperature could produce stellar model fits more consistent

with the young stellar age suggested by gyrochronology. However even adjusting all three

parameters in concert requires an increase in stellar density that is not supported by the cur-

rently fitted values, as well as much higher [Fe/H].

As noted previously, the constraint placed on the age of WASP-19 A by the lithium abun-

dance has the potential to rule out the young stellar age, as the detection of a substantial

lithium abundance in a stellar spectrum strongly implies a young age for the star. The orig-

inal analysis in Hebb et al. (2010) utilised only 34 spectra from the CORALIE spectrograph

(Queloz et al., 2000b), but thanks to an ongoing radial velocity observation program I now
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Table 4.6: The age estimates obtained through fitting the stellar parameters of WASP-19 A from Anderson
et al. (2013) to stellar models. Adjusting the stellar density, effective temperature or iron abundance in
isolation lowers the age that the model fit returns. Obtaining an age of 0.6 Gyr required the parameters to
be increased beyond their 1σ limits when done in isolation. If adjusted as a set, the required age could be
obtained with more plausible values.

Model ρs/ρ� Teff /K [Fe/H] age /Gyr

Padova 0.990± 0.043 5475± 98 0.02 > 8.25
Padova 1.49± 0.05 5475± 98 0.02 < 3.45

Padova 0.990± 0.043 5950± 100 0.02 0.67+1.64
−0.65

Padova 0.990± 0.043 5475± 98 0.2 6.15+3.47
−1.75

Padova 1.28± 0.05 5575± 100 0.12 < 2.66

Yonsei-Yale 0.990± 0.043 5475± 98 0.02 8.91+1.47
−0.92

Yonsei-Yale 1.60± 0.05 5475± 98 0.02 < 1.75
Yonsei-Yale 0.990± 0.043 6075± 98 0.02 < 1.48

Yonsei-Yale 0.990± 0.043 5475± 98 0.70 3.06+2.54
−1.40

Yonsei-Yale 1.35± 0.05 5550± 100 0.15 < 1.48

have access to additional data on WASP-19 A. Since the publication of Hebb et al. (2010) a

further 3 spectra have been taken using CORALIE, and 36 spectral measurements have been

obtained using the HARPS high precision échelle spectrograph (Mayor et al., 2003). This lat-

ter set of individual spectra were co-added into a single spectrum with a higher signal-to-noise

ratio, from which it was possible for Barry Smalley to improve the constraint on the lithium

abundance. Hints of a lithium line were present but only at the level of the spectral noise,

limiting the results to an upper limit of log(εLi)< 0.5. This allowed the placement of a lower

limit on the age of WASP-19 A of 2.0 Gyr (Sestito & Randich, 2005), making an older age for

the star more palatable.

The final piece of evidence to be considered is the proximity of WASP-19 b to the Roche

limit. Using the observed system parameters and their associated uncertainties with the for-

mulation of Eggleton (1983), I calculated that the Roche limit for WASP-19 b is at 0.0148±

0.0025 AU, in agreement with the observed orbital separation of 0.0164+0.005
−0.0006 AU. Hellier

et al. (2011) place the planet slightly further from the star at 1.21 times the Roche tidal

radius, but they use a different formulation for calculating the limit.

I conclude that the evidence is in favour of WASP-19 A being old. Whilst there is evidence

for the star being young, it is more circumstantial than that which points to an older star. The

upper limit on the lithium abundance and the results from stellar model fitting in particular
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point towards an age in excess of 1.0 Gyr. If WASP-19 A is indeed old, then the exploration of

tide-governed evolution presented herein suggests that WASP-19 b might be spiralling into the

Roche limit, spinning up its host as it does so. During my exploration of possible evolutionary

histories I found that those which returned a stellar age of > 1.0 Gyr tended to exhibit a very

short remaining lifetime. There were, however, some histories that married an older age for

the star to a long remaining lifetime for the planet, so I am unable to completely rule out that

scenario.

4.5 Discussion

I have calculated an age for the WASP-18 system of 0.579+0.305
−0.250 Gyr, in agreement with the

0.630+0.950
−0.530 Gyr age found from stellar isochrones by Hellier et al. (2009). Using an MCMC

algorithm I find tidal quality factors of log(Q′s) = 8.21+0.90
−0.52 and log(Q′p) = 7.77+1.54

−1.25. My

results imply that WASP-18 b will reach the Roche limit in 0.076+0.790
−0.044 Gyr, and that in most

cases it will cause its host to spin up as it does so. I am unable to place stronger constraints

on the status of the system with respect to planetary infall owing to the range of evolutionary

histories that I find to be compatible with its observed parameters, but a large number of

the evolutionary tracks investigated imply that the planet is in the process of spiralling in to

its host star. My results for the WASP-18 system seem roughly consistent with the work of

Matsumura et al. (2010).

For the WASP-19 system I found tidal quality factors of log(Q′s) = 6.47+0.67
−0.95 and log(Q′p) =

6.75+1.86
−1.77. These values give a stellar age of 1.60+2.84

−0.79 Gyr, in agreement with the constraint of

age≥ 1.0 Gyr found by Hebb et al. (2010), and imply a remaining lifetime of 0.0067+1.1073
−0.0061 Gyr.

I have investigated the possibility that WASP-19 A is younger than previously predicted, in line

with the predictions of gyrochronology. After considering the evidence for both the old and

young stellar age possibilities, I conclude that the older age is more probable based on a re-

analysis of the spectral lithium abundance and updated stellar model fits. I therefore suggest

that WASP-19 b could be in the final stages of its spiral-in stage, and on the verge of reaching

the Roche limit. I found that this scenario was more prevalent amongst those evolutionary

histories with a stellar age > 1.0 Gyr, but that there were some instances in which the older

stellar age coincided with a substantial remaining planetary lifetime. I am therefore unable to

rule out the possibility that it will be some time before the planet falls into the star.
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Tidal interactions between these two hot Jupiters and their host stars will dramatically

affect the evolution of the stellar rotation periods, counteracting and then reversing the spin-

down that is expected from evolution according to a Skumanich-type magnetic braking law.

The observed rotation periods are irreconcilable with such an evolution of the rotation period,

and strongly suggest that falling in hot Jupiters cause their host stars to spin up during their

inward, tidal interaction governed migration. It is worth noting that my results seem to point

towards a more diverse range of stellar tidal dissipation strength than is commonly considered

in the literature. The ranges of log(Q′s) that I have attributed to the two systems investigated

herein are slightly disparate, for which there may be several possible explanations. I turn to

the work of Pinsonneault et al. (2001), which shows that the mass of the convective zone is

a function of Teff, and therefore of spectral type. From their fig. 1, I note that the effective

temperature of WASP-18 A lies close to the point at which the mass of the convective zone

becomes negligible, implying a convective zone mass of MCZ ≈ 0.001 M�. WASP-19 A, with

its much lower effective temperature, would have MCZ ≈ 0.030 M�. In my work I have

assumed that the star rotates as a single body, but I have made no assumption about where

the majority of tidal dissipation takes place. If this process occurs in the convective zone

then the discrepancy in the masses, and therefore depths, of the convective zones of the two

stars could provide an explanation for the disagreement as to the value of Q′s, with a larger

convective zone allowing for more efficient dissipation and hence a smaller quality factor.

This study also provides a further warning against using gyrochronology to estimate the

ages of hot Jupiter host stars. Owing to the tidal spin-up of its host star by the in-falling

planet, the age that I have found for the WASP-19 planetary system is greater than the age

found using gyrochronology alone. The situation for the WASP-18 system is less clear cut,

but there is no doubt that gyrochronology will not provide an accurate estimate of the system

age at all points during its evolution. I therefore suggest that care should be taken when

applying gyrochronology to hot Jupiter systems. The two systems studied herein are extreme

examples of this class of planet, with extremely short orbital periods and very close orbits, but

the incompatibility of gyrochronology with my results supports my findings from Chapter 2.

The substantially reduced rotation period that results from tidal spin-up may provide a

means of detecting stars that have either been planet hosts in the past, or that have unseen

planetary companions that are in the process of spiralling in to the Roche limit. Measurement

of such an anomalous rotation period would provide a strong indication of the current or

93



Chapter 4. Tidal-interaction governed evolution in the WASP-18 and WASP-19 systems

previous existence of a hot Jupiter around that star. Searching for such systems could help

to pinpoint targets for extra-solar planet searches, although Lanza (2010) found that the

rotation period evolution of F- and G-type planet hosts does not differ substantially from

similar stars without hot Jupiters. My results disagree with this conclusion, and it should

be noted that the final spiral-in of the planet does not appear to have been considered by

that study. An earlier study by Barnes (2001) similarly found that there was generally no

difference in rotation between planet hosts and other solar-type stars, or even between planet

hosts and the members of open clusters. However they did identify one system, τ Boo, with

anomalously fast stellar rotation, suggesting that it might be due to tidal effects causing stellar

spin-up.

4.6 Conclusion

In this Chapter I have carried out detailed modelling of the tidal interactions in two hot Jupiter

systems: WASP-18 and WASP-19. By doing so I have been able to place limits on the the tidal

dissipation strengths for both the planets and stars, and have characterised the evolutionary

histories and futures of the two systems. In the next Chapter I will consider six more WASP

hot Jupiter systems, and examine the alignment between the axes of their stellar spins and

planetary orbits.
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5
Spin-orbit alignment measurements for six

WASP hot Jupiters

This chapter uses material from, and is based on, Brown et al. (2012), MNRAS, 423,

1503-1520 and Brown et al. (2012), ApJ, 760, 139

5.1 Introduction

The eight planets of the Solar system all orbit in roughly the same plane, the ecliptic. What is

more, the ecliptic is fairly well aligned with the Solar equatorial plane, with the angle between

them being a mere 7.155± 0.002◦ (Beck & Giles, 2005). An alternative way of looking at the

situation would be that the orbital axes for the Solar system planets are well aligned with the

Sun’s rotation axis. This commonly known as ‘spin-orbit alignment’.

There is no guarantee, however, that this holds true for the orbits of extra-solar planets.

It is known that binary stars can exhibit a range of angles between their mutual orbit and the
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two spin axes (Hube & Couch, 1982; Company et al., 1988; Albrecht et al., 2007, 2009), but

measuring the alignment angle, or ‘obliquity’, for an exoplanet is more difficult owing to the

greater mass, radius, and luminosity ratios that are involved.

The first observation of the alignment angle for a transiting planet was made by Queloz

et al. (2000a) for HD 209458 b. Since then the number of planetary systems with known

spin-orbit alignment angles has steadily increased, with the majority having been measured

through the Rossiter-McLaughlin effect.

5.1.1 Rossiter-McLaughlin effect

The most common method by which the alignment of an exoplanet’s orbit is measured is

the Rossiter-McLaughlin (RM) effect (Holt, 1893; Schlesinger, 1910, 1916; Rossiter, 1924;

McLaughlin, 1924). This is a directly measurable effect, and is observable during planetary

transits as a spectroscopic signature (see Figure 1.1).

Stellar rotation necessarily implies that the two limbs of the stellar disc have very different

velocities along our line of sight. At one limb the stellar material has a velocity directly

towards the observer along the line of sight (the approaching limb), whilst at the other the

velocity is directly away (the receding limb). More generally, the two halves of the stellar disc

can be considered as approaching and receding, with a dividing line along the stellar rotation

axis at which the rotation velocity is entirely tangential to the line of sight.

During a transit, when the planet is in front of the approaching limb or hemisphere of

the star it blocks some of the blue-shifted light from that region. This leads to a small net

red-shift in the stellar spectrum. Similarly, when it is in front of the receding hemisphere,

there is a small net blue-shift in the spectrum as some of the red-shifted light is eclipsed. The

combination of these leads to a slight anomaly in the radial velocity (RV) sinusoid for the

system, visible at the time of transit. The precise form of the RM anomaly depends on the

impact parameter, b, the projected stellar rotation, v sin I , and the projected alignment angle,

λ (see Figure 5.1).

Despite the popularity of the RM effect, there are a growing number of systems for which

λ has been measured using alternative means. In some cases this is out of necessity owing

to limitations in the applicability of the RM effect, whilst in others it arises from a desire

to expand the repertoire of analysis methods. Examples of the alternatives currently avail-
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Figure 5.1: An example of how changing the parameters and geometry of a planetary system can affect the
form of the Rossiter-McLaughlin anomaly. In the first figure the transit is well-aligned, and the transit path
has equal length across both hemispheres of the star. This leads to a symmetric anomaly. Increasing the tilt
of the orbit relative to the rotation axis of the star changes the relative length of the transit chord for each
hemisphere, leading to asymmetric signals. The dotted lines indicate the cases with no limb darkening.
(figure 2 from Gaudi & Winn 2007)

able include analysis of the effect of star spots on the photometric transit observations (e.g.

Sanchis-Ojeda et al., 2011; Nutzman et al., 2011), consideration of the effect of gravity dark-

ening (e.g. Barnes et al., 2011), comparison of the measured and predicted stellar v sin I

(Schlaufman, 2010), measurement of the chromospheric RM effect in the Ca II H & K lines

(Czesla et al., 2012), and Doppler tomography. All of these alternative methods are comple-

mentary to the RM approach, allowing as they do the study of systems with vastly different

properties, and with which that method struggles to cope.

5.1.2 Doppler tomography

Doppler Tomography is one of the more established alternatives to the RM effect, and was

first applied to the case of a transiting planet by Collier Cameron et al. (2010a). Rather

than use the radial velocity measurements, this method takes the cross-correlation functions

(CCFs) produced during data reduction, and models the changes in their morphology that

occur during a transit.

The alignment of the system is analysed through a comparison of the in-transit instru-

mental line profile with a model of the average out-of-transit stellar line profile. This latter

model is created by the convolution of a limb-darkened stellar rotation profile, a Gaussian

representing the local intrinsic line profile, and a term corresponding to the effect on the line

profile of the ‘shadow’ created as the planet transits its host star. This ‘bump’ is time-variable,

and moves through the stellar line profile as the planet moves from transit ingress to transit

egress. The precise trajectory of the bump is dictated by b, and λ, which together determine
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the precise value for the stellar radial velocity beneath the planetary ‘shadow’ at any moment

during the transit. This leads to a more accurate model of the spectroscopic transit signature

than is provided by RM analysis.

This method is able to break the degeneracy between the sky-projected alignment angle

and stellar rotation velocity in systems with low impact parameter. It is best suited to analysing

hot, rapidly rotating exoplanet host stars, but can be applied to any system provided that the

spectra have sufficient SNR.

5.1.3 Revealing planets’ histories

As discussed in Chapter 1, it is widely presumed that close-in gas giants do not form at the

locations in which we observe them. The generally accepted scenario has hot Jupiters forming

beyond the ‘snow line’ and migrating inwards to their observed separations (Sasselov & Lecar,

2000). It is the process by which this migration occurs that is disputed, with several competing

hypotheses being available.

Loss of angular momentum through interactions with a protoplanetary disk provides one

possible route for planetary migration (Goldreich & Tremaine, 1980; Lin et al., 1996), and was

initially thought to be the dominant mechanism. It is generally assumed that the axis of such

a disc is well aligned with the host star’s spin axis owing to angular momentum conservation,

so we would expect that disc migration would preferentially produce hot Jupiters with well-

aligned orbits. Some misaligned planets would not be out of place under this mechanism’s

dominance, being the result of close planet-planet encounters following migration, but we

would expect the majority of planets to exhibit spin-orbit alignment. It is worth pointing out,

however, that this assumption of aligned protoplanetary disks is increasingly being challenged

(e.g. Bate et al., 2010; Lai et al., 2011; Rogers et al., 2012) and investigated (Watson et al.,

2011)

The Kozai-Lidov mechanism (Kozai, 1962; Lidov, 1962; Naoz et al., 2011, 2012) is the

basis of a competing hypothesis for which evidence is mounting (see Chapter 6). The pres-

ence of a third, outer body in a planetary system can excite periodic oscillations in both the

eccentricity and inclination of a planetary orbit; inward migration then follows, with tidal

friction kicking in as the planet approaches its host, causing the orbit to shrink and circularise

(Fabrycky & Tremaine, 2007). The oscillating inclination that results from Kozai-Lidov inter-
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actions produces a continuum of inclinations once the orbits are stable, and thus we would

expect the majority of hot Jupiters to exhibit misaligned orbits if the Kozai-Lidov mechanism

operates.

Other proposed processes which could lead to the observed orbits of hot Jupiters are

planet-planet scattering (Rasio & Ford, 1996; Weidenschilling & Marzari, 1996; Ford et al.,

2001, 2003; Marzari & Weidenschilling, 2002), and tidal friction (Kiseleva & Eggleton, 1998;

Kiseleva et al., 1998; Ferraz-Mello et al., 2008, 2009), but the true picture is probably some

combination of two or more of these processes (Eggleton & Kiseleva-Eggleton, 2001; Fabrycky

& Tremaine, 2007; Nagasawa et al., 2008). These mechanisms are naively expected to pro-

duce spin-orbit alignment distributions that are closer to isotropic. However the true picture

has turned out to be more complex, and appears to lie somewhere between the two extremes

of the isotropic and fully-aligned possibilities (see Chapter 6).

It is possible, to some extent, to distinguish between the competing hypotheses through

measurement of spin-orbit alignment in hot Jupiter systems. Given the different angular

distributions predicted, building up a significant number of spin-angle measurements is a

useful means of determining which mechanism is acting. Unfortunately the true alignment

angle, ψ, cannot be determined unless a spectroscopic measurement of v sin I is made, and

the stellar rotation period is known. This yields an estimate of the inclination axis to the line-

of-sight (Schlaufman, 2010). The situation is made more difficult by systematic uncertainties

in v sin I measurements, and by the sine function, which flattens as it approaches 90◦ and

therefore only yields useful measurements at low to intermediate inclinations. We are thus

currently limited to measuring the angle as projected onto the plane of the sky. Yet even

this provides an excellent diagnostic for competing theories of planetary system formation

and exoplanet migration; as the number of systems for which the alignment is measured

increases, so too does our understanding of these processes.

5.1.4 Expanding the sample

The question of how hot Jupiters appear where they are and with the spin-orbit angles that

they have is far from settled. There is only so much that ‘typical’ transiting hot Jupiters can

tell us, and it is becoming increasingly important to push the boundaries of the explored

parameter space. It is the more unusual systems, lying at the extremes of the distributions

in mass, effective temperature, and v sin I , and that can only be accessed through methods
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such as Doppler tomography, that will provide the best test of the hypothesis underlying the

evolution of orbital alignment with time. It is also important to use newer analysis methods

to examine systems in tandem with the consideration of the RM effect in order to get to grips

with each method’s intricacies, strengths, weaknesses, and inherent error characteristics.

In this chapter I will present measurements of the spin-orbit alignment angle for six hot

Jupiters: WASP-16 b; WASP-25 b; WASP-31 b; WASP-32 b; WASP-38 b, and HAT-P-27/WASP-

40 b (hereafter referred to as WASP-40). I will analyse each of the systems using the Rossiter-

McLaughlin effect, and in some cases will also provide new analysis using Doppler tomogra-

phy. I will characterise the alignment angle throughout as λ, following the convention estab-

lished by Ohta et al. (2005) and widely followed in the literature, rather than the alternative

convention of β =−λ used by Triaud et al. (2010).
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5.1.
Introduction

Table 5.1: Parameters for the six WASP planetary systems for which I evaluate the spin-orbit alignment. Parameters for WASP-16 were taken from Lister et al.
(2009). Parameters for WASP-25 were taken from Enoch et al. (2011b). Parameters for WASP-31 were taken from Anderson et al. (2011c). Parameters for
WASP-32 and WASP-40 are from Maxted et al. (2010) and Anderson et al. (2011a) respectively. Parameters for WASP-38 are compiled from Barros et al. (2011a)
and Simpson et al. (2011c). v sin I values have been updated through spectroscopic analysis of new HARPS data, and vmac values were calculated using the Bruntt
et al. (2010) calibration against Teff.

Parameter Unit WASP-16 WASP-25 WASP-31 WASP-32 WASP-38 WASP-40

Ms M� 1.022+0.074
−0.129 1.00± 0.03 1.161± 0.026 1.10± 0.03 1.203± 0.036 0.921± 0.034

Rs R� 0.946+0.057
−0.052 0.92± 0.04 1.241± 0.039 1.11± 0.05 1.331+0.030

−0.025 0.64± 0.031
Teff K 5700± 150 5750± 100 6300± 100 6100± 100 6150± 80 5246± 153

v sin I km s−1 2.3± 0.4 2.6± 0.4 8.1± 0.5 5.5± 0.4 8.3± 0.4 2.4± 0.5

vmac km s−1 2.3± 0.3 2.4± 0.3 4.2± 0.3 3.5± 0.3 3.7± 0.3 1.0± 0.3

Mp MJup 0.855+0.043
−0.076 0.58± 0.04 0.478± 0.030 3.60± 0.07 2.691± 0.058 0.617± 0.088

Rp RJup 1.008+0.083
−0.060 1.22+0.06

−0.05 1.537± 0.060 1.18± 0.07 1.094+0.029
−0.028 1.038+0.068

−0.050

P days 3.11860± 0.00001 3.764825± 0.000005 3.405909± 0.000005 2.718659± 0.000008 6.871814± 0.000045 3.0395589± 0.0000090

a AU 0.0421+0.0010
−0.0019 0.0473± 0.0004 0.04657± 0.00034 0.0394± 0.0003 0.07522+0.00074

−0.00075 0.03995± 0.00050

e 0(adopted) 0(adopted) 0(adopted) 0.018± 0.0065 0.0314+0.0046
−0.0041 0(adopted)

i ◦ 85.22+0.27
−0.43 88.0± 0.5 84.54± 0.27 85.3± 0.5 88.83+0.51

−0.55 85.01+0.20
−0.26
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5.2 Analysis Methods

5.2.1 Rossiter-McLaughlin effect

My analysis mirrors that of Triaud et al. (2010), and uses the complete set of photometric

and spectroscopic data for the objects that I am investigating in order to fully account for

parameter correlations. I use an adapted version of the code described in Collier Cameron

et al. (2007), fitting models of the photometric transit, the Keplerian RV and the RM effect

to the system data. The fit of these models is refined using an MCMC technique to minimise

the χ2 statistic, and to explore the parameter space using the jump parameters T0 (epoch

of mid-transit), P (orbital period), W (transit width), b (impact parameter), γ velocity, γ̇,

K (RV semi-amplitude), Teff (stellar effective temperature), [Fe/H] (metallicity),
p

e cosω,
p

e sinω,
p

v sin I cosλ and
p

v sin I sinλ.

The engine of the MCMC code developed by Collier Cameron et al. (2007) is the same as

that described in Chapter 4; my adaptations are focused on the model used for the RM effect.

Previous versions used that of Ohta et al. (2005), but for the work presented here I chose to

replace this with a new implementation of the analytic formula of Hirano et al. (2011b). It

uses a quadratic limb-darkening law and models the stellar line shape as the convolution of

the intrinsic line shape, S(v), and a broadening kernel, M(v). The latter is calculated by disc-

integrating the rotational and macroturbulence components of the Doppler shift across the

entire stellar surface, neglecting differential rotation. A separate, analogous model is created

for the line shape during a transit, this time calculating M ′(v) by integrating across only the

region of the stellar surface that is blocked by the planet. Since the planet is small compared

to the size of the star, the Doppler shift component of M ′(v) can be considered constant. This

allows the instantaneous fractional flux decrease to be defined, along with the ‘sub-planet

velocity’ (the average rotational RV of the region of the stellar surface occulted by the planet).

The velocity anomaly during transit is then defined in terms of these two parameters.

To calculate the best-fitting model to the spectroscopic transit, the Hirano et al. method

cross-correlates an in-transit spectrum with a template, and maximises the cross-correlation

function. This method requires prior knowledge of several broadening coefficients, specifically

the macroturbulence, vmac, for which my estimates are noted in Table 5.1, and the Lorentzian

(γb) and Gaussian (βb) spectral line dispersions. I assumed γb = 0.9 km s−1 in line with

102



5.2. Analysis Methods

Hirano et al., and also assumed that the coefficient of differential rotation, αrot = 0. WASP-16,

WASP-25, and WASP-40 are all slow rotators, and whilst WASP-31, WASP-32, and WASP-38

should be considered as moderately fast rotators (according to the classification of Hirano

et al. 2011b), without knowledge of the inclination of their stellar rotation axes it is difficult

to place a value on αrot for these systems. βb is calculated individually for each RV dataset,

and depends on the instrument used to collect the data as it is a function of the spectral

resolution.

The inclusion of the photometric data is an important aspect of this analysis. The tran-

sit width and depth, as well as the impact parameter, are determined from the photometric

transit, and these parameters have a role to play in the characterisation of the form of the

RM anomaly. The transit width helps to determine its duration, whilst the depth gives the

planetary and stellar radii. The radii and impact parameter in turn help to determine v sin I ,

upon which the amplitude of the anomaly depends (Queloz et al., 2000a). Although charac-

terisation of the RM effect can be carried out using the spectroscopic data alone, by taking the

photometric data into account in this way I can ensure consistency across the full set of system

parameters, account for parameter correlations, and fully characterise the uncertainties in my

results. For completeness, I also repeated my analysis using only RV data taken during nights

that featured a transit event, but found little to distinguish them from my analysis of the full

set of data.

The RV data are separated by instrument, and within those distinctions I also treat spec-

troscopic data taken on nights featuring planetary transits as separate datasets. My model for

the orbital RV signature treats the sets of data as independent, producing individual offsets

and radial velocity trends for each one. To account for stellar “jitter”, each dataset is initially

assigned a value of 1 m s−1, below the level of precision of the spectrographs used for this

work, which is added in quadrature to the spectroscopic data. This is increased if necessary

to ensure that the overall reduced χ2 ≈ 1.

I apply four Bayesian priors in all possible combinations in an attempt to fully characterise

the systems under consideration. I apply priors on orbital eccentricity (to allow for forcing of

a circular orbit), spectroscopic v sin I (using the values from Table 5.1), long-term RV trend,

and stellar radius (using the method of Enoch et al. (2010) in conjunction with the updated

coefficients from Southworth 2011). To distinguish between the combinations of priors I con-
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sider the minimal reduced spectroscopic χ2, which I refer to as χ2
red. If there is no combination

of priors with a significantly lower value of χ2
red I choose the model with the fewest free pa-

rameters. The application of the stellar radius prior I consider on the basis of the statistical

parameter S (the stellar radius penalty; Collier Cameron et al. 2007),

S =−2 ln P(Ms, Rs) =
(Rs − R0)2

σ2
R

, (5.1)

where Ms and Rs are the stellar mass and radius as calculated by the MCMC algorithm, R0 is

the stellar radius derived from the (J-H) colour, and σR is the 1σ error in R0. S measures the

discrepancy between the two stellar radius values, and if I find a large increase in S when the

stellar radius prior is removed, I choose a solution in which it is applied as my preferred one.

5.2.2 Doppler tomography

My Doppler tomography method also uses the complete set of photometric and spectroscopic

data for an exoplanet system, and is again based around a modified version of the MCMC

code discussed by Collier Cameron et al. (2007). However it also uses a set of spectral CCFs

corresponding to the set of spectroscopic transit data, and models these using Doppler tomog-

raphy.

The modifications necessary for implementing this technique were first described by Col-

lier Cameron et al. (2010a). A model of the average out-of-transit stellar line profile is cre-

ated through convolution of a Gaussian representing the local line profile, g(x), and a 1-

dimensional rotational profile under the assumption of linear limb-darkening, f (x). Both are

normalised. A model of the observed line profile is computed through numerical integration

of a convolution of f (x) and g(x − z), and is velocity shifted to account for the barycentric

nature of the observations.

The presence of the planet is modelled by calculating the quantity and Doppler shift of

light that is blocked at each stage of the transit. The position of the planet on the plane of

the sky is defined by xp and zp in Figure 5.2, and when combined with an estimate of λ these

define the perpendicular distance from the planet to the star’s rotation axis in stellar radius

units. This in turn defines the ‘sub-planet velocity’, and therefore the in-transit model that

accounts for both the stellar line profile and the light blocked by the planet.

When fitting the model to the data, both are first orthogonalised by subtracting their
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5.2. Analysis Methods

Figure 5.2: An illustration of the different coordinates used when modelling spin-orbit alignment angle,
λ, using Doppler tomography. b is the impact parameter in units of stellar radius. xp and zp define
the instantaneous position of the planet on the plane of the sky, while up is the projected, perpendicular
distance of the planet from the stellar rotation axis. (figure 1 of Collier Cameron et al. 2010a)
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respective optimal mean values. A χ2 goodness-of-fit test provides a measure of the suitability

of the model. An important point to note is that the spectroscopic data being used are often of

higher resolution than the absolute resolving power of the instruments; I therefore bin both

the data and the model by an appropriate, instrument dependent factor before calculating χ2

to remove correlations between adjacent data.

The jump parameters considered by the MCMC algorithm are as discussed in Section 5.2.1,

with the addition of vCCF, the full-width half-maximum of the stellar CCF. This parameter is

also included in the calculation of χ2, but other details of the MCMC algorithm are as for my

consideration of the RM effect. Rather than considering all sixteen combinations of my four

Bayesian priors however, I apply only the combination that I have selected as most appropriate

following my RM analysis.

5.3 WASP-16

WASP-16 b (Lister et al., 2009) is a close Jupiter analog orbiting a solar-type star (spectral

type , Teff = 5700± 150 K) with a period of 3.12 days. The planet is somewhat less massive

than Jupiter but of comparable radius, whilst the host star is similar in mass, radius and

metallicity to the Sun, but exhibits significant lithium depletion. Two half seasons and one full

season of WASP-S (Pollacco et al., 2006) photometry was combined with observations from

EulerCAM, mounted on the 1.2 m Leonard Euler telescope at La Silla (Lendl et al., 2012), to

constrain the orbital parameters of the system. Follow-up spectroscopy was then obtained

using the CORALIE high precision échelle spectrograph (Queloz et al., 2000a; Pepe et al.,

2002), mounted on the Swiss 1.2 m Euler telescope, and used to confirm the existence of the

planet. An additional RV datum was also acquired on 2010 July 14 to test the hypothesis of a

long-term radial velocity trend.

For this work additional spectroscopy was needed. A transit was observed using the

HARPS high precision échelle spectrograph (Mayor et al., 2003), mounted on the 3.6 m ESO

telescope at La Silla, on the night of 2010 March 21; 32 data points were acquired over

the duration of the night. This transit observation was affected by cloud cover, so an ad-

ditional transit was observed on the night of 2011 May 12, producing an additional 28 RV

measurements. Further measurements were also made on the days surrounding this transit

(see Tables C.1, C.2 and C.3) to help characterise the broader RV curve more completely.
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Analysis of the new HARPS spectra was carried out by Barry Smalley at Keele University.

He assumed a macroturbulence of vmac = 2.3 ± 0.3 km s−1 using the calibration of Bruntt

et al. (2010). They describe an analytical polynomial correlation between Teff and vmac (their

equation (9)) by convolving synthetic line profiles with different v sin I and vmac values, and

fitting to high signal-to-noise spectra from several instruments, including HARPS. A value of

v sin I = 2.3±0.4 km s−1 was obtained in this fashion, which was applied as the spectroscopic

prior. Barry also calculated v sin I using a value of vmac = 3.2 derived using the calibration

of Gray (2008), obtaining v sin I = 1.2± 0.5. However I chose to use the rotational veloc-

ity derived from the Bruntt et al. macroturbulence value, as their method allows a greater

homogeneity of analysis between systems compared to Gray.

5.3.1 Rossiter-McLaughlin analysis

My original estimate of stellar “jitter” produced fits with χ2
red ≈ 1.6, leading me to re-estimate

the “jitter” following Wright (2005). Line strengths for the calcium H and K emission lines

had been calculated for each individual HARPS spectrum, and I used these to estimate values

for the chromospheric activity metric S. I then calibrated these activity parameters against the

Mount Wilson sample (see e.g. Baliunas et al. (1995)), and calculated absolute magnitudes of

the stars involved using Gray (1994). Cross-referencing with the results of Wright produced

three distinct values for the “jitter”; I eventually adopted the 20th percentile value of 3.6 m s−1

as a conservative estimate for the HARPS out-of-transit data, and the median estimate of

5.5 m s−1 for the pre-existing CORALIE data1. A complete set of results from my analysis can

be found in Table 5.2.

Removing the stellar radius prior produced changes of between 0 and 1 percent in the

stellar mass and radius, with corresponding changes in the stellar density of between 1 and

4 percent, for no discernible improvement in fit. Comparing impact parameter values, I found

an average value of b = 0.83+0.04
−0.06 for the cases without the radius prior, and b = 0.83+0.03

−0.04

when the prior is active. The value of the stellar radius penalty, S, increased from an average

of 0.20 to 0.66 when the prior is removed, a relatively small increase as suggested by the

modest changes in stellar parameters. I therefore found little to distinguish between the cases

with the prior applied, and those with the stellar radius freely varying, and chose not to apply

this prior in my final solution.

1For an explanation of these estimates, see Wright (2005).

107



Chapter 5. Spin-orbit alignment measurements for six WASP hot Jupiters

Adding a long-term, linear RV trend produced no improvement in χ2
red, and with a mag-

nitude of |γ̇| < 9 m s−1 yr−1 I disregarded the possibility that such a trend exists in the spec-

troscopic data. Adding a prior on the spectroscopic v sin I similarly gave almost no difference

in the quality of the fit obtained, but did produce a change in the magnitude of the stel-

lar rotation. For most combinations of priors without the v sin I prior my analysis returned

v sin I ≈ 1.4± 0.3 km s−1, significantly slower than the spectroscopic value, whilst the value

with the prior applied was ≈ 1.8± 0.2, which agrees with the spectroscopic value to within

1σ.

Allowing the eccentricity to float again led to no significant improvement in the fit, and

all of the values of e returned by my various combinations of priors were consistent with

e = 0 to within 2σ. I tested these small eccentricity values using equation (27) of Lucy &

Sweeney (1971), which adopts a null hypothesis of a circular orbit and considers an orbit to

be eccentric if this is rejected at the 5 percent significance level. This F-test indicated that none

of the eccentricities were significant, and thus that a circular orbit is favoured.

I therefore adopt as my conclusive solution the case without the MS prior active, with

no prior on v sin I , no long-term trend in velocity, and a circular orbit, but I would like to

stress that changing the priors had little impact on the parameter values returned by the

MCMC algorithm. My adopted solution, the RV curve and RM effect for which can be seen in

Figure 5.3, returns values of λ = −0.9◦+6.8
−6.9 and v sin I = 1.5± 0.3 km s−1; this is significantly

slower than the spectroscopic value of v sin I that was obtained from spectral analysis. My

solution also indicates a high impact parameter of 0.82± 0.02 that reduces the likelihood of

a degeneracy developing between λ and v sin I . Examination of Fig. 5.4 highlights this, with

a triangular distribution that is centred close to λ = 0◦. The main section of this distribution

lies within the limits |λ| < 20◦, providing further evidence for the well-aligned system that

was strongly suggested by my best-fitting RM angle.

As previously noted, the amplitude of the RM anomaly for WASP-16 is quite small. The

aligned nature of the system suggests that this can be put down to the star being an old, slowly

rotating star, which would be consistent with the age estimate reported by Lister et al. (2009),

which suggests an age > 5 Gyr based on a lack of detectable lithium. A second possible expla-

nation could be that the host star is fact being viewed almost pole-on, which could still be con-

sistent with an orbit that is aligned in the plane of the sky. This would lead to a low projected
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Figure 5.3: Results from the fit to the data for WASP-16 using e = 0, no long-term radial velocity trend, no
prior on the spectroscopic v sin I , and without forcing the mass-radius relationship. Black, filled triangles
represent data from CORALIE. Blue, filled squares represent data from the first HARPS run. Red, filled
circles represent data from the second HARPS run. The best-fitting model is plotted as a solid black line.
Top left: Complete radial velocity reflex motion curve. Bottom left: Residuals from the RV fit, exhibiting
no correlation with phase. Top right: Close up of the transit region from the radial velocity curve showing
the RM effect, along with the residuals. Middle right: Close up of the transit region, with the orbital
contribution removed. Bottom right: Residuals for the radial velocity data within the RM window.

Figure 5.4: Posterior probability distributions derived from the Markov chains, for the fit to WASP-16
described in Fig. 5.3. The error ellipses are produced using the 1σ (solid), 2σ (dashed), and 3σ (dotted)
error bars. Marginalised, 1D distributions are displayed in the side panels. Left: b and λ. Right:
v sin I and λ. This distribution has a triangular shape, and λ = 0 falls within the central body of the
distribution. Both distributions have poorly constrained 99.73 percent confidence regions, and show a
slight bias towards negative values of λ that is reflected in the results that I obtained (see Table 5.2.)
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Table 5.2: A comparison of the χ2 and χ2
red values from the Rossiter-McLaughlin analysis of WASP-16 for

each combination of Bayesian priors. All values of χ2 include the Bayesian penalties applicable for that
combination of priors.

v sin I prior MS prior γ̇/ms−1yr−1 eccentricity v sin I/km s−1 λ/◦ χ2 χ2
RV χ2

red

off off 0 0.012+0.011
−0.008 1.4± 0.3 −1.6+7.0

−7.2 12924± 161 111± 15 1.0± 0.1

off on 0 0.015+0.011
−0.009 1.4± 0.3 0.1+7.3

−6.3 12927± 161 111± 15 1.0± 0.1

off off 3.3+0.7
−1.5 0.014+0.012

−0.009 1.4± 0.3 0.0+6.9
−7.3 12923± 161 109± 15 1.0± 0.1

off on −0.1± 0.1 0.013+0.011
−0.008 1.4± 0.3 0.0+6.9

−6.3 12925± 161 115± 15 1.1± 0.1

off off 0 0 1.5± 0.3 −0.9+6.8
−6.9 12932± 161 115± 15 1.1± 0.1

off on 0 0 1.5+0.3
−0.4 −1.4± 6.9 12930± 161 116± 15 1.1± 0.1

off off −0.05+0.05
−0.07 0 1.4± 0.3 −1.5+6.7

−7.4 12932± 161 117± 15 1.1± 0.1

off on −0.07+0.04
−0.05 0 1.5± 0.3 −0.8+6.9

−6.6 12928± 161 116± 15 1.1± 0.1

2.3± 0.4 off 0 0.015+0.011
−0.008 1.7± 0.2 −0.9+5.9

−5.5 12923± 161 113± 15 1.1± 0.1

2.3± 0.4 on 0 0.013+0.011
−0.008 1.7+0.2

−0.3 −1.5+6.3
−5.6 12929± 161 114± 15 1.1± 0.1

2.3± 0.4 off 0.2+1.3
−0.5 0.011+0.010

−0.007 1.8± 0.2 −1.1+5.7
−5.6 12925± 161 113± 15 1.0± 0.1

2.3± 0.4 on 5.8+3.0
−2.8 0.011+0.011

−0.008 1.8± 0.2 −0.7+5.6
−5.3 12925± 161 114± 15 1.1± 0.1

2.3± 0.4 off 0 0 1.8± 0.3 −1.7+5.6
−5.7 12927± 161 117± 15 1.1± 0.1

2.3± 0.4 on 0 0 1.8+0.3
−0.2 −1.5+5.6

−5.3 12930± 161 118± 15 1.1± 0.1

2.3± 0.4 off −0.05+0.02
−0.04 0 1.8± 0.2 −1.6+5.5

−5.3 12933± 161 117± 15 1.1± 0.1

2.3± 0.4 on −0.02+1.00
−1.24 0 1.8± 0.3 −0.5+6.1

−5.2 12925± 161 116± 15 1.1± 0.1

rotation velocity, and a transit across the pole of the star would have a small RM amplitude, as

observed here. The minimum stellar inclination is limited by the observed lithium depletion2,

but such a structure would imply a younger age for the star owing to the rapid true stellar

rotation. Interestingly, isochronal analysis in Lister et al. (2009) implies an age of 2.3+5.8
−2.2

Gyr, consistent with the limit implied by the lithium depletion. However new isochronal fits,

using my results and a range of stellar models, returned ages of 4.5+4.1
−4.3 Gyr (Padova mod-

els; Marigo et al. 2008), 3.4+3.4
−2.2 Gyr (YY models; Demarque et al. 2004), 5.7+4.6

−4.0 Gyr (Teramo

models; Pietrinferni et al. 2004), 5.2+4.6
−3.5 Gyr (VRSS models; VandenBerg et al. 2006), and

5.9± 3.1 Gyr (DSEP models; Dotter et al. 2008). These ages further support the case for a

slowly rotating host star, and are consistent with the star’s observed lithium abundance.

Careful analysis of the HARPS spectra allowed Amaury Triaud to measure the chromo-

spheric Ca II H & K emission. He found that log(R′HK) =−5.10±0.15, indicating a low level of

chromospheric activity. This rules out the possibility that the star is misaligned along the line-

of-sight, as much greater calcium emission would be expected from a young, rapidly rotating

star. This agrees with the work of Schlaufman (2010), who finds no evidence for line-of-

2The abundance of lithium gives me a minimum age, as stated. If gyrochronology is assumed to be applicable,
then this provides a maximum true stellar rotation velocity. This in turn allows me to use the detected v sin I to
calculate the minimum possible stellar inclination.
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sight misalignment in the WASP-16 system. In Chapter 2 I calculated ages of 1.6+0.9
−0.5, 7.47+4.0

−2.2,

and 7.0+3.8
−2.1 Gyr using gyrochronology, under the assumption that the star has experienced the

standard magnetic braking induced spin-down. These ages, together with the stellar model

fits, tend to suggest that WASP-16 is coming towards the end of its main-sequence lifetime,

which I estimate as τMS = 6.6±0.4 Gyr, or has indeed evolved away from the main-sequence.

A reanalysis of the WASP-1 and WASP-2 systems (Albrecht et al., 2011) highlighted the

fact that in systems with low amplitude, low S/N RM anomalies, the angles reported tend

towards 0◦ and 180◦ owing to the greater probability density in the distribution for λ. The

same study cautions readers against drawing strong conclusions of alignment in such cases.

My data for WASP-16 certainly show some of the characteristics discussed in the Albrecht et al.

study, and it seems as though the system is indeed well-aligned, with λ close to 0.

An independent detection of the RM effect, also suggesting alignment, was announced

at IAU Symposium 276 by Winn, and published in Albrecht et al. (2012b). They found λ =

11◦+26
−19 and v sin I = 3.2± 0.9 km s−1. However, they also found that their semi-amplitude,

calculated from the transit-night data only, was significantly different to the value presented

in Wright (2005). The reason for this remains unclear.

5.3.2 Doppler tomography

Tomographic analysis of the first HARPS dataset for WASP-16 can be found in Miller et al.

(submitted).

5.4 WASP-25

WASP-25b (Enoch et al., 2011b) is a significantly bloated, sub-Jupiter mass planet orbiting a

solar-type, somewhat metal-poor host star with an orbital period of 3.76 days. It’s discovery

was made using photometry from WASP-S and the LCOGT 2 m Faulkes Telescope South (FTS)

at Siding Spring, Australia, coupled with spectroscopic follow-up using CORALIE.

HARPS was used to observe the transit taking place on the night of 2008 April 11. 44

observations were made that night, with additional data acquired on adjacent nights (see

Appendix C, Table C.5).

The new HARPS spectra were again analysed by Barry Smalley. Assuming a macrotur-
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Table 5.3: A comparison of the χ2 and χ2
red values from the Rossiter-McLaughlin analysis of WASP-25 for

each combination of Bayesian priors. All values of χ2 include the Bayesian penalties applicable for that
combination of priors.

v sin I prior MS prior γ̇/ms−1yr−1 eccentricity v sin I/km s−1 λ/◦ χ2 χ2
RV χ2

red

off off 0 0.016+0.017
−0.011 2.8± 0.3 15.2+10.4

−9.6 14179± 168 83± 13 1.0± 0.2

off on 0 0.014+0.015
−0.010 2.8± 0.3 14.0+8.9

−8.1 14180± 168 83± 13 1.0± 0.2

off off 105.1+27.6
−30.7 0.017+0.014

−0.011 2.8± 0.3 14.2+9.9
−9.1 14171± 168 74± 12 0.9± 0.2

off on 95.1+35.9
−31.7 0.013+0.014

−0.009 2.8± 0.3 13.9+9.0
−8.4 14172± 168 73± 12 0.9± 0.2

off off 0 0 2.8± 0.3 15.3+8.8
−8.7 14176± 168 83± 13 1.0± 0.2

off on 0 0 2.8± 0.3 13.0+9.0
−8.5 14178± 168 84± 13 1.0± 0.2

off off 99.1+33.4
−34.1 0 2.8± 0.3 15.3+9.0

−9.9 14171± 168 75± 12 0.9± 0.2

off on 94.5+32.7
−30.8 0 2.9± 0.2 13.8+8.7

−8.2 14173± 168 75± 12 0.9± 0.2

2.6± 0.4 off 0 0.008+0.014
−0.006 2.7+0.3

−0.4 22.7+65.2
−13.5 12299± 157 83± 13 1.0± 0.2

2.6± 0.4 on 0 0.013+0.014
−0.009 2.8± 0.2 13.4+8.0

−7.9 14182± 168 83± 13 1.0± 0.2

2.6± 0.4 off 96.0+31.1
−32.1 0.015+0.014

−0.010 2.8± 0.2 13.8+8.3
−9.0 14169± 168 74± 12 0.9± 0.2

2.6± 0.4 on 99.8+32.5
−30.5 0.013+0.014

−0.009 2.8± 0.2 14.1+8.1
−8.5 14171± 168 75± 12 0.9± 0.2

2.6± 0.4 off 0 0 2.8± 0.2 15.1+10.5
−9.8 14180± 168 83± 13 1.0± 0.2

2.6± 0.4 on 0 0 2.8± 0.2 12.7+8.2
−8.0 13760± 166 83± 13 1.0± 0.2

2.6± 0.4 off 96.6+32.5
−32.8 0 2.8± 0.2 14.5+9.5

−8.7 14170± 168 74± 12 0.9± 0.2

2.6± 0.4 on 90.7+44.2
−43.6 0 2.8± 0.2 13.5+8.4

−8.4 14171± 168 75± 12 0.9± 0.2

bulence of vmac = 2.4 ± 0.3 km s−1 using the calibration of Bruntt et al. (2010), he found

v sin I = 2.6± 0.4 km s−1. The alternative macroturbulence calibration of Gray (2008) pro-

vided vmac = 3.4 km s−1, leading to an estimate for the projected stellar rotation of v sin I =

1.5± 0.5. Once again I chose to to use the value derived using the Bruntt et al. macroturbu-

lence value.

5.4.1 Rossiter-McLaughlin analysis

I found that my initial “jitter” estimates of 1 m s−1 for all of the RV data sets inadequately

constrained my results, with χ2
red ≈ 1.3. Evaluating the predicted “jitter” using Wright (2005)

produced a 20th percentile estimate of 9 m s−1, which I applied to the CORALIE data taken

from the discovery paper. One RV measurement was found to lie at 3σ from the best-fitting

model, and to be consistent with the out of transit RV curve. This datum was omitted from my

analysis, and will be discussed further at a later stage. A full set of results from my analysis is

displayed in Table 5.3.

I found that allowing the eccentricity to float led to a negligible difference in χ2
red, and that

the eccentricity values being found were within 2σ of 0. I therefore concluded that the small

eccentricity values being returned arose owing to the biases inherent in the MCMC method
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Figure 5.5: Results from the fit to the data for WASP-25 of my optimal solution: a circular orbit, no
long-term RV trend and no prior on the spectroscopic v sin I . The main-sequence mass-radius relation was
not enforced. The point denoted by the open square was found to lie 3σ from the best-fitting model, and
was not included in the analysis. Legend as for Fig. 5.3.

(Ford, 2006), and that the orbit of WASP-25 is circular. In this I agree with Enoch et al.

(2011b). A circular orbit was confirmed using the F-test of Lucy & Sweeney (1971), which

returned very high probabilities of the small eccentricity values having arisen by chance.

I found little difference between the quality of fit for the equivalent cases with the stel-

lar radius prior active, and those without the same constraint. The relaxation of this prior

leads to slightly larger values of λ, but also increases the discrepancy between the stellar

mass and radius values. The stellar mass value varied by 1 to 3 percent between runs, and

relaxing the radius prior reduced Rs by between 1 and 2 percent, dependent on the other pri-

ors being applied. The stellar density also showed changes of between 4 and 10 percent from

ρ∗,Rprior ≈ 1.27ρ� to ρ∗,noprior ≈ 1.36ρ�, averaged across all combinations of the other priors.

Considering the impact parameter, I found that relaxing the stellar radius prior gave a value

of b = 0.36+0.26
−0.27, whilst using the prior returned b = 0.41+0.15

−0.16, both averaged across all other

combinations of priors. The radius penalty S increased from an average of 1.88 to 3.59 when

the prior was removed. In light of these differences, I elected to apply the stellar radius prior

in my final analysis.
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Adding a long-term linear trend in RV improved the χ2
spec of the solution, but not by a sig-

nificant amount, and I found the value of the trend to be ≈ 100 m s−1 yr−1. To check whether

a trend was truly present in the system, 2 additional RV measurements were obtained using

HARPS on 2010 August 25 and 26. Analysing these in conjunction with previously obtained

data shows no evidence for a long-term RV trend, and so I disregard this possibility for my

final solution. Introducing a prior on the spectroscopic v sin I produced no improvement in

the quality of fit to the data, irrespective of the other priors. I do not therefore apply such a

prior in my final solution, and take this opportunity to obtain a separate measurement of the

projected stellar rotation speed.

I selected the solution with e = 0, no long-term linear trend in RV and no prior on v sin I ,

with the stellar radius prior active; the RV curve and RM effect can be seen in Figure reffig:5-

3. This gives λ = 13.0◦+9.0
−8.5 , a detection of the RM effect at 1.5σ. I also obtained a value for

the stellar rotation of v sin I = 2.8± 0.3 km s−1, slightly greater than but in agreement with

my updated spectroscopic value of 2.6± 0.4 km s−1. The impact parameter for this solution

is 0.42+0.04
−0.05. No correlation is apparent between v sin I and λ (see Figure 5.6), although there

is evidence for a correlation between the impact parameter and λ. It is possible that this

correlation is responsible for the poor fit of the model to some parts of the RM data.

The age of the system was analysed using the methods discussed in Chapter 2. The dif-

ferent analyses agree reasonably well; using stellar model fitting I found ages of < 3.10 Gyr

(Padova models), 1.94+1.75
−1.79 Gyr (YY models), 6.09+2.77

−3.22 Gyr (Teramo models), 1.18+4.34
−0.51 Gyr

(VRSS models), and 3.25+1.79
−1.53 Gyr (DSEP models), whilst gyrochronology returned ages of

1.90+0.39
−0.29 Gyr and 1.77+0.36

−0.27 Gyr. The system therefore appears to be of moderate age, al-

though the age derived from the Teramo isochrones does allow for a older age that is close to

the predicted main-sequence lifetime of τms ≈ 8.2 Gyr.

The mechanism responsible for the outlier that I omitted from my analysis is unknown,

although I note that Simpson et al. (2011c) experienced a similar situation in their analysis of

the WASP-38 system, positing seeing changes or telescope guiding faults as possible causes. I

would like to suggest a third mechanism; the discrepant point might be caused by the planet

traversing a stellar spot. In such a situation the spot would mask the presence of the planet,

causing the RV measurement to diverge from the standard RM anomaly pattern. This scenario

was suggested to explain a similar anomaly in the data for the WASP-3 system (Tripathi et al.,
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Figure 5.6: Posterior probability distributions, derived from the Markov chain, for the fit to the data
for WASP-25 described in Fig. 5.5. Legend as for Fig. 5.4. Left: b and λ. There are appears to be
some small level of correlation between the two parameters. Right: v sin I and λ. λ = 0 falls outwith the
68.27 percent confidence contour, but within the 95.45 percent confidence contour, indicating a moderately
significant detection of λ.

2010), but I note that the divergence from the RM effect in that case showed a gradual rise

and fall rather than the delta function change observed here, and was eventually attributed

to the effect of moonlight. Unfortunately I lack simultaneous photometry from the night of

the observed spectroscopic transit, which would show the presence of such a spot. It is also

possible that some form of transient event, such as a white light stellar flare, is responsible

for the drastic, sudden change in measured RV for this point. Such events were discussed in

the context of LQ Hya (Montes et al., 1999), and were observed to produce chromospheric

disturbance in the core of otherwise normal spectral lines. This dilution of the spectral lines

could affect the continuum level during the flare event, and potentially lead to anomalous

redshifting for a short period of time. Such an event would have to be of very short dura-

tion however, and coincide with the planet’s transit chord. The combination of these two

circumstances seems unlikely.

Should WASP-25 be considered to be aligned? Winn et al. (2010a) put forward a criterion

of λ ≥ 10◦ to > 3σ for misalignment; my result for WASP-25 clearly fails this test. Triaud

et al. (2010) suggest an alternative criterion of λ > 30◦ as the limit above which a system

is sure to be misaligned given the average magnitude of the errors in λ that are found by

analysis of the RM effect. WASP-25 also misses this target by some margin. But the data for

the RM effect appear to be slightly asymmetric in Fig. 5.5, suggesting that the system is mildly

misaligned (although I note that the best-fitting model does not reflect this).

This slight asymmetry in the RM anomaly might arise as a result of some form of systematic
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effect. I have already mentioned the possibility of stellar spots in the context of the anomalous

datum omitted from my analysis. Could they also provide a possible explanation for the

asymmetry? Consider a star on which stellar spots are more numerous in one hemisphere

than the other during the planetary transit, but on which they lie away from the transit chord.

As the planet transits the more spotty hemisphere it will mask a comparatively larger fraction

of the stellar flux than when it is transiting the less spotty hemisphere. The half of the anomaly

corresponding to the spotted hemisphere would therefore have a greater amplitude than the

half of the anomaly corresponding to the unspotted hemisphere, leading to an asymmetric

RM effect. If the difference in the number and/or size of spots between the two hemispheres

is small then the asymmetry would be only minor. This interesting systematic was discussed

by Albrecht et al. (2011) for the case of WASP-2, and also seems to have played a role in the

analysis of the RM effect of CoRoT-2 in Bouchy et al. (2008). In the case of WASP-25 the

approaching, blue-shifted hemisphere would be required to have a slightly greater density of

stellar spots than the receding, red-shifted hemisphere, which would also feed back into the

possibility of a transient event being responsible for the anomalous datum.

I will return to the question of WASP-25’s alignment in section 6.2.

5.4.2 Doppler tomography

Tomographic analysis of WASP-25 has yet to be carried out.

5.5 WASP-31

WASP-31 (Anderson et al., 2011c) is a bloated, 0.5 MJup planet orbiting an F-type star of sub-

solar metallicity with a period of 3.5 days. The existence of the planetary transit was first

picked up in photometry from WASP-S, and confirmed with high signal-to-noise photometric

observations from the LCOGT 2 m Faulkes Telescope North (FTN) at Mt. Haleakala, Hawaii,

and EulerCAM. Spectroscopy from CORALIE and HARPS was used to help pin down the nature

of the system.

HARPS was also used to observe a full transit on the night of 2010 April 15, with 17

data points obtained. Additional observations were made on adjacent nights (see Appendix C,

Tables C.6 and C.7). Barry Smalley again carried out spectral analysis of the new HARPS data,

finding that the host star is a moderately rapid rotator, with v sin I = 8.1± 0.5 km s−1. The
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Table 5.4: A comparison of the χ2 and χ2
red values from the Rossiter-McLaughlin analysis of WASP-31 for

each combination of Bayesian priors. All values of χ2 include the Bayesian penalties applicable for that
combination of priors.

v sin I prior MS prior γ̇/ms−1yr−1 eccentricity v sin I/km s−1 λ/◦ χ2 χ2
RV χ2

red

off off 0 0.023+0.031
−0.017 7.2+0.9

−0.7 2.2± 3.2 14703± 171 63± 11 0.9± 0.2

off on 0 0.039+0.031
−0.026 7.5+1.0

−0.8 2.2+3.1
−3.0 14699± 171 64± 11 0.9± 0.2

off off 12.1+6.5
−10.5 0.038+0.030

−0.024 7.4+0.9
−0.8 2.5+3.1

−3.2 14702± 171 63± 11 0.9± 0.2

off on 4.9+7.8
−6.4 0.047+0.037

−0.026 7.6+0.9
−0.8 2.7+2.7

−2.9 14701± 171 62± 11 0.9± 0.2

off off 0 0 7.3± 0.7 2.2+3.2
−3.1 14695± 171 64± 11 0.9± 0.2

off on 0 0 7.4± 0.7 2.2+3.4
−3.1 14709± 171 64± 11 0.9± 0.2

off off 6.3± 7.9 0 7.3+0.8
−0.7 2.2± 3.1 14701± 171 63± 11 0.9± 0.2

off on 0.1+7.7
−3.1 0 7.3± 0.7 2.6+3.2

−3.1 14701± 171 64± 11 0.9± 0.2

8.1± 0.5 off 0 0.027+0.032
−0.019 7.9± 0.4 2.3± 2.8 14694± 171 63± 11 0.9± 0.2

8.1± 0.5 on 0 0.049+0.032
−0.025 8.0± 0.4 2.5+3.1

−3.0 14700± 171 64± 11 0.9± 0.2

8.1± 0.5 off 6.8+9.2
−8.9 0.028+0.031

−0.020 7.9± 0.4 2.3± 2.9 14693± 171 64± 11 0.9± 0.2

8.1± 0.5 on 6.1+8.5
−8.9 0.055+0.034

−0.031 7.9+0.5
−0.4 2.6+2.8

−2.9 14707± 171 65± 11 0.9± 0.2

8.1± 0.5 off 0 0 7.8± 0.4 1.9+3.0
−2.9 14698± 171 64± 11 0.9± 0.2

8.1± 0.5 on 0 0 7.8± 0.4 2.6± 3.0 14696± 171 65± 11 0.9± 0.2

8.1± 0.5 off 6.4+8.5
−8.8 0 7.9+0.5

−0.4 2.3+2.7
−2.8 14680± 171 64± 11 0.9± 0.2

8.1± 0.5 on 6.5+7.4
−10.0 0 7.8± 0.4 2.5+3.3

−3.1 14683± 171 64± 11 0.9± 0.2

macroturbulence calibration of Bruntt et al. (2010) provided vmac = 4.2± 0.3 km s−1. Again,

an alternative analysis used vmac = 5.4 from the calibration of Gray (1994), and returned a

value of v sin I (7.5± 0.5 km s−1) that was used for comparison.

5.5.1 Rossiter-McLaughlin analysis

I found that there was no need to re-evaluate my initial “jitter” estimates, as 1 m s−1 for each

set of RV data produced χ2
red consistent with 1 for all of my runs. Full results of my analysis

can be found in Table 5.4.

I found no difference between the χ2
red values for any combination of priors. I found

that relaxing the stellar radius had little effect on the fit to the spectroscopic data, but had a

deleterious effect on the stellar parameters. Imposing the prior produced a decrease in stellar

radius of between 2 and 6 percent and a corresponding increase in the stellar mass, as well

as an increase in stellar density of between 10 and 22 percent from ρ∗,noprior ≈ 0.59ρ� to

ρ∗,Rprior ≈ 0.68ρ�, averaged across all other combinations of priors. Comparing the impact

parameter and S statistic, I found b = 0.79+0.03
−0.05 and S = 15.2 with no radius prior applied,

and b = 0.77+0.03
−0.05 with S = 3.5 when the stellar radius prior was enforced. Owing to the much

more favourable S statistic, and the influence on the stellar parameters, I elected to use results

117



Chapter 5. Spin-orbit alignment measurements for six WASP hot Jupiters

Figure 5.7: Results from the fit to the data for my adopted solution for WASP-31, with a circular orbit,
no prior on the spectroscopic v sin I , no long-term radial velocity trend, and the mass-radius relationship
applied. Legend as for Fig. 5.3.

in which the stellar radius prior is applied. Adding a linear velocity trend gave no discernible

difference in the quality of the fit to the spectroscopic data, and with a magnitude of |γ̇| <

20 m s−1 yr−1 I conclude that no such trend is present in the system. Adding a prior on the

spectroscopic v sin I made little difference to the results despite the relatively rapid rotation,

so I chose the simpler route and neglected such a prior. Finally, I chose a circular solution; the

F-test of Lucy & Sweeney (1971) shows that the small eccentricity values returned when e is

allowed to float are insignificant.

My optimal solution is therefore that obtained with no v sin I prior, no velocity trend, the

MS prior active, and e = 0. This set of priors gives λ = 2.2◦+3.4
−3.1 , leading to the conclusion

that the WASP-31 system is well-aligned. It is worth noting that this would be the conclusion

whichever combination of priors I chose, as all of the values of λ that I obtained lie within 1σ

of 0◦. The impact parameter is 0.77+0.01
−0.02. The stellar rotation for this solution has a value of

v sin I = 7.4± 0.7 km s−1; as with my result for WASP-16 this is slower than the spectroscopic

value, although in this case the values agree to within 1σ. Figure 5.7 displays the RV and RM

curves for the optimal solution, whilst Figure 5.8 shows the posterior probability distributions.

No correlations are apparent between b, v sin I , and λ.

118



5.5. WASP-31

Figure 5.8: Posterior probability distributions, derived from the Markov chain, for the fit to the data for
WASP-31 described in Fig. 5.7. Legend as for Fig. ’reffig:5-2. Left: b and λ. Right: v sin I and λ. λ = 0
lies well within the main body of the distribution.

WASP-31 is not included in the sample of Schlaufman (2010) owing to its time of publi-

cation. In order to check the possibility of misalignment along the line-of-sight, I follow the

method of Schlaufman and calculate the rotation statistic, Θ. The age of WASP-31 A is some-

what uncertain however; its lithium abundance, gyrochronology and the presence of a close

companion all suggest ages of ≈ 1 Gyr, whilst previous stellar model fits imply an older age of

4± 1 Gyr. My isochronal fits for the system (see Chapter 2) produced ages of 3.23± 1.40 Gyr

(Padova models), 2.05±1.17 Gyr (YY models), 3.60+2.26
−1.78 Gyr (Teramo models), 1.87+1.34

−1.02 Gyr

(VRSS models), and 4.19+0.99
−2.76 Gyr (DSEP models). Using these estimates I calculate values of

Θ = −3.7, −1.0, −4.6, −1.3, and −2.9 respectively; WASP-31 is rotating more rapidly than

expected given its age in all cases. The chance of significant misalignment along the line-of-

sight therefore seems slim; the inclination of the WASP-31 b’s orbit is 84.7±0.2◦, leaving little

room for an increase in rotation velocity owing to line-of-sight misalignment.

Age estimates obtained using stellar activity measurements also suggest that the star is

old, but interestingly gyrochronology analysis suggested an age of 0.83+0.17
−0.12 Gyr, which is

much younger than any of the other age estimates that I calculated, although the lithium

abundance age range does allow for such a young star. This gyrochronology age returns

Θ = 2.34, implying that the star is rotating more slowly than expected. Give all of this,

perhaps the true age of the system lies somewhere close to 1 Gyr.

The systems has also been investigated by Albrecht et al. (2012b), who used priors on

the ephemeris from Dragomir et al. (2011) (who had access to an additional lightcurve com-

pared to the discovery paper) to obtain v sin I = 7.3± 0.4 km s−1 and λ = −6◦ ± 3, which is
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inconsistent with my result. However when they used the data from Anderson et al. (2011c)

for their ephemeris priors they obtained a value of the alignment angle of λ = 2◦ ± 3, which

does agree with the value that I have reported. This dependence of the result of the precise

set of priors and timing information used is worrisome, and would seem to point towards the

uncertainties on λ being greater than I have assessed them to be (I note that Albrecht et al.

doubled the error bars on their result before including it in their analysis of the ensemble).

My analysis does not use priors on the ephemeris, but in order to be rigourous I reassessed

the system using my selected combination of priors, and the ephemeris data from Dragomir

et al.. I found little to distinguish these results from those presented in Table 5.4; either the

new initial ephemeris was insufficiently different to the one that I used to force a different

solution, or the χ2 surface has a very strong minimum at the solution that I found initially.

5.5.2 Doppler tomography

Analysis of WASP-31 using Doppler tomography can be found in Miller et al. (submitted).

5.6 WASP-32

WASP-32b is a dense hot Jupiter in a 2.72 day orbit around a Sun-like (spectral type G, Teff =

6140+90
−100 K), lithium depleted star, and is one of only a small number of hot Jupiters with

a mass greater than 3 Jupiter masses. Its discovery was presented by Maxted et al. (2010),

who used photometry from WASP-S and the Faulkes Telescope North (FTN), in concert with

spectroscopic observations from the CORALIE spectrograph, to determine the existence of the

transiting planet.

The HARPS spectrograph was used to observe the transit of WASP-32 b on the night of

2011 September 26. Thirty observations were acquired over the duration of the night, and ad-

ditional data were collected on the nights of 2011 September 24, 25 and 27 (see Appendix C,

Table C.8). Simultaneous photometry of the same transit was obtained using EulerCam and

the TRAPPIST telescope at La Silla (Jehin et al., 2011). Photometry of an additional transit

was obtained using TRAPPIST, on 2011 November 24.

Barry Smalley and Amanda Doyle carried out a spectroscopic analysis of the new HARPS

spectra to determine an updated estimate of v sin I for the host star. They assumed a macrotur-

bulence of vmac = 3.5± 0.3 km s−1 using the calibration of Bruntt et al. (2010), and obtained
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v sin I = 5.5± 0.4 km s−1, in agreement with the value of 4.8± 0.8 km s−1 found by Maxted

et al. (2010) from their CORALIE spectra. I applied this new estimate of v sin I as my spectro-

scopic prior.

5.6.1 Rossiter-McLaughlin analysis

I initially applied a stellar “jitter” of 1.0 m s−1 to both the existing CORALIE RV data and the

new HARPS data. The values of χ2
red that were returned by my algorithm with this level of

“jitter” applied all fall with 1σ of 1.0, indicating that the solution is well constrained. There

was therefore no need to increase the level of stellar activity accounted for by my modelling.

Adding a long-term, linear RV trend produced no discernible effect on the quality of fit

that I obtained, or on the value of χ2
red. Relaxing the prior on the stellar radius led to only

marginal changes in the values of S, Ms, Rs, ρs, and b. It also produced no change in the value

of χ2
red. I therefore conclude that any such trend is insignificant, and choose as my definitive

solution a model which does not apply the prior. Similarly, I elect not to apply the prior on

v sin I in my final solution. Whilst applying the prior produced an increase of 1.0 km s−1 in

the value of v sin I returned by the MCMC algorithm, it had no impact on the value of χ2
red.

The prior on orbital eccentricity required more careful analysis. Maxted et al. (2010)

reported a marginal 2.8σ detection of eccentricity in the planet’s orbit, and suggested that

it could be confirmed through observations of the secondary eclipse. To my knowledge no

such observations have been carried out, so the question of the system’s eccentricity remains

open. My models with floating eccentricity all find e ≤ 0.014, slightly less than the value

of e = 0.018± 0.0065 found by Maxted et al. (2010), and none show any improvement in

χ2
red compared to the equivalent models with fixed, circular orbits. I tested the significance of

the eccentricity values recovered by my algorithm using the F-test of Lucy & Sweeney (1971),

which indicated that none of the eccentricities are significant, and thus that a circular orbit is

favoured.

My adopted model thus uses the combination of a circular orbit and no long-term RV

trend, with neither the v sin I or stellar radius priors applied. This model provides values of

λ = 8.6◦+6.4
−6.5 , v sin I = 3.9 ± 0.5 km s−1 (slightly slower than the value from spectroscopic

analysis), b = 0.66± 0.02 and i = 85.1◦± 0.2. The resulting RV curve is displayed in Fig. 5.9

alongside a close-up of the transit region, showing the RM anomaly. The amplitude of the
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Table 5.5: A comparison of the χ2 and χ2
red values from the Rossiter-McLaughlin analysis of WASP-32 for

each combination of Bayesian priors. All values of χ2 include the Bayesian penalties applicable for that
combination of priors.

v sin I prior MS prior γ̇/ms−1yr−1 eccentricity v sin I/km s−1 λ/◦ χ2 χ2
RV χ2

red

off off 0 0.008+0.006
−0.005 3.9± 0.6 8.3+7.2

−6.9 10474± 145 49± 10 1.0± 0.2

off on 0 0.008+0.005
−0.004 3.9± 0.5 8.5+6.6

−6.4 10471± 145 49± 10 1.0± 0.2

off off −7.1± 2.3 0.006± 0.005 3.9± 0.6 8.5+7.2
−6.4 10473± 145 48± 10 1.0± 0.2

off on 55.7+26.7
−35.3 0.007+0.005

−0.004 3.9± 0.5 8.5+6.8
−6.4 10468± 145 47± 10 0.9± 0.2

off off 0 0 3.9± 0.5 8.6+6.4
−6.5 10475± 145 52± 10 1.0± 0.2

off on 0 0 3.9± 0.6 8.5+7.4
−6.6 10472± 145 51± 10 1.0± 0.2

off off 13.0+8.9
−14.1 0 3.9± 0.5 8.4+6.6

−6.4 10470± 145 51± 10 1.0± 0.2

off on 27.7+31.5
−41.4 0 4.0+0.5

−0.6 7.9+7.3
−6.8 10471± 145 50± 10 1.0± 0.2

5.5± 0.4 off 0 0.008+0.006
−0.005 4.9± 0.3 7.6± 5.3 10476± 145 54± 10 1.1± 0.2

5.5± 0.4 on 0 0.008+0.005
−0.004 4.9± 0.3 7.7+5.9

−6.3 10471± 145 54± 10 1.1± 0.2

5.5± 0.4 off −15.2+12.5
−5.3 0.008+0.005

−0.004 4.9± 0.3 8.1+5.2
−5.4 10476± 145 55± 10 1.1± 0.2

5.5± 0.4 on 30.5+16.4
−8.5 0.008+0.006

−0.005 4.9± 0.3 8.3+5.6
−5.0 10473± 145 52± 10 1.0± 0.2

5.5± 0.4 off 0 0 4.9± 0.3 7.7+5.5
−5.4 10478± 145 57± 10 1.1± 0.2

5.5± 0.4 on 0 0 4.9± 0.3 7.3+5.6
−5.4 10480± 145 56± 10 1.1± 0.2

5.5± 0.4 off 23.7+7.8
−12.0 0 4.9± 0.3 7.1+5.6

−5.1 10472± 145 55± 10 1.1± 0.2

5.5± 0.4 on 7.9+6.1
−9.1 0 4.9± 0.3 7.5+5.5

−5.4 10477± 145 56± 11 1.1± 0.2

anomaly is low owing to the moderate rotation speed of the host star, but the signal-to-noise

is high and the anomaly is well constrained. I found that the semi-amplitudes returned for

all three of the RV data sets (the CORALIE data from Maxted et al. (2010), the new HARPS

out-of-transit data and the HARPS in-transit data) were in good agreement, and consistent

with the results from the discovery paper. My barycentric velocities on the other hand whilst

consistent with each other, are slightly slower than the value found by Maxted et al. (2010),

even for their CORALIE spectroscopy.

5.6.2 Doppler tomography

The set of priors identified as comprising the best-fitting model for my RM analysis were ap-

plied to the Doppler tomography method, allowing me to assess only a single model. Fig. 5.10

displays the residual maps from my analysis, which returned values of v sin I = 3.9+0.4
−0.5 km s−1

and λ= 10.5◦+6.4
−5.9 .

There is little to choose between the results returned by my two analysis methods. In

this case, since the constraints on the spin-orbit angle were well-defined by my original RM

analysis, the tomographic method has been unable to provide much improvement. However

it does confirm the results from my RM analysis, namely that the system is well aligned and
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Figure 5.9: Results from my adopted model for WASP-32: e = 0; no long-term radial velocity trend; no
prior on the spectroscopic v sin I , and no stellar radius prior. The best-fitting model is plotted as a solid
black line. Top left: Complete radial velocity reflex motion curve. Legend as for Fig. 5.3.
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Chapter 5. Spin-orbit alignment measurements for six WASP hot Jupiters

Figure 5.10: Left: Residual map of WASP-32 time series CCFs with the model stellar spectrum subtracted.
The signature of the planet moves from bottom-left to top-right, supporting the aligned, prograde orbit
conclusion from my RM analysis. Right: The best-fitting model for the time-variable planet feature has
been subtracted, leaving the overall residual map. The lack of any features in this figure indicate a lack of
large-scale stellar activity.
The horizontal dotted line marks the mid-transit phase. The vertical dotted line denotes the stellar radial
velocity, whilst the vertical dashed lines indicate ±v sin I from this, effectively marking the position of the
stellar limbs. The crosses mark the four contact points for the planetary transit.

in a prograde orbit. This is easily seen in Fig. 5.10, which shows the time-series map of the

residuals after the subtraction of the stellar line profile only; the effect of the planet therefore

shows up as a bright ‘streak’ across the figure, centred on phase 0 and the barycentric radial

velocity of the host star, and travelling between the ±v sin I values. The trajectory of the

planet signature unambiguously identifies the planetary orbit as prograde, moving as it does

from bottom-left (−v sin I at the orbital phase corresponding to ingress) to top-right (+v sin I

at the orbital phase corresponding to egress). Fig. 5.10 also displays the final residual map,

after the removal of the planet signature. The lack of any notable, consistent deviation from

the mean value of the map indicates a lack of significant stellar activity in the host star, as any

such activity would produce signatures similar to that of the planet (e.g. non-radial pulsation

in WASP-33, Collier Cameron et al. 2010b).

5.7 WASP-38

The WASP-38 system consists of a massive (2.7 MJup) hot Jupiter in a long (6.87 d), eccentric

orbit around a bright (V=9.4), rapidly rotating star of spectral type F8 and Teff = 6180+40
−60 K.

Further information regarding its discovery can be found in Barros et al. (2011a). Photome-

try from the SuperWASP array, the RISE instrument mounted on the 2 m Liverpool Telescope

(Steele et al., 2008; Gibson et al., 2008) and an 18 cm Takahashi astrograph at La Palma were
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combined with spectroscopic measurements taken using the CORALIE and SOPHIE instru-

ments to confirm the presence of the planet.

The Rossiter-McLaughlin effect of WASP-38 b has been analysed previously by Simpson

et al. (2011c), who obtained spectroscopic observations of a transit event using the FIES

spectrograph mounted on the Nordic Optical Telescope (NOT) at la Palma. Despite the low

precision of their measurements, they were able to place useful constraints on the alignment

angle using the shape of the RV anomaly during transit, ruling out high angles and confining

the system to prograde orbits. They reported a final value of λ= 15◦+33
−43 , but were not able to

provide a firm conclusion as to the alignment, or otherwise, of the system.

I obtained new spectroscopic observations using HARPS of the transit event on the night

of 2011 June 15, and additional observations were made throughout 2011 to provide cov-

erage of the entire radial velocity curve (see Table C.9). Photometric observations were

made of a transit using TRAPPIST, on 2011 April 13, but unfortunately it was not possi-

ble to obtain simultaneous photometry of the spectroscopically observed event. As with the

previous systems, Barry Smalley and Amanda Doyle analysed the new HARPS spectra to ob-

tain a value for v sin I of 8.3 ± 0.4 km s−1. A macroturbulence of vmac = 3.7 ± 0.3 km s−1

was assumed, again using the calibration of Bruntt et al. This v sin I is in excellent agree-

ment with the values of v sin I = 8.6 ± 0.4 km s−1 quoted by Barros et al. (2011a) and

v sin I = 8.58 ± 0.39 km s−1 found by Simpson et al. (2011c). The adopted vmac is signifi-

cantly lower than the 4.9±0.4 km s−1 that Barros et al. (2011a) used to fit their spectroscopy.

Barros et al. used the calibration of Gray (2008), whereas the HARPS analysis used that of

Bruntt et al. (2010). Reanalysing the new spectra using the Gray calibration returns a slightly

lower value of v sin I = 7.9± 0.4 km s−1, in agreement with the Barros et al. results. In spite

of this, Barry Smalley feels that the Bruntt et al. calibration gives a better fit to the data, and

it is therefore that result that I use for my spectroscopic prior.

5.7.1 Rossiter-McLaughlin analysis

My initial stellar “jitter” estimate of 1 m s−1 led to poorly constrained results, with the lowest

χ2
red value returned by any of the models being 1.7. I therefore recalculated the stellar “jitter”

following Wright (2005), obtaining three distinct values. I found that in order to force χ2
red ≈ 1

I had to apply the conservative, 20th percentile estimate of 2.1 m s−1 to the new HARPS data,

and the 80th percentile estimate of 6.6 m s−1 to the pre-existing FIES, CORALIE, and SOPHIE
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data.

I found that applying the spectroscopic prior on v sin I made little difference to the qual-

ity of fit that I obtained, or to the values of v sin I and λ that I obtained when compared to

the equivalent case without the application of the prior. Similarly, applying a long-term RV

trend had no effect on the results, and the magnitude of any possible trend was found to be

insignificant at |γ̇| < 22 m s−1 yr−1. The stellar radius prior however, despite producing only

a small change in the values of χ2
red, had a significant impact on the results that I obtained.

Cases in which the prior was not applied saw average increases in the stellar mass and radius

of 6 percent and 27 percent respectively over their equivalent cases in which the prior was

applied, as well as an average decrease in the stellar density of 49 percent. Note that these

changes do not necessarily match perfectly, as under my model the stellar density is calcu-

lated directly from the transit light curves, and is independent of the stellar mass and radius.

Relaxing the prior also produced significant increases in v sin I , and substantially raised the

impact parameter from b = 0.15+0.33
−0.30 to b = 0.62+0.11

−0.13. Furthermore, I found that removing

the prior increased the value of the stellar radius penalty, S, from S = 14.0 to S = 105.3.

Allowing the eccentricity to float led to a clear and significant difference in both χ2
red and

the total χ2 for the combined photometric and spectroscopic model. The values returned by

my algorithm lie at ≥ 7σ from e = 0, and were found to be significant by the F-test of Lucy

& Sweeney (1971). This confirms the eccentricity detection of Barros et al. (2011a), and the

values that I find are consistent with the value of e = 0.0314+0.0046
−0.0041 reported by those authors.

My adopted model for this system therefore uses an eccentric orbit, does not include a

long-term RV trend, does not apply a prior on v sin I , and does utilise a prior on the stellar

radius. This model returns values of λ = 9.2◦+18.1
−15.5 , v sin I = 7.7+0.5

−0.4 km s−1 (slower than the

spectroscopic result), b = 0.09+0.13
−0.06 and i = 89.6◦+0.3

−0.6 , all of which indicate a well-aligned

system. The radial velocity curves are displayed in Fig. 5.11. The difference in quality be-

tween the FIES data presented by Simpson et al. (2011c) and my new HARPS measurements

is immediately apparent, particularly during the first half of the transit. The shape of the

anomaly is well defined, and it has the large amplitude that is expected given the host star’s

rapid rotation. It also appears to be highly symmetric, lending credence to the conclusion that

the system is likely well-aligned.

I find that the radial velocity semi-amplitudes and barycentric velocities vary somewhat
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Table 5.6: A comparison of the χ2 and χ2
red values from the Rossiter-McLaughlin analysis of WASP-38 for

each combination of Bayesian priors. All values of χ2 include the Bayesian penalties applicable for that
combination of priors.

v sin I prior MS prior γ̇/ms−1yr−1 eccentricity v sin I/km s−1 λ/◦ χ2 χ2
RV χ2

red

off off 0 0.029± 0.003 8.2+0.4
−0.3 2.5± 2.3 22542± 212 147± 17 1.1± 0.1

off on 0 0.028+0.004
−0.003 7.3± 0.3 1.3+13.3

−16.9 22581± 213 147± 17 1.1± 0.1

off off 2.0+3.2
−2.0 0.029± 0.003 8.2± 0.4 2.5+2.5

−2.3 22542± 212 148± 17 1.1± 0.1

off on 0.4+0.3
−0.4 0.027± 0.003 7.3± 0.3 5.3+8.9

−11.1 22563± 212 147± 17 1.1± 0.1

off off 0 0 8.2± 0.4 3.4+2.5
−2.4 22639± 213 251± 22 1.8± 0.2

off on 0 0 7.3± 0.3 8.7+9.1
−9.2 22685± 213 250± 22 1.8± 0.2

off off −11.3+8.0
−10.0 0 8.2+0.4

−0.3 3.6± 2.5 22644± 213 250± 22 1.8± 0.2

off on −0.01+0.01
−0.01 0 7.4± 0.3 16.2+8.7

−9.6 22667± 213 251± 22 1.8± 0.2

8.3± 0.4 off 0 0.028± 0.003 8.2± 0.3 2.6+2.9
−2.6 22545± 212 148± 17 1.1± 0.2

8.3± 0.4 on 0 0.028+0.004
−0.003 7.6+0.3

−0.2 5.3+11.7
−16.3 22590± 213 152± 17 1.1± 0.1

8.3± 0.4 off −0.03± 0.01 0.028+0.003
−0.004 8.2± 0.3 2.2+2.3

−2.4 22546± 212 149± 17 1.1± 0.1

8.3± 0.4 on 0.04+0.11
−0.15 0.028+0.004

−0.003 7.7± 0.3 15.9+21.6
−17.9 22577± 213 150± 17 1.1± 0.1

8.3± 0.4 off 0 0 8.2+0.2
−0.3 3.1+2.4

−2.5 22640± 213 252± 22 1.8± 0.2

8.3± 0.4 on 0 0 7.7± 0.3 14.2+13.8
−10.8 22687± 213 253± 23 1.8± 0.2

8.3± 0.4 off 0.1+0.7
−0.1 0 8.2± 0.3 3.7+2.7

−2.3 22641± 213 252± 22 1.8± 0.2

8.3± 0.4 on −3.2+3.7
−7.6 0 7.7+0.3

−0.2 12.4+9.8
−9.4 22692± 213 251± 22 1.8± 0.2

between the 5 different spectroscopic data sets that I analysed (CORALIE data, SOPHIE data,

FIES data, HARPS data out-of-transit, and HARPS data in-transit). In particular, the data

obtained using FIES by Simpson et al. (2011c) has a much smaller semi-amplitude than any

of the other data sets; 0.152± 0.030 km s−1 compared to values between 0.246± 0.001 and

0.255 ± 0.007 km s−1. Interestingly, Simpson et al. found a semi-amplitude of 0.2538 ±

0.0035 km s−1 in their analysis, but I suspect that this was overwhelmingly derived from the

SOPHIE and CORALIE data, which cover the entire orbital phase. The barycentric velocities

agree well with the results of that previous study however.

5.7.2 Doppler tomography

I again used the set of priors adopted for my RM modelling as the basis for the Doppler

tomography analysis, and Table 5.7 displays the results from this analysis, together with the

results from Simpson et al. (2011c) and my own RM analysis. It is immediately apparent that I

have been able to dramatically reduce the uncertainties on the projected spin-orbit alignment

angle; I will return to the question of why this is in Section 5.9. The signature of the planet is

clearly defined in Fig. 5.12, and in the final residual image there is no sign of any anomalies

in the stellar line profiles, indicating that the host star is chromospherically quiet.
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Figure 5.11: Radial velocity curve produced by my optimal model for the WASP-38 system. The model
uses an eccentric orbit and a prior on the stellar radius, but no long-term radial velocity trend is found and
the prior on the spectroscopic v sin I is not applied. Data from SOPHIE are denoted by circles. Data from
FIES are denoted by diamonds. Rest of legend as for Fig. 5.3.

Table 5.7: Results from my two analysis methods, compared against results from the previous Rossiter-
McLaughlin analysis by Simpson et al. (2011c). I have significantly reduced the uncertainties on the
projected spin-orbit alignment angle compared to their original work.

Source v sin I/km s−1 λ/◦ b/Rs

Simpson et al. (2011c) 8.58± 0.39 15+33
−43 0.27+0.10

−0.14

This work: RM effect 7.7+0.5
−0.4 9.2+18.1

−15.5 0.09+0.13
−0.06

This work: Tomography 7.5+0.1
−0.2 7.5+4.7

−6.1 0.12+0.08
−0.07
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Figure 5.12: Left: Residual map of WASP-38 time series CCFs with the model stellar spectrum subtracted.
The bright signature of the planet is clearly visible, and it’s trajectory from bottom left to top right clearly
indicates a prograde orbit. Right: The best-fitting model for the time-variable planet feature has been
subtracted, leaving the overall residual map. The lack of any remaining signatures suggests that the star
is chromospherically quiet.
Details as for Fig. 5.10.

5.8 HAT-P-27/WASP-40

HAT-P-27 (Béky et al., 2011) is a fairly typical hot Jupiter system, with a 0.6MJup planet in a

3.04 d orbit around a late-G/early-K type star with Teff = 5190+160
−170 K and super-solar metal-

licity. The system was characterised using photometry from HATnet and from KeplerCam on

the 1.2m FLWO telescope, and spectroscopy from HIRES. It was also independently discov-

ered by the WASP survey using the combined SuperWASP and WASP-S arrays, together with

spectroscopy from SOPHIE, and designated WASP-40 (Anderson et al., 2011a).

New spectroscopic measurements were made using HARPS throughout the transit on the

night of 2011 May 12, and additional observations carried out at a range of orbital phases

throughout 2011 May. New photometric observations were also made using TRAPPIST on

2011 May 17, covering a full transit. I combined these new data with those from both Béky

et al. (2011) and Anderson et al. (2011a) for my attempt to characterise the RM effect.

Barry Smalley and Amanda Doyle again used the new HARPS spectra to determine v sin I =

2.4± 0.5 km s−1, and the calibration of Bruntt et al. (2010) to adopt vmac = 1.0± 0.3 km s−1.

This estimate of v sin I agrees well with the v sin I = 2.5± 0.9 km s−1 from Anderson et al.

(2011a), but is substantially different to the value of v sin I = 0.4± 0.4 km s−1 obtained by

Béky et al. (2011), who used vmac = 3.29 km s−1 based on the calibration of Valenti & Fischer

(2005). Barry Smalley found that using such a high macroturbulence value led to a poor
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fit for many of the spectral lines, even with v sin I = 0.0 km s−1, and therefore suggests that

Béky et al. (2011) have overestimated the broadening in their SOPHIE spectra. The Valenti

& Fischer (2005) calibration provides only an upper limit on the macroturbulence, which for

cool stars such as WASP-40 can be significantly different from the true values.

5.8.1 Rossiter-McLaughlin analysis

I found that my original estimate of 1 m s−1 for the stellar “jitter” produced poorly constrained

(χ2
red ≈ 1.7) models. I calculated possible values of 5.9 m s−1 (20th percentile), 7.5 m s−1

(median), and 9.8 m s−1 (80th percentile) using the method of Wright (2005), and apply

the latter to the existing SOPHIE data. I also note that Béky et al. (2011) applied a “jitter” of

6.3 m s−1 to their HIRES data. To confirm that this was reasonable, I analysed the photometric

data in conjunction with only the HIRES spectroscopic data, finding that my initial estimate

of 1 m s−1 produced χ2
red = 10.0± 1.5, the 20th percentile value produced χ2

red = 1.1± 0.5,

the median value produced χ2
red = 0.7± 0.4, and the 80th percentile value produced χ2

red =

0.4± 0.3, whilst applying their estimate produced χ2
red = 1.0± 0.5. I therefore follow Béky

et al. and apply a “jitter” of 6.3 m s−1 to the HIRES data.

As with my RM analysis of WASP-32, I found that there was little to separate the different

models for the WASP-40 system, as no significant differences were apparent in the values

of χ2
red that I obtained. The eccentricities returned for models with non-circular orbits were

found to be insignificant by the statistical test of Lucy & Sweeney (1971), and the values were

all found to be consistent with e = 0 to within 1.5σ. I also note that the addition of HARPS

spectrographic measurements has reduced the value of any possible eccentricity in the system

by a factor of 10 compared to the results in Anderson et al. (2011a). The addition of a long-

term radial velocity trend to the model was found to provide no improvement in the quality of

the fit obtained, and the low magnitude of any possible trend (|γ̇| < 43 m s−1 yr−1) leads me

to conclude that no such trend is present in the system. Imposing a prior on the stellar radius

produced only small changes in the mass (|δMs| ≤ 2 percent), radius (δRs ≤ 3 percent), and

density (δρs ≤ 7 percent) of the host star. The impact parameter was similarly unaffected,

with only the error bars increasing with the relaxation of the prior.

Adding a prior on v sin I using the spectroscopic measurement produced no change in the

value of χ2
red, but it significantly lowered the value of v sin I returned by the MCMC algorithm,

and greatly reduced the uncertainties on the values of λ that were being produced. Examina-

130



5.8. HAT-P-27/WASP-40

Table 5.8: A comparison of the χ2 and χ2
red values from the Rossiter-McLaughlin analysis of WASP-40 for

each combination of Bayesian priors. All values of χ2 include the Bayesian penalties applicable for that
combination of priors.

v sin I prior MS prior γ̇/ms−1yr−1 eccentricity v sin I/km s−1 λ/◦ χ2 χ2
RV χ2

red

off off 0 0.013+0.018
−0.009 0.6+0.7

−0.4 24.4+75.2
−35.8 18306± 191 70± 12 1.3± 0.2

off on 0 0.017+0.023
−0.013 0.6+0.7

−0.4 24.0+64.9
−33.6 18312± 191 69± 12 1.3± 0.2

off off 29.3+13.2
−13.5 0.014+0.017

−0.010 0.6+0.7
−0.4 24.2+74.0

−36.2 18299± 191 64± 11 1.2± 0.2

off on 0.3+0.2
−0.3 0.016+0.019

−0.011 0.7+0.7
−0.5 22.4+59.6

−30.5 18193± 191 70± 12 1.3± 0.2

off off 0 0 0.6+0.7
−0.4 24.2+76.0

−44.5 18159± 191 69± 12 1.3± 0.2

off on 0 0 0.6+0.7
−0.4 21.9+73.2

−35.3 18310± 191 69± 12 1.3± 0.2

off off −0.7+0.9
−0.7 0 0.7+0.7

−0.5 28.8+59.1
−43.9 18187± 191 70± 12 1.3± 0.2

off on 0.3+0.4
−0.4 0 0.6+0.7

−0.4 26.8+75.1
−39.5 18312± 191 69± 12 1.3± 0.2

2.4± 0.5 off 0 0.015+0.021
−0.011 1.9± 0.4 8.5+13.2

−10.4 18314± 191 71± 12 1.3± 0.2

2.4± 0.5 on 0 0.013+0.018
−0.009 1.8+0.4

−0.5 10.6+19.4
−12.0 18305± 191 72± 12 1.4± 0.2

2.4± 0.5 off 3.3+3.8
−9.1 0.012+0.014

−0.009 1.9± 0.4 9.1+16.0
−10.6 18311± 191 70± 12 1.3± 0.2

2.4± 0.5 on 1.4+1.1
−1.0 0.009+0.021

−0.006 1.8± 0.4 10.9+13.5
−11.2 18314± 191 71± 12 1.3± 0.2

2.4± 0.5 off 0 0 1.9± 0.4 8.8+13.5
−10.7 18311± 191 71± 12 1.3± 0.2

2.4± 0.5 on 0 0 1.9± 0.4 8.7+12.6
−11.0 18312± 191 71± 12 1.3± 0.2

2.4± 0.5 off 16.1+16.6
−20.6 0 1.8± 0.4 9.7+13.4

−11.0 18301± 191 66± 12 1.3± 0.2

2.4± 0.5 on 0.04+0.14
−0.10 0 1.9± 0.4 8.1+12.2

−10.7 18304± 191 70± 12 1.3± 0.2

tion of the HARPS spectroscopy indicated that the amplitude of any RM effect was likely to be

low, with the error bars on the data such that they obscured any possible anomaly in the RV

curve. This indicated that the value of v sin I was likely to be small, and that the error bars

on λ would likely be high. This information, combined with the lack of any difference in the

quality of fit, led me to select a solution in which the prior on v sin I was not applied.

My adopted solution therefore uses the combination of a circular orbit and no long-term

radial velocity trend, with neither the prior on v sin I nor the prior on the stellar mass applied.

The radial velocity curve that results is shown in Fig. 5.13. Values of λ = 24.2◦+76.0
−44.5 , v sin I =

0.6+0.7
−0.4 km s−1, b = 0.87 ± 0.01 and i = 85.0◦ ± 0.2 were returned for this combination of

conditions. I note that the value I obtain for the impact parameter is consistent with that

found by Anderson et al. (2011a), who found a 40.5 percent likelihood that the system is

grazing. I also note that this system serves as a good example of the systematic discussed

by Albrecht et al. (2011). They showed that systems with low-amplitude, low signal-to-noise

measurements of the Rossiter-McLaughlin effect were preferentially found to be either close

to aligned (λ = 0◦) or anti-aligned (λ = 180◦), with the posterior-probability distributions of

these systems showing a greater number of possible solutions around these angles. Fig. 5.14

shows the posterior probability distribution for λ against v sin I from my MCMC run. It is
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Figure 5.13: Results from the fit to the radial velocity data for my adopted solution for WASP-40. A
circular orbit was used, with no prior on the spectroscopic v sin I , no long-term radial velocity trend, no
prior on the stellar radius. Data from HIRES are denoted by triangles. Data from SOPHIE are denoted by
circles. Data from HARPS are denoted by squares. Error bars are marked in grey; some are smaller than
the size of the data points that they accompany. Format as for Fig. 5.3.

immediately clear that there are a greater number of solutions, covering a greater range of

values, for v sin I at angles close to 0◦; the effect at 180◦ is less pronounced. I note that my

solution lies relatively close to the former angle, as predicted by Albrecht et al. (2011), but I

also note that my error bars are such that a wide range of alignment angles are included in

the possible range of solutions that I find.

In light of this, I analysed the system using my preferred choice of priors and initial

conditions, but with no Rossiter-McLaughlin fitting. I found that this produced results that

showed no difference in terms of quality of fit from my adopted solution, with a value of

χ2
red,noRM = 1.3± 0.2 that is in complete agreement with χ2

red = 1.3± 0.2 from the solution

adopted above. I therefore consider these weak constraints on the alignment angle to be

equivalent to a non-detection of the Rossiter-McLaughlin effect.
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5.9. Why use Doppler Tomography?

Figure 5.14: Posterior probability distribution for v sin I and λ, derived from the Markov chain, for the
fit to the data for WASP-40 described in Fig. 5.13. Legend as for Fig. 5.4. λ = 0 lies well within the main
body of the distribution.

5.8.2 Doppler tomography

I attempted to model the system using Doppler tomography, but the combination of the low

signal-to-noise and slow rotation proved too difficult to analyse using this method. This nicely

highlights a major limitation of the technique, namely systems with poor quality spectroscopic

data. RM analysis is able to overcome the poor data quality to provide a result, although it

may be inconclusive. However the tomography method is simply unable to process the data

if the effect of the planetary transit on the stellar line profile is insignificant.

5.9 Why use Doppler Tomography?

As I discussed in Section 5.1, Doppler tomography is one of a number of methods for charac-

terising spin-orbit alignment that are beginning to be used as alternatives to the traditional

radial velocity based approach that I have used to analyse all six of the systems in this study.

Although tomography has weaknesses, and cannot be applied to every planetary system (as

witnessed with WASP-40), it has one great selling point over the radial velocity method. To-

mography is able to lift the strong degeneracy that exists between v sin I and λ, and which is

strongest in systems with low impact parameter.
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The geometry of the path that the planetary orbit traces across the stellar disc affects

the uncertainty in the spin-orbit alignment angle, particularly if that path is symmetric with

respect to the approaching and receding hemispheres of the star. As the impact parameter

increases, the range of alignment angles that can produce a symmetric RM curve decreases

(Albrecht et al., 2011). The limiting cases illustrate this well. With b = 0, any value of λ will

produce equal transit path lengths through the red- and blue-shifted halves of the stellar disc,

whilst with b = 1, only λ = 0◦ and λ = 180◦ will have the same effect. Thus as b decreases,

the uncertainty in the estimate of λ increases.

This is not the only parameter involved however. The stellar rotation, v sin I , dictates

the amplitude of the Rossiter-McLaughlin anomaly, but this is often ambiguous owing to the

uncertainties present in the radial velocity measurements. It is often not clear, particularly for

systems with low v sin I , whether the anomaly is truly asymmetric, or whether it is an effect

produced by the error bars (see WASP-25). This means that the same anomaly can often be

fit in two different ways. Either v sin I is low and λ indicates misalignment, with the resulting

asymmetry in the model used to fit the uncertainties, or λ is low and a rapid v sin I is used,

with the greater amplitude providing the required fit. Often what results is a compromise

solution, with large error bars on both parameters and some degree of degeneracy between

them. This arises owing to the use of the Rossiter-McLaughlin effect to characterise both

parameters simultaneously. The problem is exacerbated for systems with low signal-to-noise,

for which the range of possible models that fit the data is greatly increased owing to the

greater relative size of the uncertainties, and for systems with low impact parameter, for the

reasons discussed above.

The Doppler tomography method does not suffer from this same problem, and is there-

fore able to provide better constraints on λ in these problematic cases. Directly modelling

the separate components of the CCF provides several separate constraints on the parameters

involved in the model, and the geometric calculation of the position of the planet’s shadow on

the stellar disc helps to remove ambiguity regarding λ. These two factors lift the degeneracy

experienced with the traditional method.

WASP-38, as an example of a system with low impact parameter, provides a reasonable

example of the advantages that the tomographic analysis method holds over the standard

radial velocity method. Table 5.7 clearly shows that the error bars on λ have been decreased
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Figure 5.15: Posterior probability distributions for v sin I and λ for both of the analysis methods discussed
in this work. These distributions are for the analysis of the WASP-38 system discussed in Section 5.7.
Legend as for Fig. 5.14. Left: Radial velocity measurement based Rossiter-McLaughlin analysis. Right:
Doppler Tomography. The difference between the two methods is stark, with the tomographic analysis
yielding a much reduced correlation between the parameters.

by the use of Doppler tomography, and Fig. 5.15 shows the change in the relationship between

the values of v sin I and λ for the two analysis methods. The two posterior probability density

plots show completely different distributions, with that for the radial velocity method showing

a clear correlation between the two parameters, with obvious degeneracies in the fitted values.

The tomographic distribution, on the other hand, shows very little in the way of correlation,

and although there is still some spread in the λ distribution the range of v sin I values has

quite clearly been heavily restricted.

5.10 Conclusion

In this Chapter I have presented measurements of spin-orbit alignment in six planetary sys-

tems. I have also demonstrated the way in which Doppler Tomography can provide more

stringent constraints on the uncertainty in λ compared to the Rossiter-McLaughlin effect, and

shown that each method has cases where it is less than optimal. In the next Chapter I shall

place these results in the context of full set of alignment angles, and analyse the effect that

they have on the trends that are present within that sample.
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6
My alignment results in context

This chapter is based upon, and uses material from, Brown et al. (2012), MNRAS, 423,

1503-1520 and Brown et al. (2012), ApJ, 760, 139

The number of systems with measured or inferred spin-orbit alignment measurements is now

such that it is possible to begin carrying out analysis of the ensemble of measurements. There

have been many studies which attempt to identify trends within this sample, and each new

additional result provides information that can be used to assess previously identified trends,

or potentially discover new ones.

Fabrycky & Winn (2009) investigated 11 systems with known values of λ, deriving two

theoretical distributions for ψ, the true alignment angle, using different assumptions about

the form of the distribution. They suggested, based on an apparent dual population within

their data set, that there might be two routes for planet migration, one producing mostly

aligned planets and the other producing misaligned planets.
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A possible trend in the data was noticed by (Johnson et al., 2009), who found that planets

with high mass tend to be found in misaligned (but not retrograde), eccentric orbits. Subse-

quent observations have often supplied counter-examples to this trend (for example HAT-P-7:

Winn et al. 2009; Narita et al. 2009b; WASP-18: Hellier et al. 2009; Triaud et al. 2010), but

planets with Mp ¦ 3 MJup do appear to have a different distribution of spin-orbit alignment

angles (Hébrard et al., 2011a). This was tentatively interpreted as possible evidence for a

combination of Kozai-Lidov cycles with tidal circularisation and realignment, but small num-

ber statistics were cited as a cautionary factor. Increasing the number of measurements has

weakened the initial trend, with more systems in the ‘massive planet’ category being found to

exhibit well-aligned systems. Nevertheless, the variance in the λ distribution remains, with

high mass planets showing an apparent limit on their alignment angle of |λ| < 50◦. More ob-

servations of high mass planets are still needed to determine the strength of this correlation

however1.

One of the more intriguing suggestions was put forward by Winn et al. (2010a), who

speculated that the division into aligned and misaligned planets might be dependent on the

effective temperature of the host star. Using a sample of 19 systems with known λ, they

found that planets in misaligned orbits seem to preferentially orbit ‘hot’ stars (Teff ¦ 6250 K),

whilst aligned planetary orbits seem to be found mostly around ‘cool’ stars (Teff ® 6250 K).

They suggested that this might be connected to the size of the convective envelope, with tidal

realignment of orbits around ‘hot’ stars being suppressed owing to their small convective zone.

Winn et al. further conjectured that the λ distribution at the time of their publication could

be completely explained by a migration mechanism driven by a combination of Kozai-Lidov

oscillations and planet-planet scattering, without the need to invoke disc migration. Moutou

et al. (2011) found that there was no statistically significant difference between the ‘hot’ and

‘cool’ populations, at least for the limiting temperature chosen by Winn et al. (2010a), and

subsequent measurements have been inconclusive.

Triaud et al. (2010) added 6 planets to the ensemble of known Rossiter-McLaughlin (RM)

measurements. Calculating individual ψ distributions for each planet based on the assump-

tion that stellar rotation axes are randomly oriented on the sky, they produced a total dis-

tribution for the ensemble of planets, finding that it matched the theoretical distribution of

1More recent work along similar lines has tended to concentrate on the ratio, q, of the planetary mass to the
stellar mass rather than the planetary mass in isolation (Albrecht et al., 2012b), since this quantity appears in
tidal evolution equations and plays a role in other mechanisms as well.
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Fabrycky & Tremaine (2007) for Kozai-Lidov mechanism dominated migration, further imply-

ing that disc migration might be superfluous to requirements for explaining the presence of

hot Jupiters.

A more recently discovered correlation is that of alignment angle with host star age. Triaud

(2011) noticed that, for stars with Ms ≥ 1.2M�, all systems older than 2.5 Gyr are well-

aligned. This implies that the distribution of λ changes with time, which in turn suggests

that some misalignment mechanism must operate during the youth of hot Jupiter systems,

followed by some method of realigning the system as it evolves. If age is the primary factor

then having tidal interactions as the governing mechanism for this latter stage would fit with

the observed age trend, as planets around older stars will have had longer to tidally realign.

On the other hand it may also be that strongly misaligned planets are simply being destroyed

much more quickly than their aligned cousins; indeed, such an effect has been theoretically

demonstrated for retrograde planets, which are predicted to reach disruption distances several

times faster than prograde planets (Barker & Ogilvie, 2009b; Winn et al., 2010a). This would

lead to a decrease in the number of hot Jupiters with time, yet Triaud (2011) found no such

trend. Either tidal realignment occurs faster than orbital decay, or some other mechanism is

responsible for the observed evolution of the distribution of angles.

Albrecht et al. (2012b) re-examined all of these previously detected trends using an up-

dated, homogeneous database of Rossiter-McLaughlin measurements that included both re-

analyses and new measurements. They found that all of the existing trends are consistent with

the idea that tidal interactions are responsible for the evolution of the spin-orbit alignment in

hot Jupiter systems. They also considered the dependence of λ on the scaled orbital distance,

finding that it too is consistent with a tide-driven evolutionary picture. Their estimates of

characteristic tidal timescales showed that systems which were expected to align rapidly ex-

hibit angles consistent with alignment, whilst those for which tidal realignment was predicted

to be weaker display a nearly random distribution of angles. Albrecht et al. stopped short,

however, of claiming any mechanism for the production of the initial distribution of λ which,

from evidence collected so far, seems to be required to be isotropic (Fabrycky & Tremaine,

2007; Triaud et al., 2010).

I now consider the results that I presented in the previous Chapter, and which are sum-

marised in Table 6.1, in the context of the complete set of systems with spin-orbit alignment
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measurements, as listed in the Holt-Rossiter-McLaughlin database compiled by René Heller2.

At the time of writing, 66 planets (64 systems) had such measurements published, including

the 6 systems that I have analysed.

2As of 2013 January 10. http://www.aip.de/People/RHeller
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Table 6.1: A summary of my adopted results for WASP-16, WASP-25, WASP-31, WASP-32, WASP-38, and WASP-40. Those for WASP-32 and WASP-38 are derived
from Doppler tomography, whilst those for the remaining systems are derived from the Rossiter-McLaughlin analysis.

Parameter Units WASP-16 WASP-25 WASP-31 WASP-32 WASP-38 WASP-40

Fitted Parameters
D 0.0109± 0.0003 0.0190± 0.0003 0.0153± 0.0003 0.0108± 0.0001 0.0069± 0.0001 0.0143± 0.0005

K m s−1 0.118± 0.002 0.075± 0.004 0.056± 0.006 0.478± 0.011 0.252± 0.004 0.0912± 0.002

b Rs 0.82± 0.02 0.42+0.04
−0.05 0.77+0.01

−0.02 0.66± 0.02 0.12+0.08
−0.07 0.87± 0.01

W days 0.0796± 0.0014 0.1152± 0.0008 0.1075± 0.0013 0.0990± 0.0007 0.1969± 0.0010 0.070+0.001
−0.002

P days 3.11859± 0.00001 3.76483± 0.00001 3.405900± 0.000004 2.718661± 0.000002 6.87188± 0.00001 3.039577+0.000005
−0.000006

T0 BJ DUTC − 2450000 4618.7334± 0.0003 5278.7613± 0.0002 5219.9361± 0.0003 5681.1945± 0.0002 5322.1774± 0.0006 5407.9088± 0.0002
Derived parameters

Rp/Rs 0.089± 0.006 0.138+0.006
−0.007 0.124± 0.007 0.104± 0.005 0.083± 0.002 0.120+0.009

−0.007

Rs/a 0.109± 0.004 0.091± 0.002 0.120± 0.003 0.129± 0.003 0.0829+0.0008
−0.0007 0.102+0.003

−0.004

Rs R� 0.98± 0.05 0.91± 0.03 1.20± 0.04 1.09± 0.03 1.35± 0.02 0.87± 0.04

Ms M� 1.010.05
−0.06 0.95± 0.04 1.14± 0.06 1.07± 0.05 1.23± 0.04 0.92± 0.06

ρs ρ� 1.07+0.14
−0.12 1.26+0.09

−0.08 0.66± 0.05 0.84± 0.05 0.50± 0.01 1.38+0.16
−0.13

[Fe/H] 0.004+0.108
−0.098 −0.11± 0.10 −0.16± 0.10 −0.13± 0.10 −0.02± 0.07 0.14± 0.11

v sin I km s−1 1.5± 0.3 2.8± 0.3 7.4± 0.7 3.9+0.4
−0.5 7.5+0.1

−0.2 0.6+0.7
−0.4

Rp RJup,eq 1.00± 0.06 1.22+0.04
−0.05 1.44± 0.06 1.10± 0.04 1.09± 0.02 1.02+0.07

−0.06

Mp MJup 0.86± 0.04 0.56+0.03
−0.04 0.45± 0.05 3.46+0.14

−0.12 2.71± 0.07 0.62± 0.03
a AU 0.0419± 0.0008 0.0466± 0.0007 0.0463± 0.0008 0.0390± 0.0006 0.0758± 0.0008 0.0400± 0.0008

i deg 84.9± 0.3 87.8± 0.3 84.7± 0.2 85.1± 0.2 89.5+0.3
−0.4 85.0± 0.2

e 0(adopted) 0(adopted) 0(adopted) 0(adopted) 0.028± 0.003 0(adopted)

ω deg 0 0 0 0 −22.2+9.2
−8.1 0

λ deg −0.9+6.8
−6.9 13.0+9.0

−8.5 2.2+3.4
−3.1 10.5+6.4

−5.9 7.5+4.7
−6.1 24.2+76.0

−44.5

|γ̇| m s yr−1 0(adopted) 0(adopted) 0(adopted) 0(adopted) 0(adopted) 0(adopted)
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6.1 Integration into the ensemble of results

The analyses of Winn et al. (2010a) and Albrecht et al. (2012b) provide a good starting point

for integrating my new results into the existing ensemble of RM measurements. Fig. 6.1 repro-

duces fig. 2 from Winn et al. (2010a) (fig. 20 in Albrecht et al. 2012b), with the addition of all

RM measurements made since its publication; I list the full sample of planets that I have used

in Table 6.2. In order to provide a full picture of the current state of RM analysis, I elected to

include most of the systems that Winn et al. (2010a) disregard during their analysis as having

insufficiently precise measurements of λ3. Whilst it is true that making a definitive statement

regarding alignment is more difficult for these systems owing to their large uncertainties, the

criteria for granting misaligned status should take account of this. I am also interested in

comparing my new measurements to the general form of the current ensemble. Omitting the

systems listed above does not simplify this task. I do however exclude WASP-23 (Triaud et al.,

2011), for which the result is still highly uncertain, and although WASP-2 has a measured

value for λ, the most recent analysis of the system failed to detect a signal (Albrecht et al.,

2011) and thus I also continue to exclude this system.

WASP-31 has an effective temperature of 6300± 100 K, which falls with 1σ of the border

between the ‘hot’ and ‘cool’ categories of Winn et al. (2010a), albeit tending towards the ‘hot’

side. I cannot therefore draw any conclusions as to how it affects the trend proposed in that

paper. WASP-40, at Teff = 5190+160
−170, fits into the ‘cool’ category, but as previously noted it is

effectively a non-detection and therefore it too provides no pertinent information as far as the

trend with stellar effective temperature is concerned.

With an effective temperature of 5750 ± 100 K, WASP-25 falls into the ‘cool’ category

(Teff ≤ 6250 K) of Winn et al. (2010a), which they find to be preferentially aligned – their

sample gives a probability of misalignment for ‘cool’ stars of 0.17. Updating this result us-

ing my expanded sample changes the probability to 0.22 using the criterion of Winn et al.

(2010a), or to 0.13 using the criterion of |λ| > 30◦ from Triaud et al. (2010). It is worth

noting here that the apparently large differences in misalignment probability between the

two criteria are an artefact of the sample size, which is still relatively small at 66 planets

(32 ‘cool’, 15 ‘hot’, 13 ‘borderline’). Switching between the two criteria changes the number

of misaligned systems by three for the ‘cool’ sub-sample, and has no effect on the number

3HAT-P-2, CoRoT-1, CoRoT-3, HD149026, Kepler-8, TrES-1 and TrES-2. See references within Winn et al. (2010a).
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Table 6.2: Relevant data for all of the planetary systems for which the Rossiter-McLaughlin effect had been
characterised at the time of writing, excluding the systems that I have analysed and which are presented
in Table 6.1.

System Reference i/◦ v sin I/km s−1 Teff/K λ/◦

CoRoT-1 Pont et al. (2010); Torres et al. (2012) 85.1± 0.5 4.6± 0.9 6298± 66 −77.0± 11.0

CoRoT-2 Czesla et al. (2012); Torres et al. (2012) 87.84+0.16
−0.17 11.95+0.58

−0.55 5575± 66 −1+6.6
−7.7

CoRoT-3 Deleuil et al. (2008); Triaud et al. (2009) 86.10+0.73
−0.52 35.8+8.2

−8.3 6740± 140 −37.6+22.3
−10.0

CoRoT-11 Gandolfi et al. (2012) 83.41± 0.17 38.47± 0.07 6440± 120 0.1± 2.6

CoRoT-18 Hébrard et al. (2011b) 86.5+1.4
−0.9 8.0± 1.0 5440± 100 10± 20

CoRoT-19 Guenther et al. (2012) 88.0± 0.7 6± 1 6090± 70 −52+27
−22

Fomalhaut Le Bouquin et al. (2009); Currie et al. (2012); Mamajek (2012) 65.9± 0.4 93 8540± 50 1.0± 3.3

HAT-P-1 Johnson et al. (2008) 86.28± 0.20 3.75± 0.58 5975± 45 3.7± 2.1

HAT-P-2 Loeillet et al. (2008); Albrecht et al. (2012b) 90+0.85
−0.93 19.5± 1.4 6290± 60 9± 10

HAT-P-4 Winn et al. (2011b); Torres et al. (2012) 88.76+0.89
−1.38 5.83± 0.35 5890± 67 −4.9± 11.9

HAT-P-6 Hébrard et al. (2011a); Albrecht et al. (2012b) 85.5± 0.4 7.8± 0.6 6570± 80 165± 6

HAT-P-71 Pál et al. (2008); Albrecht et al. (2012b) 80.8+2.8
−1.2 2.7± 0.5 6350± 80 155± 37

HAT-P-8 Moutou et al. (2011); Torres et al. (2012) 87.5+1.9
−0.9 12.6± 1.0 6223± 67 −17+9.2

−11.5
HAT-P-9 Moutou et al. (2011); Torres et al. (2012) 86.5± 0.2 13.4± 1.4 6253± 84 −16± 8

HAT-P-112 Winn et al. (2010c); Sanchis-Ojeda & Winn (2011) 80+4
−3 1.00+0.95

−0.56 4780± 50 106+15
−12

HAT-P-113 Winn et al. (2010c); Sanchis-Ojeda & Winn (2011) 168+2
−5 1.00+0.95

−0.56 4780± 50 121+24
−21

HAT-P-13 b Winn et al. (2010b) 83.40± 0.68 1.66± 0.37 5640± 90 1.9± 8.6

HAT-P-14/WASP-271 Winn et al. (2011b) 83.52± 0.22 8.18± 0.49 6600± 90 −170.9± 5.1

HAT-P-16 Buchhave et al. (2010); Moutou et al. (2011) 86.6± 0.7 3.9± 0.8 6158± 80 −10± 16

HAT-P-23 Bakos et al. (2011); Moutou et al. (2011) 85.1± 1.5 7.8± 1.6 5905± 80 15± 22

HAT-P-24 Kipping et al. (2010); Albrecht et al. (2012b) 88.6± 0.7 11.2± 0.9 6373± 80 20± 16

HAT-P-30/WASP-51 Johnson et al. (2011) 83.6± 0.4 3.07± 0.24 6304± 88 73.5± 9.0

HAT-P-32 Hartman et al. (2011); Albrecht et al. (2012b) 88.9± 0.4 20.6± 1.5 6207± 88 85± 1.5

HAT-P-34 Bakos et al. (2012); Albrecht et al. (2012b) 87.1± 1.2 24.3± 1.2 6442± 88 0± 14

HD149026 Carter et al. (2009); Albrecht et al. (2012b) 84.5+0.60
−0.52 7.7± 0.8 6160± 50 12± 7

HD17156 Barbieri et al. (2009); Narita et al. (2009a) 87.21± 0.31 4.18± 0.31 6080± 80 10.0± 5.1

HD189733 Triaud et al. (2009) 85.508+0.10
−0.05 3.32± 0.02 5040± 50 −0.85+0.32

−0.28
HD209458 Winn et al. (2005); Albrecht et al. (2012b) 86.55± 0.03 4.4± 0.2 6070± 50 −5± 7

HD80606 Hébrard et al. (2010) 89.269± 0.018 1.7± 0.3 5570± 44 42± 8

Kepler-8 Jenkins et al. (2010); Albrecht et al. (2012b); Torres et al. (2012) 84.07± 0.33 8.9± 1.0 6251± 75 5± 7

Kepler-164 Doyle et al. (2011); Winn et al. (2011a) 90± 9 0.920± 0.025 4337± 80 −1.6± 2.4

Kepler-17 Désert et al. (2011) 87.2± 0.15 4.7± 1.0 5630± 100 < 15.0

Kepler-30 b Sanchis-Ojeda et al. (2012, 2013) 89.821± 0.167 1.94± 0.22 5498± 54 < 10

Kepler-30 c Sanchis-Ojeda et al. (2012, 2013) 89.6773± 0.0302 1.94± 0.22 5498± 54 < 10

Kepler-30 d Sanchis-Ojeda et al. (2012, 2013) 89.8406± 0.0202 1.94± 0.22 5498± 54 < 10

KOI-135 Barnes et al. (2011) 85.0± 0.4 65± 10 8511± 400 23± 4

KOI-136 Barnes et al. (2011) 85.0± 0.4 65± 10 8511± 400 156± 4

KOI-94 d Hirano et al. (2012) 87.85± 0.55 8.01+0.72
−0.73 6116± 30 −6+13

−11
TrES-1 Charbonneau et al. (2005); Narita et al. (2007) 88.4± 0.3 1.3± 0.3 5230± 50 30± 21

TrES-2 Winn et al. (2008) 83.62± 0.14 1.0± 0.6 5850± 50 −9± 12

TrES-4 Narita et al. (2010b); Chan et al. (2011) 82.82± 0.37 8.5± 1.2 6200± 75 6.3± 4.7

WASP-1 Collier Cameron et al. (2007); Albrecht et al. (2011) 90± 2 0.7+1.4
−0.5 6110± 45 −59+99

−26

WASP-3 Miller et al. (2010); Torres et al. (2012) 87.0+1.0
−1.1 13.9± 0.3 6375± 63 5+6

−3

WASP-4 Sanchis-Ojeda et al. (2011) 88.08+0.61
−0.43 2.14± 0.4 5500± 150 −1+14

−12

WASP-5 Triaud et al. (2010) 86.1± 1.1 3.24+0.35
−0.27 5700± 150 12.1+8.0

−10.0

WASP-6 Gillon et al. (2009) 88.47+0.65
−0.47 1.6± 0.3 5450± 100 −11+18

−14

WASP-7 Southworth et al. (2011); Albrecht et al. (2012a) 87.2+0.9
−1.2 14± 2 6400± 100 86± 6

WASP-8 Queloz et al. (2010) 88.55+0.17
−0.18 2.0± 0.6 5600± 80 −123.2+3.4

−4.4

WASP-12 Maciejewski et al. (2011a); Albrecht et al. (2012b); Torres et al. (2012) 82.5+0.8
−0.7 1.6+0.8

−0.4 6300± 150 59+15
−20

WASP-14 Johnson et al. (2009); Blecic et al. (2011); Torres et al. (2012) 84.32± 0.62 2.80± 0.57 6462± 75 −33.1± 7.4

WASP-15 Triaud et al. (2010) 85.96+0.29
−0.41 4.27+0.26

−0.36 6300± 100 −129.6+4.3
−5.2

WASP-17 Anderson et al. (2010); Triaud et al. (2010) 86.63+0.39
−0.45 9.92+0.40

−0.45 6509± 86 −148.5+7.7
−6.7

WASP-18 Triaud et al. (2010); Albrecht et al. (2012b) 80.6+1.1
−1.3 11.0± 0.5 6400± 100 13± 7

WASP-19 Hellier et al. (2011); Albrecht et al. (2012b) 79.4± 0.4 4.4± 0.9 5500± 100 15± 11

WASP-22 Anderson et al. (2011b) 88.26± 0.91 4.42± 0.34 5958+100
−95 22± 16

WASP-24 Smith et al. (2012b) 83.3± 0.3 5.86± 0.63 6038± 95 −5.8± 4.1

WASP-26 Anderson et al. (2011b); Albrecht et al. (2012b) 82.91± 0.46 2.2± 0.7 5939± 100 −34+36
−26

WASP-33 Collier Cameron et al. (2010b) 87.67± 1.81 86± 1 7430± 100 −107.7± 1.6

WASP-52 Hébrard et al. (2013) 85.35± 0.20 2.5± 1.0 5000± 100 24+17
−9

WASP-71 Smith et al. (2013) 84.2± 1.8 9.91± 0.49 6050± 100 19.8± 9.9

XO-3 Southworth (2010); Hirano et al. (2011a) 83.89± 0.40 18.4± 0.2 6430± 50 37.4± 2.2

XO-4 Narita et al. (2010a) 88.8± 0.6 8.8± 0.5 6397± 70 −46.7+8.1
−6.1

1 Listed λ is 360−λreference
2 Edge-on case from reference. 3 Pole-on case from reference. 4 Binary system, with planet in circumbinary orbit. Data

listed are for star A. 5 Prograde case adopted in reference. 6 Alternative, retrograde solution allowed for by geometrical analysis in reference.
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Chapter 6. My alignment results in context

Figure 6.1: Top: Projected stellar alignment, λ, as a function of stellar effective temperature, Teff, for all
systems with confirmed measurements of spin-orbit alignment angle, λ. Bottom: Projected stellar rotation
speed, v sin I , as function of Teff. In both panels WASP-16 is marked in blue, WASP-25 in red, WASP-31 in
green, WASP-32 in turquoise, WASP-38 in pink, and WASP-40 in yellow. The vertical dotted lines mark the
distinction between ‘cool’ and ‘hot’ systems. Open circles represent the alternative solutions for HAT-P-11
(pole-on solution) and KOI-13 (retrograde solution).

of misaligned systems in the ‘hot’ sub-sample. Under both criteria the apparent alignment

of WASP-25 b’s orbit is in accordance with the Winn et al. (2010a) hypothesis. WASP-16,

Teff = 5700±150, WASP-32, Teff = 6140+90
−100, and WASP-38, Teff = 6180+40

−60 are also classified

as ‘cool’ systems. All available information points towards these systems being aligned, and

they therefore fit well with the hypothesis of Winn et al. (2010a).

An interesting point about Fig. 6.1 is the apparent lack of systems with mildly retrograde,

close to polar orbits. There are currently only four systems with 80◦ ≤ λ ≤ 110◦, and only

two more with 110◦ ≤ λ ≤ 140◦. There are none with 90◦ ≤ λ ≤ 100◦. I would like to

speculate that truly polar orbits are perhaps unstable for some reason. Or perhaps it is simply

my inability to determine the inclination of the stellar rotation axis that is at fault. It may be

that some ‘aligned’ systems actually have close to polar orbits if this angle is accounted for

(I will return to this idea later on). It may also be that observations simply have not been

done yet for many systems in this region of the parameter space, and future publications may

provide the data to fill this underpopulated area.

A drop in the number of systems at mid-range obliquity angles is clearly predicted by the
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6.1. Integration into the ensemble of results

theoretical ψ angular distribution of Fabrycky & Tremaine (2007). It also clearly shows up in

the angular distribution for the complete set of known obliquity angles, fig. 10 in Triaud et al.

(2010). I reproduce this figure in Fig. 6.2, adding the probability distributions for the planets

in Table 6.2 as well as those of the planetary systems from this study. ψ, the true alignment

angle, is given by

cosψ= cos I cos i+ sin I sin i cosλ, (6.1)

where I is the inclination of the stellar rotation axis to the line-of-sight, and i is the inclination

of the orbital axis to the line-of-sight. To calculate the ψ distribution for each planet I carried

out 106 Monte Carlo simulations, drawing values for I from a uniform cos I distribution to

represent the random orientation of stellar rotation axes on the sky. I accounted for the error

bars on i and λ by drawing values from Gaussian distributions with my optimal solutions as

the mean values, scaled to the uncertainties in those values. The individual planets’ distri-

butions were then summed to produce the total distribution in Figure 6.2, which is similar

to that of Triaud et al. (2010) and compares favourably to the theoretical histogram from

Fabrycky & Tremaine (2007). The drop in probability at mid-range angles is in line with the

underpopulated region of Fig. 6.1, and my additions bring the primary, low-angle peak closer

in shape to the theoretical distribution. The overall shape of the secondary peak is less clear;

it is still dominated by contributions from individual systems owing to the smaller number

of planets with strongly misaligned orbits as compared to the number of aligned or weakly

misaligned systems, but appears as though it may be broader and more shallow than the

theoretical prediction.

Fig. 6.2 requires the assumption that I , the stellar inclination, is isotropic and that the

angular distribution is unimodal. However the discussion of Winn et al. (2010a) implies

that the distribution is in fact bimodal. A clearer demonstration of the agreement between

theoretical predictions and current observations is therefore to look at the distribution of

λ. This requires the transformation of the predicted ψ distribution of Fabrycky & Tremaine

(2007) into λ. To do this, I again assumed an isotropic distribution for I , assumed transiting

systems such that i = 90◦, and used

tanλ= tanψ sinα (6.2)

where α is an azimuthal angle defined such that the zero-point is when the star’s ‘northern’
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Chapter 6. My alignment results in context

Figure 6.2: The total distribution of the true obliquity angle, ψ, for the complete sample of systems for
which λ has been measured. The dotted histogram represents the theoretical distribution of Fabrycky &
Tremaine (2007). The overall forms are roughly comparable, although the shape of the totalψ distribution
has changed substantially compared to fig. 10 of Triaud et al. (2010). The form of the primary peak
agrees well with theoretical predictions, but the secondary, high angle peak predicted by the theoretical
distribution is less clearly defined and appears to be shallower and broader than anticipated. The drop in
probability density at mid-range angles, around ψ≈ 90◦, is still visible.

pole is directed at the observer. For each entry in the ψ distribution I selected a random value

of ψ from the range of the bin in which that datum was located, and sampled a uniform

distribution of sinα, to calculate the appropriate value of λ.

I reproduce the lower panel of fig. 9 from Triaud et al. (2010), taking into account all of the

measurements of λ from Table 6.2. For HAT-P-7 and HAT-P-14, both of which have published

with λ > 180.0◦, I used λ′ = 360−λ. This cumulative λ distribution, Figure 6.3, avoids both

of the assumptions inherent in Fig. 6.2. Agreement between the observational data and the

theoretical predictions of Fabrycky & Tremaine (2007) has been improved compared to that

exhibited in Triaud et al., particularly for mid- to high-range angles, but the observational data

still show more low-obliquity systems than expected compared to the theoretical histogram.

Returning to the question of the scarcity, or otherwise, of polar orbits, I have investigated

the likelihood of alignment along the line of sight for the systems in my sample. Following

Schlaufman (2010), I conducted a comparison of the measured and predicted stellar v sin I ,
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6.1. Integration into the ensemble of results

Figure 6.3: Cumulative probability histogram for λ. The solid line denotes observational data, whilst the
dotted line denotes the theoretical distribution of Fabrycky & Tremaine (2007), converted from ψ to λ.
The agreement between the two distributions has improved with the addition of measurements made since
the publication of Triaud et al. (2010), and the observational data now matches the theoretical prediction
very well at high alignment angles. However there still seems to be an overabundance of systems with low
obliquities.

calculating the rotation statistic

Θ=
v sin Isim− v sin Iobs
p

σ2
obs+σ

2
sim

(6.3)

for all of the systems in Table 6.2. v sin Isim is the mean simulated value of the projected

stellar rotation (taken from a sample of 1000 simulated values), σsim is the width of the

simulated distribution, v sin Iobs is the observed stellar rotation, and σobs is the observed error.

I attempted to be consistent in my choice of age estimate for the systems, using the values

that I obtained from the Y 2 stellar models in Chapter 2 where possible. However for some of

the systems I was forced to use estimates obtained using the Padova or Teramo stellar models

instead.

Stars for which Θ is small show a good fit between the observed and simulated rotation

speeds, indicating that they are oriented close to edge-on to our line-of-sight; more correctly

it suggests that i ≈ I , but since transiting planets must have i ≈ 90◦ it suggests that the

stellar equator is close to our line-of-sight. Large positive (negative) values of Θ indicate that

stars are rotating slower (faster) than expected given their age; if slower, then this can be

interpreted as evidence that the stars are oriented somewhat pole-on. Plotting my Θ values
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Chapter 6. My alignment results in context

Figure 6.4: Θ as a function of λ for the sample of planets with known alignment angles, as listed in
Table 6.2 with the addition of the systems presented in herein. Legend as for Fig. 6.1. Left: All data.
Right: A close-up of the main distribution, ignoring the systems with very large, negative values of Θ.
Systems with apparently polar orbits according to their alignment angles show good agreement between
orbital and stellar inclinations, suggesting that their planets’ orbits are indeed of a polar nature

as a function of |λ| (see Fig. 6.4) reveals that there are several systems that appear to have a

mismatch between i and I , and that these systems are spread fairly evenly across the range

of λ values. Note though that the planets with apparently polar orbits (80◦ ≤ λ ≤ 110◦) that

were noted earlier seem to show good agreement between the two inclinations, seemingly

confirming that their orbits are indeed polar in nature. Small number statistics could, of

course, be playing a role here owing to the low number of systems in this alignment angle

range, as noted previously. Interestingly, all six of the systems for which I presented new

results in this Chapter show good agreement between i and I .

It is also interesting to note that there are many systems with large, negative values of Θ.

These systems are rotating much more rapidly than predicted by their age using gyrochronol-

ogy, suggesting that they have been spun up in some way. This could be interpreted as further

evidence for the tidal spin-up effect discussed in Chapter 4. Plotting Θ as a function of orbital

separation (Figure 6.5) reveals that these systems tend to be those with the closest planets.
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6.1. Integration into the ensemble of results

Figure 6.5: Θ as a function of orbital separation, a, for the sample of planets with known alignment
angles. The ranges of both Θ and a have been restricted for clarity, and focus on the main part of the
distribution. Legend as for Fig. 6.1. Systems which appear to be rotating more quickly than expected,
given their age, tend to be found at smaller orbital separations.
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Chapter 6. My alignment results in context

6.1.1 Trends with mass

My new results have little effect on the known trend with planetary mass, as five of the six

systems have Mp < 3 MJup. They therefore cannot provide counter-examples, as planets in this

category are already thought to exhibit randomly distributed values of λ. The sixth system,

WASP-32, has Mp = 3.46+0.14
−0.12 MJup and falls into the ‘high mass planet’ category. The system

appears to be well-aligned, and fits well with previous measurements in the category which

show low to moderate alignment angles, but are all at |λ|< 50◦.

Considering the relationship between |λ| and Ms throws up a couple of interesting dis-

cussion points. The first is that of the 60 systems for which the alignment angle has been

measured, only three have Ms ≥ 1.5M� (only five have Ms ≥ 1.4M�). This bias is not partic-

ularly surprising given that the peak in the stellar mass distribution for all known planetary

systems lies around 1M�, and that the number of systems drops off as stellar mass increases,

but it is still a notable bias in the sample. The second point is that all three of the high-

mass systems are well-aligned (|λ| < 30◦; considering the prograde case for KOI-13). This

suggests that planets around high-mass stars may be preferentially aligned, although more

measurements will be needed of such systems, including confirmation of the prograde nature

of KOI-13, before this can be confirmed4.

As previously noted, it is perhaps more useful to consider the mass ratio rather than either

of the individual component’s masses, as it is this quantity which appears in tidal equations

and other contexts. Figure 6.7 displays |λ| as a function of mass ratio; unsurprisingly it shows

a similar form to the upper panel of Figure 6.6, with very low mass ratio systems exhibiting

an apparently random distribution of angles, whilst those systems with Mrat ¦ 0.0025 show

λ < 50◦. The distinction between the two regions is perhaps a little more pronounced than

when considering only the relationship with Mp, particularly if the alternative, retrograde

case for KOI-13 is disregarded. If the hypothesis that alignment angle is tidally governed is

correct then this distribution is to be expected, as a higher mass ratio indicates a stronger tidal

interaction, and therefore more rapid circularisation and tidal realignment.

4I successfully applied for time using HARPS to observe a transit of KOI-13, in an effort to carry out Doppler
tomography on the system. Unfortunately, no spectroscopic signature was observed.
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6.1. Integration into the ensemble of results

Figure 6.6: λ as a function of planetary (top) and stellar (bottom) mass for the set of planets with
known alignment angle, as listed in Table 6.2. Legend as for Fig. 6.1. The vertical dotted line in the left
panel denotes Mp = 3MJup, the planetary mass at which distribution of alignment angles appears to change
form.
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Chapter 6. My alignment results in context

Figure 6.7: Alignment angle, λ, as a function of mass ratio for all systems with known alignment angles. It
is immediately apparent that systems with very low mass ratios exhibit a random distribution of alignment
angles, whilst those with Mrat ¦ 0.0025 seem to preferentially exhibit λ < 50◦. Symbols as for Fig. 6.1.

6.1.2 Stellar ages

Of the six systems studied in the preceding Chapter, five have host stars which are insuffi-

ciently massive to fulfil the selection criterion imposed by Triaud (2011) for his study of the

trend of λ with stellar age. WASP-38 lies close to the cut-off mass; in some of my simulations

it falls below the limit, but in my adopted solution it fulfils Triaud’s criterion for inclusion. In

Figure 6.8 I plot |λ| as a function of stellar age, as calculated using the Yonsei-Yale isochrones,

to see what effect this system has on the trend identified by Triaud.

In Chapter 2 I computed the ages for all six of the systems using a triangulation based

stellar model fitting routine and several different sets of stellar models, in an attempt to better

characterise the inherent uncertainties. For this work I took the effective temperature from

the same spectroscopic analyses of HARPS spectra that provided the updated v sin I values

in Table 5.1, and took the stellar density value as found by my preferred model under the

tomographic method for WASP-32 and -38, and the RM model for the remaining systems. The

ages that I obtained for the six systems are recapped in Table. 6.3.

Triaud (2011) pointed out that isochronal analysis is less precise for stars with Ms <

1.2 M� owing to the increased length of their main-sequence lifetime, and their less pro-
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6.1. Integration into the ensemble of results

Table 6.3: Age estimates for the six systems for which I have measured the spin-orbit alignment angle,
λ, as calculated in Chapter 2 through stellar model fitting. They are summarised here for reference and
convenience.

Stellar model fitting age
Padova / Gyr YY / Gyr Teramo / Gyr VRSS / Gyr DSEP / Gyr

WASP-16 4.50+4.12
−4.25 3.37+3.36

−2.17 5.73+4.61
−4.01 5.22+4.58

−3.53 5.86+3.11
−3.10

WASP-25 < 3.10 1.94+1.75
−1.79 6.09+2.77

−3.22 1.18+4.34
−0.51 3.25+1.79

−1.53

WASP-31 3.23± 1.40 2.05± 1.17 3.60+2.26
−1.78 1.87+1.34

−1.02 4.19+0.99
−2.76

WASP-32 2.36+1.72
−0.85 2.22+0.62

−0.73 4.50+1.88
−1.69 1.41+1.36

−1.10 3.98+0.68
−1.19

WASP-38 3.41+0.48
−0.43 3.29+0.42

−0.53 3.59+0.77
−0.70 3.20+0.73

−0.59 4.81+0.52
−0.63

WASP-40 > 1.20 6.36+5.86
−3.11 > 4.96 > 5.73 9.19+4.94

−3.88

nounced radius increase (and therefore density decrease), when compared to more massive

stars. I found a mass of 1.07± 0.05 M� for WASP-32 using my tomographic analysis method,

in agreement with the value from Maxted et al. (2010); the wide age range that I found

is therefore expected given the preceding comments. The WASP-38 system on the other

hand shows much better agreement between its different age estimates. With a mass of

1.23± 0.04 M� from tomographic analysis, the system lies closer to the arbitrary cut-off of

Triaud (2011), so one might expect that the age would be better constrained. Nevertheless,

all five age estimates for WASP-38 agree with the postulated trend for alignment angle to

decrease with time. WASP-16 (Ms = 1.02+0.04
−0.03 M�), WASP-25 (Ms = 1.02 ± 0.02 M�), and

WASP-31 (Ms = 1.16±0.04 M�) all fall below the cut-off mass selected by Triaud, but also fit

with this hypothesis.

WASP-40 is poorly constrained, and I was unable to place upper limits on the age using

the available isochrones for three out of the five model sets that I tried. It is hard to conclude

anything from this, but the different models do agree that the system is older than any of the

other systems. Anderson et al. (2011a) found an age for the system of 6± 5 Gyr using the

Padova stellar models formulation of Marigo et al. (2008) and Bertelli et al. (2008), which

is consistent with my values. They found a lower age (1.2+1.3
−0.8 Gyr) using gyrochronology,

in their case based on an estimate of the rotation period derived from v sin I , but this does

not match my own gyrochronology estimates (see Table A.2) which are nonsensical, as all

imply that the system is older than the accepted age of the Universe). From this information

I tentatively predict, following the trend noticed by Triaud (2011), that the system will prove

to be aligned if the uncertainty on λ is able to be reduced.
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Chapter 6. My alignment results in context

Figure 6.8: Alignment angle λ, for systems with Ms < 1.2 M�, as a function of stellar age found using
stellar model fitting and the Yonsei-Yale isochrones. Of the systems that I have studied, only WASP-38 fulfils
the selection criteria; however it provides no useful information regarding the previously identified trend.
Symbols as for Fig. 6.1.

6.1.3 Tidal timescales

In Chapter 2 I discussed the effect of tidal interactions on the stellar age estimates produced

by gyrochronology. To do this I calculated tidal timescales using equations from Albrecht et al.

(2012b), which I will again reproduce here:

1

τCE
=

1

10 · 109yr
q2
�

a/Rs

40

�−6

(6.4)

and
1

τRA
=

1

0.25 · 5 · 109yr
q2 �1+ q

�5/6
�

a/Rs

6

�−17/2

. (6.5)

The two equations account for the fact that the effective temperature range being considered

encompasses planets with substantially different convective envelope masses. As I have al-

ready commented, the critical temperature dividing ‘hot’ planets from ‘cool’ planets roughly

aligns with the point at which the convective envelope disappears completely; an equation

applicable to purely radiative planets is therefore required.

The stellar effective temperatures of five of my six systems are, as mentioned previously,
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below that critical temperature. These systems therefore fall under the convective envelope

version of the tidal timescale equation. Using parameters from Table 6.1, I calculate the tidal

timescales for all six systems using 6.4. I find τCE = 2.2 × 103 Gyr for WASP-16, τCE =

1.4×104 Gyr for WASP-25, τCE = 5.5×101 Gyr for WASP-32, τCE = 1.8×103 Gyr for WASP-38,

and τCE = 5.4×103 Gyr for WASP-40. For WASP-31, which has an effective temperature such

that it sits on the borderline between the ‘hot’ and ‘cool’ sub-populations, I calculated tidal

timescales using both formulations. I obtained τCE = 5.5×103 Gyr, and τRA = 7.3×10−18 yr,

implying that the convective envelope timescale should be considered, and that it is consistent

with the rest of my sample.

These values fit into the scheme that Albrecht et al. (2012b) developed, whereby systems

in which the tidal timescale is short preferentially show low values of λ, whereas those with

longer timescales appear to present an almost random distribution of λ. The timescales for

the six systems that I have studied are relatively short compared to the extremes of the distri-

bution found by Albrecht et al., particularly where WASP-32 is concerned, and the projected

alignment angles that I have measured are all small.

6.2 A new misalignment test

There seems to be little consensus as to the best way of classifying systems as aligned or

misaligned. For most of the systems with measurements of λ this is not a serious problem;

either |λ| > 90◦, or the error bars are such that the obliquity is consistent with zero. But as

the number of RM measurements continues to grow, there will be an increasing number of

systems in a similar situation to WASP-25, which exhibits a mildly asymmetrical RM anomaly

but does not fulfil any of the current misalignment criteria.

There are two main criteria currently in use by the community. Winn et al. (2010a) use

|λ| > 10◦ at ≥ 3σ significance to define a misaligned system. Triaud et al. (2010) take

|λ| > 30◦ as their threshold, on the basis that errors in the obliquity angle are of the order

of 10◦, and therefore this gives 3σ significance as well. I have developed a new test for

misalignment that takes a completely different approach.

To develop this new test I considered a sample of WASP planets for which the RM effect

has been characterised using RV data. I use the most recent published parameters for each

system, regardless of the analysis method that was used; for WASP-3, for example, I use the
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Table 6.4: Relevant data for my new misalignment criterion, for a sample of 17 WASP planets with
existing Rossiter-McLaughlin measurements. λ and v sin I values are those obtained from my new MCMC
analyses. BIC values were calculated from the spectroscopic χ2 values, using the number of in-transit
RV measurements only. My new misalignment criterion defines systems with a BIC ratio B ≥ 1.01 as
misaligned, those with B ≤ 0.99 as aligned, and those with 0.99< B < 1.01 as of indeterminate status.

System reference λ/◦ v sin I/km s−1 BIC BICalign ∆BIC B

WASP-1 Albrecht et al. (2011) −68.2+94.5
−17.9 3.2+8.6

−2.1 197.31± 20.40 197.35± 20.27 0.04 1.000

WASP-3 Tripathi et al. (2010) 5.7+18.3
−19.1 11.3+0.5

−0.4 271.12± 23.90 272.45± 23.80 1.33 1.005

WASP-4 Triaud et al. (2010) −19.0+47.3
−40.9 2.21.2

−0.3 89.81± 14.72 87.20± 14.30 −2.61 0.971

WASP-5 Triaud et al. (2010) 25.8+8.2
−7.2 3.4± 0.3 184.73± 19.78 195.99± 20.20 11.26 1.061

WASP-6 Gillon et al. (2009) −9.9+15.7
−14.7 1.5± 0.2 126.28± 17.08 123.48± 16.71 −2.80 0.978

WASP-7 Albrecht et al. (2012b) 108.7+4.8
−6.1 36.8+4.2

−3.6 148.19± 17.96 307.61± 25.24 159.42 2.076

WASP-8 Queloz et al. (2010) −98.0+3.4
−5.3 4.5+2.3

−1.3 368.86± 28.21 1067.12± 46.72 698.26 2.893

WASP-12 Albrecht et al. (2012b) 59.1+4.3
−4.5 1.3± 0.1 2056.3± 64.4 2150.3± 65.7 94.0 1.046

WASP-14 Joshi et al. (2009) −28.5+5.5
−5.4 2.7± 0.3 159.73± 19.13 179.77± 19.92 20.04 1.125

WASP-15 Triaud et al. (2010) −137.7+6.6
−5.7 4.06± 0.3 146.07± 17.95 333.63± 26.23 187.56 2.284

WASP-17 Triaud et al. (2010) −146.5+5.3
−4.7 9.3± 0.5 226.51± 22.36 609.24± 35.43 382.73 2.690

WASP-18 Triaud et al. (2010) 11.0+5.3
−5.2 12.4± 0.4 114.99± 16.36 113.14± 16.01 −1.84 0.984

WASP-19 Hellier et al. (2011) 1.7+6.1
−5.9 3.1± 0.3 75.40± 13.06 72.41± 12.62 −2.99 0.960

WASP-22 Anderson et al. (2011b) −1.3+15.5
−15.0 4.0± 0.5 62.16± 12.35 59.58± 11.83 −2.58 0.958

WASP-24 Simpson et al. (2011c) −7.6+5.2
−5.9 5.0+0.5

−0.4 105.09± 15.48 102.01± 15.03 −3.08 0.971

WASP-26 Albrecht et al. (2012b) −10.5+4.1
−4.7 2.8± 0.3 224.95± 21.92 229.97± 22.06 5.02 1.022

HAT-P-14/WASP-27 Winn et al. (2011b) −166.3+6.8−3.1 5.8+0.4
−0.7 396.49± 28.84 555.12± 33.79 158.63 1.400

HAT-P-30/WASP-51 Johnson et al. (2011) 70.9+6.3
−5.3 3.2+0.2

−0.1 320.09± 25.84 1478.31± 54.55 1008.89 4.650

WASP-52 Hébrard et al. (2013) −28.6+16.5
−45.1 1.5+1.2

−0.7 139.57± 17.15 141.75± 17.17 2.18 1.016

WASP-16 Brown et al. (2012a) 0.9+6.9
−6.8 1.5+0.3

−0.3 128.0± 16.9 126.2± 16.5 −1.80 0.986

WASP-25 Brown et al. (2012a) 13.0+9.0
−8.5 2.8± 0.3 96.25± 14.86 101.9± 15.7 5.65 1.059

WASP-31 Brown et al. (2012a) 2.2+3.4
−3.1 7.4± 0.7 72.8± 12.9 70.9± 12.5 −1.90 0.974

WASP-32 Brown et al. (2012b) 10.5+6.4
−5.9 3.9+0.4

−0.5 62.6± 11.2 57.3± 10.7 −5.30 0.915

WASP-38 Brown et al. (2012b) 7.5+4.7
−6.1 7.5+0.1

−0.2 140.3± 16.8 133.1± 16.3 −7.20 0.949

WASP-40/HAT-P-27 Brown et al. (2012b) 24.2+76.0
−44.5 0.6+0.7

−0.4 79.6± 12.6 77.1± 12.4 −2.50 0.969

study by Miller et al. (2010) even though it is tomographic in nature, rather than the older

RM analysis of Tripathi et al. (2010). The rationale behind this is that I am simply using these

parameters as the starting point for a re-analysis using my own routines, and thus the method

by which they were obtained is irrelevant. The full sample that I used is listed in Table 6.4.

My test is based on the Bayesian Information Criterion (BIC) (Liddle, 2007),

BIC= χ2
RV+ k ln(n), (6.6)

where k is the number of parameters and n is the number of data. Changing the value of

λ only affects the form of the model RV curve in-transit; I therefore just consider those RV

points that lie within a region of the RV curve around phase 0 defined by the fractional transit
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6.2. A new misalignment test

width (the transit window) when computing the second term of the BIC. The number of

parameters changes according to the choice of priors applied to the MCMC run; adding a

long-term RV trend, fitting the RM effect, and allowing the eccentricity to float all add one or

more additional parameters to the model.

I carry out two MCMC analyses for each of the systems in my sample, using all available

radial velocity data. Both runs use the same combination of priors, selected based on the

analysis in the paper from which I drew the pre-existing parameters. The first analysis allows

both
p

v sin I cosλ and
p

v sin I sinλ to float, whilst the second forces an aligned orbit by fixing
p

v sin I sinλ= 0. I calculate the BIC for both runs, before calculating

B = BICalign/BIC. (6.7)

For the six systems presented herein I use my adopted solutions, and carry out an additional

run to provide the aligned case. In the case of WASP-32 and WASP-38 I used the RM run with

my adopted set of priors as the test case, rather than the tomographic solution.

I find several distinct groups of systems within my results, which lead me to define three

categories of alignment into which systems with RM measurements can be classified. Ten

systems, including WASP-16, -31, -32, -38, and -40, were found to have B ≤ 0.990, implying

that the model with λ= 0 provides a better fit that the free-floating λmodel. Of these systems,

all would be classified as aligned according to either of the existing misalignment criteria. A

further four systems are clustered between B = 1.00 and B = 1.03, forming a distinct group in

Figure 6.9. Forcing an aligned orbit would seem to make little difference to the quality of the

fit between data and model in these cases. Of these systems three would be classed as aligned

according to Winn et al. (2010a) and Triaud et al. (2010), but the fourth (WASP-1) would

actually be classed as misaligned according to Triaud et al. (2010). Three of the four have

at least one 1σ error bar that has a magnitude greater than that of their assigned alignment

angle. The remaining systems in Figure 6.9 clearly lie distinct from those discussed so far;

many are clearly classifiable as misaligned, with |λ|> 100◦ and B > 2.

In light of these results, I define three categories of alignment. Systems for which B ≤ 0.99

I classify as aligned. Those with B ≥ 1.03 I classify as misaligned. Systems falling between

these categories, with 0.99 < B < 1.03 I classify as of indeterminate alignment. Albrecht

et al. (2012b) note that the BIC test is affected by the relative numbers of RV measurements
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Chapter 6. My alignment results in context

Figure 6.9: B as a function of λ for the sample of planets in Table 6.4, as well as the systems presented in
this study. This shows the separation of the systems into several groupings, which lead me to define four
categories of alignment; this changes the existing classification of some systems. Colours as for Fig. 6.1.
Solid triangles denote systems which fall into the ‘no detection’ category. The horizontal dotted lines mark
B = 1.03 and B = 0.99, the divisions between my categories. The vertical dotted line denotes |λ| = 0◦.
Left: All data. Right: A close-up of the heavily populated region in the lower left of the plot, around
B = 1.00 and |λ|= 0◦.
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in transit compared to out of transit, and that it assumes that no correlated noise is present.

I acknowledge that these are indeed shortcomings of my test, and that they might affect the

boundaries between the three categories, but I would point out that the test is still quanti-

tative, as opposed to the qualitative nature of the previous tests in Triaud et al. (2010) and

Winn et al. (2010a).

I would also define a fourth category, that of ‘no detection’, as containing those systems

with v sin I consistent with 0 to within 2σ. My analysis routines are set-up in such a way

that v sin I = 0 within 1σ is a highly unlikely scenario; indeed, a lower error bar on v sin I

of greater magnitude than the value itself is nonsensical, as negative rotation is a physical

impossibility when considering only the magnitude of the rotation. WASP-40 falls into this

category, as I feel is appropriate given the poor signal-to-noise of the data that I obtained, and

the indistinct Rossiter-McLaughlin effect that I find. So too does WASP-1, which is consistent

with the analysis of Albrecht et al. (2011). The results for TrES-2 (Winn et al., 2008) and

HAT-P-11 (Winn et al., 2010c), listed in Table 6.2, would also fall under ‘no detection’.

Some of the systems in Table 6.4 warrant a little more examination. My new MCMC runs

for WASP-4 produced very large error bars on λ, but the system still ends up in the aligned

category thanks to the high quality of the data that is available for the system. Triaud et al.

(2010) noted a substantial correlation between λ and v sin I for WASP-4, arising due to the

low impact parameter, which may be producing the large lower error. WASP-25 is classified

as ‘misaligned’ under my new criteria, as was suspected given the asymmetry in the shape

of its Rossiter-McLaughlin anomaly. Not only does it fall in this category, but the detection

would seem to be quite firm according to Figure 6.9. This is at odds with its classification as

quite firmly ‘aligned’ under both existing criteria. A similar situation is observed for WASP-5,

although it exhibits a greater |λ| value which, with similar 1σ errors, more plausibly suggests

a misaligned system. WASP-14 is classed as aligned under Triaud et al. (2010) and misaligned

under Winn et al. (2010a); my test supports the latter classification.

Of the undetermined systems, WASP-26 stands out as inconsistent with the rest of its

classification group. The error bars on my new value of λ for WASP-26 are less than half the

magnitude of the value itself; the other three systems all have one error bar with a magnitude

greater than the angle that I found. However, the in-transit spectroscopic measurements for

the system that were obtained by Anderson et al. (2011b) and Albrecht et al. (2012b) show
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significant scatter, and the Rossiter-McLaughlin anomaly is quite poorly defined. Anderson

et al. in fact presented their data as a non-detection, and Albrecht et al. found λ = −34◦+36
−26 .

A status of ‘undetermined’ thus seems a better fit for the WASP-26 system than might originally

be thought.

6.3 Conclusion

In this Chapter I placed my spin-orbit alignment results in the context provided by the com-

plete set of measurements that existed in the literature at the time of writing. I also investi-

gated whether they provided any new information regarding previously known trends in the

data. Finally, I created and discussed a new method for categorising the alignment, or other-

wise, of an exoplanet’s orbit. My new method was developed using a sample of WASP planets

with known alignment angles, and applied to my own results.

When considering the trends in the alignment angle in this manner, my new results pro-

vide little assistance in assessing the importance of tidal interactions for the evolution of

spin-orbit alignment. Based on previous studies it would seem that tidal forces might have

a role to play. But if this is to be confirmed then it is important that work investigating how

such forces affect planetary systems (such as my own as presented in this thesis) is carried

out.
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7
Conclusions and outlook

Whilst my doctoral work seems, at first glance, to cover disparate topics from across the

spectrum of exoplanetary research, there is in fact an overarching theme to this thesis: tidal

interactions between hot Jupiters and their host stars. As I have shown, these can have a

large influence on both the physical and dynamical properties of planetary systems, and their

influence can be felt in many different areas.

In my work I have investigated and characterised several different phenomena which re-

sult from tidal interactions. By investigating the ages of exoplanet host stars and comparing

the results obtained by different methods, I showed in Chapter 2 that the presence of strong

tidal forces might be influencing the ages that we estimate through gyrochronology by mod-

ifying their rotation. By modelling the past and future evolution of close-in hot Jupiters, I

showed in Chapter 4 that this effect can be substantial, and that when the planet spirals-in to

its Roche limit the rotation of the star can be spun-up to levels similar to that experienced at

the age of young open clusters. Finally, by characterising the projected spin-orbit alignment
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angle of several hot Jupiters in Chapter 5, and by examining their place in the full ensemble of

known measurements in Chapter 6, I provided further evidence that tidal interactions might

be playing a role in the re-alignment of hot Jupiter orbits.

7.1 Moving towards the future

The work that I have presented in this thesis is only a small part of what is possible. There are

many directions in which this work could be extended, some of which I have already made

a start on. Aspects of the suggestions I am about to make will form part of the work that I

intend to carry out in the near future.

7.1.1 Extending my ages analysis

As I mentioned in my conclusions to Chapter 2, the sample sizes that I used for parts of

my analysis were limited. Definitively identifying the influence of tidal interactions on the

discrepancy between stellar model fitting and gyrochronology ages will require an enlarged

sample. This would enable me to say something about the global effect of tides on the rotation

rates of host stars. Whilst the system-specific modelling that I presented in Chapter 4 shows

that the effect can be pronounced, the picture regarding the wider ensemble of planetary

systems is less clear, as my results in Chapter 2 show. Merely expanding the sample should

not be the sole focus though, as some of the uncertainty in my conclusions arise from the large

errors that are involved. More precise measurements of Teff and ρs for stars that fall inside my

parameter space would allow more precise age assessment, which would in turn allow firmer

conclusions to be drawn.

Upcoming space missions such as Gaia (Eyer et al., 2013) and CHEOPS (Characterising

ExOPlanet Satellite; Broeg et al. 2013) have enormous potential in this regard. CHEOPS aims

to measure transit lightcurves at very high signal-to-noise, allowing accurate stellar densities

to be computed directly from the transit profiles. GaiaÕs objectives are more directly rele-

vant, and include measurements of stellar effective temperatures, stellar radial and rotational

velocities, and stellar surface gravities.

A comparison sample would provide useful information as well. Analysing the ages of a

sample of isolated stars in the same manner would help to determine whether the discrepancy

between stellar model fitting and gyrochronology is indeed the result of tidal interactions.
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Another obvious extension to the work presented in Chapter 2 would be to investigate

additional age determination methods, such as asteroseismology. Data from both the Kepler

and CoRoT missions have under-utilised potential with regards to this technique, which is

unrelated to either isochrone fitting or gyrochronology and would therefore provide an inde-

pendent source of comparison.

7.1.2 How much influence do tides really have on spin-orbit alignment?

In Chapter 6 I showed that my analyses of the spin orbit alignment in five new systems, and

my reanalysis of one system using new data and techniques, were consistent with the idea

that tidal interactions are responsible for the realignment of systems that are misaligned by

primordial, dynamical interactions. But is this really the case? Although the evidence suggests

that tidal realignment occurs, there are strong arguments against the phenomenon.

Increasing the number of stars with measured spin-orbit alignment would help to answer

this question. Further measurements of λ would help to characterise the shape of the bound-

ary between ‘hot’ and ‘cool’ planets’, allowing a stronger conclusion to be drawn regarding the

presence of the convective zone and misalignment. With more measurements of λ I would

also be able to increase the sample size for my age estimate comparison. Comparing the tidal

strength, the nuclear burning timescale, and the estimated ages for such systems could poten-

tially be revealing if stronger tides are found to truly affect the difference in age estimates for

aligned systems.

7.1.3 Varied outcomes for tidal interaction modelling?

In Chapter 4 I modelled the tide-driven evolution of two hot Jupiter systems. Much as with

my work on ages in Chapter 2, an obvious route for expansion of this work is to increase

the sample size. The addition of further planets, with a range of known parameters, would

allow me to develop a model of the broader picture. At what point in the initial parameter

space do tidal interactions become sufficiently strong to cause the spin-up that I have found

in the WASP-18 and WASP-19 systems? What about alternative outcomes, such as the out-

spiral of a planetary orbit, which occurs when the stellar rotation period is shorter than the

planet’s orbital period? Or the onset of synchronicity, which appears to be an extremely rare

occurrence? What are the details of the interaction with retrograde orbits? Where does the

agreement between the gyrochronology age and the evolutionary age break down in Q′ space?
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Again, increasing the sample isn’t the whole solution though. There are a number of

improvements that can be made to the model that I have used. Accounting for the variety of

possible stellar structures would improve my model, as would accounting for the evolution of

additional stellar parameters, and it would be interesting to see how different sets of stellar

evolution models affected the results.

7.2 Closing thoughts

There have been many studies investigating different aspects of the tides that act on exoplan-

ets and their stars, of which the works that I have presented in this thesis are a small fraction.

Whilst our understanding of the basic principles is sound, the detail and nuance of the effect

of tides on the evolution of planetary systems is still under investigation. Each new result

seems to uncover some hitherto unknown aspect of their influence, some unforeseen piece of

the puzzle. But it is vital that we fully comprehend tidal interactions if we are to understand

the birth, life, and death of planetary systems.
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Age results

This Appendix presents the results of the age calculations outlined in Chapter 2. I used both

stellar model fitting and gyrochronology to estimate the age for a sample of 137 exoplanet

and brown dwarf host stars. The stellar models used are the Padova (Girardi et al., 2010;

Marigo et al., 2008), Yonsei-Yale (YY) (Demarque et al., 2004), Dartmouth Stellar Evolution

(DSEP) (Dotter et al., 2008), Teramo (Pietrinferni et al., 2004), and Victoria-Regina (VRSS)

(VandenBerg et al., 2006) sets. The gyrochronology formulations are those characterised by

equations (2.10) (Barnes, 2007; Meibom et al., 2009; James et al., 2010), (2.11) (Collier

Cameron et al., 2009), and (2.12) (Delorme et al., 2011b).
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Table A.1: Age estimates for the host stars of 137 exoplanets and brown dwarfs, derived from stellar
model fitting. Five different sets of stellar models are used to provide some insight into the systematic
uncertainties involved in this method. † indicates those systems for which my model fits were used in
associated publications (Note that many of these have been updated from the original results presented in
those publications).

System Paper containing data Padova Y2 Teramo VRSS DSEP

used for analysis Age /Gyr Age /Gyr Age /Gyr Age /Gyr Age /Gyr

WASP-1† Wheatley et al. (2010) 2.7+0.27
−0.21 2.71+0.21

−0.17 3.13+0.78
−0.38 2.82+0.36

−0.18 3.22+0.25
−0.22

WASP-2† Wheatley et al. (2010) 10.83+1.76
−1.76 9.73+2.61

−2.45 > 8.88 > 11.58 10.53+2.65
−1.98

WASP-3 Miller et al. (2010) 1.33+0.86
−0.63 1.41+0.59

−0.64 0.90+0.76
−0.67 < 1.46 2.66+0.93

−0.85

WASP-4† Triaud et al. (2010) 6.73+2.93
−4.30 5.13+1.98

−1.76 8.23+2.76
−3.35 7.53+4.26

−2.76 7.43+2.00
−2.27

WASP-5† Triaud et al. (2010) 6.17+2.86
−2.13 5.04+2.65

−1.62 9.31+3.86
−1.95 6.57+3.84

−1.69 7.47+2.38
−1.78

WASP-6 Gillon et al. (2009) > 7.94 8.45+3.25
−3.29 > 11.95 10.87+5.63

−4.10 10.40+2.92
−2.98

WASP-7 Southworth et al. (2011) 2.03+0.69
−0.57 2.47+0.41

−0.58 2.30+0.45
−0.61 2.04+0.56

−0.56 2.96+0.61
−0.41

WASP-8 Queloz et al. (2010) − < 3.58 < 7.10 < 6.43 3.19+2.66
−2.40

WASP-10 Maciejewski et al. (2011b) − < 10.94 > 16.0 − −

HAT-P-10/WASP-11 Bakos et al. (2009) < 11.87 4.32+3.46
−2.63 > 5.3 12.39+4.79

−5.89 > 3.97

WASP-12 Maciejewski et al. (2013) 3.32+0.54
−0.44 3.49+1.32

−0.26 4.66+5.73
−0.98 4.20+0.15

−1.38 5.00+2.73
−0.62

WASP-13 Barros et al. (2012) 3.98+1.40
−0.32 4.78+0.73

−0.96 6.23+0.79
−0.70 5.90+0.71

−0.80 6.10+0.87
−0.33

WASP-14 Joshi et al. (2009) 2.46+0.75
−0.61 2.07+0.37

−0.58 2.80+1.00
−0.62 1.51+0.51

−0.81 2.49+1.29
−0.39

WASP-15† Triaud et al. (2010) 4.29+1.02
−0.62 3.61+0.52

−0.52 5.14+1.36
−1.31 3.49+1.25

−0.49 5.00+0.85
−1.03

WASP-16† Brown et al. (2012a) 4.50+4.12
−4.25 3.37+3.36

−2.17 5.73+4.61
−4.01 5.22+4.58

−3.53 5.86+3.11
−3.10

WASP-17† Miller et al. (submitted) 1.16+0.53
−0.73 1.46+0.63

−0.64 1.77+0.61
−0.68 1.03+0.63

−0.65 1.86+0.64
−0.64

WASP-18† Miller et al. (submitted) 3.24+3.06
−3.06 < 1.17 0.66+1.02

−0.60 − 0.78+1.02
−0.58

WASP-19† Anderson et al. (2013) > 8.25 8.91+2.21
−0.92 > 10.51 > 9.73 11.37+2.79

−2.31

WASP-20 Cameron et al. (in prep) − − − − < 1.49

WASP-21 Barros et al. (2011b) − 12.37+2.77
−1.90 15.69+0.31

−3.46 13.02+3.55
−2.06 13.06+1.94

−1.97

WASP-22 Anderson et al. (2011b) 4.58+1.73
−1.13 4.25+1.17

−1.01 6.27+2.03
−1.63 5.23+1.96

−1.19 5.81+1.28
−0.98

WASP-23† Miller et al. (submitted) > 12.59 14.04+5.96
−4.75 − − −

WASP-24 Smith et al. (2012b) 3.87+1.20
−0.79 3.64+0.98

−0.54 5.75+1.43
−1.75 4.09+1.22

−1.12 4.75+1.35
−0.85

WASP-25† Brown et al. (2012a) < 3.10 1.94+1.75
−1.79 6.09+2.77

−3.22 1.18+4.34
−0.51 3.25+1.79

−1.53

WASP-26 Anderson et al. (2011b) 6.58+1.81
−1.74 5.73+1.50

−1.41 7.22+1.78
−1.58 6.29+1.69

−1.24 7.25+1.60
−1.08

HAT-P-14/WASP-27† Simpson et al. (2011a) 1.02+0.33
−0.24 1.28+0.42

−0.34 1.45+0.33
−0.70 0.73+0.49

−0.21 1.84+0.34
−0.31

WASP-28 West et al. (in prep.) 4.28+3.33
−2.14 3.12+2.82

−1.76 3.76+3.72
−2.49 2.90+2.91

−2.68 4.47+1.96
−2.01

WASP-29† Hellier et al. (2010) − > 11.55 − − > 9.90

Continued on next page
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System Paper containing data Padova Y2 Teramo VRSS DSEP

used for analysis Age /Gyr Age /Gyr Age /Gyr Age /Gyr Age /Gyr

WASP-30 Triaud et al. (2013b) 2.69+0.37
−0.17 2.70+0.36

−0.24 3.52+0.32
−0.60 2.50+0.24

−0.49 3.64+0.48
−0.43

WASP-31† Brown et al. (2012a) 3.23+1.40
−1.40 2.05+1.17

−1.17 3.60+2.26
−1.78 1.87+1.34

−1.02 4.19+0.99
−2.76

WASP-32† Brown et al. (2012b) 2.36+1.72
−0.85 2.22+0.62

−0.73 4.50+1.88
−1.69 1.41+1.36

−1.10 3.98+0.68
−1.19

WASP-33† Smith et al. (2011) < 0.89 < 0.31 0.31+0.19
−0.22 > 0.10 −

WASP-34 Smalley et al. (2011) − − − − < 12.53

WASP-35† Enoch et al. (2011a) 5.41+1.72
−2.66 4.02+1.66

−1.56 7.56+2.07
−1.99 4.71+1.82

−2.18 5.55+1.16
−1.20

WASP-36 Smith et al. (2012a) 2.15+2.53
−1.96 1.86+1.96

−1.24 2.65+2.68
−2.16 < 4.01 3.30+1.85

−1.86

WASP-37† Simpson et al. (2011b) > 8.32 10.43+3.66
−3.30 > 8.51 10.69+5.49

−3.78 10.31+4.01
−2.55

WASP-38† Brown et al. (2012b) 3.41+0.48
−0.43 3.29+0.42

−0.53 3.59+0.77
−0.70 3.20+0.73

−0.59 4.81+0.52
−0.63

WASP-39† Faedi et al. (2011) > 6.88 8.51+3.91
−3.42 > 14.05 12.1+2.5

−5.0 > 7.35

HAT-P-27/WASP-40† Brown et al. (2012b) > 1.20 6.36+5.86
−3.11 > 4.96 > 5.73 9.19+4.94

−3.88

WASP-41 Maxted et al. (2011) > 3.01 6.97+4.57
−3.34 > 3.88 11.10+2.63

−6.48 9.07+4.85
−3.47

WASP-42 Lendl et al. (2012) − 11.95+5.48
−4.34 − > 15.17 12.20+2.80

−2.80

WASP-43 Gillon et al. (2012) − > 16.98 − > 2.39 > 6.52

WASP-44 Mancini et al. (2013a) − − 2.36+0.71
−0.71 < 2.65 < 2.93

WASP-45 Anderson et al. (2012) − − 0.43+4.65
−0.01 < 4.80 < 3.76

WASP-46 Anderson et al. (2012) − 10.84+3.81
−4.03 15.52+0.48

−5.30 11.50+6.50
−4.54 11.44+3.56

−3.28

WASP-47 Hellier et al. (2012) > 10.50 11.28+2.94
−2.35 − > 12.62 > 11.49

WASP-48† Enoch et al. (2011a) 7.05+1.79
−2.72 5.96+1.63

−0.91 8.12+1.76
−1.56 6.46+1.54

−1.26 7.45+1.45
−1.33

WASP-49 Lendl et al. (2012) 7.89+4.70
−3.70 6.23+2.83

−2.33 9.52+4.41
−3.55 7.69+4.56

−3.29 7.60+2.59
−2.54

WASP-50 Tregloan-Reed & Southworth (2013) 1.06+0.80
−0.84 1.86+4.41

−1.20 2.21+2.79
−2.03 1.13+1.15

−0.90 1.28+1.85
−0.98

HA-P-30/WASP-51† Enoch et al. (2011a) 3.96+0.50
−0.96 3.14+0.41

−0.72 3.10+0.73
−0.81 3.17+1.12

−0.66 4.80+0.62
−1.10

WASP-52† Hébrard et al. (in prep.) > 2.31 4.10+3.22
−3.15 10.98+3.13

−6.52 7.20+6.32
−5.40 < 6.62

WASP-53 Cameron (priv. comm.) < 2.30 < 6.95 > 0.056 > 0.306 < 4.61

WASP-54† Faedi et al. (2013) 5.24+1.19
−1.17 5.56+0.89

−0.51 6.10+1.38
−0.84 5.79+1.14

−0.75 6.55+1.20
−0.77

WASP-55 Hellier et al. (2012) 6.68+2.97
−2.11 5.33+2.17

−2.35 8.12+2.93
−2.82 4.62+3.48

−1.87 6.51+2.28
−1.68

WASP-56† Faedi et al. (2013) 6.84+4.33
−2.71 5.84+3.45

−2.04 8.70+4.29
−3.00 9.51+3.69

−3.88 8.22+3.42
−2.33

WASP-57† Faedi et al. (2013) < 5.29 2.61+1.95
−1.81 4.16+3.57

−2.25 2.57+2.58
−0.97 4.00+1.78

−1.78

WASP-58† Hébrard et al. (in prep.) > 12.59 4.22+4.31
−4.13 > 11.58 16.09+1.91

−4.49 > 11.24

WASP-59† Hébrard et al. (in prep.) − < 13.40 − 0.94+5.70
−0.71 −

WASP-60† Hébrard et al. (in prep.) 4.61+3.49
−2.57 5.40+1.43

−2.26 6.33+3.00
−2.23 5.79+2.90

−2.74 > 3.68

WASP-61 Hellier et al. (2012) 3.16+1.18
−0.55 2.83+0.69

−0.44 2.53+0.99
−0.82 2.66+0.92

−0.73 4.00+1.31
−1.08
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System Paper containing data Padova Y2 Teramo VRSS DSEP

used for analysis Age /Gyr Age /Gyr Age /Gyr Age /Gyr Age /Gyr

WASP-62 Hellier et al. (2012) 1.50+0.72
−0.79 1.85+0.55

−0.57 2.84+1.09
−1.10 1.72+0.72

−0.82 2.84+0.98
−1.10

WASP-63 Hellier et al. (2012) 8.01+1.32
−1.21 7.82+1.09

−1.13 8.89+1.35
−1.37 8.03+1.15

−1.21 9.00+1.18
−1.27

WASP-64 Gillon et al. (2013) > 7.89 8.94+3.15
−2.55 11.42+4.58

−4.15 11.42+4.90
−3.19 10.96+2.72

−2.93

WASP-65† Gómez Maqueo Chew et al. (in prep.) > 8.26 8.92+1.87
−1.97 11.42+4.01

−2.75 11.31+3.14
−2.49 10.80+2.36

−2.03

WASP-66 Hellier et al. (2012) 5.18+0.90
−0.83 5.02+0.78

−1.33 5.06+1.10
−0.92 4.74+1.03

−1.30 5.82+1.02
−0.94

WASP-67 Hellier et al. (2012) > 10.60 10.36+4.63
−2.69 > 12.61 > 12.18 > 9.79

WASP-68 Cameron (priv. comm.) 4.86+2.27
−1.29 5.04+1.69

−1.25 − 6.00+1.31
−1.85 6.78+1.39

−1.07

WASP-69 Cameron (priv. comm.) − − − − −

WASP-70 Cameron (priv. comm.) 9.54+1.56
−1.44 8.37+1.24

−1.21 10.80+1.64
−1.39 10.00+2.00

−1.78 10.19+1.43
−1.35

WASP-71 Smith et al. (2013) 3.27+0.33
−0.74 3.21+0.38

−0.74 3.16+0.55
−0.46 3.04+0.50

−0.26 3.67+0.76
−0.30

WASP-72 Gillon et al. (2013) 3.63+1.39
−0.87 3.40+1.09

−0.54 3.81+0.39
−1.40 3.22+1.12

−0.62 4.73+0.79
−0.81

WASP-73 Cameron (priv. comm.) 4.02+0.86
−1.34 4.43+0.63

−0.92 − 4.10+0.71
−0.89 4.74+0.95

−1.06

WASP-74 Cameron (priv. comm.) 8.30+2.54
−2.04 7.53+2.23

−2.55 10.44+2.84
−2.37 8.45+2.84

−2.12 9.00+2.77
−2.00

WASP-75† Gómez Maqueo Chew et al. (in prep.) 3.01+1.33
−1.08 3.12+0.78

−0.95 4.32+1.63
−1.49 3.45+1.66

−0.84 4.37+0.97
−0.82

WASP-76 Cameron (priv. comm.) 2.19+0.04
−0.06 2.11+0.06

−0.07 ∼ 2.00 1.96+0.04
−0.06 2.60+0.06

−0.001

WASP-77 Cameron (priv. comm.) 6.29+5.13
−3.10 5.34+2.19

−2.08 > 7.81 9.48+5.41
−4.08 7.82+2.75

−2.43

WASP-78 Smalley et al. (2012) 3.39+0.23
−0.75 3.97+0.38

−0.51 3.90+0.41
−0.63 3.85+0.40

−0.78 4.38+0.40
−0.61

WASP-79 Smalley et al. (2012) 1.86+0.18
−0.20 1.96+0.87

−0.20 1.64+0.45
−0.17 1.88+0.22

−0.19 2.36+0.28
−0.30

WASP-80 Triaud et al. (2013a) − − − − < 0.411

WASP-81 Cameron (priv. comm.) > 0.70 > 1.97 − > 1.52 < 5.07

WASP-82 Cameron (priv. comm.) 2.31+1.18
−0.32 2.54+0.65

−0.36 3.33+0.61
−1.45 2.31+1.38

−0.28 2.95+1.08
−0.39

WASP-83 Cameron (priv. comm.) > 6.54 9.63+4.71
−4.23 − 16.47+1.53

−6.18 > 7.77

WASP-84 Cameron (priv. comm.) − − − − −

WASP-85 Cameron (priv. comm.) 4.04+6.68
−3.77 3.90+3.76

−2.21 − − 5.72+4.80
−2.38

WASP-86 Cameron (priv. comm.) 2.12+1.05
−0.50 2.33+1.42

−1.61 − > 1.80 3.00+5.01
−0.85

WASP-87 Cameron (priv. comm.) 2.02+0.36
−0.24 2.26+0.42

−0.34 2.46+0.56
−0.56 2.00+0.31

−0.40 2.72+0.57
−0.32

WASP-88 Cameron (priv. comm.) 1.10+0.15
−0.11 1.19+0.17

−0.11 0.83+0.13
−0.08 1.20+0.17

−0.10 0.50+0.23
−0.17

WASP-89 Cameron (priv. comm.) > 7.45 7.99+3.79
−2.19 > 14.60 > 10.02 10.86+4.14

−2.83

WASP-90 Cameron (priv. comm.) > 1.82 < 2.85 − − > 1.12

WASP-91 Cameron (priv. comm.) − > 15.75 − − > 15.00

WASP-92 Cameron (priv. comm.) < 5.81 < 3.20 < 0.75 < 15.54 < 4.18

WASP-93 Cameron (priv. comm.) 1.61+0.41
−0.43 1.72+0.47

−0.40 1.83+0.42
−0.33 1.45+0.49

−0.44 2.34+0.43
−0.50
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used for analysis Age /Gyr Age /Gyr Age /Gyr Age /Gyr Age /Gyr

WASP-94 Cameron (priv. comm.) 2.72+0.56
−0.63 2.90+0.61

−0.66 − − 3.53+1.35
−0.70

WASP-95 Cameron (priv. comm.) 8.28+3.06
−2.50 7.02+2.78

−2.50 11.50+3.87
−3.18 9.00+3.39

−2.92 9.19+2.90
−2.39

WASP-96 Cameron (priv. comm.) > 9.43 10.74+4.30
−3.46 − > 11.37 > 9.62

WASP-97 Cameron (priv. comm.) 5.15+3.24
−3.40 4.77+2.02

−1.58 − 5.82+3.71
−3.20 6.35+2.72

−2.46

WASP-98 Cameron (priv. comm.) − − − − −

QATAR-1† Alsubai et al. (2011) − 12.67+7.29
−5.07 > 16.0 − > 8.83

CoRot-1 Pont et al. (2010) 0.63+0.59
−0.59 0.96+0.72

−0.83 1.05+0.69
−0.38 < 1.73 1.64+0.80

−0.75

CoRot-2 2.41+4.30
−0.95 3.01+2.26

−1.50 4.29+3.21
−2.59 4.35+3.08

−2.42 5.01+1.61
−0.91

CoRot-3 Triaud et al. (2009) 1.37+0.39
−0.40 1.43+0.41

−0.43 1.28+0.31
−0.47 1.20+0.41

−0.40 1.90+0.41
−0.36

CoRot-11 Gandolfi et al. (2012) 1.73+0.84
−0.70 1.93+0.60

−0.63 1.61+0.69
−0.74 1.56+0.70

−0.68 2.41+1.27
−0.46

CoRot-18 Hébrard et al. (2011b) − 11.80+5.71
−9.80 > 1.84 > 8.49 > 7.08

CoRot-19 Guenther et al. (2012) 3.69+1.01
−0.33 4.66+0.04

−1.02 5.06+0.63
−0.95 3.46+1.93

−0.06 5.85+0.49
−0.70

Fomalhaut Mamajek (2012) 0.42+0.03
−0.02 0.45+0.03

−0.02 0.34+0.03
−0.02 0.46+0.03

−0.03 −

HAT-P-1 Johnson et al. (2008) < 2.98 2.15+1.07
−1.18 1.79+1.88

−1.39 2.03+1.52
−0.68 2.72+0.98

−1.32

HAT-P-2 Southworth (2010) 2.38+0.14
−0.52 2.61+1.01

−0.20 2.13+8.09
−0.17 2.40+2.44

−0.20 > 2.84

HAT-P-4 Winn et al. (2011b) 4.36+0.67
−0.85 3.98+1.72

−0.28 6.14+0.90
−0.64 4.74+1.72

−1.00 5.20+1.78
−0.68

HAT-P-6 Noyes et al. (2008) 2.47+0.34
−0.48 2.14+0.36

−0.33 2.75+0.59
−0.45 1.78+0.34

−0.38 2.50+0.36
−0.32

HAT-P-7 Pál et al. (2008) < 2.38 2.43+5.26
−1.28 1.89+0.93

−0.67 2.20+0.28
−0.20 < 3.00

HAT-P-8 Mancini et al. (2013a) 3.64+0.53
−0.43 3.70+0.39

−0.49 3.26+0.35
−0.46 3.64+0.33

−0.85 5.00+0.43
−1.16

HAT-P-9 Shporer et al. (2009) 1.30+1.02
−0.95 1.75+0.65

−0.75 1.45+1.03
−0.79 1.74+0.78

−0.99 2.15+0.71
−0.60

HAT-P-11 Bakos et al. (2010) − 5.03+3.98
−3.37 − > 3.90 −

HAT-P-13 Winn et al. (2010b) 8.40+1.48
−1.70 5.83+0.51

−2.00 8.98+1.50
−1.37 7.64+1.44

−1.26 6.50+1.97
−1.13

HAT-P-16 Buchhave et al. (2010) 1.39+1.06
−0.96 1.97+0.89

−0.79 1.80+0.83
−1.21 1.76+1.13

−1.03 2.50+0.82
−0.78

HAT-P-23 Bakos et al. (2011) 3.94+1.74
−1.59 3.96+0.61

−1.41 4.57+2.06
−1.31 4.65+1.77

−1.76 4.88+0.86
−1.37

HAT-P-24 Kipping et al. (2010) 4.35+0.55
−0.99 3.03+0.51

−0.66 4.03+1.02
−0.84 2.41+0.99

−0.54 4.35+0.81
−0.71

HAT-P-32 1.12+1.10
−0.89 1.45+0.89

−0.55 0.96+1.36
−0.69 0.94+0.96

−0.51 3.08+0.73
−1.09

HAT-P-34 Bakos et al. (2012) 1.41+0.55
−0.63 1.52+0.52

−0.44 1.56+0.34
−0.62 1.38+0.47

−0.58 2.04+0.40
−0.55

HD149026 Carter et al. (2009) 2.54+0.24
−0.23 2.61+0.20

−0.21 2.76+0.34
−0.26 2.63+0.22

−0.29 3.02+0.29
−0.21

HD17156 Barbieri et al. (2009) 3.23+0.75
−0.47 3.37+0.88

−0.44 3.38+1.16
−0.63 3.75+0.44

−0.97 4.00+0.29
−0.37

HD189733 Triaud et al. (2009) 7.96+2.43
−2.84 7.20+1.45

−2.36 8.06+2.69
−2.86 9.33+2.47

−3.46 6.57+1.10
−1.97

HD209458 Southworth (2010) 1.83+0.55
−0.44 2.27+0.45

−0.56 2.65+0.92
−0.51 1.92+0.59

−0.42 3.87+0.76
−0.07

HD80606 Hébrard et al. (2010) 4.56+1.73
−1.82 3.68+1.55

−1.25 7.83+2.21
−2.18 7.34+2.46

−1.89 5.73+1.64
−1.21
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System Paper containing data Padova Y2 Teramo VRSS DSEP

used for analysis Age /Gyr Age /Gyr Age /Gyr Age /Gyr Age /Gyr

Kepler-8 Jenkins et al. (2010) 2.76+0.40
−0.25 3.00+0.19

−0.37 3.07+0.47
−0.42 2.85+1.23

−0.29 3.93+0.75
−0.50

Kepler-16 Doyle et al. (2011) − − > 16.0 − 5.56+2.82
−0.40

Kepler-17 Désert et al. (2011) 3.18+2.77
−2.96 2.21+2.00

−1.17 4.06+4.14
−2.18 5.07+2.24

−2.38 4.08+2.27
−1.65

Kepler-30 b Sanchis-Ojeda et al. (2012) − − < 3.14 < 3.39 1.76+1.40
−1.37

KOI-13 0.04+0.03
−0.03 0.71+0.18

−0.15 0.71+0.18
−0.15 0.71+0.18

−0.15 −

KOI-94 d Hirano et al. (2012) 3.66+0.74
−0.42 3.90+0.51

−0.32 4.93+0.20
−1.22 4.56+0.02

−0.98 5.52+0.43
−0.36

TrES-01 Southworth (2010) 3.54+3.30
−2.77 3.63+2.39

−1.49 7.16+3.45
−2.69 7.31+4.26

−3.33 4.91+2.41
−1.69

TrES-02 Sozzetti et al. (2007) < 4.35 3.15+1.40
−1.29 4.10+1.87

−2.10 3.25+1.91
−2.13 4.45+1.46

−1.25

TrES-04 Chan et al. (2011) 3.02+0.55
−0.63 2.83+0.64

−0.13 2.78+0.53
−0.66 2.68+0.65

−0.21 3.75+0.49
−0.76

XO-3 Southworth (2010) 2.52+0.17
−0.30 2.51+0.18

−0.41 2.13+0.26
−0.21 2.05+0.26

−0.44 2.96+0.42
−0.19

XO-4 Southworth (2010) 2.61+0.31
−0.29 > 2.42 2.25+1.80

−0.21 > 2.13 > 2.81
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Table A.2: Ages for the exoplanet and brown dwarf host stars from Table A.1, as calculated using gyrochronology. Three different formulations of the Prot-colour-age
relation have been used to provide different estimates of the ages of the systems. age1 values were calculated using the period-colour-age relation of Barnes (2007),
with updated coefficients. age2 estimates were derived using Collier Cameron et al. (2009), and age3 estimates following Delorme et al. (2011b). (B-V) colours
are derived from NOMAD data, and (J-K) colours from 2MASS data. Prot values were calculated using v sin I , i, and Rs values; measured Prot values were used for
systems marked ∗. Some systems return ages greater than the currently accepted age of the Universe; these are clearly incorrect, and are omitted from my analysis.

System Reference v sin I i Rs Prot (B-V) (J-K) age1 age2 age3

/km s−1 /R� /days /Gyr /Gyr /Gyr

WASP-1 Stempels et al. (2007); Wheatley et al. (2010) 5.79± 0.35 89.2± 0.8 1.462± 0.019 12.8+0.8
−0.7 0.721 0.31 0.81+0.10

−0.09 1.61+0.20
−0.16 1.57+0.19

−0.16

WASP-2 Triaud et al. (2010); Wheatley et al. (2010) 0.99+0.27
−0.32 84.92± 0.11 0.823± 0.011 41.8+19.4

−8.9 0.966 0.534 3.66+3.81
−1.33 8.16+7.97

−2.85 7.39+7.22
−2.58

WASP-3 Miller et al. (2010) 13.9+0.3
−0.3 87.0+1.0

−1.1 1.21+0.04
−0.03 4.41+0.16

−0.15 0.400 0.242 − 0.29+0.02
−0.02 0.29+0.02

−0.02

WASP-4∗ Triaud et al. (2010) 2.14+0.38
−0.35 89.5+0.5

−0.2 0.903+0.054
−0.053 22.2+3.3

−3.3 1.016 0.433 1.01+0.29
−0.06 3.24+0.89

−0.18 3.01+0.83
−0.17

WASP-5 Triaud et al. (2010) 3.24+0.35
−0.27 86.1+0.7

−1.5 1.060+0.076
−0.028 16.7+1.7

−1.7 0.490 0.351 20.27+4.12
−3.72 2.35+0.45

−0.41 2.25+0.44
−0.40

WASP-6 Triaud et al. (2010) 4.27+0.26
−0.36 85.96+0.29

−0.41 1.440+0.064
−0.057 27.2+3.6

−3.9 0.970 0.444 1.62+0.43
−0.40 4.54+1.13

−1.09 4.21+1.05
−1.01

WASP-7 Albrecht et al. (2012a) 14+2
−2 87.2+0.9

−1.2 1.432+0.092
−0.092 5.16+0.92

−0.70 0.436 0.252 − 0.37+0.13
−0.09 0.37+0.13

−0.09

WASP-8 Queloz et al. (2010) 1.59+0.08
−0.09 88.55+0.15

−0.17 0.945+0.051
−0.036 30.3+2.3

−2.0 0.695 0.415 4.56+0.68
−0.54 5.87+0.83

−0.66 5.49+0.78
−0.62

WASP-10∗ Maciejewski et al. (2011b) 4.1+1.0
−1.0 89.5+0.4

−0.9 0.67+0.03
−0.02 11.91+0.05

−0.05 0.570 0.620 1.86+0.01
−0.01 0.74+0.006

−0.005 0.66+0.005
−0.005

WASP-11 Bakos et al. (2009); Torres et al. (2012) 1.9+0.9
−0.9 88.6+0.5

−0.4 0.79+0.02
−0.02 20.8+18.2

−6.6 0.991 0.594 0.94+2.12
−0.48 2.10+4.36

−1.04 1.88+3.90
−0.93

WASP-12 Maciejewski et al. (2011a); Torres et al. (2012) 3.4+0.9
−0.9 82.5+0.8

−0.7 1.63+0.08
−0.08 24.0+8.8

−5.1 0.531 0.289 11.69+9.29
−4.18 5.26+3.93

−1.81 5.16+3.85
−1.78

WASP-13 Barros et al. (2012) < 4.9 85.19+0.26
−0.26 1.559+0.041

−0.041 16.1+0.5
−0.4 0.754 0.323 1.09+0.06

−0.06 2.35+0.12
−0.11 2.27+0.12

−0.11

WASP-14 Joshi et al. (2009) 2.80+0.57
−0.57 84.32+0.62

−0.62 1.306+0.066
−0.073 23.5+6.1

−4.1 0.410 0.248 − 5.65+2.87
−1.65 5.66+2.87

−1.66

WASP-15 Triaud et al. (2010) 4.27+0.26
−0.36 85.96+0.29

−0.41 1.440+0.064
−0.057 17.1+1.7

−1.3 0.335 0.263 − 3.07+0.56
−0.39 3.05+0.56

−0.39

WASP-16 Brown et al. (2012a) 1.474+0.301
−0.316 84.86+0.32

−0.32 0.983+0.047
−0.049 33.8+9.2

−6.0 1.222 0.395 1.60+0.91
−0.49 7.47+4.00

−2.21 7.04+3.77
−2.08

WASP-17 Miller et al. (submitted) 8.368+0.156
−0.186 88.67+0.88

−0.59 1.410+0.036
−0.037 8.53+0.29

−0.27 0.223 0.285 − 0.84+0.05
−0.05 0.82+0.05

−0.05

WASP-18 Hellier et al. (2009) 10.77+0.04
−0.04 86.0+2.5

−2.5 1.216+0.067
−0.054 5.69+0.32

−0.25 0.422 0.278 − 0.41+0.04
−0.03 0.41+0.04

−0.03

WASP-19∗ Anderson et al. (2013); Hebb et al. (2010) 4.63+0.27
−0.27 79.42+0.39

−0.39 0.993+0.018
−0.018 10.5± 0.2 0.330 0.430 − 0.86+0.03

−0.03 0.80+0.03
−0.03
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System Reference v sin I i Rs Prot (B-V) (J-K) age1 age2 age3

/km s−1 /R� /days /Gyr /Gyr /Gyr

WASP-20 Cameron et al. (submitted) 5.81+1.14
−0.83 89.35+0.54

−0.54 0.951+0.29
−0.29 8.07+3.10

−2.62 0.489 0.311 5.50+4.61
−2.86 0.71+0.56

−0.36 0.69+0.54
−0.35

WASP-21 Bouchy et al. (2010) 1.5+0.6
−0.6 88.75+0.84

−0.70 1.06+0.04
−0.04 35.9+23.4

−10.4 0.625 0.368 9.25+14.43
−4.37 8.85+12.86

−4.04 8.41+12.22
−3.84

WASP-22 Anderson et al. (2011b) 4.42+0.34
−0.34 88.26+0.91

−0.91 1.219+0.052
−0.033 14.0+1.3

−1.1 0.352 0.316 − 1.87+0.32
−0.25 1.82+0.31

−0.24

WASP-23 Triaud et al. (2011) 2.03+0.37
−0.35 88.39+0.79

−0.45 0.765+0.033
−0.049 18.8+4.1

−3.1 0.400 0.510 − 2.06+0.87
−0.56 1.88+0.79

−0.51

WASP-24 Smith et al. (2012b) 5.86+0.63
−0.63 83.30+0.30

−0.30 1.354+0.032
−0.032 11.6+1.4

−1.1 0.745 0.309 0.61+0.15
−0.11 1.36+0.31

−0.23 1.32+0.30
−0.22

WASP-25 Brown et al. (2012a) 2.83+0.26
−0.27 87.83+0.31

−0.27 0.910+0.028
−0.029 16.2+1.8

−1.5 0.360 0.422 − 1.90+0.39
−0.29 1.77+0.36

−0.27

WASP-26 Anderson et al. (2011b) 2.2+0.7
−0.7 82.91+0.46

−0.46 1.303+0.059
−0.059 29.8+13.8

−7.1 0.297 0.331 − 6.92+6.72
−2.67 6.67+6.48

−2.57

HAT-P-14/WASP-27 Simpson et al. (2011a) 8.18+0.49
−0.49 83.52+0.22

−0.22 1.468+0.042
−0.042 9.01+0.63

−0.55 0.388 0.243 − 1.03+0.13
−0.11 1.04+0.13

−0.11

WASP-28 West et al. (submitted), Smalley et al. (priv. comm.) 4.1+0.6
−0.6 89.1+0.6

−0.6 1.05+0.06
−0.06 12.9+2.4

−1.8 0.470 0.346 − 1.51+0.54
−0.36 1.44+0.51

−0.34

WASP-29 Hellier et al. (2010) 1.5+0.6
−0.6 88.8+0.7

−0.7 0.808+0.044
−0.044 26.9+17.7

−7.6 0.793 0.570 2.51+3.94
−1.16 3.48+5.08

−1.56 3.12+4.56
−1.40

WASP-30 Triaud et al. (2013b) 12.1+0.4
−0.5 89.43+0.51

−0.93 1.389+0.033
−0.025 5.82+0.28

−0.23 0.222 0.309 − 0.40+0.03
−0.03 0.39+0.03

−0.03

WASP-31 Brown et al. (2012a) 7.35+0.69
−0.69 84.71+0.24

−0.22 1.199+0.045
−0.045 8.21+0.92

−0.76 0.318 0.262 − 0.83+0.17
−0.13 0.82+0.17

−0.13

WASP-32 Brown et al. (2012b) 3.94+0.42
−0.48 85.08+0.24

−0.22 1.087+0.031
−0.032 13.9+2.0

−1.4 0.769 0.342 0.79+0.23
−0.15 1.74+0.47

−0.31 1.67+0.45
−0.29

WASP-33 Smith et al. (2011) 86.05+0.19
−0.19 86.97+0.23

−0.23 1.464+0.023
−0.023 0.86+0.01

−0.01 0.251 0.113 − 0.02+0.001
−0.001 0.03+0.001

−0.001

WASP-34 Smalley et al. (2011) 1.4+0.6
−0.6 85.2+0.2

−0.2 0.93+0.12
−0.12 33.2+24.2

−10.5 0.737 0.380 4.53+8.07
−2.30 7.49+12.40

−3.68 7.08+11.73
−3.48

WASP-35 Enoch et al. (2011a) 3.9+0.4
−0.4 87.96+0.62

−0.49 1.09+0.14
−0.14 14.1+2.4

−2.2 0.570 0.362 2.56+0.89
−0.68 1.70+0.56

−0.44 1.62+0.53
−0.41

WASP-36 Smith et al. (2012a) 3.3+1.2
−1.2 83.61+0.21

−0.21 0.951+0.018
−0.018 14.4+8.1

−3.8 0.340 0.315 − 1.97+2.41
−0.82 1.91+2.34

−0.80

WASP-37 Simpson et al. (2011b) 2.4+1.6
−1.6 88.82+0.77

−0.86 1.003+0.053
−0.053 20.0+25.3

−7.6 0.280 0.406 − 2.85+9.42
−1.64 2.67+8.83

−1.54

WASP-38 Brown et al. (2012b) 7.49+0.15
−0.16 89.46+0.32

−0.37 1.351+0.022
−0.018 9.13+0.24

−0.22 0.434 0.289 − 0.93+0.04
−0.04 0.92+0.04

−0.04

WASP-39 Faedi et al. (2011) 1.4+0.6
−0.6 87.83+0.25

−0.22 0.895+0.023
−0.023 32.3+24.0

−9.5 0.640 0.461 6.89+12.59
−3.31 5.96+10.12

−2.77 5.50+9.33
−2.55

HAT-P-27/WASP-40 Brown et al. (2012b) 0.586+0.694
−0.414 84.95+0.24

−0.24 0.875+0.039
−0.040 66.9+94.4

−33.7 0.912 0.517 9.94+41.65
−7.26 19.53+74.50

−13.95 17.76+67.75
−12.69

WASP-41 Maxted et al. (2011) 1.6+1.1
−1.1 87.7+0.08

−0.08 0.90+0.05
−0.05 27.1+33.5

−10.6 0.694 0.419 3.71+13.06
−2.24 4.76+15.32

−2.79 4.45+14.31
−2.61

WASP-42 Lendl et al. (2012) 2.7+0.4
−0.4 88.25+0.27

−0.23 0.863+0.041
−0.034 16.2+3.0

−2.2 0.520 0.509 6.92+2.55
−1.63 1.58+0.55

−0.36 1.44+0.50
−0.33
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System Reference v sin I i Rs Prot (B-V) (J-K) age1 age2 age3

/km s−1 /R� /days /Gyr /Gyr /Gyr

WASP-43∗ Gillon et al. (2012) 4.0+0.4
−0.4 82.33+0.20

−0.20 0.667+0.010
−0.011 15.6+0.4

−0.4 1.06 0.728 0.48+0.02
−0.02 1.00+0.05

−0.05 0.87+0.04
−0.04

WASP-44 Anderson et al. (2012); Mancini et al. (2013a) 3.2+0.9
−0.9 86.02+1.11

−0.86 0.865+0.025
−0.025 13.6+5.4

−3.0 0.810 0.361 0.66+0.57
−0.25 1.59+1.29

−0.57 1.51+1.23
−0.54

WASP-45 Anderson et al. (2012) 2.3+0.7
−0.7 84.47+0.54

−0.79 0.945+0.087
−0.071 20.8+9.0

−5.0 1.565 0.459 0.44+0.42
−0.18 2.73+2.46

−1.07 2.52+2.27
−0.98

WASP-46∗ Anderson et al. (2012) 1.9+1.2
−1.2 82.63+0.38

−0.38 0.917+0.028
−0.028 16.1+1.0

−1.0 0.710 0.352 1.31+0.16
−0.15 2.20+0.25

−0.24 2.10+0.24
−0.23

WASP-47 Hellier et al. (2012) 3.0+0.6
−0.6 89.2+0.5

−0.7 1.15+0.03
−0.02 19.4+4.7

−3.3 0.750 0.421 1.58+0.80
−0.46 2.61+1.25

−0.73 2.44+1.17
−0.68

WASP-48 Enoch et al. (2011a) 12.2+0.7
−0.7 80.09+0.88

−0.79 1.09+0.14
−0.14 4.45+0.62

−0.62 0.623 0.255 0.19+0.05
−0.05 0.28+0.07

−0.07 0.28+0.07
−0.07

WASP-49 Lendl et al. (2012) 0.9+0.3
−0.3 84.89+0.19

−0.19 0.976+0.034
−0.034 54.8+27.0

−13.6 0.535 0.397 51.09+57.13
−21.20 17.61+18.43

−7.05 16.56+17.34
−6.63

WASP-50∗ Gillon et al. (2011); Tregloan-Reed & Southworth (2013) 2.6+0.5
−0.5 84.74+0.24

−0.24 0.855+0.018
−0.018 16.3+0.5

−0.5 0.972 0.432 0.62+0.04
−0.03 1.87+0.10

−0.10 1.74+0.10
−0.09

HAT-P-30/WASP-51 Enoch et al. (2011a) 3.6+0.4
−0.4 82.48+0.16

−0.15 1.28+0.17
−0.17 17.8+3.3

−2.9 0.561 0.291 4.38+1.62
−1.25 3.08+1.07

−0.84 3.01+1.05
−0.83

WASP-52∗ Hébrard et al. (in prep.) 3.6+0.9
−0.9 85.35+0.20

−0.20 0.792+0.015
−0.015 16.4± 0.04 0.912 0.502 0.72+0.003

−0.003 1.63+0.007
−0.007 1.49+0.006

−0.007

WASP-53 Cameron (priv. comm.) 2.7+0.3
−0.3 87.62+0.26

−0.25 0.755+0.027
−0.027 14.1+1.8

−1.5 0.966 0.569 0.48+0.12
−0.09 1.10+0.27

−0.20 0.99+0.24
−0.18

WASP-54 Faedi et al. (2013) 4.0+0.8
−0.8 84.97+0.63

−0.59 1.828+0.091
−0.081 23.0+6.0

−3.9 0.559 0.330 7.24+3.92
−2.13 4.39+2.25

−1.24 4.24+2.16
−1.20

WASP-55 Hellier et al. (2012) 3.1+1.0
−1.0 89.2+0.6

−0.6 1.06+0.03
−0.02 17.3+8.1

−4.2 0.910 0.379 0.79+0.84
−0.32 2.33+2.32

−0.92 2.21+2.20
−0.87

WASP-56 Faedi et al. (2013) 1.5+0.9
−0.9 88.1+0.3

−0.4 1.049+0.081
−0.064 34.8+38.6

−13.0 1.251 0.342 1.62+4.92
−0.95 8.92+24.84

−5.05 8.56+23.83
−4.85

WASP-57 Faedi et al. (2013) 3.7+1.3
−1.3 88.0+0.1

−0.2 0.836+0.07
−0.16 11.0+6.2

−3.2 0.740 0.381 0.57+0.74
−0.27 1.04+1.27

−0.47 0.98+1.20
−0.45

WASP-58 Hébrard et al. (in prep.) 2.8+0.9
−0.9 86.97+1.55

−1.55 1.25+0.17
−0.17 22.5+11.5

−6.0 0.623 0.341 3.90+4.57
−1.72 4.08+4.48

−1.74 3.92+4.30
−1.67

WASP-59 Hébrard et al. (in prep.) 2.3+1.2
−1.2 89.27+0.52

−0.52 0.613+0.044
−0.044 13.2+12.2

−4.5 0.990 0.717 0.40+0.97
−0.22 0.76+1.68

−0.40 0.66+1.47
−0.35

WASP-60 Hébrard et al. (in prep.) 3.4+0.8
−0.8 87.86+1.61

−1.61 1.14+0.13
−0.13 16.9+5.8

−3.6 1.470 0.379 0.33+0.24
−0.12 2.26+1.55

−0.79 2.14+1.47
−0.75

WASP-61 Hellier et al. (2012) 10.3+0.5
−0.5 89.35+0.45

−0.66 1.36+0.03
−0.03 6.68+0.36

−0.34 0.311 0.211 − 0.66+0.07
−0.06 0.68+0.07

−0.06

WASP-62 Hellier et al. (2012) 8.7+0.4
−0.4 88.3+0.9

−0.6 1.28+0.05
−0.05 7.44+0.46

−0.44 0.432 0.328 8.19+0.97
−0.88 0.59+0.07

−0.06 0.57+0.06
−0.06

WASP-63 Hellier et al. (2012) 2.8+0.5
−0.5 87.8+1.3

−1.3 1.88+0.10
−0.06 34.2+7.7

−5.4 0.546 0.425 17.96+8.33
−4.94 7.15+3.13

−1.89 6.67+2.92
−1.76

WASP-64 Gillon et al. (2013) 3.4+0.8
−0.8 86.57+0.80

−0.60 1.058+0.025
−0.025 15.7+4.8

−3.0 0.400 0.412 − 1.83+1.12
−0.58 1.71+1.05

−0.54

WASP-65 Gómez Maqueo Chew et al. (in prep.) 3.6+0.5
−0.5 87.45+0.15

−0.13 1.070+0.010
−0.010 15.0+2.4

−1.9 −0.052 0.323 − 2.09+0.63
−0.44 2.02+0.61

−0.42
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System Reference v sin I i Rs Prot (B-V) (J-K) age1 age2 age3

/km s−1 /R� /days /Gyr /Gyr /Gyr

WASP-66 Hellier et al. (2012) 13.4+0.9
−0.9 85.9+0.9

−0.9 1.75+0.09
−0.09 6.59+0.6−

−0.53 0.357 0.267 − 0.55+0.09
−0.08 0.55+0.09

−0.08

WASP-67 Hellier et al. (2012) 2.1+0.4
−0.4 85.8+0.3

−0.4 0.87+0.04
−0.04 20.9+4.97

−3.5 0.327 0.479 − 2.63+1.22
−0.74 2.42+1.12

−0.68

WASP-68 Cameron (priv. comm.) 2.3+0.8
−0.8 89.13+0.56

−0.99 1.595+0.055
−0.044 35.2+18.3

−9.2 0.630 0.393 8.63+10.22
−3.74 8.07+8.94

−3.38 7.60+8.42
−3.18

WASP-69 Cameron (priv. comm.) 2.2+0.4
−0.4 87.65+0.186

−0.199 0.665+0.027
−0.026 15.3+3.5

−2.4 1.05 0.573 0.47+0.22
−0.13 1.26+0.55

−0.33 1.13+0.50
−0.30

WASP-70A Cameron (priv. comm.) 1.8+0.4
−0.4 86.86+0.710

−0.707 1.261+0.069
−0.067 35.2+10.4

−6.6 0.940 0.416 2.81+1.74
−0.90 7.67+4.49

−2.37 7.17+4.20
−2.21

WASP-70B Cameron (priv. comm.) 3.9+0.8
−0.8 86.86+0.710

−0.707 1.261+0.069
−0.067 16.4+4.4

−2.9 0.940 0.416 0.67+0.37
−0.20 1.95+1.03

−0.57 1.82+0.96
−0.53

WASP-71 Smith et al. (2013) 9.91+0.49
−0.49 84.21.8

−1.8 2.32+0.14
−0.14 11.8+1.0

−0.9 0.761 0.316 0.60+0.09
−0.08 1.38+0.21

−0.18 1.33+0.20
−0.17

WASP-72 Gillon et al. (2013) 6.0+0.7
−0.7 86.8+2.0

−3.1 1.71+0.16
−0.09 14.6+2.3

−1.8 0.608 0.347 1.94+0.60
−0.43 1.86+0.55

−0.39 1.79+0.53
−0.38

WASP-73 Cameron (priv. comm.) 6.1+0.6
−0.6 86.30+2.287

−2.446 2.121+0.234
−0.132 17.8+2.6

−2.1 0.478 0.324 70.73+20.84
−14.70 2.80+0.78

−0.56 2.71+0.76
−0.54

WASP-74 Cameron (priv. comm.) 4.7+0.4
−0.4 80.52+0.485

−0.634 1.440+0.060
−0.051 15.3+1.5

−1.3 0.603 0.327 2.21+0.43
−0.34 2.14+0.40

−0.31 2.06+0.38
−0.30

WASP-75 Gómez Maqueo Chew et al. (in prep.) 4.3+0.8
−0.8 82.15+0.21

−0.23 1.256+0.029
−0.029 14.6+3.4

−2.3 0.672 0.300 1.31+0.62
−0.36 2.11+0.94

−0.56 2.06+0.92
−0.55

WASP-76 Cameron (priv. comm.) 3.3+0.6
−0.6 88.28+1.169

−1.455 1.586+0.178
−0.157 24.4+6.1

−4.4 0.575 0.298 6.75+3.51
−2.10 5.27+2.58

−1.58 5.15+2.53
−1.54

WASP-77A Cameron (priv. comm.) 4.0+0.2
−0.2 89.23+0.518

−0.670 0.946+0.011
−0.010 12.0+0.6

−0.6 0.747 0.361 0.64+0.07
−0.06 1.26+0.12

−0.11 1.20+0.12
−0.10

WASP-77B Cameron (priv. comm.) 2.8+0.5
−0.5 89.23+0.518

−0.670 0.946+0.011
−0.010 17.1+3.7

−2.6 0.747 0.361 1.26+0.56
−0.34 2.40+1.00

−0.62 2.29+0.95
−0.59

WASP-78 Smalley et al. (2012) 7.2+0.8
−0.8 83.2+2.3

−1.6 2.20+0.12
−0.12 15.3+2.1

−1.7 0.655 0.278 1.57+0.43
−0.32 2.43+0.64

−0.47 2.40+0.63
−0.46

WASP-79 Smalley et al. (2012) 19.1+0.7
−0.7 83.3+0.5

−0.5 1.91+0.09
−0.09 5.03+0.31

−0.30 0.371 0.243 − 0.36+0.04
−0.04 0.37+0.04

−0.04

WASP-80 Triaud et al. (2013a) 3.46+0.34
−0.35 89.92+0.07

−0.12 0.571+0.016
−0.016 8.34+0.98

−0.77 0.929 0.867 0.19+0.04
−0.03 0.34+0.07

−0.05 0.30+0.07
−0.05

WASP-81 Cameron (priv. comm.) 2.0 (assumed) 88.62+0.812
−1.007 1.296+0.226

−0.264 32.8+5.7
−6.8 0.650 0.371 6.69+2.33

−2.35 7.49+2.48
−2.53 7.11+2.35

−2.41

WASP-82 Cameron (priv. comm.) 5.1+0.4
−0.4 87.40+1.583

−1.957 1.938+0.116
−0.077 19.3+1.9

−1.6 0.377 0.287 − 3.58+0.66
−0.53 3.51+0.65

−0.52

WASP-83 Cameron (priv. comm.) 1.1+0.9
−0.9 89.10+0.573

−0.749 0.978+0.069
−0.073 39.9+59.4

−16.2 −0.097 0.411 − 9.68+39.64
−5.87 9.07+37.13

−5.50

WASP-84 Cameron (priv. comm.) 4.1+0.3
−0.3 88.32+0.239

−0.264 0.754+0.058
−0.051 9.34+1.01

−0.92 0.785 0.491 0.35+0.08
−0.06 0.61+0.12

−0.10 0.56+0.11
−0.09

WASP-85 Cameron (priv. comm.) 2.0 (assumed) 88.38+1.047
−1.267 0.941+0.053

−0.031 23.8+1.34
−0.77 0.673 0.542 3.22+0.35

−0.19 2.93+0.30
−0.17 2.65+0.27

−0.15

WASP-86 Cameron (priv. comm.) 2.0 (assumed) 86.44+2.388
−4.313 2.244+0.546

−0.272 56.6+13.7
−6.9 0.572 0.269 33.65+16.85

−7.29 25.60+12.11
−5.32 25.34+11.99

−5.27
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System Reference v sin I i Rs Prot (B-V) (J-K) age1 age2 age3

/km s−1 /R� /days /Gyr /Gyr /Gyr

WASP-87 Cameron (priv. comm.) 9.6+0.7
−0.7 81.59+1.334

−1.147 1.635+0.090
−0.103 8.49+0.84

−0.77 0.599 0.280 0.75+0.15
−0.12 0.84+0.15

−0.13 0.83+0.15
−0.13

WASP-88 Cameron (priv. comm.) 8.4+0.8
−0.8 73.50+1.975

−1.503 4.438+0.242
−0.369 25.3+3.25

−2.77 0.595 0.246 6.03+1.53
−1.18 6.49+1.56

−1.21 6.50+1.57
−1.21

WASP-89 Cameron (priv. comm.) 2.5+0.9
−0.9 89.16+0.523

−0.630 0.885+0.025
−0.020 17.8+10.0

−4.7 0.480 0.542 52.81+68.75
−22.95 1.75+2.13

−0.73 1.58+1.92
−0.66

WASP-90 Cameron (priv. comm.) 6.0+0.5
−0.5 83.45+1.492

−1.461 1.714+0.229
−0.247 14.3+2.4

−2.3 0.210 0.302 − 2.02+0.64
−0.54 1.97+0.62

−0.52

WASP-91 Cameron (priv. comm.) 2.4+0.4
−0.4 86.54+0.344

−0.435 0.886+0.039
−0.031 18.7+3.8

−2.8 0.719 0.563 1.67+0.69
−0.43 1.84+0.72

−0.46 1.66+0.65
−0.41

WASP-92 Cameron (priv. comm.) 2.0 (assumed) 85.20+3.326
−4.215 1.345+0.288

−0.187 33.7+7.3
−4.7 0.250 0.315 − 8.99+3.76

−2.12 8.72+3.65
−2.06

WASP-93 Cameron (priv. comm.) 2.0 (assumed) 80.90+0.570
−0.938 1.557+0.105

−0.077 38.8+2.6
−1.9 0.568 0.291 17.36+2.25

−1.58 12.33+1.52
−1.07 12.08+1.49

−1.05

WASP-94 Cameron (priv. comm.) 3.9+0.5
−0.5 85.24+1.034

−1.043 1.536+0.162
−0.130 19.9+3.5

−2.9 0.655 0.285 2.56+0.92
−0.64 3.81+1.29

−0.92 3.74+1.27
−0.90

WASP-95 Cameron (priv. comm.) 2.0 (assumed) 84.96+0.792
−0.881 1.248+0.068

−0.056 31.5+1.7
−1.4 0.651 0.372 6.14+0.64

−0.51 6.93+0.69
−0.55 6.57+0.65

−0.52

WASP-96 Cameron (priv. comm.) 1.5+1.3
−1.3 85.36+0.528

−0.864 1.037+0.094
−0.063 31.2+45.6

−13.4 1.340 0.353 1.18+5.19
−0.77 7.13+28.54

−4.51 6.81+27.27
−4.31

WASP-97 Cameron (priv. comm.) 2.0 (assumed) 86.08+1.412
−1.059 1.097+0.066

−0.064 27.7+1.7
−1.6 0.707 0.377 3.64+0.43

−0.39 5.44+0.61
−0.56 5.16+0.58

−0.53

WASP-98 Cameron (priv. comm.) 0.5 (assumed) 86.36+0.329
−0.492 0.774+0.049

−0.038 78.2+4.9
−3.9 0.580 0.407 56.87+6.83

−5.19 32.47+3.71
−2.84 30.45+3.48

−2.66

QATAR-1 Alsubai et al. (2011) 2.1+0.8
−0.8 83.47+0.40

−0.36 0.823+0.025
−0.025 19.6+4.9

−3.9 1.060 0.590 0.74+1.03
−0.33 1.90+2.47

−0.83 1.70+2.21
−0.74

CoRot-1 Barge et al. (2008); Torres et al. (2012) 4.6+0.9
−0.9 85.1+0.5

−0.5 1.14+0.03
−0.03 12.5+3.1

−2.1 B not known 0.313 − 1.54+0.74
−0.42 1.49+0.72

−0.41

CoRot-2∗ Alonso et al. (2008) 11.95+0.58
−0.55 87.84+0.16

−0.17 0.902+0.018
−0.018 4.5+0.14

−0.14 0.854 0.473 0.07+0.004
−0.004 0.17+0.01

−0.01 0.16+0.01
−0.01

CoRot-3 Triaud et al. (2009) 35.8+8.2
−8.3 86.10+0.73

−0.52 1.56+0.09
−0.09 2.20+0.67

−0.43 0.907 0.320 0.02+0.01
−0.01 0.07+0.04

−0.02 0.07+0.04
−0.02

CoRot-11 Gandolfi et al. (2012) 38.47+0.07
−0.07 83.41+0.17

−0.17 1.33+0.04
−0.04 1.74+0.05

−0.05 0.930 0.341 0.01+0.001
−0.001 0.04+0.002

−0.002 0.04+0.002
−0.002

CoRot-18∗ Hébrard et al. (2011b) 8.0+1.0
−1.0 86.5+1.4

−0.9 1.00+0.13
−0.13 5.4+0.4

−0.4 0.800 0.431 0.12+0.02
−0.02 0.26+0.04

−0.03 0.24+0.03
−0.03

CoRot-19 Guenther et al. (2012) 6+1
−1 88.0+0.7

−0.7 1.65+0.04
−0.04 13.9+2.8

−2.0 0.863 0.487 0.59+0.24
−0.15 1.25+0.49

−0.30 1.15+0.45
−0.28

Fomalhaut Mamajek (2012) 93+1
−1 65.9+0.4

−0.4 1.842+0.019
−0.019 0.91+0.01

−0.01 0.09 unknown − − −

HAT-P-1 Johnson et al. (2008) 3.75+0.58
−0.58 86.28+0.20

−0.20 1.115+0.050
−0.050 15.0+2.8

−2.1 0.60 0.298 2.17+0.83
−0.52 2.21+0.80

−0.51 2.16+0.79
−0.50

HAT-P-2 Loeillet et al. (2008); Pál et al. (2010) 19.5+1.4
−1.4 90.0+0.85

−0.93 1.64+0.08
−0.08 4.25+0.40

−0.34 0.46 0.193 − 0.31+0.05
−0.04 0.32+0.06

−0.043

HAT-P-4 Winn et al. (2011b) 5.83+0.35
−0.35 88.76+0.89

−1.38 1.617+0.057
−0.050 14.0+1.0

−0.9 0.71 unknown 1.01+0.14
−0.12 − −

Continued on next page
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System Reference v sin I i Rs Prot (B-V) (J-K) age1 age2 age3

/km s−1 /R� /days /Gyr /Gyr /Gyr

HAT-P-6 Noyes et al. (2008); Albrecht et al. (2012b) 7.8+0.6
−0.6 85.51+0.35

−0.35 1.46+0.06
−0.06 9.44+0.90

−0.77 0.41 0.245 − 1.12+0.20
−0.16 1.12+0.20

−0.16

HAT-P-7 Pál et al. (2008); Albrecht et al. (2012b) 2.7+0.5
−0.5 80.8+2.8

−1.2 1.84+0.23
−0.11 34.9+8.9

−6.2 0.49 0.221 80.13+42.50
−24.68 12.33+6.18

−3.65 12.52+6.27
−3.71

HAT-P-8 Torres et al. (2012); Mancini et al. (2013b) 12.6+1.0
−1.0 87.5+1.9

−0.9 1.475+0.032
−0.032 5.91+0.53

−0.45 0.41 0.261 − 0.46+0.08
−0.06 0.46+0.08

−0.06

HAT-P-9 Shporer et al. (2009); Torres et al. (2012) 13.4+1.4
−1.4 86.5+0.2

−0.2 1.32+0.07
−0.07 4.96+0.62

−0.52 0.01 0.259 − 0.34+0.08
−0.06 0.34+0.08

−0.06

HAT-P-13 8.18+0.49
−0.49 83.52+0.22

−0.22 1.468+0.054
−0.054 9.02+0.67

−0.60 0.42 0.243 9.01+5.57
−2.93 14.98+8.73

−4.69 14.32+8.34
−4.48

HAT-P-16 Buchhave et al. (2010); Moutou et al. (2011) 3.9+0.8
−0.8 86.6+0.7

−0.7 1.237+0.054
−0.054 16.0+4.2

−2.8 0.47 0.297 − 2.49+1.29
−0.72 2.44+1.27

−0.70

HAT-P-23 Bakos et al. (2011); Moutou et al. (2011) 7.8+1.6
−1.6 85.1+1.5

−1.5 1.203+0.035
−0.035 7.77+2.11

−1.35 1.11 0.312 0.12+0.07
−0.04 0.66+0.35

−0.19 0.64+0.34
−0.19

HAT-P-24 Kipping et al. (2010); Albrecht et al. (2012b) 11.2+0.9
−0.9 88.6+0.7

−0.7 1.317+0.068
−0.068 5.95+0.60

−0.53 0.45 0.254 − 0.48+0.09
−0.07 0.48+0.09

−0.07

HAT-P-32 Hartman et al. (2011); Albrecht et al. (2012b) 20.6+1.5
−1.5 88.9+0.4

−0.4 1.219+0.016
−0.016 3.00+0.24

−0.21 0.35 0.261 − 0.14+0.02
−0.02 0.14+0.02

−0.02

HAT-P-34 Bakos et al. (2012); Albrecht et al. (2012b) 24.3+1.2
−1.2 87.1+1.2

−1.2 1.535+0.102
−0.102 3.19+0.28

−0.26 0.41 0.213 − 0.18+0.03
−0.03 0.18+0.03

−0.03

HD149026 Carter et al. (2009); Albrecht et al. (2012b) 7.7+0.8
−0.8 84.5+0.60

−0.52 1.534+0.049
−0.047 10.0+1.2

−1.0 0.61 unknown 0.95+0.22
−0.17 − −

HD17156 Barbieri et al. (2009); Narita et al. (2009a) 4.18+0.31
−0.31 87.21+0.31

−0.31 1.44+0.08
−0.08 17.4+1.7

−1.5 0.62 unknown 2.47+0.47
−0.38 − −

HD189733 Collier Cameron et al. (2010a) 3.10+0.03
−0.03 85.51+0.10

−0.05 0.766+0.007
−0.013 12.4+0.2

−0.2 B unknown J unknown − − −

HD209458 Southworth (2010) 4.4+0.2
−0.2 86.55+0.03

−0.03 1.162+0.012
−0.012 13.3+0.7

−0.6 0.58 0.283 2.08+0.20
−0.18 1.87+0.17

−0.15 1.84+0.16
−0.15

HD80606 Hébrard et al. (2010) 1.7+0.3
−0.3 89.27+0.018

−0.018 1.007+0.024
−0.024 29.8+6.6

−4.5 0.78 unknown 3.20+1.44
−0.84 − −

Kepler-8 Jenkins et al. (2010); Albrecht et al. (2012b) 8.9+1.0
−1.0 84.07+0.33

−0.33 1.486+0.062
−0.062 8.38+1.13

−0.89 V unknown 0.283 − 0.81+0.21
−0.15 0.80+0.20

−0.14

Kepler-16∗ Doyle et al. (2011); Winn et al. (2011a) 0.920+0.025
−0.025 90+9

−9 0.649+0.001
−0.001 35.1+1.0

−1.0 V unknown 0.819 − 3.69+0.19
−0.19 3.18+0.16

−0.16

Kepler-17 Désert et al. (2011) 4.7+1.0
−1.0 87.2+0.15

−0.15 1.02+0.03
−0.03 11.9+1.1

−1.1 V unknown 0.407 − 1.12+0.20
−0.18 1.05+0.19

−0.16

Kepler-30 b Fabrycky et al. (2012) 1.94+0.22
−0.22 89.82+0.17

−0.17 0.95+0.12
−0.12 16.0+0.4

−0.4 V unknown 0.42 − 1.86+0.08
−0.08 1.73+0.08

−0.08

KOI-13 Barnes et al. (2011) 65+10
−10 85.9+0.4

−0.4 1.756+0.014
−0.014 1.36+0.25

−0.18 0.21 0.041 − 0.07+0.02
−0.02 0.08+0.03

−0.02

KOI-94 d Hirano et al. (2012) 8.01+0.72
−0.73 87.85+0.55

−0.55 1.61+0.11
−0.12 10.1+1.3

−1.1 unknown 0.292 − 1.12+0.26
−0.20 1.09+0.25

−0.20

TrES-01 Narita et al. (2007) 1.3+0.3
−0.3 88.4+0.3

−0.3 0.818+0.02
−0.02 40.2+22.9

−14.6 unknown unknown − − −

TrES-02 Sozzetti et al. (2007); Winn et al. (2008) 1.0+0.6
−0.6 83.62+0.14

−0.14 1.00+0.036
−0.036 48.7+51.4

−17.6 unknown unknown − − −

Continued on next page
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System Reference v sin I i Rs Prot (B-V) (J-K) age1 age2 age3

/km s−1 /R� /days /Gyr /Gyr /Gyr

TrES-04 Chan et al. (2011) 8.5+1.2
−1.2 82.81+0.37

−0.37 1.798+0.052
−0.052 10.6+1.8

−1.3 unknown unknown − − −

XO-3 Hirano et al. (2011a) 18.4+0.2
−0.2 83.89+0.40

−0.40 1.409+0.054
−0.054 3.85+0.15

−0.15 0.42 0.222 − 0.24+0.02
−0.02 0.24+0.02

−0.02

XO-4 Narita et al. (2010a) 8.8+0.5
−0.5 88.8+0.6

−0.6 1.530+0.362
−0.069 9.08+1.87

−0.87 0.34 0.261 − 1.00+0.39
−0.16 0.99+0.39

−0.16
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B
Comparing age estimation methods

This Appendix presents a graphical comparison of the ages obtained through different age

estimation methods, using the results presented in Appendix A. In Chapter 2 I presented the

results of the comparison between the Yonsei-Yale (YY) stellar models (Demarque et al., 2004)

and the gyrochronology formulation of Collier Cameron et al. (2009), and commented on the

differences between the results obtained using these methods.

Here I present similar comparisons between the ages obtained using the Padova (Girardi

et al., 2010; Marigo et al., 2008), Yonsei-Yale (YY), Dartmouth Stellar Evolution (DSEP) (Dot-

ter et al., 2008), Teramo (Pietrinferni et al., 2004), and Victoria-Regina (VRSS) (VandenBerg

et al., 2006) stellar models, and the gyrochronology formulations characterised by equations

(2.10) (Barnes, 2007; Meibom et al., 2009; James et al., 2010), (2.11) (Collier Cameron

et al., 2009), and (2.12) (Delorme et al., 2011b). As in Chapter 2, all comparisons between

different methods use only those systems with valid results for both methods, and systems

with calculated ages greater than the current best estimate of the age of the Universe were

disregarded.
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Appendix B. Comparing age estimation methods

Figure B.1: Scatter plots comparing the age estimates produced by fitting different stellar models to the
ages calculated using different gyrochronology formulations. Dashed lines denote y = x, and the maximum
age on both axes is set to the age of the Universe. Direct measurements of the stellar rotation period were
available for systems marked in blue. For systems marked in black, Prot was inferred from v sin I and Rs.
For all combinations there is a clear preponderance of data on the stellar model fitting side of the y = x
line. This indicates that all of the gyrochronology methods seem to return older ages than all of the stellar
models.

Figure B.2: Age distributions for the results that I obtained from stellar model fitting and gyrochronology.
Blue, open distributions are calculated using gyrochronology results, and black, hashed histograms are
calculated using stellar model fitting results. Thick, vertical lines denote the median of the distributions.
In all cases the peak of the gyrochronology distribution lies at a younger age than the peak of the stellar
model fitting distribution. Similarly, the median gyrochronology age is younger than the median stellar
model fitting age in all cases.
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Figure B.3: Cumulative probability distributions for the difference between the age estimates obtained by
stellar model fitting and by gyrochronology. The dotted lines denote ∆age = 0 and probability = 0.5.
The x -axis range is ± the age of the Universe. In all panels there is a clear offset towards positive ∆age,
confirming that stellar model fitting is returning ages which are older than those from gyrochronology.
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Figure B.4: ∆age as a function of τtidal, the tidal realignment timescale, for all combinations of stellar
model choice and gyrochronology formulation. The shorter the timescale, the stronger the tidal interactions
within the system, and the greater the angular momentum exchange. Some of the combinations of stellar
model and gyrochronology formulation show slight evidence for a trend of increasing∆age with decreasing
τtidal, but over all panels the effect is minimal. Legend as for Figure B.1.
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Figure B.5: ∆age as a function of stellar effective temperature Teff, for all combinations of stellar model
choice and gyrochronology formulation. For four of the five stellar models there is a clear trend for∆age to
increase with decreasing Teff (towards later spectral types). The exception is the Padova model set, which
shows a shallower decline in ∆age. Legend as for Figure B.1.
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Figure B.6: Age as a function of stellar effective temperature for all stellar model choices and all gy-
rochronology formulations. Left column: Ages calculated through stellar model fitting. Right column:
Ages calculated through gyrochronology. All stellar model data show the same trend for decreasing ∆age
with increasing Teff, but the ages from the gyrochronology methods show no such trend. Legend as for
Figure 2.6.
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Figure B.7: As Figure B.1, but for the sub-sample of systems with measured spin-orbit alignment angle.
Black data denote systems which are judged to be ‘aligned’ according to the criterion of Winn et al. (2010a),
whilst blue data mark ‘misaligned’ systems. Filled triangles mark systems for which λ was measured
through Doppler tomography.

Figure B.8: As Figure B.2, for the sub-sample of systems with measured spin-orbit alignment angles.
Legend as for Figure B.2.
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Figure B.9: As for Figure B.3, for the sub-sample of systems with measured spin-orbit alignment. The
grey distribution was calculated for all of the systems in this sub-sample. The black distribution and blue
distribution were calculated for ‘aligned’ and ‘misaligned’ systems only. There is a clear offset towards
positive ∆age for all of the full distributions and all of the ‘aligned’ distributions. Most of the ‘misaligned’
distributions also show an offset, with the exception of those for the YY stellar models which pass through
∆age= 0.
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Figure B.10: As for Figure B.4, for the sub-sample of systems with measured spin-orbit alignment. Legend
as for Figure B.7. For some combinations of stellar model choice and gyrochronology formulation the
‘misaligned’ systems show an increase in ∆age as τtidal decreases. The ‘aligned’ systems show no trend.
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C
Journal of observations

This appendix presents the spectroscopic measurements which were obtained specifically for

the analyses of the spin-orbit alignment of the WASP-16, -25, -31, -32, -38, and -40 which were

presented in Chapter 5. The observations are separated according to system and instrument

used.

Table C.1: Radial velocity data for WASP-16 obtained using the CORALIE high precision échelle spectro-
graph.

HJD(-2450000) RV/km s−1 σRV/km s−1

4535.864842 −1.99772 0.01591

4537.849158 −1.96688 0.00853

4538.858364 −2.00734 0.00899

4558.780835 −1.83336 0.00723

4560.709473 −2.00513 0.00725

Continued on next page
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HJD(-2450000) RV/km s−1 σRV/km s−1

4561.688137 −1.82730 0.00785

4589.705102 −1.84255 0.00875

4591.706755 −2.03571 0.00892

4652.495906 −1.82493 0.00808

4656.551645 −2.02421 0.00787

4657.577293 −1.96640 0.00957

4663.539741 −2.02961 0.00969

4664.616769 −1.78590 0.01108

4682.521501 −1.98118 0.00754

4881.869213 −2.02245 0.00813

4882.801025 −1.83289 0.00823

4884.737094 −2.04565 0.00778

4891.805707 −1.90043 0.00798

4892.723980 −1.83413 0.00891

4941.728231 −1.88737 0.00748

4943.730102 −2.04677 0.00753

4944.739293 −1.91359 0.00860

4945.799895 −1.85815 0.00807

4947.745317 −1.93960 0.00741

4948.673112 −1.82992 0.00743

4972.707323 −1.93123 0.00854

4975.733486 −1.93144 0.01100

4982.647535 −1.83433 0.01036

4984.642389 −2.04210 0.00892

4985.694776 −1.81561 0.00802

5391.544362 −1.80313 0.00867
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Table C.2: Radial velocity data for WASP-16, for the first transit obtained using the HARPS high precision
échelle spectrograph on the night of 2010 March 21.

HJD(-2450000) RV/km s−1 σRV/km s−1

5275.661171 −1.80610 0.00337

5275.907691 −1.78144 0.00188

5276.661941 −1.88264 0.00533

5276.668446 −1.89263 0.00546

5276.674824 −1.88914 0.00583

5276.681375 −1.87845 0.00547

5276.687753 −1.89900 0.00557

5276.694258 −1.88947 0.00569

5276.700693 −1.89868 0.00555

5276.707094 −1.89750 0.00552

5276.713599 −1.88945 0.00586

5276.720046 −1.91121 0.00614

5276.726493 −1.89650 0.00623

5276.732929 −1.88385 0.00657

5276.739376 −1.90596 0.00640

5276.745812 −1.90686 0.00704

5276.752143 −1.90101 0.00698

5276.758579 −1.91736 0.00742

5276.765605 −1.90950 0.00627

5276.771589 −1.91143 0.00447

5276.778140 −1.91692 0.00439

5276.784344 −1.91573 0.00479

5276.790838 −1.92779 0.00526

5276.797459 −1.92243 0.00510

5276.803964 −1.90902 0.00433

Continued on next page
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HJD(-2450000) RV/km s−1 σRV/km s−1

5276.810411 −1.92567 0.00391

5276.816441 −1.91540 0.00416

5276.823178 −1.92366 0.00424

5276.829336 −1.92742 0.00454

5276.835887 −1.92693 0.00522

5276.842334 −1.92962 0.00572

5276.848723 −1.94183 0.00699

5276.855228 −1.94543 0.00926

5276.861907 −1.92508 0.00830

5277.630948 −2.02847 0.00222

5277.861599 −1.99854 0.00196

5278.632376 −1.82733 0.00398

5278.857922 −1.79546 0.00208

5279.627285 −1.84379 0.00264

5279.913540 −1.91554 0.00242

5280.624797 −2.03079 0.00266

5280.916481 −2.00824 0.00283

Table C.3: Radial velocity data for WASP-16, for the second transit obtained using the HARPS high
precision échelle spectrograph on the night of 2011 May 12.

HJD(-2450000) RV/km s−1 σRV/km s−1

5685.845943 −2.02724 0.00305

5687.838150 −1.79259 0.00383

5692.662149 −1.99841 0.00380

5692.796210 −1.96847 0.00309

5693.517817 −1.81013 0.00298

Continued on next page
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HJD(-2450000) RV/km s−1 σRV/km s−1

5693.800775 −1.78196 0.00285

5694.581176 −1.88349 0.00344

5694.588340 −1.88597 0.00302

5694.595389 −1.88670 0.00310

5694.602900 −1.88871 0.00305

5694.610180 −1.89619 0.00290

5694.616904 −1.89308 0.00323

5694.623386 −1.88547 0.00323

5694.629531 −1.89159 0.00309

5694.635631 −1.89935 0.00312

5694.641904 −1.89371 0.00307

5694.648003 −1.89694 0.00318

5694.654149 −1.91191 0.00298

5694.660364 −1.91005 0.00311

5694.666406 −1.91009 0.00300

5694.672609 −1.91343 0.00311

5694.678824 −1.91547 0.00327

5694.684924 −1.91384 0.00313

5694.691070 −1.91484 0.00330

5694.697227 −1.91701 0.00308

5694.703373 −1.91926 0.00308

5694.709460 −1.91211 0.00335

5694.715664 −1.91534 0.00353

5694.721821 −1.91948 0.00349

5694.727979 −1.92566 0.00346

5694.734078 −1.92109 0.00367

5694.740351 −1.92435 0.00377

Continued on next page
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HJD(-2450000) RV/km s−1 σRV/km s−1

5694.746612 −1.91926 0.00364

5694.752596 −1.93024 0.00354

5695.501446 −2.03120 0.00281

Table C.4: Radial velocity data for WASP-25 obtained using the CORALIE high precision échelle spectro-
graph.

HJD(-2450000) RV/km s−1 σRV/km s−1

4829.822664 −2.57717 0.01282

4896.769798 −2.65105 0.01069

4940.709168 −2.71589 0.01154

4941.704336 −2.61855 0.01153

4942.725717 −2.57632 0.01238

4943.637434 −2.61828 0.01246

4944.715466 −2.67966 0.01207

4945.726530 −2.61467 0.01305

4946.616622 −2.58169 0.01266

4947.601618 −2.64133 0.01096

4947.791245 −2.68927 0.01347

4948.613002 −2.70418 0.01098

4949.803142 −2.55132 0.01819

4950.622083 −2.59141 0.01348

4951.695324 −2.70149 0.01218

4971.645302 −2.67821 0.02101

4972.672436 −2.56129 0.01319

4973.515713 −2.58676 0.01269

4974.678659 −2.71413 0.01359

Continued on next page
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HJD(-2450000) RV/km s−1 σRV/km s−1

4975.537940 −2.66695 0.01384

4976.683662 −2.55567 0.01304

4982.619435 −2.66448 0.02096

4983.621314 −2.56777 0.01486

4983.644577 −2.59698 0.01450

4984.578450 −2.55837 0.01474

4985.609967 −2.69905 0.01189

4995.555496 −2.50858 0.01396

5009.628712 −2.60564 0.01823

5010.596729 −2.53871 0.02313

Table C.5: Radial velocity data for WASP-25 obtained using the HARPS high precision échelle spectro-
graph. The point denoted by ∗ was omitted from the analysis (see text for details).

HJD(-2450000) RV/km s−1 σRV/km s−1

5296.540546 −2.54661 0.00329

5296.635060 −2.54381 0.00398

5297.506446 −2.61464 0.00509

5297.518749 −2.62531 0.01007

5297.523714 −2.63325 0.00942

5297.528714 −2.60898 0.01012

5297.533807 −2.61031 0.01041

5297.538714 −2.60809 0.00999

5297.543714 −2.59973 0.01056

5297.548668 −2.59327 0.01108

5297.553761 −2.58984 0.01028

5297.559131 −2.61140 0.01786

Continued on next page
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Table C.5 – Continued from previous page

HJD(-2450000) RV/km s−1 σRV/km s−1

5297.563761 −2.60108 0.01177

5297.568668 −2.60927 0.01087

5297.573715 −2.60539 0.01075

5297.578761 −2.62964 0.01153

5297.583668 −2.62703 0.01118

5297.588669 −2.61584 0.01225

5297.593715 −2.64141 0.01190

5297.598669 −2.64658 0.01232

5297.603715 −2.65755 0.01234

5297.608715 −2.67520 0.01246

5297.613761 −2.67558 0.01254

5297.618715 −2.68567 0.01244

5297.623669∗ −2.63635 0.01215

5297.628854 −2.67450 0.01065

5297.633761 −2.65389 0.00837

5297.638715 −2.63022 0.00840

5297.643773 −2.63126 0.00885

5297.648727 −2.61768 0.00871

5297.653727 −2.63157 0.00862

5297.658681 −2.63982 0.00841

5297.663773 −2.62371 0.00834

5297.668773 −2.63776 0.00800

5297.673727 −2.64716 0.00811

5297.678727 −2.63753 0.00780

5297.683681 −2.63915 0.00781

5297.688820 −2.63818 0.00823

5297.693727 −2.64295 0.00763

Continued on next page
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HJD(-2450000) RV/km s−1 σRV/km s−1

5297.698774 −2.62870 0.00772

5297.703635 −2.63667 0.00757

5297.708727 −2.63667 0.00781

5297.713727 −2.63031 0.00803

5297.718681 −2.65168 0.00756

5297.723774 −2.64533 0.00785

5297.833578 −2.65676 0.00352

5298.535157 −2.69608 0.00406

5298.716015 −2.69119 0.00285

5298.830796 −2.69107 0.00287

5299.544943 −2.60603 0.00327

5299.701761 −2.62922 0.01842

5299.838220 −2.57573 0.01224

Table C.6: Radial velocity data for WASP-31 obtained using the CORALIE high precision échelle spectro-
graph.

HJD(-2450000) RV/km s−1 σRV/km s−1

4835.809755 −0.20260 0.02945

4837.773728 −0.08457 0.03163

4840.765776 −0.07974 0.03752

4880.767231 −0.20651 0.03722

4939.627676 −0.07528 0.03471

4941.567460 −0.19372 0.02721

4942.654757 −0.12324 0.02598

4943.610624 −0.07939 0.03435

4944.555415 −0.16578 0.02620

Continued on next page
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Table C.6 – Continued from previous page

HJD(-2450000) RV/km s−1 σRV/km s−1

4945.544750 −0.16158 0.03220

4946.591778 −0.04422 0.03441

4947.555094 −0.14075 0.02656

4948.588069 −0.18274 0.02861

4950.597039 −0.08667 0.03009

4951.608264 −0.22821 0.03366

4971.548671 −0.02806 0.07763

4973.489951 −0.09189 0.03084

4974.608541 −0.02130 0.03225

4975.511060 −0.12628 0.03381

4983.595539 −0.10028 0.04415

4984.467744 −0.06112 0.02895

4985.530406 −0.18886 0.03032

4994.508045 −0.09735 0.03237

4994.531307 −0.09484 0.03469

4995.463376 −0.12246 0.03547

4995.486741 −0.20999 0.03214

4996.459605 −0.19034 0.03472

4996.482971 −0.10984 0.03117

4999.536757 −0.21980 0.05522

4999.560099 −0.15670 0.06560

5006.521354 −0.18493 0.04217

5012.492297 −0.09667 0.03739

5013.497045 −0.19082 0.04459

5029.465780 −0.11660 0.05041

5168.846768 −0.15389 0.01852

5203.782854 −0.20152 0.02084
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HJD(-2450000) RV/km s−1 σRV/km s−1

5290.715577 −0.09351 0.01809

5291.699859 −0.12273 0.01821

5293.696819 −0.07455 0.01987

5294.733907 −0.09785 0.01925

5296.704921 −0.13168 0.01772

5298.693406 −0.18210 0.01718

5300.589643 −0.06706 0.02250

5326.628560 −0.13831 0.01945

5327.604475 −0.08093 0.02737

5328.608442 −0.09912 0.01913

5334.544675 −0.05571 0.02129

Table C.7: Radial velocity data for WASP-31 obtained using the HARPS high precision échelle spectro-
graph.

HJD(-2450000) RV/km s−1 σRV/km s−1

5298.496133 −0.15638 0.00896

5298.749145 −0.17218 0.00931

5299.504441 −0.17141 0.01114

5299.716991 −0.29541 0.04800

5300.509357 −0.07910 0.01138

5300.742948 −0.08587 0.01161

5301.582822 −0.11516 0.00934

5301.597544 −0.11250 0.01003

5301.612960 −0.12527 0.00984

5301.627126 −0.10841 0.01418

5301.638028 −0.09394 0.01141

Continued on next page
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Table C.7 – Continued from previous page

HJD(-2450000) RV/km s−1 σRV/km s−1

5301.648803 −0.06309 0.01227

5301.659393 −0.08776 0.01100

5301.670307 −0.11321 0.01136

5301.681082 −0.13542 0.01119

5301.691973 −0.16717 0.01218

5301.702354 −0.19579 0.01297

5301.713349 −0.16796 0.01407

5301.723522 −0.16142 0.01884

5301.734934 −0.14695 0.01771

5301.750477 −0.13378 0.01244

5301.764794 −0.14088 0.01586

5301.780360 −0.15031 0.01738

5305.613529 −0.18166 0.01096

5307.584640 −0.06475 0.00809

Table C.8: Radial velocity data for WASP-32 obtained using the HARPS high precision échelle spectro-
graph.

HJD(-2450000) RV/km s−1 σRV/km s−1

5828.581434 17.82469 0.00919

5828.829629 17.83582 0.00647

5829.586912 18.52797 0.00579

5829.807179 18.70852 0.00529

5830.593731 18.43669 0.00780

5830.602145 18.41150 0.00836

5830.611046 18.41026 0.01001

5830.618766 18.38721 0.00942
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Table C.8 – Continued from previous page

HJD(-2450000) RV/km s−1 σRV/km s−1

5830.625803 18.40267 0.00901

5830.633338 18.38290 0.00940

5830.640444 18.38975 0.00933

5830.648303 18.37346 0.00814

5830.656497 18.35622 0.00822

5830.664356 18.36270 0.00816

5830.672365 18.35400 0.00908

5830.680433 18.33837 0.01021

5830.688639 18.34691 0.00943

5830.696567 18.34257 0.00950

5830.704912 18.30751 0.00858

5830.712840 18.30229 0.00884

5830.720907 18.29955 0.00890

5830.729183 18.27168 0.00844

5830.736960 18.24540 0.00829

5830.745178 18.23510 0.00865

5830.753176 18.22897 0.00807

5830.761231 18.22650 0.00802

5830.769298 18.23197 0.00804

5830.777296 18.22548 0.00830

5830.785363 18.21815 0.00815

5830.793546 18.20186 0.00854

5830.801613 18.21736 0.00877

5830.809623 18.19578 0.00891

5830.817771 18.18887 0.00960

5830.825780 18.16949 0.01005

5831.590826 17.85109 0.00602
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Table C.8 – Continued from previous page

HJD(-2450000) RV/km s−1 σRV/km s−1

5831.811104 18.01057 0.00551

Table C.9: Radial velocity data for WASP-38 obtained using the HARPS high precision échelle spectro-
graph.

HJD(-2450000) RV/km s−1 σRV/km s−1

5656.783091 −9.51508 0.00337

5657.783221 −9.52550 0.00299

5660.811940 −9.98361 0.00319

5662.834946 −9.64728 0.00423

5680.716630 −9.95563 0.00389

5681.710237 −9.97538 0.00295

5683.728896 −9.59883 0.00285

5714.660893 −9.89326 0.00588

5716.602469 −9.90687 0.00307

5727.508875 −9.72505 0.00658

5727.519373 −9.72057 0.00586

5727.523134 −9.71142 0.00564

5727.527081 −9.70382 0.00585

5727.530912 −9.69675 0.00523

5727.534824 −9.69758 0.00528

5727.538562 −9.69301 0.00529

5727.542879 −9.69153 0.00527

5727.546791 −9.69410 0.00599

5727.550656 −9.68355 0.00613

5727.554603 −9.68966 0.00672

5727.558272 −9.67696 0.00592
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HJD(-2450000) RV/km s−1 σRV/km s−1

5727.562045 −9.69909 0.00646

5727.566397 −9.69542 0.00694

5727.570343 −9.68220 0.00618

5727.574140 −9.70082 0.00615

5727.578017 −9.69531 0.00609

5727.581882 −9.70552 0.00618

5727.585586 −9.70640 0.00618

5727.592484 −9.71415 0.00667

5727.596430 −9.72199 0.00718

5727.600203 −9.71776 0.00651

5727.604046 −9.73514 0.00681

5727.607923 −9.73209 0.00676

5727.611800 −9.73769 0.00745

5727.619335 −9.74676 0.00739

5727.623177 −9.75379 0.00724

5727.627020 −9.76161 0.00671

5727.630746 −9.76295 0.00678

5727.634589 −9.76762 0.00661

5727.638466 −9.76457 0.00690

5727.642667 −9.78228 0.00754

5727.646510 −9.77732 0.00655

5727.650422 −9.78573 0.00707

5727.654183 −9.78749 0.00695

5727.658164 −9.78420 0.00719

5727.661868 −9.79843 0.00745

5727.666231 −9.80281 0.00769

5727.670143 −9.79479 0.00621
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Table C.9 – Continued from previous page

HJD(-2450000) RV/km s−1 σRV/km s−1

5727.673905 −9.79231 0.00634

5727.677747 −9.79598 0.00576

5727.681543 −9.79677 0.00532

5727.685386 −9.80741 0.00569

5727.689656 −9.80222 0.00564

5727.693430 −9.79689 0.00612

5727.697226 −9.79349 0.00704

5727.701242 −9.78573 0.00693

5727.705049 −9.78707 0.00585

5727.708915 −9.78243 0.00568

5727.713197 −9.76337 0.00552

5727.716936 −9.77080 0.00593

5727.720871 −9.77108 0.00529

5727.724713 −9.76885 0.00528

5727.728544 −9.76841 0.00528

5727.732306 −9.76986 0.00514

5727.736484 −9.76921 0.00541

5727.740141 −9.76496 0.00641

5727.744192 −9.76324 0.00720

5727.747999 −9.77120 0.00705

5727.751981 −9.76748 0.00679

5727.755823 −9.76974 0.00648

5727.760256 −9.78057 0.00585

5727.764376 −9.78068 0.00588

5749.637217 −9.96974 0.00642

5753.648280 −9.50884 0.00481

5802.476558 −9.58648 0.00600
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HJD(-2450000) RV/km s−1 σRV/km s−1

5806.489798 −9.80177 0.00370

5809.496470 −9.61798 0.00300

Table C.10: Radial velocity data for WASP-40 obtained using the HARPS high precision échelle spectro-
graph.

HJD(-2450000) RV/km s−1 σRV/km s−1

5686.691040 −15.68740 0.00531

5691.594153 −15.83574 0.00593

5691.621178 −15.84591 0.00639

5691.784798 −15.82559 0.00548

5692.677700 −15.67883 0.00455

5692.747097 −15.67360 0.00411

5693.571851 −15.75439 0.00814

5693.577950 −15.75479 0.00878

5693.584107 −15.74939 0.00838

5693.590207 −15.75567 0.00843

5693.596480 −15.74962 0.00807

5693.602579 −15.75667 0.00803

5693.608737 −15.76548 0.00767

5693.614952 −15.75844 0.00817

5693.621167 −15.76064 0.00735

5693.627093 −15.75956 0.00822

5693.633296 −15.77570 0.00901

5693.639569 −15.76272 0.00858

5693.645669 −15.77900 0.00757

5693.651884 −15.77096 0.00700
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Table C.10 – Continued from previous page

HJD(-2450000) RV/km s−1 σRV/km s−1

5693.657925 −15.77981 0.00764

5693.664152 −15.76408 0.00737

5693.670263 −15.76868 0.00751

5693.676467 −15.76874 0.00774

5693.682682 −15.76226 0.00709

5693.688781 −15.78715 0.00662

5693.694927 −15.77673 0.00671

5693.701142 −15.78574 0.00677

5693.707184 −15.78466 0.00663

5693.713387 −15.76800 0.00666

5693.719603 −15.78821 0.00713

5693.725633 −15.77244 0.00792

5693.787541 −15.78723 0.00474

5694.567017 −15.85210 0.00448

5695.576799 −15.69093 0.00362

5695.757478 −15.67832 0.00406
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Online resources

[1] - http://www.exoplanet.eu

[2] - http://www.aip.de/People/RHeller

207

http://www.exoplanet.eu
http://www.aip.de/People/RHeller




Chapter heading images

The images that I have used for my chapter headings are all artist impressions of exoplanets.
No infringement of copyright is intended through their use.

Chapter 1 - A retrograde hot Jupiter. Credit: Lynette Cook

Chapter 2 - HD 189733 b. Credit: C. Carreau/Esa

Chapter 3 - HD 189733 b. Credit: ESA, NASA, M. Kornmesser (ESA/Hubble) and STScI

Chapter 4 - HAT-P-7 b. Credit: NASA, ESA and G. Bacon (STScI)

Chapter 5 - HD 189733 b. Credit: ESA, NASA, G. Tinetti (University College London, UK
& ESA) and M. Kornmesser (ESA/Hubble)

Chapter 6 - Corot-9 b. Credit: ESO/L. Calçada

Chapter 7 - HD 85512 b. Credit: ESO/M. Kornmesser
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