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Abstract

The dynamics of the solar corona are dominated by the magnetic field which creates its structure. The

magnetic field in most of the corona is ‘frozen’ to the plasma very effectively. The exception is in small

localised regions of intense current concentrations wherethe magnetic field can slip through the plasma

and a restructuring of the magnetic field can occur. This process is known as magnetic reconnection and is

believed to be responsible for a wide variety of phenomena inthe corona, from the rapid energy release of

solar flares to the heating of the high-temperature corona.

The coronal field itself is three-dimensional (3D), but muchof our understanding of reconnection has

been developed through two-dimensional (2D) models. This thesis describes several models for fully 3D

reconnection, with both kinematic and fully dynamic modelspresented. The reconnective behaviour is

shown to be fundamentally different in many respects from the 2D case. In addition a numerical experiment

is described which examines the reconnection process in coronal magnetic flux tubes whose photospheric

footpoints are spun, one type of motion observed to occur on the Sun.

The large-scale coronal field itself is thought to be generated by a magnetohydrodynamic dynamo op-

erating in the solar interior. Although the dynamo effect itself is not usually associated with reconnection,

since the essential element of the problem is to account for the presence of large-scale fields, reconnection

is essential for the restructuring of the amplified small-scale flux. Here we examine some simple models of

the solar-dynamo process, taking advantage of their simplicity to make a full exploration of their behaviour

in a variety of parameter regimes. A wide variety of dynamic behaviour is found in each of the models,

including aperiodic modulation of cyclic solutions and intermittency that strongly resembles the historic

record of solar magnetic activity.
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Chapter 1

Introduction

Figure 1.1: The solar corona as observed during the total solar eclipses of (left) 1980, close to sunspot
maximum, and (right) 1994, close to sunspot minimum.Source: High Altitude Observatory.

Plasmas do not form a significant part of our every-day environment and yet the stars, the interplanetary

medium and the interstellar medium are all made of ionised gases. Indeed more than 99% of the visible

matter in the universe consists of plasma. A physical understanding of these plasmas is, therefore, of

major importance – but hard to come by since the huge spatial scales that characterise the problem are not

available for realistic experiments on Earth. Instead, thenatural laboratory to turn to is the solar corona, the

outer atmosphere of the Sun.

The corona exhibits significant temporal and spatial variability (as has been observed in eclipses for

centuries – see Figure 1.1). Its structure is created by the magnetic field that permeates it and is responsible

for its extreme temperature; in the 1940s the corona was found to be several hundred times hotter than

the underlying visible surface of the Sun, the photosphere.To understand the corona we must understand

its magnetic field. Where does the field originate? How does itbehave and what are the consequences of

the behaviour? These are some of the questions we will examine in this thesis, but first we consider the

structure of the Sun in more detail.

The Sun is estimated to have been luminous for about4.6× 109 years – the only energy source capable

1
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of meeting such a long term requirement is nuclear fusion. The fusion process occurs in thecore of the

Sun, which extends to 20% of its radius, and is sufficiently hot
(
15 × 106K

)
and dense

(
150 g/cm−3

)

to sustain the reactions, the most important of which is the proton-proton reaction. Moving further away

from the solar centre, the temperature and density decreasesuch that fusion stops, the transition marking

the beginning of theradiative zonewhere energy is transported toward the surface by radiation. Photons

travelling (net) outwards through the region continually undergo absorption and re-emission, so increasing

their wavelength. When the temperature gradient required to transport the energy flux by radiation is larger

than that of an adiabatically stratified hydrostatic equilibrium, the region becomes unstable to convection

(the Schwartzschild criterion). As a result, convective fluid motions (which are very efficient in energy

transport) occur in the outer 30% of the solar radius, which makes up theconvection zone. As a source of

mechanical energy they are ultimately responsible for the solar magnetic cycle and hence for the majority of

solar dynamics. Large-scale convective motions are observed only indirectly, by their manifestations such

as magnetic activity in the outer solar regions and the solarrotation profile (deduced by helioseismology),

since they tend to be obscured by smaller-scale motions (such as granulation) close to the surface.

Helioseismology uses measurements of global acoustic oscillations on the solar surface (in visible light)

to infer properties of the solar interior. Measuring frequency shifts in these p-mode (pressure-mode) os-

cillations allows the internal velocity profile to be deduced. The convection zone is found to be rotating

differentially, faster at the equator (P ≈ 25 days) than the poles (P ≈ 35 days) and, at mid-latitudes, the

angular velocity contours are approximately radial. The radiative zone, however, rotates as a solid body,

and there exists a sharp transition between the two rotational regimes. This transitional layer is known

as thetachocline(Spiegel and Zahn, 1992, see Hughes et al. (2007) for a recentreview) and estimates of

its width vary from0.1% to 0.9% of the solar radius, depending on how the tachocline is defined (for a

discussion see Miesch, 2005). The rotation rate of the radiative zone lies between that of the polar region

and the equatorial region of the convection zone and so a positive (negative) gradient in the radial angular

velocity across the tachocline exists at low (high) latitudes

The radius of the Sun,RJ = 6.96×108 m, is defined by its visible surface, thephotosphere, where the

plasma becomes optically thin (as we move radially outwards). The photosphere is very thin, comprising

only 0.07% of the solar radius, and has a temperature of about5800K. The photosphere is the inner-most

layer of the Sun that can be observed directly in great detail. Large-scalegranulationandsupergranulation

patterns are seen, which, although associated with convection, are thought not to pervade the convection

zone but to be confined to approximately only the outer 3% of the solar radius.Sunspots, regions of

extremely intense field concentration, are another major photospheric feature. They are seen as small dark

regions drifting across the surface as they are carried around by the rotating Sun. It was by tracking the

motions of sunspots that the solar differential rotation was first inferred.

In the layer above the photosphere, known as thechromosphere, the temperature rises to around20000 K.

Emission inHα gives the chromosphere its distinctive red colour, as seen during solar eclipses inpromi-

nencesprojecting above the limb. Prominences are regions where plasma at chromospheric temperatures

is suspended up in the corona by the magnetic field there (and commonly referred to as filaments when

observed on the solar disc). TheHα emission line can be used to image the chromosphere. In this line

magnetic flux concentrations at the boundaries of photospheric granulation and supergranulation cells ap-

pear as thechromospheric network, and the chromosphere is found to be non-uniform, containing extended
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Figure 1.2: International Sunspot Numbers for the years1700−2005. The International Sunspot Number is
given byR = K(10G+ S) whereS denotes the number of observed sunspots,G the number of observed
sunspot groups andK a quality factor to allow for comparison of results from different observational
locations. Data from 40–70 stations are used in the measurements and is compiled at the Royal Observatory
of Belgium.Source: SIDC, RWC Belgium, World Data Centre for the SunspotIndex, Royal Observatory of
Belgium, 2007.

regions known asspicules– short lasting features in which plasma is ejected toward the corona. Other

chromospheric features includeplagesandfibrils.

Thetransition regionis a thin, highly irregular and dynamic layer that consists of plasma between chro-

mospheric and coronal temperatures. Finally, the outer layer of the solar atmosphere is the solar corona.

The dynamics of all coronal phenomena are controlled by the magnetic field. Although incoronal seis-

mologythe first attempts are being made to measure the field directlyusing the properties of coronal waves

(Roberts et al., 1984), knowledge of the field is traditionally obtained by extrapolation from magnetograms

at the photosphere (using potential or force-free models).The corona itself only becomes visible in white

light when the solar disc is occulted – since it is very tenuous, its optical emission is several orders of

magnitude less than that of the photosphere. It may, however, be observed in great detail in non-visible

wavelengths (such as X-rays) because the brightest emission in these wavelengths comes from the corona

and the photosphere is no longer visible.

The solar magnetic field exhibits dramatic spatial and temporal variability. Several of the changes are

systematic and occur on very large-scales. For example, thenumber of sunspots on the face of the Sun

varies in time in a cyclic but irregular manner (see Figure 1.2). Thesunspot cyclevaries in length but

has an average period of approximately 11 years and, in addition, significant variations in cycle amplitude

are present. As sunspots begin to emerge at the beginning of each cycle, they do so at (relatively) high

latitudes of around27o degrees, but as the cycle progresses emergence tends to occur closer to the equator,

up to around8o. Sunspots typically appear in pairs of opposite polarity, with the axis of a bipolar sunspot

pair being tilted by about4o with respect to the equator (Joy’s law). The polarity of the leading sunspot

(that closest to equator) in each hemisphere reverses at each cycle and has opposite polarity to the leading

sunspots in the opposite hemisphere (Hale’s law). The sunspot cycle reflects an underlying magnetic cycle

with a period of around 22 years, in which the polar field reverses near the time of cycle maximum. The

large-scale corona, as demonstrated by Figure 1.1, looks quite different from solar minimum to maximum,

with coronal holes covering both poles at minima of activitywhile a nearly radial field structure is seen at
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solar maximum where most of the corona is in the form of magnetically closed loops.

The coronal magnetic field is capable of storing huge amountsof energy as it is injected via turbulent

photospheric motions. Its structure is observed to be continually changing on a wide variety of scales and a

process known asmagnetic reconnectionis of fundamental importance in this respect. Reconnectionis the

only process that can change the magnetic field topology and is thought to be responsible for maintaining

the unexpectedly high temperature of the corona as well as for a wide variety of explosive events such as

solar flaresandcoronal mass ejections(CMEs).

In the next section we introduce the equations needed to mathematically describe the behaviour of the

solar magnetic field.

1.1 The Equations of Magnetohydrodynamics

In this thesis we will assume the magnetohydrodynamic (MHD)approximation. There are a number of

conditions behind this assumption, as discussed in detail in, for example, Priest (1982), Boyd and Sanderson

(2003). Briefly, MHD is a theory of non-relativistic macroscopic plasma phenomena. The plasma is treated

as a single fluid, with the electron and ion species locked together and is considered quasi-neutral, so

the charge density vanishes. Under the non-relativistic assumption the displacement current (that given

by ∂E/∂t/c2 in Ampère’s law) can be neglected. By macroscopic we imply that the typical length- and

time-scales of interest are much larger than the typical microscopic length- and time-scales of the ion and

electron dynamics (the ion Larmor radius and gyroperiod andthe mean free path time and length).

The equations of MHD are:

Mass conservation
∂ρ

∂t
+ ∇ · (ρv) = 0 , (1.1)

the equation of motion(or, momentum conservation)

ρ
Dv

Dt
= −∇p+ j × B + F , (1.2)

the ideal gas law

p = ρRT , (1.3)

Ampère’s law

∇× B = µj , (1.4)

solenoidal constraint

∇ · B = 0 , (1.5)
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Faraday’s law
∂B

∂t
= −∇× E , (1.6)

Ohm’s law

E + v × B = R . (1.7)

These equations must also be supplemented by an appropriateenergy equation. In the equationsB is the

magnetic induction, normally referred to as the magnetic field, v is the plasma velocity,E the electric field,

j the electric current density,ρ the mass density,p the plasma pressure (assumed to be isotropic),R the

gas constant,T the plasma temperature,µ the magnetic permeability,F denotes other forces which may be

present, such as that due to gravity. Note that if the solenoidal constraint holds at some timet = 0 then,

by taking the divergence of Faraday’s law, it remains valid for all time t > 0. The termR in Ohm’s law

denotes a general non-ideal term. The basic assumption of resistive MHD is that the collisional effects in

R are the dominant ones, with the resistivity normally considered the most important, i.e.R = j/σ where

σ is the electrical conductivity.

It is common to combine (1.4), (1.6) and the resistive form of(1.7), to give theinduction equation,

∂B

∂t
= ∇× (v × B) + η′∇2B (1.8)

whereη′ = 1/ (µσ) is the magnetic diffusivity. In this thesis we will frequently label η = 1/σ, a com-

mon, and perhaps misleading, notation in the literature. Inobtaining the induction equation, the magnetic

diffusivity has been taken to be uniform. Generally, however, the conductivity is expected to vary in space

through a dependence on the magnetic field and the plasma temperature. We will often take a spatially

dependent conductivity in this thesis and so do not work directly from the induction equation, but use it

here to infer important general properties of solar and astrophysical plasmas. If the termη′∇2B in (1.8)

is neglected we obtain theideal induction equation which may be combined with the equation of mass

continuity, (1.1), to give
D

Dt

(
B

ρ

)

=

(
B

ρ

)

· ∇v.

The equation for the evolution of a material line element is

D

Dt
(dl) = dl · ∇v ,

and so we deduce that in the ideal limit the magnetic field lines move as iffrozeninto the plasma; this is

Alfvén’s theorem. If, however, the advective term∇ × (v × B) is neglected, then the induction equation

reduces to a purely diffusive equation.

The ratio of these two terms, in an order of magnitude sense, is termed themagnetic Reynolds number,

Rm and is a measure of their relative importance:

Rm =
|∇ × (v × B) |

|η′∇2B|
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=
v0B0/l0
η′B0/l20

=
l0v0
η′

.

The magnetic Reynolds number is nearly always very large, particularly so in the solar (and astrophysical)

case because of the huge spatial scales of the systems. Thus the magnetic field is almost always frozen-into

the plasma and field topology is conserved, with important consequences for dynamics. Non-ideal terms

may become important if the length scales associated with the problem are small, as is the case for example

in thin current sheets. The magnetic field can then slip through the plasma, allowing for reconnection.

Another important dimensionless parameter to help characterise the behaviour of the plasma is the

plasma beta, β, which is the ratio of the gas pressure to the magnetic pressure:

β =
2µp0

B2
0

.

In the majority of the coronaβ is very much less than unity, which has the effect of inhibiting cross-field

transport. Accordingly plasma tends to flow from the chromosphere into the corona along magnetic field

lines. Although there are exceptions – regions with very high temperature but low magnetic field may have

valuesβ > 1 – most models of the coronal field essentially assumeβ ≪ 1.

1.2 The Need for a Solar Dynamo

Given the importance of the solar magnetic field in determining coronal dynamics it is natural to ask how

the field originates. A frozen-in primordial field would decay in a time-scale of around109 years, which is

comparable to the age of the solar system. It is, however, very difficult to explain the large-scale temporal

variability of the field (manifested for example in the sunspot cycle shown in Figure 1.2) as consistent with

such a decay. Magnetic fields also are observed in a multitudeof other astrophysical bodies. For example:

our galaxy exhibits a large-scale field confined approximately to the plane of its disc (see, for example Han

and Qiao, 1994, and references therein); very strong surface magnetic fields have been detected on many

other stars (Preston, 1971, Landstreet, 1992, Baliunas et al., 1995); on the planetary scale the magnetic field

of the Earth reverses polarity at apparently random intervals in time (e.g. Cox, 1969).

Large-scale solar fields are thought to arise from the operation of a dynamo working in the solar interior,

with the first suggestion of self-excited dynamo action being given by Larmor (1919); dynamo models

rely on inductive motions of the plasma being able to sustainthe field against the continual energy loss

through Ohmic dissipation. Field amplification occurs through a stretching of the existing field, with an

exemplary model of dynamo action being thestretch-twist-fold(STF) dynamo of Vainshtein and Zeldovich

(1972), illustrated in Figure 1.3. In the first step of the process, a loop of magnetic field is stretched

until it has twice its original length and so, for a frozen-infield, double the field strength. The loop is

then twisted and finally one half folded back on the other to create a doubled loop with the same cross

section as that of the original loop but now with twice the flux. A mechanism such as this will allow the

magnetic energy in an initially smooth field distribution toincrease, and indeed the STF dynamo was the
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Figure 1.3: Cartoon illustrating the stretch-twist-fold sequence that demonstrates the possibility of expo-
nential growth of the magnetic field. Stretching an incompressible closed flux tube to twice its original
length reduces its cross section by half. Twisting and folding gives a tube with twice the flux and the same
original cross section.

first example of afastdynamo, one for which the growth rate of a magnetic field remains positive as the

magnetic Reynolds number approaches infinity (with other dynamos being classed asslow). However, the

model ignores dissipative effects, failing to take into account the strong field gradients that may arise in

the process (particularly at large times) and allow diffusive effects to become important. In a more realistic

dynamo model, the precise balance between driving and diffusion must be considered.

The field is normally decomposed into its toroidal (i.e. longitudinal) and poloidal (i.e. contained in

meridional planes) components and the dynamo problem then formulated in two parts: generation of a

toroidal field from the pre-existing poloidal field and generation of a poloidal field from the pre-existing

toroidal field. The first conversion (poloidal→ toroidal) is now accepted to be due to a drawing out (and

so amplification) of the poloidal field by the Sun’s differential rotation, theomega effect. The second

conversion process (toroidal→ poloidal) is significantly more controversial, with no one mechanism being

(as yet) universally agreed upon. There are, in addition, several restrictions on dynamo action in the form of

a number of anti-dynamo theorems, the most famous of which (Cowling, 1934) demonstrates that a steady

axisymmetric magnetic field cannot be sustained by dynamo action.
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As discussed in Chapter 6, there have now been several advances in dynamo theory, beginning with

Parker’s idea of anαΩ–dynamo operating in the solar convection zone (Parker, 1955). Although much of

the work has side-stepped the difficulty of the nonlinear back-reaction on the flow by the Lorentz force

by discussing only thekinematicproblem (in which the flow is prescribed and the time variation of the

magnetic field deduced) it has, nevertheless, shown that dynamos can work.

Parker (1955) suggested that non-axisymmetric small-scale helical convective motions could twist

toroidal field into poloidal loops, with the net effect beingthe production of a large-scale poloidal field.

This mechanism is classically known as thealpha effectalthough, both in this thesis and some of the liter-

ature, the term is also used to denote any general toroidal topoloidal conversion mechanism. A significant

step forward in the mathematical foundations of this theorycame with the introduction ofmean-field elec-

trodynamics(Steenbeck et al., 1966). Here the magnetic field,B, and flow,v, are written in terms of

mean (B0 (x, t) ,V0 (x, t)) and fluctuating components (b0 (x, t) ,v0 (x, t)) where the mean fields vary

on length-scales much larger than those of the fluctuating parts. An averaging procedure is taken over

intermediate length-scales and so

B (x, t) = B0 (x, t) + b (x, t) , V (x, t) = V0 (x, t) + v (x, t) ,

where〈v〉 = 〈b〉 = 0 (if 〈.〉 denotes averages). Under these conditions, the induction equation, (1.8), can

be written in terms of mean and fluctuating parts, with the equation for the mean field being given by

∂B0

∂t
= ∇× (V0 × B0) + ∇× ε + η′∇2B0,

whereε = 〈v × b〉 is a mean electromotive force (e.m.f.) induced by the fluctuating components. The

e.m.f. must then be expressed in terms of the mean fieldB0 so that closure of the system is obtained. A

suitable relation, obtained by considering also the equation for the fluctuating field, the separation of scales

and assuming the fluctuating flowv is isotropic, is given by

ε = αB0 − β∇× B0,

which, in turn, gives the evolution equation for the mean field as

∂B0

∂t
= ∇× (V0 × B0) + ∇× αB0 + (η′ + β)∇2B0

We see thatβ reflects a turbulent enhancement of the magnetic diffusivity andα (hence the ‘alpha effect’)

parameterises a source-term for the mean field. If the fluctuating velocity field is not reflectionally sym-

metric thenα will be non-zero; this lack of reflectional symmetry is key for the development of dynamo

action. In mean-field simulations bothα andβ are given prescribed dependencies on the mean field withα

typically falling-off in the presence of strong fields (thisalgebraicα-quenchingrepresents the inefficiency

of the alpha effect on strong magnetic fields). Mean-field theory has enjoyed much success in reproducing

many of the observed large-scale solar magnetic features (such as the butterfy diagram) – for a review, for

example, Hoyng (2003).

Alternative mechanisms for the regeneration of poloidal- from toroidal field have also been proposed,



1.3 Magnetic Reconnection in Two Dimensions 9

such as the production of poloidal flux through the decay of bipolar active regions invoked in the Babcock-

Leighton mechanism (Babcock, 1961, Leighton, 1969). Thesemodels utilize the same poloidal to toroidal

conversion mechanism as Parker’s approach but now the alpha-effect manifests itself as a surface phe-

nomenon. Solar observations show that bipolar active regions appear on the photosphere with a systematic

tilt (Joy’s law) and therefore have a net north-south dipolevector. In time the active regions decay or diffuse

away and in the process the leading polarities migrate toward the equator whilst the trailing polarities move

toward the poles. The opposite polarities that are transported equatorward from the Northern and Southern

hemispheres cancel by the equator. Crucially, the polarities that move poleward act to replace the exist-

ing poloidal field and reverse it sign. Thus the decay of bipolar active regions takes the role of a surface

α-effect.

A brief discussion of the sign of the alpha-effect in these various models will also be helpful. Parker

(1955) deduced that the sign of the product ofα and the vertical differential rotation gradient must be

negative in the northern hemisphere if the observed equatorward migration of active regions is to take place.

This sign rule holds even if the differential rotation gradient and the alpha-effect are in different layers

(Moffatt, 1978, Section 9.7). Through helioseismology thedifferential rotation gradient at low latitudes is

known to be positive. In the framework of mean-field theory weexpect a negative alpha-effect to act in the

lower part of the convection zone. Cyclonic convection occurs throughout the convection zone. However,

considering the observed differential rotation profile, ifthis type of dynamo action is to lead to the observed

equatorward migration of active regions then we require a negative alpha effect in the Northern hemisphere.

Such a negative alpha effect is believed to occur in the lowerpart of the convection zone only. In Babcock-

Leighton models however, the alpha-effect is concentratedin the surface layers whereα must be positive

(since the trailing polarities of active regions are at higher latitudes on the photosphere than the following

polarities). The problem of achieving an equatorward progagating dynamo wave is overcome by including

a meridional flow with a short timescale in the model – and anyway Babcock-Leighton models must invoke

such a flow for the transport of magnetic flux between the separated source layers.

It is likely to be some time before a full understanding of thedynamo process is reached – current

analytical modelling tends to be based on somewhat tentative foundations, and numerical simulations far

from being able to resolve the huge range of length- and time-scales inherent to the process. In this thesis

(Chapters 6 and 7) we explore an alternative and complementary approach to traditional dynamo modelling

and construct simple mathematical models that are expectedto have a similar underlying structure to that of

the full system. Their very simplicity allows us to fully explore their dynamics and so make inferences about

the properties of both solar and stellar dynamos, while their physical justification is sufficiently general that

they may be applied to a wide variety of the proposed dynamo mechanisms.

1.3 Magnetic Reconnection in Two Dimensions

The small-scale amplification of the field is clearly essential to the dynamo process, but does not help in

determining how the observed large-scale fields built up from the small-scale ones, nor how the large-scale

toroidal field breaks up. Magnetic reconnection must be responsible for both this large-scale generation

and for the localised break-up of the toroidal field. More widely speaking, reconnection is a fundamental
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plasma process that is responsible for a wide range of phenomena, being of importance in solar, space,

astrophysical and laboratory plasmas, for example in:

• Heating the corona to its multi-million degree temperatures (e.g. Parker, 1983).

• Sudden violent events such as solar flares (Parker, 1963) andCMEs and the corresponding events on

other stars.

• The Earth’s magnetosphere (where, uniquely for non-terrestrial events, in-situ spacecraft observa-

tions at reconnection sites have been made) as it interacts with the solar wind (Xiao et al., 2006), and

similarly in other planetary magnetospheres (Huddleston et al., 1997).

• Magnetic flux reduction in gravitationally collapsing protostellar clouds, as part of the process of star

formation (Norman and Heyvaerts, 1985, Pringle, 1989).

• Accretion disks, where reconnection is primarily invoked as a mechanism for supplying the internal

stresses that are required for efficient transfer of angularmomentum (Eardley and Lightman, 1975,

Tout and Pringle, 1992) but also in, for example, the time variability of accretion and the correspond-

ing radiation (Rastaetter and Neukirch, 1997).

• Explaining the non-thermal particle populations present in extragalactic jets (Romanova and Lovelace,

1992).

• The laboratory, particularly in fusion devices. Reconnection is thought to be the cause of the sawtooth

oscillations that play an important role in determining theconfinement characteristics of tokamak

fusion plasmas (Porcelli et al., 1996) and lead to major disruption of the device. Conversely recon-

nection is useful in spheromaks where it allows the seed fieldto be restructured to create a stronger

confining field.

Early models of reconnection were strictly two-dimensional (with the field confined to a plane). Al-

though this is a very special case – occurring only at an X-type (hyperbolic) null point and in the stationary

situation restricting the electric field to being uniform (with important consequences as we will see later)

– it has, nevertheless, informed much of our understanding of the topic. It is, therefore, worthwhile to

summarize briefly some of the most important aspects of the theory.

The Sweet-Parker model (Sweet, 1958, Parker, 1957) is an order-of-magnitude analysis in which a

current sheet (with length equal to the global external length-scale) lies between oppositely directed mag-

netic fields (see Figure 1.4). The model is stationary so thatthe current sheet is maintained and therefore

the inflow must exactly counter the outward magnetic diffusion of the sheet. In addition, magnetic flux

is assumed conserved between inflow and outflow. Finally, theplasma is taken to be accelerated to the

Alfvén speed by the Lorentz force (which sets the width of the current sheet under mass conservation and

incompressibility conditions).

In 2D, the rate of reconnection is given by the value of the electric field at the null point and measures

the rate at which flux passes through the null – i.e. at which itis transferred between topologically distinct

regions (see Chapter 2). The electric field is traditionallynormalised to a characteristic electric field and
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Figure 1.4: The Sweet-Parker mechanism for 2D reconnection.
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Figure 1.5: The Petschek mechanism for 2D reconnection.

the resultant Alfvén Mach number used as a dimensionless quantitative measure of the reconnection rate.

Reconnection models then determine how the Alfvén Mach number scales with the Lundquist number (or

global magnetic Reynolds number),S.

Under the above assumptions, the reconnection rate in the Sweet-Parker model is given by

MAe =
1√
S
,

and is therefore, in practice, very small in the corona due tothe very high Lundquist numbers there. In

order to account for the very fast energy release of solar flares we need an alternative mechanism, afast

mechanism for which the reconnection rate is very much more than the Sweet-Parker rate.
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Petschek (1964) suggested that slow MHD waves would significantly decrease the size of the diffusion

region and, accordingly, increase the rate of reconnection. Thus in the model the length of the diffusion

region may be considerably smaller than the global externallength-scale. Four standing slow magnetoa-

coustic shock waves are placed at the boundaries of the plasma outflow regions (see Figure 1.5) and allow

for an additional mechanism for the conversion of magnetic energy into thermal and kinetic energy. The

inflow region itself is current-free with no external sources present and the Sweet-Parker model is employed

for the diffusion region, the average properties of which are matched to the external flow region as far as is

allowed (Vasyliunas, 1975). From the experience gained by many numerical simulations it seems likely that

the configuration only appears when the resistivity is enhanced within the diffusion region. The maximum

reconnection rate is given by

MAe =
π

8 ln (S)

which, due to the logarithmic dependence onS is, for typical coronal parameter values, several orders of

magnitude greater than the Sweet-Parker rate.



Chapter 2

Background to 3D Reconnection

Figure 2.1: Three-dimensional structure of an M1.8 flare observed in TRACE 171̊A on 21st March 2001
in Active Region 9373, starting at 02:28UT, and peaking in X-rays at around 02:37UT.

Although a substantial literature exists describing the nature of two-dimensional reconnection, an in-

creasing number of observations now show that the solar magnetic field is enormously complex (see

Figure 2.1 for an example of such a magnetic field structure),and so motivate the need for a full three-

dimensional understanding of the problem. Existing three-dimensional reconnection models have already

demonstrated the 3D process to be fundamentally different in many respects to the 2D and therefore have

only further enhanced this need.

The table on the next page summarizes some of the differencesbetween reconnection in 2D and recon-

nection in 3D. In this chapter we describe some of these differences in more detail and further discuss some

of our present ideas on 3D reconnection.

13



2.1 Magnetic Flux Velocities 14

Property Two Three
of Reconnection Dimensions Dimensions

Only at an X-type Anywhere in space,

Location null-point. in the presence or

or absence of null-points.

Exists everywhere in space In general unique velocity does

Flux transport velocity except at the X-point. not exist. Can be replaced by

multiple transport velocities.

Occurs continually and

Change of connectivity Occurs at the X-point. continuously throughout the

non-ideal region.

Counterpart Unique reconnecting Generally no unique

reconnecting fieldlines fieldline exists. counterpart exists.

Fieldline mapping Discontinuous Continuous (except at

separatrices)

Given by the electric field at Given by maximum

Rate of reconnection the null-point. integrated parallel electric

field across non-ideal region.

2.1 Magnetic Flux Velocities

Schindler et al. (1988) considered how appropriate the ideas on reconnection that had been developed by

examining 2D theory are when applied to a general 3D scenario. They concluded that any definition of re-

connection should at least be structurally stable and introduced the theory ofgeneral magnetic reconnection

in which reconnection requires only a change in connectivity of plasma elements. A useful mathematical

tool that enables us to address changes in plasma element connectivity is the concept of amagnetic flux

transport velocity(or flux transporting flow), as defined by Hornig and Schindler (1996).

Under ideal evolution,

E + v × B = 0, (2.1)

holds and the magnetic field is frozen into the plasma, so thatthe curl of (2.1) gives

∂B

∂t
−∇× (v × B) = 0. (2.2)

One of the consequences of (2.2) is the conservation of magnetic flux (Alfvén’s frozen-flux theorem),

∫

C

B · dS = constant ,

i.e. the flux through a comoving surfaceC (a surface moving withv) is conserved. This in turn implies the
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conservation of magnetic field lines, together with conservation of magnetic nulls and of knots and linkages

of field lines. The far reaching consequences of (2.2) on the evolution of the magnetic field stem from the

algebraic form of the equation; they make no use of the fact thatv is the plasma velocity. Thus we can ask

whether for a general non-ideal evolution,

E + v × B = R, (2.3)

whereR denotes an arbitrary non-ideal term, there could exist a velocity which also yields an equation of

the form (2.1). Such a velocity will, in general, differ fromthe plasma velocity and therefore we write

∂B

∂t
−∇× (w × B) = 0, (2.4)

calling w a flux transporting velocity. If such a transport velocity can be found then the field is frozen-in

with respect to the flux transport velocity and the field topology cannot change.

In a situation governed by the ideal Ohm’s law, (2.1), the velocity (w) with which the magnetic field

lines may be said to move can be identified with the plasma velocity (v). In more general cases we must

first address the question of the existence and uniqueness ofthe flux transport velocity. For this we integrate

(2.4) so that it can be compared with other forms of Ohm’s law.The integration yields

E + w × B = ∇F , (2.5)

whereF is an arbitrary function (a function of integration). Equation (2.5) may be compared with the most

general form of Ohm’s law, (2.3); if a flux transporting velocity is to exist then we must be able to rewrite

(2.3) in the form of (2.5), i.e.R must be of the form

R = (v − w)
︸ ︷︷ ︸

:=u

×B + ∇F. (2.6)

A sufficient condition (providedB 6= 0) to representR in form of (2.6), and hence for the existence ofw

is

B · ∇F = B · R ≡ B · E. (2.7)

If E · B = 0, that is, ifR is perpendicular toB, then clearly this equation can be solved (F ≡ 0 being a

trivial solution). Important examples of this situation are the resistive two-dimensional case (R = ηj), and

the case whenR represents a Hall term:R = (ne)−1 j×B. In this last example the transport velocity may

be identified with the electron bulk velocity.

A consideration of the 2D case demonstrates some key properties of reconnection in 2D. Here (taking

F = 0) the flux transporting flow,w, is given by

w =
E× B

B2
(2.8)

and exists everywhere except at any null-points (zeros ofB) whereR is non-vanishing. In an ideal region

the flux transport velocityw will, up to its parallel component, coincide with the plasmavelocityv (note

that (2.8) is actually an equation for the perpendicular component ofw but that the parallel component may
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be assumed to be zero). However, at null points a singularityin the flux transport velocity will exist in

general, with the singularity at X-type null-points being the relevant one for reconnection. Locally about

the X-point the floww will have a stagnation type structure; magnetic flux is transported by the flow

into and away from the null with the singularity inw at the null itself representing the cut and re-joining

(reconnection) of the flux there. The rate at which this occurs measures the reconnection rate and is given

by the electric field strength at the null (see, for example Schindler, 2007, p. 274).

Moving back to more general cases, equation 2.7 can also be solved if there exists a surface that all

the field lines cross exactly once (which we call atransversal surface). Then we can integrate (2.7) along

magnetic field lines in order to deduceF . Parameterizing the magnetic field line byx(s) and integrating

R‖ along the field line from the pointx(0) on the transversal surface (C) we obtain

F (x) =

∫ s

0

R‖ds+ F (x(0)),
dx(s)

ds
=

B

|B| ; x(0) ∈ C; R‖ =
R · B
|B| . (2.9)

The solution may not exist within the whole domain under consideration and, in addition, there are situ-

ations where (2.7) has no solutions and so no flux transporting velocity exists. For example, if there are

closed magnetic field lines in the domain with

∮

R‖ds 6= 0,

then the integration (2.9) would fail. In addition, boundary conditions onF or w can prevent the existence

of a solution, precisely the situation in three-dimensional reconnection. During 3D magnetic reconnection

at an isolated non-ideal region, a flux velocity(w) satisfyingw = v⊥ on the entire boundary of the non-

ideal region does not exist in general (Hornig and Priest, 2003, Priest et al., 2003). Instead it can be replaced

by a pair of flux velocities,win andwout, say. The behaviour of field lines anchored to one side of the

non-ideal region is described bywin, wherewin coincides withv for flux enteringthe non-ideal region.

Similarly, the behaviour of field lines anchored on the otherside of the non-ideal region may be described

by wout wherewout coincides withv where fluxleavesthe non-ideal region. In the 3D case the two flux

velocities will not coincide within the diffusion region and this property allows us to deduce some of the

fundamental features of 3D reconnection.

In a general 3D situation, as a flux tube moves such that it partly enters the non-ideal region, the two

flux velocitieswin andwout can be used to track the part of the flux tubeenteringthe non-ideal region and

the partleavingthe non-ideal region. Taking the projections into the non-ideal region of the flux velocities,

their difference represents a splitting of the two tubes as they enter the non-ideal region. Whilst the tube

continues to move with the velocityw = v in the ideal region, the velocity within the non-ideal region

depends on whetherwin or wout is used as a tracer. These two flux velocities will differ everywhere in

the non-ideal region, signifying a continual change in the magnetic connectivity of the flux passing through

the boundary of the non-ideal region. The implication is that plasma elements in the ideal region that lie

on a field line passing through the non-ideal region will be connected to different plasma elements on the

other side of the non-ideal region at every moment in time, inother words every field line passing through

the non-ideal region continually changes its magnetic connections. We may continue to track the plasma

elements that lay on the initial flux tube and remain in the ideal region. After some time these will lie on an
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Figure 2.2: Structure of the magnetic field near a potential three-dimensional null-point. The solid black
lines marks thespineand the dashed black lines thefansurface.

ideal flux tube no longer be associated with the reconnectionprocess. However, plasma elements associated

with thewin-flow and those of thewout-flow will not generally become again magnetically connected (i.e.

‘rejoin’).

We will make extensive use of flux velocities in Chapters 3 and4 to describe the nature of the 3D

reconnection processes under consideration. A further discussion on the existence and uniqueness ofw,

together with descriptions of the behaviour of magnetic fluxin purely diffusive non-ideal situations, can be

found in Wilmot-Smith et al. (2005b).

2.2 Location of Reconnection

Compared with the two-dimensional case, a much wider class of reconnection scenarios may be found

in three-dimensional geometries. As already discussed, in2D, X-points (hyperbolic null points) and O-

points (elliptic null points) are the only generic null points of the magnetic field and it is only possible for

reconnection to occur at an X-point, where the flux transportvelocity,w, is of a stagnation type close to the

null point and has a hyperbolic singularity at that location. Additionally, generation and loss of magnetic

flux can both occur at O-points depending on the nature (the direction) of the flux transport velocity near

such a point. Moving into in three-dimensions, reconnection may be associated with the presence of a null-

point but may also occur when no null-points are present; thenon-existence of a unique and non-singular

flux transport velocity (as discussed in the previous section) and accordant change in magnetic connection

no longer relies on the presence of a zero of the magnetic field.

The structure of three-dimensional null-points is described by, for example, Parnell et al. (1996). The

local structure of the field at an example of a generic 3D null is shown in Figure 2.2. Thespineof the



2.2 Location of Reconnection 18

null-point is an isolated pair of field lines which either diverge or converge from opposite directions onto

the null.Thefanplane consists of a family of field lines that branch out-of orinto the null. The field lines in

the fan plane form aseparatrix surfacethat divides regions of differing flux connectivity. If two separatrix

surfaces intersect, then their line of intersection will divide four regions of differing flux connectivity. The

line is known as aseparator.

At isolated null-points two types of reconnection have beenidentified according to whether the current

is aligned with the spine of the null (Pontin et al., 2004) or the fan of the null (Pontin et al., 2005b). The

models described in Pontin et al. (2004) and (Pontin et al., 2005b) arekinematicones in which the equation

of motion is neglected, the magnetic field prescribed and theplasma velocity deduced from Ohm’s law (so

the term kinematic is used here in a slightly different senseto the traditional use in dynamo theory). In the

analysis of reconnection with the current aligned with the spine of the null (Pontin et al., 2004) a simple

spiral null point was assumed together with a resistivity localised about the null. The resultant reconnecting

plasma flow is found to be non-zero only within the envelope offield lines linking the non-ideal region,

rotational in its nature and crossing neither the spine of the null nor the fan plane. In the analysis of Pontin

et al. (2005b) a 3D null was taken with a current parallel to the fan plane (and so the spine of the null is not

perpendicular to the fan plane) and, again, a localised profile for the resistivity. The reconnecting plasma

flow deduced is found to transport magnetic flux across both the spine and the fan of the null, so, in the

latter case, transferring flux between domains.

If multiple null points are present in a domain then magneticseparators will be present. Separators

form a 3D analogue of the 2D X-point (Lau and Finn, 1990) sincethey lie at the intersection of four

flux domains and, in addition, the field in a perpendicular cross-section has an X-type structure. It is

thought that currents will tend to accumulate along separators (Sweet, 1969, Longcope and Cowley, 1996),

enabling reconnection to take place there (Lau and Finn, 1990, Priest and Titov, 1996). Several numerical

experiments have explored separator reconnection (Galsgaard and Nordlund, 1997, Parnell and Galsgaard,

2004, Haynes et al., 2007) in some detail and observational evidence has been presented by Longcope et al.

(2005).

Magnetic reconnection in three-dimensions can also occur in the absence of a null-point. The consider-

ations of Section 2.1 show that reconnection may take place whenever any non-ideal terms, such as current

concentrations, that can lead to a change in the connectivity of plasma elements are present. An example of

reconnection in the absence of a null-point,non-nullreconnection, was given by Hornig and Priest (2003).

Since much of the work in this thesis also discusses non-nullreconnection the findings of Hornig and Priest

(2003) are summarised in the Section 2.4.

The process of magnetic reconnection changes the topology of the magnetic field. The change in topol-

ogy itself may be associated with topological features suchas magnetic null points and separators. Then

reconnection may, for example, transfer flux between topologically distinct domains, or create new, distinct,

flux domains. However, in three-dimensions a change in magnetic topology may take place even when no

such features are present. A simple conceptual example is illustrated in Figure 2.3. The pre- and post-

reconnection states in this example are topologically distinct – they cannot be continuously deformed into

each other – but no null points have been involved in the 3D process. Therefore, to see these topological

changes we will, in general, need to know the magnetic configuration of the global system, in which no
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Figure 2.3: Illustrative example of a situation in which a global change in topology can occur in a 3D
domain with no magnetic null points. Two magnetic flux loops exist before reconnection (some particular
field lines being illustrated in the left-hand image) but only one flux loop after reconnection (right-hand
image). Looking only at a subsection of the process (within the red-box) the change in topology is not
evident.

magnetic flux passes through the boundary, and not just an isolated part of the configuration. Such isolated

regions are, however, exactly the systems typically analysed in both two and three-dimensional models of

magnetic reconnection. Fitting these local models into theglobal process involves extrapolating the field

outside of the model domain (which might be, for example, a cuboid numerical box). However, regardless

of the extrapolation used, there will, during the reconnection process, be some change in the topology of

the global system. Figure 2.3 provides an illustrative example of the importance of the global system in

reconnection.

2.3 Magnetic Reconnection Rates

As previously discussed, reconnection in two-dimensions takes place at an X-type null-point and transfers

magnetic flux between topologically distinct domains. The reconnection rate in 2D is a measure of the rate

at which flux is transferred between the distinct domains andthis rate in turn is given by the value of the

electric field at the null point. Traditionally, the rate is expressed in terms of the dimensionless quantity the

Alfvén Mach number through the use of a normalisation of thenull point electric field to some characteristic

field.

Given the previously mentioned differences between 2D and 3D reconnection the question arises as to

how the reconnection rate should be defined, measured and interpreted in 3D? These are still partly open

questions. We begin by discussing the case of non-vanishingmagnetic field and an isolated non-ideal region

(D) in an otherwise ideal environment (Hesse and Schindler, 1988).

For this, consider, as illustrated in Figure 2.4, an isolated non-ideal regionD (shaded) with non-

vanishing magnetic field and a loop integral where the loop path is along a magnetic field line (shown

in red) passing throughD and a material line (blue) in the ideal environment. Integrating the electric field,

E, along this loop and using Faraday’s law (1.6) together withStokes’ theorem gives

∮

C

E · dl =

∫

S

∇× E · dA = − d

dt

∫

S

B · dA. (2.10)

Since the material line is in the ideal region, the electric field along that section of the loop must vanish
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Figure 2.4: Example path taken for the loop integral given byequation (2.10) to demonstrate the relation-
ship between a non-zero integrated parallel electric field across a localised non-ideal region and magnetic
reconnection. The path is taken along a magnetic field line (shown in red) passing though the non-ideal
region (shaded) and a comoving line (shown in blue) in the ideal region.

and the only contribution to the loop integral comes from that along the field line passing throughD. We

therefore deduce that
d

dt

∫

S

B · dA = −
∫

E‖ dl,

where the linel denotes the field line taken throughD, and so if the integrated parallel electric field along

this magnetic field line is non-zero then there must be a change in the magnetic flux enclosed by the loop.

The rate of reconnection is then given by the maximum value ofthis integral acrossD (and is given a

positive value since direction of the normal component to the surface is arbitrary):

dΦrec

dt
=

∣
∣
∣
∣

∫

E‖ dl

∣
∣
∣
∣
. (2.11)

Thus while the expression for the 2D reconnection rate was given by the electric field at a point in 3D we

have the integrated electric field along a line. The formulation (2.11) is consistent with the 2D one with the

reconnecting flux in 2D being the 3D flux per unit length in the invariant direction.

Similarly, in a system with reconnection taking place at a magnetic separator, the rate of reconnection

is given by the difference in electric potential between theends of the separator (Longcope and Cowley,

1996). When multiple separators are present in a domain the difference in potential across each must be

taken into account. Such a system must be carefully analysedto determine the total reconnected flux since

it may allow for flux to be transferred simultaneously into and out of a flux domain at different boundaries

(Parnell et al., 2007).

There are several circumstances for which the rate of reconnection is unknown. Examples include

systems where the non-ideal region contains closed flux loops and in which the the non-ideal region is not

isolated within the domain considered. In addition, questions regarding the rate of reconnection are often

motivated by energetic considerations in real systems and little is known about how the rate of reconnection

might relate to any release of magnetic energy in a 3D system.
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2.4 An Isolated Non-Null Reconnection Process

In Chapters 3 and 4 we consider non-null reconnection. Much of this work builds on the investigations of

Hornig and Priest (2003) and so we now discuss their main findings.

In most of the previous models of reconnection, the non-ideal region is bounded only in two-dimensions

and extends to infinity in the third dimension. However, in a realistic model for astrophysical plasma

processes, the non-ideal region should be localised in all three dimensions since this is the generic situation

in astrophysical plasmas which have length scales along themagnetic field that tend to be much larger than

the mean free path.

Hornig and Priest (2003) analysed such a situation in a region of non-zero magnetic field, placing

particular emphasis on the evolution of magnetic flux. The model is a kinematic one withkinematic, in this

context, referring to the (non-traditional) situation where a magnetic field of a certain form is imposed and

a plasma velocity deduced using Ohm’s law. Since the equation of motion is neglected the question as to

whether the field can be sustained by the plasma flow is ignored.

The prescribed magnetic field in the model is a linear X-type configuration in thexy-plane with a

uniform field component in the third (z) direction and so results in a uniform current. Thus, in order to

obtain a localised non-ideal region, a 3D localisation of the resistivity is imposed. In a realistic situation it

is expected that finite regions of intense current concentration will be the main cause of such a localisation

and that it may be reinforced when the resistivity is enhanced by current-driven microinstabilities. In the

model however, the localisation is achieved in this way in order to make analytical progress.

The authors noted that in a general three-dimensional situation, for a specified magnetic field, Ohm’s

law may be decomposed into a particular non-ideal solution and an ideal solution:

Enon−id + vnon−id × B = ηj,

Eid + vid × B = 0 .

The non-ideal, orparticular solution must be deduced from the imposed magnetic field. Thelocalisation

of ηj results in the flows associated with the particular solutionbeing rotational in nature. Identifying the

flux tube consisting of all the field lines linking the non-ideal region as a HFT, the non-ideal plasma flows

are confined to within the HFT and are rotating in opposite senses above and below the non-ideal region

itself, as illustrated in Figure 2.5. Thus the particular solution affects only the flux within the HFT and all

the field lines contained within it are continually changingtheir connections.

The kinematic nature of the analysis now allows forany ideal flow to be superimposed onto the partic-

ular rotational solution. Hornig and Priest (2003) chose, for two reasons, to examine the effect of an ideal

stagnation flow. The first reason is that such flows are to be expected if thin current sheets are to be built

up and so allow reconnection to begin. The second reason is that a stagnation flow can transport flux into

and away from the non-ideal region (and the HFT linking the non-ideal region), this property allowing for

the effect of the reconnection process on the magnetic flux evolution to be seen on a much larger scale.

Whether the rotational or stagnation component of the flow isdominant within the HFT will depend on
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diffusion 
region counter−rotational

flows

Figure 2.5: Cartoon illustrating the counter-rotational flows (thick solid lines) in the pure solution of Hornig
and Priest (2003). The hyperbolic flux tube (HFT) which encloses the localized non-ideal region (shaded)
is bounded by the thin solid lines.

their relative strengths, but in either case some flux will becarried by the stagnation flow into the HFT,

where reconnection will take place, and then transported away from the region. The combination of the

two flows, known ascomposite solutionsmay therefore show more similarities to the case of classical 2D

reconnection than the particular solutions alone. Thus although the rate of reconnection in both the particu-

lar and composite cases is the same (with the ideal solution having no associated parallel electric field), the

effect of the reconnection in terms of magnetic flux evolution is quite different.

2.5 Aims

The analysis of Hornig and Priest (2003) left open some important questions. One key feature of the

analysis is the ability to impose an arbitrary ideal solution on the non-ideal particular solution. Since this

freedom is not present in the 2D kinematic case it may be an inherent feature of a 3D process. However, it

may also be the case that in a fully ‘dynamic’ analysis in which the momentum equation is also considered,

the freedom disappears since the flowsvnon−id andvid must also jointly satisfy that equation (Eq. 1.2). In

addition, in order to make analytical progress, the solutions were obtained by imposing a localised form for

the resistivity (while the electric current was uniform) sothat a localised non-ideal region could be attained.

It is then natural to ask whether solutions found will differif the localised non-ideal region is due to a

localised current term instead.
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This thesis aims to examine further the nature of 3D non-nullreconnection and to address these ques-

tions, at least in part. We begin in Chapter 3 by attempting toaddress the first question, of freedom within

3D reconnection solutions, by building a fully dynamic 3D model. Several of the assumptions taken are

the same as those of Hornig and Priest (2003); a stationary solution in a non-null field geometry with a

non-ideal region localised in all 3D. We then carry out a perturbation expansion that allows for a splitting

of the variables to be made in such a way that comparisons may be drawn with the particular and compos-

ite solutions of Hornig and Priest (2003). This enables somecircumstances under which the freedom of

imposing ideal flows on reconnection solutions exists.

In Chapter 4, we analyse reconnection in a flux-tube where thecurrent-concentration is localised in all

three-dimensions, reverting to a kinematic analysis in order to do so. The model uses an elliptic rather than

hyperbolic field geometry; whilst the imposed magnetic fieldof Hornig and Priest (2003) had an X-type

structure in thexy-plane and a uniform third component, our model has an O-typestructure in thexy-plane

(and, again, a uniform third component). The reconnection scenario described corresponds to a situation

in which the footpoints of the flux-tubes are spun in oppositedirections and the counter-spinning motion

results in a localised reconnection region in the centre middle portion of the tube. In the chapter we first

carry out an order-of-magnitude analysis that allows an intuitive understanding of the process to be built up

before confirming these estimates with a quantitative model.

In Chapter 5 we build on the approach of Chapter 4, again analyzing reconnection in flux-tubes where

spinning footpoint motions are imposed but now taking two initially intertwined tubes. The process is

examined by means of a 3D MHD numerical experiment and, again, particular emphasis is placed on the

evolution of magnetic flux within the domain.



Chapter 3

Dynamic Non-Null Reconnection

As discussed in previous section, the analysis of Hornig andPriest (2003) shows several new features of

3D reconnection but it is a kinematic one – the effects of the equation of motion are neglected. The aim

of this chapter is to build upon their work by investigating an isolated reconnection process and including

the equation of motion in the analysis, so that the model is a fully ‘dynamic’ one. We wish to determine

whether the additional freedom to impose an ideal flow on the particular solution arises through the neglect

of the momentum equation, or whether it is an inherently 3D effect. The MHD numerical experiments of

Pontin et al. (2005a) suggest the latter. In that paper 3D simulations of a non-null reconnection process with

a localised non-ideal region are described. Several of the features of the kinematic analysis are observed, in

particular a rotational background component to the plasmaflow that is of opposite sense on either side of

the non-ideal region. Field-lines linking the non-ideal region are found to be continuously changing their

connnections.

We take the set of resistive MHD equations (neglecting the energy equation), assume stationarity and

imcompressibility, and carry out a perturbation expansionof the equations that allows models of a 3D

reconnection process in the absence of a null-point to be built. The assumptions taken in making the

expansion are such as to allow Ohm’s law at the zeroth and firstorders of the expansion to be written as

ideal and non-ideal equations respectively. These equations are coupled together through the momentum

equation and so the extent to which this coupling restricts the independence of the zeroth and first order

flows (the analogue of the ideal and non-ideal flows in the model of Hornig and Priest, 2003) can be

considered.

We begin in Section 3.1 by introducing the expansion technique; the MHD equations are written in

dimensionless form, a suitable expansion parameter identified (the Alfvén Mach number of the flow) and

the equations obtained by writing variables in a small-parameter series expansion stated. In Section 3.2

the zeroth order perturbation quantities are chosen in sucha way that the full model corresponds to the

particular solutions of Hornig and Priest (2003), while in Section 3.3 the zeroth order flow is chosen so

that a direct comparison with the composite solutions of Hornig and Priest (2003) is found. The choice

of zeroth order flow needed if such a comparison is to be made isfound to be somewhat limited and so,

24



3.1 Model Setup 25

in Section 3.4, we proceed to examine a more general solution. Although the flow associated with this

solution can be viewed as more realistic its form makes significant analytical progress difficult.

The results of this chapter can be found in Wilmot-Smith et al. (2006a) and Wilmot-Smith et al. (2007a).

3.1 Model Setup

We take the stationary incompressible resistive MHD equations and non-dimensionalise by setting

B = BeB
′,v = vev

′,E = veBeE
′, j =

Be

µLe
j′, p =

B2
e

µ
p′, r = Ler

′,

where all the dashed quantities are of order one, andBe, Le, andve are the typical magnetic field strength,

length-scale and plasma velocity. Thus Ohm’s law becomes

E′ + v′ × B′ =
vAe

ve
η̂j′, (3.1)

wherevAe
is the typical Alfvén speed of the plasma, and

η̂ =
η

µLevAe

,

is the inverse Lundquist number.

The equation of motion is

M2
e (v′ · ∇′)v′ = −∇′p′ + j′ × B′, (3.2)

whereMe = ve/vAe
is the Alfvén Mach number. For simplicity we choose to neglect here the effects that

viscosity and other forces (such as gravity) might have on the solutions. The remaining MHD equations are

given by

∇′ × B′ = j′, (3.3)

∇′ × E′ = 0,

∇′ ·B′ = 0,

∇′ · v′ = 0.

Having non-dimensionalised in this way we must now choose a suitable small parameter in which to

carry out the expansion. For this we choose the Alfvén Mach numberMe of the flow, and therefore must

takeMe ≪ 1. Low Mach number expansions have already been employed in the development of 2D

reconnection theories – for example in the linear reconnection models of Priest and Forbes (1986) and their

extention by Jardine and Priest (1988). In this case the expansion of variables is assumed as follows:

B′ = B0 +MeB1 +M2
e B2 +M3

e B3 + · · · ,
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v′ = v1 +Mev2 +M2
e v3 + · · · ,

j′ = Mej1 +M2
e j2 +M3

e j3 + · · · ,

E′ = E0 +MeE1 +M2
e E2 + · · ·

= −∇′φ0 −Me∇′φ1 −M2
e∇′φ2 + · · · ,

p′ = p0 +Mep1 +M2
e p2 + · · · .

where all the quantitiesBi,vi, ji,Ei, φi, pi are dimensionless. Note that we have labelled the first term

in the expansion ofv′ with the index1 and have also takenj0 = 0, so that the lowest order magnetic

field is potential, an assumption that is crucial in allowingus to find analytical solutions to the equations.

Substituting these expansions into both Ohm’s law and the equation of motion and comparing powers of

Me we find that at zeroth order the equation of motion is satisfiedwith p0 a constant, while Ohm’s law is

given by

E0 + v1 × B0 = η̂j1. (3.4)

At first order we obtain

E1 + v1 × B1 + v2 × B0 = η̂j2, (3.5)

0 = −∇′p1 + j1 × B0. (3.6)

At second order the equations become

E2 + v1 × B2 + v2 × B1 + v3 × B0 = η̂j3, (3.7)

(v1 · ∇′)v1 = −∇′p2 + j2 × B0 + j1 × B1, (3.8)

while at third order we have

E3 + v1 × B3 + v2 × B2 + v3 × B1 + v4 × B0 = η̂j4, (3.9)

(v2 · ∇′)v1 + (v1 · ∇′)v2 = −∇′p3 + j3 × B0 + j2 × B1 + j1 × B2. (3.10)

It is clear that a natural coupling exists not between the same ordered equations for Ohm’s law and the

equation of motion, but rather between Ohm’s law at a given order, and the equation of motion at the next

order. Thus to solve the system we will have to consider, for example, equations (3.4) and (3.6) together,

and (3.5) and (3.8) together.

We set

B0 = b0(ky, kx, 1), (3.11)

whereb0 and k are constants andk > 0. Thus our basic state is an X-type current-free equilibriumin the

xy-plane, superimposed on a uniform field in thez-direction. The field structure is illustrated in Figure 3.1.

The field is assumed to be reconnecting slowly (v ≪ vA), and is similar to that taken by Hornig and Priest

(2003) although in that case the separatrices are not inclined at right-angles, so allowing for a current.



3.1 Model Setup 27

–0.4
0 0.2 0.4

x–0.4–0.200.20.4

y

–2

–1

0

1

2

z

Figure 3.1: Illustration of some particular field lines indicating the structure of the magnetic fieldB0.

With this choice of field configuration we can analytically integrate the equations

∂X(s)

∂s
= B (X (s))

to find the equationsX (x0, s) of the field line passing through the initial pointx0. The components of

X (x0, s) are given by

X = x0 cosh(b0ks) + y0 sinh(b0ks),

Y = y0 cosh(b0ks) + x0 sinh(b0ks), (3.12)

Z = b0s+ z0.

with the inverse mappingX0(x, s), being given by

X0 = x cosh(b0ks) − y sinh(b0ks),

Y0 = y cosh(b0ks) − x sinh(b0ks), (3.13)

Z0 = −b0s+ z.

The parameters parameterizes the magnetic field line and is related to the distance,λ, along field lines by

ds = dλ/|B|.

As a further simplification we takeB1 = 0, so that any zeroth-order flow is ideal. This assumption is

not necessary for a complete solution to the system, but it does permit us to obtain ideal and non-ideal parts

to Ohm’s law in the zeroth- and first-order equations respectively, with a corresponding equation of motion

for both solutions (at first- and second-order respectively). Thus the construction of this model allows for

a direct comparison of our solutions with the kinematic onesof Hornig and Priest (2003) where a similar

decomposition resulted in particular solutions satisfying the non-ideal Ohm’s law, and composite solutions

in which an ideal solution was superposed on this basic state. We have here in addition an equation of

motion for both the particular and ideal solutions and so canconsider also how this alters the results.
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3.2 Particular Solutions

In this section we consider the implications of the first-order solution alone, by assumingv1 = 0. Ohm’s

law at zeroth order becomesE0 = 0, while the equation of motion is safisfied at zeroth and first order with

p0 andp1 constants. This assumption results in the solutions obtained being equivalent to the particular

solutions of Hornig and Priest (2003) (with the first order Ohm’s law the non-ideal equation), but now also

satisfying the momentum equation. For these particular solutions it is first necessary to consider equations

(3.5) and (3.8) together:

E1 + v2 × B0 = η̂j2, (3.14)

0 = −∇′p2 + j2 × B0. (3.15)

Under these assumptions it is at fourth order that the inertial term first appears, and thus the dynamic effects

in our particular solution are primarily the Lorentz force and the pressure gradients. Here we will consider

the implications of two different forms for the non-ideal terms, η̂j2, with special emphasis placed on the

resulting plasma flows and rate of reconnected flux.

Localisation of the non-ideal term̂ηj2 can be achieved through a localisation in three dimensions of

either η̂, or of j2, or, in the physically most realistic situation, through a localisation of both terms. The

important quantity in determining the main results presented here isφ1, which is dependent only on the

localisation of the product̂ηj2‖, and not on how the localisation is realised. As a simplification and in

order to allow for analytical solutions we here choose to prescribe a localisation of the resistivitŷη. This

assumption was also taken by Hornig and Priest (2003) where ahyperbolic field similar to that given by

(3.11) resulted in a uniform current in thêz-direction. By taking the curl of (3.15) we obtain

(B0 · ∇)j2 − (j2 · ∇)B0 = 0,

which, assumingj2 = j2(x, y)ẑ, gives(B0 · ∇)j2 = 0, i.e. j2 as constant along field lines ofB0:

j2 = f(x2 − y2)ẑ. (3.16)

There are a number of ways to choosef(x2 − y2), two of which we examine here. In Section 3.2.1 we

takef to be uniform, as was the case in Hornig and Priest (2003). In Section 3.2.2 we instead assume a

form such that the currentj2 is localised along separatrices ofB0, which is motivated by the numerical

experiments of Pontin et al. (2005a) where a such a current was observed.

3.2.1 Uniform Current

The simplest choice off(x2 − y2) is to take

j2 = j20ẑ,
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wherej20 is constant. Such a current can be obtained by taking, for example, the magnetic field

B2 = −µj20yx̂,

which can be expressed as

B2 = ∇×A2ẑ

where

A2 = −µj20y2/2.

This is a particular solution forB2. Other particular solutions exist, to each of which we are free to add any

potential vector fieldBpot
2 = ∇Ψ2. With this perturbation the fieldB0 +M2

e B2 retains its X-type structure

in thexy-plane, but now has separatrices inclined at a different angle. The sign ofj20 determines whether

the greater angle between separatrices is across thex-axis (forj20 > 0) or they-axis (forj20 < 0). In this

section we assume, without loss of generality, thatj20 < 0.

Now (3.15) allows us to deducep2 as

p2 = p20 +
kj20b0

2
(y2 − x2),

wherep20 is constant.

Considering next Ohm’s law, (3.14), we seek a solution such that the non-ideal term̂ηj2 is localised.

Since the currentj2 is uniform we must localise the resistivity,η̂. To achieve this, together with an analytical

form for the remaining terms, we prescribe a localised form for E1 · B0, then taking the scalar product of

(3.14) withB0 determinêη as

η̂ =
E1 · B0

j2 · B0
.

One suitable form is to impose

E1 · B0 = e10b0 exp

(

−b
2
0s

2

L2
− x2

0 + y2
0

l2

)

, (3.17)

wherel, L > 0. This expression is a function of the coordinates of the fieldlines,x0, y0 ands, but, setting

Z0 = 0, we may use the inverse field line mappings (3.13) to find an equivalent expression in terms ofx,

y, andz. Thus we obtain the function̂η as

η̂ =
e10
j20

exp

(

− z2

L2

)

exp

(

2xy sinh (2kz)−
(
x2 + y2

)
cosh (2kz)

l2

)

. (3.18)

Providede10 andj20 have the same sign this is a positive function. The parameterL gives the length of the

diffusion region in thêz-direction, whilel represents the width of the diffusion region in thez = 0 plane.

The hyperbolic nature of the field may render it necessary to decreasel with increasingL to ensure the

diffusion region remains localised. An example of such a diffusion region is shown in Figure 3.2, where

the surfacêη = 0.02η̂max is shown. The maximum value of̂η occurs at the origin, wherêη = e10/j20.
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Figure 3.2: The surfacêη = 0.02η̂max, containing the non-ideal regionD, with the parametersl = 0.1,
L = 1, j20 = −1, e10 = −1, k = 0.5.

It remains to findE1 andv2. We haveE1 = −∇φ1 so, now that̂η is given, we may integrate along the

field lines to deduceφ1;

φ1 = −
∫

η̂j2 ·B0 ds

= −
∫

(E1 · B0) ds. (3.19)

Taking the gradient of this expression gives an analytical form forE1. Writing

Q =
e10

√
πL

l
erf
( z

L

)

,

and

γ = −
(
x2 + y2

)
cosh (2kz)− 2xy sinh (2kz)

l2
,

we find

E1 = Qeγ (−x cosh (2kz) + y sinh (2kz))

l
x̂ +Qeγ (x sinh (2kz)− y cosh (2kz))

l
ŷ

+

(

Qeγ

(
2kxy cosh (2kz)− k

(
x2 + y2

)
sinh (2kz)

)

l
+ e10e

γe−z2/L2

)

ẑ.

The vector product of (3.14) withB0 gives the component ofv2 perpendicular toB0 as

v2⊥ =
(E1 − η̂j2) × B0

b0
=

(
E1 − E1‖ẑ/b0

)
× B0

|B0|2
.

We are free to add a velocity component parallel toB0, and choose to do so in such a way that theẑ-
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Figure 3.3: The velocity fieldv2, for (a)z = 1 and (b)z = −1, and the parametersl = 1,L = 1, e10 = −1,
k = 0.5 andb0 = 1.

component ofv2 is zero:

v2 = v2⊥ − (v2⊥)z B0

|B0|2
.

This also ensures that the resulting velocity is divergence-free.

Thusv2 is given by

v2 =
Qeγ

b0

(
(x sinh (2kz)− y cosh (2kz))

l
x̂ +

(x cosh (2kz)− y sinh (2kz))

l
ŷ

)

. (3.20)

Figure 3.3 illustratesv2 in two particular planes above and below thez = 0 plane. The flow is counter-

rotational above and below thez = 0 plane, where it vanishes. Non-zero flow is limited to the region within

the hyperbolic flux tube (HFT) which consists of the field lines passing through the non-ideal region. Near

to the origin the velocity field is almost circular, but becomes distorted by the magnetic field on moving

away from the planez = 0, as shown in Figure 3.3. The pure solutions of Hornig and Priest (2003) are

very similar, themselves being counter-rotational flows within the HFT, distorted by the magnetic field.

We are left to consider the remaining second-order equation, (3.7), which becomes

E2 + v3 × B0 = η̂j3. (3.21)

This may be satisfied by takingE2 = 0, v3 = 0, andj3 = 0. We then may solve Ohm’s law at all even

orders, and the equation of motion at all odd orders, by taking

vi = Bi = ji = Ei−1 = 0, pi = pi0, for i = 5, 7, 9, ...

The equation of motion at all subsequent even orders, and Ohm’s law at all subsequent odd orders may



3.2 Particular Solutions 32

also be solved, at least numerically, to determine completely all higher-order quantities. Here we outline a

scheme for Ohm’s law at third order and the equation of motionat fourth order:

−∇′φ3 + v4 × B0 + v2 × B2 = η̂j4, (3.22)

ρ (v2 · ∇′)v2 = −∇′p4 + j4 × B0 + j2 × B2. (3.23)

Since the components of both(v2 · ∇)v2 andj2 × B2 parallel toB0 are known, we may use (3.23) to

calculatep4 by integrating along the field lines, starting fromp4 = p40 (x0, y0) in the planez = 0:

p4 (x0, y0, s) = −
∫ z/b0

s=0

((v2 · ∇)v2 − j2 × B2) ·B0 ds+ p4 (x0, y0) .

Using the inverse field line mappings this expression can be rewritten in terms ofx, y, andz and∇p4

then deduced. In turn this allows us to find the perpendicularcomponent of the currentj4:

j4⊥ =
(−∇p4 − (v2 · ∇)v2 + j2 × B2) × B0

|B0|2
.

The freedom to add a component parallel toB0 may then be used to ensurej4 is divergence-free.

Turning to (3.22), it is left to determineφ3 andv4. The equation has essentially the same structure as

(3.23), and so may be solved in the same way by again integrating along the field lines to find

φ3(x0, y0, s) = −
∫

(η̂j4 − v2 × B2) · B0 ds+ φ3(x0, y0).

The component of the flowv4 perpendicular toB0 is given by:

v4⊥ =
(−∇φ3 − ηj4 + v2 × B2) × B0

|B0|2
.

Letting

v4 = v4⊥ − v4z

B0z

B0.

ensuresv4 is divergence-free so that the continuity equation is satisfied. This scheme would be effective

even without the assumptionB1 = 0, which has been used to allow a direct comparison with the kinematic

case. It is worthwhile to note however that obtaining numerical solutions in this manner is not expected to

be a trivial task.

We now have sufficient information to determine the rate of reconnected flux. In 2D reconnection with

reconnection at an X-type null point the extension of the null point along the invariant direction is a null

line, or ‘reconnection line’. With the addition of a uniformfield component in the invariant direction the

line becomes a field line across which the difference in electric potential across the non-ideal region is

maximal. We therefore identify this line as the reconnection line and the reconnection rate is given by the
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integral of the parallel electric field along the reconnection line (thez-axis):

dΦmag

dt
=

∫

E‖ dl =

∫ ∞

−∞

(

Me e10 e
−z2/L2

+O
(
M3

e

))

dz =
√
πMe e10L+O

(
M3

e

)
. (3.24)

The parameterl does not appear in this expression and so we conclude that theextent of the diffusion region

in thexy-plane does not change the reconnection rate. This agrees with a similar finding in Hornig and

Priest (2003) that the diameter of their non-ideal region did not affect the reconnection rate.

3.2.2 Localised Current

In this section we assume an alternative form for the currentj2. We examine its effect on the remaining

first- and second-order terms and compare the solutions withthose found in the previous section.

We have seenj2 is constant along field lines ofB0, i.e. satisfies (3.16). Another obvious choice for

f(x2−y2) is one which produces an enhanced current at the origin, which in turn requiresj2 to be localised

along the separatrices ofB0. A suitable example is

j2 =
j20

cosh2
(

x2−y2

λ2

) ẑ. (3.25)

A motivation for this choice is given by the numerical simulation of Pontin et al. (2005a) who observed

the evolution of magnetic flux in an isolated diffusion region within a hyperbolic flux tube, and thus have

a reconnection process similar in many respects to the one weare studying. The current concentration was

found to grow throughout the run, and the final profile, as shown in Figure 3.4, has a ‘bow-tie’ structure.

The choice of current given by (3.25) results in a similar current density profile close to the origin.

Substituting (3.25) into (3.15) gives the pressurep2 as

p2 = p20 − 1

2
λ2kb0j20 tanh

(
x2 − y2

λ2

)

. (3.26)

Whereas in the previous example (Section 3.2.1) the pressure gradient had a stagnation structure, the lo-

calisation of the current now gives a pressure gradient thatis localised along the separatrices ofB0. It is

dependent on the sign ofj20, taken to be negative here, although at this stage the choiceis arbitrary. An

example of the resulting pressurep2 is shown in Figure 3.5. The saddle-point pressure profile is adirect

consequence of the hyperbolic nature of the field, since there is no inertial term in equation (3.15). Such

saddle-point profile would persist in the presence of inertial terms of a magnitude similar to, or less than,

the Lorentz force.

SettingB2 = ∇ × A2ẑ, we may find a divergence-free fieldB2 which produces the current given by

(3.25). We are unable to use the method of infinite space Green’s functions, since this would require the

contribution of the ‘boundary’ terms ofA2 at infinity to vanish. Instead we use an eigenfunction expansion

technique as described in the following paragraph.
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Figure 3.4: Results of a 3D MHD numerical simulation by Pontin et al. (2005a). Background shading
indicates the magnitude of the final current density in the central plane, with vectors indicating the plasma
velocity.
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Figure 3.5: The pressure profilep2 for v1 = 0, j2 = j20/ cosh2
((
x2 − y2

)
/λ2
)
ẑ, with the parameters

p20 = 2, λ = 1, k = 0.5, j20 = −1 andb0 = 2.
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Consider solutions to Poisson’s equation

∇2A = f(x, y) (3.27)

in the square0 < x, y < H with A vanishing on the boundary by assuming the related two-dimensional

eigenfunctions

∇2ψ = −ζψ

with ψ = 0 on the boundary. For the square the eigenfunctions are sine series in bothy andx:

ψnm = sin
(nπx

H

)

sin
(mπy

H

)

,

ζnm =
(nπ

H

)2

+
(mπ

H

)2

.

Expanding the solution in terms of these eigenfunctions, itcan be written as

A2 =

∞∑

n=1

∞∑

m=1

cnm sin
(nπx

H

)

sin
(mπy

H

)

,

wherecnm are constants. Substituting this solution into (3.27) and noting∇2ψ = −ζnmψnm, we obtain

∞∑

n=1

∞∑

m=1

−cnm sin
(nπx

H

)

sin
(mπy

H

)

= f(x, y).

Now, using the orthogonal properties of the eigenfunctions, and observing that they satisfy the same bound-

ary conditions as the solution, we have

−ζnmcnm

∫ H

0

∫ H

0

sin
(nπx

H

)2

sin
(mπy

H

)2

dxdy =

=

∫ H

0

∫ H

0

f(x, y) sin
(nπx

H

)

sin
(mπy

H

)

dxdy.

which determines the coefficientscnm.

Using the above described method to solve

∇2A2 =
µj20

cosh2(x2−y2

λ2 )

in the region−H/2 < x, y < H/2 with A2 = 0 on the boundary, we obtain

A2(x, y) =
∑∑

n,m odd

cnm sin (nπ (x/H − 1/2)) sin (mπ (y/H − 1/2)) , (3.28)

where the coefficientscnm are given by

cnm =
−4µj20

(n2 +m2)π2

∫ H/2

−H/2

∫ H/2

−H/2

sin (nπ (x/H − 1/2)) sin (mπ (y/H − 1/2))

cosh2
(

x2−y2

λ2

) dxdy.
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Figure 3.6: Contours ofA2 whereB2 = ∇ × A2ẑ andj2 = j20/ cosh2(x2 − y2)ẑ with the parameters
j20 = 1, λ = 1, µ = 1. Overlayed (darker lines) is the current density contour1/ cosh2(x2 − y2) = 0.1.

The change of variablesu = x/λ, v = y/λ, ξ = H/λ allows the integrand to be expressed in a form

independent ofλ, and we obtain the equivalent expression for the coefficientscnm:

cnm =
−4j20λ

2

(n2 +m2)π2

∫ ξ/2

−ξ/2

∫ ξ/2

−ξ/2

sin (nπ (u/ξ − 1/2)) sin (mπ (v/ξ − 1/2))

cosh2 (u2 − v2)
dudv. (3.29)

We find that eachcnm → 0 asn,m → ∞ and that asH → ∞ eachcnm tends to a limiting value. Thus

we use (3.28), with the coefficients (3.29) evaluated numerically, to find a form forB2.

A2 is a smooth function with opposite sign from that ofj20, with the maximum of|A2| occurring at

x = y = 0. The contours ofA2, which are field lines forB2, are shown in Figure 3.6. Superimposed

is an outline of the currentj2. The X-type structure of the fieldB0 becomes flattened by the perturbation

B2; toward they-axis whenj20 < 0 (which is assumed to be the case here) and toward thex-axis when

j20 > 0. This is shown in Figure 3.7 where the coefficientM2
e has been taken asM2

e = 0.5 to illustrate the

effect.

Following the method previously outlined, we now prescribea localised form forE1 ·B0, and determine

η̂ as

η̂ =
E1 ·B0

j2 ·B0

by taking the scalar product of (3.14) withB0. Here we assume

E1 · B0 = e10b0 exp

(

−
(
y2 − x2

)2

κ4

)

exp

(

−b
2
0s

2

l2
− x2

0 + y2
0

l2

)

(3.30)

with l, L > 0. This is similar to (3.17), with an extra factore−(y2−x2)
2
/κ4

to later ensurêη is sufficiently

localised. Using the inverse field line mappings (3.13) to find an equivalent expression in terms ofx, y, and
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Figure 3.7: Magnetic field lines (contours ofA0 +M2
eA2) in thexy-plane withM2

e = 0.5 and the param-
etersj20 = −1, λ = 1, b0 = 1, µ = 1 andk = 1.

z we obtainη̂ as

η̂ =
e10
j20

e−
z2

L2 exp

(

−
(
y2 − x2

)2

κ4

)

cosh2

(
x2 − y2

λ2

)

× (3.31)

exp

(

2xy sinh (2kz)−
(
x2 + y2

)
cosh (2kz)

l2

)

,

which is again a positive function providede10 andj20 are of the same sign.

Figure 3.8(a) shows the diffusion region in this example; itis seen to be very similar to that of Sec-

tion (3.2.1). Although the diffusion region given by (3.18)was circular in thexy-plane and elliptical for

non-zeroz values, as illustrated by the cross sections of Figure 3.8(b), in this case it is distorted from that

shape by the current now lying along the separatrices of the field in thexy-plane.

We deduce an analytical form forE1 using (3.19) which in turn allows us to findv2⊥, the component

of v2 parallel toB0. This is given by

v2⊥ =
(E1 − η̂j2) × B0

|B0|2
=

(
E1 − E1‖ẑ/b0

)
× B0

|B0|2
,

to which we add a velocity component parallel toB0 to set itsẑ-component to zero and ensure it is

divergence-free:

v2 = v2⊥ − (v2⊥)z B0

|B0|2
.

Setting

M =
Qeγ

b0
exp−

(x2
−y2)

2

κ4 ,
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Figure 3.8: (a) The surfacêη = 0.02η̂max, containing the non-ideal regionD given by (3.31), and (b)
cross sections in thez = 0 plane of the non-ideal regionsD given by (3.18) (outer circle) and (3.31) (inner
curve). Both figures use the parametersl = 0.1,L = 1, j20 = −1, e10 = −1, k = 0.5, κ = 0.1, andλ = 1.

the resulting flowv2 is given by

v2 = M

(
x sinh (2kz)− y cosh (2kz)

l
+ 2ly

x2 − y2

κ4

)

x̂ (3.32)

+M

(
x cosh (2kz)− y sinh (2kz)

l
+ 2lx

x2 − y2

κ4

)

ŷ.

The additional factorexp(−
(
x2 − y2

)2
/κ4) introduced in (3.30), and not present in (3.17), has had the

effect of narrowing the HFT away from thêz-axis. The factor therefore has the same effect on the counter-

rotational flowv2, as clearly shown in Figure 3.9, although the qualitative structure remains largely the

same.

The rate of reconnected flux can again be determined. Thez-axis remains the reconnection line,

dΦmag

dt
=

∫

E‖ dl =

∫ ∞

−∞

(

Me e10 e
−z2/L2

+O
(
M3

e

))

dz =
√
πMe e10L+O

(
M3

e

)
. (3.33)

This equation is precisely the same as that of the previous example, given by (3.24). The shape of the

diffusion region in thexy-plane, which is different in both our examples, in turn alters the shape of the HFT

and therefore the structure of the plasma velocityv2. However in the above expression these dimensions

are unimportant, since it is the length of the diffusion region along thêz-axis which is key in determining

the reconnection rate. In principle, any decaying functioncould have been used to determine this length.

The model used does not allow for a simple scaling of the reconnection rate with respect to the re-

sistivity or Lundquist number, and so we cannot yet determine the maximum rate of reconnection. This

is a consequence of three dimensional reconnection being more complex and having a greater variety of

solutions than the two dimensional case. Consider the values of the variables at a heightz = Le above the
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Figure 3.9: The velocity fieldv2, for (a)z = 1 and (b)z = −1, and the parametersl = 1,L = 1, e10 = −1,
k = 0.5, b0 = 1, andκ = 1.

non-ideal region. There the ratio (ve/vAe
) of the plasma velocity to the Alfvén velocity is given by

ve

vAe

=

√
π√

2Rme

Le

l

L

l
g, (3.34)

whereRme
is the global magnetic Reynolds number,Rme

= LevAe
/η, andg = exp (kLe − 1/2) is a

factor relating to the geometry of the magnetic field. The ordering of parametersLE > L > l has been

assumed. The parametersl andL, which relate to the structure of the non-ideal region, andg, which relates

to the field geometry, would not in a general 3D reconnection event be arbitrary, but rather determined

by the evolution of the magnetic field before the onset of a stationary phase. Therefore the expression

(3.34) should be interpreted with particular care. Although at first sight it appears to scale asR−1
me

, each of

the other factors on the right hand side of (3.34) can be much larger than unity and also depend onRme

(l = l(Rme
), L = L(Rme

), g = g(Le, Rme
)). Determining howve/vAe

scales withRme
and so whether

or not the reconnection is fast is outside the scope of this simple stationary model. Instead we proceed to

examine the case of ‘composite solutions’.

3.3 Composite Solutions

In many realistic situations the plasma velocity outside the HFT will be non-zero, and therefore we here

choose to superimpose an ideal solution (v1 6= 0) on the particular solution, giving composite solutions. In

the kinematic analysis, as given by Hornig and Priest (2003), the two solutions are essentially independent,

but in the present dynamic analysis they are coupled in the momentum equation (3.8) by the inertial term

(v1 · ∇′)v1. We now examine the extent to which the coupling restricts the choice of the ideal solution,

and investigate how the reconnection process differs between the particular and composite solutions.



3.3 Composite Solutions 40

In general, the momentum equation given by (3.8) implies a coupling between the ideal and non-ideal

Ohm’s laws given by equations (3.4) and (3.5). However, for the class of ideal plasma flowsv1 for which

the curl of the inertial term on the left-hand side of (3.8) vanishes, the equations become decoupled. In this

case the effects of a non-trivial solution to (3.4) are apparent at second order only in the pressure gradient

∇p2. For ideal flows satisfying this condition the particular solutions of Section 3.2 may be taken as a

solution to (3.5), and so we have a direct comparison with thecomposite solutions of Hornig and Priest

(2003). We begin by examining an ideal stagnation flowv1 for which∇ × (v1 · ∇)v1 = 0. Stagnation

flows are an obvious choice to consider because they can lead to the build-up of thin current sheets. They

also allow for flux to be brought into and removed from the localised non-ideal region and so change

field-line connectivities away from this region.

Turning first to (3.4), we takeφ0 to be the function of the field line coordinates(x0, y0) given by

φ0 =
ϕ0

Λ2
x0y0. (3.35)

SettingZ0 = 0, the inverse field line mappings (3.13) can be used to find an equivalent expression in terms

of x, y, andz, so determiningφ0(x, y, z). The component ofv1 perpendicular toB0 may then be deduced

from (3.4) as

v1⊥ = −∇φ0 × B0

|B0|2
. (3.36)

We use the freedom in choosing the component ofv1 parallel toB0 to set thez-component ofv1 to zero:

v1 = v1⊥ − (v1⊥)zB0

b0
. (3.37)

This ensures the flow is divergence-free since thez-component of the curl of equation (3.4) becomes

b0 (∇ · v1) = 0. Thus we obtain

v1 =
ϕ0

b0Λ2
(x cosh(2kz) − y sinh(2kz)) x̂ +

ϕ0

b0Λ2
(x sinh(2kz) − y cosh(2kz)) ŷ,

and see that∇ × (v1 · ∇)v1 = 0. The ideal flow crosses the separatrices ofB0 in thexy-plane, with

streamlines ofv1 above and below the central plane shown in Figure 3.10.

Since the inertial term in (3.8) may be expressed as the gradient of a scalar function, the equation has

the same structure as in the case of the particular solutions(wherev1 = 0), which were examined in

Section 3.2. Thus the same form ofj2 may be taken in both the particular and composite case, and continue

to assume the form given by

j2 =
j20

cosh2
(

x2−y2

λ2

) ẑ,

as in the Subsection 3.2.2. A further comparison with the numerical simulation of Pontin et al. (2005a) can

now be made; our ideal stagnation flowv1 in the central plane has a similar profile to the plasma flow at

the end of their simulation when viewed with the correct orientation according to the current concentration.



3.3 Composite Solutions 41

−4

−2

2

4

−4 −2 2 4

y

x

(a)

−4

−2

2

4

−4 −2 2 4

y

x

(b)

Figure 3.10: The ideal plasma velocityv1 for (a) z = 0.5 and (b)z = −0.5, and the parametersϕ0 = 1,
k = 0.5, b0 = 2, andΛ = 1.

Using (3.8) we deduce the pressure termp2 as

p2 = p20 − 1

2
kλ2b0j20 tanh

(
x2 − y2

λ2

)

− ϕ2
0

2Λ2b20

(
x2 + y2

)

Λ2
. (3.38)

The particular solution may be recovered by settingϕ0 = 0, and so it is seen that the inclusion of a zeroth-

order flow has had the effect of introducing an extra term to the pressure, proportional toϕ2
0/(Λ

4b20). When

ϕ0 = 0 there are strong gradients in the pressure along the separatrices ofB0 in thexy-plane. This extra

term has the effect of smoothing out these strong gradients,with p2 becoming a smoother function as

ϕ2
0/Λ

2b20 is increased. An example of the pressure profile is shown in Figure 3.11, which can be compared

with Figure 3.5 of Section 3.2. The additional term has a natural physical explanation. It deflects the

incomingv1 flow toward the outflow direction, a purely hydrodynamical effect. Due to the symmetry with

respect to inflow and outflow, there is no net transfer of magnetic energy to kinetic (bulk) energy of the

plasma in this stationary solution, as would be expected in amore realistic situation. However, we may

model part of this process by requiringv1 · j2 × B0 to be positive. This would result in an initial transfer

of magnetic energy to kinetic energy, but with the latter subsequently transferred to potential energy, since

v · ∇p > 0, so no net acceleration can take place. We have here that

v1 · j2 × B0 = −ϕ0j20k
((
x2 + y2

)
cosh (2kz)− 2xy sinh (2kz)

)

Λ2 cosh2
(

x2−y2

λ2

) .

We require this quantity to be positive, which can be ensuredby taking the combinationϕ0j20k < 0.

Now turning to (3.5) we may use the same quantitiesη̂, E1, andv2 as in Section 3.2.2 to satisfy the

equation.
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Figure 3.11: The pressure profilep2 (x, y) whenv1 6= 0, j2 = j20/ cosh2
((
x2 − y2

)
/λ2
)
ẑ, and the

parametersp20 = 2, b0 = 2, λ = 1, k = 0.5, j20 = −1, Λ = 1 andϕ0 = 2. The lower pressure regions
correspond to inflow ofv1 and the higher pressure regions to outflow.

The question that arises at this point then is: how do the particular and composite solutions differ? Or,

in other words, what physical effect does the inclusion of the ideal flowv1 have on the solution? Since

E0 is perpendicular toB0 the expression for the rate of reconnection is the same as that of the particular

solution. However the non-vanishing external flow changes the meaning of this reconnection rate since the

reconnection process can now reconnect flux outside the hyperbolic flux tube. The evolution of magnetic

flux in the two cases is therefore quite different, and may be visualised using the concept of a magnetic flux

velocity as described in Section 2.1. We demonstrate in the following subsection how the magnetic flux

evolution differs between the particular and the compositesolutions.

Magnetic flux that does not pass through the diffusion regionevolves ideally, i.e. it isfrozeninto the

flow and so initially-connected plasma elements remain connected. We may track the evolution of plasma

elements in the ideal flow above and below the diffusion region. Initially-connected elements will only

remain connected if the field line linking them does not pass through the non-ideal region; otherwise the

elements will change their connectivity. The pair of quasi-flux velocitieswin andwout can be used to

project into the central plane (z = 0) the flow lines corresponding to the ideal evolution above and below

the non-ideal region. Examining the differences between the lines ofwin andwout allows us to deduce

how the magnetic flux evolves.

For the stagnation flow described in Section 3.3(a), the relevant projection is shown in Figure 3.12

(for a particular choice of parameter values). The flow linesof win (grey lines) in thez = 0 plane are

superimposed on those ofwout (black lines) in the same plane. We are able to divide the plane into three

regions according to the type of reconnective behaviour that occurs; the separatrices dividing these regions

are shown in Figure 3.13.

In region I the flow lines ofwin andwout coincide perfectly. The magnetic flux passing through the
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Figure 3.12: Flowwin (grey) andwout (black) for the solution already described in Section 3.3.
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Figure 3.13: Separatrices ofwin (grey) andwout black for the solution described in Section 3.3. The region
is divided into three types of reconnective behaviour. Magnetic flux passing through region I undergoes
ideal evolution. Magnetic flux passing through region II undergoes a slippage-like behaviour while flux
passing through region II undergoes an evolution similar tothat seen in classical 2D reconnection.
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z = 0 plane in region I evolves ideally, so that initially-connected plasma elements will remain connected.

In regions II and III the flow lines ofwin andwout do not coincide. For magnetic flux passing through the

z = 0 plane in these two regions we deduce that plasma elements above and below the non-ideal region

that are initially connected will not remain so. Tracking the evolution of corresponding pairs allows us to

distinguish different types of magnetic flux evolution.

Magnetic flux passing through region II exhibits a slippage-like behaviour. Initially connected plasma

elements above and below the non-ideal region will change their connections as the flow transports the

magnetic flux linking them into the non-ideal region. On leaving the shadow of the non-ideal region the ini-

tially connected elements are both transported in the same direction by the flow and a new ideal connection

is again established for each plasma element. Although thisconnnection will not be with the initial partner,

it will be with a plasma element that was initially close to that partner.

Magnetic flux passing through region III exhibits the type ofbehaviour most similar to that shown

in classical 2D reconnection. Again, initially-connectedplasma elements above and below the non-ideal

region loose their connections as the magnetic flux linking them is transported into the non-ideal region.

However, on leaving the shadow of the non-ideal region the initially-connected plasma elements above

and below the non-ideal region are transported in differentdirections by the flow, along opposing ‘wings’

seen in Figure 3.13, and their separation will therefore increase in time, as in the classical 2D reconnection

picture. The new ideal connection for a plasma element initially above (below) the non-ideal region will be

with a plasma element that was initially below (above) the non-ideal region in the distant opposing wing.

Therefore in this composite solution the stagnation flow is dominant, with the rotational flowv2 present

as a background flow. A stagnation flow was found to develop in the numerical simulations of Pontin et al.

(2005a), although a background counter-rotational rotational flow was also shown to be present, and seen

to fall off with distance from the X-line. The simulation also confirmed a continual and continuous change

of field line connectivity. Thus many properties of their simulation are captured in the above-described

analytical solution.

We have been able to make a direct comparison between the particular solutions described in Section 3.2

and the composite solutions described in this section since, for our choice ofv1, the curl of the inertia term

in (3.8) vanishes. In principle we could have chosen other ideal flows for this directly comparable analysis

that also have a curl-free inertial term. One example is thatwhich results from defining the scalar function

φ0 as the function of field-line coordinates given by

φ0 =
ϕ0

Λ2

(
x2

0 − y2
0

)
,

from which we obtain

v1 =
−2ϕ0

b0Λ2
(yx̂ + xẑ) . (3.39)

This is also a stagnation flow, but it differs considerably from the flow considered in the previous section;

it does not cross the separatrices of the projection ofB0 onto thexy-plane, and is independent of the third

coordinate,z. When superimposed on the particular solution, however, the same three regions of differing

flux evolution are present, as illustrated in Figure 3.14. The inflow and outflow channels bounded by the

separatrices of the quasi-flux velocities are now centred around the separatrices ofB0 in thez = 0 plane.
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Figure 3.14: Separatrices ofwin (grey) andwout black whenv1 is given by (3.39). The same three types
of reconnective behaviour as figure 3.13 are present.

This demonstrates one of the crucial differences between 2Dand 2.5D reconnection and the 3D case. The

crossing of the separatrices by the flow is only a criterion for reconnection in the 2D case. In 3D the

difference betweenwin andwout is the crucial property for reconnection. Another example in this class of

flows which can be used to form composite solutions is the rotational ideal flow arising from the choice

φ0 =
ϕ0

Λ2

(
x2

0 + y2
0

)
. (3.40)

This ideal flow is rotating in the same sense for allz, and so does not have the effect of bringing flux into

and away from the non-ideal region.

For the three flows examined in this section, the reconnection rate, as determined by the integral of

the parallel electric field along the reconnection line, is identical, but the magnetic flux evolution quite

different. The distinct types of reconnective behaviour illustrated here, and in paper I, may be distinguished

by considering the associated internal and external reconnection rates, as introduced by Hornig (2006).

Theexternal reconnection ratemeasures the rate at which flux is transported into (and equivalently out

of) the non-ideal region. This rate is always less than or equal to the total reconnection rate, and theinternal

reconnection ratemeasures the difference between the total reconnection rate and the external reconnection

rate. The electric potential along the flow lines ofwin andwout is constant, since these are streamlines

of the ideal flow. The difference in electric potential between the inflow channels bounded by the separa-

trices of the flow therefore quantifies the external reconnection rate, while the internal reconnection rate is

given by the difference between the total rate (measured by the integrated parallel electric field along the

reconnection line) and the external reconnection rate.
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The stagnation flow examples illustrated in Figures 3.13 and3.14 both correspond to a purely external

reconnection rate. In this situation the separatrices of the flow (which divide regions II and III) pass though

the origin, and so the difference in the electric potential between them is equal to the total reconnection

rate, i.e. the difference in electric potential across the non-ideal region. For an ideal rotational flow, such

as that arising from the electric potential given by (3.40),the external reconnection rate vanishes and the

reconnection is internal only. Similarly if the ideal flow iszero (as in the case of the particular solutions of

paper I) then the reconnection is purely internal. Thus the interpretation of reconnection rate in this way

allows for a clear distinction between the different types of solutions considered here.

We note also that a combination of internal and external reconnection is not excluded in these solutions,

and is expected if a smooth transition between the purely external reconnection solutions illustrated in

Figures 3.13 and 3.14 and the purely internal reconnection found in the particular solution is to be made.

Such a solution exists when the magnitude of the ideal flowv1 is decreased to be the same, or less than,

that of the non-ideal flowMev2. In addition to the three regions of differing space flux evolution described

above and illustrated in Figure 3.13, the magnetic flux in these mixed solutions would show rotational

dynamics within part of the HFT.

3.4 Accelerating Stagnation Flow

In a realistic situation we would expect to see a plasma flow that results in a net transfer of magnetic

energy to kinetic (bulk) energy of the plasma since magneticenergy is the main source of energy in the

solar corona. This property must be explicitly prescribed here since the model does not include the time-

dependent processes external (and possibly prior) to the reconnection process that lead to the build-up of

a current sheet and corresponding plasma flows. Instead these properties are represented in the model via

boundary conditions on the flow, magnetic field and pressure profiles. Thus in the expansion scheme we

may ensure an increase in kinetic energy occurs in the reconnection process by requiringv1 · j2 × B0 −
v1 · ∇p2 to be, on average, positive over the volume (which is not the case for the above stagnation flow).

This increase in kinetic energy may be the result of a transfer of magnetic energy (due tov1 · j2 × B0),

a transfer of thermal energy (due tov1 · ∇p2) or a combination of both effects. Numerical experiments,

such as those of Biskamp (1986), Priest and Forbes (1986), Linton and Priest (2003), Parnell and Galsgaard

(2004) and von Rekowski et al. (2006), suggest considering aplasma flow that sharply changes its direction

toward the outflow region; in such experiments fast jets of plasma emerging from the reconnection region

are observed. We examine in this section an ideal plasma flow,v1, which possesses these properties, using

a method similar to that of Section 3.2.1. Now, however, since the curl of the inertial term in (3.8) does

not vanish, there is a much larger degree of coupling betweenequations (3.4) and (3.5), and the particular

solution of Section 3.2 can no longer be used as a solution to (3.5).

Just as in the previous section we will consider incompressible solutions; a plasma flow with a faster

outflow velocity than inflow velocity must have an associatedoutflow channel that is narrower than its

inflow channel. To achieve such a flow we impose a non-symmetric function,φ0, for the lowest order

electric potential, and then deduce the plasma velocityv1 from (3.4). For example, we may imposeφ0 as
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Figure 3.15: (a) Stagnation-point structure of the velocity field v1 corresponding toφ0 =
−ϕ0y0 tanh(x0)/Λ

2 in the planez = 0. As indicated by the closeness of the contours, the plasma has
a greater velocity along the outflow direction. In the planes(b) z = 2, and (c)z = −2, the flow is still of a
stagnation type but is now stretched along the diagonal to such an extent that it is almost aligned with the
y = x andy = −x lines, respectively.

the function of field line coordinates given by

φ0 = −ϕ0

Λ2
y0 tanh (x0) , (3.41)

and use the inverse field line mappings to deduce an equivalent expression in terms ofx, y andz. An

analytical expression forv1 (which is too long to be shown here, but may be easily calculated using any

symbolic computation package) is found using (3.37). In thecentral region the flow has a stagnation

structure, as shown in Figure 3.15, with single inflow and outflow channels that are of different widths.

Thus, depending on the direction of the flow, and since it is incompressible, an acceleration or deceleration

of the plasma takes place. The physically relevant case corresponds to the choiceϕ0 > 0, for which the

outflow direction is the narrower channel along they-direction, and so the plasma is accelerated during the

reconnection process.

Turning now to the lowest-order momentum equation in the expansion scheme, (3.8), we integrate along

the field lines (3.12), starting from the planez = 0 to deduce the pressurep2:

p2 (x, y, z) = −
∫ z/b0

s=0

(v1 · ∇ v1) · B0 ds+ p2 (x0, y0) . (3.42)

We first examine solutions obtained when the free functionp2 (x0, y0) is set to zero. Later in the section

we shall consider another particular example wherep2 (x0, y0) 6= 0, and show that the choice of this free

function has a considerable effect on the reconnection process.

An example of the pressure profile in the case wherep2 (x0, y0) = 0 is shown in Figure 3.16(a).

The expression obtained forp2 is dependent onϕ2
0, and so the pressure profile is independent of the flow

direction. Thus for the caseϕ0 > 0 which we are considering here, a pressure gradient exists along the

outflow direction which is in the direction of the flow, and so acts to accelerate the plasma.

The perpendicular component of the current,j2⊥, can be determined analytically from (3.8) once the
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Figure 3.16: (a) The pressure profilep2 and (b) the Lorentz forcej2 × B0 in the planez = 0 for an
accelerating stagnation flowv1. The free functionp2 (x0, y0) in equation (3.42) has been set to zero. The
outflow is aligned with they-axis, and corresponds to the channel of decreasing pressure.

pressure is given:

j2⊥ =
(−∇p2 − (v1 · ∇)v1) × B0

|B0|2
.

A Lorentz force is present within the outflow channels, and isdirected away from the central line of mini-

mum pressure, as shown in Figure 3.16(b). Thus, since it is not aligned with the flow direction, this force

does not act to alter the plasma velocity; in this example it is only the pressure gradient which accelerates

the plasma, causing the fast outflow jets. The quantityv1 · j2⊥ × B0 − v1 · ∇p2 is, on average, positive

over the region providedϕ0 > 0, i.e. provided the flow is accelerated from its inflow to outflow direction.

This net acceleration, a consequence of the pressure gradient, results in a net transfer of thermal energy to

kinetic energy.

The full form of the currentj2 may be determined by finding a scalar functionλ (x, y, z) such that

settingj2 = j2⊥ + λB0 ensures the current is divergence-free. Taking∇ · j2⊥ + ∇λ · B0 = 0 and

integrating along the field lines gives

λ(x, y, z) = −
∫ s=z/b0

s=0

∇ · j2⊥ ds+ λ (x0, y0) (3.43)

= λ̃(x, y, z) + λ(x0, y0),

whereλ (x0, y0) is a function that we are free to impose on the solution. The current is then given by

j2 = ( j2⊥ + λ̃(x, y, z)B0) + λ(x0, y0)B0 = j̃2 + j∗2,

wherej∗2 is solely determined by the free functionλ (x0, y0). The termj∗2 also determines the current

along thez-axis because, due to the vanishing divergence ofj2⊥ along thez-axis, the thez-component of

j̃2 vanishes there. Equation (3.5) then implies that the reconnection rate will be determined by this free

function (together with the form of̂η), rather than by the ideal flowv1, i.e. governed by the lowest order
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Figure 3.17: Vector-field plot showing the currentj̃2 in the planes (a)z = 0, (b) z = 2.2, (c) x = 0, (d)
y = 0, in the case wherep2 (x0, y0) = 0 with the parametersϕ0 = 1, Λ = 1, b0 = 1, andk = 1. The
thickness of each arrow represents the magnitude of the current vector at that point and the same scaling
for the vectors has been used for each of the plots.
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Figure 3.18: (a) The pressure profilep2 and (b) the Lorentz forcej2 × B0 for the accelerating stagnation
flow, now with free functionp2 (x0, y0) in equation (3.42) given by (3.44). The outflow is aligned with
the y-axis, and corresponds to the channel of increasing pressure. This figure may be compared with
figure 3.16.

non-ideal solution.

Equation (3.43) must be integrated numerically. Figure 3.17 illustrates the current,̃j2, in the planes

z = 0, y = 0 andx = 0 andz = 2 (for clarity the full 3D grid has not been shown). It can be seen that the

strongest currents are present in the regions where the plasma velocityv1 is changing rapidly in direction

or magnitude. Thus in the central plane,z = 0, as shown in Figure 3.17(a), strong currents are found along

the fast outflow jets (see Figure 3.15(a)). Above and below the central region strong currents are present

around the linesy = x for z > 0 (see Figure 3.17(b)) andy = −x for z < 0 (by symmetry), corresponding

to the flow channels illustrated in Figure 3.15(b) and (c). The current structure along these flow channels is

seen to be complex, with oppositely directed current along and around the linesy = ±x. Away from these

regions the current is very weak and has an X-type structure in planes ofz = const.

We can make use of the freedom to choose the free functionp2 (x0, y0) that arises in the integration for

p2 given by equation (3.42). This function may be chosen to alter the pressure profile, and consequently

also the currentj2. In particular, a form forp2 (x0, y0) may be imposed such that the acceleration of the

plasma is driven by the Lorentz force,j2 × B0, rather than by the pressure gradient,−∇p2.

One such example is obtained by adding the additional function given (in terms of the fieldline coordi-

nates) by

p2 (x0, y0) = p20 e
−x2

0

(
y2
0 − x2

0

)
(3.44)

to the pressurep2. The resultant pressure profile is illustrated in Figure 3.18(a), where it is seen that the

pressure gradient is still directed along the outflow channel, but now acts against the direction of the flow.

Therefore, the acceleration of the plasma is driven entirely by the Lorentz force, with magnetic energy being

transfered to kinetic energy in the reconnection process. The Lorentz force is illustrated in Figure 3.18(b),

where the perpendicular component of the currentj2 has been deduced using the same method as described

above. The divergence ofj2⊥ along thez-axis remains zero with the inclusion of the extra factor in the
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solution forp2. Thus the reconnection rate in this case is still determinedcompletely by the free function

λ (x0, y0), and may therefore be the same as in the previous pressure gradient driven model.

In both of the examples in this section we must impose a localised resistivity in order to ensure a

localised non-ideal region. In principle the remaining quantities could then be determined numerically

using the iterative scheme outlined in Section 3.2.

3.5 Summary

In this chapter we have carried out a perturbation expansionof the 3D stationary MHD equations in the

limit of slow flow. In a series of examples the system has been solved explicitly up to third order, and a

scheme outlined to allow a (numerical) solution at all higher orders to be obtained.

The expansion scheme allows for a decomposition of Ohm’s lawinto an ideal and a non-ideal part at

zeroth- and first-order, respectively, together with accompanying equations of motion. Such a decompo-

sition of non-ideal, or particular, solutions and ideal solutions has been suggested by previous kinematic

analyses (e.g. Hornig and Priest, 2003, Pontin et al., 2004,2005b) but in this chapter we have shown that

expressing solutions in this way is possible, under certaincircumstances, even when the equation of motion

is also included in the analysis.

In Section 3.2, by assuming the trivial solution for the zeroth-order terms (excluding the magnetic

field), we were able to examine the non-ideal solution alone.This directly corresponds to the pure solutions

examined by Hornig and Priest (2003). In the analysis of particular solutions we examined two different

magnetic fields, corresponding to a uniform current and to a current localised along the separatrices of the

basic magnetic field. In these solutions, counter-rotatingflows above and below the non-ideal region are

observed that are limited to within the HFT threading the non-ideal region. The same reconnection rate is

observed in both examples, since the parallel electric fieldis, to some extent, independent of the choice of

current. Further, with respect to the reconnection rate, the dimensions of the non-ideal region are important

only along the reconnection line (i.e. the line of maximal∆φ2 across the non-ideal region, and identified

here with thez-axis) – its extent and structure in thexy-plane is unimportant.

The structure of the plasma flow in the particular solution means that the reconnection is limited to affect

the field lines within the HFT only. The inclusion of non-trivial solutions to the zeroth-order equations

equates to the case of ‘composite solutions’ in Hornig and Priest (2003). A stagnation flow is natural to

consider; such a flow would bring field lines into the non-ideal region, and so allow field line connectivity

further away from this region to be changed, i.e. allow the reconnection process to have a global effect.

Examining the expansion scheme equations it is clear that the equation of motion provides a certain

degree of coupling between the ideal and non-ideal solutions. Using some example flows, we have consid-

ered in Section 3.3 to what extent such a coupling restricts the form of ideal solution and have considered

the effect of the ideal solution on the reconnection rate, evolution of flux and energetics. A particular class

of ideal flows, for which the inertial term in the equation of motion can be expressed as a gradient, may

be imposed on the particular non-ideal solution without altering the form of the current, parallel electric



3.5 Summary 52

field or (in consequence) the reconnection rate. For these flows the coupling between the two solutions is

relatively weak, affecting only the pressure term in the non-ideal solution. A wide range of flows, both in

strength and, more importantly, in profile, belong to this class of solution. They may be distinguished by

their effect on the evolution of magnetic flux.

In general, stagnation flows are expected to be present if classical reconnection is to occur, since they al-

low thin current sheets to be built up and so localised non-ideal regions to become established. A variety of

symmetric stagnation flows belong to the class of ideal flows that may be used to form composite solutions.

These flows bring magnetic flux into the non-ideal region fromlarge distances and subsequently remove

the flux. Magnetic flux threading particular channels in the centre of the region shows similar behaviour

to typical 2D reconnection, in the sense that field lines brought in toward the non-ideal region reconnect

with field lines that were initially far away, and the separation of initially connected plasma elements in-

creases in time after the flux has left the non-ideal region. In the same reconnection event, magnetic flux

passing through other regions of the domain can be seen to undergo a slippage-like behaviour. Although

the reconnection rate in the particular and composite reconnection solutions is quantitatively the same, its

physical interpretation is quite different. The reconnection, which was completely internal for the particular

solution, is now completely external for these stagnation flows, and this remains the case whether or not the

flow crosses the separatrices of the magnetic field in thexy-plane.

In such symmetric examples there is no net transfer of magnetic energy to bulk energy of the plasma.

Non-symmetric stagnation flows, however, such as those considered in Section 3.4 can convert magnetic

energy into kinetic energy. These ideal flows show highly curved streamlines, with fast jets of plasma

emerging from the central region. Although a stronger coupling between the ideal and non-ideal solutions

is present in this situation, we have shown that, just as in the non-accelerating case, the ideal flow itself does

not directly govern the reconnection rate, which is instead, within the limitations of this model, determined

by a function that is free to be imposed on the solution. In a numerical simulation this free function, which

determines in particular the parallel current along the reconnection line, will be defined by the boundary

values for the magnetic field. We have shown how the choice of different free functions within the expansion

scheme results in differing physical reconnection scenarios; by considering two particular free functions

we have illustrated how an acceleration of the plasma may be driven by a Lorentz force or by a pressure

gradient. In general, a combination of both effects is also possible.

Finally we note that the expansion scheme has been set up on aninfinite domain and that the solutions

are valid near the centre of the domain. In a real, finite, physical system, the type of solution obtained in

a stationary reconnection event will depend on the initial and boundary conditions that are imposed. In

addition, the dimensions of the non-ideal region will be dependent on the dynamics of the event prior to

the onset of the stationary phase, for example on the processof current sheet formation. Thus the various

choices that have been considered here for the free functions in the expansion scheme, and so the type

of reconnection solution achieved in practice, will dependon such conditions. However, each order of

the expansion includes enough free parameters to make the magnitude of the new contributions (vi, Bi)

essentially free, and independent of the lower-order solutions. We are hopeful therefore that the example

solutions found are good approximations to full exact solutions, in that the infinite series represented in each

case may be convergent (providedMe ≪ 1). Whether the solutions are dynamically accessible cannotbe

determined within the scheme.



Chapter 4

Flux-Tube Disconnection

Analytical models for 3D non-null reconnection have, so far, been based on a hyperbolic field geome-

try. However, as discussed in Section 2.2, in 3D it is the location of non-ideal terms rather than the field

geometry that will determine the location of reconnection.In this chapter we present a model for flux-

tube disconnection, where an elliptic geometry is taken forthe magnetic field. The model is developed to

describe a steady-state situation in which the two footpoints of a magnetic flux tube are being spun in op-

posite directions and in this stationary state a twist is present in the centre of the flux tube where a region of

localised current is present and reconnection is taking place. A qualitative description of the systems evo-

lution is presented in Section 4.2, with a detailed analytical model given in Section 4.3. The model may be

categorised as an example of global non-null reconnection underGeneral Magnetic Reconnection, a theory

we summarize in Section 4.1. Several features of previous (hyperbolic) models of non-null reconnection

are found.

The results of this chapter can be found in Wilmot-Smith and Priest (2007).

4.1 General Magnetic Reconnection

There are several features of 2D reconnection models, for example a plasma flow across the separatrices of

the magnetic field, or a normal electric field component at theX-point, that have been proposed as general

definitions for reconnection. It was not until more general,3D, circumstances were considered that the

appropriateness of each of these conditions became clear.

Schindler et al. (1988) first considered how applicable these ideas might be to 3D geometries, and

argued that any general definition should be structurally stable, i.e. not depend on small modifications to

the system under consideration. They proposed that a definition, first considered by Axford (1984), based

on a change of connectivity of plasma elements due to a localised violation of the frozen-in field condition,

53
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Figure 4.1: Classification of breakdown of magnetic connection according to Schindler et al. (1988). Var-
ious branches of General Magnetic Reconnection are shown. Reconnection is classed asglobal when a
change in magnetic connectivity occurs for plasma elementsthat do not themselves pass through the non-
ideal region.

should be used. This is the basis ofGeneral Magnetic Reconnection(GMR). The condition

∫

E‖dl 6= 0,

evaluated along a field-line, is required for GMR, being a generalisation to 3D of the 2D normal electric

field component at an X-point. In order to distinguish between reconnection and diffusive processes, the

additional requirement that the non-ideal term in Ohm’s law(which itself is the cause of the breakdown

of the frozen-in condition) be localised is also imposed. Equivalently, GMR applies only to situations

whereRme ≫ 1, i.e. the global magnetic Reynolds number is large. Figure 4.1 illustrates the regimes of

breakdown of magnetic connection and so also the branches ofgeneral magnetic reconnection (Schindler

et al., 1988). The breakdown of magnetic connection may be caused by a resistive term in Ohm’s law, but

also by other non-ideal terms, such as the pressure tensor.

Finite-B reconnectionassumes the magnetic field does not vanish within the non-ideal region, and may

be classified further aslocal or global according to how the change in connectivity arises. If a change in

magnetic connectivity occurs for plasma elements that do not themselves pass through the non-ideal region

then the process is global; otherwise it is local. The changein connectivity necessarily involves plasma
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elements located on different sides of the non-ideal region, and reconnection occurs only for elements

which are, at some time, connected to the non-ideal region.

As the authors pointed out, the separation of plasma elements that results from the reconnection process

may be a factor in reconnection modelling, and a reason why several scenarios which fit into the GMR

scheme have not been extensively modelled. Stagnation flows, which lead to large separations, may be a

feature of 3D models not because they cross the separatricesof the field, but rather because of the separation

of plasma elements they cause. Models of finite-B reconnection have shown thatcounter-rotatingflows are

a distinguishing feature of the 3D case (Hornig and Priest, 2003, Pontin et al., 2005a, Wilmot-Smith et al.,

2006a), and that the orientation of stagnation flows with respect to the field structure is not important

(Wilmot-Smith et al., 2007a).

Magnetic reconnection models in which the magnetic field hasan O-type topology have not received

much attention. Recently, however, De Moortel and Galsgaard (2006a,b) presented numerical simulations

of 3D reconnection due to rotational and spinning motion of the footpoints of magnetic flux tubes. In

their simulations stagnation flows were observed, togetherwith an X-type current structure, although the

magnetic field showed an O-type configuration in cross-sectional planes. We return to examine and extend

these models in Chapter 5. Here we present a much simpler picture, which allows for analytical modelling,

of reconnection that occurs as a result of the counter-rotation of the ends of a magnetic flux tube, which we

refer to asflux-tube disconnection. A qualitative description of the process is outlined in thenext section,

with a more detailed model given in Section 4.3.

4.2 Qualitative Model

Consider a steady-state situation (Figure 4.2) where a magnetic flux tube, of radiusa, has footpoints located

at z = ±H and a typical vertical magnetic field strengthb0. Assume that the two footpoint ends are being

rotated in different directions with speedv0, and that, as a result of the counter-rotation, a twist in thefield

is produced withinz = ±L. That is, assume that within the non-ideal region the magnetic field may be

written as

B = Bθθ̂ +Bz ẑ,≈ kb0θ̂ + b0ẑ,

wherek is a constant indicating the order of magnitude ratio of the toroidal field strength to the guide field.

The flow is assumed to be incompressible, which is satisfied automatically for a purely azimuthal plasma

velocity that is independent ofθ.

The localised poloidal field component results in a current,and therefore a non-ideal region, that is

localised in all three dimensions. The current has a component parallel to the magnetic field, and does

not close within the non-ideal region; we assume that the return current is diffuse and is spread over a

sufficiently large volume that its local effect may be neglected. A sketch of the current structure is shown

in Figure 4.3.

Several questions now arise in the analysis. How, in an orderof magnitude sense, is the twist in magnetic

field related to the driving plasma velocityv0. Specifically, how do the parametersL andk, which determine
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Figure 4.2: Sketch illustrating the model for flux-tube disconnection. A flux tube of radiusa is anchored
at its footpointsz = ±H which are rotated in opposite directions with speedv0. The counter-rotation
generates a localised twist within the flux tube in the shadedregion, i.e. betweenz = ±L.

Figure 4.3: Sketch illustrating the form of the current generated by the counter-rotation of the flux-tube
footpoints. The box indicates the boundaries of the non-ideal region. A strong current (solid black lines)
gives rise to the localised non-ideal region, with the weak return current (dashed lines) being diffuse.
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Figure 4.4: Path taken to consider a loop integral consisting of the central field line, a field line along the
boundary of the non-ideal region (shaded) and two connecting radial lines. The integral of the electric
field around the loop (solid black lines) must vanish due to the stationarity of the process. The central axis
indicated by a dashed line.

the extent of the non-ideal region and the strength of the poloidal field, respectively, depend onv0? Which

parameters determine the rate of reconnection? How is the rate of reconnection dependent on the driving

velocityv0?

We can gain an insight into these questions by examining Ohm’s law and Faraday’s law for a steady

state:

E + v × B =
1

σ
j,

∇ × E = 0,

whereσ is the electrical conductivity. Consider the ideal region above and belowz = ±L. Therej = 0,

and Ohm’s law reduces to

Er + v0b0 = 0, (4.1)

whereEr is the typical radial electric field. Similarly, along the central axis (r = 0) the plasma velocity is

zero by symmetry and

Ez =
1

σ
jz. (4.2)

Now,∇ × B = µj implies that along the axis we also have

jz =
1

µ

(
Bθ

r
+
∂Bθ

∂r

)

≈ 2kb0
µa

. (4.3)

Next consider a loop integral, as illustrated in Figure 4.4,consisting of the part of the central field line

from below to above the non-ideal region, a field line on the boundary of the non-ideal region, and two

connecting radial lines. Integrating around this loop and using Faraday’s law and using the symmetry of

solutions above and below thez-axis gives

0 =

∮

E · dl ≈ 2LEz + 2aEr, (4.4)

since the electric field along the boundary of the non-ideal region vanishes. Substituting expressions (4.1),
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(4.2) and (4.3) into relation (4.4) allows us to eliminate the electric fieldsEr andEz and obtain an expres-

sion for the plasma velocity in terms of the field parameters:

v0 =
2ηkL

a2
, (4.5)

whereη = 1/ (µσ) is the magnetic diffusivity. This expression allows us to determine the productkL

when the radius of the tube (a) and the rotational driving velocity (v0) are given. For example, if we

keep the height of the non-ideal region (L) fixed, any increase inv0 must be reflected by an increase

in the poloidal field strength (k) i.e., the number of turns the field makes within the non-ideal region must

increase. Similarly, we could have keptk fixed but increasedL; this would also have the effect of increasing

the number of turns the field makes within the non-ideal region. Therefore we deduce that the effect of an

increase in rotation speed (v0) is to increase the number of turns of the field, whether through a lengthening

of the non-ideal region or by an increase in the number of turns of the field within the non-ideal region.

Equation (4.5) is the basic expression for the rotational velocity (v0) in terms of the magnetic diffusivity

(η), the dimensions (a, L) of the diffusion region and the ratio (k) of rotational to axial field strength. It

is interesting to see how it differs from the corresponding simple expression (v0 = η/a) for the inflow

into a Sweet-Parker diffusion region, since here we have theextra factorsk andL/a that arise from the

three-dimensionality of our process. The first factor arises essentially because we have a twisting process

and the second because the electric field componentsEz andEr differ in magnitude.

We may also make an estimate of the rate of reconnection (dΦrec/dt), i.e. the rate of change of magnetic

flux. This rate is given by the integral of the parallel electric field along the reconnection line, i.e. along the

central axis:
dΦrec

dt
=

∫

E‖dl ≈ 2LEz ≈ 4ηkb0L

a
= 2b0av0, (4.6)

where the above expressions, (4.1), (4.2) and (4.3), have been used. This shows us that the rate of reconnec-

tion is proportional to the rotational driving velocity. The reconnection rate may be interpreted as the rate

at which all the field lines within the flux tube are changing their connections, and so this estimate of the

reconnection rate agrees with our intuitive understandingof the process. In dimensionless terms we have

dΦ̄rec

dt
= 2

a

H

v0
vA
. (4.7)

Thus the dimensionless reconnection rate is proportional to the Alfvén Mach number (v0/vA) of the driving

flow and the ratio (a/H) of the non-ideal region radius (a) to the ambient scale height (H). Thus, ifa/H

andv0/vA are significant fractions of unity we have fast reconnection, i.e., at a significant fraction of the

Alfvén speed; otherwise the reconnection is slow (see section 5).

In the next section we present an analytical model for the reconnection process described above. We

show that the exact kinematic solution obtained there agrees with the intuitive understanding developed in

this section.
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4.3 Quantitative Model

We present here an axisymmetric analytical model for flux tube disconnection. The model is kinematic (i.e.

the equation of motion is neglected) and stationary, and satisfies the following equations:

E + v × B =
1

σ
j, (4.8)

∇ × E = 0, (4.9)

∇ × B = µj,

∇ ·B = 0,

∇ · v = 0.

Several of the previous 3D analytical models of reconnection which have helped to increase our under-

standing of the process have been kinematic (Lau and Finn, 1991, Hornig and Priest, 2003, Pontin et al.,

2005b). They have demonstrated many features of 3D reconnection that are not present in 2D but which are

also seen in numerical experiments (Pontin et al., 2005a) and dynamic analytical models (Wilmot-Smith

et al., 2006a, 2007a). A typical feature of reconnection in astrophysical plasmas is that non-ideal regions

are localised in 3D as a result of intense current concentration. In such regions the resistivity is expected to

be enhanced by current-driven microinstabilities. We therefore consider here a magnetic field that leads to

a localised current, and additionally impose a localisation of the resistivity. This is one of the features that

distinguishes our model from previous kinematic models where a localised non-ideal region was obtained

through an enhancement of the resistivity alone.

Working throughout in cylindrical coordinates(r, θ, z), the magnetic field is prescribed as

B = 2b0k
r

a
exp

(

− r
2

a2
− z2

L2

)

θ̂ + b0ẑ.

The azimuthal component of the magnetic field is localised and so generates a twist in the magnetic field

close to the origin, while at large distances the field is uniform in thez-direction. The width of the flux

tube is dependent on the parametera, the extent of the twist in thez-direction on the parameterL, and the

ratio of the toroidal field to the guide (or axial) field given by the parameterk. Some typical field lines are

illustrated in Figure 4.5; note that each field line remains on a surface of constant radius.

This simple field configuration allows for a direct integration to find the equations of the field lines.

This proves to be useful later, where we integrate along the field lines in order to obtain expressions for the

remaining terms.

The equations,R (r0, θ0, s) = (R,Θ, Z), of the field lines passing through the point(r0, θ0, z = 0) are

given by

R = r0,

Θ = 2b0k
r0

a s exp
(

− r2

0

a2 − b2
0
s2

L2

)

, (4.10)
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Figure 4.5: Some typical field lines threading the non-idealdomain, for parametersk = 1, a = 1, L = 3,
b0 = 1.

Z = b0s.

The inverse mapping,R0 (r, θ, s) = (R0,Θ0, Z0), is given by

R0 = r,

Θ0 = 2kb0s
r
a exp

(

− r2

a2 − b2
0
s2

L2

)

, (4.11)

Z0 = −b0s.

The twist of the flux tube generates closed poloidal rings of current, given by

j =
4b0k

µa
exp

(

− r
2

a2
− z2

L2

)(
rz

L2
r̂ +

a2 − r2

a2
ẑ

)

.

An example is shown in Figure 4.6, where the current is seen tobe is localised in three-dimensions around

the origin, and has its greatest strength along the axis of the flux tube. Now the non-ideal term,1
σ j in Ohm’s

law (4.8) would already be localised given a uniform electrical conductivity,σ. Here, however, we choose

to impose in addition a form for1/σ leading to a localised magnetic diffusivityη. We take

η =
1

σ0µ
exp

(

−4r2

a2
− z2

L2

)

. (4.12)

Regions of intense current concentration are expected to give rise to enhanced diffusivity, and so this pro-

vides a motivation for the form forη chosen here. We take the non-ideal region,D say, to be inside the

surface defined by|j|/σ = 0.02 (|j|/σ)max. The expression (4.12) has been chosen such that there is no

return-current withinD. As shown later, this is expected to be the case if the counter-rotational flows

possess a single sign of rotation above thez-plane (and the opposite sign below it). With the localisation

imposed on1/σ the results presented here are qualitatively the same as in amodel in which the return

current is very diffuse.
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Figure 4.6: Vector-field illustration of the localised axisymmetric current (parametersk = 1, a = 1,L = 1,
b0 = 1, µ = 1).

Combining (4.8) and (4.9) and takingE = −∇φ gives

−∇φ+ v × B =
1

σ
j. (4.13)

The non-ideal termηj is now known, and we are left to deduceφ andv. The component of (4.13) parallel

to the magnetic field is given by

−∇φ ·B =
1

σ
j ·B

and so an expression forφ can be found by integrating along the magnetic field lines, expressions for which

are given by (4.10). Starting the integration from the initial conditionφ = φ0 (r0, θ0) at z = 0 we deduce

that

φ (r0, θ0, s) = −
∫ s

0

1

σ
j · B ds+ φ0 (r0, θ0) . (4.14)

An equivalent expression forφ in terms of(r, θ, z) can then be obtained using the inverse field line mappings

given by (4.11).

The initial integration conditionφ0 (r0, θ0) is a free function that will affect the plasma velocityv, and

so, for a solution confined to a finite region, it represents a boundary condition on the solution. We choose

here to setφ0 (r0, θ0) ≡ 0 since this is the condition needed for a purely counter-rotational plasma velocity

that is anti-symmetric aboutz = 0. The corresponding potential,φ, is given as a function ofr andz by

φ = −
√

2π b0kL

σ0µa3

(
a2 − r2

)
e−5r2/a2

erf

(√
2z

L

)

, (4.15)

where erf(ξ) is the error function defined by

erf(ξ) =
2√
π

∫ ξ

0

e−u2

du.
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Figure 4.7: Counter-rotating flows (a) above (z = 1) and (b) below (z = −1) the central plane,z = 0. The
solid line indicates the boundary 2% of the non-ideal regionin the same planes (parametersk = 1, a = 1,
L = 3, b0 = 1, µ = 1, η0 = 1).

Thus, a jump in the electric potential across the non-ideal region exists, with the maximum potential dif-

ference being along the central field line. Outwith the non-ideal region the electric field is in the radial

direction only, oppositely directed above and below central plane (z = 0), and confined within the flux tube

consisting of field lines which thread the non-ideal region.

The component of the velocity perpendicular to the magneticfield can be deduced from (4.13) as

v⊥ =
(−∇φ− j/σ) × B

|B|2 .

We use the freedom to add a component parallel toB to ensure∇ · v = 0:

v = v⊥ − (v⊥)z

B

b0
.

The resultant velocity field is in the azimuthal direction only and given by

v =
2η0kr

a
e−5r2/a2

(√
2π L

a4

(
6a2 − 5r2

)
erf

(√
2z

L

)

+
2z

L2
e−2z2/L2

)

θ̂,

whereη0 = 1/σ0µ. An example is illustrated in Figure 4.7. The flow is counter-rotational, i.e. rotates in

opposite sense above and below thez = 0 plane (where it vanishes). The magnitude of the flow increases

with distance from the central plane and becomes independent of height,z, in the ideal region. Non-zero

flow is confined to the flux tube consisting of the field lines threading the non-ideal region.

How does this velocity compare with the order of magnitude estimate given by (4.5) in the previous

section? Above and below the non-ideal region we may obtain an estimate of the typical plasma velocity
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(which, in these regions, is independent of height) by finding the maximum value ofv along a radial line.

This maximum velocity turns out to be given by

vmax = κ
η0kL

a2
, (4.16)

whereκ is the constant given by

κ =

(

9 +
√

177

20

)√

2π
(

75 − 5
√

177
)

exp

(√
177

4
− 15

4

)

≈ 5.327. (4.17)

The expression (4.16) is in qualitative agreement with the order of magnitude estimate given by (4.5). We

have, therefore, confirmed the intuitive estimate with the analytical model.

The motivation for our choice ofη is now apparent. Since the component of the current parallelto the

magnetic field is given by

j‖ =
4b0k

µa3

(
a2 − r2

)
exp

(

− r
2

a2
− z2

L2

)

,

there is a change in the sign ofj‖ atr = a. A uniform resistivity would then lead to flows in eachr = const.

plane rotating in different senses forr < a and forr > a. Although the magnitude of the rotational flow

for r > a would be small, we choose to set it to zero for simplicity, by imposing a profile forη that ensures

the non-ideal region is contained within the surfacer = a. We have therefore obtained a kinematic model

for the qualitative description of flux-tube disconnectionoutlined in Section 4.2.

In this reconnection process all the field lines which threadthrough the non-ideal region are continually

changing their connections, with each field line reconnecting to others within the same surfacer = r0.

This is one of the features that distinguishes the 3D case from the 2D case where field lines are cut and

reconnected at a single point, and therefore the reconnection rate has a different interpretation in 3D. The

field line which has the maximum difference in potential above and below the non-ideal region is identified

as the reconnection line. In the present model, for symmetryreasons, the reconnection line is thez-axis.

The reconnection rate is given by

dΦrec

dt
=

∫

E‖ dl =

∫

E · B ds =

∫ ∞

−∞

4η0b0k

a
e−2z2/L2

dz =
2
√

2πη0b0kL

a
,

or, after substituting forvmax from equation (4.16),

dΦ

dt
=

√
2π

κ
2b0avmax

whereκ is the constant given by equation (4.17). Thus the reconnection rate in the kinematic model is, up

to a constant factor, in agreement with the earlier qualitative estimate (4.6).

Previous analytical 3D reconnection models (see, for example, Hornig and Priest, 2003) have taken

a uniform current and localised the non-ideal region through localisation of the resistivityη alone. Such

models find that the reconnection rate is independent of the parameter controlling the radius of the non-ideal

region. Here we find that with a localised current this parameter,a, does become important in determining
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the reconnection rate.

4.4 Possible Implications of the Momentum Equation

Both the order of magnitude estimate (discussed in Section 4.2) and the analytical model (discussed in

Section 4.3) for flux-tube disconnection are kinematic analyses, i.e. they neglect the implications of the

momentum equation. We now consider, from a qualitative perspective, the extent to which the momentum

equation may alter the solutions. It was shown in Sections 4.2 and 4.3 that there is some freedom present in

the solutions presented. Specifically, the flux-tube may respond to an increase (decrease) in the magnitude

of the rotational driving velocityv0 either by an increase (decrease) in the length,l, of the non-ideal region,

or by an increase (decrease) in the number of turns present within the flux tube or by a combination of both

effects. We wish to examine whether this freedom is inherentto the 3D process, or whether it arises through

neglect of the momentum equation.

Assume, then, that the qualitative model presented in Section 4.2 also satisfies the momentum equation,

ρ (v · ∇)v = −∇p+ j× B.

Consider the plasma pressure along a field-line bounding theflux tube. In the central plane (z = 0) the

plasma velocity (v) vanishes and so we may estimate the pressure at the edge of the tube as

(−∇p)centre + j× B = 0

⇒ | − ∇p|centre = jzBθ =
2k2b20
µa

. (4.18)

In a plane of constantz above the non-ideal region the Lorentz force vanishes and

(−∇p)top = ρ (v · ∇)v

⇒ | − ∇p|top =
ρv2

0

a
. (4.19)

Now, since the pressure must be constant along a boundary field line, the estimates for| − ∇p|centre and

| − ∇p|top given by (4.18) and (4.19), respectively, must be equal, i.e. we have that

v0 =

√
2

µρ
kb0, (4.20)

or, rewriting in terms of the azimuthal Alfvén velocity,vAθ = kb0/
√

2µρ,

v0 = 2vAθ.

We may now return to the estimate for the plasma velocityv0, given by equation (4.5), obtained in the
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qualitative analysis of section 3, i.e.

v0 =
2ηkL

a2
.

Equating this last expression forv0 with that given by (4.20) determines the parameterL, which determines

the length of the non-ideal region, in terms of the axial fieldstrength and flux-tube radius as

L =

√
1

2ρµ

b0a
2

η
. (4.21)

These estimates suggest that a change in the rotational driving velocity (v0) results in a change in the

azimuthal magnetic field. The length (L) of the non-ideal region is determined by the axial field strength

and tube radius. The expression forL given by (4.21) also allows us to estimate the ratio,L/a, between the

length and diameter of the non-ideal region,

L

a
=
a

η
vA = Rm,

wherevA is the Alfvén velocity,vA = b0/
√

2µρ andRm = vAa/η is the magnetic Reynolds number based

on the width of the flux tube. Thus the inclusion of the momentum equation in the qualitative analysis

suggests that the length of the non-ideal region is very muchgreater than its width, resulting in a long thin

current sheet.

4.5 Summary

In this chapter we have presented a stationary model for flux-tube disconnection. The model considers a

straight magnetic flux tube which has a localised twist present in its central region as a result of a counter-

rotational driving velocity imposed at the footpoints of the magnetic flux tube. The model has a non-ideal

region which is localised in all three dimensions, and an electric field component parallel to the magnetic

field is present within the non-ideal region. These two properties are those required for the process to be

considered as an example of global general magnetic reconnection (Schindler et al., 1988). It differs in

many respects from more traditional models of 2D and 3D reconnection; the magnetic field is not of X-type

structure, and the field lines are continually cut throughout the diffusion region.

An order of magnitude analysis, presented in Section 4.2, allows us to understand, from a qualitative

point of view, how the disconnection occurs. An increase in the rotational driving velocity of the footpoints

results in an increase in the number of turns present within the twisted flux tube. The number of turns may

be altered by increasing the strength of the poloidal field component, increasing the length of the non-ideal

region, or by a combination of both effects. A similar qualitative estimate of the reconnection rate has also

been made, which was shown to be proportional to the rotational driving velocity and to the magnetic flux

of the tube, i.e. the product of the magnetic field strength and the radius of the flux tube.

In Section 4.3 we presented an analytical incompressible model of flux-tube disconnection. Just as with

several such 3D reconnection models, the analysis is kinematic, in that the effects of the equation of motion

have been ignored. Instead, the implications of Ohm’s law and Faraday’s law have been considered. The
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analytical solutions confirm the estimates of the flux tube geometry and strength and reconnection rate in

relation to the footpoint velocity. A qualitative estimatefrom the equation of motion in Section 4.4 implied

that the ratio (L/a) of the diffusion region length to width is of order the magnetic Reynolds number. In

turn this implies that normally the reconnection is slow andcan only be fast whenL/H ≈ Rm.



Chapter 5

An MHD Experiment into the Effect of

Spinning Boundary Motions on

Misaligned Flux-tubes

In this chapter we describe a numerical experiment in which the nature of a 3D reconnection event is

investigated. The experiment follows a different approachfrom the work described in Chapters 3 and 4 in

that the non-ideal region is not localised in space in all three-dimensions and, as we will show, reconnection

at aquasi-separatorreconnection plays the important role in the process. We begin therefore in Section 5.1

by providing some additional theory behind and motivation for the experiment.

The results of this chapter can be found in Wilmot-Smith and De Moortel (2007).

5.1 Introduction

As mentioned in Chapter 2, separator reconnection (Priest and Titov, 1996) is thought to play a fundamental

role in coronal heating, with observations directly suggesting separator reconnection is occurring in the

corona (Longcope et al., 2005). The coronal magnetic field isanchored in the photosphere where surface

motions act to displace the flux tubes, providing a Poynting flux through the base of the corona. The

extremely high magnetic Reynolds numbers of the corona require very large gradients in the magnetic

field to be built up before non-ideal processes can become important in localised regions and allow for

energy release. Models for coronal heating therefore rely on the large-scale motions producing small-scale

structure (Sweet, 1958, Parker, 1957). This may occur through the action of complex photospheric flow

acting on simple coronal fields (Parker, 1972, van Ballegooijen, 1986, Galsgaard and Nordlund, 1996)

or through the action of simple photospheric flows on complexcoronal fields, as in thecoronal tectonics

modelof Priest et al. (2002). The model describes each coronal loop as being anchored to the photosphere in

67
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many discrete sources. Thus each loop consists of magnetic flux divided by separatrix surfaces into several

distinct domains. Even simple motions of the flux sources actto form current sheets along the separatrices

of the field. Reconnection then allows for dissipation of thecurrent sheets and thereby a heating of the

corona. In the ‘minimum current corona’ (MCC) model of Longcope (1996), flux tubes are represented by

point magnetic charges in a manner that allows the pattern offlux-tube linkage to be analysed. It is shown

that in the absence of reconnection, current ribbons form along magnetic separators. The MCC model finds

an approximation to the current that forms along a separatorin response to displacement of photospheric

footpoints. When the stress along a separator (that resultsfrom the accumulated current) becomes too large,

reconnection allows for the flux between domains to be changed and energy stored in the separator current

released. The underlying assumption of models such as theseis that the coronal field is able to evolve

through a series of flux-constrained equilibria (Priest andRaadu, 1975, Titov, 1992).

There are now several numerical experiments that investigate separator reconnection in some detail,

with particular emphasis placed on elementary heating events. Here, the effect of simple footpoint motions

on current sheet formation and reconnection is considered.The relative motion of two magnetic sources

which are not initially connected, but have an overlying background magnetic field, has been extensively

numerically modelled (Galsgaard et al., 2000, Parnell and Galsgaard, 2004, Galsgaard and Parnell, 2005,

Haynes et al., 2007). The flux sources interact through separator reconnection and a complex magnetic

topology is observed.

Here we present 3D numerical simulations of an elementary heating event, which build on the papers

of De Moortel and Galsgaard (2006a,b). In that series of papers the authors consider the interaction of two

magnetic flux tubes as they are subjected to two distinct types of motion imposed on the boundary foot-

points. The first is a large-scale rotating motion in which both of the footpoints on each of the boundaries

are rotated and the second is a small-scale spinning motion in which each footpoint is spun while its posi-

tion remains fixed. The magnetic flux tubes in the spinning case of De Moortel and Galsgaard (2006b) are

initially perfectly aligned and hence remain so throughoutthe experiment. The experimental setup taken is

therefore non-generic, representing a situation extremely unlikely to arise in the solar context. In the ini-

tial potential field extrapolation of perfectly aligned fluxsources there are two flux-domains with a single

boundary between them, while in any other situation where the flux tubes are not perfectly aligned there

are four flux-domains and correspondingly four boundaries between domains. It is not clear whether in the

misaligned case, with its additional boundaries and likelysites for current-sheet formation, the nature of

the reconnection taking place will be the same as in the perfectly aligned case. In particular, the rate of

reconnection could be quite different, with correspondingimplications for coronal heating.

In this chapter we examine the relevant case for the solar corona where the magnetic flux tubes are

misaligned, imposing the same spinning motions on the tube footpoints as De Moortel and Galsgaard

(2006b). One aim of the chapter is to examine the nature of the3D reconnection process that takes place

(Section 5.3). Then in Section 5.4 we use some comparisons between data of one of the cases of De

Moortel and Galsgaard (2006b) and our results to see how the nature of the reconnection differs for the two

examples. We summarise our results in Section 5.5 but begin in the next section by briefly describing the

numerical code and experimental setup.
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5.2 Model Setup

We use a parallel numerical code to solve the dimensionless MHD equations in the form

∂B

∂t
= −∇× E ,

E = − (v × B) + ηj ,

j = ∇× B ,

∂ρ

∂t
= −∇ · (ρv) ,

∂

∂t
(ρv) = −∇ ·

(

ρvv + τ
)

−∇P + j × B ,

∂e

∂t
= −∇ · (ev) − P∇ · v +Qvisc +QJoule ,

whereB is the magnetic field,v the plasma velocity,E the electric field,j the electric current,η the

resistivity, τ the viscous stress tensor,ρ the density,P the pressure,e the internal energy,Qvisc the

viscous dissipation andQJoule the Joule dissipation. In addition the ideal gas law is assumed, so that

P = (γ − 1) e = 2e/3. The MHD equations have been non-dimensionalised. Dimensional quantities

may be obtained if characteristic values of three quantities are chosen and the remainder obtained using the

relations

v0 =
l0
t0
,

e0 = ρ0v
2
0 ,

B0 = v0
√

(µ0ρ0) ,

T0 =
µ̃v2

0

R
,

E0 = v0B0 ,

j0 =
B0

µ0l0
,

where the magnetic permeability,µ0 = 4π × 10−7Hm−1, µ̃ = 0.6 and the gas constant,R = 8.3 ×
103m2s−2K−1. This is because in the non-dimensionalisationµ0 has been set asµ0 = 1 andR to be equal

to the mean molecular weight.

For a comprehensive description of the numerical code see Nordlund and Galsgaard (1997). Here we

summarize some of its main features. A staggered mesh is usedon which the variables are evaluated. The

variablesE andj are calculated at the centre of each edge of a unit cube whileB andρv are calculated at

the centre of each face andρ ande at the body centre of the cube. To evaluate spatial derivatives a sixth-

order finite difference scheme is employed; six operators are required (∂±,[xyz]) that return the derivative of

the variable at±1/2 a gridpoint (in the appropriate direction). For example∂+
,x is given by

∂+
,x (fi,j,k) = f ′

i+1/2,j,k

=
a

∆x
(fi,j,k − fi+1,j,k) +

b

∆x
(fi−1,j,k − fi+2,j,k) +

c

∆x
(fi−2,j,k − fi+3,j,k)
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wherea = 1−3b+5c, b = −1/24−5c andc = 3/640, and others obtained by permutation of the indices.

Since the result obtained is returned±1/2 a gridpoint from the input values it may be that no subsequent

spatial interpretation is necessary to find the value at the required location. If such an interpolation is

necessary however then a fifth-order method is used, the further six numerical operators beingT±
[xyz], say,

where

T+
x (fi,j,k) = fi+1/2,j,k (5.1)

= a (fi,j,k + fi+1,j,k) + b (fi−1,j,k + fi+2,j,k) + c (fi−2,j,k + fi+3,j,k) (5.2)

where nowa = 1/2− b− c, b = −1/16−3c andc = 3/256. To advance the solutions in time a third-order

predictor-corrector method is used. The predictor is givenby

f
(∗)
n+1 = a1fn−1 + (1 − a1) fn + b1ḟn,

and the corrector by

fn+1 = a2fn−1 + (1 − a2) fn + b2ḟn + c2ḟ
(∗)
n+1.

In the above,

a1 = r2,

b1 = ∆tn+1/2 (1 + r) ,

a2 = 2 (1 + r) / (2 + 3r) ,

b2 = ∆tn+1/2

(
1 + r2

)
/ (2 + 3r) ,

c2 = ∆tn+1/2 (1 + r) / (2 + 3r) ,

r = ∆tn+1/2/∆tn−1/2,

where∆tn+1/2 = tn+1 − tn and∆tn−1/2 = tn − tn−1. In addition, the code uses artificial fourth-order

viscosity and magnetic resistivity (‘hyper-resistivity’and ‘hyper-viscosity’) terms to try and limit diffusion

to short length-scales but still handle the development of numerical instabilties.

In the experiment described here we place two positive sources (which we labelA andB for conve-

nience) on the lower boundary of the domain, aligned with thex-axis, and two negative sources (labelleda

andb) on the upper boundary, aligned with they-axis:

Bz (x, y, z = 0) = e−r2

1
/r2

0 + e−r2

2
/r2

0 , (5.3)

Bz (x, y, z = 1) = e−r2

3
/r2

0 + e−r2

4
/r2

0 , (5.4)

wherer0 = 0.065, r21 = (x− 0.3)
2

+ (y − 0.5)
2, r22 = (x− 0.7)

2
+ (y − 0.5)

2, r23 = (x− 0.5)
2

+

(y − 0.3)
2, andr24 = (x− 0.5)

2
+(y − 0.7)

2. In addition, on both the upper and lower boundaries we take

Bx = By = 0. These sources are shown in Figure 5.1.

The above are initial conditions on the magnetic field and throughout the experiment each of the four

flux sources is spun, those on the lower boundary in a counter-clockwise direction and those on the upper
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(a) (b)

Ab

Aa

Bb

Ba

0.5

1.0

0.0 0.5 1.0

x

y

(c)

Figure 5.1: Contours plot illustrating|B| on (a) the lower and (b) the upper boundaries of the domain.
Superimposed are vectors of the imposed spinning driving velocity in the same planes. The flux sources are
labelledA (left-most source) andB (right-most source) on the lower boundary anda (lower source) andb
(upper source) on the upper boundary. As seen in (c) there areinitially four regions of differing magnetic
flux connectivity in the domain, with flux connecting sourcesA anda labelledAa, and similarly forAb,
Ba andBb.
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boundary in a clockwise direction:

vθ (r, z = 0) = v0r1[1 + tanh (p (1 − qr1))] + v0r2[1 + tanh (p (1 − qr2))], (5.5)

vθ (r, z = 1) = −v0r3[1 + tanh (p (1 − qr3))] − v0r4[1 + tanh (p (1 − qr4))], (5.6)

wherev0 = 0.02222, p = 16.8 andq = 5.6. This velocity has been chosen such that the shape of the flux

sources on the boundaries is maintained as they are spun, so that the source profile given by equations (5.1)

and (5.2) holds throughout the experiment. In the descriptions of the experimental results we refer to

thespin angle; this measures the angle in radians by which the sources havebeen spun from their initial

positions. Note that the chosen driving velocity is very slow compared with the typical Alfvén velocity.

Using these initial conditions on the magnetic field at the boundaries of the domain, a potential field

is calculated to fill the domain and imposed as an initial condition. The misalignment of the four sources

results in the region being divided into four distinct flux domains, as shown for the central plane (z = 0.5) in

Figure 5.1(c). The magnetic flux strength decreases rapidlyaway from the centres of the sources but there

are nevertheless no real magnetic null-points within the domain so that there exist onlyquasi-separators

andquasi-separatrices.

The dynamical evolution of the system is obtained by using the numerical code described to solve the

non-ideal MHD equations, in a1283 Cartesian box. Periodic boundary conditions are imposed onthe sides

of the box. The resultant evolution of the system is described in the following sections.

5.3 Experimental results

In this chapter we choose to focus on the basic dynamical evolution of the system, placing particular em-

phasis on the reconnection mechanism that takes place. Therefore we consider first, in Section 5.3.1, the

character of the magnetic flux connectivity and how it develops with spin angle. We proceed in section 5.3.2

to describe the nature and evolution of the current concentrations before considering the plasma velocities

and implications for the reconnection mechanism in Section5.3.3.

5.3.1 Magnetic Flux Connectivities

We start by examining the behaviour of the magnetic flux with spin angle. With the positions of the mag-

netic source centres on the lower and upper boundaries fixed,the effect of the spinning foot-point motions is

to drive the magnetic field away from potential and may therefore result in magnetic reconnection between

the sources.

Figure 5.2 gives a simple, qualitative overview of how the magnetic flux in the domain evolves as the

sources on the boundary are spun. Some illustrative field lines have been traced from the two sources on

the lower boundary, coloured red if they are associated withsourceA and green for sourceB. In the initial

potential field, shown in Figure 5.2 (a), flux from each of the lower sources is divided equally between the
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(a) (b)

(c) (d)

Figure 5.2: Selected field lines traced from the two sources on the lower boundary, at spin angles (a)θ = 0
(b) θ = 0.79 (c) θ = 1.87 and (d)θ = 2.64. Those traced from sourceA are coloured red and those from
sourceB coloured green. The field lines are seen to become increasingly twisted with spin angle and, in
addition, it is seen that the initially equal distribution of flux from a single source on the lower boundary
between both sources on the upper boundary becomes unequal with increasing spin-angle. Over-plotted are
isosurfaces of current; a twisted current sheet is seen to form in the centre of the domain.
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Figure 5.3: Connectivity of a source,A, say, on the lower boundary with spin angle. Flux with connectivity
Aa is shown in light blue, flux with connectivityAb is shown in dark blue and flux which leaves the box in
red.

two upper sources. As the sources are spun the magnetic flux inthe domain becomes increasingly twisted,

as seen in the sequence of images 5.2 (b-d). In addition, the magnetic flux connectivities of the sources

change with increasing spin angle; by the end of the experiment, flux from sourceA (B) is predominately

connected to sourceb (a). This property is reflected in the traced field lines of 5.2 (d). Superimposed on

the same diagrams are (the same) isosurfaces of (strong) current. Note that, for clarity, current in the three

grid cells closest to each of the boundaries has been removedfrom the diagrams. Early in the experiment,

a twisted current sheet is seen to form in the centre of the domain, extending vertically throughout the box,

and this current sheet persists throughout the simulation.We will return to examine the twisted current

sheet, but now proceed to examine the evolution of the magnetic flux connectivity in more detail.

We begin by considering the evolution of connectivity of themagnetic sources themselves. It is impor-

tant to note that the sources are non-ideal and we are, therefore, unable to follow the evolution in time of

individual field lines exactly at these locations. Instead,for each spin-angle we trace a large number of field

lines from the sources on the lower boundary. For each such field line we deduce its magnetic connection

on the upper boundary and the amount of magnetic flux associated with it. In Figure 5.3, field lines have

been traced from sourceA to the upper boundary and coloured dark blue if they are connected to sourceb

(i.e. if their magnetic connectivity is of typeAb), light blue if they are connected to sourcea (i.e. if their

magnetic connectivity is of typeAa) and red if they leave the box. As suggested already by the traced field

lines of Figure 5.2, the total magnetic flux of typeAa is seen to decline with spin angle, whilst that of type

Ab is seen to increase. The reconnection mechanism behind these transitions will be discussed later.



5.3 Experimental results 75

Figure 5.4: Change in magnetic flux connectivity with spin angle of sourceA (B) on the lower boundary.
The solid line shows the percentage of flux with connectionAb (Ba), the dashed line the percentage of flux
with connectionAa (Bb) and the dot-dashed line the percentage of flux from sourceA (B) that leaves the
box.

We can use the information obtained in the field line tracing to deduce the percentage of flux from a

source on the lower boundary connected to each of the two sources on the upper boundary. Figure 5.4

shows the change in these quantities with spin angle, together with the percentage of flux which leaves the

box. We deduce that reconnection begins at spin angleθ ≈ 0.5 and the amount of flux with connectivity

Aa (Ab) subsequently decreases (increases) linearly with spin angle until θ ≈ 2.3, close to the end of the

experiment, when flux begins to leave the box. At the end of theexperiment 22.3% of the flux from source

A is connected to sourcea, so we can therefore deduce that at least 27.7% of the flux in the source has

been reconnected by spin angleθ = 2.64. There remains a possibility that a greater percentage of flux has

reconnected if flux of typeAb reconnects at any stage in the experiment (with flux of typeBa) to form flux

of typeAa. We later consider the likelihood of such events.

Given then that the magnetic flux connectivity inside the domain is changing as the spin-angle increases,

we now examine how these changes become evident in the central plane,z = 0.5. We trace a large number

of the field lines passing through the central plane, determine the connection of each field line on both the

upper and the lower boundary, and assign the field line a colour according to its magnetic connectivity.

Note that the tracing is now begunat the central plane rather than the source footpoints. By showing these

colours in the central plane we generate a diagram in which the central plane is colour-coded according to

the magnetic connectivity of the flux that pierces it. Figure5.5 illustrates this connectivity for a sequence

of increasing spin angles, with contours of electric current superimposed onto the same diagrams to enable

us, at a later stage, to determine the role of the current in the flux evolution.

It can be seen from Figure 5.5 that even by spin-angleθ = 0.65, before reconnection has had a signif-

icant effect on the initially equal distribution of flux types, the arrangement of flux in the central plane has

been altered by the spinning motions. The four types of flux nolonger meet at a point, but rather typesBb

(red) andAa (light blue) meet along a central line with typesAb (dark blue) andBa (yellow) no longer

coming into contact. A current structure has been seen to form between some, but not all, of the boundaries

between the various flux domains. As the spin-angle increases, the area of the central plane pierced by flux
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Figure 5.5: The figure shows a sequence of images at increasing spin-angles in which the magnetic flux
passing through the central plane,z = 0.5, is coloured according to its magnetic connectivity. Flux with
connectivityAa is indicated in light blue,Ab in dark blue,Bb in red andBa in yellow. Flux not associated
with any of these connectivity types is not coloured. Over-plotted are contours of current density in the
same plane.
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Figure 5.6: Sequence of images showing contours of current in the central planez = 0.5 at increasing spin
angles. Four wings of current are seen to extend from a strongcurrent sheet in the centre of the domain. At
later spin-angles Y-shaped cusps are seen to develop at the ends of the current sheet, seen here for example
atθ = 1.45. (The white line outlines a cross-section described later in the text.)

typesAb andBa increases also. This is certainly not due in its entirety to compression or expansion effects

of the flux tubes since we have already found the connectivities of the sources themselves to be changing as

a result of magnetic reconnection. At later spin angles (θ ≥ 1.70) we observe that the flux typesAa andBb

are no longer in contact with the boundary, being entirely enclosed by the remaining flux types. We note

that the strong central current sheet coincides exactly with the boundary between the flux typesAa andBb

but that the weaker ‘wings’ of current emanating from the central twisted sheet do not perfectly outline the

remaining boundaries between the various flux types. We return to this point, together with a more detailed

description of the current structure, later in this section.

Before doing so, we note that there are several reasons why some of the magnetic flux near the boundary

of thez = 0.5 plane is not associated with any of the four flux types. The magnetic sources on the upper

and lower boundaries decay exponentially with distance from the centre of the source and we have defined

a particular (and, to a certain extent, artificial) radius atwhich we consider each source to end (namely

2r0). Thus, flux traced from the mid-plane falling outside this radius (on either the upper or the lower

boundaries) is not considered to be associated with a particular flux source. In addition, toward the end of

the simulation, a certain amount of magnetic flux from each ofthe four sources leaves the box and may do

so after having passed through the central plane. These effects are not important in our consideration of the

dynamical evolution of the system.
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5.3.2 Current Evolution

The spinning motions imposed on the foot-points of the flux sources act to spin up the flux in each of

the domains and so generate a shear at each of the interfaces between domains. We have already noted

that, as seen in Figure 5.2, a strong current sheet, extending vertically throughout the box, forms early on

in the experiment. Comparison with the current contours superimposed on the flux connectivity plots of

Figure 5.5 confirms that this is a quasi-separator current sheet which has formed at the interface between

the four flux domains. The sheet is twisted in the vertical direction as a result of theπ/2 misalignment of

the upper and lower sources. In addition, we can see from Figure 5.5 that four ‘wings’ of current emanate

from the central current sheet and that these wings approximately outline the boundaries between domains.

To examine the nature of the currents within the domain in more detail we consider the central plane,

z = 0.5, and show in Figure 5.6 contours of current in that plane for asequence of increasing spin-angles.

The drop in the spinning velocity at the outside of the flux sources is seen to result in four ‘rings’ of current

at early spin-angles, with the strongest current seen at theintersections of the rings where the interaction

of spinning motions produces a shearing effect. Byθ = 0.55, the central current sheet together with four

wings of current has formed; this characteristic shape persists throughout the remainder of the simulation.

The initial rings of current have been forced outwards by magnetic pressure. This causes a build up of cur-

rent on the side boundaries of the box which ultimately allows flux to leave the box. The wings of current

may be identified with quasi-separatrix current sheets early on in the experiment when they perfectly out-

line the boundaries between the flux domains and are seen to grow with spin-angle, extending close to the

boundaries of the domain. The current structure at these early stages of the experiment is therefore similar

to that predicted by Green (1965). As reconnection begins and the evolution is no longer quasi-static, we

observe (Figure 5.5) that the wings of current do not align with the change of flux connectivity. By consider-

ing the variation of certain quantities along a perpendicular section to the structures, we identify them now

as contact discontinuities (see, for example Priest, 1982). Taking spin-angleθ = 1.45 as an example, we

plot in Figure 5.7 the tangential and normal components of the magnetic field, plasma velocity and current,

together with the vorticity, density and total pressure along a line (illustrated by the white line in Figure 5.6)

perpendicular to the current wings in the central plane. It is seen that there is no plasma flow across (i.e.

normal to) the structures but that a discontinuity in the tangential velocity component exists. In addition,

the total pressure is continuous along the entire cross-section whilst the density shows a jump across both

the current structures (such a density jump is arbitrary in the theory of contact discontinuities) and there is a

normal field component across the structure so distinguishing it from a tangential discontinuity. In order to

determine why there is a discrepancy between the locations of the quasi-separatrices and of these wings of

current we must first consider the nature of both the central current sheet and the reconnection mechanism.

We therefore return to this point later.

Consider now the evolution of the quasi-separator current sheet. We will refer to its extent in thez-

direction as ‘height’, its length in thexy-plane as ‘length’ and the remaining dimension, its thickness in

thexy-plane as ‘width’. As seen in the cross-sections through thecurrent structure (Figure 5.6), after its

initial formation, the length of the sheet increases with spin angle. The growth in length is almost linear

until, at θ ≈ 1.1, the ends of the sheet (in the horizontal direction, along the y = −x line) bifurcate to

form two Y-type structures which lie along the quasi-separatrices of the field. No further lengthening of the
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Figure 5.7: Tangential (solid lines) and normal (dashed lines) components of the magnetic field, velocity
and current (upper plots) together with the density, total pressure and|∇ × v| (lower plots) along the line
y = 1.3 − x at spin-angleθ = 1.45 for the central planez = 0.5. The vertical lines denote the location of
the current ‘wings’ along that line (as seen in Figure 5.6). The variations of these quantities are evidence
for a contact discontinuity at these locations.

sheet occurs, indeed it shrinks slowly with further increase in spin angle. The current is predominately in

the ẑ-direction and this component changes sign at both ends of the sheet, as shown in Figure 5.8 where

spin-angleθ = 2.26 has been considered as an example. In two-dimensional situations, reversed currents

near the ends of diffusion regions have been observed in numerical experiments (Biskamp, 1986) and are

seen to slow down the outflowing jets in these cases. We therefore proceed to examine the nature of the

plasma velocities.

5.3.3 Plasma Velocities and Reconnective Behaviour

We show, in Figure 5.9, vector field plots of(vx, vy) in the central plane at various spin-angles (note that

the third velocity component,vz is an order of magnitude less than bothvx andvy). At early spin-angles,

θ = 0.35 for example, the velocity in the central plane is clearly similar to that imposed on the upper and

lower boundaries, with four counter-rotational flow regions present. The intersection of these regions results

in a stagnation flow profile stronger than the remaining rotational components and it is this stagnation flow

which dominates the later velocity profiles. Plasma flows into, and is ejected from, the central current sheet.

The inflow streamlines are seen to be curved and diverging. The outflow, particularly at later spin angles,

is diverted out along the quasi-separatrices of the field.

Let us now consider the nature of the inflow region in more detail, paying particular attention to the

magnetic field and gas pressure. We show in Figure 5.10 profiles of the gas pressure and magnetic pressure

in the inflow region for the central plane. We observe the gas pressure to be decreasing as the plasma flows

in toward the quasi-separator current sheet, suggesting the inflow is undergoing an expansion. In addition
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Figure 5.8: Strength of thez-component of the electric current in the central planez = 0.5 along the line
y = −x which passes along the central current sheet. A spike of reversed current is seen at both ends of
the sheet.

Figure 5.9: Plasma flows in the central plane,z = 0.5 for a sequence of increasing spin-angles showing
the key stages in the velocity evolution. A stagnation flow forms with strong outflow jets along the central
current sheet.
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Figure 5.10: Behaviour of the gas (solid line) and magnetic (dashed line) pressures in the inflow region.
Here a cut along the liney = x has been taken at spin angleθ = 1.37 for the central planez = 0.5. The
gas pressure is seen to decrease whilst the magnetic pressure increases.

the reverse behaviour is observed in the magnetic pressure profile which increases toward the current sheet

so that the expansion may be further characterised as of the slow-mode type.

Combining all these pieces of information we note that the situation is strongly reminiscent of theflux

pile-upregime (Priest and Forbes, 1986) with its characteristically long diffusion regions. This model was

extended further in the non-uniform theory of Priest and Lee(1990) to also take reversed current spikes

and separatrix plasma jets into account. Shocks in their (incompressible) model are rather weak and indeed

we cannot consider any of the structures in this 3D experiment as true shocks. There are, however, several

differences between the 2D theory and this 3D model. In the reconnection process, magnetic flux of types

Aa andBb are brought together and reconnect across the central quasi-separator current sheet to form flux

of typesAb andBa. However, as distinct from the 2D theory, in this 3D case the magnetic field has an

O-type structure in cross sections of constantz (Figure 5.11(b)) and it is the vertically orientated flux that

is reconnected. Thus reconnection can occur all along the quasi-separator current sheet and the location of

reconnection will depend on where the flux comes into contactwith the sheet. With reconnection occurring

everywhere along the sheet, significant amounts of magneticflux is being carried into the sheet close to the

centre of the domain. Figure 5.11(a) shows four particular field-lines which illustrate this process, together

with contours of current in the central plane. The sheared field-lines in the inflow regions (the red line of

typeBb and light blue line of typeAa) are carried into the central current sheet where they reconnect. The

strong outflow then carries the reconnected field lines out ofthe current sheet and they are seen to have less

shear (the dark blue line of typeAb and yellow line of typeBa), with these example lines being almost

straight. Note that the field lines shown in this figure are forillustrative purposes only and all taken at the

same spin-angle, i.e. they do not represent the same lines pre- and post-reconnection.

The magnetic flux that pierces the central plane close to the contact discontinuity is twisted in such a way

that it passes through the quasi-separator current sheet towards the top or bottom of the box (Figure 5.12)
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Figure 5.11: (a) Four illustrative field-lines being carried into the central current sheet before reconnec-
tion (red, light blue) and away from the sheet having reconnected (dark blue, yellow), together with con-
tours of current in the central plane. The post-reconnection field lines are seen to have less shear than the
pre-reconnection lines. (b) An X-type field structure is present only in vertical cross-sections, while in
horizontal sections, such as that illustrated here, the field has an O-type topology.

and reconnects there. Thus the reason behind the misalignment of the wings of current (identified with

contact discontinuities) and separatrices of the field becomes evident. Reconnection is taking place along

the entire height of the quasi-separator current sheet but this change of connectivity is not immediately

apparent at different heights within the domain. The contact discontinuities themselves are an artifact of

the initial flux distribution and the spinning motions imposed on that distribution. They outline the divide

between flux types which would have existed had no reconnection taken place.

5.4 Discussion

Examining in more detail the flux connectivity diagrams for the mid-plane (shown in Figure 5.5), an

interesting pattern of behaviour is seen within the centralcurrent sheet at intermediate spin-angles (see

θ = 0.92, 1.24 for example). As an illustration, an enlargement of this region is shown at spin-angle

θ = 1.19 in Figure 5.13 (left). Although in Section 5.3 we have somewhat loosely referredto the ‘quasi-

separator current sheet’, this diagram, with its regions of2D isolated flux-connectivity type, indicates the

magnetic connectivity of the region is really very complex,and only becomes simple again in later stages of

the experiment (as shown in Figure 5.13 (right)). This effect does not result from a lack of resolution of the

current sheet in the later stages; the current sheet remainswell-resolved throughout the experiment through

the use of hyper-resistivity (see Nordlund and Galsgaard, 1997). A detailed investigation into the magnetic

topology of a particular 3D MHD reconnection experiment wascarried out by Haynes et al. (2007), where

a sequence of bifurcations was identified which resulted in the initial field topology becoming increasingly

complex, before eventually simplifying in the later stagesof the experiment. From the preliminary inves-

tigations presented here, it seems that a complex pattern ofmagnetic connectivity is also present in this

system. It would be interesting to carry out a more detailed investigation into the connectivity pattern and
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Figure 5.12: Magnetic field lines traced from the central plane (z = 0.5) close to the separatrices of the
field and away from the quasi-separator current sheet in thatplane. The field lines pass through the quasi-
separator current sheet toward the top (left hand figure) or bottom (right hand figure) of the box where they
reconnect. Superimposed are contours of current in variousplanes of constant height.

its evolution and consider the implications for the reconnection process. This, however, is beyond the scope

of the simple descriptive content of this chapter.

As discussed in Section 5.1, one of the motivations to consider reconnection in these misaligned flux

tubes is to make a comparison with the case of the same spinning footpoint motions imposed on perfectly

aligned flux tubes, as described by De Moortel and Galsgaard (2006b) and, in particular, to examine how

the nature of reconnection differs between the two situations.

The spin-angle for the onset of reconnection isθ = 1.46 in the aligned case andθ = 0.40 in this mis-

aligned situation. The difference in spin-angle (∆θ = 1.06) corresponds to a time difference in the solar

corona of0.6 hours (for a discussion of how the non-dimensional quantities described in this experiment re-

late to coronal parameters see De Moortel and Galsgaard (2006a)). This is a significant difference between

the two cases given that the coronal recycling time is estimated to be as little as1.4 hours.

The likely reason behind the disparity in reconnection onset times can be found by comparing the

plasma velocities and build-up of current in the two experiments. In the misaligned case, the imposed

boundary flows propagate into the box in such a way as to form a stagnation-flow early in the experiment,

as shown atθ = 0.35 in Figure 5.9. However, in the aligned case, the counter-spinning boundary flows

effectively cancel as they propagate into the mid-plane, and so a stagnation-flow is only initiated at a

later stage through the effect of magnetic pressure. Stagnation-flows have the effect of amplifying current

concentrations and, accordingly, a build-up of sufficient current to allow for reconnection to take place

occurs sooner in the misaligned case. The evolution of maximum |j| in a central square of side-length

0.4 and in the mid-plane (z = 0.5) with spin-angle is shown, for both experiments, in Figure 5.14(left).

Although the initial current development begins in both experiments at the same spin angle, the initial

growth is faster for the misaligned case. In both situationsthere then follows a period where the maximum

current decreases with spin angle before undergoing a second phase of increase. In the aligned case it is
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Figure 5.13: Flux connectivities in a central square withinthe mid-plane encompassing the non-ideal re-
gion, for (left) θ = 1.19 and (right) θ = 1.58. The colour scheme is the same as that for Fig. 5.5. A
complex topology is present in the early stages of the experiment, becoming much simpler as the spin-
angle increases.

Figure 5.14: (left) The change in maximum current (within the central square ofside 0.4 in thez = 0.5
plane) with spin angle. The thick solid line represents the case ofπ/2 misaligned flux sources and the thick
dashed line the case of aligned flux sources. The vertical lines mark the spin angle at which reconnection
begins in both cases. (right) Flux connectivities for the misaligned (solid line) and aligned (dashed line)
cases, as described in the main body of the text.
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only in this second phase of current growth that reconnection begins (vertical dashed line).

The next important comparison is in how, once initiated, therate of reconnection differs between the two

setups. In order to make this comparison we consider how the percentage of flux with certain connectivities

changes with spin angle. In the misaligned case flux with connectivity Aa is considered. This flux-type

initially constitutes 50% of the flux from sourceA, and the percentage decreases with spin-angle after

reconnection begins. For the aligned case the percentage offlux remaining at its original flux source is

considered (for one of the sources on the lower boundary). This is initially 100% of the flux in the source

and again decreases with spin-angle after the onset of reconnection. These quantities are represented in

Figure 5.14(right) where thex-axes for both cases have been aligned in such a way that the onset of

reconnection is coincident. We see that during the initial phase of reconnection the rate of decrease of

flux of the considered connectivity is very similar in both cases. This suggests that the same reconnection

mechanism may be responsible for the evolution of both systems. As spin-angle increases a change in the

gradient of flux connectivity occurs in the aligned case, at aligned spin-angleθ = 2.8, indicating flux is now

changing connectivity faster. Examining the flux evolutionin that experiment in more detail we observe that

this discrepancy is due to fluxleavingthe box, i.e. additional reconnection occurring across theboundaries

of the domain, rather than a change in the reconnection mechanism within the central current sheet. Thus

it is interesting to note that although the current sheet hasa greater cross-sectional length in the aligned

than the misaligned case (with the additional flux domains inthe misaligned case restricting current sheet

growth), this does not result in a different rate of reconnection.

One notable difference found between the two experiments isin the geometry of the central current

sheet. In the aligned case the sheet is straight, while in themisaligned case a twisted sheet forms as a

result of theπ/2 difference in orientation of the upper sources. In the misaligned case the initial potential

field contains four distinct flux domains which allows for thesubsequent development of quasi-separatrix

current sheets; these are necessarily absent in the alignedexperiment (or, alternatively, can be considered

as coincident with the quasi-separator current sheet). However we have shown that the quasi-separatrix

current sheets in the misaligned case, which later become contact discontinuities, are not important in the

reconnection process itself. The comparable reconnectionrates found in the two experiments confirms this

to be the case and is further evidence that the reconnection process is concentrated in the quasi-separator

current sheet.

Finally we note that there are several limitations in the experimental setup. Perhaps the most important

of these is in the plasmaβ which, since the field strength decreases rapidly moving away from the upper

and lower boundaries toward the centre of the domain whilst the gas pressure profile is initially uniform, is

significantly higher than that found in the solar corona. In addition, the experiment ends atθ = 2.64 when

periodic boundary conditions begin to affect results. Thiscould be seen as a shortcoming; perhaps further

interesting dynamics would have been found at later spin angles. However, bearing in mind the counter-

spinning nature of the drivers, we can consider the true rotation of a single source to beθ = 2×2.64, already

a significant angle compared with observed solar-like flux rotations (see, for example, Brown et al., 2001).

As mentioned several times, the magnetic sources themselves are non-ideal and so a certain amount of

slippage of the field occurs within each source. Although we do not consider such behaviour to be of great

consequence on the global field-evolution, the non-idealness does prevent us from tracking the behaviour

of individual field-lines with spin-angle. It would be highly informative to examine such behaviour and
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worthwhile therefore to re-run the experiment with an idealboundary condition imposed. Such a condition

could be achieved by specifying a suitable resistivity profile, as considered, for example, by Pontin et al.

(2005a).

5.5 Summary

We have described a simple numerical experiment in which themagnetic footpoints of two, initially po-

tential, intertwined flux tubes are spun, while their positions remain fixed. Magnetic flux is divided into

four domains and the footpoint motions act to twist the flux and create current sheets at the boundaries

between the domains. A central twisted quasi-separator current sheet forms early on in the experiment

and a stagnation flow develops. The flow brings oppositely directed flux in toward the quasi-separator

current sheet and reconnection takes place everywhere along it. The quasi-separator current sheet grows

in cross-sectional length before its endpoints bifurcate to form Y-type points. In planes of constant height

the situation strongly resembles the 2D nonlinear reconnection models of Priest and Lee (1990), with their

fast reconnection rates. Strong jets of plasma flow across the magnetic separatrices and regions of reversed

current are found close to the ends of the diffusion region. The full three-dimensionality of the experiment

modifies the regime, with the magnetic field having a locally 2D O-type structure. In addition, the field

topology is found to be highly complex. One time-dependent effect is that the current sheets which initially

form along the boundaries between flux domains (i.e. quasi-separatrix current sheets) move away from

these boundaries as the sources are spun and reconnection begins to occur. They are, at later spin angles,

instead identified as contact discontinuities.

The experiment described here can be compared with the non-generic case of aligned magnetic flux

tubes given by De Moortel and Galsgaard (2006b). Any degree of misalignment of the magnetic flux tubes

has a significant effect on the magnetic connectivity of the system, since four flux domains will initially be

present (instead of just two in the aligned case). In both experiments a central quasi-separator current sheet

forms in the centre of the domain and in the misaligned case, the current structure is modified by the pres-

ence of four wings of current that initially outline the additional separatrices of the field. Once reconnection

begins, however, the rate at which magnetic flux changes its connectivity is very similar for both cases. In-

deed reconnection in the misaligned case is found to occur only along the central quasi-separator current

sheet; the extra wings of current are not found to modify the process. These two observations suggest the

same reconnection mechanism to be operating in both cases. An important difference is found regarding the

onset time for reconnection. It is found that strong currents develop at earlier spin-angles in the misaligned

case and that, as a result, magnetic reconnection begins sooner; mapping the relevant spin-angles to coronal

timescales the onset time is found to be0.23 hours in the misaligned case but0.85 hours in the aligned

case. Combining this chapter and De Moortel and Galsgaard (2006b) the two most extreme situations of

flux-tube alignment have been considered and we are able therefore to deduce the implications for any gen-

eral case. We expect reconnection to begin sooner the more tangled the initial magnetic flux-tubes but for

it to proceed at the same rate once initiated.



Chapter 6

Low-Order Dynamo Models

6.1 Introduction

Direct evidence of solar magnetic activity through the observations of sunspots dates back to the early

1600s, with indirect evidence coming from both measurements of cosmogenic radioisotopes in tree rings

and ice cores over the past 10,000 years. A systematic recordof activity in other late-type stars began

in 1966 with the Mt. Wilson Ca II H+K project (Duncan et al., 1991, Baliunas et al., 1995, Saar and

Brandenburg, 1999). The survey has given rise to many studies on the dependence of activity with such

large-scale parameters as stellar age, mass and rotation rate.

The stars in the Mt Wilson survey show several distinct typesof activity. Baliunas et al. (1995) divided

the stars into four categories based on the variability in their emission: those with no significant variability,

those with long-term changes in emission (on a timescale greater than 20 years), those with irregular emis-

sion and those with cyclic variation. The Sun itself falls into the final category. The activity periods in the

cyclic stars range from around 20 years to just 2.5 years, so the Sun’s own average cycle period of 11 years

falls in the centre of the observed range. Considering the sign reversal of the magnetic field along with the

11-year sunspot cycle gives a periodicity of 22 years for thesolar magnetic cycle. Detailed examination

of the sunspot cycle record shows a variation in the length ofthe activity period from 9 to 14 years, with

a longer term modulation of the cycle on a period of about 80 years (the Gleissberg cycle) believed to be

present. In addition, the Sun has undergone several grand minima (Beer et al., 1998), the last of which

being the Maunder minimum during 1645-1715 AD (Eddy, 1976, Hoyt and Schatten, 1996). Proxy data,

for example10Be in ice-cores (Wagner et al., 2001), indicate a statistically significant spectral peak with

frequencies corresponding to approximately 205 and 2100 years. It is possible, therefore, that Grand Min-

ima may occur in clusters with a period of just over two-hundred years and that the clusters reoccur on a

timescale of 2100 years. There is not currently enough data to allow us to infer similar events in other stars.

From a physical point of view, magnetic activity in solar-type stars is likely to be a result of hydro-

magnetic dynamo action (Parker, 1955, Ossendrijver, 2003). Writing B = Brer + Bθeθ + Bφeφ it is

87
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conventional to discuss the origin of global stellar fields in terms of their toroidal (Brer + Bθeθ, in the

direction of the differential rotation) and poloidal (Bφeφ) components. A mechanism for the generation

of toroidal field from the poloidal component (known as theΩ-effect; Parker 1955) and for the subsequent

regeneration of poloidal field from the toroidal component (theα-effect; Parker 1955) must exist. Solar

observations, for example the tracking of surface featuressuch as sunspots, indicate a differential rotation,

with the equator rotating faster than the poles. Helioseismology has shown this persists throughout the

convection zone (Schou et al., 1998), with the rotation varying mostly latitudinally. In a thin layer between

the convection zone and the radiative layer – known as the tachocline – a strong radial shear in the angular

velocity exists. Thus differential rotation in the solar interior generates the toroidal field by stretching the

poloidal field lines, a process known as theΩ-effect. It also acts to amplify the toroidal field, and if the

Ω-effect occurs largely in the tachocline layer then flux storage (due to the sub-adiabatic temperature gra-

dient and consequent suppression of buoyancy there) can occur over timescales sufficiently long for strong

fields to be built. Evidence of surface differential rotation has been found in other stars and it is very likely

that these persist to greater depths, as in the Sun. Thus, theΩ-effect is possibly a common mechanism for

toroidal field generation in stars.

For the re-generation of the poloidal field from the toroidalcomponent several mechanismas have been

invoked: for example, a convective alpha-effect throughout the convection zone based on the twisting of

toroidal fields by helical turbulence (Parker, 1955, Steenbeck and Krause, 1969, Gilman and Glatzmaier,

1981, Brandenburg et al., 1990, Tobias, 1997); anα-effect in or near the tachocline arising from instabilities

in the plasma flows or buoyantly rising magnetic flux tubes (Ferriz-Mas et al., 1994, Schmitt et al., 1996,

Thelen, 2000, Dikpati and Gilman, 2001) and the decay of tilted bipolar sunspot pairs near the solar surface,

known as the Babcock-Leighton mechanism (Babcock, 1961, Leighton, 1969, Durney, 1997, Dikpati and

Charbonneau, 1999, Nandy and Choudhuri, 2002, Chatterjee et al., 2004).

Many solar and stellar dynamo models have been proposed thattry to account for the flux production,

cycle period and amplitudes (Durney, 1997, Brooke et al., 2002, Bushby, 2003, Chan et al., 2004, Charbon-

neau et al., 2004, and references therein), as well as other well-known features observed on the Sun, such

as the equatorward drift of sunspots during the cycle and theevolution of the surface radial field; some have

included related (and possibly integral) processes such asmagnetic buoyancy and meridional circulation

(Ferriz-Mas et al., 1994, Nandy and Choudhuri, 2002, Chan etal., 2004, Charbonneau et al., 2005). These

models range from detailed numerical simulations to extensive sets of partial differential equations with

various physical motivations. Full simulations of the dynamo process with high magnetic Reynolds num-

bers are currently out of reach computationally — although see Brun et al. (2004) for a global simulation

of dynamo action in a turbulent rotating spherical shell. Much work has centered on mean field dynamo

theory, with axisymmetricα-ω dynamos attracting the most attention.

A self-consistent magnetohydrodynamic treatment of many of the mechanisms thought to be behind

stellar dynamos, such as differential rotation and other large-scale flows, is a formidable task. In addition,

it is highly likely that the nature of the dynamo, for any given star such as the Sun, has evolved over

the lifetime of the star with the evolution of the propertiesof its convection zone, primarily mediated

through spin-down and angular momentum losses via stellar winds (Mestel and Spruit, 1987). Therefore a

brief consideration of some of the important parameters that determine the behaviour of stellar dynamos is

useful (for more detailed discussions, see, for example, Noyes et al. (1984b) and Montesinos et al. (2001)).



6.1 Introduction 89

A measure of the efficiency of the dynamo mechanism is the dynamo number (Nd) – the ratio of the source

terms to the dissipative terms in the dynamo equations – which depends on various physical properties of

the stellar convection zone. Another important parameter that essentially describes the evolutionary state

of stellar convection zones is the Rossby number,Ro. It can be shown thatNd ∼ 1/Ro
2 (see, for example,

Durney and Latour, 1978). Since the rotation period, depth of stellar convection zones and convective

turn-over time evolves with stellar evolution, bothNd andRo are expected to change over any given star’s

lifetime. Specifically as stars age, their Rossby number increases with the corresponding increase in rotation

period. It has been shown that the groups of stars with irregular and regular activity are distinguished by

their Rossby number (Noyes et al., 1984a, Hempelmann et al.,1996). Stars withRo < 1 show irregular

and strong emission, while the regular and constant stars are those withRo > 1. A possible explanation for

this division is to explain the magnetic activity as being governed by a nonlinear dynamical system whose

output changes from constant to periodic to chaotic as a governing parameter (such as the dynamo number)

linked to rotation is increased. The intensive computational nature of full numerical dynamo models means

that a full exploration of their behaviour in a wide range of parameter space is not easily achievable. In this

thesis we adopt a different and parallel approach. We construct simple models which may have a similar

underlying mathematical structure as that found in the fullsystem. This enables us to explore a wide range

of parameter space in the models, corresponding to the wide variety of stellar behaviour that is expected

to be governed by the same physical principles. Studies of this kind are therefore complementary to works

such as those cited in the earlier paragraph.

The construction of low-order models of the solar dynamo hastraditionally utilised one of two alterna-

tive approaches. The first is to derive sets of Ordinary Differential Equations (ODEs) via a truncation of

the Partial Differential Equations (PDEs) of mean-field electrodynamics (Zeldovich et al., 1983, Martens,

1984, Weiss et al., 1984, Jones et al., 1985, Schmalz and Stix, 1991, Roald and Thomas, 1997, Covas

and Tavakol, 1997). This approach has the advantage that each term in the truncated set of ODEs has an

obvious physical interpretation as it has been derived froman analogous term in the PDEs. The lowest

order truncation, resulting in just two governing ODEs, is known not to produce dynamo action, which is

in itself suggestive of a drawback of such a truncation procedure, namely that the dynamics associated with

truncated models is often fragile and sensitive to the levelof truncation.

A second approach is to construct low-order models based on normal-form equations utilising the theory

of nonlinear dynamics, either by using symmetry arguments or by bifurcation analysis (Tobias et al., 1995,

Knobloch and Landsberg, 1996). Here the dynamics found can be shown to be generic and therefore robust.

However, the drawback in this case is that the physical interpretation of a set of low-order equations is less

transparent as there is no obvious physical analogue for a given term in the equations.

We explore both approaches here. In the next section we examine a robust model derived using normal-

form theory. In the following chapter, Chapter 7, we adopt a novel approach to the lowest-order truncation

of the full PDEs, taking the physical separation of source terms known to exist in the solar dynamo into

account in a simple way. As a result the two ODEs obtained by truncation of the PDEs are converted into

two delay differential-equations (DDEs) and dynamo actionis then found.

The results of this chapter are based on Wilmot-Smith et al. (2005a) and Wilmot-Smith et al. (2007b).
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6.2 Construction of the Model

The model considered in this chapter is an extension of that derived in Tobias et al. (1995). In that paper, a

third-order model was derived using a Poincaré-Birkhoff normal form for a saddle-node–Hopf bifurcation,

to obtain a system exhibiting generic and therefore robust behaviour. This normal form was chosen since

it has a bifurcation structure that gives qualitatively similar behaviour to that observed in stars as solutions

along a cut through parameter space are examined.

Considering stellar magnetic activity observations we expect, qualitatively speaking, that, as the evolu-

tion of a star is tracked backwards in time (i.e. as its rotation rate increases), periodic cyclic solutions will

bifurcate from a steady free-field state in a supercritical Hopf bifurcation. These regular cyclic solutions

will, in turn, give way to trajectories lying on a two-torus after a supercritical secondary Hopf bifurcation,

reflecting periodic solutions with amplitude modulation intime. Finally, this activity should become chaot-

ically modulated to account for those stars with irregular activity. Indeed, such a bifurcation structure is

mirrored in mean-field PDE models as the non-dimensional measure of rotation rate (the dynamo number

D) is increased (Tobias, 1996, Pipin, 1999, Bushby, 2005).

In the model of Tobias et al. (1995), the magnetic field was decomposed in the usual way into its

toroidal part, represented byx, and its poloidal part, represented byy. The third coordinate of the system,

z, represents all the hydrodynamics of the system, includingas differential rotation and convection. Though

a consideration of normal-form theory, the basic system is taken to be given by

ż = µ− z2 −
(
x2 + y2

)
,

ẋ = (λ+ az)x− ωy, (6.1)

ẏ = (λ+ az) y + ωx.

For µ > 0 the equations (6.1) have have two fixed points,P+ andP−, given by the solutions to

x = 0, y = 0, z = ±√
µ. These correspond to field-free, purely hydrodynamic, solutions where the flows

are statistically steady and arise from the saddle-node bifurcation atµ = 0. Thus the parameterµ controls

the hydrodynamics of the system, so is related to effects such as thermal forcing and rotation. The term

(x2+y2) in theż-equation, being quadratic in the magnetic field, represents the back reaction of the Lorentz

force on the field. Its coefficient has been chosen to be less than zero so that the secondary Hopf bifurcation

is supercritical.

By settingz = 0, we see thatλ gives the growth-rate (i.e. strength of the dynamo action) of x andy

andω the basic cycle frequency (the location of the bifurcation curves in the model is independent ofω).

In a more complicated PDE model these features would be linked with the dynamo number.

For the system of equations (6.1) the secondary Hopf bifurcation is found to be degenerate and, to break

this degeneracy, a cubic term must be added to the model. A cubic term,cz3, was added to thėz equation

and to takec < 0 so that solutions on thez-axis remain finite. This inclusion introduces another fixed

point to the system, again on thez-axis and and associated additional line of saddle-node bifurcations (at

µ = 4/27c2).
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The system derived thus far is axisymmetry essentially two-dimensional – it may be written in cylindri-

cal polars as:

ż = µ− z2 − r2 + cz3,

ṙ = λr + azr,

φ̇ = ω.

The addition of a symmetry-breaking term would add physicalrealism to the system and making the system

fully three-dimensional would allow for chaotic dynamics.For these reasons the authors chose to add a

cubic term to theẋ equation to break the normal form axisymmetry. However, theexact choice of term

is arbitrary and the term chosen in Tobias et al. (1995) is oneproportional to
(
x2 + y2

)
z, the motivation

being to preserve the invariance of thez-axis. Thus the system of ODEs now takes the form

ż = µ− z2 − (x2 + y2) + cz3,

ẋ = (λ+ az)x− ωy + dz(x2 + y2), (6.2)

ẏ = (λ+ az)y + ωx.

See Tobias et al. (1995) for further details of the model’s derivation.

In order to demonstrate the type of behaviour that such a model yields, Tobias et al. (1995) fixed all

parameters except forλ andµ and chose a parameterized path through theλ− µ plane to demonstrate the

bifurcation structure of the model. In summary, the showed that, as the controlling parameter was increased,

purely hydrodynamic solutions lost stability in a primary Hopf bifurcation to oscillatory solutions. In turn

these gave way to quasiperiodic solutions, where the basic cycle is modulated on a longer timescale and

solutions lie on a two-torus in phase-space. Further increase in the parameter led to a breakdown of the torus

and a transition to chaos. The solution then took the form of active periods, interspersed chaotically with

minima. Such solutions are associated with close-approachto an invariant manifold and near heteroclinicity.

However, as noted by Ashwin et al. (2004), a limitation of themodel is that the choice of term to break

the normal form axisymmetry in Tobias et al. (1995) results in a loss of equivalence of the system under

the transformationx → −x, y → −y which corresponds toB → −B. In this chapter we choose an

alternative term, which does not suffer from the above disadvantage, to break the axial symmetry. Again,

the exact choice of cubic term is arbitrary; available termsare, for example,x3, xz2, xy2, xyz, (x+ y) z2

etc. Similarly the choice made in Tobias et al. (1995) of including this term in thėx equation was arbitrary,

theẏ equation would also be suitable. In view of these considerations we choose to add a term proportional

to (x3 − 3xy2) to theẋ-equation and one proportional to(3x2y − y3) to theẏ-equation. Thus the model

becomes

ż = µ− z2 − (x2 + y2) + cz3,

ẋ = λx− ωy + azx+ d(x3 − 3xy2), (6.3)

ẏ = λy + ωx+ azy + d(3x2y − y3).
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This new system of equations is invariant under the transformationx → −x, y → −y and thez-axis

remains invariant – these are the two basic properties to be satisfied by the symmetry-breaking term. The

physical motivation behind our exact choice becomes clear when the system is written in cylindrical polars:

ż = µ− z2 − r2 + cz3,

ṙ = (λ+ az)r + dr3 cos(2φ), (6.4)

φ̇ = ω + dr2 sin(2φ).

In the following section we examine some of the properties ofthis model.

6.3 Results

We examine the behaviour of the system asλ andµ are varied and fix the parametersa, c, d, andω as

a = 3, c = −0.4, d = 0.4, ω = 10.25.

Following Tobias et al. (1995) we have chosen to fixa = 3 andc = −0.4 so that both the line of saddle-

node bifurcations atµ = 4/27c2 and secondary Hopf bifurcations atλ = −2a/3c are far from the origin as

shown in Figure 6.1. As with system (6.2) the choice ofω does not greatly alter the bifurcation structure,

but it does change the ratio of the modulation cycle to the underlying cycle. We have chosenω = 10.25,

since it results in a ratio similar to that observed in the Sun.

To allow us to choose a suitable path through parameter spacealong which to study solutions of (6.3) we

examine the bifurcation set for the system; this is shown in Figure 6.1(a). We see that the line of secondary

Hopf bifurcations, which ford = 0 was identical to the positiveµ-axis, has moved leftward in our new

model (6.3). A heteroclinic region, which is shaded in the diagram, replaces the degenerate heteroclinic

bifurcation that exists whend = 0, as in Tobias et al. (1995). We have not indicated all the bifurcations

lying inside this wedge owing to the complexity of the region, some details of which are described in for

example Champneys and Kirk (2004). The main dynamical features observed are described as follows, and

a small section is illustrated in Figure 6.1(b).

Trajectories within this region lie on a torus, and the rotation number associated with each orbit may

be either rational or irrational. In the case of a rational rotation number,p/q (p, q ∈ Z), since thez-axis

is invariant under the flow, the orbit will turnq times around thez-axis andp times around the primary

periodic orbit before closing in on itself. This resonance phenomenon does not occur when the rotation

number is irrational; in this case no point on the torus is revisited in a finite time. The resonance regions are

found to be slim tongues which open out smoothly from the secondary Hopf bifurcation, and are bounded

by curves of saddle-node bifurcations of periodic orbits (Kirk, 1991). Some of these curves are illustrated

in Figure 6.1(b), although since a tongue exists for each rational numberp/q, there is a countable number

in total. Horseshoes are introduced into the flow, resultingfrom the heteroclinic crossings of the stable and

unstable manifolds of two of the fixed points, and this can lead to chaotic dynamics within the region (Kirk,
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Figure 6.1: Bifurcation curves for Equations (6.3) witha = 3, c = −d = 0.4, andω = 10.25. (a) Global
bifurcation set (with bifurcations in the shaded region omitted.) (b) Boundaries of some of the resonance
tongues, with fractions indicating the order of each resonance.
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The direction of increasingΩ is in the positivey-direction.

1991).

To illustrate the new dynamics, we examine the model’s behaviour along a one-parameter path in the

λ–µ plane, chosen so that solutions along the path mimic the observed stellar behaviour as rotation rate is

increased. We choose the parameterization

µ =
√

Ω

λ =
1

4

[(

ln (Ω) +
3

2

)

exp

(

− Ω

100

)]

, (6.5)

whereΩ ∈ [0,∞). Clearly the path satisfies the requirementµ > 0. It passes through the primary Hopf

bifurcation to the left of theµ-axis and then through the heteroclinic region, staying close to theµ-axis

(which is where the complicated dynamics occur). The path then tends back to this axis to give stable

dynamo action asΩ → ∞. The path is illustrated in Figure 6.2.

In this section we present the numerical results obtained byintegrating the system (6.3) using the Runge-

Kutta Fehlberg numeric method in MAPLE. Although we can loosely think ofΩ as representing the effects

of rotation on the system, we cannot link it directly with anyphysical parameters such as the Rossby

number. As we shall show, the behaviour of the system of equations (6.3) along the parameterized path

(6.5) is similar to that found by Tobias et al. (1995).

For smallΩ, all trajectories are attracted to one of the fixed points that correspond to purely convecting

states. Magnetic instability sets in atΩ = 7.69 × 10−3 with a primary (supercritical) Hopf bifurcation,

so that periodic trajectories are apparent, a typical example of which is shown in Figure 6.3. The radius

of the periodic orbit grows asΩ is increased, giving solutions for the magnetic field (represented here by

x2) that grow in amplitude with increasingΩ. The period of oscillation remains approximately constant
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Figure 6.3: Magnetic activity solution for (6.3) as a function of time along the parameterized path (6.5) at
Ω = 0.1. A small amplitude oscillation is present, whose amplitudegrows asΩ is increased.

throughout, since it is controlled largely by the variableω, with small perturbations to the period arising

from the axisymmetry breaking term. As the amplitude of the magnetic field grows, the Lorentz force

becomes important, varying periodically with half the period of the field, as does the velocity.

At Ω = 0.214 (whereλ < 0), the path crosses the line of the secondary Hopf bifurcation, where a

torus bifurcates from the periodic orbit. The solutions forx(t) andy(t), which were periodic before the

secondary Hopf bifurcation are now also modulated on a longer timescale, which results in an oscillatory

magnetic field with significant amplitude variations in time. At Ω = 0.76, for example, solutions are

quasiperiodic, as shown in Figure 6.4 (a,c). Nearby to such quasiperiodic trajectories, the path also moves

through various resonance regions, an example of which is shown in Figure 6.4 (b,d) whereΩ = 0.74. The

solutions forx(t) andy(t) appear to be qualitatively similar but we see that the trajectory winds exactly six

times around thez-axis in one period before returning to its original location. Near the frequency-locked

regions where the winding numbers are irrational but close to a rationalp/q, the orbit can spend most of its

time in a phantom periodic orbit from which it occasionally unlocks.

Quasiperiodic solutions do not persist far from the secondary Hopf bifurcation, with the resonance

tongues closing off as it is approached. AsΩ is increased the torus grows and begins to approach the

invariantz-axis. In addition the torus becomes less smooth, with first wrinkles, then folds developing on

the attractor. The dynamics are qualitatively unchanged bythe saddle-node bifurcation, reached atΩ =

(0. ¯925)2 ≈ 0.8573, although two of the three stationary points that existed until this point are destroyed

in the bifurcation. The resonance tongues that are associated with the frequency locking of the flow persist

(despite the breakdown of the torus), giving rise to windowsof periodicity along the trajectory. The effect

of the transition to chaos is best illustrated by taking Poincaré sections through the planey = 0. We show

this in Figure 6.5, where the appearance of folds on the section marks a transition to chaos. The modulation

of the underlying cycle in the time series forx andy becomes irregular.

The activity cycle, represented here byx2, shows irregular bursts of activity followed by variable lengths

of no activity. The time series forz (which represents the velocity) oscillates between valuesnear to the

two stationary pointsz = ±√
µ. An example is shown in Figure 6.6.

As Ω is further increased an interesting phenomena is observed;solutions with an intermittent character

are present, such as that illustrated in Figure 6.7. The time-series forx(t) andy(t) flip between different
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Figure 6.4: Solutions along the parameterized path (6.5). The 3D trajectory plot is shown for (a) the
quasiperiodic solutions atΩ = 0.76, and for (b) the frequency locking atΩ = 0.74. The corresponding
activity cycles, represented byx2, are shown, with (c)Ω = 0.76 and (d)Ω = 0.74.

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

z

–1.5 –1 –0.5 0.5 1 1.5
x

(a)

–1

–0.5

0.5z

–2 –1 1 2
x

(b)

–1.5

–1

–0.5

0.5

1

z

–3 –2 –1 1 2 3
x

(c)
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Figure 6.7: Example solutions along the parameterised pathatΩ = 11.023, with (a) the time series forx(t)
and (b) the resultant magnetic activity cycle. Solutions are found to have an intermittent nature.

states which leads to a magnetic activity cycle with episodes of reduced and enhanced magnetic activity.

6.4 Summary

Our understanding of stellar magnetic activity in solar-like stars and its dependence on parameters such as

the Rossby number is deepening through studies such as the H-K project at the Mt Wilson Observatory. The

magnetic activity found in this survey divides stars naturally into those with constant emission, periodic

emission, irregular emission and long term changes in emission (Baliunas et al., 1995). Younger stars,

which rotate relatively rapidly and have higher dynamo numbers, tend to be those with irregular emission,

while older slower rotators (which have low dynamo numbers)tend to show periodic or regular emission

(Hempelmann et al., 1996).

Stellar dynamos are governed by highly complex non-linear systems of equations, the modelling of

which has been approached in a number of ways, from various types of mean field model to elaborate

numerical simulations. A partial understanding of the bifurcation structure of such models can be gained
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by studying low-order models, consisting of coupled nonlinear ordinary differential equations. Using such

a theoretical model one can explore qualitatively the effect of increasing rotation by looking at a system’s

behaviour in parameter space, for example by increasing thedynamo number. For slow rotators (small

dynamo numbers) we would expect to observe a field-free state, with a sequence of bifurcations leading to

periodic, quasiperiodic, and finally irregular emission asthe dynamo number is increased.

Here we have extended the model of Tobias et al. (1995) to include an axisymmetry-breaking term

that maintains the underlying symmetry,B → −B, that corresponds to reversal of the field. Many of

the parameters can be tied loosely to physical effects; however, since the system has not been derived

directly from a set of governing equations we cannot relate them directly to physical parameters such as the

Rossby number. We have demonstrated that the bifurcation sequence proposed by Tobias et al. (1995) is

present in the new system of equations, with solutions goingfrom field-free to periodic, quasiperiodic and

chaotic as the forcing parameter is increased. Furthermorewe have identified a new type of solution that is

characterised by the occurrence of long and deep minima interspersed with increased chaotic activity with

clusters of shorter minima.

These results are of interest as they can be related to observations, as discussed above. Moreover the

results presented here are robust and so can be related to thebifurcations that are found in more compli-

cated (but less transparent) models based on Partial Differential Equations. Such an analysis of simplified

mathematical systems can scientifically complement those numerical studies that attempt to model fully

either a particular stellar system, or, at a more ambitious level, solve the full set of magnetohydrodynamic

dynamo equations. They can even give a guide as to the types ofbehaviour to be expected in such systems.



Chapter 7

A Time-Delay Model for Solar and

Stellar Dynamos

In this chapter we propose a physically motivated model for solar and stellar dynamos. As with that of the

previous chapter, the simple nature of the model allows us toexplore a wide range of parameter space. We

begin in Section 7.1 by providing a physical motivation to consider delay differential equations in dynamo

modelling.

The results of this chapter can be found in Wilmot-Smith et al. (2006b).

7.1 Introduction

Which of the various proposedα-effect mechanism(s) is (are) dominantly at work in stellarinteriors such as

the solar convection zone is a matter of debate. It is certainhowever that the variousα-effects proposed (see

Section 6.1) operate at different layers in the convection zone (Mason et al., 2002) where they may, or may

not, spatially coincide with theΩ-effect. The latter, for the Sun, is believed to be primarilyin the tachocline

layer. For a dynamo mechanism with a spatial segregation of the two source layers for theΩ andα-effects

it is clear that there must be an efficient means of communication (through flux transport) between the two

distinct source regions (see Figure 7.1 for a discussion on the spatial geometry of the problem). Magnetic

buoyancy plays a role in this by transporting strong toroidal flux from the base of the convection zone to

the upper layers (i.e., from theΩ-effect layer to theα-effect layer). How the dynamo loop is closed through

flux transport from theα-effect layer back to theΩ-effect layer differs from one model to another, based on

whichα-effect mechanism the model invokes.

For anα-effect operating in the tachocline, which is also the location of theΩ-effect, the spatial co-

incidence implies that the communication between the source layers is almost instantaneous, i.e., toroidal

field generated by theΩ-effect is immediately available for regenerating the poloidal field. In the interface

100
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Figure 7.1: A cartoon depicting the concept of flux transporttime delays in the interior of a solar-like star.
This meridional cut (in ther–θ plane) shows the convection zone and some part of the radiative interior.
A region of strong shear in the differential rotation (such as the solar tachocline) is depicted in dark gray
– the dynamoΩ-effect (which generates toroidal field from the poloidal component) acts in this layer. The
dynamoα-effect (which regenerates poloidal field from the toroidalcomponent) is shown here in light gray
and acts in a layer located near the surface; the location of theα-effect layer depends on which physical
mechanism is invoked to account for it (see text). For the dynamo to function, communication between
the two segregated dynamo source layers should take place via some means of flux transport. This process
involves unavoidable time delays. In this paper, the time taken for poloidal flux to be transported from the
α-effect layer to theΩ-effect layer and toroidal flux to be transported from theΩ-effect layer to theα-effect
layer, are quantified in the time delaysT0 andT1, respectively.

dynamo (Parker, 1993) – based on the convectiveα-effect – a negative convectiveα-effect is located in the

convection zone only, below which theΩ-effect operates in the tachocline. A discontinuity in the magnetic

diffusivity occurs across the interface between the tachocline and the convection zone. The separation of

sites for the generation of poloidal and toroidal field meansthey interact primarily through diffusion or tur-

bulent flux pumping (Tobias et al., 2001) – which is the primary transporter of flux from theα-effect layer

in the convection zone back to theΩ-effect in the tachocline. The same spatial physical structure charac-

terises dynamos based on anα-effect due to buoyancy instabilities and located just above the tachocline

or in the base of the convection zone (Ferriz-Mas et al., 1994). A larger segregation of the two source

layers differentiates the spatial physical structure of the Babcock-Leighton mechanism, where a positive

α-effect acts in the surface layers. In this case it is advective flux transport by meridional circulation (see

Nandy, 2004, for a review) and to some extent turbulent pumping, that transports the surface poloidal flux

to the tachocline where theΩ-effect resides. An unavoidable time-delay – due to the finite time required to

transport magnetic flux from one source region to another – materializes in those dynamo models that have

physically distinct source layers. In this chapter, we aim to explore the role of this time-delay in solar and
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stellar dynamo activity.

The removal of all spatial dependence in low-order ODE models’ description of the field evolution

gives an implied instantaneous communication between the two field components (toroidal and poloidal)

that would not occur in spatially segregated models. The introduction of certain time delays in a system of

ODEs, so converting them to a set of delay differential equations (DDEs), can take account of such a spatial

segregation. Indeed time-delays are intrinsic to PDE models that include meridional circulation, since this

circulation effectively introduces a delay that is comparable to the cycle period.

The notion of time-delay has earlier been studied in the context of a finite delay in the feedback of

the magnetic fields on the dynamo source terms (Yoshimura, 1978). Time delay dynamics have also been

examined in the specific case of the Babcock-Leighton model via the use of one-dimensional iterative maps

(Durney, 2000, Charbonneau, 2001) that include the long time delay between the production of toroidal

field from poloidal field, but ignore dissipative effects. Results have been shown to be in good agreement

with spatially extended numerical models (Charbonneau et al., 2005). Thus, in addition to stochastic forcing

and dynamical nonlinearity, the possibility arises that observed irregularities in solar and stellar cycles may

result from the effect of time delays in the underlying physical processes that generate these cycles.

In this chapter we introduce time-delays into a set of truncated dynamo equations, thereby construct-

ing a time-delayed system that includes both dissipative effects (which are absent in 1D iterative maps),

and a delay in both the conversion processes (from toroidal to poloidal component and vice-versa). The

underlying physical mechanism remains relatively transparent and can, in general, be applied to study dy-

namo models based on a diverse set ofα-effect mechanisms. In this model, a low or vanishing time-delay

physically resembles a scenario in which the dynamoα-effect andΩ-effect are spatially coincident. Finite

time delays properly account for the two-layer character ofdynamos based on spatially segregated source

regions and the role that magnetic flux transport (e.g., mediated via meridional circulation or magnetic

buoyancy) plays in these models. It is shown that the introduction of time delays can have a considerable

effect on the dynamics and lead to significant fluctuations incycle amplitude.

We begin in Section 7.2 by deriving the model before examining its behaviour in two important pa-

rameter regimes in Section 7.3. One regime is that for which the time delay is smaller than the dissipative

timescale. We characterise solutions in this regime, wherethe effect of the time-delays dominates over that

of dissipation, asflux transport dominated, and find that relatively regular activity identifies these solutions.

The case where the time delay is larger than the dissipative timescale is characterised as thediffusion domi-

natedregime, and we find irregular activity is more easily excitedin this case. We discuss the implications

of our results for solar and stellar dynamos and summarize the results in Sections 7.4 and 7.5.
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7.2 Model Setup

Considering only the source and dissipative processes in the dynamo mechanism and through a truncation

via removal of all spatial dependence, we obtain the equations

dBφ

dt
=
ω

L
A− Bφ

τφ
,

dA

dt
= αBφ − A

τp
,

whereBφ represents the toroidal field andA the poloidal field. In this simplest possible case the evolution

of each component is a result of the combination of a source process (first term on the R.H.S. of the above

equations) and a diffusive process (second term on the R.H.S.). For the toroidal field the source process is a

conversion from the poloidal field (theΩ-effect), dependent on the differential rotationω (not to be confused

with the rotation rate), and the length scale over which it acts,L (the length of the tachocline, for example).

Diffusion of the field itself, occurring through ohmic decay, is parameterised byτφ – which represents the

diffusion timescale for the toroidal field. The evolution ofthe poloidal field is also a combination of two

similar actions; diffusion, withτp representing the diffusion timescale for the poloidal field, and a source in

the conversion from toroidal field via theα-effect.

To account for alpha-quenching we take a general form forα given byα = α0f , whereα0 is the

amplitude of theα-effect andf is the quenching factor approximated here by the non-linearfunction

f =
[1 + erf(B2

φ (t) −B2
min)][1 − erf(B2

φ (t) −B2
max)]

4
. (7.1)

Figure 7.2 illustrates a typical profile forf . The form forf has been chosen such that the functionα

that represents the alpha-effect has an upper threshold limit (related toBmax) above whichα = 0 and,

similarly, a lower threshold limit (related toBmin) below whichα = 0. The motivation for the including
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a possible lower operating limit,Bmin, comes from the suggestion of a critical threshold in the toroidal

field in stellar interiors over which toroidal flux ropes become magnetically buoyant and rise up into the

alpha-effect source region (Durney, 1995). This lower threshold due to magnetic buoyancy limits field

strengths and has been shown to play a crucial role in determining the amplitude of dynamo activity (Nandy,

2002). An upper limit to the field strengths on which the alpha-effect operates is, in mean-field models,

associated withalpha-quenchingwhere the Lorentz force associated with strong toroidal fields impedes the

small-scale helical turbulent motions. In the Babcock-Leighton mechanism the upper limit stems from the

ineffectiveness of the Coriolis force on strong toroidal flux tubes. Simulations of rising flux tubes suggest

that tubes with strength greater than around100kG will rise to the solar surface without the tilt crucial in

imparting the poloidal field (D’Silva and Choudhuri, 1993, Fan et al., 1994). The exact form chosen forf

is arbitrary (just as is the algebraic form for alpha-quenching in traditional mean-field models of the solar

cycle). We discuss in Section 7.4 the implications of makingdifferent choices.

In a dynamo with spatially segregated source regions, communication between the two layers would not

be instantaneous as in the above equations. To take account of this, two physically motivated distinct time

delays are introduced into the equations; the first being a time delay for the conversion of poloidal field into

toroidal field,T0, and the second a time delay for the conversion of toroidal field into poloidal field,T1 (see

Figure 7.1). Time delays will appear in all conversion processes, and so the equations become

dBφ (t)

dt
=
ω

L
A (t− T0) −

Bφ (t)

τφ
, (7.2)

dA (t)

dt
= α0f (Bφ (t− T1))Bφ (t− T1) −

A (t)

τp
. (7.3)

Thus a system of two coupled DDEs has been obtained to describe the dynamo, with the only nonlinearity

being the parameterisation of the source term for the poloidal field. The time delays signify that the gen-

eration of any component of the magnetic field (on the L.H.S. of the above equations), at a given instant

in time, is dependent on the magnitude of the other componentof the magnetic field (appearing in the first

term on the R.H.S.) at an earlier time – corresponding to the time delay. Thus, this system of DDEs has an

in-built memory mechanism capable of “remembering” the values of magnetic fields from an earlier time

equal to the time delays. We show in Section 7.3 that growing solutions to these equations are possible.

The time delayT0 accounts for the time taken for a poloidal flux tube to be transported from the site of its

production back to the tachocline. In the Babcock-Leightonmechanism the meridional circulation advects

surface poloidal field back to the the tachocline (which, from mid-latitudes at the surface to mid-latitudes at

the tachocline, takes on the order of 10 years). Often invoked in the high magnetic Reynolds number (Rm)

regime, this class of advection-dominated models assumes that there are negligible dissipative losses during

this transport. The meridional circulation then governsT0 in Babcock-Leighton models. We might expect

the delay to be shorter in the interface dynamo (with downward flux transport accomplished by turbulent

flux pumping – which again has negligible dissipative effects during transport), particularly if theα-effect

is deep-seated. The time delay should be vanishingly small for spatially coincident source layers (with

both theΩ andα-effects in the tachocline, for example). Note that to some extent, poloidal flux can be

brought down to theΩ-effect layer through simple spatial diffusion (as opposedto other mechanisms, this

also destroys the flux during transport). If indeed the spatial diffusive transport is faster and more efficient
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than all other means of transport, thenT0 should correspond to the spatial diffusion timescale and one has

to account for dissipation during flux transport (see Section 7.4 for a discussion on this). The important

point to remember is that, if there are competing mechanismsfor flux transport, the one with the shortest

timescale should be the governing one (as this would be most efficient).

The time delayT1 accounts for the time taken for a toroidal flux tube to buoyantly rise to the site

of poloidal field production. The timescale for the buoyant rise of a flux rope from the interior to the

photosphere is rather short, being of the order of three months, and soT1 ≪ T0. However,T0,1 6= 0 in any

model for which there is a spatial segregation between the two layers.

The diffusion timescales for the poloidal and toroidal fieldare given by

τp =
L2

SCZ

ηp
, τφ =

L2
SCZ

ηφ
,

whereLSCZ is the width of the solar convection zone (in general, it should be the separation of the two

source layers);LSCZ = 0.3R⊙ ∼ 2.1 × 108m. If we take the toroidal diffusivity,ηφ to be equal to the

poloidal diffusivity,ηp, thenηφ = ηp ∼ 1012 cm2s−1 a widely accepted value, and soτp,φ ∼ 13.8 years.

Alternatively, due to the strong, coherent nature of the solar toroidal magnetic field that can suppress the

magnetic diffusivity by as much as two orders of magnitude, we might haveηφ < ηp (for a discussion see

Chatterjee et al., 2004), so increasingτφ to τφ ∼ 1380 years.

Given the simplified nature of the model, the use of solar parameter values in the system would not

be helpful in any attempt to quantify dynamics. Rather, the brief discussion of their values is intended to

provide an indication of the comparative magnitudes of the terms, which is shown later to be critical in

determining dynamics.

As an aid to understanding the underlying structure of the model, we can reduce the system (7.2, 7.3)

to a single second-order equation forBφ by differentiating (7.2) and substituting (7.3) fordA(t − T0)/dt

(note the evaluation at the delayed time(t − T0)). This, among others, generates a term proportional to

A(t− T0) which in turn is substituted for by (7.2). The resulting equation is

d2Bφ

dt2
+

(
1

τφ
+

1

τp

)
dBφ

dt
+

1

τpτφ
Bφ =

α0ω

L
f (Bφ (t− T0 − T1))Bφ (t− T0 − T1) , (7.4)

which can be supplemented by (7.2) for the solution ofA(t). The system (7.2, 7.4) is equivalent to (7.2,

7.3) and therefore has the same set of solutions.

The time delaysT0 andT1 appear in (7.4) as a sum, so it appears to be their sum that is important

in determining the dynamics. If the right-hand side of (7.4)is set to zero the equation becomes that of a

damped oscillator. In the case whereτp = τφ the oscillator is critically damped, while in all other cases

it is over-damped. Thus, for toroidal field strengths outside of the range wheref is non-zero, we might

expect the system to behave as a damped oscillator. For toroidal field strengths within the range wheref

is non-zero, the term on the right-hand side of (7.4) is important. We will show in Section 7.3 that some

analogies of the full system with a damped driven oscillatorcan be made.



7.3 Results 106

To examine solutions to this system we numerically integrate the equations, basing the code on the

NDelayDSolve.m package in Mathematica. An initial solution to the problem in the ranget ∈ [−Tmax, 0]

is specified, whereTmax = max{T0, T1}. The effect of various initial conditions is discussed as the

solutions are presented.

The model is relatively simple, but gives rise to a wide rangeof dynamic behaviour. Here some pa-

rameter regimes are examined which suffice to illustrate thecomplexity the system is capable of displaying

and its relevance to our understanding of solar and stellar dynamos. From (7.4) the sum of the two time

delays is expected to be important in determining the dynamics. Therefore, we examine two extreme cases

in particular. One case is whereτp,φ ≫ T0 + T1, which we call the flux transport dominated regime

and consider in Section 7.3.1. The caseτp,φ ≪ T0 + T1, is called the diffusion dominated regime and is

considered in Section 7.3.2. In both of these regimes we willconsider solutions for positive and negative

dynamo number,ND (which is related to the Rossby number asND ∝ 1/R2
o) (Durney and Latour, 1978).

In particular we will consider the effect of increasing|ND| since from stellar observations a change in the

dynamics is expected across a parameter space covering a range ofND (and consequentlyRo) values.

7.3 Results

SettingT0 = T1 = 0 in equations (7.2) and (7.3) corresponds to a dynamo model inwhich there is no time

delay in the magnetic flux transport between the two source regions (a situation that could result when the

source regions are spatially coincident and there is no timedelay involved in theα-quenching mechanism

via the Lorentz feedback). In this two-dimensional system,when the conditionτp, τφ > 0 is applied, we

obtain only two qualitatively different solutions; eitherA andBφ both decay to zero, or they are both

attracted to a non-zero fixed point of the system. These fixed points are given by solutions,A(t) = a,

Bφ(t) = b, such thatf(b) = L/(α0ωτφτp) anda = Lb/ωτφ. Thus the solutions described in the following

sections all arise from the inclusion of time delays in the model. We note that in the linear analysis of

the dynamo equations Parker (1955) found wave-type solutions when the spatial derivatives are explicitly

accounted for. The time delays we will introduce later compensate for the information lost by simplifying

the spatial terms as we have above.

When at least one of the time delays is non-zero, oscillatorysolutions to the system may be obtained.

In the solar case the strength of the toroidal field is much greater than the poloidal field. This can always be

reproduced for non-zero solutions by taking|ω0/L| > |α0|. Although〈Bφ〉 > 〈A〉 may also be achieved

in some parameter regimes with|ω0/L| < |α0|, these cases are more limited. The parametersBmin and

Bmax will be fixed throughout asBmin = 1, Bmax = 7. Qualitatively similar solutions to those outlined

below can be attained with different particular values ofBmin andBmax; see Section 7.4 for a further

discussion of this point.
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7.3.1 Flux Transport Dominated Regime

Solutions obtained in the regime where the diffusion timescales are large compared to the time delays

(τp, τφ > T0 + T1) are examined in this section. Physically, this scenario means that the flux transport

(mediated by either, or the collective action of, meridional circulation, magnetic buoyancy and turbulent flux

pumping) occurs efficiently and within a duration of time over which dissipative effects are not important.

In this model the dynamo number is given byND = α0ωτpτφ/L. We begin by examining solutions

for ND < 0, takingω < 0, α0 > 0, and take a sequence of increasing absolute value of dynamo number

ND (and therefore decreasing Rossby numberRo). This corresponds to increasing the rotation rate of the

star. The cut through parameter space given byω/L+ 2α0 = 0 is taken, so that the relative strength of the

source terms for poloidal- and toroidal-field production remain the same, and all other parameters are fixed

as

τφ = 15, τp = 15, Bmin = 1, Bmax = 7, T0 = 2, T1 = 0.5, andω/L+ 2α0 = 0.

The initial solutions are specified as the constant(Bmin +Bmax)/2 for bothA andBφ.

On this sequence a periodic orbit bifurcates from the fixed point at the origin whenND = −12.696.

The orbit then becomes periodically modulated, so thatBφ andA both show oscillatory behaviour, with

amplitudes modulated on a longer timescale. The amplitude of modulation increases along the parameter

path, butBφ lies within the range[−Bmax, Bmax] for all time. An example is shown in Figure 7.3,

whereND = −13.01. ForND < −17.11 solutions forBφ are no longer contained within the range

[−Bmax, Bmax]. Solutions are now periodic, with bothA andBφ showing cyclic behaviour, with a constant

period and amplitude, a typical example of which is illustrated in Figure 7.4. The rising phase of both

solutions is steeper than the declining phase, and a sharp change in the first derivatives of bothA andBφ

can be seen during each declining phase.

Both the period and amplitude of the oscillation increase with increasing|ND|, as shown in Figure 7.5.

There is a linear dependence of amplitude on dynamo number over several orders of magnitude, while the

period of the cycle varies logarithmically. As is evident from Figure 7.6, an increase in the sumT0 + T1

also increases both the periods and amplitudes. Solutions remain qualitatively the same as those illustrated

in Figure 7.3 untilT0 + T1 ∼ 50.

Next we consider solutions for positive dynamo number,ND > 0. Again periodic solutions to the

system can be obtained, but there are important distinctions to be made from the caseND < 0. On

increasing the dynamo number the first bifurcation leads to periodic solutions in which bothA(t) and

Bφ(t) are of single sign only, andBφ(t) is not contained within the range[−Bmax, Bmax]. A typical

example is illustrated in Figure 7.7. The characteristic steep rising phase of the cycle and slower declining

phase remain, as does the sharp change in derivative ofA andBφ at the end of each declining phase. The

same qualitative dependence of cycle amplitude and period on both total time delay and|ND| as that for

ND < 0 is recovered.

Some analogies of solutions in this regime to a damped drivenoscillator can be made to help explain
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Figure 7.3: Time series, in the flux transport dominated regime, for (top) the poloidal field, (middle) the
toroidal field, and (bottom) the magnetic activity (energy),B2

φ, for dynamo numberND = −13.01 and the
parametersτφ = 15, τp = 15, Bmin = 1, Bmax = 7, T0 = 2, T1 = 0.5, ω/L = −0.34, andα0 = 0.17.
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Figure 7.4: Typical time series forND < 0 in the flux transport dominated regime for (top) the poloidal
field, (middle) the toroidal field, and (bottom) the magnetic activity. Here the parametersω

L = −1.5, α0 =
0.75, Bmin = 1, Bmax = 7, τφ = 15, τp = 15, T0 = 2, andT1 = 1/2 have been used.
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Figure 7.5: Change of cycle period (solid line) and amplitude (dashed line) with the magnitude of the
dynamo number,|ND|, in the flux transport dominated regime forND < 0 . The parameters areτφ =
15, τp = 15, Bmin = 1, Bmax = 7, T0 = 2, T1 = 0.5 andω/L+ 2α0 = 0.
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Figure 7.6: Change of cycle period (solid line) and amplitudes (dashed line) with time delayT0 +T1, in the
flux transport dominated regime forND < 0 . The parameters areτφ = 15, τp = 15, Bmin = 1, Bmax =
7, ω/L = −1, α0 = 0.5 andT0 = 4T1.
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Figure 7.7: Typical time series for the toroidal field forND > 0 in the flux transport dominated regime. The
parametersωL = −0.5, α0 = −0.2, Bmin = 1, Bmax = 7, τφ = 15, τp = 15, T0 = 2, andT1 = 1/2
have been used, and the initial solutionBφ(t) = −5,A(t) = −5 over the ranget ∈ [−2.5, 0] taken.



7.3 Results 111

these properties. Recall that a driven oscillator with periodic driving force can be described by the equation

d2x

dt2
+

b

m

dx

dt
+
k

m
x = −β cos (Ωt) ,

(whereβ > 0), which has the steady state solution

x(t) =
β

√

b2Ω2

m2 +
(

k
m − Ω2

)2
cos (Ωt+ Φ) ,

whereΦ represents the phase shift and is given by

Φ = arccot

(
Ω2m− k

Ωb

)

. (7.5)

The non-zero time lags mean that the right-hand side of equation (7.4) is out of phase with the solution.

Thus, this term acts as a driver to the system whileBφ(t − T0 − T1) is within the range[−Bmax, Bmax],

which we call theforcing region.

For negative dynamo number, along the sequence of increasing |ND|, the first bifurcation results in

a periodic solution contained entirely within the range[−Bmax, Bmax]. Thus for this solutionf ∼ 1

andBφ(t) = B0 cos(Ωt). If f = 1 in (7.4), takingτp = τφ = τ and assuming the driver acts purely

sinusoidally asB0 cos(Ω(t− Td)) whereTd = T0 + T1, we have

Bφ(t) =
−NDB0

1 + Ω2τ2
cos

(

Ω (t− Td) + arcot

(
Ω2τ − 1

τ

2Ω

))

.

This expression must be equivalent to our assumption,Bφ(t) = B0 cos(Ωt), and so equating the two

expressions gives

ΩTd = arccot

(
Ω2τ − 1

τ

2Ω

)

, (7.6)

−ND

(1 + Ω2τ2)
= 1, (7.7)

We may use this equivalence to explain the value at which the periodic orbit bifurcates from the fixed

point and also the frequency of the resultant oscillation. For the parameter values used above,Td = 2.5,

τ = 15, equation (7.6) impliesΩ = 0.228, for which the corresponding oscillation period isP = 27.58.

Given this value forΩ,ND can be deduced from equation (7.7) asND = −12.67. These values correspond

closely to the bifurcation value found in the simulations ofND = −12.696, for which the simulated period

wasP = 27.54. Sincecos (Ωt+ Φ) = − cos (Ωt+ Φ + π/2) we might also expect to obtain periodic

solutions forND > 1. Instead, growing solutions are found and indeed, forf = 1, there exist solutions to

equation (7.4) of the formBφ(t) ∼ exp(λt) with realλ > 0 precisely whenND > 1.

When the dynamo number is sufficiently high that solutions are no longer contained within the range

[−Bmax, Bmax], the analogy with the driven oscillator may still be used, now with the driver acting only

intermittently on the solution. Qualitatively, the cycle may be described as follows. The driver starts acting

on the system at a timeT0 +T1 after the solutionBφ(t) enters the forcing region, and continues to act until
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a timeT0 + T1 after the solutionBφ(t) has left the forcing region. This corresponds to the steep rising

phase of the cycle. After this time the term on the right-handside of equation (7.4) is zero and it becomes

that of a damped oscillator. After reaching a maximum in its absolute value the solution then decays, until

Bφ(t−T0 − T1) again enters the forcing region, where a sudden change in thegradient ofBφ(t) occurs as

the driver again starts to act on the system.

The sign of the term on the right-hand side of equation (7.4) determines the nature of the driving. If

this term has negative sign when it acts on the system then thesolution will be driven in the−Bφ direction,

whereas if the term has positive sign then the solution will be driven in the+Bφ direction. The lengthly

diffusive time-scales when compared to the time-delays ensureBφ(t−T0−T1) is of the same sign asBφ(t)

whenBφ(t) decays to±Bmax. Thus, ifND < 0 the solution is forced in the same direction as the decay,

and a change in the sign of solution occurs. IfND > 0 then the solution is forced against the direction of

decay, and the resulting solutions are of single sign only.

This mechanism predicts an increase in the amplitude of the cycle if, for example, the strength of the

driving is increased, or if the driving term acts on the system for a greater length of time. An increase in

dynamo number|ND| by keepingτp,φ fixed and increasing bothα0 andω/L has the effect of increasing the

amplitude of the forcing, since the term on the right-hand side of (7.4) depends upon the productα0ω/L.

Over several orders of magnitude, as shown in Figure 7.5, there is a linear relationship between the cycle

amplitude and the productα0ω/L. Lettingτp = τφ = τ say, using (7.4) we expect the decay to be governed

by exp (−t/τ). Thus, with greater amplitude it will take a longer time for the system to decay and re-enter

the forcing region. This timescale agrees closely with values found in the simulations, and predicts a period

increasing logarithmically with amplitude, as is seen in Figure 7.5. The length of time the driving term acts

on the system will depend on the sum of the time delays, since the driving term acts on the system until a

timeT0 + T1 after the solutionBφ(t) has left the forcing region. Thus an increase in the sum of thetime

delays also increases the amplitude of oscillation, as shown in Figure 7.6, and accordingly the period of

oscillation.

It is worthwhile here to compare the behaviour of this time-delayed system with numerical simula-

tions of spatially extended solar dynamo models with realistic internal rotation profiles; specifically, those

Babcock-Leighton models in which meridional circulation acts as a transporter of flux between the two

source regions. If the circulation is fast (and so the time delay small) the dynamo is more efficient and its

period is smaller. Conversely, if the circulation is slow (and time delay large), the period is higher (see

Hathaway et al. (2003) for solar observations which supportthis argument, and Nandy (2004) for a review

on the role of meridional circulation in determining the period and amplitude of such dynamo models).

Also, for slow circulation speeds (corresponding to large time delays in our model), although subject to the

condition that the circulation timescale is still shorter than the diffusion timescale, since magnetic fields

stay in the source regions for a longer time, the inductive effect results in higher amplitudes, in agreement

with the results of our time-delayed system.
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Figure 7.8: Diffusion dominated regime time-series withND < 0 for (top) the poloidal field, (middle) the
toroidal field, and (bottom) the magnetic activity, and the parametersω

L = −2, α0 = 1 andτp = τφ =
1, T0 = 10, T1 = 4.

7.3.2 Diffusion Dominated Regime

Solutions for which the diffusion timescales are smaller than time delays (τp, τφ ≪ T0 + T1) are discussed

in this section. Physically, this corresponds to a scenarioin which significant (ohmic) dissipation alters the

magnitude of the fields on a timescale comparable to the flux transport between the source regions.

A wide variety of dynamics occur in this case. Again we begin by examining solutions for which

ND < 0. To illustrate some of these we fix the parametersτp = τφ = 1, T0 = 10, T1 = 4 and examine a

sequence of increasing absolute value of dynamo number,ND (with values ofBmin andBmax unchanged).

Again the cut through parameter space given byω/L+2α0 = 0 is taken, so that the relative strength of the

source terms for poloidal and toroidal field production remain the same. The initial solution is taken as the

constant(Bmin +Bmax)/2 for bothA andBφ.

For all initial conditions with−1 < ND < 0, solutions are attracted to the fixed point at the origin,
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Figure 7.9: Time series for the magnetic activity withND < 0 and the parametersωL = −10, α0 = 5,
τp = τφ = 1, T0 = 10, T1 = 4.
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Figure 7.10: Time series for the magnetic activity withND < 0 and the parametersωL = −16, α0 = 8,
τp = τφ = 1, T0 = 10, T1 = 4.
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Figure 7.11: Time series for the toroidal field withND > 0 and initial solutionA(t) = Bφ(t) = cos(t).
The parametersωL = −3, α0 = −1, τp = τφ = 1, T0 = 10, T1 = 4 have been taken.

A,Bφ → 0. WhenND < −1 oscillatory solutions which are characteristically irregular are obtained. A

typical example of solutions obtained at low dynamo number is illustrated in Figure 7.8, where the time

series for the poloidal field,A, toroidal field,Bφ, and magnetic activity,B2
φ, are shown. Note thatBφ does

not always lie within the range[−Bmax, Bmax]. BothA andBφ show a long-term cycle (approximately8.5

of which are illustrated here), where the fields oscillate between positive and negative signs, and is regular

in its length,P say. The parameters taken in Figure 7.8 result in an average periodP = 31.6 time-units.

Within each half-cycle the field also oscillates, leading toa time series for the magnetic activity which does

not have an underlying magnetic sequence oscillating between positive and negative signs. Both the period

and amplitude of the activity cycle are irregular.

As the dynamo number is increased, amplitude modulation leads to time-spans where magnetic activity

is considerably reduced, as apparent in Figures 7.9 and 7.10. Although the basic cycle persists throughout

these episodes, the field strengths are significantly below the average values. The episodes become more

regular with increasing dynamo number; a pattern to the events is clear in Figure 7.10 for example. Just

as in the flux transport dominated case the amplitude of oscillation increases with dynamo number, as

illustrated in Figures 7.8-7.10. However, the maximum amplitude is now not constant from cycle to cycle.

For a given set of parametersτp, τφ, T0 andT1, there exist certain parameter valuesω/L andα0 such that

the amplitude of solution is relatively regular, with Figure 7.10 providing an example of this. Fixingω/L,

α0, τp andτφ in such a case and increasing the total time delayT0 +T1 no longer gives rise to a predictable

trend in behaviour as found in the flux transport dominated case and illustrated in Figure 7.6. In this regime,

the mean amplitude of solution remains constant with increasingT0 +T1, butxs the duration of minima and

number of cycles between each minima varies irregularly with increasingT0 + T1.

Next, looking at solutions for positive dynamo number,ND > 0, we find that the form of initial solution

specified becomes important in determining the nature of thesolution obtained. For initial solutions whose

sign varies on a time-scale comparable or less than the diffusive time-scale, it is possible to obtain solutions

which are qualitatively similar to those for whichND < 0. An example is shown in Figure 7.11 where the

initial solutionA(t) = Bφ(t) = cos(t) for t ∈ [−T0 − T1, 0] has been specified. This may be compared to

Figure 7.8, whereND < 0. On increasingND the maximum field strength is again seen to increase, with

periods of reduced activity occuring at higher dynamo numbers.

A second type of solution occurs forND > 0, in which single signed oscillations of irregular amplitude
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Figure 7.12: Time series for the toroidal field withND > 0 and constant initial solution. The parameters
ω
L = −3, α0 = −1, τp = τφ = 1, T0 = 10, T1 = 4 have been taken.

and period are present. These solutions arise when the initial solutions vary only slowly when compared

to the diffusive time-scales. An example is shown in Figure 7.12, where the constant initial solutions

A(t) = Bφ(t) = 5 for t ∈ [−T0 − T1, 0] have been taken but the same parameters for Figure 7.11 used.

In these low dynamo number solutions the minimum in magneticenergy is non-zero for sustained periods

of time. On increasing the dynamo number periods of reduced activity in these single signed oscillations

become apparent, in which between bursts of activity the field strength is near zero.

The analogy with a damped driven oscillator given by equation (7.4) can help explain some of these

features. In the caseND < 0, equations (7.7) and (7.6) may again be used to explain the point of bifurcation

from a steady state to cyclic behaviour. Substitutingτ = 1, Td = 14 into (7.7) impliesΩ = 0.196 at this

bifurcation, corresponding to a periodP = 31.95. Substituting this value forΩ into (7.6) to gives the

dynamo number at the point of bifurcation asND = −1.039, corresponding closely to that found in the

simulations.

For sufficiently low dynamo number the amplitude of the solution is small, and soBφ is, for most of the

time, within the range[−Bmax, Bmax] over which the driving term on the right hand side of equation(7.4)

operates. When the solution is outside of this range the highdiffusivity ensures the field decays to within

this range once again on a timescale shorter than the sum of the time delays. This rapidity when compared

to the time delays distinguishes the solution from the flux transport dominated case since each time the

delayed solutionBφ(t−T0 −T1) decays to±Bmax, the solutionBφ(t) will have different magnitude, and

may be of different sign, so changing the nature of the driving force. In this manner the short diffusive time-

scales ensure it is possible to obtain double-signed oscillations whenND > 0 (which cannot be achieved

in the flux transport dominated regime). Such a solution relies on the sign ofBφ(t) being different to

Bφ(t− T0 − T1) whenBφ(t− T0 − T1) decays to lie within the range[−Bmax, Bmax]. This will ensure

that the term on the right-hand side of (7.4),NBφ(t−T0−T1), acts to drive the solution toward a different

sign. At somet > 0 the solutionBφ(t) will leave the range[−Bmax, Bmax], but now the rapid decay of

the solution has the result thatBφ(t − T0 − T1) may be of different sign toBφ(t), given suitable initial

conditions. Such conditions were specified in Figure 7.11, where double-signed oscillations occur.
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7.4 Discussion

A number of generalisations can be made to the above analysis. In particular it has been assumed throughout

thatτp = τφ. In the more generic case, whereτp 6= τφ, the qualitative nature of the results described above

remains. The same behaviour is to be expected from equation (7.4) since, when the solutionBφ(t) lies

outside of the range[−Bmax, Bmax] and the driving term is zero, a change fromτp = τφ to τp 6= τφ

has the effect of converting the system from a damped oscillator to an overdamped oscillator, for which

solutions are qualitatively similar.

It has been assumed that during the flux transport no dissipative effects act on the fields – the source

terms in equations (7.2) and (7.3) are proportional toω/L andα0 respectively. In the most general case

the fields may be subject to dissipative losses during their transportation from one source region to another.

Accordingly, extra loss factors can be introduced to the equations to take dissipation into account, which

we would expect to become important only when flux transport is by spatial diffusion, specifically in the

diffusion dominated regime. In this case the general form ofthe equations should be

dBφ (t)

dt
=
ω

L
e−T0/τpA (t− T0) −

Bφ (t)

τφ
, (7.8)

dA (t)

dt
= α0f

(

Bφ (t− T1) e
−T1/τφ

)

e−T1/τφBφ (t− T1) −
A (t)

τp
. (7.9)

The additional multiplicative exponential factors are close to unity (and hence unimportant) in the flux

transport dominated case, but small (and hence important) in the diffusion dominated case. However, in

both situations qualitatively similar behaviour to that described in Section 7.3 may be obtained given a

suitable re-scaling of the parametersω/L andα0 (corresponding to an increase in dynamo number). The

resultant solutions are then of greater amplitude comparedwith the system (7.2), (7.3), since it can be seen

from equation (7.4) that an exponential term within the quenching factorf will have the effect of increasing

the range ofBφ over which forcing operates.

We considered a particular choice of algebraicα-effect that gives rise to the possibility of having both a

lower and an upper cut-off in the range over which theα-effect operates. In the examples illustrated above,

the value ofBmin is such that theα-effect is non-zero throughout the range[−Bmax, Bmax], although its

value decreases rapidly outside the range[|Bmin|,|Bmax|]. With an increase ofBmin such that there is

some finite range between[−Bmax, Bmax], centred atBφ = 0, where theα-effect is zero, the majority

of the solution types described above can be recovered. The exceptions are the behaviour at low dynamo

numbers, both in the diffusion dominated case shown in Figure 7.8, and in the flux transport dominated case

shown in Figure 7.3. These solutions rely on the quenching factorf being non-zero within[−Bmax, Bmax]

andBφ(t) being contained within that range. This is no longer the casewith a higher valueBmin.

If an explanation of both the flux transport dominated and diffusion dominated regimes in terms of an

analogy with a damped driven oscillator can be invoked, thenthe nature of the driving term (given by the

right-hand side of equation (7.4)) is important. In the firstcase since the diffusive timescales are long when

compared to the time delays, and once the solutionBφ(t) is not within the range[−Bmax, Bmax] for all

time, the sign combinationBφ(t)Bφ(t − T0 − T1) will always be positive when the driving term begins
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Figure 7.13: Time series for the toroidal field in the diffusion dominated case withND < 0 and using the
parametersωL = −6, α0 = 3, τp = τφ = 0.5, T0 = 10, T1 = 4. The dashed lines indicate the boundaries
of the forcing region and the thick solid lines are of lengthT0 + T1 = 14 corresponding to the total time
delay. The first two bars have been placed to illustrate a negative sign combination ofBφ(t)Bφ(t−T0−T1)
which leads to further oscillation within a half cycle, and the final two bars to illustrate the positive sign
combination ofBφ(t)Bφ(t− T0 − T1) present at the end of each half-cycle.

to act during the declining phase of each cycle. This predictability leads to the regularity in the system, to

the single-signed oscillations forND > 0 and to the double-signed oscillations forND < 0. In the second

case, since the rapid diffusivities ensure the solution returns to the forcing region in a timescale shorter than

the time delays, the sign combinationBφ(t)Bφ(t−T0−T1) will not be fixed as in the diffusive case. Thus,

the sign of the driving term will vary between cycles and within each half-cycle, leading to irregularity

in the system. Figures 7.13 and 7.14 illustrate these effects. They show typical solutions in each of the

regimes, with bars corresponding to the length of the time delays superimposed on the solution to illustrate

the sign combinations ofBφ(t)Bφ(t − T0 − T1) and, in the flux transport dominated case, the change in

gradient of the solution as it enters the forcing region.

7.5 Summary

To summarise, we have constructed a physically motivated reduced stellar dynamo model, which includes

time delays (in the flux transport), to study the effects of spatial segregation of the dynamo source-regions

in stellar convection zones. The model can be generalized tostudy a diverse set ofα-effect mechanisms

located at different layers in stellar convection zones, such as the tachocline, or the base of the convection

zone, or near the surface. This can be achieved by varying thetime delays to appropriately account for

the dominant flux transport mechanisms that are unique to a specific dynamo model based on a particular

α-effect mechanism. This can be, for example, the meridionalcirculation timescale in Babcock-Leighton
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Figure 7.14: Time series for the toroidal field in the flux transport dominated case withND < 0 and using
the parametersωL = −0.008, α0 = 0.008, τp = τφ = 100, T0 = 40, T1 = 10. The dashed lines indicate
the boundaries of the forcing region and the thick solid lines are of lengthT0 + T1 = 50 corresponding
to the total time delay. The bars have been placed to illustrate firstly the change in gradient of solution as
Bφ(t− T0 − T1) enters the forcing region (before which the solution is purely diffusive) and secondly the
switch in the solution from being driven to being purely diffusive as the solutionBφ(t − T0 − T1) leaves
the forcing region.

dynamo models, or the turbulent pumping timescale in interface (or other) dynamo models that do not rely

on meridional circulation. Motivated by stellar activity observations and the wide parameter space it offers,

we have explored the dynamics of our model by increasing the dynamo numberNd (consequently reducing

the Rossby numberRo), specifically for two extreme regimes.

In the flux transport dominated regime some similarity to thesolar cycle is seen. On increasing the

dynamo number a transition from no magnetic activity to oscillatory behaviour occurs. The solutions show

polarity reversal however only in the case of negative dynamo number, which, when the differential rotation

ω/L is assumed to be negative (as is observed in the high latitudepart of the solar tachocline), corresponds

to a positive alpha effect (as is the case in the Babcock-Leighton mechanism). The steep rising phase and

longer declining phase resembles that of the sunspot cycle;the similarity of the solar cycle to a non-linear

relaxation oscillator was noted in Mininni et al. (2001). Asexpected, upon increasing the dynamo number,

the level of magnetic activity increases. Although the period of the magnetic cycle is significantly longer

than both the length of the time delays and the diffusive timescales, the expected qualitative behaviour of

the dynamo (i.e., increasing period of oscillation and amplitude with increasing time delays) is recovered.

However, events such as grand-minima would be hard to explain in this model-regime without invoking

some form of stochasticity in the poloidal source term or including some other physics. Nevertheless, given

the similarity of the solutions in this case with other aspects of the solar cycle, we conclude that the solar

dynamo is possibly (in its present state of activity) in the flux transport dominated regime.

The model is capable of irregular behaviour, including significant amplitude modulation, in the diffusion
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dominated regime. In this case the magnetic cycle shows polarity reversal for both positive and negative

dynamo numbers, and has an average length, about which it shows small variations. The average length

of each magnetic cycle is of the same order as the sum of the twotime delays. Amplitude modulation

is seen for solutions along a cut through parameter space corresponding to increasing dynamo numbers,

although the character of the modulation varies considerably. For small dynamo numbers episodes of

minimal activity are present which are short compared to thecycle period, and that are spaced irregularly

in time. On increasing the dynamo number, the duration of events becomes longer, and is regular in both

length and spacing for larger dynamo numbers. These phases of reduced activity are reminiscent of the

solar Maunder minima; however, the overall nature of the magnetic activity is qualitatively similar to many

stars in the Mt. Wilson project which show highly irregular behavior. This may imply that these latter

stars, which exhibit irregular magnetic activity, supportdynamos whose underlying physics is similar to the

diffusion dominated regime of our model.

It would be possible to take a cut through parameter space, corresponding to increasing dynamo number,

that links both of these regimes. Taking an increase in|α0ω/L| but a decrease inτpτφ in such a way as to

increase|ND|, moves solutions from the regular oscillations present in the flux transport dominated regime,

to the irregular nature of the diffusion dominated regime, and increases the level of magnetic activity. This

is exactly the behaviour observed in solar-like stars, whose magnetic activity is distinguished by rotation

rate (recall that low Rossby numberRo corresponds to high dynamo numberNd). While this particular

cut through parameter space may be artificial because it is not clear how field diffusivities are affected by

rotation rate, the principle of increasing a system parameter and observing a qualitative change in solutions

provides an useful analogy to stellar activity observations.



Chapter 8

Summary and Future Work

8.1 Summary

In Chapter 3 we used an expansion technique to address one of the questions raised by the work of Hornig

and Priest (2003): does the freedom to impose an ideal flow on the particular reconnective solution arise

from the neglect of the momentum equation or is it inherent tothe 3D process? The investigations presented

suggest the latter, with several examples found in which ideal and non-ideal solutions are decoupled. In

these solutions the inclusion of an ideal flow does not changethe reconnection rate itself, but does have

a significant effect on the evolution of magnetic flux and hence changes the interpretation of the recon-

nection rate. The fundamental counter-rotational reconnective plasma flows previously found to arise as a

consequence of the 3D localisation of the non-ideal region were confirmed.

In the analysis of Chapter 3, as well as in previous models of 3D reconnection processes (Hornig and

Priest, 2003, Pontin et al., 2004, 2005b), the localisationof the non-ideal region is imposed via a localisation

of the plasma resistivity,η. In Chapter 4 we presented an example of a 3D reconnection process in which

the current term itself is localised in all three-dimensions. The field geometry considered is elliptic –

reconnection in such a geometry can only occur in 3D. We developed qualitative and quantitative models

for the process, termedflux-tube disconnection, and determined how the reconnection rate and size of the

non-ideal region scale with the imposed plasma velocities.

In Chapter 5, a numerical experiment modelling an elementary heating event was described. In the ex-

periment two intertwined magnetic flux tubes were taken withspinning driving velocities imposed on their

magnetic footpoints. The distribution of magnetic flux was followed in time and magnetic reconnection,

which exhibited flux pile-up characteristics, was found to occur continuously across a central separator

current sheet. Several comparisons were made with a similarexperiment, described by De Moortel and

Galsgaard (2006b), in which the same boundary driving velocities were imposed in initially separate mag-

netic flux tubes, and the two situations were shown to have many common characteristics.

In the remaining two chapters of the thesis we explored the slightly different question of how the large-

121
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scale solar magnetic field is continually regenerated via dynamo action. Chapter 6 presented a third-order

ODE model of a dynamo, derived via bifurcation theory, that displays the underlying mathematical structure

expected to be present in spatially extended models. This allowed for an in-depth investigation of the nature

of solutions present in various regions of parameter space.The model is able to reproduce many of the basic

types of behaviour found in observations of solar-type stars. In the appropriate parameter regime, a chaotic

modulation of the basic cycle is present, together with varying periods of low activity such as that observed

during the Maunder minimum.

The simple model for the dynamo process presented in Chapter7 was derived from physical motivations

and consists of two coupled delay (or functional) differential equations. Through the use of time delays the

generation of field components in spatially segregated layers and the communication between them was

modelled. A variety of dynamic behaviours were found to arise in the model, with different parameter

regimes giving rise to periodic and aperiodic oscillations. Two characteristic regimes were found, the flux-

transport dominated regime (in which the time delays are smaller than the dissipative timescale) and the

diffusion dominated regime (where the opposite situation is found). The Sun itself is expected to be in the

flux-transport dominated regime, whose solutions were found to be regular.

8.2 Questions outstanding

There are several questions arising from the work presentedin this thesis. We briefly detail some of these

questions here.

Chapter 3: Dynamic Non-Null Reconnection

• We detailed some examples in which the scheme is solved explicitly up to third order. In principle

the remaining orders can be solved numerically. To do so involves solving all quantities on a grid on

the hyperbolic-flux tube. What is the best way to do this? If such a scheme is set up then we can

examine a number of factors, the most obvious and important being the nature of the higher-order

terms.

• How is the rate of reconnection determined in the model?

• Is it possible to include additional physical effects (suchas the Hall term) in the expansion and still

obtain a similar scheme? If so, what are the consequences of including these terms?

• Can we make a sufficiently good choice of the free functions and variables in the first few orders of

the scheme to allow a closed solution to be obtained (this seems somewhat unlikely).

Chapter 4: Flux-Tube Disconnection

• One drawback to the analysis presented is in the neglect of the momentum equation (i.e. the kinematic

nature of the analysis). Is a straight flux-tube physically realistic? The momentum equation should
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determine whether the tube expands or contracts (or both) asit is spun (for a similar investigation see

Browning and Hood (1989)).

• It will probably not be very easy to include the momentum equation in the analytical work (although

approaching the problem via the expansion scheme of Chapter3 may give some insight). Instead,

or in addition, a 3D MHD numerical investigation of the problem would be interesting. In such

an experiment it would be possible to take a flux-tube and gradually ramp-up a spinning footpoint

velocity on the ends of the tube. Accordingly, such an experiment would be useful in addressing

questions relating to the stability and dynamic accessibility of the solution.

• On a slightly different note, is it possible to find field line mappings (and therefore carry out an

analysis similar to the quantitive one presented here) for ahyperbolic magnetic field with a localised

current?

Chapter 5: An MHD experiment into the effect of spinning boundary motions on misaligned flux-

tubes

The material presented in this chapter corresponds only to apreliminary investigation of the numerical

experiment. A significant number of questions have not been addressed and will need to be in future. For

example:

• What is the nature of the magnetic flux connectivity in the experiment and how does the connectivity

evolve in time? Having gained such a knowledge, what do we learn about the reconnection process?

• Is it possible to track magnetic field lines attached to fluid elements in time? To do so would enable

a better understanding of where the reconnection is taking place and the nature of the reconnection.

• A flux pile-up regime is often associated with a high-β environment. The values ofβ used in the

experiment are unrealistically high if the situation is to represent a coronal environment. It would be

interesting to redesign the experiment with a lowβ and see whether the same behaviour persists.

Chapter 7: A Time-Delay Model for Solar and Stellar Dynamos

The solar dynamo is in the flux-transport dominated regime. Although solutions in this category show

several similarities to the solar dynamo, modulation of cycle amplitude and variable cycle lengths are not

observed. However the amplitude of the solar meridional circulation is known to vary significantly with

Snodgrass and Dailey (1996) finding that

The activity-cycle-related time variations of the meridional motion are as large as the motion

itself . . . there are no latitudes at which the motion is steady during the course of the cycle.

Is it possible that, with the inclusion of a variable meridional circulation in the model (corresponding to a

variable time-delayT0), amplitude and period modulation and even intermittency could arise in the flux-

transport dominated regime? Preliminary investigations suggest so. Figure 8.1 shows the time series for

B2
φ andA2 for a solution in the flux-transport dominated regime whereT0 is varied in time stochastically

by 80% of its mean value. A full investigation into this phenonomen is currently underway, attempting to

answer questions such as:
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Figure 8.1: Time-seriesB2
φ andA2 with a stochastically varying time-delayT0. The solutions show signif-

icant amplitude and period modulation.

• How do long-term fluctuations in the time-delayT0 affect the cycle?

• What is the nature of solutions when stochastic fluctuationsin the time-delayT0 are taken? How do

they differ for various coherence times and amplitude of fluctuations?

• What is the effect of including time variation in the amplitude of the alpha effect (i.e. inα0)?
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