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ABSTRACT

The potential of Arctica islandica, a long lived marine bivalve with a lifespan of over

300 years, to reconstruct a high resolution (sub-annual) climate record is explored in

this thesis. Fluctuations in trace element and isotopic data from live-collected

specimens from Irvine Bay, NW Scotland are compared to instrumental (particularly

temperature) data.

X-ray absorption spectroscopy data demonstrate the coordination state of Sr

and Mg within the shell. These are consistent with models in which Sr substitutes

ideally for Ca in aragonite, and Mg is bound predominantly to organic molecules.

Sr/Ca incorporation may be influenced by changes in the crystal nucleation,

propagation and growth rate as well as vital effects. However any effect of seawater

temperature on Sr/Ca incorporation was obscured by these other factors. Mg

concentration is not a linear function of a single environmental variable or organic

content within the shell, indicating that Mg uptake is biologically mediated.

Ba variation shows sporadic increases (of >500% above baseline) in both

shells, the timing of which is similar between the prismatic layer and umbo region.

The maxima are, however, not synchronous between the two shells analysed. The

controls on Ba uptake require further research, but low Ba/Ca may reflect Ba/Ca

concentrations within the seawater.

Aliquots taken from cod otoliths show that micromilling has negligible effect

on 18O. The range of reconstructed temperature from 18O profiles Arctica islandica

shows good agreement with the sea surface temperature data from the nearby Millport

marine station to within 2.1 °C. However, both the interannual and intra-annual

variation appears to be sensitive to changes in temporal resolution resulting from
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changes in growth rates. Modelling of 18O highlights dependence on changes in

temporal resolution of the sampling, in addition to temperature and salinity. Results

from the radiocarbon pilot study show that Arctica islandica is a suitable archive for

changes in radiocarbon associated with anthropogenic 14C fluxes.
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Abstract

Arctica islandica is a long lived marine bivalve, which has the potential to provide an

archive of palaeoenvironmental conditions. The organism produces aragonite with

annual growth bands, which can be used to construct high-resolution multi-shell

chronologies using sclerochronology (a method akin to dendrochronology). This

chapter outlines key questions that this thesis will address and introduces the key

concepts used in the thesis, including the biology of the organism as well as a

description of the main sampling site, Irvine Bay, UK.
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1.1 Introduction

Reconstructing past environmental conditions is crucial for understanding variations

within the environmental system and for modelling changes. Instrumental

measurements are limited to approximately the last 50 years (particularly within the

marine system), but the use of archives such as marine sediments, ice cores and tree

rings can provide reconstructions at much longer time scales. The use of such archives

however hinges on whether proxies (such as stable isotopes and trace elements) are

used appropriately, and whether their incorporation into such archives is fully

understood. Projects such as MARGO (Multiproxy Approach for the Reconstruction

of the Glacial Ocean surface) that used different proxies from foraminifera e.g. 18O,

alkenones and Mg/Ca to reconstruct sea surface temperature (SST), highlighted how

different proxies can differ when used to reconstruct a single environment factor. The

exploration of different proxies for SST, has however, allowed the application of such

proxies to become better understood (Kucera et al., 2005).

High resolution, long-term palaeoclimate archives are particularly important to

resolve intra-annual and multi-annual variation, which can then provide information

on the timing of events, and therefore improve understanding of systems e.g. lead-lag,

feedback mechanisms and teleconnections within the climate system. Low-resolution

sampling can however result in the loss of such detail and thus, there is a need for

high-resolution climate reconstruction to test climate models, and understand

variability in past systems. High resolution sampling (compared to lower resolution

“bulk” sampling) has also highlighted that many systems, e.g. corals and speleothems,

are far more complex on micron scales and hence the extension of macroscopic

sampling to meaningful high-resolution reconstruction is not trivial (e.g. Finch et al.,

2001; Allison et al., 2005). However, high resolution palaeoenvironmental



Chapter 1: Introduction

4

reconstruction is crucial to understanding past environmental fluctuations and thus

understanding the behaviour of proxies is important if they are to be used to obtain

estimates of seasonal and multi-annual climate variations and ultimately to refine our

understanding of the climate system.

The deposition of calcium carbonate (particularly aragonite and calcite) by

corals (e.g. Lea et al., 1989; Gischler et al., 2005), sclerosponges (e.g. Fallon et al.,

2005; Rosenheim et al., 2005) speleothems (e.g. Finch et al., 2003b; Fairchild et al.,

2006), otoliths (e.g. Kalish, 1989; Surge and Walker, 2005) and molluscs (e.g. Dodd

and Crisp, 1982; Stecher et al., 1996; Takesue and van Geen, 2004) have been studied

as potential high-resolution palaeoarchives. These materials provide a chronology

through the deposition of growth increments, which can be used to provide an

estimate of age with respect to time of death. The composition of these materials is

dominated by calcium, oxygen and carbon but many other elements are present at

minor (>100 ppm) or trace (<100 ppm) levels.

Bivalves have been used for palaeoenvironmental reconstruction, particularly

at higher latitudes where few high resolution marine records are available. Thus, they

represent a valuable archive, providing in situ records of environmental conditions.

Stable isotopes (e.g. oxygen and carbon) and trace element (e.g. Sr, Mg and Ba) have

been frequently used for environmental reconstruction (e.g. Klein et al., 1996b; Hart

and Blusztajn, 1998; Schöne et al., 2004b; Schöne et al., 2005a). However, the

underlying controls, particularly of the trace elements, in such studies are less

established than for other systems.

The present thesis aims to gain a better understanding of the potential of

Arctica islandica, a marine bivalve, to reconstruct palaeoenvironmental conditions. A.

islandica is an excellent species to study since the organism reaches ages >200 years



Chapter 1: Introduction

5

depositing annual growth checks throughout its lifespan (e.g. Schöne et al., 2005a).

Therefore, it is possible to determine accurately when fluctuations of isotopes (both

stable and radiogenic), trace elements and organic compounds occurred. A. islandica

can in principle act as a high resolution (sub-annual) climate archive (e.g. Jones,

1980; Bennett et al., 1982; Murawski et al., 1982; Witbaard, 1997; Schöne et al.,

2005a).

1.1.1 Applications of A. islandica to reconstruct environmental
conditions

The use of oxygen isotopes to reconstruct temperature is perhaps one of the

most widely applied environmental proxies. Seawater temperature can be

reconstructed using the empirically derived equation of 18O incorporation in

aragonite molluscs of Grossman and Ku (1986) providing the initial 18O of the water

is known (or can be estimated). This equation has been applied successfully to

reconstruct temperature from 18O incorporation in A. islandica studies (e.g.

Weidman et al., 1994; Witbaard et al., 1994; Schöne et al., 2004c; Schöne et al.,

2005a; Schöne et al., 2005b). Incorporation of 13C is, however, more complex, and

may be controlled by a combination of dissolved inorganic carbon within the water

and metabolically derived carbon (e.g. Borchardt, 1985; Tanaka et al., 1986;

McConnaughey, 1989; Klein et al., 1996a; McConnaughey et al., 1997; Lorrain et al.,

2005).

An independent assessment of the accuracy of 18O as a palaeoenvironmental

proxy within A. islandica can be made by using a well-characterised site, such as that

at Irvine Bay, SW Scotland. Regular sea surface temperature data, have been

collected at a nearby marine sampling station for >50 years.
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Trace elements incorporated into the shell of A. islandica (Table 1.1) also have

the potential to reconstruct climate by using inorganic precipitation models (such as

the Sr/Ca vs. temperature calibration by Kinsman and Holland, 1969). This model has

been widely applied to sequentially grown aragonites such as speleothems (e.g. Finch

et al., 2003b), corals (e.g. Beck et al., 1992; Mitsuguchi et al., 1996; Beck et al.,

1997) as well as bivalves (e.g. Hart and Blusztajn, 1998) for climate reconstructions.

However, the incorporation of trace elements in bivalves is very poorly understood

and a number of different controls are cited within the literature, including taxon,

ontogeny, concentrations of elements in the ambient water, physiology, shell

mineralogy and architecture (e.g. Carriker et al., 1991; Carriker et al., 1996; Lazareth

et al., 2003; Gillikin et al., 2005a; Gillikin et al., 2006). Note that by calling upon

biological controls for trace element partitioning (such as taxon, physiology etc),

these authors are implying that bivalves (including A. islandica) do not comply with

simple inorganic precipitation models. The different results for trace elements (even

within bivalves) suggest that the trace element uptake into the shell is complex and

there is a need for further research (e.g. Putten et al., 2000; Lazareth et al., 2003;

Takesue and van Geen, 2004; Tripati et al., 2004; Gillikin et al., 2005a).

This present study of A. islandica explores quantitative fluctuations in the

trace elements and couples these data to experiments designed to explore how the two

trace elements, Sr and Mg are hosted within the shell. Understanding how elements

are hosted is crucial for determining whether thermodynamic equations such as those

of Kinsman and Holland (1969) are applicable i.e. the element is ideally hosted and

thus substitutes randomly for Ca; or whether they are hosted in other phases e.g.

discrete phases (e.g. SrCO3) or organics, in which the thermodynamics would differ.
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1.1.2 Key questions to be addressed

A comprehensive overview of the potential of A. islandica is developed

through the thesis, with each chapter tackling a particular question relevant for

understanding the potential of the bivalve as an archive for palaeoenvironmental

conditions (as highlighted in Figure 1.1). This “ground-truthing” of modern A.

islandica is crucial to exploit the potential of ancient A. islandica, such as those from

the nearby Clyde Beds (~11,500-14,000 calendar years BP (Peacock et al., 1977)).

 Chapter 1 will introduce A. islandica including the biology and the use of

sclerochronology. Background details on the main sampling site, Irvine Bay,

UK, will be presented as well as initial characterisation of the samples.

 Chapter 2 uses X-ray absorption spectroscopy (XAS) to analyse how Sr and

Mg are hosted within the shell of A. islandica i.e. whether they are ideally

substituted in aragonite or hosted by e.g. organics. The exchange models

applied to palaeotemperature reconstructions assume that the metal (e.g. Sr)

substitutes ideally (i.e. randomly for Ca in aragonite).

 Chapter 3 presents quantitative analysis of the prismatic layer of the umbo

using Secondary Ion Mass Spectrometry (SIMS). The data show how trace

elements fluctuate over time. Measurement of two shells (228 and 248); live-

collected at the same time allows comparison of timing of fluctuations and

magnitude. This provides an indication of whether changes are dominated by

external factors or by internal mechanisms (e.g. vital effects).
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 Chapter 4 continues with quantitative analysis in the same two shells but

within the prismatic layer of the outer shell using LA-ICPMS (Laser Ablation-

Inductively Coupled Plasma Mass Spectrometry) and solution-ICPMS. LA-

ICPMS like SIMS provides an in situ sampling technique but with larger spot

sizes (40 m vs. 10 m) and deeper sampling pits ~200-250 m (compared to

<20 m with the ion probe). However, LA-ICPMS is more widely available

with the larger spots sizes being more appropriate to the faster growing outer

shell. Solution-ICPMS provided an independent verification of the

concentrations measured by LA-ICPMS. A comparison of the two areas of the

shells provides information on the controls on the uptake of trace elements and

the reproducibility.

 Chapter 5 discusses whether drilling and micromilling (due to the heat and

stress generated) influences 18O composition of aragonite. 18O data are used

as a temperature proxy (see Chapter 6), and therefore, it is important to

demonstrate that the sampling methods do not modify the composition of

aragonite. This is crucial as it underpins whether such samples can potentially

provide accurate temperature reconstructions. A selection of A. islandica

shells was used to measure the percentage conversion of aragonite to calcite.

Aragonite otoliths, from cod grown under stable temperatures in a laboratory

tank, were used to examine if the conversion affects the measured 18O.
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Figure 1.1: Outline of chapters and key questions tackled in each chapter. The arrows

indicate how the different techniques provide a multi-faceted approach. For example,

XAFS data feeds into the interpretation of the analysis of the prismatic layer in umbo

and outer shell layer. Schematic of A. islandica taken from Witbaard (1997).



Chapter 1: Introduction

10

 Chapter 6 examines stable isotope data (18O and 13C) from the same two

shells analysed for trace elements (Chapter 3, 4). 18O is examined to

determine whether it provides an accurate reconstruction of temperature. The

controls on 13C are also explored. A simple model explores the relative

contribution of temperature and salinity on 18O incorporation and investigates

how changes in the temporal resolution of the sampling, influence the 18O

profile. In addition, samples were taken laterally across a single band to

measure changes of 13C, which may be indicative of changes within the

Extrapallial Fluid (EPF) as the shell is deposited.

 Chapter 7 is a preliminary study on the 14C fluctuations in A. islandica from

Irvine Bay, which may be affected by both radiocarbon from nuclear weapons

testing in the 1950s as well as discharge from the Sellafield nuclear plant that

lies ~150 km south of Irvine Bay.

 Chapter 8 collates the findings and compares data from the prismatic layer

measured in both the umbo and outer shell layer of the two shells from Irvine

Bay. Data from the 18O record, trace element analysis (SIMS and ICPMS),

XAS and SEM (Scanning Electron Microscopy) are used to conclude the

potential of A. islandica for environmental reconstruction.
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1.2 Background introduction to A. islandica

A. islandica originates from the Cretaceous period and is the now only living species

of its genus (Lutz et al., 1982). It is known by a number of common names including

‘Icelandic cyprina’, ‘ocean quahog’, ‘mahogany clam’ and ‘black clam’ (Witbaard,

1997). It is found from the shallow sub-tidal zone to water depths of over 400 m

(Nicol, 1951). Its geographical distribution is poorly constrained although it is found

on both sides of the North Atlantic continental shelf at latitudes of 35-70˚N. It is

usually found at the sediment/water interface (Witbaard, 1997) but can bury several

centimetres for periods of up to 24 days (Taylor, 1976) and survive extreme hypoxia

(Theede et al., 1969; Oeschger, 1990). A. islandica survives on a wide range of

substrates, from fine sediments to sand and gravel (Witbaard and Bergman, 2003).

A. islandica generally spawn between June and November, depending on

geographical location, with August-October being the most common (Loosanoff,

1953). The larvae can survive up to 60 days in the water column. The recruitment

however is very sporadic, with the age distribution from a population in Iceland

showing that recruitment increased at approximately 20 year intervals

(Thórarinsdóttir, 1990). Once settled on the seabed, A. islandica is generally

immobile (unless affected by storm surges etc) and hence the environmental data

encoded within the shells of live-collected specimens usually relates to the location in

which they are found.

The width of the growth bands typically shows a sigmoidal growth curve, with

a maximum between 3-7 years with sexual maturity reached around 10-13 years

(Thompson et al., 1980b). After this, growth is considerably reduced although annual

bands are deposited even in old age (Ropes et al., 1984). The animals can reach ages

of >90 years (e.g. Thompson et al., 1980a; Murawski et al., 1982; Kraus et al., 1992)
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with specimens >360 years old being reported (Schöne et al., 2005a). The shell

extension rate is highly dependent on the local conditions, with those from the Fladen

Ground, North Sea showing a slower shell growth rate but greater longevity than

those in Irvine Bay. The disparity in growth rates have been attributed to differences

in water temperature, sex ratios (with the females being larger than the males), grain

size and food supply (Fritz, 1991). Witbaard et al. (2003) demonstrated that during

years of poor growth, the copepod population was high; suggesting the copepods

heavily influences the benthic food supply, and thus growth rate of A. islandica.

1.2.1 Morphological and compositional characteristics

A. islandica grows from the tooth/hinge area with three aragonite layers: the prismatic

layer, the nacre and the thin myostracum that separates the two. In addition, a

periostracum forms on the outside of the shell, which changes from yellowish-brown

in young shells to black in older specimens. The composition of the periostracum and

the bulk shell determined by X-ray Fluorescence (XRF) is given in Table 1.1. This is

discussed in further detail later in the chapter (within section 1.4.1).

The morphology of the shell is shown on Figure 1.2. The line of sectioning

(the line of maximum growth) used for shell preparation during this thesis together

with maximum growth axis is shown. Deposition of aragonite at the outer margin of

the prismatic layer produces a concentric growth pattern (the growth bands), with a

gradual thickening of the nacre. The growth lines in nacre do not correspond to those

in the prismatic layer. However, the bands formed in the prismatic layer can be traced

from the ventral margin to the umbo where they form a condensed record of the

depositional increments (Murawski et al., 1982). The umbo has fewer disturbance
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bands and is less susceptible to short term environmental events (Thompson et al.,

1980a; Richardson, 2001).

The terminology used for the growth bands is confusing, so the nomenclature

used throughout this thesis is as outlined in Figure 1.2, with the growth band

delimited by what is referred to as the annual “termination band” or annual growth

check. The growth edge refers to the most recently deposited material in the prismatic

layer (i.e. material within both the umbo and outer shell layer). Quantitative analyses

were only taken in the prismatic region within both the umbo and the outer shell layer,

i.e. no analyses were carried out in the nacre (or in the myostracum) with the

exception of the XAS analyses.

During the growth of the shell, calcification occurs from the extrapallial fluid

(EPF), an enclosed space between the mantle and inner shell surface (Figure 1.3). The

EPF contains proteins and polysaccharides with its composition different from both

the ambient seawater and the shell aragonite (during both periods of growth and non-

growth) (Wada and Fujinuki, 1976; Hendry et al., 2001).

During periods of slow growth, growth checks form. These include both

annual growth checks and daily growth bands (Schöne et al., 2004). Lutz and Rhoads

(1977) hypothesised that daily growth checks originate from increased concentration

of the organic matrix, caused by anaerobic-related dissolution of previously deposited

calcium carbonate. During anaerobic periods, calcium carbonate may in fact act as a

buffer (Crenshaw and Neff, 1969; Taylor and Brand, 1975; Gordon and Carriker,

1978), resulting in periodic shell dissolution (e.g. Dugal, 1939; Wada and Fujinuki,

1976; Richardson, 2001). In other words, the lack of oxygen causes the production of

acid (H+), which is then buffered by the dissolution of the CaCO3 shell. However,

increases in the secreted organic matrix or cessation of the calcium carbonate
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Figure 1.2: Schematic of the morphology of A. islandica, together with sampling

regime using shell peels, secondary electron images and reflected light micrograph

(from different shells). A. islandica sketch (not to scale) adapted from Witbaard

(1997).
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Table 1.1: Composition of A. islandica determined by X-ray fluorescence (XRF) for

periostracum (live collected specimen from Irvine Bay) and prismatic layer (shell 389

used in present study). LOI= Loss on Ignition. Limits of detection (LoD) are typically

2-3 ppm. V, Cr, Cu, Rb, Y, Zr, Ce, Pr, Nd, Hf, Pb, Th, U all below LoD. Further

details on the instrument and technique are available at http://www.st-

andrews.ac.uk/~acc/MAS.htm

http://www.st-andrews.ac.uk/~acc/MAS.htm
http://www.st-andrews.ac.uk/~acc/MAS.htm
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deposition would also increase the organic content, without requiring dissolution

(Lutz and Rhoads, 1980).

The presence of an annual growth check in A. islandica has been shown by a

number of researchers, using a number of methods including mark and recapture

(Bennett et al., 1982; Murawski et al., 1982; Jones, 1980; Weidman and Jones, 1994)

and isotope measurements δ18O, δ13C and Δ14C (Witbaard, 1997).

The annual growth checks in A. islandica result from either a decrease in

temperature (Weidman et al., 1994) or a seasonal minimum in the food supply

(Thompson et al., 1980a; Turekian et al., 1982; Witbaard, 1997). However, laboratory

experiments have shown that shells can grow even at 2˚C given sufficient food supply

(Witbaard, Pers. Comm. 2006) and therefore food supply is likely to be a significant

control.

Figure 1.3: Schematic of bivalve section (from Carré et al., 2006). EPF is the

Extrapallial Fluid. The myostracum between the prismatic and nacreous layer in A.

islandica is not shown.
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The organism also deposits a growth line when stressed e.g. predator attack,

heat shock, abrasion, spawning and storms (Kennish, 1980). However, the discovery

of so-called “doublets” in specimens from the Fladen Ground, North Sea has raised

questions about our understanding of what determines an annual band (Scourse, Pers.

Comm. 2005). “Doublets” refer to where a narrow growth line is deposited before the

main growth annual growth check and can be traced to the shell margins. Disturbance

lines do not however encircle the shell completely (Richardson, 2001). The cause of

these doublets is not known but they are found throughout the shell (including

juvenile stages). They may in fact represent one year of good growth followed by one

year of very poor growth. Schöne et al. (2005b) found that shell growth was

interrupted during spawning between early September and mid-November, after

which growth recommences, with growth until mid-December in shells taken from the

North and Baltic Seas. Such a pattern of growth could therefore give rise to the

doublets every year, as juvenile A. islandica mimic this reproductive cycle

(Thompson et al., 1980b). Hence, juveniles would also have a slower growth period

during “pseudo-spawning” phases. An alternative hypothesis is that the doublets form

after the growth check has started, but the resuspension of food during the autumn

months allows for further growth before the main winter growth check. The

uncertainty in the cause of the doublets, increases the uncertainty in age assignment,

however the use of 18O analysis in Chapter 6 provides further support for the

assignment of the annual bands.

1.2.2 Determining annual bands in A. islandica

In order to estimate the age of an A. islandica shell, the growth bands are counted.

The method first determined by Ropes et al. (1984) has not since been greatly
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modified. Samples are set in epoxy resin and then sectioned from the umbo to the

ventral margin along the line of maximum growth (Figure 1.2) to reveal the growth

bands. The sections are then polished to produce a flat surface that is then etched

using a weak acid. This enhances the relief by dissolving carbonate causing the

organic-rich parts to become relatively prone. In this study 0.1 N HCl was used to

etch for 60 s before being rinsed in distilled water. Acetone is then added to the

surface of the sample and an acetate peel replica is taken (referred to as a polish). This

can then be examined under reflected light, and the annual bands counted. This was

the method used during this thesis.

An alternative method has been published by Schöne et al. (2005c) in which

the section is immersed in a solution of acetic acid, glutardialdehyde and Alcian Blue.

Thus, the sample is simultaneously etched with the organic matrix bonded with

glutardialdehyde and the Alcian Blue staining the mucopolysaccharides and

glucosamides that are enriched near the growth lines (Schöne et al., 2005c). The

bands can thus be counted and analysed directly from the shell. However, this method

cannot be used for preparing samples for subsequent geochemical analysis.

After trace element analyses, SEM (Scanning Electron Microscopy) was used

to determine the position of the growth checks relative to the position of analyses, as

well as allowing the study of any changes in the shell architecture.

All these methods allow the age to be calculated by counting the number of

growth bands present. If the specimen is live-collected (i.e. the year of death is

known), the calendar year of each growth band can be reconstructed. Constructing a

chronology in such a way is known as sclerochronology. Sclerochronology can

produce multiple-shell records by cross-matching growth bands from different shells.
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1.2.3 Sclerochronology

The first step in producing multi-shell records from dead collected samples using

sclerochronology is to radiocarbon date each shell to give an approximate guide to the

age. The peel is photographed to produce a digitised image and the annual bands are

marked with the width of each measured. These measurements are then entered into

computer programs such as PAST (http://www.sciem.com), which was developed for

dendrochronology, to produce cross-dated time series. Once the ontogenetic growth

trend has been removed, the bandwidths can be compared to other shells to see if any

similar patterns are present in shells of similar ages. Populations of A. islandica

respond to environmental stresses in a similar way e.g. during a year of poor food

supply, growth will be limited and shells from the same region will show a narrow

growth band (e.g. Schöne et al., 2003).

Marchitto et al. (2000) used seven A. islandica shells, collected within ~20 km

of each other, from Georges Bank, North Atlantic to produce a 154 year chronology.

In the North Sea, Schöne et al. (2005c) produced a 121 year chronology for the North

Sea with Scourse et al. (2006) publishing a 267 year floating chronology from ca.

1000-1400 AD. Sclerochronology can thus potentially provide a long time series.

However, there is a need to understand what additional data can be extracted from the

shell and applied to this chronological framework to reconstruct palaeoenvironment as

a function of time.

1.3 Site of research

Irvine Bay on the North-west coast of Scotland (Figure 1.4) provides an ideal

sampling location for A. islandica. It is close to Millport marine sampling station at

which sea surface temperature (SST) measurements are made. Millport is ~22km

http://www.sciem.com/
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north of Irvine Bay and has a daily SST records 1953-1983 and then for every

working day from 1983 (P. Barnett, Pers. Comm. 2007). In addition, periodic

temperature, salinity, and other environmental data for Irvine Bay itself have been

collected. The shallow water site has fast growing A. islandica, thus enabling a finer

temporal resolution of analysis than those from slower-growing, deeper water sites

such as the Fladen Ground, North Sea.

A. islandica samples were collected at 55° 45'N, 4° 54'W by University of

Wales, Bangor in May 2001 at a depth of 6 m. Millport and Irvine Bay do not differ

greatly hydrographically being affected by the same water masses. Comparison of the

intermittent temperature data collected at Irvine Bay at 7 m in a water depth of >30 m

(no data was available at 6 m) to that of Millport marine station monthly averages

show the latter are representative, with temperature data typically within 1.2 C (2).

However, it should be emphasised that Millport data refers to SST measurements,

whereas A. islandica, a benthic species, was collected at a water depth of 6 m in

Irvine Bay. The snapshot data is taken in a water depth of >30 m and thus is not an in

situ measurement, however the data provides an indication of typical variation in

seawater temperatures within this region.

Millport data show that SST typically fluctuate between 13-14 C in the

warmest months (late summer) to 6.5-8 C in the winter, with water depth <10 m

similar to that of Irvine Bay.

Additional sites of research

Additional material was also used from a wide range of sites (Figure 1.5) to address

particular issues (outlined in Table 1.2). Synchrotron analysis was carried out on

VO5-257-3 from Viking Bank, Northern North Sea to examine changes in the shell,
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which occur after the death of the organism. The shell was radiocarbon dated as being

modern (i.e. post 1950), (see Chapter 2 for further discussion on this specimen). In

addition, XRD samples were taken from specimens from a range of sites; Viking

Bank, Northern North Sea; Tjörnes beds, Iceland and Fladen Ground, North Sea.
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Figure 1.4: Bathymetric map showing Irvine Bay (sampling site) and Millport Marine

Station (where sea surface temperature records have been collected for over the last

50 years).
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Figure 1.5: Site locations of A. islandica specimens used in this study.
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Table 1.2: Outline of all A. islandica specimens used during this thesis.
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1.4 Initial sample characterisation

Initial work to determine the shell composition and structure used XRF and XRD.

XRF provided initial quantification of the trace elements to indicate which techniques

would be applicable, with XRD providing information on whether A. islandica was

aragonitic in all areas of the shell (excluding the periostracum).

1.4.1 XRF

X-ray fluorescence (XRF) allows the elemental concentrations of a material to be

calculated. Material is bombarded with high-energy X-rays, which can be either

absorbed by the atom or scattered through the material. When the former occurs, if the

primary X-ray has sufficient energy, electrons are ejected from the inner shells,

creating vacancies. However, these vacancies are unstable, with relaxation of the

excited atom to ground state occurring when electrons from the outer shells are

transferred to the inner shells. This results in energy released in the form of a photon,

with an energy equivalent of the difference in the two orbitals involved. This

phenomenon is called fluorescence. Each element has electronic orbitals of

characteristic energy and hence the energies or wavelengths of the emitted X-rays are

used to identify the elements present in the sample, with the intensity of the X-rays

indicative of the concentration in the sample.

The emitted X-rays can be detected using an energy dispersive (ED) or

wavelength dispersive (WD) detector. ED-XRF, as used here, provides simultaneous

detection of multiple elements, focusing all emitted X-rays onto a single detector that

analyses the X-rays as a function of energy.
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XRF Sample preparation

All samples were analysed on the Spectro-Lab ED XRF instrument at the University

of St. Andrews. Two different preparation techniques were used. For the

periostracum, where major elements were examined, the periostracum was scraped off

the shell surface (a live collected Irvine Bay specimen- not used in other studies). The

sample was then powdered and 0.7000 g then mixed with a fixed weight of 50%

Lithium Metaborate and 50% Lithium Tetraborate of 2.3000 g. This mixture is fused

at 1100 ºC for 20 mins before being cast into a 32 mm diameter glass “bead.” A loss

on ignition (LOI) is caused by the oxidation and/ or loss of volatiles due to the high

fusion temperature. The sum of the LOI and oxides gives a total of 99-100%.

The trace elemental composition was measured in two aliquots of A. islandica

samples taken from a live-collected shell, 389, from Irvine Bay, Scotland. 389a was

taken from the more juvenile part of the shell, incorporating the umbo and early

growth of the shell (including nacre), (estimated to be the first ~8-10 years), with

389b from the latter years of growth (including nacre), (estimated to be the last 10-15

years). The shell was powdered by hand approximately 10 g of powdered sample was

mixed with 0.2% Polyvinylalcohol binder (Movial). This was then pressed at 12 T

into a 32 mm powder pellet.

XRF results and discussion

XRF of the periostracum (Table 1.1) shows that a large proportion (71.5%) of the

periostracum consists of volatile components, which are likely to include organic

complexes. The composition of the periostracum differed considerably from that of

the shell. XRF data from the bulk shell shows that there is little or no difference (with

the exception of Fe) in the composition of the material taken from the umbo/juvenile
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part of the shell compared to the latter years of growth, suggesting that the

composition is relatively homogeneous. At these concentrations, the electron probe

microanalyser would have difficulty in detecting changes in trace elements in the shell

(such as Sr), but there was sufficient concentration for Sr EXAFS (Extended X-ray

Absorption Fine Structure), and for trace elemental analysis using SIMS (Secondary

Ionisation Mass Spectrometry) and LA-ICPMS (Laser Ablation- Inductively Coupled

Plasma Mass Spectrometry). Further details of these techniques are given in the

relevant chapters.

1.4.2 XRD

X-ray Diffraction (XRD) provides information on the structure and phases as well as

other structural parameters such as crystallinity, strain and crystal defects. X-ray

diffraction peaks are produced by constructive interference of monochromatic beam

scattered from each set of lattice planes at a specific angle. The orientation and

relative intensity can be used to determine the interplanar spacings of unknown

materials. Comparison to known standards (such as ICDD cards (International Centre

for Diffraction Data)) allows the compounds to be identified. Mixtures of structures

can be analysed with the relative peak height providing quantification by either

comparative standards comprising a range of relative concentrations, or through

modelling software such as SiroquantTM.

Analysis during this thesis, focused on determining whether aragonite was the

only phase that could be detected in A. islandica. XRD was used for initial sample

characterisation for synchrotron analysis, as well as for understanding how

micromilling may change the structure of aragonite (examining A. islandica shells and
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cod otoliths). The percentage of calcite produced was calculated using SiroquantTM

software (see Chapter 5 for further details).

XRD sample preparation

XRD samples were analysed as powders, with randomly orientated grains to ensure

all crystallographic directions are “sampled” by the beam. The samples were crushed

by hand (under acetone to reduce shear stress on the sample) and then back packed

into the holder (no pressure is used as the sample must have randomly orientated

grains).

XRD results and discussion

Aragonite was the only phase detected (International Centre on Diffraction Data card

41-1475) within a pristine shell (i.e. live-collected and with the aliquot collected by

chipping a section off). The limits of detection of other calcium carbonate

(particularly calcite) in an aragonite matrix by XRD are <1% (Finch, unpublished

data). However, note that XRD provides no information about materials without long-

range crystallographic order such as organic molecules. The XRD findings of aliquots

taken from dead-collected specimens e.g. a 3.7 Ma year old specimen, and those

sampled by drilling and micromilling are discussed as relevant, with particular

emphasis in Chapter 5.
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Abstract

The substitution of trace elements within the shell of Arctica islandica is poorly

understood, although the manner in which trace elements are hosted provides an

indication of whether they are a suitable palaeoenvironmental proxy. Exchange

models for trace element substitution in proxies assume that the metal substitutes

ideally (i.e. randomly) for Ca in the aragonite. X-ray absorption spectroscopy is an

analytical method that allows the substitution of trace elements in solids to be

explored. By modelling Sr Extended X-ray Absorption Fine Structure (EXAFS)

spectrum of Arctica islandica, estimates of the bond distances and the phase angle of

electron interaction with the third shell (R3 and PERCA1 respectively) were

determined. These showed that Sr is ideally substituted within Arctica islandica (i.e. it

is randomly substituting for Ca within the aragonite). Analysis of Mg substitution was

limited to the X-ray Absorption Near Edge (XANES) due to the low concentration of

Mg within Arctica islandica but comparison of the sample to a suite of standards

developed by Finch et al. (in prep.) show Mg is not hosted within the aragonite, but

within organics. Thus, temperature reconstructions using the model of Mg ideally

substituted are unlikely to provide accurate temperature reconstructions.
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2.1 Introduction

Mollusc shells are 95-99% by weight CaCO3 with the remaining mass being

organic molecules (Hare, 1983; Wilbur, 1984; Marin and Luquet, 2004). The organic

matrix plays an important role in crystal formation controlling the polymorph, the

size, shape and texture (e.g. Herman et al., 1988; Falini et al., 1996; Dietzel et al.,

2004; Sato et al., 2006). In biogenic CaCO3 crystals (e.g. bivalves, corals,

ammonites), organics do not simply exist between the crystals, but the crystals

themselves are composed of densely packed grains, tens of nanometres in diameter,

embedded in a thin layer of organic material (Stolarski and Mazur, 2005 and

references therein). However, it is not known whether trace elements (Me) such as Sr

and Mg in bivalves such as Arctica islandica are hosted differently in biogenic

calcium carbonate crystals compared to abiogenic crystals used for temperature

precipitation studies (e.g. Kinsman and Holland, 1969).

Synchrotron radiation can provide information on whether trace elements are

ideally substituted into aragonite i.e. randomly for Ca within the calcium carbonate

structure. Temperature reconstructions are based upon the assumption that the metal

substitutes ideally, but the metal may also be found in discrete phases e.g. Sr may be

present as SrCO3 or within organics, which would have a different partition

coefficient (Finch and Allison, 2003). In such cases, reconstructions based on the

assumption of ideal substitution will produce erroneous results. However, if the

thermodynamics of such a phase e.g. strontianite, were fully understood, this could be

applied in the thermodynamic model. However, for phases such as organics, which

actually represent a spectrum of phases consisting of both a soluble and insoluble

fraction that differ in composition (for a more in-depth description see Marin and

Luquet, 2004); the system is very poorly understood.
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Kinsman and Holland (1969) showed that Sr substitution in inorganic

aragonite decreased linearly with increasing temperatures and this has underpinned its

use in palaeotemperature reconstructions. Thermodynamic calculations and inorganic

precipitation experiments have shown that Mg substitution in calcite is temperature

related (Mucci, 1987; Oomori et al., 1987; Rosenthal et al., 1997). This model has

been extended to include aragonite, but Mg substitution in inorganic aragonite seems

to be less conclusive. Oomori et al. (1987) reported it was not controlled by

temperature, with Dietzel et al. (2004) finding

“Mg2+ content of aragonite is highly divergent and does not depend on

temperature and on Sr2+ or Ba2+ incorporation. Thus, Mg2+ content of the

aragonite might be affected by complex adsorption phenomena onto the

aragonite crystal surface during precipitation rather than to well-regulated

substitution into the crystal lattice.”

Thus determining how Sr and Mg are hosted within A. islandica can determine

their potential for environmental reconstruction. This is key to interpreting the

quantitative data from SIMS and ICPMS analysis of the prismatic layer of both the

umbo and outer shell layer, which is discussed in the later chapters.

2.2 Introduction to Synchrotron Radiation

Synchrotron radiation (SR) is the electromagnetic radiation (mostly white X-rays)

produced by electrons travelling near to the speed of light when they are forced to

bend in an arc using strong magnetic fields. SR has a number of unique properties that

make it ideal for X-ray absorption spectroscopy (XAS). These include high intensity,
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high degree of polarization, high tunability and stability, providing a high signal to

noise ratio in XAS data (Newville, 2004). These unique properties have allowed

synchrotron radiation facilities to make X-ray absorption measurements at the atomic

level, with the history and development of X-ray Absorption Fine structure (XAFS)

closely paralleling that of the development of synchrotron facilities (Newville, 2004).

Synchrotron radiation generates an intense, monochromatic beam of X-rays

that can be used to measure the XAFS. This can provide information on the electronic

configuration, interatomic distances, coordination chemistry and vacant orbitals

(Mosselmans, 2005).

2.2.1 Generation of Synchrotron Radiation

Synchrotron radiation is emitted when charged particles travelling at the speed of

light, in particular electrons, are forced to move in a circular orbit, causing photons to

be emitted as the electron accelerates. The energy of these photons ranges from

infrared to energetic (short wavelength) X-rays.

The electrons are generated in the electron gun and then accelerated in a linear

accelerator before being transmitted to a circular accelerator (booster synchrotron).

Here they are accelerated with the energy reached dependent on the individual

machine e.g. 2 GeV at Daresbury, UK. These high-energy electrons are stored in a

large outer storage ring. Here they are kept at a constant energy level with the use of

RF (Radio Frequency) cavity that receives RF energy and transfers it to electrons as

they pass through the cavities. From the storage ring, beamlines process the

synchrotron radiation and deliver it to the experimental stations.

Each beamline contains mirrors, which allow some degree of focusing of the

radiation. The radiation then passes through the monochromator, which is a double
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crystal usually made from Si, which is cooled to maintain an even temperature, to

provide high reproducibility and stability (Figure 2.1). Using the Bragg diffraction

equation, the monochromator can be adjusted to deliver particular X-ray energy to the

sample:

n = 2d sin

Where:

n = is an integer number of wavelengths

wavelength (of monochromatic X-ray beam)

d = distance

angle of diffraction

If the equation can be satisfied for more than one value of n, this can lead to harmonic

contamination, as these additional wavelengths do not get absorbed in the same way

as the primary beam. The possibility of this type of contamination can be reduced by

either changing the angle of the vertical mirror in the beam so it is above the critical

angle of the higher harmonics but below that of the desired beam, resulting in them

being absorbed, reducing the harmonic content below 0.1% (Mosselmans, 2004).

Alternatively by tilting the second crystal to give a slight misalignment can reduce to

the harmonics to <1% (Mosselmans, 2004). In other words, these reduce the

probability of n being satisfied by values greater than one.

The monochromatic X-radiation then passes through an ion chamber that

measures the initial intensity of the beam (I0) prior to the sample. The chamber

consists of two parallel plates (one at high potential) in an inert gas atmosphere. The
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current collected off the plate is fed into an amplifier and then a frequency converter

to give I0. In transmission XAS mode, a second identical chamber downstream of the

sample measures the intensity of the signal after the sample (I1). This forms the basis

of the XAFS spectrum. However, in all experiments here (with the exception of the

strontianite standard) the signal derives from intensity of secondary Sr KX-ray

fluorescence from the sample. In this case, a multi-element (usually Ge or Si (Li))

solid-state detector is positioned orthogonal to the incident beam (this is to minimise

scatter) and measures the fluorescence photons, which are emitted when the outer

shell electron drops into a core hole. X-ray fluorescence has the advantage of being

able to measure samples that are more dilute but because the signals are smaller than

those of the ion chamber readings there is proportionally more electronic noise

(Mosselmans, 2005).

Figure 2.1: Outline of synchrotron experimental station (Bunker, 1997). Note

focusing of the beamline with mirrors occurs prior to the X-rays passing through the

monochromators (mirrors not shown).
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2.2.2 XAFS spectrum

The basis of an XAFS spectrum is the measurement of the interaction of the X-rays

with matter as a function of X-ray energy. The interaction involves three processes:

elastic scattering, inelastic scattering (Compton) and absorption due to ionisation.

This absorption is characterised by Beers formulae:

I1 = I0 e (-μx)

Where:

I0 = Incident intensity on the sample

I1 = Exciting intensity i.e. intensity transmitted through the sample

x = Distance travelled through the material or sample thickness

μ = X-ray absorption coefficient of the material

The X-ray absorption coefficient of the material is energy dependent and generally

decreases smoothly but has certain discontinuities in its values (Mosselmans, 2004).

Measuring the amount of absorption with increasing X-ray energy reveals the so-

called absorption edges, where an energy threshold is crossed, which corresponds to

the binding energies of K or L electrons in the atom. This occurs when the incident X-

ray photon has just enough energy to promote a core electron to a higher unoccupied

levels, releasing photoelectrons and leaving one of the core electron levels empty (a

so-called core hole). Since every atom has core-level electrons with well-defined

binding energies and the X-ray energy of the synchrotron beamline can be tuned to

the appropriate absorption edge, the absorption spectrum can be measured. The edge

energies relevant to the present study are ~1.31 keV for Mg and ~16.1 keV for Sr.
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When the photon energy is low (<30-40 eV of the edge energy) in the near

edge region, the photoelectrons populate unfilled bound states, nearly bound state or

low-lying continuum states of appropriate symmetry. These spectra are termed X-ray

Absorption Near Edge Structure (XANES) or Near Edge X-ray Absorption Fine

Structure (NEXAFS). Above this (to about 1000 eV beyond the edge), the Extended

X-ray Absorption Fine Structure (EXAFS) region transitions are to continuum states

(see Figure 2.2). The XANES and EXAFS regions demonstrate a smooth transition

from one regime to the other (Miheliç, 2002). The excited state from the absorption

event eventually decays (typically within femtoseconds of the absorption) due to X-

ray fluorescence (XRF) and the emission of an Auger electron.
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Figure 2.2: XAS spectrum of Sr in A. islandica. XANES and EXAFS regions are

shown.

XANES region

For XANES, where the electron’s kinetic energy is small, the multiple scattering

caused by other atoms is significant, making it particularly sensitive to the absolute
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position of the edge, the point symmetry (i.e. regular or distorted polyhedra) and the

coordination chemistry (e.g. octahedral, tetrahedral coordination). The edge energy

correlates with differences in oxidation states of the element since the core electron

becomes more tightly bound with increased oxidation (Szulczewski et al., 1997). The

XANES spectrum is substantially more complicated to interpret than the EXAFS

because it involves multi-electron and multiple scattering interactions. In order to

determine the geometrical arrangement of the atoms surrounding the absorbing atom,

theoretical multiple scattering calculations can be compared with experimental

XANES spectra, but these are applied with limited success in many systems. More

typically, XANES studies involve the empirical comparisons of model materials, in

which the coordination state is constrained, with a suite of unknowns.

EXAFS region

EXAFS shown on Figure 2.2 shows the oscillatory part of the absorption

coefficient above the major absorption edge. This oscillation function (E) is defined

as

(E) = μ(E) – μ0(E)

 μ0(E)

Where:

μ(E) = measured absorption coefficient

μ0(E) = smooth background function representing the absorption of an isolated atom

μ0(E) = measured jump in the absorption μ(E) at the threshold energy E0.

This oscillation can be calculated (e.g. using a program such as Excurve) for a

particular arrangement of atoms to confirm their bond length precise to typically
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±0.002 nm, determine the distances, the coordination number to ±1 (if the thermal

vibration parameters are known), and species of the neighbors of the absorbing atom.

This equation for EXAFS cannot be used for XANES as the number of photoelectrons

waves is too low, and the relationship breaks down (Mosselmans, 2004). This is why

EXAFS can provide quantitative results, whereas XANES can still only provide semi-

quantitative analysis. EXAFS refinement requires the user to know the Debye-Waller

factor, which is a measure of the thermal vibration of the central atom in its site. For

atoms at room temperatures in single sites, typical Debye-Waller values are ~0.015 Å2

but this increases with temperature (thermal disorder), or if the model averages

several non-equivalent crystallographic sites (static disorder). Debye-Waller factors

and the coordination numbers are inversely correlated and hence uncertainties in one

generate uncertainties in the other. Hence, EXAFS is in practice relatively insensitive

to coordination state.

2.3 Method

Two A. islandica samples were analysed for Sr and Mg substitution. These were both

taken from a live-collected shell 389 from Irvine Bay, Scotland. 389a was taken from

the more juvenile part of the shell, incorporating the umbo and early growth of the

shell (including the nacre), (estimated to be the first ~8-10 years), with 389b from the

latter years of growth (estimated to be the last 10-15 years). An additional shell VO5-

257-3, dead-collected, from Viking Bank, Northern North Sea radiocarbon dated as

modern (i.e. post-1955) was analysed for Mg substitution, with only the latter years of

growth used in the sample. This was to determine if any changes in the substitution

occurred after death.
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The samples were crushed in an agate mortar and pestle under acetone to

achieve a finely ground powder. It is important to gain a homogeneous sample (with

no pinholes after mounting) so that the fluorescence signal with respect to I0 is not

distorted (Mosselmans, 2004). Prior to synchrotron analysis, all samples were

analysed on an automated Philips PW1050 X-ray diffractometer with Philips

WinXRD V2 software at the University of St. Andrews, UK. This is to confirm that

the samples are single phase aragonite. Samples were analysed for Sr and Mg

coordination at SRS Daresbury Synchrotron facility, Warrington, UK

(www.srs.ac.uk/srs), a second-generation light source facility with 2 GeV machine

energy. The concentrations of Ba (and U) are too low to permit analysis on the

Daresbury beamlines and therefore the substitution of these elements could not be

analysed.

2.3.1 Sr analysis

Sample analysis was carried out at station 16.5 with an average beam current of

200 mA. Sr-K edge (~16106 eV) was measured using a spot size <2 mm, achieved

through dynamically focused double crystal Si220 monochromator. A vertical

focusing pre-mirror is used for harmonic rejection. The sample itself was mounted

between adhesive tape, and placed into a letterbox slot on an aluminium plate. This

was aligned carefully so the holder did not contaminate the beam measurements. The

sample area presented to the beam is ~ 5 x 10 mm. Multiple scans were taken to

ensure high signal to noise ratio (~8 cycles). Analysis was started at 15857 eV and

extended beyond the edge to an energy corresponding to k=12, residence times were

increased from 3 s to 12 s in a manner that was proportional to k3 (to compensate for

loss of signal away from the edge.)

http://www.srs.ac.uk/srs
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2.3.2 Mg analysis

Analysis was carried out at station 3.4 with an average beam current of 200 mA with

increasing residence time away from the K-edge (akin to Sr analysis). Only the

XANES part of the spectrum (1280-1380 eV) of Mg K-edge (~1306 eV) was

collected due to the weak signal. This was the result of a relatively low X-ray flux and

low concentrations of Mg (100-200 ppm) resulting in a too low signal to noise ratio in

the EXAFS despite extended count times and high number (>20) of scans. Qualitative

interpretation of the substitution of Mg in aragonite is possible by comparison of the

spectra to a number of known standards and reference.

The beam was focused with a double crystal Si111 monochromator. The

powdered sample was mounted onto carbon tape stuck to an aluminium holder. A

number of standards and reference material covering different states of Mg

coordination (e.g. Mg in regular octahedral coordination; Mg in distorted octahedral;

Mg in distorted 9-fold coordination and Mg in sites with irregular or low symmetry)

were analysed as a comparison.

2.4 Data analysis

2.4.1 Sr data analysis

Qualitative analysis of the XANES signal was carried out with manual

removal of the background, and comparison to standards of Finch et al. (2003a). This

provides independent collaboration of the quantitative EXAFS analysis.

EXAFS data analysis was carried out on software provided by SRS Daresbury.

Individual cycles were averaged using EXCEL from which text files were exported.

Background measurements were removed using SPLINE (Paul Ellis, University of

Sydney, 1990). Modelling and refinements of the edge energy (Ef), the thermal
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vibration parameters (A1, A2 and A3), the interatomic bond distances of the same shell

(R1, R2, and R3) and percentage of Ca in the third shell (PERCA1) (see Finch et al.,

2003a for a discussion of how this model was constructed) were carried out with

EXCURV98 (Daresbury Laboratories, UK). The refinements were carried out using a

single-phase aragonite model developed by Finch et al. (2003a), with the initial values

those of Sr in aragonite standard (Finch et al., 2003a). The maximum and minimum

refinements, and errors were calculated when the average offsets from the optimum

values cause a 2.5% increase in the fit index.

In the case of aragonite, nine oxygen atoms form the first shell around the

metal ion (Sr or Ca), with six carbon atoms in the second, and six metals atoms in the

third shell. Analysis of this third shell is particularly useful as it provides information

on whether the third shell is surrounded by Sr or Ca indicative of strontianite and

aragonite respectively. This is achieved by inspecting R3 (the interatomic distance

between the central Sr and its nearest metal present in the third shell) and PERCA1

(phase angle of electron interaction with the third shell). R3 varies from ~4.018

0.010 Å in aragonite coordination to 4.167 0.010 Å in strontianite (Finch et al.,

2003a) and PERCA1 is scaled to vary from 1 to 0, where 1 represents 6 Sr atoms, and

0 equates to no Sr atoms present in the third shell.

2.4.2 Mg data analysis

Data analysis was carried out manually to remove the background and qualitatively

analyse the XANES signal. Comparison of the Mg spectrum to known standards

(including those not analysed during this experiment see Finch et al. (in prep.))

allowed interpretation of the Mg spectrum. They consist of four types of Mg

coordination 1) Mg in a regular octahedral coordination bonded to carbonate
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(magnesite, dolomite and calcite); 2) Mg in 9 fold irregular coordination (aragonite)

3) Mg in regular octahedral coordination bonded to silicates and Mg (bentonite,

glauconite) 4) Mg in open polycoordinate coordination (organic Mg) (Finch et al., in

prep.). In addition, dolomite acted to normalise the K-edge of Mg between analytical

sessions (Finch et al., in prep.)

2.5 Results and discussion

2.5.1 XRD results

XRD analysis of all the samples detected aragonite as the only phase (International

Centre on Diffraction Data card 41-1475) within the limits of detection (limits of

detection for calcite in an aragonite matrix are <1% (Finch, unpublished data)).

2.5.2 Sr results

The XANES profiles of both 389a and 389b (see Figure 2.3) show excellent

agreement with that of Sr ideally (i.e. randomly) substituted within the aragonite

structure (Finch et al., 2003a). No standard is presently available for Sr substituted in

organics and hence the XANES could not be compared with such a material.

The results of the refinements of Sr data using the Finch et al. (2003a)

structural model are shown in Table 2.1. R3 is 4.0210.01 Å (for both samples) fitting

with the aragonite structure (defined by standards analysed by Finch et al. (2003a))

with PERCA1 showing refinement fit of 1.0000.09 and 1.0120.09 for 389a and

389b respectively (PERCA1= 1 represents 6 Sr atoms). The R-factor (fit index) for

389a and 389b was 36.3% and 32.3% respectively for a Sr model (which provides the

best fit for the EXAFS data). This is in the typical range described by Finch and
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Allison (2003) for modelling of EXAFS. Thus, the model indicates that Sr substitutes

randomly within the aragonite lattice. The slight difference in fit index between the

two A. islandica samples results from differences in the intensity of the beam and the

relatively low concentration of Sr in the samples (compared to corals) resulting in a

lower signal to noise ratio.

If Sr were hosted by organics in the shell, there would be no long range order

in the structure (i.e. no second or third shells), resulting in a poor R-factor (fit index)

for the above model. Standard deviations of the modelled values would be high as the

structure would be irregular and therefore show no consistent coordination. In

particular, the Debye-Waller factors (A1, A2, A3) would increase from values of ~0.03.

Therefore, the Sr K-edge XAS data for A. islandica indicates that the model of Sr

ideally (i.e. randomly) substituted in aragonite.

A. islandica
389a

A. islandica
389b

Aragonite
standard

Strontianite
standard

Refined
values

Error
Refined
values

Error
Refined
values

Error
Refined
values

Error

Ef -8.967 0.24 -8.951 0.22 -2.59 0.28 -3.51 0.26
A1 0.023 0.001 0.024 0.001 0.022 0.001 0.028 0.001
A2 0.033 0.006 0.035 0.006 0.038 0.008 0.029 0.005
A3 0.029 0.003 0.031 0.003 0.028 0.003 0.031 0.003
R1 2.587 0.004 2.587 0.003 2.583 0.004 2.632 0.004
R2 3 0.014 3 0.013 2.981 0.019 3.023 0.012
R3 4.021 0.009 4.022 0.009 4.018 0.011 4.166 0.010

PERCA1 1 0.09 1.012 0.09 Fixed to 1 Fixed to 6
Fit % 36.3 32.3 24 24.2

Table 2.1: Parameters of the optimum final EXAFS refinements using a single phase

aragonite model with aragonite and strontianite standard of Finch et al., (2003a).
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Figure 2.3: XANES profiles of two A. islandica samples (from the different sections

of the same shell) compared to a Sr in aragonite, calcite and strontianite standard of

Finch et al. (2003a).
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2.5.3 Mg results

Full suites of standards (including those analysed in previous sessions by Finch et al.

(in prep.)) are shown on Figure 2.4. A full interpretation of the XANES is beyond the

present study (due to the complexity of XANES spectrum) but it can be concluded

that the XANES of each coordination state can be distinguished. The XANES from A.

islandica, 389a and 389b, and V05-257-3 are shown on Figure 2.5. The A. islandica

signal shows a low signal to noise ratio (resulting from the low concentrations of Mg

within the sample, typically 100-200 ppm).

Despite being single-phase aragonite to XRD, all three A. islandica spectra

show no increase in intensity of absorption at ~1330 eV (which indicate Mg hosted in

aragonite, Figure 2.4), nor are the spectra indicative of Mg hosted within clays. The

latter shows that Mg in the shell does not result from the uptake of Mg-rich clays.

Comparison to the organic standard shows the best fit suggesting that Mg in A.

islandica is hosted within organics. 389a however also shows a high point at

1322.5 eV, the position expected for calcite peak. Therefore, residuals of the data of

organic standard minus the A. islandica data (with backgrounds removed, and data

scaled) were examined. This confirmed that Mg showed the best fit with the model in

which Mg was hosted solely by the organics and it is not composed of a mixture of

organics and calcite. Therefore, the high point at 1322.5 eV results from the low

signal to noise ratio.
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Figure 2.4: XANES of Mg standards. The arrows highlight the resonance of Mg in

aragonite at 1332 eV compared to the broad oscillation at 1335 eV when it is hosted

in bentonite and glauconite (clays).
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Figure 2.5: XANES of Mg from three A. islandica samples; V05-257-3, 389a and

389b with calcite, aragonite and organic standards.
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2.6 Conclusion

XANES and EXAFS of Sr are consistent with it being ideally hosted within

aragonite, indicating that thermodynamic equations and inorganic temperature

experiments such as that of Kinsman and Holland (1969) are applicable. To develop

Sr as a proxy, the effects of other factors (e.g. crystal growth rate, propagation and

nucleation) need to be investigated. To understand better such effects, quantitative

analysis of Sr within A. islandica from the prismatic layer found within both the umbo

and outer shell layer are presented in the following two chapters.

Mg spectrum was limited to analysis of XANES, but comparison to a suite of

standards permitted interpretation of the spectrum. Qualitative comparison of the A.

islandica spectrum was consistent with Mg hosted by organics. Therefore,

palaeoclimate reconstructions using Mg fluctuations in A. islandica are unlikely to

provide accurate results until the thermodynamics of such a system are more fully

understood. However, quantitative analysis of the prismatic layer found within both

the umbo and outer shell layer should however provide further details of the

behaviour of Mg and provide an insight into the controls on its behaviour, such as

whether fluctuations can provide information on organic concentration.

Thus, these findings can provide significant insights into the behaviour and

controls of Sr and Mg within A. islandica and their potential as palaeoproxies.
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Abstract

The potential for the use of trace elements within the prismatic layer of the umbo of

Arctica islandica to reconstruct palaeoenvironmental conditions was investigated,

analysing two shells (U228 and U248) from Irvine Bay, SW Scotland, UK. The trace

elements show high variability within the prismatic layer of the umbo. During latter

years of growth, Sr/Ca shows sharp increases within the annual growth check

(typically increase of >1.0 mmol/mol) with increases (of ~0.4 mmol/mol) present

within the growth bands in the younger part of the shell. Sr/Ca does not obey simple

thermodynamic models. The uptake of Sr/Ca during the latter years may be modified

by changes in the crystal habit caused by increased organics as well as vital effects.

During years of faster growth, crystal growth rate may become increasingly

important. In addition, a lateral variation can result in an increase of >25 % towards

the lateral margins.

Analysis of Mg/Ca in linescan mode showed evidence of contamination (with

high Si values). Although there is some covariation with the annual growth checks, it

is unclear whether this is related to increased contamination within these areas (which

are likely to be softer and therefore more prone to contamination) or due to increased

organics.

Ba/Ca shows sporadic sharp increases in concentrations (over five times the

typical value), which could not be attributed to changes to the architecture of the shell,

or any known environmental stimulus (e.g. temperature, salinity). The pattern of the

Ba/Ca fluctuations is however consistent with the findings of a number of other

researchers (e.g. Stecher et al., 1996; Putten et al., 2000; Lazareth et al., 2003;

Gillikin et al., 2006).
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3.1 Introduction

During the growth of Arctica islandica, trace elements are incorporated into the shell

during the calcification process occurring within the extrapallial fluid (EPF). Research

on the trace elements in bivalve shells has focused mainly on Sr/Ca and Mg/Ca and

their potential to reconstruct a temperature record independent of δ18O which is

dependent on salinity estimates (e.g. Hart and Blusztajn, 1998; Takesue and van

Geen, 2004), with some research on Ba/Ca as a proxy for palaeoproductivity (e.g.

Lazareth et al., 2003 Gillikin et al., 2006).

By quantifying changes in trace elements within A. islandica shells and

combining it with the sclerochronology (i.e. identifying the annual growth checks), it

is possible to measure how these fluctuations vary temporally. The typical contents of

the shells are 1000-1800 ppm Sr and 50-100 ppm Mg, with in situ microanalysis

possible using methods such as SIMS (Secondary Ion Mass Spectrometry or ion

microprobe) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

(LA-ICPMS). These methods permit higher resolution sampling than is possible with

solution-ICPMS. For example in this study the spot size of LA-ICPMS was <60 m

with a depth of ~200-250 m compared to 500 m by 2000 m with a depth of

500 m for solution-ICPMS. LA-ICPMS and SIMS also has the advantage that

fluctuations in geochemistry can be more easily related to changes in shell

architecture. In addition, sampling can be adapted or modified during the analysis

sessions and hence provides much more dynamic sampling. SIMS, in particular,

provides extremely high resolution sampling with a beam size <10 m and low (ppm)

limits of detection.

In A. islandica, some research in sclerochronology has focused on the umbo

because the growth bands here are less influenced by stress events such as storms and
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predator attacks thus providing a more coherent record (Richardson, 2001; Scourse et

al., 2006). However much of the work on stable isotopes (18O and 13C) is carried

out in the outer shell prismatic layer because of the limitations of sample size in the

umbo (see Figure 1.2 for schematic of the shell regions). SIMS analysis of the umbo

can provide a high resolution analysis enabling, in this study, up to 40 analyses per

year (~ one per growing week) in the fastest growing part of the umbo (i.e. juvenile),

with <10 analyses/yr at the slowest in this study. Thus, the potential use of trace

elements within the umbo to reconstruct palaeoenvironmental conditions can be

explored.

Data from the prismatic layer of the umbo will compared to the outer shell

prismatic layer, sampled using ICPMS (results of ICPMS analyses are shown in the

next chapter), to show whether trace element fluctuations are the same in different

parts of the prismatic layer despite being deposited at the same time. If they differ it is

important to understand why e.g. changes in shell architecture, growth rate or from

changes in the biological mediation. Thus by using these two sets of data (see Chapter

8), it provides a much clearer understanding of the controlling factors of trace element

uptake and their potential as proxies.

3.1.1 Previous trace element studies of bivalves

Inorganic precipitation experiments on Sr-bearing aragonite have shown that

Sr/Ca incorporation is inversely related to temperature (Kinsman and Holland, 1969;

Dietzel et al., 2004; Gaetani and Cohen, 2006). Sr/Ca ratios in biogenic aragonite are

not significantly altered by salinity in the range of ~10-35 (Drever, 1980; Dodd and

Crisp, 1982).
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Findings from bivalve research have failed to find one sole control for the

uptake of trace elements suggesting that environmental factors do not control Mg/Ca

and Sr/Ca concentrations in skeletal carbonate according to simple equations (Mann,

1992). The majority of researchers have found that trace elements are not primarily

dependent on temperature, a commonly targeted environmental goal. Lutz (1981)

found Mytilus edulis (inner nacreous layer) failed to reveal any long-term periodic

variations in Sr/Ca and thus concluded temperature was not a controlling factor.

Purton et al. (1999) found in Venericardia planicosta, an aragonitic mollusc,

and the marine gastropod Clavilithes macrospira that neither growth rate,

calcification rate nor temperature were the sole controlling factors, but rather that

metabolic rate governed indirectly by these factors was the likely cause of Sr/Ca

variation. Both showed an increased in Sr/Ca with ontogeny even though the

gastropod, Clavilithes macrospira has, unlike bivalves, linear growth rate through

ontogeny. Ontogenetic trends in Sr/Ca have been seen in other gastropods e.g. Conus

ermineus as well as bivalves such as Mercenaria mercenaria (Gillikin et al., 2005a)

including A. islandica (Tripati et al., 2004).

For A. islandica widely ranging results have been reported. Hart and Blusztajn

(1998) determined a positive linear relationship between Sr/Ca and temperature from

Nantucket Shoals Lightship, Gulf of Maine, where:

TºC= 20.752[Sr/Ca mmol/mol)]-16.0

and applied this relationship to hydrothermal vent clams Calyptogena

magnifica. This assumes that Sr/Ca uptake is independent of taxa. However, the

positive relationship presented is the opposite of the thermodynamic model where

Sr/Ca uptake is inversely dependent on temperature (e.g. Kinsman and Holland,

1969). Toland et al. (2000) also found Sr/Ca inversely covariant with 18O (i.e.
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positive with temperature) using A. islandica specimens from Cardigan Bay, SE Irish

Sea. Epplé (2004) found cyclic variations but concluded that Sr/Ca maximum at the

winter growth checks could be used to reconstruct winter seawater temperatures

whereas Tripati et al. (2004) found that ontogenetic changes were overriding factors.

A. islandica is unable to tolerate waters with salinities of <16 (Nicol, 1951) and thus

Sr/Ca in A. islandica should not be strongly influenced by changes in salinity. Thus,

there is a need to understand which environmental factors Sr/Ca within A. islandica

encodes.

There have been fewer studies on Mg/Ca in aragonite bivalves. For Mg/Ca,

there is no clear consensus on the controls of uptake in bivalves. Takesue and van

Geen (2004) found Mg/Ca in Protothaca staminea shells to be significantly correlated

with temperature (Mg/Ca was r = 0.71 in one of the four growth increments) but

found significant year-to-year variation. Cyclic patterns of Mg/Ca variation through a

year’s growth have been observed in a number of species such as Isognomon

murchison, Mytilus edulis and Patella vulgata (Fuge et al., 1993; Hendry et al., 2001)

as well as within A. islandica (Toland et al., 2000; Epplé, 2004). The significance of

these is however unclear. Quantitative measurements from A. islandica may provide

further insight into the controls of Mg/Ca fluctuations especially when interpreted in

conjunction with the XANES analysis (presented in the previous chapter).

Ba/Ca profiles from both aragonitic (including A. islandica) and calcitic

bivalves show similar patterns, with low values interspersed with very high Ba/Ca

peaks (Bishop, 1988; Stroobants et al., 1991; Stecher et al., 1996; Toland et al., 2000;

Epplé, 2004). Large increases in Ba/Ca concentration are typically deposited over

short distances and thus have been defined as Ba/Ca peaks in these papers and will be

subsequently referred to as Ba/Ca peaks within this thesis.
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These Ba/Ca peaks have been generally attributed to phytoplankton blooms

production and uptake of barite particles (Stecher et al., 1996; Lazareth et al., 2003;

Gillikin et al., 2006). The sporadic increases of Ba/Ca uptake is common not only in

bivalves but also in other taxon e.g. corals (Sinclair, 2005). Using A. islandica shells,

the timing and magnitude of the Ba/Ca peaks can be explored to gain further insight

into the controlling mechanism.

Thus in summary, there is a consensus that the uptake of trace elements is not

easily attributable to one environmental factor and the controls are complex. Sr/Ca

uptake in bivalves has been related to growth rate in a number of publications

(Stecher et al., 1996; Takesue and van Geen, 2004; Carré et al., 2006). In the coral

Diploria labyrinthiformis (brain coral) Goodkin et al. (2007) applied a crystal growth

rate correction temperature reconstructions from Sr/Ca. Higher crystal growth rate

resulted in increased growth entrapment of trace elements (i.e. non-biogenic effect).

Such a method, if applied to bivalves, would imply that vital effects do not have a

significant influence.

Thus, by using A. islandica, key questions on the controls on bivalves can be

explored, e.g. temperature effect on incorporation, the timing of the increases,

relationship to changes in the shell architecture, lateral heterogeneity, and whether

fluctuations are replicated in different shells collected at the same time from the same

area. Thus, the potential of trace elements in A. islandica as proxies can be explored.

Insights into the behaviour of A. islandica may not only be applicable to other

bivalves but also for other aragonitic systems such as corals.
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3.1.2 Rationale of the present study

The present study into A. islandica from Irvine Bay, NW Scotland uses the nearby

primary instrumental SST (sea surface temperature) dataset collected (almost) daily

from Millport marine station (Figure 3.3) and additional intermittent temperature and

salinity data collected within Irvine Bay (see Figure 6.3). Comparison of measured

fluctuations of trace elements (in particular Sr and Mg) in the prismatic layer of the

umbo with SST, allows the potential of trace elements as palaeotemperature proxies

to be explored.

3.2 Introduction to SIMS

SIMS (Secondary ion mass spectrometry), also known as ion probe or ion

microprobe, works by bombarding the sample surface with high energy ions from a

primary ion beam. This causes secondary ions and atoms from the sample to sputter

from the surface. These ions can then be passed into a mass spectrometer and their

count rates measured. The components of the SIMS can be seen on Figure 3.1 and are

described in further detail below.

Figure 3.1: Components of SIMS (Craven, 2007).
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Figure 3.2: Duoplasmatron used to generate ions for the primary beam (Craven,

2007).

The primary ion source can either be a metal gun (typically Cs) or a gas

passed through a duoplasmatron (Figure 3.2), producing ions with energies between

1-30 keV. The choice of gas depends on the type of sample to be analysed with

oxygen being the most common. O2 gas can be ionised to produce O- or O2
+ ions. The

primary ions are then accelerated along the primary ion column, which contains a

primary beam mass filter to eliminate impurity species in the beam, e.g. the stainless

steel surfaces within a duoplasmatron generate ions such as Cr, Fe and Ni, which

would raise the detection limits for these elements (Fleming, 2000).

The sample under high vacuum is bombarded with a primary ion beam, with

the sputter rate dependent on the sample material, crystal orientation and the primary

beam intensity. Typical sputter rates are 0.5-5 nm/s (Fleming, 2000). Some of these

sputtered atoms are ionised, the efficiency of which is termed the ion yield (IY) i.e.

the fraction of atoms that become ionised. This is typically <10% (Williams, 1992).
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The relationship between the first ionisation potential and secondary ion yield

is not simple. It is affected by the element in question, the nature of the matrix and the

bombarding beam. For instance the presence of electronegative elements in the matrix

or implanted from the primary beam, enhances the positive secondary ion yield

(Hinton, 1995). In addition, the physical processes that lead to the formation of

secondary ions are poorly understood. Analyses on standards are therefore used to

determine a Relative Ion Yield (RIY), which eliminate these effects with secondary

ion intensities normalised to a major element (in this study Ca) (Hinton, 1995). The

Relative Ion Yield (RIY) normalises to a standard matrix and by matching the matrix

of the unknown and standard, matrix effects are minimised (Galuska and Morrison,

1987).

In addition, mass interferences occur when an ion or molecular species has the

same nominal mass as the target species to be analysed. Hence counts collected at that

mass comprise one or more species e.g. for 88Sr, the 44Ca44Ca dimer has the same

nominal mass. This can be corrected by closing the mass slits to resolve the different

species, which commonly have slightly different masses. The latter method however,

reduces the overall counts substantially and hence the precision falls. Greater

accuracy can often be achieved by leaving the slits open and estimating the expected

relative abundance of the isobaric species by analysis of another entity (A. Finch,

Pers. Comm. 2007). For example, in this case, the contribution of 44Ca44Ca+ to counts

at mass 88 can be estimated from direct measurements of the counts for the 40Ca40Ca

dimer.
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3.3 Method

3.3.1 Sample preparation

The shells were live-collected from Irvine Bay, which is close to the marine sampling

station at Millport, Isle of Cumbrae (see Section 1.3 for further details). The annual

temperature variation of which is shown on Figure 3.3.

The prismatic layer of the umbo of two shells, 228 and 248 (which will be

subsequently referred to as U228 and U248 respectively) were prepared by sectioning

along the axis of maximal growth (see Figure 1.2), set in Buehler Epo-thin epoxy, and

then finely polished to 1 m.
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Figure 3.3: Sea surface temperature (using monthly averaged values) at marine

sampling station Millport, Isle of Cumbrae, NW Coast of Scotland from 1953-2001.

Maximum error is <2 °C for each daily measurement, which is used to provide a

monthly average. Prior to 1983, measurements were taken daily but financial cutbacks

reduced it to working days only (P. Barnett, Pers. Comm. 2007).
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3.3.2 Sample analysis

Analysis was carried out on a Cameca ims-4f ion microprobe in the

Department of Geology and Geophysics, University of Edinburgh, UK during one

analytical session (one week). Sections were gold-coated and analysed using a 2 nA

O- primary beam, energy offset of 75 eV in spot mode and 0 eV in linescan mode.

The imaged field was 25 m, the field aperture 150 m and the contrast aperture

150 m.

The main linescan analyses were made along the line of maximum growth (see

Figure 3.4a for schematic), with some linescan analyses moving laterally away from

this line of maximum growth to determine laterally variability. U248 (and two short

transects on U228) were analysed with a spot size of ~10 m in both spot and

linescan mode, with the secondary ions measured including 26Mg, 48Ca, 40Ca40Ca, 88Sr

and 138Ba. A stepsize of 10 m was used in linescan mode. 40Ca could not be used to

measure Ca due to the large count rates, which would trip the safety circuits on the

electron multiplier tubes. Therefore, the less abundant 48Ca isotope is used. Estimates

of concentration for each element are made from known natural isotopic abundances.

On U228 the main transect measured only 48Ca, 40Ca40Ca and 88Sr with a larger spot

size of ~30 m (with stepsize of 10 m). The count times are shown on Table 3.1

including waiting time (which provided a pre-burn time). Note that the beam spot is

significantly larger than the area from which secondary ions are drawn, and hence

there is some pre-burn in linescan mode while the instrument analyses adjacent spots.

When a 10 m beam size, there was no pre-burn from the preceding spots, but

analysis on U228 when a coarser spot size (30 m) was used, effectively a pre-burn of

9 s was applied prior to sampling, as a stepscan of 10 m was used.
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Analysis in U248 covered 1986-2001 and in U228 1988-2001, determined

from counting the growth bands. Shell 248 and 228 were 21 (1980-2001) and 18 years

old (1983-2001) respectively. The earliest years of the shell (~6 years) were not

measured due to problems caused by the strong curvature of the umbo within the

juvenile section and the narrowing width of the umbo (the linescan consists of a series

of straight lines). As the sample was highly polished and gold coated, relating the

position to the architecture of the shell was difficult, and resulting in difficulty in

keeping the analysis along the maximum growth axis (see Figure 3.4b, c). Thus,

analysis was focused on the more mature section of the umbo.

Analysis concentrated on one shell (248) to build up a comprehensive picture

of changes in the trace elements Mg/Ca, Sr/Ca and Ba/Ca within the prismatic layer

of the umbo using a 10 m spot size in linescan mode (Figure 3.4b). This meant that

in the latter years of growth, each measurement consisted of material deposited over

more than one month whereas in the earlier years, analytical resolution was

temporally much more detailed covering ~1 week of growth e.g. in 1987 in U248,

>40 analysis were carried out per year, this compares to <10yr-1 during 2000.

A long transect was taken on the line of maximum growth to examine the

interannual variability and any possible changes during ontogeny. The curvature of

the shell however made determining the exact positioning of the line of maximum

growth difficult, especially during the earliest growth where the shell curvature is

greatest. The transect taken closest to the maximum growth axis has, in order to

distinguish it from transects taken parallel to it, being referred to as the transect of

maximum growth axis. Any deviation from the true maximum growth axis is

particularly significant if the trace element deposition is not homogeneous

transversely across the same band.
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Therefore, multiple parallel linescans were carried out over the latter part of

the shell with tracks ~25-100 m apart, with a few short transects measured ~750 m

from the main transect. These transects explore whether results are reproducible along

a band, i.e. whether trace elements concentrations are independent of distance from

the maximum growth axis. A number of spot analyses were also taken to check for

any evidence of superficial contamination, as the spot analysis provides a depth

profile. Additionally, a series of spots were taken along a single annual termination

band to measure any lateral changes occurring at the growth check.

A more limited analysis was also carried out on U228, with two short transects

(700 m covering 1997-2000) covering all three elements (Sr, Mg, and Ba) and with

one long transect covering 12 years (i.e. 1988-2000) (Figure 3.4c). Only Sr/Ca was

analysed in the latter as Sr/Ca has the highest concentration and the most detailed

XAFS data of the three elements (see Chapter 2). This allowed the more of the umbo

to be analysed, providing a long time series for comparison of Sr/Ca in the two

different shells. This allows further evaluation on whether Sr/Ca fluctuations are

linked to external forcing mechanisms or driven by internal mechanisms.
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Figure 3.4a: Schematic of sampling within the prismatic layer of the umbo.
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Figure 3.4b: Location of transects and spots analysed in the prismatic layer of the

umbo of A. islandica specimen 248.
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Figure 3.4c: Location of transects analysed on U228 in the prismatic layer of the

umbo of A. islandica specimen 228.
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U248 linescan
(+U228 short

transects)

U248 spot
mode

U228
(increased spot

size)

Wait time 10 5

6
Li 10 5 -

10
B 10 5 -

26
Mg 5 3 -

27
Al - 2 -

30
Si 5 4 -

44
Ca - 2 -

48
Ca 5 - 2

54
Fe 5 - -

55
Mn - 20 -

40
Ca

40
Ca 2 - 2

88
Sr 5 2 5

138
Ba 15 15 -

197
Au+

40
Ca - 2 -

238
U - 20 -

Table 3.1: Count times (s) of the isotopes measured for the umbo of shell 248 and

shell 228. Wait time provides a burn-in time. Table includes isotopes not considered

in the present study (but were given to provide a reference time for each spot cycle).

3.3.3 Data processing

Measurement of possible interference of 44Ca2-dimer was carried out by measuring

the 40Ca2-dimer and using known isotopic abundances to estimate the counts at mass

88 that resulted from 44Ca44Ca. This was found to contribute <0.2 % of 88Sr counts

and was therefore ignored in subsequent calculations.

OKA carbonatite and NCC (Norman Cross calcite) were used as external

standards in both linescan and spot mode. The relative ion yields (RIYs) of Mg, Sr
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and Ba to Ca were estimated based on the carbonate standard OKA (Ca concentration

= 40.04 %). NCC showed greater compositional heterogeneity (see Table 3.2) and

hence OKA was chosen as the primary standard. Analyses of Si and Fe were used as a

check for contamination in U248 as they are present in polishing media but largely

absent from the aragonite.

In spot scan mode collect 15 cycles of data were collected on the same spot, of

which the last 10 were averaged (i.e. in effect 400 s of pre-burn are applied before the

data are used). Reproducibility of spot analysis was calculated as 2 /√n where n is

the number of cycles (10) and  was calculated from the standard deviation from the

mean of last 10 cycles. In linescan mode, only one cycle of data is collected before

moving onto the next analysis. Spotscan mode allows changes in element to calcium

ratios to be measured, this is particularly important for determining any evidence of

superficial contamination. Linescan mode, in contrast, allows more data to be

collected in the same time interval and the pre-burn is shorter.

OKA was used to calculate concentrations, as calcite is the closest matrix to

that of the aragonite matrix of the A. islandica shell available, and as discussed earlier

was found to be more homogeneous than NCC. However, OKA is a calcite standard

and the shell is a mixture of aragonite and organics, hence there is a matrix contrast

and potentially a systematic error in the estimates of concentration. The

concentrations of the standards, together with typical counts of A. islandica (in both

linescan and spot mode) are shown in Table 3.2. Precision of standards in linescan

mode quoted is the average standard deviation (2) measured from multiple analysis

of the standard. Reproducibility of the spot was calculated by the typical standard

error, calculated by 2n where n is the number of cycles for the spot. It was not

possible to calculate the reproducibility of linescan measurements on A. islandica due
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to the heterogeneity of the sample. Estimates of the limit of detection were calculated

from the three times the maximum number of counts per second at mass 7 divided by

the number of counts per second at the mass of interest (e.g. 26Mg). The limits of

detection were 7.1 x 10-6 mmol/mol, 1.7 x10-4 mmol/mol and 3.6 x10-5 mmol/mol for

Mg/Ca, Sr/Ca and Ba/Ca respectively.

Contamination check and data filtering

During linescan analysis, positioning of the beam to avoid imperfections was

not possible and hence post-analysis data filtering is applied. Counts at mass 28

(nominally Si) and mass 54 (54Fe and 27Al2
+) were collected to provide a

contamination check, as Si, Fe and Al are not present in high concentrations in

bivalve aragonite but present in the polishing media. Analysis within 20 m of the

edge between the shell and epoxy resin were discarded since the edges of the samples

attract systematically significant contamination. For U228 linescans, in which only

Sr/Ca data were collected, no contamination checks were analysed as initial analysis

showed Sr/Ca to be relatively robust when encountering minor pits and surface

imperfections. However, analyses on visible cracks in the track were removed since

Sr/Ca values are affected when cracks are encountered (data from the present study

and Finch et al., 2003b). It is important to check there is no correlation between

“contamination indicators” (i.e. Si and Fe) (see Allison and Austin, 2003) and the

trace elements analysed which would indicate a dependence on the variations in a

profile to variable degrees of contamination.

The distribution of the linescan data points are left-skewed and therefore

lognormal data was taken of each data point of Sr/Ca, Mg/Ca and Ba/Ca and plotted

against lognormals of Si/Ca and Fe/Ca (Figures 3.5-3.7) to determine if any
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covariation could be seen. Lognormal plots of Sr/Ca show no relationship to either

contamination indicators (Si/Ca and Fe/Ca). The relationship of lognormal plots of

Mg/Ca to Si/Ca and Fe/Ca shows that Mg/Ca is sensitive to contamination, although

there is a high degree of scatter, with R2 values of 0.6 and 0.5 for log(Si/Ca) and

log(Fe/Ca) respectively. Ba/Ca shows some evidence of contamination, with

log(Ba/Ca) showing R2 values of 0.1 and 0.2 to log(Si/Ca) and log(Fe/Ca)

respectively. Allison and Austin (2003) used t-testing to identify data that shows a

strong correlation with the contaminants, however the non-normal distribution and

size of the present dataset prohibits this. Measurements of Si/Ca and Mg/Ca show that

the contamination can be significant through the dataset. Ba/Ca shows that the

correlation with contamination is only at low Ba/Ca. When low Ba/Ca

(<0.01 mmol/mol) are excluded, the R2 values decreases to 0.02 for the log(Ba/Ca) vs

log(Si/Ca), with similar decrease for log(Fe/Ca), indicating that only at low Ba/Ca, is

the contamination significant.

Spot data provides additional indication of surface contamination. In

particular, it allows a better understanding of how many counts are attributable to

surface contamination.

During the burn time of spot analysis (typically 15 cycles each lasting 70 s),

changes in ratios can occur due to the difference in the relative efficiencies of

sputtering between the two. However, an exponential decrease in the first few cycles,

suggests that surface contamination is present, with the area from which surface

contamination is generated decreasing with depth. Therefore, by examining changes

between the first five cycles to those in later cycles should indicate whether there is

significant contamination. Comparison to OKA indicates the effects of sputtering,

although within a calcite (rather than biogenic aragonite). Three spots analyses are
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shown on Figure 3.8, one of the OKA standard and two on A. islandica (spot 10 and

15). Spot 10 shows higher Mg/Ca and Sr/Ca than spot 15, with Mg/Ca of 0.0014 and

Sr/Ca of 0.054 in the first cycle.

Sr/Ca spot measurements in A. islandica show an increase during the cycles

(see spot 10 and 15) with the change of similar magnitude to that seen in the OKA

standard. There is no exponential decrease during the first few cycles. The range of

Sr/Ca measured within the spot data (0.8 mmol/mol to 2.2 mmol/mol) is similar to

that of the linescan data (0.7 to 2.6 mmol/mol), indicating that the spot data was

representative of the fluctuations measured during linescan analyses. Note the ratios

to Ca could not be compared directly, as spot mode is Me/44Ca, and in linescan

Me/48Ca, and hence the calculated values in mmol/mol are quoted.

Mg/Ca spot data shows a range of 0.2 to 0.6 mol/mol measured from the last

10 cycles of 15, and the decrease is similar to that seen within the OKA. Mg/Ca in

spot 10 and 15 indicate a decrease during the cycles, but the rate of decrease is only

slightly different to that in OKA, which can be attributed to the difference in matrices.

Significantly, there is no exponential decrease during the first few cycles, which

would be indicative of surface contamination. Therefore, this indicates that such

measurements are likely to be representative fluctuations in Mg/Ca within the shell

rather than superficial contamination.

The highest Mg/Ca measured in spot analyses was 1.0 mmol/mol (spot 2)

occurring during the first cycle, with the 10 cycles giving a mean concentration of

0.43 mmol/mol. The decrease during the spot was similar to that seen in spot 10 and

15. In linescan mode however calculated values were typically ranged from 0.3 to

2.0 mmol/mol, with slightly less than 5% of the Mg/Ca data being >2.0 mmol/mol

and 0.7% of the data >4 mmol/mol. Thus approximately 13% of the Mg/Ca data in
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linescan mode are >1.0 mmol/mol, the maximum initial concentration measured in

spot mode. Therefore, if the positioning of the spots had been chosen at random at

least one of the spots (statistically 1.25 spots) should have shown values

>2 mmol/mol. Linescan data was measured after 30 s whereas in spot mode Mg/Ca

was analysed after 10 s i.e. linescan has more burn-in time before it is measured

compared to the first cycle in spot mode. The lack of spot measurements showing

high Mg/Ca (i.e. >1.0 mmol/mol) appears to be due to the location of the spot

analyses. All spot analyses were taken during the latter years of growth, when as

Figure 3.12 highlights there are less high Si/Ca values (see Figure 3.4b for positions).

As discussed previously, the plot of the linescan data points for Mg/Ca show

that there is a strong correlation between Mg/Ca and the contamination indicators

(Si/Ca and Fe/Ca). Comparison of the linescans (Figure 3.12) highlights that the

extreme Mg/Ca points >0.03 are generally associated with high Si/Ca (>0.003).

Exclusion of the higher Mg/Ca i.e. >1.0 mmol/mol (i.e. the limit of the spot data)

shows that R2 value decreases to 0.2 implying that there is still some correlation

between the Mg/Ca and Si/Ca fluctuations. However, some initial exploration of the

data can provide preliminary investigation, which can then be explored further in the

following ICPMS chapter.

Spot analyses shows a maximum of Ba/Ca of 2x10-4, which represents

0.014 mmol/mol, with linescan measurements varying from ~0.005 to

>0.9 mmol/mol. Spot data 10 and 15 show that Ba/Ca decreases exponentially during

the first 1-2 cycles (this is not seen in the OKA standard), suggesting that superficial

contamination is present i.e. Ba/Ca counts are relatively stable after the first two

cycles (i.e. 140 s). However, in linescan mode, Ba/Ca counts are taken after 57 s and

hence not all the superficial contamination will have been removed. Surface
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contamination contributes typically 3 x 10-5 counts to the overall counts of Ba/Ca in

spot mode. Comparison of the timing Ba/Ca and Si/Ca in linescan mode showed

significance difference to that of Mg/Ca. By disregarding low Ba/Ca measurements

(<1.0 mmol/mol), the correlation between the Ba/Ca and Si/Ca becomes insignificant.

Thus, synthesising data from both spot and linescan contamination analyses indicates

that contamination may only become significant at low concentrations, but at higher

concentrations, the relative contribution of contaminants becomes insignificant. Thus,

the effect that contamination has at higher concentrations of Ba/Ca (>0.01 mmol/mol)

is minimal.
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Table 3.2: Concentrations within standards OKA, NCC and A. islandica, together

with counts (per second) and calculations of the precision. Reproducibility for the

spots was calculated by 2/√n (where n is the number of analyses). Note the higher

counts for linescan is because the energy offset was 75 eV during spot mode, thereby

reducing the counts. *Calculated concentrations include measurements affected by

contamination.
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Figure 3.5: Lognormal plot of Si/Ca vs. Sr/Ca and Fe/Ca vs. Sr/Ca for linescan data

from the prismatic layer of the umbo of A. islandica specimen 248.
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Figure 3.6: Lognormal plots of Si/Ca vs. Mg/Ca and Fe/Ca vs. Mg/Ca from linescan

data from the prismatic layer of the umbo of A. islandica specimen 248.
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Figure 3.7: Lognormal plots of Si/Ca vs. Ba/Ca and Fe/Ca vs. Ba/Ca from linescan

data from the prismatic layer of the umbo of A. islandica specimen 248.
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Figure 3.8: Spot analysis through burn cycles of Mg/Ca (magenta line), Sr/Ca (black

line), Ba/Ca (blue line), Si/Ca (red line) of (a) OKA (b) spot 10 (c) spot 15. Note all

elements show some change during the cycles due to sputtering but it accounts for

<20%. Note for spots on A. islandica decrease of Mg/Ca counts of ~50% whereas

changes Sr/Ca were <25% equivalent to that in the OKA standard. Ba/Ca shows

significant decrease in the first two cycles but then is relatively steady.
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3.4 Results

All the trace elements vary significantly within the prismatic layer of the umbo; with

variations between the elements not occurring synchronously (see Figure 3.9). The

results for U248 and U228 of trace element analysis are presented below.

3.4.1 Sr variation in U248

Sr/Ca increases coincide with the annual termination band, typically >1.5 mmol/mol

but broadly increasing with age (Figure 3.10). These large increases in Sr/Ca at the

annual growth check are deposited over short distances (typically <100 m) and are

defined as Sr/Ca peaks for the remainder of the discussion. The peaks consist of more

than one data point (Figure 3.11). In addition, during 1998 a doublet (noted visually)

is also recorded with an increase in Sr/Ca of ~2.2 mmol/mol equivalent or greater to

those at the annual growth check. During the more juvenile stages of growth, there is

increased growth rate (i.e. more shell material is deposited per year in the juvenile

years) and within the growth bands there is an increase in Sr/Ca e.g. Such variation

intraannually is not seen during the latter years of growth, with variation e.g. in 1993

being <0.2 mmol/mol. While there is significant variation during the growth bands of

1987-1989, particularly in 1988 varies from 0.9 to >1.3 mmol/mol, there is no pattern

in the Sr/Ca variation within the growth bands between years. In 1988, the maximum

occurs mid-way through the band, but in other years, there is no determinable pattern.

3.4.2 Mg variation in U248

As discussed above, Mg/Ca measurements were affected by contamination

that could not be removed by data filtering. Therefore, the interpretation of the Mg/Ca

results presented here is limited.
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Mg/Ca data showed significantly more contamination during the earliest years

of growth and therefore only the last ~7 years have been examined. Mg/Ca peaks

exceed 0.8 mmol/mol with the average level being around 0.4 mmol/mol, in addition

the peaks with the growth bands are often considerably more than those associated

with the annual growth check (i.e. >0.4 mmol/mol) (Figure 3.12).

Prior to 1996, this correlation is much more limited with increases in Mg/Ca

occurring independently of Sr/Ca peaks. Mg/Ca varies from 0.4-2 mmol/mol, with

single data points exceeding these levels. In order to establish which Mg/Ca were

affected by contamination, Si/Ca values were plotted for comparison (Figure 3.14).

These show that Si/Ca values were low during the first 1000 m of measurement,

with no extreme Mg/Ca values but after which there is increasing number of high data

points for both Si/Ca and Mg/Ca. In addition, there is an increase of ~0.2 mmol/mol,

4300-6700m from growth edge, in the Mg/Ca non-extreme values, which is

associated with an increase in the average (non-extreme) values of Si. This distance

was covered by a single transect (T8). The transects were analysed as a series of

straight lines, due to complexity of measuring curved transects, with the direction of

measurement changed at the end of each transect to correct for the curvature of the

shell. The increase in Mg/Ca and Ba/Ca in T8 is not discernible in the Sr/Ca data,

indicating that this increase is due to contamination (Figure 3.13).

In the latter years of growth Mg/Ca increases at the annual termination band as

does Sr/Ca, but the relative increases in counts are inconsistent (see Figure 3.13 for

increased resolution). While they both co-vary at the annual termination band Mg/Ca

increases ~10 m later than Sr/Ca, suggesting that they have different controls within

the termination band.
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3.4.3 Ba variation in U248

Ba/Ca increase does not occur at the growth check (as Mg/Ca or Sr/Ca). Ba/Ca varies

from 0.02-0.1 mmol/mol, with values typically ~0.02 mmol/mol with sporadic

increases exceeding 0.06 mmol/mol (see Figure 3.14). Ba/Ca peaks do not occur

every year, nor within the same part of the growth band. There was no correlation

between the Ba/Ca and Si/Ca counts at these high points and unlike Mg/Ca high

values, high Ba/Ca are analysed during more than one spot, i.e. each peak is made up

of typically three or more spots. Therefore, such Ba/Ca increases are not due to

contamination.

3.4.4 Lateral variation of the trace elements in U248

Parallel transects on shell U248 were analysed ~60 m and 750 μm from the

maximum growth axis (3800-5000 μm from the growth edge during 1988-1989). A

five point running average has been used for all three transects to compensate for any

small differences in position in the band analysed. These show significant lateral

change (i.e. greater than the estimated error) in the trace elements along individual

bands. For Sr/Ca, the profile is very similar but the absolute values increase away

from the maximum growth axis (Figure 3.15a) by ~25%. Slight offsets in the position

of the Sr/Ca maximal result from differences in shell extension rates, which are

highest at the maximum growth line. Mg/Ca does not show a consistent offset

between transects despite using a five point running average (Figure 3.15b). Ba/Ca

shows an offset at the higher values, but not at the lower ones (Figure 3.15c), however

as discussed previously, values <0.01 mmol/mol were significantly affected by

contamination. Analysis of a second set of parallel transects taken 25 m apart (close

at the growth edge) (Figure 3.16) again show that the Sr/Ca and Ba/Ca trends
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replicate well across the shell, although an offset in the absolute values of ~10%. For

Mg/Ca while some points are replicated (with an offset), others are not. This suggests

either some of these features are likely to do be due to contamination or Mg/Ca

incorporation is very heterogeneous. The replication of some Mg/Ca along the band

may reflect the accumulation of contamination along the laminae.

Spot analysis provides further support for the above findings (Table 3.3) with

a lateral offset in Sr/Ca, whereas Mg/Ca variation is within error. Ba/Ca shows

variation across the termination band, but all values (for spot 16-20) are

<0.01 mmol/mol. As previously discussed, where Ba/Ca was <0.01 mmol/mol the

effect of contamination is significant.

Table 3.3: Lateral variation in concentration of Sr/Ca, Mg/Ca and Ba/Ca in single

annual termination band (1993) in the prismatic layer of the umbo of shell 248, with

increasing distance from the maximum growth axis. Precision is given as the

precision of the mean 2σ/√10 (for 10 cycles) (see method for further details). Note

that for Ba/Ca values <0.01 mmol/mol show significant correlation to contamination.

Therefore for spot data 16-20 where Ba/Ca is <0.01 mmol/mol, the effect of

contamination is significant.

Spot
number

Distance from
maximum
growth line

Sr/Ca
mmol/mol

Mg/Ca
mmol/mol

Ba/Ca

mmol/mol x10-3

16 410 1.06 ± 0.02 0.18 ± 0.02 0.31 ± 0.1
17 680 1.34 ± 0.04 0.17 ± 0.02 11.0 ± 1.2
18 940 1.43 ± 0.04 0.17 ± 0.02 12.0 ± 0.3
19 1100 1.62 ± 0.04 0.21 ± 0.02 5.7 ± 0.2
20 1390 1.57 ± 0.03 0.22 ± 0.02 8.3 ± 0.2
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3.4.5 Trace element analysis of U228

Analysis of U228 was limited to two short transects measuring the same

elements as U248; with a longer transect measuring only Sr/Ca. The short transects

show variation of Sr/Ca 0.9-1.8 mmol/mol and Mg/Ca varying 0.25-0.7 mmol/mol.

Both Mg/Ca and Sr/Ca show peaks at the annual termination bands (Figure 3.17) with

Mg/Ca also showing peaks within the growth band. These peaks are similar in

magnitude or larger than the Mg/Ca peak present at the annual termination band. The

largest peak within the growth band is 0.52 ± 0.005 mmol/mol compared to 0.5-0.7 ±

0.005 mmol/mol at the growth check. Ba/Ca varies 0.006-0.018 mmol/mol, and does

not correlate with Mg/Ca, Sr/Ca, or the annual termination bands.

Sr/Ca peaks in U228 also occur at the annual bands in the later years of

growth (with peaks around 1.7-1.9 mmol/mol), but during the juvenile stages, these

highly defined peaks at the termination band are not visible. Instead, there is a broad

increase consistently throughout the year. The annual termination bands also become

more diffuse and can cover over 150 m with values up to 1.5 mmol/mol.

3.4.6 Comparison of U228 and U248

Both shells show generally the same pattern of Sr/Ca behaviour, but the

increase in Sr/Ca varies. High Sr/Ca is found at the growth checks with Sr/Ca

variation within the growth bands occurring in both shells in the younger part of the

shell. Both shells also show Sr/Ca increases at the doublet (which was noted visually

in both shells) in 1998. The transition from high Sr/Ca peaks at the growth checks to

little or no increase of Sr/Ca at the growth check varies significantly between the

shells. For example, high Sr/Ca peaks are present in approximately the last 12 years of
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growth in U248 can be clearly distinguished whereas in U228 the pattern is more

complex with significant variation during the growth band.

Comparison of U228 and U248 (Figure 3.19a with Figure 3.19b highlighting

the first 2000 m measured) shows the range of Sr/Ca concentrations within U228 is

less variable. Sr/Ca values in U228 have a maximum which never exceeds

2 mmol/mol, and is >10% less than those of U248 (where the maximum can be

>2.4 mmol/mol). Both shells show Sr/Ca peaks at the annual termination band as well

as at the doublet in 1998.

In shell 248, during 1998 the outer shell prismatic layer was damaged, but this

shows no influence on Sr/Ca in the umbo (see Figure 3.11) (no visual record of the

damage was seen in the umbo).
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Figure 3.9: Variation of trace elements Sr, Mg and Ba (unfiltered data) in the

prismatic layer of the umbo of A. islandica specimen 248. The red lines mark the

position of the growth checks determined visually for each year (see section 1.2.2). D

signifies the presence of a doublet just prior to the main annual growth check. 2was

0.9% Sr/Ca, 5.1% Mg/Ca, 1.8 % Ba/Ca (too small to be shown on the figure). Mg/Ca

analyses in spot mode with a maximum of 1.0 mmol/mol showed no evidence of

contamination, suggesting low concentrations may reflect Mg/Ca fluctuations in the

shell, but Mg/Ca shows correlation to Si/Ca indicating that higher Mg/Ca may be

subject to contamination. Ba/Ca data below 0.01 mmol/mol showed significant

correlation with Si/Ca.
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Figure 3.10: Sr/Ca variation in prismatic layer of the umbo of A. islandica specimen

248. The red lines mark the position of the growth checks determined visually for

each year (see section 1.2.2), D signifies the presence of a doublet just prior to the

main annual growth check. 2 error was too small to be shown (0.9%). T8 refers to a

specific transect taken during which low Mg/Ca and Ba/Ca both see elevated

concentrations, this cannot be seen in Sr/Ca analysis.
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Figure 3.11: Sr/Ca fluctuations within the first 2000 m of analysis of the prismatic

layer of the umbo analysis of A. islandica specimen 248. The red lines mark the

position of the growth checks determined visually for each year (see section 1.2.2).
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Figure 3.12: Mg/Ca (top) compared with Si/Ca (bottom) data for the prismatic layer

of the umbo of A. islandica specimen 248. Data shown is not filtered and shows

evidence of significant contamination, with correlation with Si/Ca increases. The red

lines mark the position of the growth checks determined visually for each year (see

section 1.2.2). D signifies the presence of a doublet just prior to the main annual

growth check. 2 on the OKA standard for Mg/Ca was 5.1%.
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Figure 3.13: Enlargement of Sr/Ca (black) and Mg/Ca (magenta) peaks 0-1500 m

from growth edge (i.e. the most recent period of growth). Note high single values of

Mg/Ca start after 1000 m, which are >1.2 mmol/mol. Mg/Ca shows some agreement

with Sr/Ca but peaks after Sr/Ca in the narrowest bands. The red lines mark the

position of the growth checks determined visually for each year (see section 1.2.2). D

signifies the presence of a doublet just prior to the main annual growth check. Sr/Ca

error (2) is 0.9% (too small to be shown). Mg/Ca concentrations measured by spot

analyses to the maximum concentration measured of 1.0 mmol/mol showed no

evidence of superficial contamination, but higher concentrations may be affected by

superficial contamination with Mg/Ca linescan data correlating significantly with

Si/Ca.
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Figure 3.14: Ba/Ca fluctuations in the prismatic layer of the umbo region of A.

islandica specimen 248. Transect 8 (T8) is highlighted (within which increased

concentrations of Ba/Ca were recorded). The red lines mark the position of the growth

checks determined visually for each year (see section 1.2.2). D signifies the presence

of a doublet just prior to the main annual growth check. 2 error was 1.8% (too small

to be shown). Note that low concentrations Ba/Ca (<0.01 mmol/mol) is sensitive to

contamination, and thus is not shown.
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Figure 3.15a: Parallel Sr/Ca transects from the prismatic layer of the umbo of A.

islandica specimen 248 using five point running average (during 1988-1989). The

slight offset of the peaks is due to curvature of the shell.
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Figure 3.15b: Parallel Mg/Ca transects from the prismatic layer of the umbo of A.

islandica specimen 248 using five point running average (during 1988-1989). Slight

offset of the peaks would be expected due to curvature (see Figure 3.15a) but no

consistent profile is visible. Mg/Ca concentrations measured by spot analyses to the

maximum concentration measured of 1.0 mmol/mol showed no evidence of

superficial contamination, but higher concentrations may be affected by superficial

contamination with Mg/Ca linescan data correlating significantly with Si/Ca.
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Figure 3.15c: Parallel transects of Ba/Ca the prismatic layer of the umbo of A.

islandica specimen 248 using five point running (during 1988-1989 growth band). A

slight offset of the peaks is due to curvature of the shell. Low Ba/Ca concentrations

(<0.01 mmol/mol) are sensitive to contamination, showing significant correlation with

Si/Ca (see Figure 3.7).
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Figure 3.16a: Parallel transects of Sr/Ca taken <25 m apart around maximum

growth axis. Upper figure shows raw data, lower figure shows (5 point running)

average values.
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Figure 3.16b: Parallel transects of Mg/Ca taken <25 m apart around maximum

growth axis. Upper figure shows raw data, lower figure shows (5 point running)

average values. Data is shown unfiltered. Mg/Ca concentrations measured by spot

analyses to the maximum concentration measured of 1.0 mmol/mol showed no

evidence of superficial contamination, but higher concentrations may be affected (see

Figure 3.6 and text for further details).
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Figure 3.16c: Parallel transects of Ba/Ca taken <25 m apart around maximum

growth axis. Upper figure shows raw data, lower figure shows (5 point running)

average values. Ba/Ca <0.01 mmol/mol is sensitive to contamination (see text for

further details).
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Figure 3.17: Sr/Ca fluctuations in the prismatic layer of the umbo region of A.

islandica shell 228. The red lines mark the position of the growth checks determined

visually for each year (see section 1.2.2). D signifies the presence of a doublet just

prior to the main annual growth check.
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Figure 3.18: Sr/Ca, Mg/Ca and Ba/Ca fluctuations from short transect analysis of

prismatic layer of the umbo of A. islandica shell 228 taken using a 10 m beam. The

red lines mark the position of the growth checks determined visually for each year

(see section 1.2.2). D signifies the presence of a doublet just prior to the main annual

growth check. Note that like U248, U228 shows increase at doublet of Sr/Ca and

Mg/Ca. Ba/Ca shows very little variation with no sporadic peaks present. Ba/Ca

<0.01 mmol/mol are sensitive to contamination (see text for further details).
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Figure 3.19a: Comparison of Sr/Ca measurement from the prismatic layer of the

umbos of shell 228 (upper figure) compared to shell 248 (lower figure). The red lines

mark the position of the growth checks determined visually for each year (see section

1.2.2). D signifies the presence of a doublet just prior to the main annual growth

check. 2 was too small to be shown (0.9%).
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Figure 3.19b: Comparison of the Sr/Ca fluctuations in the prismatic layer of the

umbos of shell 228 (upper diagram) compared to shell 248 (lower diagram) insert of

0-2000 m. The red lines mark the position of the growth checks determined visually

for each year (see section 1.2.2). D signifies the presence of a doublet just prior to the

main annual growth check. 2 error bars were too small to be shown (0.9%).
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3.5 Discussion

Understanding the controls on trace elements will provide insights into the potential

of A. islandica to provide palaeoenvironmental reconstructions. In particular, whether

the trace element profiles are dominated by environmental factors or mainly affected

by internal changes such as changes in the shell architecture, shell growth rate or by

vital effects. Comparison of the two shells allows discussion on the similarities and

differences between their profiles (especially Sr/Ca where long profiles were taken in

both shells) and what may cause such differences.

3.5.1 Possible controls on Sr variation within A. islandica

Both U228 and U248 show Sr/Ca peaks at the annual growth check during the latter

years of growth. The magnitude of these peaks differs between the shells, but as

discussed earlier, there is a lateral variation within shells making direct comparisons

between shells difficult. The difference in magnitude of the Sr/Ca peaks is typically

<0.5 mmol/mol, but significantly this difference is not constant. If the maximum

growth line were not analysed in both cases, this could account for the offset between

the shells. In addition, it is possible that the trace elements could have heterogeneity

in the third dimension i.e. the site of cutting and polishing could result in trace

element offsets with depth (see Figure 1.2).

Both shells show Sr/Ca increases at the same doublet (identified by visual

inspection). The presence of Sr/Ca peaks at doublets provides a strong indication that

Sr incorporation is not temperature controlled, as this would require a significant

temperature excursion just prior to the growth check, something that is not seen in the

SST from Millport. The doublets are more likely to be a biological response. Schöne

et al. (2005b) reported cessation in growth from mid-September to mid-November
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due to spawning (or pseudo-spawning in immature specimens), with growing

recommencing for one month prior to the annual growth check i.e. this would fit the

profile of the doublet with a short second growing season. Sr/Ca increases at the

doublets are therefore likely to relate to changes associated with biological changes or

relate to the formation of the growth checks.

Two studies of the partitioning of Sr/Ca between abiogenic aragonite and

seawater show the temperature dependence is ~0.039 mmol/mol/ºC (Kinsman and

Holland, 1969; Gaetani and Cohen, 2006). Although Kinsman and Holland (1969)

presented Sr/º C aragonite calibration between 16-90 º C, they found mixed phases of

CaCO3 below 30 ºC. A. islandica lives in waters <16 ºC but deposits single phase

aragonite, suggesting that conditions present in inorganic experiments of Kinsman

and Holland (1969) may not be representative of those found within the bivalve. This

could include differences in physical conditions e.g. pH, but also biological effects

e.g. organic matrix which is known to control the phase deposited (Belcher et al.,

1996; Falini et al., 1996; Marin and Luquet, 2004). Closer analysis of the experiments

of Kinsman and Holland (1969) reveals that only two samples were taken in the

temperature range 16-30 ºC, with no significant difference between Sr/Ca uptake of

the two (t test, P>0.4) (Kalish, 1989). The range of temperatures that are applicable to

ecological studies may not be significant enough to affect trace element conditions

(Kalish, 1989; Toole and Nielsen, 1992) with Sr/Ca varying ~0.039 mmol/mol/ºC

(Kinsman and Holland, 1969; Gaetani and Cohen, 2006).

Irvine Bay has a maximum temperature variation of 8 ºC, which would equate

to ~0.31 mmol/mol Sr/Ca, less than a third of the observed fluctuations. Research in

corals of the temperature dependency of Sr/Ca uptake has however shown it to be

approximately double that reported in abiogenic aragonite (Sinclair et al., 1998 and
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references therein) but this would still not account for the extent of the fluctuations

recorded with A. islandica.

Strong Sr/Ca peaks are present only in the latter years of growth, when the

growth rate is considerably decreased. In U248, when the growth rate is >1000 m/yr

the Sr/Ca peaks are no longer present, but the pattern in U228 is less clear. In these

younger phases of life, the annual termination bands are much wider and are

composed of a series of multiple laminations. Sr/Ca increases within the growth band

are almost symmetrical in U248 ranging from 0.9-1.3 mmol/mol and 1.0-

1.2 mmol/mol in U248 and U228 respectively. The positive relationship of Sr/Ca with

the warmer months (the exact months of deposition are unknown) is at variance with

inorganic models for Sr/Ca substitution that indicate that Sr/Ca is inversely related to

temperature (Kinsman and Holland, 1969; Gaetani and Cohen, 2006).

Thus, changes in Sr/Ca behaviour with ontogeny could be understood in terms

of shell growth rate. However a paradox exists, if Sr/Ca variation is simply dependent

on shell growth rate as the highest Sr/Ca concentrations are present both at the annual

terminations during latter years of growth when shell growth rate is slowest, and

within the growth bands during the earlier years of growth when shell growth rate is

fast. Hence, if shell growth rate is an important factor, then it must operate via two

separate mechanisms. These two periods of growth are discussed independently

below.

Sr during the latter years of growth

While high Sr/Ca in the latter years of growth could coincide with colder

seawater temperatures, abiogenic precipitation experiments of Kinsman and Holland

(1969) show that variation in Sr/Ca is too large to be accounted for by temperature-
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controlled substitution. The presence of Sr/Ca in the doublets also indicates this is not

exclusively temperature controlled (with doublets believed to be caused by either

spawning or changes in growth rate). Epplé et al. (2006) hypothesised that Sr/Ca

peaks at the growth checks represented winter temperatures. Qualitative comparison

of the Sr/Ca during the four warmest winters (1989, 1998, 1999, 2000) and the four

coldest (1993, 1994, 1996, 2001) shows that Sr/Ca could not be used to predict which

of the winters was warmer or colder. Therefore Sr/Ca, even indirectly does not

provide an indication of temperature at the growth checks.

Sr/Ca peak at the growth check could result from increased anaerobiosis and

dissolution of the shell with preferential deposition of Sr/Ca in low energy (and low

temperature) environment. Dissolution of the bivalve shell occurs within minutes of

the commencement of anaerobic respiration (Dugal, 1939; Crenshaw and Neff, 1969;

Wada and Fujinuki, 1976) as the carbonate buffers against acidosis of the tissue. In

other words, the lack of oxygen causes the production of acid (H+), which is then

buffered by the dissolution of the CaCO3 shell. A. islandica undergoes voluntary

anaerobiosis as glycogen stores last much longer under anaerobic conditions, termed

“energy-induced anaerobiosis”, as well as submersion in the sediment providing

protection from predators (Oeschger, 1990). The storage rather than excretion of

energy-rich fatty acids is an adaptation to limit the loss of valuable energy resources,

which can be re-oxidised during aerobic conditions (Oeschger, 1990). Lutz and

Rhoads (1980) summarised that the dissolution occurred not only within the pallial

line (as stated by Crenshaw, 1980) but also at the growing edge. The pallial line is the

line where the mantle muscles are attached, and therefore the extent of the soft tissue.

In fact, in a laboratory experiment lasting 50 days (July-August), A. islandica

typically spent 1-7 days in anaerobic respiration with one specimen spending up to 24
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days (Taylor, 1976). Lutz and Rhoads (1977) hypothesised that the presence of

increased concentration of organics at growth checks could result from anaerobiosis-

related dissolution. Therefore, dissolution effects would be strongest at the growth

checks, when the highest concentration of organics occurs.

Such a mechanism could also explain why the margins of the shell (i.e. the

furthest away from the maximum growth line) show elevated Sr/Ca. Areas such as the

margins, where the shell deposition is much less, would be susceptible to more

dissolution events as there would be less material deposited prior to the next

anaerobic event. However, an increase in Sr/Ca would only occur with acidosis if low

Sr/Ca areas were preferentially dissolved. Finch and Allison (2003) plotted the solvus

for aragonite-strontianite system based on the data of Plummer and Busenberg (1987).

The composition of the shell of A. islandica lies on the Sr poor-side of the solvus and

hence dissolution of material with a range of Sr compositions will preferentially start

with Sr-poor aragonite. This process will however only increase Sr/Ca if low Sr/Ca

aragonite is not redeposited (i.e. the proportion of high Sr/Ca increases), and cannot

exceed the maximum initial Sr/Ca incorporation. To determine the maximum

incorporation, Sr/Ca concentration deposited within the growth bands when the

specimen was younger, were examined, as this area is unlikely to be affected by

dissolution. The maximum found in this area in U248 was 1.5 mmol/mol, less than

the recorded maximum Sr fluxes during the latter years, at the annual growth check

(>2.0 mmol/mol). Therefore, dissolution cannot be the main controlling factor.

Analysis of the outer shell prismatic layer should provide further indication of

whether dissolution could influence Sr/Ca. The accumulation rate of shell is much

faster in the outer shell prismatic layer than in the prismatic layer of the umbo and

hence the impacts of dissolution would be less, as new material would be deposited
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faster. The prismatic layer of the umbo was examined by SEM (Scanning Electron

Microscopy), with the sample etched prior to analysis, in order to determine the

positions of the growth checks and hence the effects of any possible dissolution could

not be examined.

Sr/Ca could be linked to the organic content. The EXAFS (see Chapter 2)

results however suggest that Sr is ideally substituted in aragonite (i.e. randomly

substituted for Ca), thus providing independent verification that Sr is not hosted by

organics. However, Sr/Ca increases at the growth checks could result from changes in

the growth of the crystal due to the presence of organics. Organic material exerts

control over the nucleation of the crystal with the matrix acting as nucleation surface

and predefined mould, determining size and orientation of the crystals (Watabe and

Wilbur, 1960; Belcher et al., 1996; Mann and Ozin, 2003; De Yoreo and Dove, 2004;

Heinemann et al., 2006). It has been noted in calcite that different faces having

different affinities for trace elements, resulting in a zoning within the crystal (Reeder

and Grams, 1987; Paquette and Reeder, 1995; Reeder et al., 2001). This partitioning

may be more marked in aragonite as it has a lower symmetry than calcite and

therefore potentially a greater number of crystallographically distinct crystal faces

(Allison and Finch, 2004).

During SIMS the whole crystal is analysed since the spot size is larger than the

individual crystal size. The size of the crystals in the prismatic layer of umbo could

not be determined but those in the outer shell prismatic layer were <5 m, and

therefore it is extremely unlikely that the crystal size in the umbo would exceed this

i.e. be >10 m given its slower growth rate. Therefore, any intracrystal zoning would

not influence the SIMS analysis. If however organics modify the crystal shape (habit),

it may preferentially favour crystal growth on certain faces, which could modify the
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effective bulk partition coefficients. Paquette and Reeder (1995) found the offset in Sr

between the different faces of the same calcite crystal “is nearly always less than a

factor of two and more commonly just a factor of 1.2-1.4.” For example, one crystal

showed an increase of ~1000 ppm (from 1200 to 2200 ppm) between the two faces

i.e. 1.14 mmol/mol. It can be inferred from Finch et al. (2003b) that the lateral

variation across a non-biogenic aragonite crystal was about 50 ppm (from varying

from 100 to 150 ppm) i.e. increase of ~50%. Sr/Ca increases at the growth checks by

>100% and thus it suggests that it is unlikely to be the main contributory factor.

However, it should be noted that the change inferred from Finch et al. (2003b) data, is

for inorganic aragonite, whereas the partitioning for biogenic crystals may differ as

the matrix has a significant control on the crystal e.g. controlling the polymorph, the

size, shape and texture (Herman et al., 1988; Falini et al., 1996; Dietzel et al., 2004;

Sato et al., 2006).

Another possible mechanism is that the crystal growth rate impacts upon

Sr/Ca incorporation. Although there are a number of published papers relating

increased Sr/Ca with higher crystal growth rates (Stecher et al., 1996; Gillikin et al.,

2005a; Carré et al., 2006), none has reported low crystal growth rates associated with

high Sr/Ca and hence it seems unlikely that this is a mechanism in the present system.

It is more probable that high Sr/Ca peaks are controlled by biological or vital effects,

including changes in metabolic rate (e.g. Rosenberg and Hughes, 1991; Klein et al.,

1996a).

The control of vital effects is discussed further in the following (ICPMS)

chapter, but in summary, Sr/Ca uptake into the EPF could be controlled by the activity

of two enzymes Ca2+-ATPase and carbonic anhydrase (CA). The former pumps Ca2+

to the EPF while removing protons and the CA catalyses the reaction of bicarbonate
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to CO2. This can then diffuse through the membrane (Crenshaw, 1980; Cohen and

McConnaughey, 2003). Therefore, when Ca2+-ATPase activity increases, so does the

calcification rate (Gillikin et al., 2005a). As Ca2+-ATPase has a higher affinity for

Ca2+ than Sr2+ but uses similar pathways; Sr uptake should be inverse to growth rate

(Yu and Inesi, 1995; Ferrier-Pagès et al., 2002). Such a biological pathway or vital

effect could influence Sr/Ca.

A number of researchers (measuring in the outer shell prismatic layer) have

found that the annual growth check is marked by a decline in Sr/Ca (e.g. Stecher et

al., 1996; Ambrose et al., 2006) including in A. islandica (Toland et al., 2000).

Toland et al. (2000) took samples in the outer shell prismatic layer but close to the

umbo, where the growth rate was fast suggesting that a slow growth rate might be

integral in forming strong Sr/Ca peaks. However, it should be reiterated that all the

aforementioned research analysed the outer shell prismatic layer and not the prismatic

layer of the umbo.

Mya arenaria is also reported to have a sharp increase at the annual growth

check, (again measurements in the outer shell prismatic layer) (Palacios et al., 1994).

This is also an aragonite bivalve, with a long lifespan (typically 10-12 years and up to

28 years), which can also withstand long periods of anaerobiosis (Brousseau, 1978;

MacDonald and Thomas, 1980). In addition, Swan (1956) commented that shells Mya

arenaria with lower masses had lower Sr/Ca than heavier shells, with the latter being

characteristic of slower growing individuals. The bivalve Mercenaria mercenaria also

has a long lifespan (>50 years) but at the growth check (which occurred during the

summer month) there is no distinct changes at the organic rich regions of the shell

(Gillikin et al., 2005a). This indicates that Sr/Ca peaks at the growth check are not the
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result of a simple relationship with age. Further research is required to determine if

high Sr/Ca peak at the growth check could relate to a biological adaptation.

A number of controls including temperature, growth rate, dissolution at the

growth checks and modification of the crystal shape as well as vital effects have been

discussed as potentially influencing Sr/Ca at the growth checks. Changes in the

crystal shape caused by the organics can influence the partitioning of Sr in the

aragonite, thus could increase Sr/Ca at the growth check. Vital effects may also play

an important role in the uptake of Sr/Ca.

Sr within the growth band

As discussed earlier, Sr/Ca increases within the growth band, typically to

1.5 mmol/mol during the more juvenile section of the prismatic layer of the umbo.

Five possible mechanisms for controls on Sr/Ca at the annual growth check; 1)

temperature 2) selective dissolution 3) changes in the crystal shape 4) growth rate 5)

vital effects.

Sr/Ca substitution cannot be modelled successfully using thermodynamics

with the Sr/Ca variation exceeding that explicable by inorganic experiments (Kinsman

and Holland, 1969; Dietzel et al., 2004; Gaetani and Cohen, 2004). However, as

discussed earlier Sr/Ca temperature reconstructions from coral use a temperature

dependency that is much greater than expected by inorganic experiments (see Sinclair

et al., 1998 and references therein). While it could not explain all the variation within

A. islandica, Sr/Ca fluctuations in the growth bands may still provide some indication

of temperature changes.

The first issue to address in using Sr/Ca for a temperature reconstruction is the

lateral variation found within A. islandica. Increasing the lateral distance from the
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maximum growth axis by 750 m resulted in a change in Sr/Ca of up to 25%.

Assuming measurements were within 60 m of the maximum growth line the offset is

~ 5% equating to an offset of ±0.5 ºC (the average temperature being ~10 ºC). Sr/Ca

in two of the coolest years (1987, 1993) was compared to two warmer years (1989,

1999) in U248 to examine if there is any temperature influence. The average

temperature difference between these years was 1.5 ºC. Using the equation of Hart

and Blusztajn (1998) (where T (ºC) = 20.752[Sr/Ca mmol/mol)]-16.0) this would

equate to a Sr/Ca offset of ~0.8 mmol/mol. However the average Sr/Ca concentrations

of 1987 and 1989 overlap within error and 1999 Sr/Ca being slighted higher

(0.2 mmol/mol). As discussed earlier, Sr/Ca in the latter years generally, show

elevated concentrations particularly at the growth check and this may influence Sr/Ca

during the growth band. Therefore, comparison of two consecutive years such as 1989

and 1988 is more meaningful. Sr/Ca variation was 0.8-1.0 mmol/mol in 1989

compared to 0.8-1.3 mmol/mol in 1988. During the former the temperature variation

was 7.0 ºC (with a warmer average) compared to 8.1 ºC in the latter. Therefore,

greater variation in Sr/Ca in 1988 in U248 could be related to larger changes in

temperature. However, both shells show years with little or no variation within the

growth bands (Figure 3.19b) thus supporting the view that Sr/Ca variation within the

growth bands is not strongly temperature controlled. Changes in temperature, for

example, may influence the shell growth rate, which may in turn influence Sr/Ca

uptake.

The growth rate is much faster during the growth band than the growth check,

and therefore the impact of dissolution is likely to be minimal. No changes in organics

or crystal habit were observed in SEM analysis of the growth band. Therefore, these
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two mechanisms are unlikely to have a significant control on Sr/Ca during the growth

band.

Sr2+ incorporation into non-biogenic aragonite is independent of precipitation

rates over a range of 10-500 mol/m2/h (Kinsman and Holland, 1969; Mucci et al.,

1989; Zhong and Mucci, 1989). Growth rate in the prismatic layer of the umbo of A.

islandica is 400-5000 mol/m2/h (calculated from yearly growth rate in the prismatic

layer of the umbo, assuming 300 days a year growth, 24 hours a day, and that the

maximum growth axis has been selected and the crystals grew parallel to this axis).

Therefore, the faster growth rates are outside the ranges studies in the experiments of

Kinsman and Holland (1969). A number of researchers have suggested that growth

rate (including crystal growth rate) is an important control within bivalves e.g.

Mercenaria mercenaria and Spisula solidissima (Stecher et al., 1996), Mytilus edulis

(Putten et al., 2000), Protothaca staminea (Takesue and van Geen, 2004) and

Mesodesma donacium and Chione subrugosa (Carré et al., 2006).

Work by Watson (1996, 2004) showed that in inorganic calcite, the

concentration of Sr was much higher near the growth edge of the crystal and if the

growth rate exceeded the ability of the material to expel “impurities” from the

structure, they became incorporated into the material. Watson (2004) found where

growth rate was faster than 0.01 nm/s (equivalent to 1060 mol/m2/h), growth

entrapment of Sr occurs in calcite (i.e. kinetically controlled uptake would not be

accurately modelled by thermodynamics). Gaetani and Cohen (2004, 2006) showed

the same process was also applicable for aragonite crystals with the crystals being

enriched with trace components relative to the crystal-fluid equilibrium.

This implies that if the crystal growth in an organism exceeds the rate at which

impurities can be expelled, they will be incorporated at elevated concentrations. The
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growth rate of A. islandica in the early years of growth reaches a maximum of

0.04 nm/s. The growth rate was calculated using 1000m of growth per year,

assuming 24 hour growth, 300 days per year, thus the growth speed is probably much

higher as growth is probably not continuous over 24 hours. In the latter years of

growth, the growth rate is <150 m/yr, this would fall considerably below the

minimum threshold (<0.006 nm/s) of the growth rate at which growth entrapment

occurs according to Watson (2004). There is currently no estimate for the growth rate

required for entrapment in aragonite to occur, but the figures suggest that the

application of the growth enrichment model can provide a plausible explanation why

Sr/Ca are elevated during periods of faster growth, i.e. during the growth bands within

the more juvenile parts of the shell. However, this assumes that the crystal growth rate

and shell growth rate are directly linked. It could however be that increased growth

rate is achieved by increased nucleation, thereby increasing the rate of extension of

the shell.

In A. islandica, 65% of variance in shell growth rate can be explained by

variation in temperature and food supply (Schöne et al., 2005a) i.e. variation in

growth entrapment of Sr/Ca could be dependable on these factors. However, the

interaction of temperature and food supply is complex, with maximum temperature

expected to be during September, with maximum food supply usually associated with

spring and autumn blooms. Measurement of 18O in Chapter 6 should provide some

indications of changes in shell growth rate, and comparison of Sr/Ca and 18O record

will be further compared in the conclusion chapter.

Carré et al. (2006) reported that crystal growth rate could explain up to 74% of

Sr/Ca variance seen in the bivalves Mesodesma donacium and Chione subrugosa.

They also noted however, that for the same growth rate Sr/Ca were higher in the more
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curved sections, which concurs with our findings, that Sr/Ca is higher at the more

curved lateral margins. A possible explanation for this could be that the curvature of

the shell is related to the crystal size and/or shape. As discussed earlier, it was inferred

from Finch et al. (2001) that Sr/Ca concentrations in different faces of the non-

biogenic aragonite crystals can vary by ~50%, and a more curved section of the shell

may change the habit of the crystals.

Comparison of U228 and U248 Sr/Ca ratios show that the average values of

faster growing U228 are slightly higher than those in U248. This together with Sr/Ca

increases during the growth bands would further support that incorporation of Sr/Ca is

influenced by growth enrichment. The highest Sr/Ca peaks are found at the growth

checks of U248, which would agree with the hypothesis that high Sr/Ca ratios result

from biological effects in conjunction with increased concentration of the organics,

which modify the crystal growth and hence Sr partitioning.

In order to determine better these relative effects, analysis of the outer shell

prismatic layer is presented in the following chapter. In particular, the question of

whether faster shell extension rate results in significantly higher Sr/Ca, as would be

expected if shell growth rate were an important control. In addition the 18O profile

(see Chapter 6) provides an indication of the growth of A. islandica i.e. whether trace

element cyclic pattern represent the growth curve of A. islandica.

3.5.2 Mg fluctuations

MgCO3 possesses a trigonal (calcite) structure (coordinating with 6 oxygen);

hence, the incorporation of Mg2+ into the 9-fold metal site in orthorhombic aragonite

is not favoured (Dietzel et al., 2004). Its ionic radius differs from Ca by >15% and

thus direct ionic substitution would not commonly occur (Goldschmidt, 1954). Mg
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behaviour is not well characterised in aragonite but it is occluded or trapped within

lattice defects (Amiel et al., 1973; Cross and Cross, 1983; Oomori et al., 1987;

Stecher et al., 1996). Dietzel et al. (2004) found although Mg2+ incorporation in their

experiments was almost within theoretical range predicted by thermodynamics, the

Mg2+ content was highly divergent and did not depend on temperature, Sr2+ or Ba2+

incorporation. They concluded Mg2+ might be affected by complex adsorption onto

the aragonite crystal surface during precipitation rather than by well-regulated

substitution into the crystal lattice. This agreed with the findings of Oomori et al.

(1987) who found the temperature effect on the coprecipitation of Mg2+ ions in

aragonite to be very small. In the previous chapter the results of XANES modelling

was consistent with Mg in A. islandica being hosted by organics.

Mg/Ca ratios show an increasing number of high single points further from the

growth edge associated with high Si/Ca. This is likely to be due to increased

superficial contamination. It may be that the faster growing part of the shell is less

dense (and perhaps more porous) and thus more prone to the accumulation of

contamination. It is notable that between 4300-6700 m from the growth edge (T8),

both Mg/Ca and Si/Ca show an increase in average concentration as well as Ba/Ca

(also susceptible to contamination) (see Figure 3.12, 3.14).

Comparison of transects analysed only 25 m apart (Figure 3.16b), close to

the growth edge; shows that some Mg/Ca peaks are reproducible while others are not.

The reproducibility may suggest the features are true compositional variation within

the shell but may also arise if contamination is attracted to particular laminae. At the

moment, there is no sure way to determine which data are dominated by

contamination and which reflect actual Mg/Ca fluctuations within A. islandica.
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Figure 3.13 shows in the latter years of growth, that there is some covariance

between Sr/Ca and Mg/Ca. In particular, U248 shows that the Mg/Ca peaks associated

with the annual termination bands occur at the latter part of the termination band. This

covariance between Sr/Ca and Mg/Ca is only present in the last five years in U248

(although the relative magnitude of the peaks varies). Even during this period,

however Mg/Ca peaks are present during the growth bands and concentrations can

exceed those present at the growth check. This suggests that the formation of annual

termination band exerts some influence on the behaviour of Mg/Ca. However, the

slight delay seen (Figure 3.13), suggests that mechanisms controlling increases in

Sr/Ca and Mg/Ca at the growth check are different. However, conclusions must

remain tentative as the material density may affect the level of contamination (which

in turn affects Mg/Ca). In other words, Mg/Ca increases at the annual termination

band may be solely the result of increased Mg/Ca contamination at these softer parts

of the shell.

3.5.3 Ba fluctuations

Ba/Ca is affected by contamination at low concentration but as discussed earlier if

low Ba/Ca <0.01 mmol/mol were excluded the correlation became insignificant. Spot

analyses indicate that Ba/Ca at low concentration contributes about typically 3 x 10-5

Ba/Ca counts for low Ba/Ca. Sporadic increases in Ba/Ca from baseline

concentrations of 0.002-0.003 mmol/mol to values >5 times greater are not related to

contamination. These Ba/Ca peaks are not related to the annual bands.

Very little is known about the substitution of Ba2+ into the lattice. Dietzel et al.

(2004) found, like Sr2+, its incorporation into inorganic precipitation is temperature

driven with Ba2+ with its sensitivity to temperature an order of magnitude higher than
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Sr2+. The radius of Ba2+ is considerably larger than Ca2+ and it could be that such a

large ion has difficulty substituting into the lattice. Results from A. islandica show no

correlation between Ba/Ca and other trace elements or any of available environmental

data. However, this pattern of low Ba/Ca concentrations with sharp increases has been

noted not only in bivalves (Stecher et al., 1996; Putten et al., 2000; Lazareth et al.,

2003; Gillikin et al., 2006) but also within corals (such as Porites lutea) suggesting a

common cause independent of the taxon studied (Sinclair, 2005). Experiments by

Gillikin et al. (2006) discounted the theory that Ba/Ca peaks could be used as a proxy

of Ba/Ca concentrations in the water or phytoplankton, but they tentatively concluded

the increase in Ba could relate to barite ingestion.

3.6 Conclusion

The trace elements in the shell of A. islandica vary considerably during the lifespan of

the organism. Sr/Ca increases laterally by up to 25% from an average value of

1.2 mmol/mol measured at the maximum growth axis. In the latter years of growth,

Sr/Ca shows sharp increases at the annual growth check with increases present within

the growth bands in the younger part of the shell. A combination of factors could

contribute to Sr/Ca fluctuations. In latter years, changes in crystal growth caused by

organics and vital effects may affect Sr/Ca incorporation at the growth checks. During

years of faster growth, crystal growth rate could be an important control as well as

vital effects. The relative importance of these factors could vary through the shell.

Thus, Sr/Ca in the prismatic layer of the umbo is unlikely to provide an accurate

temperature reconstruction.

Mg/Ca data are influenced by contamination but many of the most strongly

influenced points can be identified by reference to Si counts. The Mg/Ca profile in the
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latter year is higher at the growth check (as seen with Sr/Ca) although this is often

offset by ~10 m from the Sr/Ca peaks. It is not clear if this is related to increased

contamination in these areas, (which are softer and hence more prone to

contamination), or due to an increased organic content which host Mg/Ca.

Ba/Ca is also affected by contamination at low Ba/Ca (<0.01 mmol/mol) but

sporadic increases (>5 times) exceed this. These increases show no correlation with

shell architecture, Sr/Ca or Mg/Ca, but concur with findings of other researchers

(Stecher et al., 1996; Putten et al., 2000; Lazareth et al., 2003; Gillikin et al., 2006).

At present, it is unclear as to the cause of these increases.

Analyses of the outer shell prismatic layer, presented in the following chapter,

will provide further insights to understand the controls on trace elements, particularly

the behaviour at the growth checks.
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Abstract

The variation of three trace elements Sr, Mg and Ba in the prismatic region of the

outer shell layer of two live collected Arctica islandica shells (228 and 248) are

examined here using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry

(LA-ICPMS) and solution-ICPMS. All three elements show a lateral decrease in

concentration from the periostracum e.g. Sr/Ca decreases by ~45% with a lateral

change in distance of 750 m.

Sr/Ca increases by >0.6 mmol/mol at the growth checks in the latter (last 3-4)

years as well as at doublets, but at higher shell growth rates, these increases are not

present. Sr/Ca incorporation may be influenced by changes in the crystal habit during

formation caused by increased organics at the growth check, crystal growth rate as

well as vital effects. However any effect of seawater temperature on Sr/Ca

incorporation was obscured by these other factors.

Mg behaviour is related to the organics, which is consistent with the

conclusions from XANES discussed in Chapter 2, which suggest that Mg is bound to

organic molecules in the shell. However, fluctuations in Mg/Ca may not be linear to

the concentration of organics, but could also be influenced by vital effects. Further

work is required to determine if this is the case. Ba/Ca fluctuations show sporadic

large increase in concentration (greater than five times the norm) but the timing of

these did not correlate between specimens. It remains unclear which environmental

factors, if any, are encoded by the sporadic increases of Ba.
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4.1 Introduction

The behaviour of trace elements in the outer shell prismatic layer of Arctica islandica

is examined in this chapter. As discussed in the previous chapters, A. islandica has

annual termination bands that allow the timing of changes in the geochemistry of the

shell to be calculated. If the geochemical signatures in the shell relate to

environmental factors, A. islandica has great potential to provide an in situ record of

climate changes. Fluctuations in the geochemistry of two live-collected specimens

(228 and 248) from Irvine Bay, UK, can be compared to each other as well to sea

surface temperature (SST) data collected for >50 years at the nearby Millport marine

station to help determine the controls on trace element uptake.

Measurements in the outer shell prismatic layer (PL) were taken using Laser

Ablation- Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) and solution-

ICPMS. ICPMS is a more widely available technique than SIMS, which was used in

analyses of the prismatic layer of the umbo. LA-ICPMS has a larger spot size (in this

study 40 m and 60 m were used during LA-ICPMS compared to 10 m in SIMS)

and is therefore more suited to the higher growth rate in the outer shell prismatic

layer. This chapter tackles a number of issues on the behaviour of trace elements

within the outer shell prismatic layer, in particular:

 Whether the concentrations are heterogeneous across a growth band i.e.

consistent between material deposited at the same time;

 If there is a relationship between shell architecture and the trace element

incorporation;

 The role external environmental factors e.g. temperature, have on trace

element incorporation.
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Comparisons of the trace element profiles from two shells and their timing of

geochemical fluctuations can provide insight into the behaviour of trace elements.

Ultimately, measurements of the prismatic layer in the outer shell and the umbo of the

same shell will allow comparison of the trace element fluctuations and a more

detailed understanding of their controls in Chapter 8.

4.2 Introduction to ICPMS

Inductively Coupled Plasma Mass Spectrometry (ICPMS) is an analytical technique

for determining minor and trace element concentrations. The mass spectrometer (MS)

measures isotopic ratios of the ions generated by the inductively coupled plasma

(ICP) from which elemental compositions are determined using tables of natural

isotopic abundances. The technique is used for a range of different analysis types

from biological, geological to environmental.

A schematic of an Induced Coupled Mass Spectrometer ICPMS (Thermo

ELEMENT2) is shown on Figure 4.1. The plasma torch generates an ion source using

radio frequency magnetic fields induced by a copper coil with temperatures exceeding

7000 K. As the sample aerosol is injected into the plasma, it collides with free

electrons, argon cations and neutral argon atoms causing the aerosol to be broken

down into charged atoms. The hot argon and sample ions accelerate through the

sample cone to produce a supersonic jet in the expansion chamber. The skimmer cone

extracts small proportion of the plasma, which is then focused into the mass

spectrometer using ion lenses. The electromagnet then deflects the ions, with the

angle of the deflection dependent on the mass to ion energy ratio. ELEMENT2 allows

simultaneous registration of analog and counting signals (depending on the signal
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intensity). The counting mode for ELEMENT2 typically <5x106 counts per second

(cps) and the analog mode between 104 and 1010 cps (Figure 4.2).

Since the samples are rarely in a form suitable for direct introduction to

ICPMS, it must be introduced by either laser ablation or solution nebulisation (Jarvis

and Jarvis, 1992; Longerich et al., 1996).

Figure 4.1: Schematic diagram of analyser and detector ELEMENT2 ICPMS

(ThermoFinnigan, 2001).

Figure 4.2: Dynamic range of the counting devices in the ELEMENT2 ICP-MS

(ThermoFinnigan, 2001).
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4.2.1 Sample introduction by solution

In this method of introduction, the sample is aspired by a nebuliser using a peristaltic

pump, which enters a spray chamber (for aerosol filtering). The spray droplets

(<10 m) are carried into the ICP using an Ar carrier gas. Only about 1% of the

original sample aerosol has the correct droplet size for efficient ionisation within the

plasma, with the remaining 99% drained from the base of the spray chamber using the

peristaltic pump (ThermoFinnigan, 2001). A diagram of a standard inlet system is

shown on Figure 4.3.

Solution methods are often preferred as a means of introducing samples since

the aerosol is more consistent in the manner in which material is delivered to the ICP

and typically has a better precision.

Figure 4.3: Diagram of standard inlet system for solution-ICPMS (ThermoFinnigan,

2001).
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4.2.2 Sample introduction by laser ablation

The laser produces an intense beam of radiation, in which the high energy photons are

absorbed by the sample surface and are thereby converted to thermal energy,

vaporising most of the exposed solid surface. This ablated material is carried by an

argon stream into an ICPMS (Figure 4.4). The laser provides a much simpler method

for the user of introducing solid samples into the ICPMS, with a shorter preparation

time (the sample has only to be polished), and allows in situ analysis (e.g. the trace

element fluctuations measured by LA-ICPMS could be compared in situ to the shell

architecture). It also provides a more dynamic sampling system, with changes in

sampling positions possible throughout the analysis session. The stability of the laser

is however, an issue for the precision of the LA-ICPMS measurements, and different

matrices respond very differently to the laser pulse. These can be circumvented by

matrix matching to standards but finding appropriate standards with precisely the

same matrix is often impossible. Hence, the accuracy of some LA-ICPMS

measurements is difficult to quantify. It also has a poorer precision than solution-

ICPMS, with the loss of precision directly attributable to instability of the laser and

the vagaries of the response of the sample to the laser.

Figure 4.4: Diagram of laser ablation system (Guillong, 2004)
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4.3 Method

4.3.1 Sample preparation

The same A. islandica shells used for SIMS were also used for ICPMS analyses. The

shells were sectioned along the axis of maximal growth from which a small

subsample at the ventral margin, last ~1.5 cm of growth was taken. This was set in

Buehler Epo-thin epoxy and polished to 1 m using diamond paste. The sample width

is limited by the size of the laser ablation chamber. The age was determined from the

other half of the section, which was etched in 0.1 N HCl and then a peel taken for

analysis of growth bands. The sections analysed by LA-ICPMS covered the last 6 and

8 years of growth in outer shell prismatic layer from 228 (PL228) and 248 (PL248)

respectively.

For solution-ICPMS, the section of PL228 used for the peel was repolished

and aliquots using a New Wave™ micromill were taken (see Chapter 6 for further

details on the micromill).

4.3.2 LA-ICPMS set-up

LA-ICPMS analyses were carried out at the University of Bergen, Norway using a

New Wave UP213 laser ablation system coupled to an ELEMENT2 ICPMS. The Nd:

YAG laser emits at 1064 nm in the IR range but the fourth harmonic of emission is

taken providing a UV pulse with a wavelength of 267 nm. For each spot analysis, the

laser warm-up time was 40 s, pulsed at 10 Hz with 110 s dwell time per sample, with

washout delay of 40 s. During the warm-up time, the laser is firing into the shutter

(not at the sample); with the dwell time referring to the time the laser was firing and

the sample being delivered into the ICPMS. The washout delay is the time delay prior
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to the next sample being taken, which allows the previous sample to be flushed from

both the sample chamber as well as the ICPMS. The pulse energy was ~0.3 mJ (60%

energy).

The sample was ablated in a flow of He, which was then mixed with Ar to

provide optimal conditions for successful introduction to the ICP (Gunther and

Heinrich, 1999). He reduces the amount of ablated material condensed back onto the

sample surface and thus improves signal intensity (Rege et al., 2005). The ratio is He:

Ar is approximately 5:1, with Ar flow rate ~1.0 dm3/min.

Standards were analysed every 20 samples and consisted of two consecutive

analyses of a selection of the following: NIST610, NIST612, BCR (US National

Institute of Standard and Technology Standard Reference Material) (Pearce et al.,

1997) and MACS1 (a calcite powdered sample under development) with the

exception of analyses on 28th July 2006. Then NIST610 and BCR were analysed,

together with a new otolith standard NIES (due to concerns about poor reproducibility

of NIST612). The location of each analysis within the standard was randomised to

lessen any effects of heterogeneity.

4.3.3 Analysis of A. islandica by LA-ICPMS

A spot size of ~60 m was used for PL228 and 40m in PL248 with spot

analysis taken every 100 m. The spot size was reduced, as an improvement to the

technique with the 60 m spot showing that the area affected by the laser extended

beyond a 50 m radius, but with a smaller spot, the area this effected was smaller

(<50 m) (see Secondary Electron (SE) image Figure 4.10). The depth of the laser

crater was typically 200-250 m (determined by Scanning Electron Microscopy

(SEM)).
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Table 4.3 outlines all the analyses carried out on PL228 and PL248. Three

transects were taken in each sample taken parallel to the periostracum- T1 250 m

from the periostracum, T2 500 m and T3 1000 m (see Figure 4.5a). Only T0 PL228

was taken non-parallel, it started ~200 m from the periostracum increasing to

~800 m, (it was the initial characterisation transect). Transect T0 highlighted the

need to analyse parallel to the periostracum. Temporal resolution increased from <7

analyses yr-1 in the latter years of growth (where growth rate is slowest), to >15 yr-1

by 1996 in PL228.

PL248 was analysed 1st-3rd May 2006. The sample was then repolished to

remove ~125 m, approximately half of the estimated pit depth, prior to analysis on

the 28th July 2006 i.e. a vertical change (see Figure 4.5b for schematic) to determine

the impact of changes vertically on the sample heterogeneity. T3 was extended to

provide more analyses closer to the growth edge, as well as an additional transect (T2)

analysed. The nomenclature used reflects that used for PL228 i.e. T1 is 250 m from

the periostracum, T2 500 m and T3 1000 m.

A chip of OKA standard was analysed in two separate LA-ICPMS sessions.

These data were then compared to that from analyses of the same OKA chip analysed

by SIMS. Thus, enabling a better comparison between the outer shell prismatic layer

measured by LA-ICPMS and the umbo prismatic layer measured by SIMS. As the

OKA matrix has a matrix closer to that of A. islandica, the reproducibility of the OKA

(2) over these two sessions was used to calculate the typical error for measurements

on A. islandica. As Table 4.6 shows the two analysis sessions OKA were

representative of the typical variation seen during other sessions.
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Figure 4.5a: Reflected light micrograph showing transects 1, 2 and 3 (T1, T2, T3),

250 m, 500 m and 1000 m respectively from the periostracum (unetched sample)

for the outer shell prismatic layer of A. islandica shell 228.

Figure 4.5b: Schematic showing vertical change away from the maximum growth

axis due to repolishing on the vertical distance from the line of maximum growth.

4.3.4 SEM analysis

The number of the bands and position of the bands was determined by acetate peels

(see section 1.2.2). However, to understand better how the organics changes in the

shell, and to compare the position of each laser spot to the shell architecture at that

particular point, Secondary Electron (SE) images were taken. The samples were
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etched for 60 s using 0.1 N HCl. These samples were then thoroughly rinsed. Without

etching, it was impossible to determine the growth checks from the growth bands.

The samples were carbon coated (as this provides a finer film than gold and

thus a better resolution). It should be noted that by etching the samples, it caused the

supporting calcium carbonate structure to dissolve, with the surface tension causing a

crushing effect due to drying in air (Clark, 1980). Figure 4.6 shows images from

Mytilus californianus polished, etched, and air-dried compared to polished and etched

section prepared by critical-point etching taken from Clark (1980). It can be clearly

seen that Critical Point Drying helps to maintain the dimensional stability of the

sample. Unfortunately, it could not be used with the LA-ICPMS as the size of the

sample prohibited it. Future work using smaller samples would be extremely

interesting to further study the structure of A. islandica.

SE images allow the growth check to be clearly distinguished (see Figure 4.7).

The concentration or nature of the organics changed both laterally as well as between

different growth checks. This is important when examining whether trace elements

are affected by the presence of organics, either directly (e.g. they are hosted by it) or

indirectly (e.g. it effects trace element partitioning through modification of the crystal

nucleation and propagation).
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1 m 1 m 1 m

Figure 4.6: Secondary Electron images from Mytilus californianus of the pallial

myostracum (thick layer in middle of images) a) fractured section: organic matrix

present but cannot be readily distinguished from the aragonite crystals b) polished and

etched and air-dried c) polished and etched section prepared by critical-point drying.

Images and captions taken from Clark (1980).

Figure 4.7: Secondary electron images of the growth check (1999) from the outer

shell prismatic layer of shell 248. The main image highlights the distinct changes

between the growth band (left) and the increase in organics indicating the growth

check (right). The insert highlights position of spots compared to the growth checks.

This in situ comparison is important particularly in this example, as it highlights that

the spot missed the narrow growth check of 1999. Direction of growth is from left to

right.
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4.3.5 Data processing

The start position of each transect has been standardised relative to Transect 1

(T1) 250 m from the periostracum. This is in order that the start position of each

transect is comparable, as the width of the growth band decreases laterally away from

the periostracum. Note that the distance axis was not otherwise altered; with the

position of the annual growth, checks marked on the trace element fluctuations of the

plots.

Data where the Li/Ca ratio exceeded 0.05 were removed. Li is a relatively

constant measure of background and large changes in Li/Ca indicate changes in the

raw Ca counts. Apparent decreases in Ca concentration result from cracks or

imperfections within the shell. 27Al was used to provide a check on contamination

since Al is present in the polishing media. Mass-27 counts also include a component

from 54Fe2+, which is also a surface contaminant. No high Al/Ca ratios were observed

in PL248. Calibration was carried out using GLITTER© software under license by

New Wave™, developed by van Achterbergh et al. (2001). The software uses a linear

fit of the count ratio of the internal normalising isotope, (in this case 43Ca) to the

element of a standard to calculate the concentrations of the unknowns based on an

estimate of the weight percent CaO (Table 4.1b) i.e. the trace element concentration in

GLITTER© is calculated by:

Concni = (cpsni/abundancej)/yieldni

Where:

Concni = Concentration of element i in analysis n.

cpsnij = mean count rate (background subtracted) of isotope j of i in analysis n.

abundancej = natural abundance of isotope j.
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yieldn = cps per ppm of element i in analysis n.

Yield of element i in analysis n is determined by:

yieldni= yieldns x Int(yieldni/ yieldns)
std

Where:

yieldns= cps per ppm of internal standard s in analysis n.

Int(yieldni/ yieldns)
std = ratio of the yield of the internal standard s in analysis n,

interpolated over standard analyses.

The software selects a background and signal window for these calculations,

which can then be reviewed by the user, to confirm that the most stable part of the

signal has been selected. The review window (see Figure 4.8) indicates to the user

where the signal is most intense for each element (by the colour scheme in the upper

panel), the signal window chosen will be applied to all elements measured.

The review of the stability of the signal is important. If the signal is unstable,

the results will be strongly influenced by the positioning of the sample window, with

the calculated concentrations changing significantly. During one analysis session

(data not shown), the signal decayed significantly due to the decay of detector

sensitivity. This resulted in a change in concentration of the element concentration

depending on the position of the signal window e.g. Sr/Ca changed by ~30%, whereas

typical variation was ~1%.

The concentrations of the standards (plus typical concentrations in the

samples) are shown on Table 4.1b.
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The precision and accuracy are both estimated at 95% confidence (2. The

Mean Detection Limit (MDL) is calculated at 99% confidence (i.e. 3) determined by

Poisson counting statistics:

MDL= 2.3√2B

Where B= total counts in background interval

Figure 4.8: Typical signal selection window within GLITTER© showing signal from

analysis of outer shell prismatic layer of A. islandica (shell 248 spot 7). The

background signal selection is delimited by the first (green) box, with the sample

signal denoted by the second (green) box. The colour scheme for the LA-ICPMS

represents the count rates.
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Isotope
Mass

Window

Settling

time (s)

Sample

time

(s)

Samples

per peak

Segment

duration

(s)

Integration

window

(%)

Detection

mode

Typical

Limits of

detection

(ppm)

7Li 10 0.3 0.01 10 0.01 10 Both

24Mg 10 0.046 0.01 10 0.01 10 Both 2-5

43Ca 40 0.029 0.01 10 0.04 10 Both 40-80

44Ca 10 0.001 0.01 10 0.01 10 Both 50-75

55Mn 40 0.014 0.01 10 0.04 10 Both 0.2-0.6

88Sr 40 0.03 0.01 10 0.04 10 Both 0.03-0.05

137Ba 40 0.033 0.01 10 0.04 10 Both 0.1-0.3

Table 4.1a: Experimental set-up for LA-ICPMS measurements (used for both

standards and unknowns). 250 runs, with one pass were used each analysis. When

both analog and counting are used to record signals at the same time, this is called

“both” mode. Samples per peak refer to the measurement of slightly different masses

for the same mass window.

Standard NIST610 NIST612 BCR MACS1 NIES OKA Samples

CaO (%) 11.45 11.9298 7.12 56.0 54.3 56.0 56.0

Table 4.1b: CaO weight programmed into GLITTER© to calculate absolute

concentration.
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NBS610 NBS612 BCR MACS1

Element

ppm

mmol/

mol ppm

mmol/

mol ppm

mmol

/mol ppm

mmol/

mol

Sr 497.40 0.57 76.15 0.09 337.00 0.38 200-240 0.23-0.27

Mg* 482.4 1.99 60.31 0.248 20986 86.38

Ba 424.1 0.31 37.74 0.027 684.00 0.50 100-150 0.073-0.11

Table 4.2: Certified concentrations within the standards. Where values are not

available, cell is left blank. *Where values were quoted as oxides, they have been

converted to ppm.
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Table 4.3: Details of analyses sessions with a log of transects, distances and years

covered. Analysis of T3 was continued (cont) for PL248 on 3rd May 2006.

Nomenclature for PL248 is same as that used for PL228, i.e. T1 is 250 m from the

periostracum, T2 500 m and T3 1000 m.
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4.3.6 Solution-ICPMS analysis

Each aliquot was milled from PL228 from an area 500 m wide (parallel to the

periostracum), 2000 m long (parallel to the annual bands) and 500 m deep using a

New Wave™ Micromill. The aliquot was sub-sampled for stable isotopes (18O and

13C), with the remaining material used for solution-ICPMS. The last 7 years of

growth of the shell was analysed.

Each aliquot was weighed prior to 55 l HNO3 + 1.75 ml distilled water (from

Purelab Ultra Elga) being added. The aliquot was then reweighed. A 0.2 ml of 50 ppb

115In spike was added to 0.8 ml of this solution, together with 4 ml HNO3 (2%) to

make a 5 ml solution. Nitric acid was used as a solvent since other mineral acids can

cause spectral interference (ThermoFinnigan, 2001). The 115In spike provides internal

mass calibration.

The concentration calibration standards were made up from multi-element

standard Std1105800, with NIEST standard used as the matrix (Table 4.4 outlines the

calibration standards) to make a total of 5 ml solution. The calibration standards were

analysed a number of times until the machine was optimised and calibration lines

showed correlation coefficient >0.95. The matrix is added to mimic the interaction of

the ions found within the sample. A procedural blank was analysed at the beginning

of analysis, with one sample (acid only) as a final analysis (to check out for “memory

effect” i.e. cross contamination), which occurs when the washout is not sufficient to

remove elements between analyses. The memory effect was found to be <0.1% for all

the elements (see Table 4.4), and thus the error is minimal compared to the precision,

which was typically >5% (2). The coefficient of variation is calculated using 2 of

the mean concentration. The typical percentage is given on Table 4.4.
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Sampling

matrix

(ml)

Std

1105800

100 ppb

(ml)

50ppb In

(ml)

2%

HNO3

(ml)

Total

volume

(ml)

B1 0 0 0.2 4.8 5

ST0 0.1 0 0.2 4.7 5

ST1 0.1 0.025 0.2 4.675 5

ST2 0.1 0.05 0.2 4.65 5

ST3 0.1 0.25 0.2 4.45 5

B2 0 0 0.2 4.8 5

Table 4.4: Composition of calibration standards for solution-ICPMS.

Isotope
Mass

window

Settling

time

(s)

Sample

time

(s)

Samples

per peak

Segment

duration

(s)

Integration

window

(%)

Detection

mode

Washout

memory*

ppm (2s.f.)

Typical
coefficient

of
variation

(2σ)

7Li 200 0.03 0.01 10 0.20 80 Both <LoD <30%

24Mg 170 0.001 0.01 10 0.17 80 Both 0.25 <4%

43Ca 170 0.056 0.01 10 0.17 80 Analog 260 <4%

55Mn 170 0.039 0.01 10 0.17 80 Both 0.093 <5%

88Sr 170 0.001 0.01 10 0.17 80 Both 4.6 <4%

137Ba 170 0.001 0.01 10 0.17 80 Both 0.0060 <10%

Table 4.5: Instrumental set-up for solution-ICPMS. *Note the washout memory is

calculated from a blank sample analysed at the end of the sample set. Three runs (i.e.

three measurements of the ICPMS-solution) and five passes were used (i.e. change

over time). Samples per peak refer to the measurement of slightly different masses for

the same mass window. Typical coefficient of variation calculated from the multiple

runs (2).
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Total running time per aliquot was 42 s plus a washout time of 180 s giving a

total of 222 s per aliquot. The set-up for solution-ICPMS analysis is shown on Table

4.5.

4.4 Standards

4.4.1 LA-ICPMS analysis of the standards

Standards were normally analysed every 20 samples (apart from OKA where it was

carried out after six analyses). Two analyses of the same standard were analysed

consecutively to examine the heterogeneity of the standard but minimise the potential

effects of any machine drift. The difference in the “sample pairs” for both NIST610

and NIST612 was very similar (calculated from all analyses) e.g. both showed a

precision (2σ) of 5.8% for Sr/Ca, 3.5% for Mg/Ca and NIST610 was slightly better

for Ba/Ca showing a precision of 2.3% compared to 3.8% for NIST612. This shows

the standards were relatively homogeneous and there is little difference in their

reproducibility (i.e. one standard is not more homogeneous than the other is). Since

the concentrations in NIST610 than NIST610 were closer to that of the unknown (i.e.

A. islandica shell), it was used in GLITTER© for the calculation of the absolute

compositions of the unknowns (using the values of Pearce et al. (1997)). BCR, a

basalt standard, was used to provide an independent measure of the stability of the

machine.

The precision of the standards (calculated as 2σ given as a percentage from

average of that day’s analysis) is shown on Table 4.6 for Sr/Ca, Mg/Ca and Ba/Ca.

The difference to the published value is calculated by taking the average value

calculated for that day for each element, which is then compared to the published

value. This provides an indication of the direction of the error i.e. the calculated
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values from a day were typically either under or overestimating. Wherever possible, a

single transect was completed with one day’s analysis, to reduce effects of machine

instability. In addition, it was important to determine whether the lateral variation

seen in the data could be due to machine drift. Therefore, T2 and T3 were analysed on

the same day for PL228. For PL248 analyses, although each transect was done on a

different day, this showed a similar pattern and the extent of the offset could be not

explained by the changes in the standards (this is discussed later in the chapter).

The precision of the standards for this laboratory is usually quoted as ±10%

(2). The CaO value put into GLITTER© for the calculation of the concentration of

the elements affects their accuracy. An inaccurate value of CaO would produce a

consistent offset. The standard pairs show good agreement (5.8% 2) suggesting that

the machine stability was the main contributory factor to the errors.

It would be expected that the sample of another matrix would differ in

behaviour. MACS1, a powdered calcite standard, may provide a matrix closer to A.

islandica than rhyolite glass. The pressed sample behaved differently to the solid

sample of A. islandica during laser ablation with the laser pit in the pressed sample

almost invisible, perhaps suggesting that the powder is explosively mobilised

(Sinclair et al., 1998). The effect of a laser on a powder also appears to be

inconsistent, with an inconsistent output signal, which adversely affects the calculated

values. Thus, MACS1 standard produces significantly different values, making it a

very poor calibration standard. In addition, there are no published Mg values for

MACS1. As the rhyolite glass has a significantly different matrix, the 2 precision

calculated from repeat measurements of the OKA over two sessions was used to

indicate the typical error, which would be expected during analyses of A. islandica.
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Table 4.6: Sr/Ca, Mg/Ca and Ba/Ca in the standards calculated with NIST612 (values

quoted as 2σ). Precision of the standards is calculated as 2σ given as a percentage

from average of that day’s analysis. The difference to the published value is

calculated by taking the average value calculated for that day for each element, which

is then compared to the published value. It is unknown why Mg was not detected in

BCR during September 2005 as MgO is quoted as 3.48% and is recorded in later

analyses of BCR. Mg was detected in all other standards. NIST612 was unavailable

for use in July 2006. Ba/Ca could not be detected by the ICPMS in July 2006 (reason

unknown).

Precision
of

standards
(per day)

%

Difference
to

published
value

%

Precision
of

standards
(per day)

%

Difference
to

published
value

%

Precision
of

standards
(per day)

%

Difference
to

published
value

%
06-Sep 5.6 9.2 6.6 -3.2 10.2 -77.9

07-Sep 14.8 3.8 9.8 -8.2 24 -77.9

08-Sep 9.2 -1.1 3.6 -7.7 20 -78.2
Apr-06 11-Apr 3.4 -11.0 12.4 -1.6 3.8 0.9

01-May 1.8 -12.6 11.8 -6.2 11.2 -6.1

02-May 6.8 -5.4 7 -3.4 13.6 -1.5

03-May 5.4 -3.9 5 -3 6.8 -0.9
18-May 15 -9.2 25.2 -14.5 12 8.9

Jul-06 28-Jul 3.5 -5.3 - -

Precision
of

standards
(per day)

%

Difference
to

published
value

%

Precision
of

standards
(per day)

%

Difference
to

published
value

%

Precision
of

standards
(per day)

%

Difference
to

published
value

%
06-Sep 12.4 33.5 23.2

07-Sep 7.8 27.3 25

08-Sep 7.4 27.6 36

Apr-06 11-Apr 9 16.6 4.2 -2 6.4

01-May 2.6 35.4 10.2 9.4 7.4

02-May 9 33.4 11.8 4.4 20.6

03-May 4.8 39.7 6 5.9 9.8
18-May 15.6 10.5 19 -15.3 47

Jul-06 28-Jul 2.8 -4.2 - -

Precision

of
standards
(per day)

%

Difference

to
published

value
%

Precision

of
standards
(per day)

%

Difference

to
published

value
%

Precision

of
standards
(per day)

%

Difference

to
published

value
%

06-Sep 7.8 6.7 2.6 -6.1 39.2 -98.8

07-Sep 12.8 4.3 12 -9.5 45.4 -98.8

08-Sep 10.2 5.1 4.8 -8.4 49.8 -98.8

Apr-06 11-Apr 8.2 4.9 4.6 0.3 10.4 7.1

01-May 7.2 0.9 16.2 5.1 15.2 -6.6

02-May 6.6 8 13.2 1.5 26 5.6

03-May 6.4 5 6 -0.6 26.6 1.3

18-May 12 1.2 5.8 7.1 24 11.6

Calculated Sr/Ca (mmol/mol) using NIST610 as internal standard
612 BCR MACS1

Sep-05

May-06

Calculated Mg/Ca (mmol/mol) using NIST610 as internal standard
612 BCR MACS1

Sep-05

Mg values were

recorded as being at
limits of detection.

N
o

M
g

v
a
lu

e

p
ro

v
id

e
d

b
y

U
S

G
S

May-06

Sep-05

May-06

Calculated Ba/Ca (mmol/mol) using NIST610 as internal standard

612 BCR MACS1
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Comparison to OKA standard

A chip of OKA was analysed as a standard during two analysis sessions, 11th April

2006 and 18th May 2006 with an average of the two taken. An OKA grain is used as a

calcite standard by the SIMS facility in Edinburgh and is considered the most

homogeneous calcite standard used by that group (Finch, Pers. Comm., 2007). The

grain mounted here was part of the same batch of OKA used in Edinburgh, but was

not the same grain. During the burn time of each spot, a number of cracks formed and

instead of a regular pit, small pieces around the laser site cleaved (Figure 4.9). These

led to concerns about the stability of the signal, but the behaviour of the OKA signal

was akin to that of A. islandica. Two different spot sizes (40m and 60 m) were

taken to determine whether this influenced the concentrations measured (as different

spot sizes were used in analysis of A. islandica). OKA provides a better comparison,

as homogeneity is likely to be good and the matrix is closer to the shell material than

the glass standards. Therefore, the error for the measurements on A. islandica is

calculated from the OKA variation of these two sessions. The calcite, as discussed

earlier having a closer matrix match than the glass, and therefore errors from the OKA

are more likely to represent errors on the concentrations calculated for A. islandica.

The same chip was analysed using SIMS at the Edinburgh ion probe facility,

UK by Dr. N. Allison in June 2006 and normalised to the OKA used in that laboratory

(Table 4.7). Hence, analysis of OKA allows direct comparison of SIMS and LA-

ICPMS results. The ion probe technique has an order of magnitude better (2)

precision for e.g. Sr/Ca 0.5% (SIMS) vs. 4.1% (LA-ICPMS). Analyses of OKA

indicate that LA-ICPMS, normalised to the rhyolite glass, underestimates Mg/Ca by

>15%, Sr/Ca by >24% and overestimates Ba/Ca by >20%. It is likely that these

offsets result from differing matrix effects between the glass and the OKA standards.
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These findings are important for direct quantitative comparison of the SIMS data from

the umbo region with the LA-ICPMS data from the outer shell and will be discussed

further in Chapter 8.

Figure 4.9: Reflected light micrograph of the 12 laser pits sampled on the OKA chip.

The numbers refer to the sampling order. Spots 1-6 were sampled using 60 m spot

size, compared to 40 m for spots 7-12.

Analysis of laser pits

Depth profiles by Scanning Electron Microscopy (SEM) show that the depth of the

crater generated by the laser was typically 200-250 m. However, the images show

that the shape at the bottom of the pit is not uniform (Figure 4.10). In addition, the

material affected by the laser extends beyond the surface (shown by a darker area

even after etching).
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mmol/mol Mg/Ca Sr/Ca Ba/Ca

OKAAF1 3.40E+00 1.29E+01 6.57E-01

OKAAF2 3.37E+00 1.30E+01 6.69E-01

OKAAF3 3.41E+00 1.29E+01 6.01E-01

OKAAF4 3.42E+00 1.29E+01 5.87E-01

Mean 3.40E+00 1.29E+01 6.28E-01

Stdev (2σ) 4.59E-02 6.48E-02 8.15E-02

Io
n

p
ro

b
e

CV (2σ) 1.35% 0.50% 12.96%

mmol/mol Mg/Ca Sr/Ca Ba/Ca

12th April OKA_1 2.82E+00 1.01E+01 7.86E-01

12th April OKA_2 2.78E+00 9.54E+00 7.38E-01

12th April OKA_3 2.85E+00 9.57E+00 7.23E-01

12th April OKA_4 2.93E+00 9.70E+00 6.76E-01

12th April OKA_5 2.95E+00 9.52E+00 7.33E-01

12th April OKA_6 2.82E+00 9.35E+00 7.39E-01

Mean 2.86E+00 9.63E+00 7.32E-01

Stdev (2σ) 1.36E-01 5.11E-01 7.05E-02

L
A

-I
C

P
M

S

CV (2σ) 4.78% 5.31% 9.62%

mmol/mol Mg/Ca Sr/Ca Ba/Ca

18th May OKA_7 2.89E+00 1.02E+01 8.14E-01

18th May OKA_8 2.81E+00 9.81E+00 7.88E-01

18th May OKA_9 2.78E+00 9.94E+00 8.29E-01

18th May OKA_10 3.02E+00 9.94E+00 7.78E-01

18th May OKA_11 3.00E+00 9.94E+00 7.21E-01

18th May OKA_12 2.96E+00 1.03E+01 8.34E-01

Mean 2.91E+00 1.00E+01 7.94E-01

Stdev (2σ) 2.00E-01 3.39E-01 8.38E-02

L
A

-I
C

P
M

S

CV (2σ) 6.88% 3.38% 10.56%

OKA analysis (same chip) (mmol/mol)

Mg/Ca Sr/Ca Ba/Ca

mean stdev (2σ) mean stdev (2σ) mean stdev (2σ)

Ion probe 3.40E+00 4.59E-02 1.29E+01 6.48E-02 6.28E-01 8.15E-02

LA-ICPMS 2.88E+00 1.72E-01 9.82E+00 5.73E-01 7.63E-01 9.78E-02

Table 4.7: OKA concentrations calculated under typical conditions by (a) ion probe

data (b) LA-ICPMS 11th April (c) LA-ICPMS 18th May d) summary of data (a)(b)(c).

Note that the laser pit is deeper than that of the ion probe 250 m vs. <20 m. CV

(coefficient of variation) is calculated at standard deviation as percentage of the mean.
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Figure 4.10: SE (Secondary Electron) images of laser pits taken post-etching in outer

shell prismatic layer of A. islandica shell 248. It is possible to see that the effects of

the laser extend beyond the laser crater.

4.4.2 Solution-ICPMS

Solution-ICPMS was performed on powder samples digested using the process

described above. The calibration lines produced by the aqueous standards have a R-

factor of >0.95, with a precision (2) of Sr/Ca 2.6%, Mg/Ca 3.0%, and Ba/Ca 4.4%.

Details of reproducibility are found on Table 4.5, together with measurements of the

memory effect (i.e. cross-contamination), measured from a blank.
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4.5 Results

4.5.1 PL228 T1 Results

Transect 1 (T1) 250 m from the periostracum is the longest transect analysed

(15000 m) and covers 1993-1998. Geochemistry variations between analyses are

significant (Figure 4.11). Sr/Ca, Mg/Ca and Ba/Ca concentration ranges are shown in

Table 4.8 (together with the T2 and T3). The dating of transects is made by reference

to the visual banding in the acetate peels and confirmed through SEM analysis.

Sampling of 18O reconfirmed the assignment of the growth checks.

Sr/Ca shows maximum concentration at the annual growth checks of 1997-

1998. Prior to this, Sr/Ca peak occurs at the growth check but they are not the highest

concentrations found during a single year, with variation within the growth bands

exceeding it. Sr/Ca variation in the growth bands between 1994 and 1997 is

~0.4 mmol/mol.

Mg/Ca shows variation between 0.5-1.4 mmol/mol with the highest values in

the latter years of growth. High Mg/Ca is found at all the growth checks with the

exception of 1994, which shows very little increase. Within the growth bands, Mg/Ca

variation is within error in T1. As described within the previous chapters, sharp

increase and decreases deposited over short distances (<2000 m) are defined as

peaks for the remainder of the discussion. This is in keeping with previously

published work (e.g. Lazerth et al., 2003; Gillikin et al., 2006) and with the

annotation used in the previous chapter.

Sr/Ca and Mg/Ca co-vary at the annual termination bands 1996-1998 but the

relative magnitude of each varies. Mg/Ca maximum occur at the beginning of the

annual termination band whereas Sr/Ca increases in the latter part (Figure 4.12). At

the 1996 termination band, Sr/Ca and Mg/Ca peaks occur concurrently but the Sr/Ca
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peak is very small. Prior to 1996, Sr/Ca does not show strong annual peaks whereas

Mg/Ca increases to >150% of the concentration measured within the growth band.

Ba/Ca shows average data are <0.005 mmol/mol, with sporadic peaks

increases to a maximum of 0.07 mmol/mol (covering more than one measurement).

Increases in Ba/Ca do not correlate to Sr/Ca or Mg, or with the position within a band

(i.e. time/season).

Sr/Ca

mmol/mol

Mg

mmol/mol

Ba

mmol/mol

T1 1.0-2.4 0.5-1.0 0.0008-0.07

T2 0.6-1.8 0.5-1.2 0.0005-0.065

T3 0.8-1.2 0.4-0.7 0.0005-0.051

Table 4.8: Range in the data between three parallel transects. Mean Detection limit

(MDL) (3) is typically 1 x10-4, 4 x10-3 and 7 x10-5 mmol/mol for Sr/Ca, Mg/Ca and

Ba/Ca respectively.

4.5.2 Comparison of results across all three transects

Transect 2 (T2) (500 m from the periostracum) and transect 3 (T3) (1000 m from

the periostracum) are shown on Figures 4.13 and 4.14 respectively. These show a

similar pattern of variation as described above, but the amplitude of the variations is

suppressed (also see Table 4.8). Figure 4.15a-c plot a five point running average of

the Sr/Ca, Mg/Ca and Ba/Ca values respectively for each transect, including T0

(which was analysed non-parallel to the periostracum). A five point running average

is used to compensate for slight differences in the relative sampling positions. The

slight offset in position of the peaks is due to the narrowing of the band width laterally

away from the periostracum.
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This shows that Sr/Ca decreases with increasing distance from the

periostracum but the offset between each transect varies throughout the analyses.

Mg/Ca values in T1 and T2, lie within error, but are significantly higher than that

found in T3. Ba/Ca values show a decrease away from the periostracum between T1

and T3 at the highest Ba/Ca values with the lower values being within error of each

other. Ba/Ca values of T1 and T2 are within error.
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Figure 4.11: T1 profile taken parallel to the periostracum (at a distance of 250 m) in

outer shell prismatic layer of A. islandica shell 228 of (a) Sr/Ca, (b) Mg/Ca and (c)

Ba/Ca. The typical error (2) is calculated from the reproducibility of the OKA. The

solid red line marks the end of the termination band; the dashed line marks the start of

the termination band (where it covers more than one analysis), with the dot-dash line

marking intra-annual bands. D identifies a doublet.
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Figure 4.12: Magnified section of the PL228 T1 analyses shown in Figure 4.11 of

(a) Sr/Ca, (b) Mg/Ca (c) Ba/Ca. The typical error (2) is calculated from the

reproducibility of the OKA. The Mg/Ca increase can be clearly seen to precede the

increase in Sr/Ca associated with the annual termination band, although not at the

doublet. The solid red line marks the end of the termination band; the dashed line

marks the start of the termination band (where it covers more than one analysis), with

the dot-dash line marking intra-annual bands. D identifies a doublet.
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Figure 4.13: T2 profile taken parallel to the periostracum (at a distance of 500 m) in

prismatic layer of A. islandica shell 228 of fluctuations of (a) Sr/Ca, (b) Mg/Ca and

(c) Ba/Ca. The typical error (2) is calculated from the reproducibility of the OKA.

The solid red line marks the end of the termination band; the dashed line marks the

start of the termination band (where it covers more than one analysis), with the dot-

dash line marking intra-annual bands. D identifies a doublet.
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Figure 4.14: T3 profile taken parallel to the periostracum (at a distance of 1000 m)

in outer shell prismatic layer of A. islandica shell 228 of fluctuations of (a) Sr/Ca,

(b) Mg/Ca and (c) Ba/Ca. The typical error (2) is calculated from the reproducibility

of the OKA. The solid red line marks the end of the termination band; the dashed line

marks the start of the termination band (where it covers more than one analysis), with

the dot-dash line marking intra-annual bands. D identifies a doublet.
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Figure 4.15a: Sr/Ca results of three transects (T1-T3) measured in the outer shell

prismatic layer of A. islandica shell 228 with increasing distance from the

periostracum. Results are averaged (five point) for each transect. The typical error

(2) is calculated from the reproducibility of the OKA.
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Figure 4.15b: Mg/Ca results of three transects (T1-T3) measured in the outer shell

prismatic layer of A. islandica shell 228 with increasing distance from the

periostracum. Mg/Ca results of three transects (T1-T3) with increasing distance from

the periostracum. Results are averaged (five point) for each transect. The typical error

(2) is calculated from the reproducibility of the OKA.
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Figure 4.15c: Ba/Ca results of three transects (T1-T3) measured in the outer shell

prismatic layer of A. islandica shell 228 with increasing distance from the

periostracum. T1 to T3 are with increasing distance from the periostracum. Results

are averaged (five point) for each transect. The typical error (2) is calculated from

the reproducibility of the OKA.
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4.5.3 PL248 Results

PL248 was measured in two separate analyses sessions - T1 and some of T3

(4500-6500 m from growth edge standardised to T1) were measured in May 2006.

T2 was measured in July 2006 with T3 extended by 1400 m after the sample was

repolished to remove the surface 125 m. It provided a preliminary investigation into

vertical variation of the elements, (as the original positions of the laser pits could be

seen) (see Figure 4.5b for schematic). The nomenclature used is the same as that used

for PL228, i.e. T1 is 250 m from the periostracum, T2 is 500 m from the

periostracum, and T3 is 1000 m from the periostracum.

PL248 analyses 1992-2001, and shows generally a similar pattern for the trace

elements as PL228 (Figure 4.16). Sr/Ca increases are found during the growth checks

in the latter years with increases >2.0 mmol/mol for T1. Spot analysis in T1 missed

the (thin) termination band of 1999 (see Figure 4.7). Sr/Ca increases for the 1999

growth check were very small (and were much higher in T2). Increases in Sr/Ca are

also seen in PL248 during some earlier growth checks compared to PL228 e.g. 1995.

Mg/Ca shows variation of typically 0.8-1.2 mmol/mol in T1. Generally,

elevated Mg/Ca is found at the growth checks with the highest in the latter years

(1997-2000). Damage to the shell during 1998 was noted, during visual examination

of the shell (see Figure 4.20). This can be seen by cessation of shell growth and

evidence of an external scar (in which regrowth of the shell occurs lower than the

original shell height). The internal growth bands also showed evidence of infilling- in

which the material is more porous with a different texture and behaved differently

during laser ablation (see Figure 4.20). This damage was accompanied by a gradual

increase in Sr/Ca, but Mg/Ca only shows an increase covering one analysis spot

(<100 m).
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Ba/Ca shows a similar pattern to PL228, with consistently low values

<0.005 mol/mol interspersed with sporadic increases of >0.04 mmol/mol. These peaks

occur at the same part of the growth band laterally, i.e. they are high reproducible

across a band (though there is a lateral decrease).

Lateral variation is also found in PL248 with a decrease of ~25% in Sr/Ca and

>60% in Mg. The limited data of Ba/Ca between T1 and T3 (no T2 was measured)

also showed a lateral offset.

Comparison of analyses collected in May 2006 and those from July 2006

(after the sample had been repolished to remove the top ~125 m) shows that there is

an offset of 0.4 mmol/mol for Mg/Ca (Figure 4.18) whereas Sr/Ca shows no

discernible offset between the two sets of analyses (Figure 4.17).

As NIST612 was not analysed (with NIST610 used for calibration), the only

other common standard was BCR. In BCR, Sr/Ca values are within error for the two

sessions being (3% and 5.3% below the published values in May 2006 and July

respectively). For Mg/Ca, they were +5.9% and -4.2% respectively, but this is within

the precision of the standards. The offset in the sample was >40% with the caveat that

the matrix effect was not the overriding factor. The maximum difference in the

accuracy of the standards during analyses (for NIST612 vs. BCR) was 30% indicating

that the difference in Mg is unlikely to relate to problems with the precision of the

standards.
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Figure 4.16: T1 analysed parallel to the periostracum (at a distance of 250 m) in the

outer shell prismatic layer of A. islandica shell 248 showing (a) Sr/Ca, (b) Mg/Ca and

(c) Ba/Ca fluctuations (May 2006 analysis). The typical error (2) is calculated from

the reproducibility of the OKA. The solid red line marks the end of the termination

band; the dashed line marks the start of the termination band (where it covers more

than one analysis), with the dot-dash line marking intra-annual bands. D identifies a

doublet. Note damage to the shell during 1998 resulted in infilling of material (see

Figure 4.20).
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Figure 4.17: Sr/Ca results from the outer shell prismatic layer of A. islandica shell

248 using analyses from May 2006 (pink line) and July 2006 after ~125 m repolish

(black line). Note that the doublet for 1997 was visually difficult to locate in T3. The

typical error (2) is calculated from the reproducibility of the OKA. The solid red line

marks the end of the termination band; the dashed line marks the start of the

termination band (where it covers more than one analysis), with the dot-dash line

marking intra-annual bands. D identifies a doublet. Note damage to the shell during

1998 resulted in infilling of material (see Figure 4.20).
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Figure 4.18: Mg/Ca results from the outer shell prismatic layer in A. islandica shell

248 using analyses from May 2006 (pink line), and July 2006 after 125 m polish

(black line). The typical error (2) is calculated from the reproducibility of the OKA.

The solid red line marks the end of the termination band; the dashed line marks the

start of the termination band (where it covers more than one analysis), with the dot-

dash line marking intra-annual bands. D identifies a doublet. Note damage to the shell

during 1998 resulted in infilling of material (see Figure 4.20).
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Figure 4.19: Ba/Ca results from the outer shell prismatic layer of A. islandica shell

248 using analyses from May 2006. The typical error (2) is calculated from the

reproducibility of the OKA. The solid red line marks the end of the termination band;

the dashed line marks the start of the termination band (where it covers more than one

analysis), with the dot-dash line marking intra-annual bands. D identifies a doublet.

Note damage to the shell during 1998 resulted in infilling of material (see Figure

4.20).



Chapter 4: ICPMS analysis: Quantifying trace element fluctuations within the outer
shell prismatic layer

163

Figure 4.20: Reflected light micrograph of damaged section of outer shell prismatic

layer of A. islandica shell 248. The shell is affected by infilled material, and the

material in 1998 behaves differently to the laser.

4.5.4 Results of Solution-ICPMS (PL228)

The results of solution ICPMS on the milled aliquots also show fluctuations in trace

element values (Figure 4.21). Comparison of measurements by solution-ICPMS and

those by LA-ICPMS shows the former has a much more subdued variation. This was

as expected given the lateral decrease found by LA-ICPMS away from the

periostracum. The aliquots for solution-ICPMS were 500 m wide (parallel to the

periostracum) measuring a total lateral distance of 2000 m from the periostracum

(LA-ICPMS spots were taken a maximum distance of 1000 m from the

periostracum).

Solution-ICPMS show Sr/Ca varies 0.95-1.6 mmol/mol, and interestingly, the

highest increase in Sr/Ca is found at 1992 growth check. This may be in response to

changes in temporal resolution, (with increasing temporal resolution as the growth

rate is higher in the younger parts of the shell). Thus, Sr/Ca at the growth check is less

affected by material incorporated around the growth check, which is of lower

concentration.
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Mg/Ca varies between 0.2-0.5 mmol/mol and in the latter years, Mg/Ca

correlates well with the annual growth checks and intra-annual bands.

The timing of Ba/Ca sporadic increases is the same as those found by LA-

ICPMS. However, the magnitude is ~60% less than that found in T3. This is a larger

decrease than seen laterally in the LA-ICPMS data over 750 m (of ~25%) between

T1 and T3.
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Figure 4.21: Trace element variation measured by solution-ICPMS from the outer

shell prismatic layer of shell 228. The typical error (2) is calculated from multiple

cycles of the aliquot. The horizontal error bar represents the width of the milled

samples (500 m). The red lines mark the annual termination bands.
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4.6 Discussion

Results of LA-ICPMS show variation in all the trace elements beyond the 95%

confidence intervals. The possible controls on behaviour are discussed below, starting

with an examination of the cause of lateral variation present in all the trace elements.

Results from the two Irvine Bay specimens are then compared to determine whether

the fluctuations are replicated between shells. Sr/Ca behaviour is discussed first, in

particular its covariation in the latter years to the growth checks, and variation within

the growth bands. Mg and its relationship with the annual growth checks is then

considered. Finally, the timing of the Ba/Ca sporadic increases (which are more than

five times the usual concentration) from the two shells is compared and possible

controls discussed.

4.6.1 Lateral variation

PL228 and PL248 show the concentration of Sr/Ca decreases significantly away from

the periostracum. For example, the same annual growth band (~5000 m from the

growth edge in PL228) shows 45% Sr/Ca decrease between transect 1 and transect 3

(see Figure 4.15a and 4.17). Mg/Ca showing a significant decrease between T1 and

T3 of >25%, but T2 and T3 are within error (Figure 4.15b and 4.18). The maxima in

Ba/Ca show a lateral decrease between T1 and T2 with the offset being ~25%, but

lower Ba/Ca values being within error (when increase in Ba/Ca is <100%) (see Figure

4.15c and 4.19). T2 and T3 lateral offset in Ba/Ca is within error.

The lateral offset between transects is not consistent. It is however important

to consider that the lateral temporal resolution changes, with the resolution closest to

the periostracum being the highest. Averaging the aliquots compensates for slight

differences in positions in sampling and may compensate for slight differences in
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temporal resolution (which is <100 m between T1 and T3). The effects of reducing

temporal resolution have been explored in 18O in bivalves (within this thesis and

Goodwin et al., 2003), with reduced temporal resolution reducing the magnitude of

18O variation. However, lateral variation for Sr/Ca and Mg/Ca shows a decrease in

all values (i.e. not a reduction in magnitude of variation), indicating that this does not

result from changes in temporal sampling.

Preliminary results from PL248 show there is vertical heterogeneity in Mg/Ca

(i.e. the sample shows variation with depth) (see Figure 4.5b for schematic), with

Mg/Ca increasing by >40% after repolishing by 125 m. Further sampling would be

required to investigate this.

Thus, lateral variation is an important control on the absolute trace element

concentrations and has implications for palaeoenvironmental reconstructions. As the

change in trace element concentration is very high, e.g. Sr/Ca shows that for a change

in lateral distance of 750 m a change of up to 45%, the potential for environmental

reconstructions are likely to be severely restricted. However if a control can be

attributed and can be independently measured it may be possible to reconstruct data

despite the lateral variation. For example, Goodkin et al., 2007 constructed a

temperature profile using Sr/Ca corrected for a crystal growth effect in coral.

Therefore, it is important to understand the control on lateral variation.

In this section, three mechanisms are discussed which may control lateral

variation; 1) growth rate, 2) changes in the shell architecture and 3) changes in the

EPF (Extrapallial Fluid) composition as the band is formed.
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1) Growth rate

The effect of growth rate was discussed extensively in the Chapter 3. Work by

Watson (1996, 2004) highlighted in calcite, that if the growth rate of a crystal

exceeded the rate at which impurities could be expelled, these would become

incorporated into the crystals. Work by Gaetani and Cohen (2006) extended these

findings to biogenic aragonite, examining the uptake of trace elements into corals.

They found that both compatible and incompatible elements were enriched in

aragonite at higher growth rates e.g. Mg2+, Sr2+, Ba2+ predicted of the equilibrium-

seawater partitioning coefficient ranges from 65-137 for Sr2+ (compatible) to 2.0 x10-5

for Ba2+ (strongly incompatible within aragonite) (Gaetani and Cohen, 2006). Results

from XAS (see Chapter 2) suggest that Sr and Mg are hosted differently, the former

being ideally hosted (i.e. randomly in the aragonite structure), the latter by organics.

While it is therefore logical to suggest Sr may be affected by the crystal growth rate,

the impact it has on the organics and thus Mg is a less clear. Organics are not simply

found between the crystals but that the crystals themselves are composed of densely

packed grains, tens of nanometres in diameter, embedded in a thin layer of organic

material (see Stolarski and Mazur, 2005 and references therein).

In A. islandica, crystals closest to the periostracum where the shell bands are

widest, must by inference, either grow faster or have increased nucleation than those

further away from the periostracum in which the band is narrower. The difference

however in shell growth rate over a year between T1 and T3 was very small <100 m

in the sections measured, equating to a change of ~0.3 m/day (about 10% of the

estimated daily growth rate). Thus, growth entrapment would have to be a strong

control for an offset of ~45% in Sr/Ca to occur. The growth rate in the shell sections

for PL228 and PL248 shows that the former has approximately double the growth
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rate. Therefore, it would be expected that PL228 would show a higher baseline Sr/Ca

value if growth rate has a strong control. However, PL248 shows higher Sr/Ca values,

by ~20%.

Lateral decrease within the outer shell prismatic layer is the reverse of that

found in the prismatic layer of the umbo, where Sr/Ca and Ba/Ca were found to

increase significantly away from the maximum growth axis. Therefore, shell growth

rate cannot be a main contributory factor if both areas of the shell are affected by (and

to the same extent) the same controls. It is therefore likely that if crystal growth rate

and shell growth rate are linked, any effect of crystal growth rate is obscured by other

factors.

2) Changes in the shell architecture

Changes in the aragonite architecture, such as variation in the nature or amount of the

organic material within aragonite crystals in the shell may directly result in changes in

organics which host the trace element (e.g. Mg) or indirectly through changes in

partitioning factors within the aragonite crystals (e.g. Sr). SE images from PL248 on

Figure 4.23 shows the 1998 growth check ~250 m from the periostracum compared

to ~1000 m from the periostracum. This shows that there is a strong lateral change in

the architecture of the crystals away from the periostracum. The amount of organics at

the growth checks appears to decrease (or the nature of organics) as the growth check

becomes less well defined further away from the periostracum.

Organic material exerts control over the nucleation of the crystal, with the

insoluble matrix acting as nucleation surface and predefined mould, determining the

size and orientation of crystals (Watabe and Wilbur, 1960; Belcher et al., 1996; Mann

and Ozin, 2003; De Yoreo and Dove, 2004; Heinemann et al., 2006). The manner in
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which biominerals grow affects the uptake of the trace elements as different faces of

the crystals having different affinities for trace elements (Reeder and Grams, 1987;

Paquette and Reeder, 1995; Reeder et al., 2001).

Changes in Sr concentration can occur within a single aragonite crystal, with

Sr changes of ~50% inferred from data presented by Finch et al., (2003b). While

changes in organic content can be clearly inferred at the annual growth checks (and

doublets) (see Figure 4.23), the lateral change in trace element concentration also

occurs during the growth bands. It would therefore be expected that if the offset in

trace element concentration were solely due to organics, changes in concentration

would be significantly greater within the growth checks than within the growth bands,

as the latter shows no visible change in organics. For Sr and Mg this is the case, with

changes in concentrations with the increasing from the periostracum more pronounced

at the growth checks. However, for Ba/Ca, which increases independently of the

growth checks, decreases of ~ 25% laterally, are seen. The crystal shapes however

change laterally across the band (see SE images, Figure 4.23). Therefore, changes in

how the crystal grows may exert some control.

3) Changes in the EPF composition

The third possible mechanism is that the lateral variation is caused by a vital

effect, i.e. that the concentration of elements in the EPF is controlled by biochemical

pathways mediated by the organism. Many organisms actively transport metals using

specific enzymes and the relative efficiencies of these transport processes can

influence the Metal (Me)/Ca ratio in the EPF (Gillikin et al., 2005a; Lorrain et al.,

2005; Carré et al., 2006). Trace element rich material may be deposited first close to

the periostracum, with the EPF becoming increasingly trace element-depleted (as
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trace elements are transported to the EPF less efficiently than Ca2+), thus resulting in a

lateral decrease in Me2+/Ca2+, i.e. it is relative transport of metal compared to Ca. This

could be a significant control.

Two pathways have been generally considered for Ca2+ transport through

calcifying mantle: passive non-selective intercellular pathway (direct exchange with

seawater) or active (energy consuming) selective intracellular pathway involving

Ca2+-ATPase enzymes (Ca2+-pump) (Klein et al., 1996a; Gillikin et al., 2005a). The

active pathway is thought to dominate during shell formation (Crenshaw, 1980). An

additional third pathway has been proposed in which Ca2+ is transported through

calcium channels (Carré et al., 2006).

In the active selective pathway, the two enzymes Ca2+-ATPase and carbonic

anhydrase (CA) are important, the former pumps Ca2+ to the EPF while removing

protons and the CA catalyses the reaction of bicarbonate to CO2. This can then diffuse

through the membrane (Crenshaw, 1980; Cohen and McConnaughey, 2003). When

Ca2+-ATPase activity increases, so does the calcification rate (Gillikin et al., 2005a).

As Ca2+-ATPase has a higher affinity for Ca2+ than Sr2+, but both use similar

pathways, Sr/Ca should be inverse to growth rate (Yu and Inesi, 1995; Ferrier-Pagès

et al., 2002). This is not the case with lateral variation, so the third model is

examined.

Carré et al. (2006) proposed that since neither of these two pathways could

accommodate the Ca2+ flux necessary for biomineralisation in an aragonitic bivalve

with a growth rate of 20 m/day, a new calcification model involving calcium

channels was required. A calcium channel is an aqueous pore facilitating Ca2+

diffusion (Carré et al., 2006) that can support very high ionic fluxes (Sather and

McCleskey, 2003). The gradient in Ca2+ caused by mineralisation, drives the ion flux,
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and thus the higher the mineralisation rate, the easier Sr2+ ions cross the pores (Carré

et al., 2006). Thus, lateral variation could be caused by changes in the rate of

mineralisation. They suggest however, that the model would not be applicable to very

slow growing specimens (“very slow” is not defined), as they may not involve Ca2+-

channels in ionic transport. Growth rates of A. islandica in the outer shell prismatic

layer can >~11 m/day and therefore such a model may be applicable to the outer

shell prismatic layer. It is not however know whether the uptake of Mg/Ca and Ba/Ca

would also be influenced by such controls. It also unclear, whether such heterogeneity

would be present within the EPF during growth, i.e. if the EPF is relatively

homogeneous it would not be expected to cause such a strong lateral variation.

Further work is required to develop a fuller understanding on the controls of

pathways for the uptake of trace elements. However, the model presented by Carré et

al. (2006) can provide a possible hypothesis to the cause of lateral variation.

Therefore, in conclusion lateral variation could be due to factors such as vital

effects, or through modification of the crystal nucleation and propagation due to the

organic matrix.

Although the discussion to the cause of the lateral variation is inconclusive,

the lateral variation prohibits the use of the trace elements to reconstruct

palaeoclimate using a universal calibration equation with concentrations highly

dependable on sampling location within the shell. There is no simple means to

calibrate the composition as a function of architecture. Significantly the decrease in

concentrations is not constant but appears to effect extreme variations more e.g. in

1997 in U248 the Sr/Ca peak at the growth check found in T1 is significantly greater

than the error (2) with increase by >50% whereas in T3 the slight Sr/Ca increase is

within error. Reducing the temporal resolution is known to dampen the extremes in
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oxygen isotopes (see Chapter 6) and it would be expected that a similar process would

occur with the trace elements. However, the temporal resolution of sampling changes

laterally as the bands narrows further away from the periostracum, though this effect

is relatively small (typically 100 m for a year between T1 and T3 for the years

measured).

Comparison therefore of the published work on trace element fluctuations in

A. islandica (e.g. Toland et al., 2000; Epplé, 2004) is difficult, since the data recorded

depend on the distance from the periostracum that the analyses were made. In

addition, there may be a vertical heterogeneity, which modifies the trace element

concentration as a function of depth (i.e. depending on the amount on the cut of the

shell and the amount of polishing). Klein et al. (1996a) found lateral Sr/Ca variation

in Mytilus trossulus across the shell, which they attributed to changes in the rates of

mantle metabolic activity. Changes in metabolic activity laterally across the bands

will be explored through measurement of 13C in Chapter 6, and the implications for

trace element incorporation discussed.
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Figure 4.22a: Sr/Ca measurements from Transect 1 (analysed parallel to the

periostracum at a distance of 250 m) taken in the outer shell prismatic layer of (a)

shell 228 (upper diagram) compared to (b) shell 248 (lower diagram). The typical

error (2) is calculated from the reproducibility of the OKA. The solid red line marks

the end of the termination band (year shown), with D marking a doublet. Note shell

248 was damaged in 1998, which resulted in infill of material.
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Figure 4.22b: Mg/Ca measurements from Transect 1 (analysed parallel to the

periostracum at a distance of 250 m) in the outer shell prismatic layer of (a) shell

228 (upper diagram) compared to (b) shell 248 (lower diagram). The typical error

(2) is calculated from the reproducibility of the OKA. The solid red line marks the

end of the termination band (year shown), with D marking a doublet. Note the

increase of Mg/Ca in 1998 when damage to the shell occurred.
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Figure 4.22c: Ba/Ca measurements from Transect 1 (analysed parallel to the

periostracum at a distance of 250 m) taken in the outer shell prismatic layer of (a)

shell 228 (upper diagram) compared to (b) shell 248 (lower diagram). The typical

error (2) is calculated from the reproducibility of the OKA. The solid red line marks

the end of the termination band (year shown), with D marking a doublet.



Chapter 4: ICPMS analysis: Quantifying trace element fluctuations within the outer
shell prismatic layer

176

Figure 4.23: Secondary Electron (SE) image taken after etching, 250 m (i-iii) and

1000 m (iv-vi) from periostracum, in shell 248 of the same growth band. SE images

show an increasingly magnified image of the crystals at the growth checks. The

organics at the growth checks intersect the crystal growth, which results in new

crystals being less well aligned. (i-iii) the crystals are in general alignment to growth

direction with interlocking crystals, with the organics can be differentiated from the

surrounding crystals. (iv-vi) The crystals further from the periostracum show much

poorer alignment with the organics much harder to discern. This highlights the change

in architecture across the shell.
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Figure 4.24: Reflected light micrograph in the outer shell prismatic layer of shell 228

showing that the sampling distance from the periostracum show variation due to

undulations in the shell edge.

Figure 4.25: Secondary Electron image showing that the size of the laser spot size

increased during the first 22 spots of the analysis of the outer shell prismatic layer of

shell 248 due to poor focusing on the laser. The possible impacts of this are discussed

in the text.
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4.6.2 Comparison of the two Irvine Bay specimens

Comparison of the two specimens collected from Irvine Bay allows a better

understanding of the controls on the trace elements. As discussed in the previous

section, lateral variation is found within both shells and therefore T1 traverses of

PL228 and PL248 (both 250 m from the periostracum) are used to examine the

similarities and differences in each of the three element profiles (Figure 4.22a-c). By

comparing the results from T1, the controlling factors on the behaviour of trace

elements within A. islandica are discussed.

4.6.3 Sr behaviour at the growth checks

Both PL228 and PL248 show an increase in Sr/Ca at the termination band after 1996

e.g. in PL228 Sr/Ca increases by >50% at the growth check. Prior to this, the Sr/Ca

peaks become increasingly less well defined. Comparison of the Sr/Ca profiles in

Figure 4.22a shows that increases at the growth checks are not similar and can differ

by >20%. The difference in concentrations at the doublets is ~30%. This lack of

covariation suggests that Sr/Ca is not dominated by an external, environmental factor

e.g. temperature. This is further supported by the lateral offset which shows the Sr/Ca

peaks at the growth checks becoming increasingly less well defined (and become

within the range of Sr/Ca concentrations seen during the rest of the year in T3).

In the previous chapter, a number of hypotheses were proposed on the controls

on Sr/Ca within the growth check:

1) Preferential dissolution of Sr-poor material resulting in enrichment

of Sr at the growth check,

2) Changes in crystal nucleation and propagation influencing Sr

partitioning



Chapter 4: ICPMS analysis: Quantifying trace element fluctuations within the outer
shell prismatic layer

179

3) Biological (vital) effects.

These are discussed below and in particular, the extent to which they are likely

to control trace element incorporation.

1) Preferential dissolution

Lutz and Rhoads (1977) hypothesised that daily growth checks originate from

increased concentration of the organic matrix, caused by anaerobiosis-related

dissolution of previously deposited calcium carbonate, which may in fact act as a

buffer (Dugal, 1939; Crenshaw and Neff, 1969; Taylor and Brand, 1975; Wada and

Fujinuki, 1976; Gordon and Carriker, 1978; Richardson, 2001). In other words, the

lack of oxygen causes the production of acid (H+), which is then buffered by the

dissolution of the CaCO3 shell (which produces CO3
2-). An alternative hypothesis is

that the increased organics at the growth check results from an increase in the secreted

organic matrix or cessation of calcium carbonate deposition (Lutz and Rhoads, 1980)

i.e. the shell deposited during this time has a lower organic content.

Using unetched material, evidence of dissolution was looked for using the

SEM, but the presence of the organics made it difficult to discern any changes. It is

unclear from examinations using the SEM whether dissolution occurs at the growth

edge.

If preferential dissolution takes place i.e. not all material will be dissolved at

the same rate, with the solvus dependent on Sr-concentration (see Finch and Allison,

2003), this could affect the elemental concentrations. The composition of the shell of

A. islandica lies on the Sr poor-side of the solvus and hence dissolution of material

with a range of Sr compositions will preferentially start with Sr-poor aragonite.

However, preferential dissolution will only increase Sr concentrations if redeposition
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of Sr-poor material did not occur and then only to the maximum level at which it was

originally incorporated i.e. it does not increase the amount of Sr in the Sr-rich material

but rather changes the ratio of Sr-rich to Sr-poor material. Within the prismatic layer

of the umbo, this was found not to be a major control as Sr/Ca increases at the growth

check exceeded those found in the earlier part of the umbo i.e. the concentration at the

growth check exceeded the maximum incorporated. The same is also true for the outer

shell indicating that any impact of dissolution is relatively minimal. In addition, Sr/Ca

peaks of the outer shell would be expected to be smaller than those measured in the

umbo as the slower growth rate in the umbo would make material more susceptible to

the effects of the dissolution (i.e. new material is not deposited as quickly). The

reverse however is found, with Sr/Ca peaks in the outer shell prismatic layer being

higher (especially taking into account the offset of the values measured by LA-

ICPMS compared to SIMS). Therefore, dissolution is unlikely to be a significant

mechanism.

2) Changes in crystal nucleation and propagation

As discussed earlier, in reference to lateral changes, organics influence the

growth of aragonite crystals (e.g. Belcher et al., 1996; De Yoreo and Vekilov, 2003;

De Yoreo and Dove, 2004) and this may in turn influence Sr uptake. As discussed in

Chapter 3, it can be inferred from Finch et al. (2003b) that different aragonite crystal

faces incorporate different Sr/Ca concentrations, with a change in Sr concentration of

~50% across the crystals from a speleothem. Changes at the growth check can be

>100%, and thus the data from Finch et al. (2003b) would indicate that changes in

Sr/Ca induced by changes in crystal propagation would be too small. However, it is

not known the effect an organic matrix would have on the formation of the crystals
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compared to an inorganic precipitation within speleothems. Changes in crystal

nucleation and propagation could contribute to changes in Sr/Ca uptake.

3) Vital effects

Vital effects such as changes in biochemical pumping of Ca and trace

elements may also be important in the uptake of Sr/Ca. By changing the proportion of

Sr to Ca pumped to the site of deposition, changes in Sr/Ca would occur. High Sr/Ca

peaks were found throughout the shell of an A. islandica shell from the German Bight,

not just within the latter years of growth (Epplé, 2004). Here the specimens grow

more slowly but live longer than those from Irvine Bay. In contrast, Toland et al.

(2000) who studied only the more juvenile section of an A. islandica shell found no

Sr/Ca peaks at the growth checks. This indicates that changes in Sr/Ca behaviour

could be affected by the growth rate of the organism, which could result from changes

in biochemical pumping of Sr/Ca.

As discussed earlier, Ca2+-ATPase supplies Ca2+ to the site of calcification and

concentrates CO3
2- (Crenshaw, 1980; Cohen and McConnaughey, 2003). Thus,

increased activity of enzyme Ca2+-ATPase increases the calcification rate and as Ca2+-

ATPase has a higher affinity for Ca2+, the proportion of Sr2+ decreases; conversely, at

lower calcification rates, the proportion of Sr2+ must increase (Gillikin et al., 2005a).

Such a mechanism could explain how a biological control may influence Sr/Ca at the

growth check. It would also provide a hypothesis to suggest why Sr/Ca peaks at the

growth checks are only seen when the growth rate is <~2000 m. It would also not

preclude other biological models such as that of Carré et al. (2006) that could be

applicable to faster growing parts of A. islandica.
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4.6.4 Sr behaviour within the growth bands

PL228 shows variation during the growth band between 1995 and 1996 with

gradual increase to the approximate centre of the band and decrease of

~0.5 mmol/mol but in 1997, this curve is truncated against the termination band

(Figure 4.22a). In 1998, variation in Sr/Ca during the growth band is within error. In

PL248, Sr/Ca variation during the growth band is within error during 1995-1996.

However, in other years, such as 1993 and 1994, there is a general change in Sr/Ca

during the year of ~ 0.4 mmmol/mol, with a similar positive curve as that seen during

1996 in PL228.

The data also appear to show an ontogenetic trend in the Sr/Ca values in

PL2248 and PL248. However, decrease in PL248 occurs after 10,000 m during the

last 22 analyses of T1. These were analysed on 1st May 2006 (in reverse order - i.e.

from 12,200 m to 10,000 m) with analysis stopped due to concerns about the poor

laser focusing. This may have affected the Sr/Ca ratios (Figure 4.25 shows a SE

image of the spots). PL228 shows no ontogenetic changes.

In the previous chapter, it was proposed that Sr/Ca within the growth band

could be controlled by crystal growth entrapment (Watson, 1996, 2004; Gaetani and

Cohen, 2006). Watson (1996, 2004) found that where the growth rate was 0.01 nm/s

or faster, growth entrapment of Sr occurs in calcite. This process has also been

observed in aragonite (Gaetani and Cohen, 2006) though no threshold for entrapment

within aragonite has been published. Growth entrapment may therefore be an

important consideration with shell growth rates in A. islandica are ~0.13 nm/s in the

outer shell prismatic layer (assuming 300 days growth a year, 24 hours per day).

Schöne et al. (2004c) showed that the daily growth rate in A. islandica shells from the

North Sea was average of 31.9 m/day with a maximum of 55 m/day, equivalent to
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0.35 nm/s and a maximum of 0.63 nm/s respectively (assuming 24 hours growth per

day). However, shell extension rates may not accurately reflect crystal growth rate, as

the shell extension rate is dependent on the angle between the shell growth direction

and the crystal growth direction (see Carré et al., 2006). In addition, increased shell

extension rate could also be achieved by increased nucleation of the crystals.

Sr/Ca shows a sharp increase of ~0.6 mmol/mol during the early part of 1997

in PL228. An image of the transect shows that the distance from the periostracum

decreases (Figure 4.24). The transect although measuring an average of 250 m from

the periostracum, due to natural changes in the shell height during the growth season,

some variation in the lateral distance occurs. Sr/Ca variation due to lateral changes in

shell height in 1997 is greater than the variation seen within the growth bands in

PL228 (of <0.6 mmol/mol). Therefore, Sr/Ca fluctuations within the growth bands

can be explained by changes in the distance from the periostracum.

Further evaluation on whether the growth rate influences the Sr/Ca profile can

be provided by examining the 18O profile of A. islandica. The 18O sampling and

modelling (Chapter 6) can show when the shell grows and changes in growth rate

during the year. This however presumes crystal growth rate is strongly related to the

shell growth rate (increased shell growth rate could be achieved by increased

nucleation). Thus, changes in growth rate derived from the 18O record can then be

compared to changes in trace element uptake, to determine whether shell growth rate

has a significant impact on Sr/Ca uptake.

4.6.5 Potential of Sr for palaeoenvironmental reconstructions

Sr/Ca data are unlikely to provide an accurate temperature reconstruction

using A. islandica. Comparison to the temperature data at Millport shows no common
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features, either with maximum or minimum temperatures for Sr behaviour at the

growth checks or in the growth bands. This implies that temperature exerts relatively

little control on Sr/Ca uptake in A. islandica. Hence, growth corrected-Sr/Ca data

such as those of Goodkin et al. (2007) are unlikely to provide successful temperature

reconstruction. Sr/Ca can change laterally by as much as 45% with an inconsistent

offset. Comparison of the two shells shows that there are some positive increases

during the year, but these can be explained by the lateral offset due to undulations of

the shell through the growth season.

High Sr/Ca peaks at the growth checks appear to be associated with slower

growth rates. Within our results, slow growth rates only occur within the latter years

of growth but in specimens from the German Bight, which are much slower growing

specimens, high Sr/Ca peaks at the growth check are found throughout the lifetime of

the organism (Epplé et al., 2006). This suggests Sr/Ca behaviour is influenced by

slow growth rates.

4.6.6 Mg behaviour

Mg/Ca analysis within the umbo was susceptible to contamination. There was no

burn-time used with the laser to remove surface contamination. However, analysis of

27Al counts (indicative of contamination) in the outer shell prismatic layer failed to

show any evidence of increased values at the growth checks. There is also good

replication of the patterns of the fluctuations laterally across the bands.

Figure 4.22b shows that in PL228 Mg/Ca increases at the growth checks are

well defined with increases >0.4 mmol/mol, with the exception of 1994, in which the

increase was much smaller (~0.2 mmol/mol). The 1994 growth check was not well-

defined suggesting lower concentrations of organics, being identified by the notch in
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the shell and later confirmed by 18O analysis. This implies that the presence of

organics is linked to Mg variation.

PL248 also shows Mg/Ca increases at the growth checks, but unlike PL228, it

shows variation within the growth bands, which are beyond the confidence limits.

PL248 is the slower growing specimen- showing a growth rate of approximately half

that of PL228. Thus, it would be expected if increased organics relates to a slowdown

in growth rate (similar to growth checks); PL248 would have a higher organic content

during the same years. While fluctuations in the organic concentrations are not

quantifiable, visual inspection of the shells indicated the presence of more organics in

PL248 during the year. Figure 4.26 shows a micrograph image of PL248 in which

organics can be seen, similar microscope analysis of PL228 did not show such

variation visually. Schöne et al. (2005b) stated that A. islandica deposits daily growth

bands, so changes in organics during the growth band are to be expected. However, it

appears that the intensity of intra-annual bands may differ between shells.

Figure 4.26: Reflected light micrograph showing the outer shell prismatic layer of A.

islandica shell 248. PL248 sub-annual growth bands can be seen indicating the

presence of organics intra-annually (examples highlighted by the arrows).
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Mg/Ca showed a strong lateral change between T1 and T3 (though T1 and T2

were within error), with a decrease of >100% at the Mg/Ca peaks and >25% between

these peaks i.e. the lateral change is not constant. Figure 4.18 shows a vertical

heterogeneity in the sample with increase >40% after removal of top 125 m,

indicating that the change may be vertical as well as laterally across the bands.

Rosenberg and Hughes (1991) measured the changes in S/Ca in Mytilus edulis

in the outer calcitic layer bivalve. They found that S/Ca values along the slow-

growing sections were 1.25 higher than along rapidly growing axes of low curvature.

S/Ca were interpreted as an index of matrix content, as S is primarily concentrated in

various acid mucopolysaccharides and amino acids within the shell (Rosenberg and

Hughes, 1991). Therefore, higher S/Ca ratios are indicative of higher Mg/Ca

concentrations. This suggests that the organic concentration within a bivalve shell can

vary significantly.

These findings concur with those of Chapter 2 in which XANES modelling

was consistent with Mg hosted by the organics. It would be expected that if the

measured Mg/Ca variation resulted from changes in the absolute concentration of

organics, Mg/Ca would always be significantly higher at the growth checks. However,

since this is not the case (though it was not possible to measure absolute organic

concentration), it indicates that Mg/Ca uptake is not a linear response to organic

concentration. Epplé (2004) found Mg/Ca increases not associated with the growth

checks, and thus may provide further support that this is the case. Further work on this

is required to measure organic fluxes, and to separate out different organic complexes

within the shell of A. islandica. Mg/Ca is however unlikely to provide a temperature

reconstruction. If however, the controls on Mg within the organics are better

understood, fluctuations in Mg may provide some qualitative understanding of
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environmental factors or biological factor that controls organic composition or

quantity.

4.6.7 Ba behaviour

Ba/Ca generally shows low concentrations with sporadic sharp increases, which are

seen in all transects. This indicates that Ba/Ca is not the result of direct incorporation

of detrital Ba. This pattern of sporadic increases was also evident in the prismatic

layer of the umbo of shell 248 and has been reported both in other A. islandica

specimens (e.g. Toland et al., 2000; Epplé, 2004) as well as in other bivalves (e.g.

Stecher et al., 1996; Putten et al., 2000; Lazareth et al., 2003; Gillikin et al., 2006).

The timing of these Ba/Ca increases in A. islandica do not occur at the same position

in the growth year, nor does the timing of the Ba/Ca peaks between the PL228 and

PL248 coincide (Figure 4.22c). This suggests that the Ba/Ca peaks do not relate to an

environment forcing such as productivity. Therefore, Ba/Ca peaks are unlikely to

provide an indication of the timing of an environmental forcing.

Very little is known about the substitution of Ba2+ into the lattice, although

Dietzel et al. (2004) found its incorporation into inorganically precipitated aragonite

is dependent on temperature. Rosenthal and Katz (1989) suggest that Ba is bound to

the crystal in molluscs.

Experiments by Gillikin et al. (2006) discounted the theory that Ba/Ca peaks

could be used as a direct proxy of Ba/Ca concentrations in the water or

phytoplankton. They found a relationship between 13C and Ba/Ca in the shells, but

discounted spawning as a control as Ba/Ca peaks in Pecten maximus did not correlate

with spawning breaks. Comparison of the 13C profile and Ba/Ca peaks will be

discussed in Chapter 8. Gillikin et al. (2006) tentatively concluded the peaks could be
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related to ingestion of barite crystals. The mechanism by which barite crystals

precipitates is however unclear (e.g. González-Muñoz et al., 2003). It is uncertain

how barite crystals would be incorporated into the shell, but as Ba/Ca peaks can be

seen laterally across the shell, it indicates that is it is not incorporated directly, but is

taken up through the EPF.

Gillikin et al. (2006) determined that the low Ba/Ca concentrations showed a

linear relationship to Ba concentration within the seawater using both laboratory and

field experiments. However, these two experiments showed differing results:

For laboratory experiments:

background [Ba/Ca]shell = 0.10 (±0.02) x [Ba/Ca]water ±1.00 (±0.68) giving R2 = 0.84

For field experiments:

background [Ba/Ca]shell = 0.071 (±0.01) x [Ba/Ca]water giving R2 = 0.96

Gillikin et al. (2006) suggested the difference in the equations related to inaccuracies

in the field measurements or stress induced by handling in the laboratory experiments.

In A. islandica low [Ba/Ca]shell are <0.003 mmol/mol, similar to the concentration

incorporated into the calcite bivalve Mytilus edulis from the North Sea (Gillikin et al.,

2006). This suggests that the low Ba/Ca found within the A. islandica shells could

relate linearly to Ba concentrations within the seawater. The lateral change in Ba/Ca

for the low values is within the error of the precision of the instrument. Measurement

of Ba/Ca on an instrumental capable of higher precision would be required to

determine whether there is a lateral decrease in the low Ba/Ca as well. If no lateral

change occurs, it indicates that low Ba/Ca may provide a proxy for the Ba/Ca

concentration of seawater.
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Further work would be required to analyse in-situ Ba/Ca of seawater and

compare it to the concentrations found within the shell. The cause of the sporadic

increases is unknown but the timing does not correlate between shells, or at a specific

time of year. Ba/Ca increases in A. islandica higher than that observed within Mytilus

edulis (0.020-0.025 mmol/mol) (Gillikin et al., 2006). The highest Ba/Ca in A.

islandica occurs at the beginning of 1998 in shell 248, though this may have been

affected by damage to the shell. It would be interesting to investigate further how

such infilling may have influenced Ba/Ca incorporation.

Investigation is required into whether the lateral decrease found at higher

Ba/Ca ratios, also occurs at lower Ba/Ca concentrations. This together with in situ

Ba/Ca seawater measurements would determine whether low Ba/Ca could be a proxy

for Ba/Ca concentrations within seawater.

4.7 Conclusion

Analyses from both specimens shows heterogeneity in the trace elements within

material deposited at the same time within the outer shell prismatic layer. Sr, Mg and

Ba decrease in concentration away from the periostracum. Sr/Ca behaviour in general

shows a sharp increase in the latter years of growth (which can be >100%), while in

the more juvenile sections, this increase becoming less evident. Sr/Ca incorporation

may be influenced by changes in the crystal habit during formation caused by

increased organics at the growth check, crystal growth rate as well as vital effects.

Sr/Ca changes within the growth band reflect changes in the lateral distance from the

periostracum, with the shell height varying intra-annually.

Mg shows a close correlation with the presence of organics providing further

support for the organic XANES model proposed in Chapter 2. Mg/Ca concentration
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appears not to be linearly related to uptake, with initial evidence indicating that vital

effects play a role.

Finally, low Ba/Ca may be proportional to Ba/Ca concentrations within the

seawater, being similar to the concentrations found in Mytilus edulis from the North

Sea (Gillikin et al., 2006). Further work, particularly in situ measurements would be

required to confirm this. The sporadic increases in Ba/Ca, often greater than five

times the average, are found in both shells. However, the timing of these increases is

not correlated between the two shells, nor does it reflect a specific timing within a

band. Further work is required to understand the controls on Ba/Ca incorporation.
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Abstract

The shell of Arctica islandica is composed of aragonite, a metastable polymorph of

calcium carbonate, which will potentially undergo transformation to the more stable

calcite upon heating and/or stress. Conversion from aragonite to calcite during drilling

has been noted by a number of researchers (e.g. Aharon, 1991; Gill et al., 1995). The

impact of this on the isotopic composition is, however, unclear.

Two different sampling techniques, drilling and micromilling were used to

extract aliquots from Arctica islandica, and the subsequent percentage of calcite in the

aliquots was measured using XRD. Typical conversion was >5% with the highest in

the drilled aliquots. Using the micromill, aliquots were taken from aragonitic otoliths,

which were from cod grown in laboratory tanks under stable temperatures. Although

XRD analysis showed the conversion to calcite to be 6%, 18O results suggest that

there is no significant effect on 18O.
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5.1 Introduction

Extraction of small aliquots (g-mg) from Arctica islandica without modification or

contamination is imperative for accurate climate reconstruction. Researchers such as

Aharon (1991) and Gill et al. (1995) however noted that drilling caused conversion of

aragonite to calcite, and modification of 18O. However, the direction and magnitude

of the shift in 18O was inconsistent. This chapter examines whether aragonitic

material such as A. islandica and cod otoliths undergo such a transformation. The

otoliths from cod grown in a temperature-controlled tank enabled the impact on

isotopic composition to be examined.

5.1.1 Rationale for study

In sclerochronological records such as corals, bivalves and speleothems, greater

sampling resolution provides better temporal resolution. Although in situ

microanalytical methods (e.g. SIMS, LA-ICPMS) are increasingly available, precise

microsampling remains the most widely used means of producing high resolution

climate reconstruction.

Extraction of aliquots is usually carried out by a drill (usually on a stable

platform) or a micromill. The former is a much cruder sampling method with

positioning of the aliquots to be taken, carried out manually. The latter is computer

controlled and allows positioning of sampling to 1 m spatial resolution, controlled

sampling depth and volume as well as the capacity for 3D sampling (Dettman and

Lohmann, 1995). For example, using the micromill, aliquots of a particular volume

(and hence mass) can be repeatedly taken such that systematic weighing of aliquots

for 18O (and 13C) prior by mass spectrometry is not required. This is a significant

advantage as powdered aliquots are difficult to weigh, and there is a high risk of
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contamination with small volumes. Thus, this sampling technique is rapidly becoming

the norm for sampling material for high resolution climate proxies.

During sampling, considerable shear stress is applied to the sample, which

heats up the drill bit. Aragonite, a metastable polymorph of calcium carbonate

undergoes rapid transition to calcite following heating for 30 mins at 470 °C (Epstein

and Mayeda, 1953; Land et al., 1975). However, shear stress may contribute directly

to the transformation, with conversion within a ball mill occurring within 30 mins

(Dachille and Roy, 1960). In addition, biogenic aragonite (with a high organic

content) may invert at a significantly lower conversion temperature or at a smaller

shear stress (Gaffey et al., 1991). Hence, during drilling, modification of the

polymorph is a real concern.

The inversion to calcite can affect the data in two ways. Firstly, calcite and

aragonite have slightly different fractionation factors in the mass spectrometer

(1.01025 and 1.01034 respectively) (Sharma and Clayton, 1965). This could be

corrected for, if the percent calcite formed during the drilling were known. However,

an aliquot of 25% calcite and 75% aragonite would provide negligible depletion

(<0.0003 ‰) compared to the precision of the instrument.

Secondly, exchange of O between the sample and atmospheric O2, H2O or

CO2 may take place. Such exchange would modify the oxygen (and potentially C)

composition of the aliquot. Such modification would be difficult to correct for if the

amount of exchange were inconsistent from aliquot to aliquot.

The potential of these processes to influence climate reconstruction has

already been established by researchers. Aharon (1991) found during drilling of a

giant clam (Tridacna gigas), conversion from aragonite to calcite (percentage not

specified), and noted depletion in 18O of up to 8 ‰ compared to non-milled material.
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This offset was greater than could be explained by any discrepancies in sampling

position, with non-drilled showing a maximum variation of 2 ‰ (Aharon, 1991).

However, work by Gill et al. (1995), found the opposite in corals (Montastrea

annularis) in which the aliquots were 18O enriched by drilling. Gill et al. (1995)

found a poor negative correlation between the isotopic shift and the quantity of calcite

produced by drilling. Moreover, such isotopic shifts could occur even when the

amount of calcite were below the XRD (X-ray Diffraction) limit of detection

(typically 0.5 wt %). Although the polymorphic transition may allow exchange with

ambient CO2, this would result in a negative shift in the oxygen isotopic composition,

not the positive shift Gill et al. (1995) reported. Even when Gill et al. (1995) drilled

the sample under Ar, an isotopic shift was still observed suggesting that isotopic

fractionation is not solely via atmospheric exchange. This makes a consistent

correction very difficult to apply, as the controls on the shift are unclear, and may

depend on factors such as drill type, drill bit, and operator (e.g. time to taken to drill

sample, pressure applied). Furthermore, a change in skeletal density through the shell

may affect the results (Gill et al., 1995).

Gill et al. (1995) commented that the maximum isotopic deviation of ~0.75 ‰

in dry-drilling (of aragonite coral) corresponds to an apparent temperature error of

-3.0 ºC, with the average error due to isotopic shift being –1.1 ºC. However, Swart

and Leder (1996) argued that the changes in 18O seen by Gill et al. (1995) were due

to differences in sampling positions (i.e. 18O variation within the original sample)

and not due to the drilling of the aliquots. Therefore, the impact of drilling on the

isotopic composition is unclear. Clearly, such effects have the potential to provide

wholly erroneous estimates of 18O from drilled or milled aliquots.
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To explore this issue further, five A. islandica shells were used to examine

whether sample preparation could induce structural changes in the samples.

Unfortunately, the isotopic composition of A. islandica varies through time due to

changes in temperature (and to a much lesser extent salinity). Therefore, as Swart and

Leder (1996) argued in their interpretation of Gill et al. (1995) any recorded isotopic

shift could be due to changes in 18O incorporation rather than an artefact of drilling.

In order to determine whether sampling does modify 18O of the aliquot,

otoliths from cod grown in a temperature-controlled laboratory were examined. The

18O composition of this material is only influenced by changes in temperature and

salinity (see Campana, 1999). The salinity is however often assumed constant for

18O reconstructions. However, the controls on 13C in otoliths are not fully

understood, though it is thought it deposits under non-equilibrium conditions (e.g.

Kalish, 1991; Gauldie, 1996). Therefore, the possible effects of drilling on 13C are

not discussed.

5.2 Samples

A range of different A. islandica shells were studied in order to examine the impact of

milling on different areas of the shell, using both live and dead collected specimens.

Table 5.1 shows the details of the specimens: two shells from Irvine Bay (313 and

Dead Arctica 1), two from the Viking Bank (V0017 and V05-257-3) and one from

Fladen Ground (400260).

The otoliths were provided by Hans Høie, University of Bergen, Norway

(reference 05.03.99 No15 TJ; 05.03.99 No18TJ). The cod were hatched in April 1997,

and were reared at a constant 10 ºC until May 1998 (during the juvenile stage). They

were then reared at 15 ºC for another 10 months at the fisheries laboratory at the
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University of Bergen, Norway. The seawater in the laboratory tank is pumped from

just outside Bergen from a depth of 70 m and is affected thus by natural salinity

variability during the year. The salinity variation for 2002-2003 is shown on Figure

5.3. It is assumed that the salinity variation during these years was similar to that of

1998-1999 when the cod were grown. Salinity variation in the laboratory tank was

~1.6 equivalent to a change in seawater 18O ~0.4 ‰ (based on the isotope mixing

line for the North Sea (Israelson and Buchardt, 1991). Thus, the study of otoliths

allows the separation of natural 18O fluctuations from the effects of milling.

Table 5.1: Location details of A. islandica and otolith samples for drilling and milling

experiments.

5.3 Method

5.3.1 A. islandica sampling

Aliquots from A. islandica were taken prior to sectioning to provide a pristine sample

for XRD analysis to confirm no calcite was present in the original sample. This was

done by removing a small chip with a scalpel, and very gently crushing it into a

powder. The shell was then sectioned using a geological saw (thickness 2 mm) (Irvine

Location Latitude Longitude
Water depth

(m)
Specimens

studied

Live or
dead

collected?

Irvine Bay 55° 45'N 4° 54'W 6 313 Live
From beach Dead1 Dead

Viking Bank 60° 24'N 2° 20'E 98.3 VO5-257-3 Dead
V0017 Live

Fladen Ground 59° 23'N 0° 30'E 129 400260 Live

Otolith 05.03.99No15TJ Live
05.03.99No18TJ Live

HIB marine laboratory, Bergen

Artica

islandica
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Bay shell 313 only), or a Buehler Isomet low speed saw (at speed 7 with no additional

weights attached, saw thickness of 0.4 mm). This was to examine whether differences

in preparation have an influence. Some samples were milled after sectioning only,

while others after polishing i.e. to examine if there was any particular step in sample

preparation that affected the sample structure. The samples were polished using the

standard preparation for stable isotopes, i.e. progressing down to 5 μm diamond

polish. An additional aliquot was taken to confirm that no changes took place when

the sample was mounted onto the drilling plate using QuickStickTM 135 Mounting

Wax crystal bond (with temperatures of 100-200 °C required for bonding).

Shell 313 (Irvine Bay) was sampled using a coarse drill with a drill bit of

1 mm diameter, with the position set manually. This much coarser sampling technique

is increasingly being replaced by more precise micromill technology. Thus, other

shells were sampled using a New Wave™ micromill to examine whether variations in

calcite/ aragonite were more consistent when variations due to the operator were

removed (e.g. pressure).

The aliquots were extracted by micromill with a length of 100 μm and depth

of 1000 μm. Typically, a milling speed of 40% was used, but a couple of aliquots

were taken at milling speed of 100% to examine whether the milling speed affected

the conversion to calcite. The total length of shell analysed for each aliquot was

typically 5 cm. On shells 313 and V0017, two different areas of the shell were

sampled, one area covering the latter years of the growth, the second covering the

youngest years of growth near the umbo. This examined the possibility of differences

occurring due to age. For shells V05-2573 and 400260, thick sections across the shell

were prepared (see Figure 5.1 for schematic). The same bands were sampled

throughout the shell i.e. the same temporal resolution was sampled (these are labelled
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as “same” in the Table 5.2). The different types of tests are outlined in further detail

with XRD results in Table 5.2.

Figure 5.1: Schematic of A. islandica sectioning for XRD analysis (not actual sample

used). Typical sectioning is show by the lines.

5.3.2 Sampling of Otoliths

Two pairs of fish otoliths from cod were used for sampling (Figure 5.2). The otoliths

are present in cod as pairs. Due to the limited size, the whole otolith was required for

XRD to provide the minimum 40 mg required. Therefore, one pair was used (05.03.99

No18 TJ) solely for XRD analysis, with another otolith taken from a second cod was

used for isotopic analysis (05.03.99 No15 TJ).

For XRD, one otolith of the pair was left as a pristine sample; the other (from

the same cod) was sectioned. Using the micromill, an aliquot for XRD was collected

using 10 passes, each cutting a depth of 300 m into the sample, with a 40% scan

speed, 200 m plunge speed and 100 m interpolation.

A single otolith taken from a second pair (05.03.99 No15 TJ) was used for

isotope analysis. It was set in epoxy and then sawed into 500 m thick sections. From

one of these sections, aliquots were taken at three different speeds (45, 80, 100% of

maximum speed equivalent to 16680, 20700, 21720 rpm (revolutions per minute)

respectively), and an unmilled aliquot was extracted using a scalpel. Aliquots were
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Figure 5.2: Transmitted light micrograph of 500 m thick section of a laboratory

reared cod otolith, with schematic of sampling. Note that the otolith bands from

laboratory-reared cod are less well defined than otoliths taken from wild specimens.
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Figure 5.3: Variations in salinity of laboratory tanks at University of Bergen in 2002

and parts of 2003. Data supplied by Dr H. Høie (Department of Biology, University

of Bergen). Error on the salinity measurements is ±0.1.
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only taken from the part of the otolith deposited during adulthood to ensure that the

growth bands formed in water at 15 ºC. The aliquots were taken parallel to the growth

bands with 38 μm interpolation comprising an aliquot volume ~0.02 mm3 (equivalent

to 20-35 g). In addition, aliquots were milled under distilled water. These aliquots

were taken adjacent to the dry-milled aliquots. The aliquots milled under water were

spaced further apart than the dry-milled aliquots (~ 100 m apart), as parafilm (a self-

sealing, mouldable and flexible film) requires a smooth, flat surface to allow

adhesion. The sampling method, used for milling under water, was that developed and

described by Charlier et al. (2006). Parafilm is first punctured and then heated before

being placed on the sample and then gently heated again to form an airtight bond with

the sample surface. A water droplet is placed on the sample (in the parafilm hole) just

prior to milling. The parafilm keeps hypertension on the water droplet, and thus the

aliquot as it is milled is suspended within the water droplet. Without the parafilm, the

water would drain away from the sample, and the milled aliquot could not be

recovered. The aliquot (including water) is then removed with a variable pipette - size

0.5-10 μl. Additional water droplets were added as required to collect any remaining

material for the aliquot. The aliquots were then left to dry in the oven at 40 ˚C

overnight before analysis.

The aliquots taken parallel to the growth bands would however, experience

changes in the salinity over time. Therefore, to provide an independent check whether

salinity could account for any changes in the samples, an additional set of aliquots

was taken perpendicular to growth. The same number of bands was sampled

(regardless of the total widths of the bands), i.e. the same temporal resolution was

sampled (see Figure 5.2).
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5.3.3 XRD analysis

XRD was carried out on automated Philips PW1050 X-ray diffractometer with Philips

WinXRD V2 software at the University of St. Andrews, UK. The percentage of

calcite was calculated using Rietveld Refinement procedures with SiroquantTM

software http://www.sietronics.com.au/siroqnt/siroqnt.htm. The limits of detection of

other calcium carbonate (particularly calcite) in an aragonite matrix by XRD are <1%

(Finch, unpublished data).

5.3.4 Mass spectrometer analysis

The aliquots were analysed on a Finnigan MAT253 mass spectrometer at Bergen

University, Norway. The order the aliquots were analysed was randomised to offset

for machine drift with standards every 20 aliquots. The aliquots were analysed in two

sessions, with the aliquots from the same sampling direction analysed together (i.e. all

aliquots from Table 5.3 were analysed in one batch, and all those in Table 5.4 in

another). CO2 is produced by reaction of carbonate in the aliquots with

orthophosphoric acid at 70 °C in an automated on-line system. Results are reported

with respect to the VPDB through calibration with NBS-18 and NBS-19 standards.

The external precision of the instrument is ±0.06 ‰ 13C and ±0.15 ‰ 18O (1)

based on replicate measurements of an internal carbonate standard. Further details on

the mass spectrometer (and method) are given in Chapter 6 (Section 6.3.4).

http://www.sietronics.com.au/siroqnt/siroqnt.htm
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5.4 Results

5.4.1 A. islandica XRD

The XRD results are shown on Table 5.2. All unmilled aliquots regardless of sample

preparation (including those heated, sawed, polished) show a single phase aragonite

complying with the standard pattern of aragonite (International Centre on Diffraction

Data card 41-1475). All milled and drilled aliquots however include calcite in varying

amounts from 2-15% ±2% for milled aliquots and 15-24 ±2% for drilled aliquots

(limit of detection <1% (Finch, Unpublished data)). Aliquots from shell 313 generally

show a higher conversion to calcite (11%), as well as the best reproducibility (0.8%

(2calculated from all the milled aliquots of 313). The dead collected specimen

from Irvine Bay (Dead Arctica 1) shows the widest range of calcite percentages.

Milling of 400260 and VO5-2573 showed that even when drilling the same bands in

each section (i.e. the same temporal resolution) the percentage conversion to calcite is

not the same. From the limited aliquots taken at a higher milling speed, it appears that

the milling speed does not have a significant control (though more aliquots would be

required to confirm this). The XRD spectra of two aliquots taken from the same

Fladen Ground specimen are plotted in Figure 5.4, an unmilled aliquot showing a

single phase aragonite, and a milled aliquot showing the presence of calcite.
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Figure 5.4: Plot of XRD results (background removed) from same Fladen Ground A.

islandica specimen, unmilled sample FGL3V (upper blue line), and milled sample

R1FGUP (lower red line).
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Table 5.2: XRD results with percentage conversion with different preparation,

sampled by drilling or micromilling showing the percentage of calcite in each aliquot.

For sample areas, listed at “same” this refers to the same bands being sampled using

sections taken across the shell, i.e. same temporal resolution. “Closest to the umbo” to

“furthest from the umbo” refers to sampling in the outer shell prismatic layer, with the

position of the transect becomingly increasing further away from the umbo, with the

last aliquot taken at the growth edge of the outer shell prismatic layer.
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Table 5.2 (cont.): XRD results with percentage conversion with different preparation,

sampled by drilling or micromilling showing the percentage of calcite in each sample.

For sample areas, listed at “same” this refers to the same bands being sampled using

sections taken across the shell, i.e. same temporal resolution. “Closest to the umbo” to

“furthest from the umbo” refers to sampling in the outer shell prismatic layer, with the

position of the transect becomingly increasing further away from the umbo, with the

last aliquot taken at the growth edge of the outer shell prismatic layer.
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5.4.2 Otolith analysis

Otolith XRD analysis shows 6% conversion to calcite, with the pristine aliquot

showing no calcite (within limits of detection) (Table 5.2). The 18O and 13C results

for aliquots taken parallel to the growth edge and perpendicular to the growth edge are

shown in Table 5.3 and Table 5.4. Figure 5.5 shows a plot of 18O, when sampling

was parallel to the growth edge. The aliquots show a gradual increase from 0.7 ‰ to a

maximum of 1.5 ‰. The aliquots milled under water again show an increase in 18O

values, but with a faster increase in values than those of the non-water aliquots. The

unmilled aliquots are within the range of 1-1.3 ‰. Aliquots taken perpendicular to the

growth edge (Figure 5.6) show a high degree of scatter but the 18O of the milled

aliquots typically between 1.0-1.5 ‰, with unmilled aliquots 1.1-1.3 ‰.
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Table 5.3: 18O and 13C results from otoliths taken parallel to growth bands at

varying speeds, including aliquots milled under water. Mean of values shown with

standard deviation of samples taken at under same conditions (drill speed,

with/without water).
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Table 5.4: 18O and 13C results from otoliths sampled perpendicular to growth

bands.
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Figure 5.5: Plots of 18O results from an otolith, aliquots sampled parallel to growth

axis; (a) dry milled (b) milled under water (c) ummilled aliquots. The sample number

1-18 indicates the order in which they were sampled (see Figure 5.2 for schematic).

Note that the samples milled under water were taken further apart (see text for

details). The sampling number for the unmilled samples is for reference purposes

only. Typical error (1) is calculated from the reproducibility of the carbonate

standard.
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Figure 5.6: Plots of 18O results from an otolith, aliquots sampled perpendicular to

growth axis (a) dry milled (b) not milled. The sample number 1-14 indicates the order

in which they were sampled (sampling numbers for the unmilled samples are for

reference purposes only) (see Figure 5.2 for schematic of sampling). Typical error

(1) is calculated from the reproducibility of the carbonate standard.
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Figure 5.7: XRD results (background removed) of milled A. islandica specimen

R1FGUP (upper blue line) compared to an A. islandica specimen (lower red line)

aged 3.7 Ma. The characteristics of the XRD peak are different, with a wider main

calcite peak for the milled specimen compared to diagenetically altered material.
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5.5 Discussion

The XRD results from A. islandica show that milling and drilling produces calcite in

all aliquots. No calcite was produced by any of the preparation stages prior to milling

or drilling. The percentage conversion is not consistent. The faster drill speed did not

appear to show a significantly different percentage of calcite to those drilled at lower

speeds, though different milling speeds on the same sample would be required to

confirm this. Drilling however produced considerably more calcite producing an

average of 19% compared to 11% by micromilling of the same sample (313), with

minimum by drilling 15%, and the maximum by micromilling being 12%.

XRD spectra show that the broadness of the peak is much wider than that in

diagenetically formed calcite (Figure 5.7). This broadening of peaks in XRD, so-

called “diffuse scattering,” explores the state of crystallinity in a material (see

Welberry, 2004). The width of an XRD peak is related to the degree of long- and

short-range order in structures and the wider peak indicates that the calcite is ordered

relatively poorly. Iguchi and Senna (1985) hypothesised that during the aragonite-

calcite transformation, samples may go through an intermediate disordered state that

would contribute to the broadening of the peak.

The otolith shows a 6% conversion to calcite, with no calcite, within the limits

of detection, found in the unmilled sample. The percentage conversion is therefore

similar to that seen in A. islandica. Therefore, it would be expected any impact due to

conversion would be similar in A. islandica. As discussed earlier, the uptake of 18O

by otoliths appears to be independent of vital effects, i.e. solely dependent on

temperature and salinity (see Campana, 1999 and references therein).

The otolith aliquots taken parallel to the growth bands show a broad increase

in 18O. The unmilled aliquots taken parallel to the growth bands show a mean of
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1.12 ‰ ± 0.20 (2), not statistically different for the unmilled aliquots (1.20 ‰ ± 0.49

(2)). Examining the changes with different milling speeds, as well as under water,

shows that there is no statistical difference between the samples (i.e. within 2 of

each other). For example, at a mill speed of 45% (dry drilled) the mean was 1.18 ‰ ±

0.247 (2), compared to 1.16 ‰ ± 0.48 (2) at 100%.

The aliquots taken perpendicular to the growth band show a smaller range of

values than those milled parallel (Figure 5.6). Comparison of the otoliths taken

perpendicular to the growth bands shows that there is no difference between the

milled 1.29 ‰ ± 0.28 (2) and unmilled 1.21 ‰ ± 0.23 (2). There is no correlation

with milling speeds (e.g. samples drilled at 45% show a mean of 1.31 ‰ ± 0.37 (2),

compared to 1.31 ‰ ± 0.33 (2) at 100%).

Salinity typically varies by ~ 1.6 (see Figure 5.2), which corresponds to a

variation in 18O of about 0.4 ‰, based on the isotope mixing line for the North Sea

(Israelson and Buchardt, 1991). This is in good agreement with the magnitude of

variation observed (Figure 5.5). Thus, the change in salinity over the months sampled

account for changes in 18O.

It is also necessary to comment upon the extended time required to get a

sufficiently large aliquot for XRD using milling (sampling time was 3-4 hours),

compared to 2 minutes for stable isotopes. Hence heating and shear stress may be

considerably less for the smaller aliquots required for isotopic analysis and this may

be reflected in the results. Aharon (unpublished data) quoted in Aharon (1991) noted

the percentage calcite reflected the drilling time. It would explain why no calcite is

seen when a geological saw is used, despite this causing stress on the shell. Drilled

aliquots however take <5 mins to sample had the highest conversion rates to calcite

(up to 24%). The aliquot with 24% calcite also contained significant amounts of
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nickel (noted on the XRD plot, and not seen in other aliquots), with examination of

the drill bit showed what appeared to be melting, indicating the extremely high

temperatures are reached.



5.6 Conclusion

Drilling and micromilling produce a variable amount of calcite in aliquots of A.

islandica. There is no obvious trend in the data with the conversion controlled by a

combination of duration of milling, drill stress and density of the material.

Any 18O offset seen between samples could be accounted for by changes in

salinity. There was no difference between the 18O at different milling speeds.

Micromilling does not significantly affect the 18O of the aliquots, with any

modification of 18O being within the error of the mass spectrometer,
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Abstract

The annual growth banding of Arctica islandica provides an ideal opportunity to

reconstruct intra-annual resolution climate records. Stable isotope analyses (carbon

and oxygen) of the outer shell prismatic layer of three specimens collected at 6 m

from Irvine Bay, UK 228, 248 and 405 are evaluated here. Specimen 405 was

sampled using a drill, while specimens 228 and 248 were sampled using a micromill.

Shell 248 was sampled at higher resolution (75 m) than 228 (500 m). The larger

aliquots from specimen 228 were subsampled for analysis of 18O (and 13C) with the

remaining aliquot used for solution-ICPMS trace element composition analysis. Data

from 248 show that 18O fluctuates between 0.6 and 2.6 ‰; which, using a constant

salinity, indicates growth temperatures of ~+5 to +13 ºC. This temperature range

differs by ~2.1 ˚C from sea surface temperatures measured at the nearby Millport

marine station. A simple model replicated suggested that changes in growth rate

impact significantly on the temporal resolution of 18O sampling, and thus change the

appearance of the 18O profile. The model also suggested that salinity had little

impact on the 18O. A strong ontogenetic effect is seen in 13C of all three specimens,

but no lateral variation was found suggesting that the EPF is relatively homogeneous.
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6.1 Introduction

The partitioning of oxygen isotopes during the secretion of carbonate by marine

organisms is dependent on both the 18O of seawater (18Oseawater) and the ambient

temperature at the time of formation (e.g. Urey, 1947; Epstein and Mayeda, 1953;

Killingley and Berger, 1979; Bice et al., 1996).

In this study, three live-collected specimens of Arctica islandica (228, 248 and

405) dredged from 6 m in Irvine Bay, UK were selected for measurement of 18O and

13C along the outer shell prismatic layer. Fluctuations in 18O in the shell (18Oshell)

are compared to instrumental sea surface temperature (SST) measurements made at

the nearby Millport Marine station. This allows the relationship between 18Oshell and

instrumental data to be examined. Modelling allows the relative impact of changes in

temperature and salinity as well as the effect changes in temporal resolution of the

sampling, resulting from changes in shell growth rate, has on the 18Oshell profile to be

explored. The results of 18O and 13C will facilitate discussions in the cause of

fluctuations in the incorporation of trace elements, which will be discussed in Chapter

8.

6.1.1 Existing A. islandica data

A. islandica provides, in principle, an excellent material from which to reconstruct

temperature from a time series of oxygen isotope composition along the growth axis.

The species is long lived with specimens over 350 years in age reported (Schöne et

al., 2005a). Longer multi-shell records can be produced through sclerochronology,

making it ideal for high resolution palaeotemperature reconstructions. As the

chronology within A. islandica is unaffected by bioturbation and the organism is
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immobile once the spat has been deposited from the water column, the location and

chronology are well defined (excluding movement due to storm surges, turbidity

flows etc). Weidman et al. (1994) used a 38 year old A. islandica, which was live-

collected near to the former position of the Nantucket Shoals Lightship (41ºN, 69ºW)

off the coast of North America, to assess the reproducibility of 18O measurements.

18O measurements from the shell were compared to the ambient bottom temperature

and salinity measured from the lightship. They found that the empirically derived

equation (from aragonite molluscs) of 18O incorporation of Grossman and Ku (1986)

could reproduce the temperature to within an average of 0.38 ºC. This site is

particularly important as usually in situ salinity measurements are not available,

which increases the error on the temperature reconstruction. Weidman et al. (1994)

calculated for the same samples, the reconstructed temperature using a constant value

of δ18Owater (–0.88 ‰), which replicates the typical situation in which the 18Owater is

unknown. An accuracy of ~1.2 ºC was obtained, indicating that the impact of changes

in salinity is relatively small. This is important, as there are few in situ salinity

measurements, particularly for benthic waters.

Further work has been done on the use of A. islandica as a proxy for water

temperature e.g. Schöne et al. (2005a) who examined a 374- year old specimen to

reconstruct temperature off the North-east coast of Iceland from 1496-1533 (i.e. from

the ontogenetic years 2 to 40). They found evidence of the North Atlantic Oscillation

(NAO) type periods in the 18O record as well as the presence of 12-14 year cycles,

which may represent teleconnections to cycles in the tropical Atlantic.

Witbaard et al. (1994) used live collected shells from the North Sea to

examine when annual bands were deposited. They concluded that the growth check

(i.e. reduced period of growth) was not a product of low temperatures as suggested by
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Weidman et al. (1994) but rather of food availability. Further research in the North

Sea has been since carried out by Schöne et al. (2004c) which constructed a 99-year

record from A. islandica in which they reported the growing season to be February to

September. This was later modified during further work, to mid-February to mid-

December, with a hiatus due to spawning between early September and mid-

November (Schöne et al., 2005b). This is important as it determines which months A.

islandica can provide a record of 18O incorporation.

The magnitude of seasonal δ18Oshell variations declines with increasing size

and age of molluscs (Jones et al., 1986; Krantz et al., 1987; Weidman et al., 1994).

This can be attributed to the loss of finer scale signals in the thin growth bands

characteristic of the latter years of growth compared to the higher temporal resolution

attainable in the earlier, wider bands. Adaptive sampling has been used by authors

such as Schöne et al. (2005a) where the sampling width for each year is changed

according to band width, with finer sampling possible in the slower growing, older

shell portions.

6.1.2 Oxygen isotopes

The oxygen isotopic composition of marine carbonate shell material is generally

assumed to be a product of two main factors: δ18Oseawater and the ambient temperature

at the time of formation (e.g. Urey, 1947; Epstein and Mayeda, 1953; Killingley and

Berger, 1979; Bice et al., 1996). This chapter will employ the equation published by

Grossman and Ku (1986), which is based solely on aragonitic molluscs and therefore

appropriate for A. islandica.

T(ºC) = 20.19-4.56(δ18Oaragonite- δ
18Ow) + 0.19(δ18Oaragonite- δ

18Ow)2
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Where:

T(ºC) = temperature of ambient water during shell formation

δ18Oaragonite =δ18O of aragonite from the shell compared to VPDB

δ18Ow = δ18O value of the seawater with respect to VPDB

This equation is derived from empirical measurements of 18O values. From the

above equation, it can be seen that it is necessary to know the δ18O value of the water

when the material was incorporated into the shell in order to calculate the

temperature. The 18O of water is usually expressed as against the international

Standard Mean Ocean Water (SMOW) scale and thus it is necessary to standardise to

the carbonate VPDB scale using the equation:

δ18O (SMOW) = 1.03092* δ18O (VPDB) + 30.92

Coplen et al. (1983)

As seawater δ18O measurements are often unavailable, salinity measurements are used

to estimate the water δ18O value using empirical relationships derived for a particular

region:

E.g. δ18O (SMOW) = 0.412*S -14.66 for the Gulf of Maine (Fairbanks, 1982)

compared to:

δ18O (SMOW) = 0.417*salinity -14.555 for the North Atlantic

Ganssen unpublished, cited in Witbaard et al. (1994).
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This latter equation will be applied during this study, as it is the location

closest to Irvine Bay (no other calibration data was found closer to the sample site, see

http://data.giss.nasa.gov/o18data/). In addition, its robustness has been demonstrated

in a number of published papers on A. islandica from the North Sea (e.g. Witbaard et

al., 1994; Schöne et al., 2004a).

Over relatively short timescales (decadal), the δ18Oseawater may fluctuate,

reflecting changes in freshwater input, evaporation rates (especially in shallow

environments) and changes in the source waters of the region. Over longer time scales

(104-105 years), the δ18O values may also be influenced by the global δ18O balance,

which is mainly dependent on the volume of glacial and polar ice.

The use of the equation of Grossman and Ku (1986) has been demonstrated

for both A. islandica (e.g. Weidman et al., 1994; Schöne et al., 2004a; Schöne et al.,

2005c) and other aragonitic molluscs (e.g. Elliot et al., 2003). Wefer and Berger

(1991) showed that bivalves generally (but not always) produce calcium carbonate in

oxygen isotope equilibrium with the 18O of seawater. Carré et al. (2005a, 2005b)

highlighted the differences in 18O fractionation equations for aragonitic material of

inorganic experiments (Zhou and Zheng, 2003), compared to biogenic material such

as otoliths (Patterson et al., 1993), benethic foraminifera (Dunbar and Wefer, 1984),

and sponges (Bohm et al., 2000), as well as, crucially for this study, differences

between aragonite bivalves, (Grossman and Ku, 1986; Carré et al., 2005a) (Figure

6.1). Deviations from the predicted equilibrium have been explained by the kinetic

effect during the calcification at the CO2 hydroxylation/hydration steps that results in

depletion with respect to the equilibrium (McConnaughey, 1989; McConnaughey et

al., 1997). The CO2 hydroxylation/hydration step is particularly sensitive to pH

(Owen et al., 2002).
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The good agreement between 18Oshell with salinity and temperature

measurements (e.g. Weidman et al., 1994) however suggests that the application of

the Grossman and Ku (1986) equation for A. islandica is appropriate. However, the

use of such an equation means that the non-equilibrium controls on 18O must be

constant throughout the whole of the shell. Comparison to the 13C record is

important to determine if any correlation can be found between the two.

Zhou and Zheng, 2003 (inorganic)
Patterson et al., 1993 (otoliths)
Dunbar and Wefer, 1984 (benthic foraminifera)
Bohm et al., 2000 sponges
Grossman and Ku, 1986 (molluscs)
Carré et al., 2005 (mollucs)

Figure 6.1: Comparison of temperature 18O fractionation equations for aragonite

from various studies (taken from Carré et al., 2005a)

6.1.3 Carbon isotopes

The incorporation of carbon isotopes into molluscs is less well understood, but

temperature dependence is very small (Grossman and Ku, 1986). A number of

hypotheses have been proposed to explain the variations observed across growth

bands in molluscs. Generally, 13C is thought to be derived from either metabolic
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sources with 12C enrichment derived from respiration CO2 (e.g. Borchardt, 1985;

Tanaka et al., 1986; McConnaughey, 1989; Klein et al., 1996a; McConnaughey et al.,

1997; Lorrain et al., 2005) and/ or marine dissolved inorganic carbon (DIC) in the

water column (e.g. Mook and Vogel, 1968; Fritz and Poplawski, 1974). Variations in

DIC 13C are influenced by variations in primary productivity, upwelling and mixing

(Killingley and Berger, 1979; Purton and Brasier, 1997). McConnaughey et al. (1997)

estimated that molluscs typically incorporate ~10% of carbon from metabolic CO2,

with changes of this magnitude having been found in the bivalves, Saxidomus

giganteus and Pecten maximus (Owen et al., 2002; Gillikin et al., 2005b).

6.2 Instrumental measurements

A. islandica samples were collected live from Irvine Bay in May 2001 (see section 1.3

for more details). Millport Marine station is ~22 km north of Irvine Bay. Sea surface

temperature records (SST) extend beyond the last 50 years at Millport. Therefore, the

calibration of the temperature 18O relationship in the shell against instrumental data

can be explored. SST at Millport was collected daily until 1983 when financial

cutbacks reduced data collection to working days only (P. Barnett, Pers. Comm.,

2007). Figure 6.2 shows a monthly average of SST (as supplied by Millport Marine

station). Ongoing research (since 2003) at Millport in association with Aberdeen

Fisheries laboratory has compared temperature measurements collected by the

“traditional” bucket method with automated loggers. The maximum difference is

~2 ºC and is attributable to factors such as the temperature of bucket and how the

bucket lands e.g. if the water fills over the bucket lip the top 1-2 cm will be measured

whereas other times it may fill from the top 10-20 cm (P. Barnett, Pers. Comm. 2007).

In situ temperature and salinity measurements for Irvine Bay ((Figure 6.3) are also
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available as limited time snapshots for Irvine Bay itself (1990-1996, with typically 4

measurements per year). These are taken at 7 m in a water depth of >30 m, whereas A.

islandica grows at a depth of 6 m, i.e. the temperature was not logged in the same

water depth. However, it provides the closest approximation to temperature where A.

islandica was collected. Measurements from Irvine Bay at 7 m show good agreement

with SST measurements from Millport marine station, typically within 1.2 C (2),

with maximum temperature range of 6.3 C to 15.6 C (1990-1996).
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Figure 6.2: Sea surface temperature (using monthly averaged values) at marine

sampling station Millport, Isle of Cumbrae, NW Coast of Scotland from 1953-2001

(Millport Marine station data). See text for details on data collection method and

possible errors.
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Figure 6.3: Depth profile of temperature (T/ºC) (black) and salinity (S) (red) from

Irvine Bay in 1992. Data provided by SEPA (Pers. Comm. 2007). Instrumental

measurement errors are <0.005 ºC and <0.005 for temperature and salinity

respectively (B. Miller, Pers. Comm. 2007).
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6.3 Method

Three samples, shell 405, 228 and 248 were sampled using different methods (Table

6.1). Results of analyses of the effects of milling/drilling on aragonite taken from

otoliths (see Chapter 4) showed that although aragonite undergoes transformation into

calcite, within the limits of precision of the instrument, 18O is unaffected. Therefore,

these methods are appropriate for sample extraction.

6.3.1 Drilled aliquots

The outer shell prismatic layer (PL) of shell 405 (subsequently referred to as

PL405) was sampled using a fixed drill platform, over a spot (drill bit 1 mm wide).

Aliquots were analysed on Finnigan DeltaplusXP at the University of St. Andrews,

UK. The instrument required a sample size of 0.2-0.3 mg. The shell was sampled

between 1975 until 2001 (date of collection), with the specimen 32 years old. The

earliest 7 years were not sampled due to the narrow width of the growth band.

Dimensions of
each aliquot (m)

Sample
Sampling
platform

Resolution
Continuous
sampling?

Width Length Depth Additional analysis taken

405
Fixed drill
platform

Coarse No 1000* 1000* 6000* n/a

248
New Wave
Micromill™

Fine Yes 75 1000 350
Aliquots taken to examine

lateral changes in 
13

C

228
New Wave
Micromill™

Coarse Yes 500 2000 500 n/a

Table 6.1: Sampling details of the three A. islandica specimens used in stable isotope

analysis. * Estimate
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6.3.2 Milled aliquots

A New Wave™ micromill was used to sample the outer shell prismatic layer

(PL) of shell 228 and 248 (subsequently referred to as PL228 and PL248). Aliquots

were analysed on the Finnigan MAT253 mass spectrometer at the University of

Bergen, Norway. Both PL228 and PL248 were sampled from 1992-2001, with the

years comparable to those sampled by LA-ICPMS (see Chapter 4).

The New Wave™ micromill can calculate the area and volume of a selected

line and can interpolate between two selected lines to produce sample lines of a

specific dimension and volume. Figure 6.4 shows photographs of the system, plus a

screen capture taken during the set-up of the milling of PL248 showing the

interpolated sample lines (to give a volume of ~0.02 mm3).

For PL228, a total volume of ~0.3 mm3 per aliquot was extracted. Two

aliquots for 18O analysis was then taken from the sample while on the milling plate,

(20-35 µg per aliquot with sample size determined visually and placed directly into

the vial). The remaining sample (~ 1 mg) was collected for solution-ICPMS.

For PL248, aliquots were only for analysis of stable isotopes, so an aliquot

volume of ~0.02 mm3 was sampled using the micromill. The slightly larger sample

size than required for the mass spectrometer is to compensate for loss during transfer

from the milling plate to the vial. The specimen remains on the milling plate until all

the sampling has been completed.

The sampling resolution was significantly different between the shells,

resulting in a significantly different temporal resolution. PL405 has a maximum of ~ 9

aliquots per year, with an aliquot covering >2 years at the slowest growth rate. PL228

decreased from 5 aliquots/yr to 1 aliquot/yr. PL248 was sampled at the highest

resolution, with a minimum of 8 aliquots/yr and a maximum of >20 aliquots/yr.
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In addition, shell 228 was sampled laterally in the outer shell prismatic layer

across the bands to examine whether any changes in 13C occurred. Three sets of

samples (6-7 aliquots in each) were taken at 250 µm and 1000 µm from the

periostracum with each set constrained within the same growth bands. Klein et al.

(1996a) suggested that 13C (and Sr/Ca) within calcite layer of Mytilus trossulus were

primarily controlled by rate of mantle metabolic activity and variation in seawater

salinity. Thus, changes in 13C laterally across a band may indicate variations in

metabolic activity, which could assist in the interpretation of lateral variation in the

trace elements.

Figure 6.4: Images of the New Wave™ Micromill system showing milling of the

outer shell prismatic layer of A. islandica shell 248.

http://www.new-wave.com/1nwrProducts/MicroMill.htm

http://www.new-wave.com/1nwrProducts/MicroMill.htm


Chapter 6: Stable isotope geochemistry

229

6.3.3 Analysis using Finnigan DeltaplusXP mass spectrometer

Carbonate aliquots from PL405 were analysed using a gasbench microcarbonate

device coupled to a Finnigan DeltaplusXP gas source mass spectrometer operated in

continuous mode at the University of St. Andrews, UK. The samples were calibrated

to the Vienna Peedee belemnite (VPDB) via NBS-18. Samples were weighed prior to

analyses with aliquots between 0.2-0.3 mg. The sample order was randomised to

offset any machine drift.

The samples were left a minimum of 24 hours in the autosampler tray at a

constant 25 ºC. The samples were then flush-filled with He (i.e. the air was removed

and replaced with He) after which excess 100% pure phosphoric acid was added

manually to produce CO2 for analysis in a mass spectrometer. Samples were left a

minimum of 24 hours before the CO2 was analysed in the mass spectrometer.

The sample gas was introduced into the mass spectrometer using a continuous

He gas flow method. This has the advantage over the dual inlet of allowing pulse

injections of the sample gas to be analysed; thus reducing volume constraints and

sample size. A check on linearity was performed at the beginning of the analysis, with

replicate analysis taken every five aliquots.

The sample is carried in a flow of helium into an ionisation chamber where it

is bombarded with electrons. These ionised gases are then accelerated and focused

before passing through a magnetic field (mass analyser), which separates the ions

according to their mass/charge ratios. These are then detected in Faraday cups with

the total amount of charge collected providing a measure of isotope ratios. The ion

beams are measured simultaneously in Faraday cups with the strength of the ion

currents of each mass relating to the isotopic ratios, i.e. for CO2, there are three

principal peaks at mass 44 (12C16O2), mass 45 (13C16O2 and 12C17O16O) and mass 46
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(12C16O18O). These provide information on the isotopic composition of the material,

which are, theoretically, independent of sample size. In practice, however the change

in sample size does influence isotopic measurement so linearity standards are

measured at the beginning (or at regular intervals for larger batches) to correct for this

effect. In addition, standards are measured at regular intervals to check for instrument

drift. The raw isotopic data are corrected for linearity effects during post-processing,

with generally the second peak (of the ten gas pulses) taken. These samples were

analysed after the initial installation of the instrument. The reproducibility for the

carbonate standards was typically ±0.05 ‰ (1) and ±0.15 ‰ (1) for 13C and 18O

respectively.

6.3.4 Analysis using Finnigan MAT253 with Kiel device

The Finnigan MAT253 works principally the same way as the Finnigan DeltaXplus,

although there are a number of crucial differences that reduce the sample size. The

most important is the absence of a carrier gas, which means that the sample CO2 is the

only gas within the mass spectrometer during the analysis, significantly reducing the

background and thus the sample size. The sample gas pulses are directly compared to

reference gas pulses, using a dual inlet system. In addition, the detector of this

instrument is more sensitive than that of the Finnigan DeltaplusXP. Figure 6.5 shows

a schematic of such a system.

The MAT253 has two parallel CO2 extraction lines (1 and 2) with samples

loaded into a revolving sampling carousel into the Kiel Device, which is an automated

online system (Figure 6.6). The vials are pushed up to the extraction line and pumped

out to form a vacuum. Orthophosphoric acid at 70 °C is then added through an acid

drip valve (one for each line) to the individual vials. During the acid reaction, all the
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gases are collected in the first cold finger (cooled with liquid nitrogen to a

temperature –170 ºC). The non-condensable gases are pumped away at the end of the

reaction time (480 s), and then trap 1 is warmed to –115 ºC to keep H2O frozen but

allow CO2 to become a gas. The second trap is then cooled to –170 ºC to trap CO2

before being isolated from trap 1. Trap 2 is then warmed to 30 ºC to liberate CO2 and

this travels through capillary tubes to the mass spectrometer. The traps are baked at

150 ºC and opened to vacuum to remove any water. Details of the machine set-up are

outlined in Table 6.2.

Sample sizes required are between 20-35 µg, but samples as small as 10 µg

are possible. Smaller samples have an increased number of measurement cycles

(bergen2 method). Standards used were CM03 (carrera standard) together with AII (a

deep sea coral standard) (see Ostermann and Curry, 2000). Long-term replicate

measurements of daily carbonate standards with a mass >40g is better than ±0.04‰

13C and ±0.08‰ 18O (1). However, many of the samples run in this study were

<40g and long term replication of standards in the mass range between 7-40g

during this period was ±0.06‰ 13C and ±0.12‰ 18O (1). The values are calibrated

to the VPDB scale using NBS-19 and NBS-18 as a control.
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Acid Temperature 70 ºC

Reaction Time 1 (s) 480

Reaction Time 2 (s) 60

Transfer Time (s) 90

Traps cooled to: -170 ºC

Traps baked to: 150 ºC

No. of acid drops 3

No. of cycles of analysis 8 (bergencarb); 13 (bergen12)

Predelay before analysis (s) 5

Reference Right

Sample Left

Reference refill Every 5th sample

Table 6.2: Set-up details of the mass spectrometer. Bergen12 is used for smaller

samples with increased number of cycles to improve the precision.

Figure 6.5: Schematic of a typical mass spectrometer (Sharp, 2004).
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Figure 6.6: Photograph of the Kiel Device.

6.4 Results

Results from PL405 are shown on Figure 6.7. 18O varies +1.3 and +3.0 ‰ while

13C varies between +0.4 and +3.2 ‰. 13C shows a general decline through the shell

of >2 ‰. The positions of the annual bands are marked, but it should be noted that the

samples taken by drill typically covered >2 years during (at least) the last 10 years of

shell growth, due to the shape of the drill bit resulting in overlaps in the sampling. It is

also difficult to estimating the true temporal resolution covered due to the depth of the

drilling.

Two aliquots were sub-sampled for each milled aliquot of PL228 to gain an

average (with the rest of the milling sample used for solution-ICPMS analysis). There

is a high degree of heterogeneity within the sample pairs, which is not accounted for
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by instrumental precision. Closer analysis shows that when an offset in 18O values is

present, a smaller offset in 13C is also observed which are typically within error

(Figure 6.8). 13C decreases from ~+2.2 to <+1.6 ‰.

The results of 18O and 13C from PL248 are shown on Figure 6.9a. The 18O

values are highly variable with no ontogenetic trend. The minimum value is +0.6 ‰

and the maximum is +2.5 ‰. The 13C values decrease through the life of the shell

with a maximum of +2 ‰ in 1993, with a minimum of 0 ‰ in 1998.

The 18O record shows a saw-tooth pattern (Figure 6.9a). The lowest values

found just prior to the growth check are typically <1.0 ‰ with the largest increase

after the growth check, with the highest 18O just after the growth check (typically

>2.5 ‰). 18O then increases rapidly before reaching steady values of ~ 1.8 ‰, and

then there is a final increase prior to the growth check of ~ >0.5 ‰. The lowest 18O

values are recorded in 1996 and 1995, with the highest 18O in 1993-1995, a

reflection of the maximum and minimum temperatures recorded within a year

respectively.

The shell damage which occurred after the 1997 resulted in the infilling of

material, and this can be seen in a significant change in 13C value of >0.5 ‰. In

addition, at ~5200 m from the growth edge, the shell appears to be more porous

perhaps suggesting evidence of infilled material and there is associated increase of

18O and 13C (~ 0.3 ‰ and >0.5 ‰ respectively).

Results from PL228 (Table 6.3) show that the values of 13C taken at varying

distances from the periostracum do not vary for two sets of analysis (those taken

3,000 and 10,000 m from the growth edge). The mean with the standard deviation

e.g. at 3,000 m from the growth edge, 13C 250 m from the periostracum is 1.83 ±
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0.21 (2) compared to 1.84 ± 0.09 500 m from the periostracum being within 2

However, the 13C of the aliquots differ when the sample was taken 500m from the

edge (the reason for this is discussed below). In addition, a decline in 13C through

ontogeny can be clearly seen.
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Figure 6.7: Plot of results from the outer shell prismatic layer of A. islandica

specimen 405 for (a) 18O (b) 13C. The red lines correspond to the position of the

annual termination band. Note that during the most recent 12 years sampled (i.e.

1999-1987) each sample typically covers >2 years, as sampling of aliquots overlapped

(see text for more details). The typical error (1 is calculated from reproducibility of

carbonate standards (carrera).
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Figure 6.8: Results of (a) 18O and (b) 13C from the outer shell prismatic layer of A.

islandica specimen 228, the rest of the aliquot was used for solution-ICPMS. The

typical error (1 is calculated from the reproducibility of the carrera standard. The

dark lines join the averages of the two analyses per aliquot.
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Figure 6.9a: Fluctuations in the outer shell prismatic layer of A. islandica shell 248

for (a) 18O and (b) 13C. The dashed line indicates the start of the annual growth

check. The dot-dash lines indicate the position of intra-annual bands, i.e. increased

organics. D represents a doublet. Note the 18O axis is reversed. The typical error (1

is calculated from the reproducibility of the carrera standard. The damage to the shell

could be seen visually (see Figure 4.20).
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Figure 6.9b: Reconstructed temperature from 18O measured from outer shell

prismatic layer of shell 248. The dashed line indicates the start of the annual growth

check. The dot-dash lines indicate intra-annual bands, i.e. increased organics. Note the

temperature calculation assumes a constant salinity. The maximum fluctuation of the

salinity during the year is 1.2 (equating to ~2.1 ˚C) taken from measurements in Irvine

Bay) at 7 m with the average salinity taken for calculating the constant used (see text

for more details) i.e. the error on the temperature calculation due to an assumed

constant salinity should be <1.1 ˚C. The damage to the shell could be seen visually

(see Figure 4.20).
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shell 248. The typical error (1 is calculated from the reproducibility of the carrera

standard. After the shell is damaged, there is a significant shift (~1 ‰) in overall 13C.



Chapter 6: Stable isotope geochemistry

241

Table 6.3: 13C results from PL228 of samples taken across bands 250 m and

1000 m from periostracum to look at possible variation in 13C, which may be

indicative of changes in metabolic pumping. The mean of each set of aliquots (i.e.

taken at approx the same distance from the periostracum at the same distance from the

growth edge) are given in the final column with the standard deviation (2) of the 3-4

aliquots. The reproducibility of the aliquots (calculated from the carrera carbonate

standard) was ±0.06 ‰ and ±0.12 ‰ for 13C and 18O respectively (1).
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6.5 Discussion

6.5.1 18O variation in PL405

The outer shell prismatic layer of shell 405 was sampled at a coarse resolution due to

the large sample size required and the drill bit thickness. It should also be noted that

the drill bit results in more material sampled from the centre of the drill hole than

compared to the edge (i.e. the drill hole is not flat at the bottom). Aliquots therefore

covered >2 years during the last 12 years of growth, with overlaps between aliquots

also occurred due to the shape of the drill pit. However, these temporal overlaps were

often difficult to assess due to the depth of drill holes. This would have been

particularly significant at the slower growth rate (where small shift in distances can

result a significant shift in the time material was deposited). These issues, combined

with the discontinuous sampling produced by the drill inhibit in-depth analysis of

fluctuations, but rather provide an overview of the stable isotope record in this shell.

The 18O values typically vary from +1.2 to +3 ‰ (Figure 6.7), which using

the equation of Grossman and Ku (1986) gives a reconstructed temperature range

between +3.1 and +11.1 ºC using constant salinity of 33. The constant salinity is

calculated from the mean of the in situ sporadic measurements from Irvine Bay using

the salinity at 7 m (no data was available at 6 m) between 1990-1996. The

instrumental measurements in Irvine Bay may differ slightly from the site where the

A. islandica were sampled (which was at a depth of 6 m), as the salinity and

temperature measurements were taken in a water depth of >30 m.

The earliest part of the shell shows the best temporal detail because of its

faster growth rate. Here the oxygen isotope record typically shows a saw tooth profile

(not though 1978-9). This pattern is consistent with a model whereby increasing water

temperature in the spring reduces the carbonate 18O value incorporated into the shell.
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This is then followed by a slowing or cessation of growth during summer (due to low

food supply). The reduction in growth rate influences the temporal resolution of the

sampling and hence the shape of the 18O profile. Growth rate then (recommences

and) becomes faster during the early autumn, when the sea temperatures reach their

maximum, followed by a decrease in temperature through the winter when growth

significantly reduces or ceases. Thus, changes in the 18O profile can be induced

simply by changes in growth rate, which changes the temporal resolution of the

sampling. The impact of growth rate variations has been recognised as an issue when

sampling at interannually frequency, and this has been addressed with adaptive

sampling whereby the same temporal resolution per aliquot is achieved by changing

the spatial resolution (e.g. Schöne et al., 2005a).

6.5.2 18O variation in PL228

PL228 shows high degree of variability between the two samples with

differences in sample pairs seen in both 18O and 13C, although the former shows a

greater offset. The two aliquots were taken directly from the milling plate, and the

lack of heterogeneity suggests that the mixing of the aliquot was not sufficient on the

milling plate. An alternative technique such as mixing the sample within the solution-

ICPMS vials and then sub-sampling would be used for future studies. Note the lack of

heterogeneity reflects the large sample milled, and is not an issue for other samples, as

for all other samples the whole aliquot was measured. It does however, provide some

indication of the timing of deposition and will be discussed in Chapter 8 in relation to

the results of solution-ICPMS analysis.
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6.5.3 18O variation in PL248

Analysis of PL248 provided the most detailed record of stable isotope variations

(Figure 6.9). The oxygen isotope record shows the lowest values just prior to the

winter growth check (+~1 ‰), with the highest values immediately after the annual

growth check (+~2.5 ‰). The 18O variation in PL248 shows a greater fluctuation

than that seen in PL405 or PL228, which probably reflects the increased resolution.

Reducing temporal resolution dampens 18O variations e.g. Goodwin et al. (2003),

and has lead to adaptive sampling e.g. Schöne et al. (2005a).

The salinity variation within Irvine Bay is 1.2 with a mean of 33 (1990-1996).

Calculation of the temperatures using the equation of Grossman and Ku (1986), using

a constant salinity of 33 gave a variation of temperature 4.9-13.5 °C with instrumental

data showing that Millport SST varied 6.3-15.6 °C for the whole year (between 1992-

2001). Assuming the shell has continuous linear growth throughout the year (i.e.

growth rate is constant) the 18Oshell and the temperature profile are plotted on Figure

6.11. The plot shows that while there is some agreement between the profile, A.

islandica does not show the same temperature pattern seen within the SST, with a

sharp decrease from the maximum temperature to the minimum, indicative of a shell

shutdown during the winter months.

Lower salinity would result in decrease in 18Oseawater and therefore an increase

in temperature reconstruction of ~1.2 °C for 0.6 change in salinity, i.e. the maximum

error on temperature reconstruction due to salinity reconstruction is ~1.2 °C.

Assuming the minimum salinity and minimum temperature occurred simultaneously,

this would result in an increase in the temperature reconstruction to +6.1 °C.

Conversely, a higher salinity at the maximum seawater temperature would lead to

decrease in the maximum temperature to 12.3 °C. Therefore the lower temperature are
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within error of 1.2 °C (the standard deviation (2) found between the snapshot Irvine

Bay data and that of Millport), however the maximum temperature is not. However,

SST temperatures in the summer are particularly susceptible to diurnal warming, and

therefore it is unsurprising that benthic waters do not see the full range of summer

temperatures seen at the sea surface. Comparison to the SST measurements from

Millport to in situ instrumental Irvine Bay measurements during the summer months,

show the latter is typically cooler by >0.7 °C (there is no systematic offset in the

winter).

The reconstruction also assumes that A. islandica grows when 18O

incorporation would be at the maximum and minimum. However, researchers such as

Schöne et al. (2005b) have found that A. islandica has two growth seasons, with a

hiatuses during mid-September to mid-November, with a winter shut down mid-

December to mid-February. Cessation in growth between mid-December to mid-

February may affect the lowest temperature recorded, as Millport data shows

February to have the lowest SST.

Cessation in growth during the year would also explain the saw tooth profile

seen A. islandica from Irvine Bay as well as that seen in the results of Schöne et al.

(2005a). Schöne et al. (2005b) hypothesised that the growth hiatuses from mid-

September to mid-November was due to spawning, but it is not clear whether A.

islandica reproduce annually, with Thórarinsdóttir (1990) finding recruitment

occurred every 20 years.

Changes in food supply could also cause a reduction in growth rate, with

Witbaard (2007, Pers. Comm) finding food supply was the main control on growth,

with A. islandica able to grow even in water temperatures of 2 °C. During the spring

and autumn months during the phytoplankton blooms growth rate would be expected
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to be the fastest, with slow or cessation of growth during the summer months and

winter months due to lack of food. The timing of the growth slowdown/cessation

could therefore affect the maximum and minimum temperatures recorded. In addition,

the minimum in 18Oshell occurs just prior to the growth check, closely followed by the

maximum 18O. This may result in a significant reduction of the reconstructed

maximum and minimum temperature due to loss of temporal resolution.

Between 1992-1994, the maximum reconstructed temperature in all three

years was ~11.5 °C, 11.6 °C 11.8 °C. SST measurements from Millport were

~+13.8 °C for 1992 and 1994, but for 1993, the maximum temperature was ~1 °C

cooler. In other words, 18O profile is not accurately reflecting variation between

years although the reconstructed range is just outside error. Comparison of the

minimum temperatures 1992-1994 shows that the values of the winter growth check

of 1993, is the coldest year in the SST record (<5.9 °C) as well as in A. islandica

(5.9 °C). However, the reconstructed temperature in 1992 is higher than 1994 (by

~0.4 °C), but the opposite is found with SST (1994 is ~0.6 °C higher). While the

difference between 1993 and 1994 is just within the error of the salinity variation, but

no significant differences were noted between years. This indicates that the

temperature reconstructions are more sensitive to lower temperatures than higher

temperatures, which may be a reflection of a summer shutdown in growth or as

discussed previously summer months measurements were typically cooler at 7 m in

Irvine Bay by >0.7 °C. Note that there was no clear difference during the winter

months.

Goodwin et al. (2003) modelled 18O fluctuations in the bivalve Chione

cortezi from the Gulf of California and concluded that isotopic amplitudes and

averages may reflect decreases in growth rate rather than environmental fluctuations.
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Therefore understanding the interactions of changes in temporal resolution with

changes in temperature and salinity is important. Therefore, by constructing a simple

model the interaction and relative importance of changes in temporal sampling due to

changes in growth rate, temperature and salinity can be better understood. This is

important to understand if future studies are to examine the accuracy of empirical

equations such as Grossman and Ku (1986).
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Figure 6.11: Comparison of (a) 18O measurements from the outer shell prismatic

layer of shell 248 compared with (b) sea surface temperature measurements from

Millport marine station. The annual timescale is determined by the growth check,

which is assumed to be December with continuous growth throughout the year- i.e. no

growth rate changes or shutdown. The damage to the shell could be seen visually (see

Figure 4.20).
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6.5.4 Modelling 18O

To understand better how the 18O record within A. islandica may be

influenced by changes in temperature, salinity, and the temporal resolution of the

sampling, a simple model was constructed. Temperature and salinity control on 18O

incorporation is well documented (e.g. Grossman and Ku, 1986) and adaptive

sampling to compensate for ontogenetic growth rate changes in the shell is well

established (Schöne et al., 2005a). However, the interactions between these three

variables are important in interpreting the 18O profile. Since these factors do not co-

vary (i.e. temperature is typically highest in late September-October, salinity during

the July-August, while the fastest shell growth rate is likely to coincide with the

spring and autumn algal blooms, in approximately March-April, and September-

October), modelling allows one to view how changing each component may influence

the shape of the annual cycle. The timing of the maximum salinity and temperature

were approximated from in situ salinity measurements, the timing of the increases in

phytoplankton was assumed to reflect typical timing of phytoplankton blooms.

Comparison of the model to the measured 18O highlights which years differ

from the “norm,” e.g. warmer temperatures. Modelling can also help indicate whether

the assessment of the position of the annual growth bands is correct. In addition, in

the case of PL248, it can help to understand how damage to the shell may impact on

the 18O record.

The 18O record of A. islandica can be compared with a cosine model of

growth rate, water temperature and salinity. The residuals of the model can be

compared to historical SST from Millport marine station and differences from the

model can be examined.

The relative effects of the SST and salinity components are calculated by:
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Smag.COS (Mcom+2 π (Mmodel – Mmax))/12

Where:

Smag= magnitude of influence

Mcom= month the model commences

Mmodel= month being modelled

Mmax= month during which maximum magnitude is reached

For the growth rate component, a very similar equation is used except that the growth

function assumes two growth seasons per year, one during March and the second in

September i.e.

Growth rate = Smag.COS (Mcom + 2π(Mmodel – Mmax))/6

The sum of these components was scaled to reproduce 18O fluctuations, with

the model then tested against the 18Oshell from specimen PL248. Dates were assigned

to the measured 18O data, using the position of the annual bands that had been

determined visually. These provided the controls for the end of each year, with dates

for the commencement of growth set as 15th February, ending 15th December as

proposed by Schöne et al. (2005b). 18O decreases just around the growth check, then

18O rises sharply at the beginning of the year, before either levelling off or showing a

slight decreasing before increasing again prior to the growth check. Apart from 1999

when increased concentration of organics were noted on sampling, (indicative of slow

growth) the summer shutdown is fixed to the point just prior to where 18O values

begin to rise for the second time during the year. Dates between these fixed points

were then interpolated linearly. The results of the model were then compared to the

observed 18O fluctuations. Iteration was used to refine the relative positions of the
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maximum (i.e. month) of each of the three parameters and provide the best fit. The fit

parameters are shown on Table 6.4.

The starting date of the model can be adjusted by Mcom, and it was found that

starting the model 0.18 months earlier, produced a model with a better fit to the data

i.e. growth recommenced 1st February (not 15th February as set initially in the model).

A model in which A. islandica experiences two periods of growth mostly

closely fits the observed 18O curve suggesting that there are two seasons of growth.

The R2 fit between 1992-1996 is 0.32 (to 2 sf), decreasing slightly to 0.31 (to 2 sf)

when 1992-2000 are included, the decrease in fit is likely to relate to the shell damage

in 1998 (see Figure 6.12) during which there was infilling of material (i.e. the material

was not from a sequential deposition).

Temperature Growth Salinity

Mag 0.7 0.8 0.1

Max 10.1 2.8 8.9

Table 6.4: Fit parameters for modelling seawater temperature, growth and salinity

(given to 1 dp). R2 is 0.31 using the whole data set (including area damaged)

increasing to 0.32 using 1992-1996 (i.e. pre-damage). Mag refers to the relative

magnitude of that component; max refers to the month in which the maximum was

reached.

Temperature Growth Salinity

50% 0.31 0.24 0.31

200% 0.29 0.30 0.31

Table 6.5: Effect on the R2 values when the model parameters (temperature, growth

and salinity) are changed. The magnitude of the parameters of the best fit (as given

above) were decreased by 50% and increased by 200% to understand the impact it has

on the R2 values.
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Magnitude of the components

The relative magnitude (i.e. the amount of influence that one component has

upon the 18O profile compared to the other components) is shown on Table 6.4. To

highlight how changing the magnitude of these three components can influence the

shape of the 18O curve, the magnitude of each was halved and doubled while the

other two components were left at their optimum values (Table 6.5). Plotting these

(Figure 6.12) shows the effect that each parameter has on the overall profile.

The profile is relatively insensitive to changes in salinity, suggesting that even

within shallow water sites such as Irvine Bay; the 18O is not significantly affected.

Variations in the growth-rate and seawater temperature produce the most pronounced

effect. Goodwin et al. (2003) modelled 18O fluctuations in a bivalve (Chione

cortezi), concluding that isotopic amplitudes and averages may reflect decreases in

growth rate rather than environmental fluctuations. This reduced growth rate

associated with ontogenetic effects has lead to “adaptive sampling” by researchers

such as Schöne et al. (2005a). However, this present study highlights that not only

does inter-annual variability that needs to be considered, but also the intra-annual

variation, i.e. changes in temporal resolution of sampling caused by changes in

growth rate may occur not just through ontogenetic changes in growth rate, but also

during a single year.

Temperature and food availability account for ~65% of variation in shell

growth (Schöne et al., 2005a). Food supply in turn may be influenced by the North

Atlantic Oscillation through changes in current flow leading to resuspension of

organic particles (Schöne et al., 2003) or through changes in copepod abundance,

with copepods reducing the amount of food available to bottom dwellers such as A.

islandica (Witbaard et al., 2003).
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Conversely differences in the growth season compared to modern day

specimens are an important consideration when examining 18O results from older

specimens e.g. specimens from the Clyde Beds, Lochgilphead, SW Scotland, covering

14,000 and 11,500 calendar years before present (Peacock et al., 1977) which grew

during a time of extremely rapid climate change.

Timing of components

Our model and 18O data suggests that the growth season for A. islandica within these

shallow water sites is modified by a growth check during the summer months (June-

August) rather than mid-September to mid-November as reported by Schöne et al.

(2005b). A shutdown timing as proposed by Schöne et al. (2005b) was modelled but

the fit factor decreased by ~20%. Other alternative models were tried including no

growth check and a growth check only during the winter, but the model presented

here provided the best fit. The data of Schöne et al. (2005b) would imply a growth

season of <1.5 months (i.e. one-eighth of the growth season) which does not appear to

be the case from our modelled results. This would not be unreasonable as Irvine Bay

is a shallow water site and therefore the controls on the biological productivity may

differ to that found within the North Sea.

Comparison of the model to PL248

The model calculates the typical 18O seen during a year, i.e. the same

magnitude and timing of changes in temperature, salinity and growth parameters are

applied to each year. Therefore, discrepancies between the model and actual data,

may highlight an atypical year, and thus may indicate areas for further research.
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A discrepancy between the model and data occurs between 1999 and 2001.

The annual growth during this period is very small (<500 m), and the magnitude of

the 18O fluctuations are dampened (as expected) but in favour of heavier 18O values.

Further work on other specimens would be required to discern if this was a general

effect and whether it related to changes in the biological growth season, the result of

reduced sampling or inaccuracies in the modelling.

The residuals of the modelled 18O and measured 18O records (Figure 6.13)

highlight three particular years, 1993, 1997 and 1998, in which the model provides a

poor fit. Comparison to the temperature record from Millport shows that during May

1993, the average temperature was ~1 ºC cooler than the average which would equate

to an increase in 18O of ~0.35 ‰, approximately the offset seen in the model.

Shell damage occurs at the end of 1997 would explain why the reconstructed

temperature is lower than that record at Millport, with damage resulting in the loss of

growth which occurred during the maximum temperature and/or caused growth

cessation during the maximum seawater temperatures. Interesting the damage to the

shell is associated with a decrease in 18O. A. islandica incorporates any material

available to repair the damage; including sand grains (see Witbaard, 1997). It is

however unclear what CaCO3 material would be incorporated. This would be

extremely interesting as if CaCO3 material is solely generated by the organism i.e. not

from external sources, it suggests that such stress events could affect 18O uptake.

During the first part of growth in 1996, 18O differs from that predicted by the

model. Although shell damage and visible infill occurs at the end of 1997, it is

possible that the material deposited here is also affected by a disturbance. Review of

the laboratory notes taken during the milling reported that this area appeared to have a

different texture appearing “more porous” than surrounding material, although there
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was no sign of infill. This, combined with comparison to the model suggests that

material here may be also been affected. Further research would be required to

determine if this was indeed the case.

The earlier part of 1997 also shows heavier 18O than in other years.

Comparison to the SST at Millport shows that 1997 was not colder than other years. It

is unclear why this is. It would initially suggest that the area damaged is greater than

that noted in laboratory notes, or it could reflect that the growth season commenced

earlier in the year and was therefore subject to colder temperatures. The reconstructed

temperatures and measured SST is estimated to be 1 °C cooler, which would however

fit with the earlier discussion that this could be due to lower salinity during winter.

Therefore, in fact, it is providing a more accurate temperature reconstruction, and it is

in fact earlier 18O, which are overestimating the temperature.

The model provides an indication of the main controls on the 18O record.

Such processes provide insights into the sensitivity of the A. islandica isotope record

to changes within the environment, as well as effects of growth rate and shell damage.

It also provides an independent assessment of the validity of the visual identification

of the growth checks. It can also show that changes in the growth rate are an

important consideration for future research into vital effects on 18O uptake. In faster

growing A. islandica, daily growth bands can be identified which may help to

constrain the record better temporally (Schöne et al., 2005b).
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Figure 6.12: Upper figure (a) shows the plot of 18O model (pink) with the plotted

18O data (blue), with the residuals plotted on the lower figure (b). The poor fit 1997-

1998 is likely to be due to shell damage, affecting the growth rate and subsequent

infilled material just after the 1997 growth check.
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6.5.5 13C variation through the shell

13C shows a decrease with age in all three specimens (Figure 6.7, 6.8, 6.9a). The

whole lifespan of specimen PL405 except the first 7 years of growth (when the bands

were too narrow) was analysed, and with analyses of PL228 and PL248 covering only

the last 9 years of growth. PL228 and PL248 are very similar in age (23 vs. 18 years),

but the former is the much faster growing (and hence larger) of the two specimens.

The magnitude of the decreases in 13C of shell with age differs greatly (even when

comparing the same years), e.g. specimen PL248 shows a decrease from +1.8 ‰ to

<+1 ‰ 1993-2000 whereas specimen PL405 decreases from +1.4 ‰ to ~+0.5 ‰ over

the same period. However, the age of these specimens differs, shell 248 was 22 years

old in 2000, shell 405 was 32 years old, with A. islandica in Irvine Bay typically

living to <40 years old. As 13C declines with age as the growth rate decreases, and

PL248, with slowest growth rate shows the lowest 13C suggesting that growth rate is

an important factor controlling 13C value.

Inorganic experiments of Romanek et al. (1992) have shown that the

equilibrium fractionation of 13C for aragonite relative to HCO3(aragonite-bicarbonate) is +2.7

± 0.6 ‰. In order to determine how the fractionation, which occurs on uptake, it is

necessary to estimate the dissolved inorganic component of 13C within the water

(13CDIC). No 13CDIC data however was available for Irvine Bay. 13C measurements

by Gillikin et al. (2005b) which were taken in the estuarine conditions of Puget Sound

(Washington, USA) (salinity range 0-28) gave a 13C relationship of 0.57 * Salinity -

16.54. If this were extrapolated for a salinity of 33, it would give a 13CDIC of 2.3 that

would give an estimated incorporation of 13CDIC of 4 ‰ using the inorganic

fractionation of Romanek et al. (1992). Owen et al. (2002) reported a depletion of up
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to 2 ‰ in Pecten maximus (calcitic bivalve) from the Menai strait, Irish Sea, which

infers an initial 13CDIC of 3.5 – 4 ‰. 13C measurements within A. islandica from

Irvine Bay show a maximum 13C of 3 ‰ (PL405), suggesting 13Cshell could be

depleted relative to 13CDIC in the water. The ontogenetic decrease in 13C PL405,

also seen in PL228 and PL248, indicates that 13C values do not simply reflect

13CDIC, but there is incorporation of metabolic 13C (e.g. Tanaka et al., 1986;

McConnaughey et al., 1997; Dettman et al., 1999).

These findings would be in agreement with results from Pecten maximus

(Lorrain et al., 2004), which showed a decline in 13C, which was attributed to an

ontogenetic increase in the contribution of metabolic CO2 to skeletal carbonate.

Schöne et al. (2005a) however found no ontogenetic changes in 13C in A. islandica,

whereas Witbaard (1997) did finding an increase of >1.5 ‰ (from ~+0.8 to ~+2 ‰).

Comparison of the specimens used in each study showed the latter sampled a 6 year

old juvenile specimen (with faster growth rate) whereas Schöne et al. (2005a)

sampled an older, slower growing specimen. The findings of Witbaard (1997) would

agree with those of McConnaughey (1989) and Klein et al. (1996a) who found higher

13C at slower growth rates. The cause of the difference is unknown, but may relate to

the difference in habitat or growth rate, with specimens from the North Sea growing

slower than those from Irvine Bay do.

During and after damage to the outer shell prismatic layer, the 13C record in

PL248 shows a sharp decrease of >0.5 ‰. This observation is a strong indication that

metabolic rate has a key influence. McConnaughey et al. (1997) proposed that

metabolic carbon can account for ~10% of the 13C signal in molluscs, and other

researchers have supported this conclusion (Owen et al., 2002; Lorrain et al., 2004;

Gillikin et al., 2005b). However, the results presented here suggest that, in times of
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stress, this percentage can be considerably higher, with 13C in PL248 showing a

decrease of >50% after damage to the shell occurred, and a change in 13Cseawater of

this magnitude is unlikely and is not recorded in PL228. Comparison of 18O and 13C

(Figure 6.10) show no correlation either before or after the shell damage indicating

that while 13C is affected by metabolic changes, there appears to be no impact on

18O.

Although respiring organisms consume 16O16O 10 to 20 ‰ more rapidly than

18O16O, resulting in a pool of 18O-depleted CO2 and cell H2O, the large cell water

reservoir and large water fluxes across the membrane may cancel out this effect

(McConnaughey, 1989; Bijma et al., 1999). Thus, incorporation of CO2 can lower

13C but probably does not affect 18O (Bijma et al., 1999).

6.5.6 Lateral variation in 13C

The results of 13C taken from PL228 laterally across three single bands

initially do not categorically show whether 13C varies across a band (Table 6.3).

However, analysis of samples closest to the growth edge was difficult as the shell was

very fragile and sampling was not solely from the milling line (as the shell fractured

during sampling). In addition, as the bands are so close it is difficult to position

accurately the mill to ensure inclusion of the same growth band in each lateral sample.

Therefore, this set of results should be discounted. The other datasets show that the

13C values show no relationship to distance from the periostracum, being within

error (2) of each other e.g. aliquots taken 3000 m from the growth edge show 18O

values of 1.83±0.21 ‰ and 1.84±0.9 ‰ when 250 m and 1000 m from the

periostracum respectively (see Table 6.3). If there are changes in the metabolic
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pumping within different sections of the shell, it should be reflected within the 13C

record, with a more negative 13C caused by the addition of 12C enriched metabolic

CO2. These findings suggest that either 13C values are largely independent of

metabolic activity, which appears not to be case (see above). Alternatively, and more

likely therefore is that there is no difference in metabolic pumping rates within

different areas of the same band suggesting that EPF is well mixed. This is important

for interpreting the lateral change in trace elements measured in A. islandica.

6.6 Conclusion

18O within shell 248 varied from +1 ‰ to +2.5 ‰ giving a reconstructed range of

seawater temperatures for 1992-2001 of 5-13 ºC, with an error of <1.1 ˚C due to the

use of a constant salinity (calculated from the mean of sporadic salinity measurements

in Irvine Bay). Measured SST in Millport Marine station for the same period was

between 6.3 and 15.6 ˚C, indicating the range is typically within 2.1 ˚C. However, it

appears that A. islandica does not grow during the whole year, and as well as a growth

check during the winter months, there may be a slowdown during the year as well

which may account for the poorer reproducibility of the warmest temperatures.

Particularly noticeable was that the range of temperatures intra-annually was not

consistent with the variation in instrumental SST, i.e. the coldest years reconstructed

from 18O were not the coldest years measured by SST, suggesting that it is relatively

insensitive to intra-annual temperature variation.

The data are consistent with a model whereby 18O is relatively insensitive to

changes in salinity even within shallow water sites but is sensitive to changes in

temporal resolution resulting from changes in growth rate. In particular, “adaptive

sampling” may need to take into account intra-annual variation in growth rate and not
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just ontogenetic changes, and the impact such changes may have on recorded 18O.

Any changes in biogenic fractionation could not be discerned. Improvements in the

sampling (e.g. use of daily bands) may be significant for understanding any possible

impacts it has on 18O temperature reconstructions.

Ontogenetic changes in 13C are seen in all three specimens, but the absolute

13C and the rate of decrease varied between shells. There is no evidence of changes

of 13C across a single band that might imply changes in metabolic pumping laterally

across a band. The timing of the 13C increases does not seem to correlate with

position in the band (i.e. the season), nor with the 18O record. PL248 shows a sharp

decrease in 13C after it sustained damage to the outer shell prismatic layer,

suggesting that metabolic rate can have a strong controlling influence with a decrease

in 13C of 50% after damage to the shell was sustained.

Acknowledgements

Thanks are given to Marine station at Millport who provided temperature records and

to SEPA (in particular Brian Miller) who provided the environmental data for Irvine

Bay. Personal thanks are given to Rune Søraas, Ulysses Ninnemann and Jonathan

Wynn for invaluable assistance with analysis of samples in the mass spectrometer, as

well as to Michael Bird who helped to significantly improve the chapter. Analysis at

the Bjerknes centre was supported by a Marie Curie Training Fellowship (EVK2-GH-

00-57123-10).



Chapter 7: Tracing the uptake of radiocarbon in Arctica islandica

263

CHAPTER 7: TRACING THE UPTAKE OF

RADIOCARBON IN ARCTICA ISLANDICA.

ABSTRACT 264

7.1 INTRODUCTION 265

7.1.1 Sellafield facility 265

7.1.2 Bomb pulse 267

7.1.3 Reporting changes in radiocarbon, post-bomb 268

7.1.4 Reconstructing the bomb pulse 268

7.2 UPTAKE OF 14C IN A. ISLANDICA 269

7.2.1 Existing data on A. islandica 270

7.3 SAMPLES 271

7.4 METHOD 275

7.4.1 Sampling using a microcorer 275

7.4.2 Radiocarbon analysis 277

7.5 RESULTS AND DISCUSSION 277

7.6 CONCLUSION 284



Chapter 7: Tracing the uptake of radiocarbon in Arctica islandica

264

Abstract

The potential of Arctica islandica to provide high-resolution radiocarbon

measurements within the marine environment is explored through a pilot study of 14C

incorporation from a shallow water specimen from Irvine Bay, UK. The increase in

atmospheric radiocarbon in the 1950s associated with the testing of thermonuclear

devices provided researchers a way to track the uptake of the carbon by tracing “bomb

pulse” 14C. This area is also affected by discharge from the Sellafield nuclear power

and reprocessing plant. Results show that the 14C signals overlap, with elevated pre-

bomb 14C concentrations likely to relate to Sellafield discharges. With only a single

specimen in this study, further work is required.
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7.1 Introduction

Arctica islandica has the potential to provide a high temporal resolution record of 14C

variations. This chapter presents the results of a pilot project measuring 14C

fluctuations in a live-collected specimen from Irvine Bay, west coast of Scotland from

the 1950s to the present day.

In the 1950s, the atmospheric denotation of thermonuclear weapons, prior to

the Nuclear Test Ban Treaty in August 1963, produced large numbers of neutrons that

generated a distinctive “peak” of radiocarbon known as the “bomb pulse” (e.g.

Hesshaimer et al., 1994; Levin and Kromer, 1997; Levin and Hesshaimer, 2000).

However, Irvine Bay may also be affected by discharge from the Sellafield nuclear

facility on the Cumbrian coast (Figure 7.1), which has been in operation since the

1950s. The discharges into the Irish Sea were not initially monitored, which together

with a number of accidental discharges, has meant the quantity and extent of the area

affected by radioactive material, including 14C is unknown. Thus, this pilot project

explores whether influences from Sellafield nuclear and reprocessing plant can be

identified, independent of increases due to the bomb pulse. A comprehensive survey

of A. islandica 14C along the West coast of Britain could compare 14C variation with

increasing distance from Sellafield in order to separate bomb pulse effects and

discharge from Sellafield. This is beyond the present study but rather this chapter

explores the potential for such a study in the future.

7.1.1 Sellafield facility

Sellafield facility was put into commission in 1950. Sellafield has had several

recorded accidents, including one in 1983 when high discharge concentrations of

nuclear waste in the Irish Sea lead to the closure of beaches >20 km north and south
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of Sellafield (Martiniussen, 2001). The discharge of medium-level radioactive liquors

containing nuclides such as 14C, 99Tc, and 129I increased between 1985 and 1995 due

to the processing of these materials instead of storage onsite. This discharge is now

reduced by ~75% (Royal Irish Academy, 2002). Discharge of 99Tc is shown on Figure

7.2 (no data was available on 14C).

Figure 7.1: Map of the locations of Sellafield reprocessing plant together with Irvine

Bay, and Millport Marine station (modified from Lieberknecht et al., 2004 with

permission from the Geological Survey).
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Figure 7.2: Discharge from Sellafield of 99Tc published by Royal Irish Academy

(2002) (Data compiled from Gray et al. (1995) and BNFL (1980-2001)).

7.1.2 Bomb pulse

In the Northern Hemisphere, the peak in atmosphere bomb-produced 14C

occurred in 1963 compared to ~1965 in the Southern Hemisphere with radiocarbon

concentrations about 100% above normal concentrations in the troposphere (Nydal et

al., 1979; Nydal and Lövseth, 1983; Taylor, 1987). The amount of local and global

fallout after each explosion was initially unknown (Nydal, 2000). The increase in

radiocarbon is recorded within both terrestrial and marine records with the magnitude

and speed of the migration of the bomb pulse reflecting the rate of exchange between

carbon reservoirs. In the Northern Hemisphere, elevated radiocarbon concentrations

were found in the terrestrial system within about three weeks (Nydal, 2000).

The concentration of bomb radiocarbon recorded in the oceans is far from

uniform. Higher concentrations are recorded in temperate regions and the North

Atlantic, compared with the Antarctic and North Pacific, due to lateral transport from

upwelling regions (Broecker et al., 1985). Thus, the movement of radiocarbon

provides a tracer to test models of oceanic circulation and to quantify the oceanic
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invasion of excess CO2 produced by anthropogenic deforestation and fossil fuel

consumption (Bard et al., 1989).

7.1.3 Reporting changes in radiocarbon, post-bomb

Changes in radiocarbon post-bomb are often defined as Δ14C. This is derived from

ASN/Aabs where ASN is the normalised sample activity and Aabs is the absolute

international standard activity which is 95% of activity in 1950 AD of the NBS

(National Bureau of Standards) oxalic acid normalised to 13C (see Stuiver and

Polach, 1977). The disadvantage of this system is that a sample grown for example in

1962 will give a different Δ14C if measured today compared to 1962 (Reimer et al.,

2004). The difference between the two is presently very small (Reimer et al., 2004).

Data quoted from other papers are reported as presented, (i.e. without correction).

Results from 14C work presented here are reported as % modern, which is defined as:

ASN/AON, where AON is the activity of the international standard (oxalic acid). This

implicitly corrects for isotopic fractionation (δ13C values corrected to –25 ‰), decay

of the standard (oxalic acid II in this case) from 1950 to the year of measurement

decay of the sample, and from year of collection to year of measurement.

7.1.4 Reconstructing the bomb pulse

Research on the bomb pulse has focused heavily on land-based (e.g. tree rings)

reconstruction of 14C concentrations. This has produced numerous datasets that show

the uptake of radiocarbon in the terrestrial system to be very similar, with no

significant latitude dependence (Goodsite et al., 2001). Unfortunately, marine datasets

are much more limited, with one of the constraints being the identification of suitable

marine material for radiocarbon measurement.
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Corals from low latitudes, which can provide sub-annual records, have

therefore been extensively studied. Coral 14C records from Belize and Florida show

nearly identical uptake of bomb-pulse 14C. Those from the Galapagos, Pacific

however, show a lower 14C bomb pulse. This results from the upwelling of subsurface

water which lowers the Δ14C by >100 ‰ (Druffel and Suess, 1983; Druffel, 1996).

The change of Δ14C due to the incorporation of non-contemporary 14C is known as the

“reservoir effect.” Upwelling water, which has been isolated from the atmosphere

long enough to result in 14C decay, changes the Δ14C of the surface water.

Belize and Florida corals record a maximum of 14C uptake in 1966, a few

years after the peak in the atmosphere. The time delay results from the time required

for the ocean to reach a steady state with respect to 14CO2 exchange, i.e. the time it

takes for carbon in the atmosphere to exchange with the ocean and be incorporated

into the coral to form CaCO3.

A more rapid decline in 14C sea surface concentrations occurs at higher ocean

latitudes, due to a more frequent exchange with the deep ocean. However, apart from

the two sets of radiocarbon measurements taken by research cruises in the North

Atlantic (GEOSECS 1972-1973) and Transient Tracer in the Ocean (TTO, 1981-

1982) (Ostlund and Grall, 1987), no further real-time data were collected at the higher

latitudes. Thus, there is a need for reconstruction of the dispersal of bomb-pulse at

higher latitudes, using archives such as A. islandica.

7.2 Uptake of 14C in A. islandica

Molluscs build up shells with carbon from two sources; bicarbonate dissolved in

seawater (DIC) and food particles (Mangerud et al., 2006). Most food particles will

have the same reservoir age, as they are normally part of the marine food chain that
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started with phytoplankton assimilating carbon. However Tanaka et al. (1986) showed

that in a coastal setting, up to 60% of the carbon within mollusc shell CaCO3 was

derived from food consisting of remnants of terrestrial plants, sewage particles etc.

This has lead to the term “food reservoir age” (Mangerud et al., 2006). However A.

islandica are filter feeders and hence should derive their carbon directly from

seawater dissolved inorganic carbon (Cage et al., 2006). Work by Ascough et al.

(2005) found no significant offset in radiocarbon concentrations between different

mollusc species, despite utilising a different variety of food.

7.2.1 Existing data on A. islandica

Researchers have already carried out a number of analyses on A. islandica. These are

detailed in Table 7.1, with the locations shown on Figure 7.3.

Figure 7.3: Map of A. islandica sites with published 14C studies. A. islandica sites are

shown in black, with red depicting the site of present study. The blue spots mark data

from coral sites. The numbering refers to that given in Table 7.1.
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Weidman and Jones (1993) used a live-collected specimen from the Georges

Bank off the coast of North America to reconstruct bomb 14C at a resolution of 1-2

years. Comparison with the low latitude corals of Bermuda and Florida showed that

the exchange at Georges Bank was more rapid occurring 1-2 years earlier, but more

suppressed. This can be explained by waters in the region being supplied by a deep

(depleted) source, but with a fast exchange on a shallow shelf (Weidman and Jones,

1993). In addition, the “Great Salinity Anomaly” which occurred throughout the

northern North Sea (1968-1982) is reflected in the Δ14C concentrations, showing the

link between deepwater formation and surface salinity in the high-latitude North

Atlantic (Weidman and Jones, 1993).

Weidman (1993) used multiple shells to illustrate that, although the bomb

pulse arrived relatively synchronously across the North Atlantic, its magnitude varied.

Iceland has the smallest amplitude increase (~120 ‰), with the North Sea the largest

(~320 ‰). The variation in 14C enrichment a function of local and regional mixed

layer depth (Weidman, 1993). A. islandica samples from the Oyster Bank show a 14C

peak much earlier than those from Georges Bank. This is due to a strong tidal front in

the North Sea that increases vertical transport (Witbaard et al., 1994; Witbaard, 1997).

Thus, radiocarbon analysis can provide strong evidence of water circulation within a

region.

7.3 Samples

A. islandica samples were collected live from Irvine Bay, NW Scotland in

May 2001. This shallow marine site (6 m below O.D.) is likely to have a rapid

exchange with the atmosphere. Thus, 14C measurements would be expected to show a

high 14C shortly after the bomb pulse, followed by a rapid decline. Apparent slower



Chapter 7: Tracing the uptake of radiocarbon in Arctica islandica

272

exchange could be attributed to the carbon coming from a secondary source (e.g.

exchange with deeper water). In addition, this site (Figure 7.1) is ~150 km north of

the Sellafield. Hence, reconstructions of 14C movement and concentrations using A.

islandica would have value in providing estimates of the environmental impact of the

Sellafield site over time.

A number of samples were sectioned along the line of maximum growth and

replicate peels were taken (see section 1.2.2 for more details). The number of annual

bands and position were noted. Specimens from Irvine Bay were found to be typically

30-40 years old, which was younger than had been initially expected from their size

(those in Fladen Ground of similar size are typically 150 years+). The oldest sample

collected was 50 years old (shell 389), and therefore this was used for analysis. As the

bands in the first five years of growth were too narrow to enable sampling by

microcorer, the oldest sampling corresponded to 1957. An alternative sampling

method- micromilling was attempted to sample the youngest years to increase the

number of years sampled, however the narrowness of the bands and the high risk of

contamination from inner layers/ later growth prohibited this. The earliest part of the

shell was more intensely cored in order to provide the most detail during these earlier

growth bands and to pick up as much pre-bomb and bomb pulse as possible.

Samples were collected by microcorer from shell 389. Coring has the

advantage that it provides a solid sample, which can be etched at the AMS lab just

prior to the sample being hydrolysed. Thus, it would provide a pristine sample. Initial

work on the stability of aragonite in A. islandica had highlighted the possibility of

exchange with modern CO2 due to the conversion of the sample to calcite. The effect

of micromilling and possible exchanges with the atmosphere are explored extensively

in Chapter 5. A 3.7 Ma year old A. islandica specimen was also sampled; the 14C
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concentrations should be below the limits of detection to determine if there was any

exchange with modern CO2. In addition, it was specified that the sample should cover

a single year (Austin, Pers. Comm. 2005). The samples were stored under argon prior

to analysis at SUERC radiocarbon laboratory, East Kilbride, UK.
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Table 7.1: Details of radiocarbon specimens discussed in this chapter.
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7.4 Method

7.4.1 Microcoring

The microcorer provides a stable platform from which a small core (maximum length

~2 mm, with variable width- typically 0.5 mm) can be taken (Figure 7.4). The

microcorer tip rotates around a central axis, with a motor attached to the geological

stage so it also rotates at high speed. Material is gradually removed, leaving a central

column exposed, which can then be removed (Figure 7.5). The width of the axis of

rotation will determine the top core width. As the depth increases however, the size of

the crater around the core increases. This results in the loss of progressively larger

amounts of the surrounding material. In order to compensate for this, a core for each

of the 18 aliquots were taken, and then sampling for the 2nd set of cores were taken

(i.e. sampling for the first aliquot was done again after a short core had been taken for

all the other aliquots) and the material summed into a single aliquot.

Figure 7.4: Photograph of Microcorer sample with a sample attached.
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Despite doing this, the aliquots were below the minimum sample size of 6 mg

required at SUERC radiocarbon facility UK. Therefore, adjacent cores had to be

combined to provide some indication of radiocarbon fluctuations within the shell

giving nine 14C analyses (see Table 7.2). This was unfortunate but no further material

was available from this shell. It was also not possible to etch the samples prior to

analysis. In addition to the samples, two further cores were taken: one from Iceland

Spar Calcite (laboratory standard, age is >100 ka), and a second core from a 3.7 Ma

year old A. islandica specimen from Tjörnes Bed, Iceland. These provide checks on

contamination during processing and storage of the sample prior to analysis, since

neither should have measurable 14C.

Figure 7.5: Reflected light micrograph showing the core sample from 389. The size

of the crater is 2-3x the width of the core. The shell is in the lower half of the image,

with the epoxy resin in the upper half.
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7.4.2 Radiocarbon Analysis

Radiocarbon samples were processed and analysed by SUERC AMS facility, East

Kilbride, UK, using the following procedure. Samples were hydrolysed to form CO2

using 85% orthophosphoric acid at 25 C. The CO2 was condensed, vaporised and

then converted to graphite by Fe/Zn reduction (Slota et al., 1987). Graphite was

pressed into aluminium cathodes and analysed using the SUERC 5MV NEC AMS

(Ertunç, Pers. Comm. 2006).

7.5 Results and Discussion

The results of the 14C analysis of the Iceland Spar calcite (Table 7.2) showed it was

statistically indistinguishable from the NERC radiocarbon laboratory’s inorganic

background, indicating no contamination of 14C during analysis (Gulliver, Pers.

Comm. 2006). However, the 3.7 Ma year old A. islandica specimen shows slightly

elevated concentrations of radiocarbon. It is not possible to discount the possibility of

exchange of carbon with atmospheric CO2, but the study of 18O (see Chapter 5)

suggests that is not the case. The 18O values of the otoliths showed that there was no

shift in the 18O values, indicating that there was no exchange with the atmosphere.

Although radiocarbon aliquots were taken using coring rather than micromilling, it is

likely that these findings are also applicable to coring (as like micromilling it uses a

drill bit to remove the material). The slightly elevated concentrations of 14C may be

attributed to epoxy within the pores of the specimen as epoxy was seen to have

impregnated the shell, which due to its age was highly porous. Samples of epoxy

analysed in the mass spectrometer showed the presence of CO2 on reaction with

phosphoric acid. Shell 389 did not show any visual evidence of epoxy impregnation



Chapter 7: Tracing the uptake of radiocarbon in Arctica islandica

278

and therefore the risk of contamination is likely to be minimal. Further analysis would

be required to confirm this finding.

The AMS data show 14C maxima between 1971-1974 in the Irvine Bay

specimen (Table 7.2). Atmospheric central Atlantic data shows the Δ14C maxima at

750 ‰ in 1964 (Figure 7.6). The bomb pulse initially appearing about 1959 (± 1 year)

in North Atlantic A. islandica Δ14C records, followed by a steep rise during the early

to mid-1960s, with a maxima in the late 1960s to the late 1970s (Weidman, 1993).

Although the Irvine Bay sample also shows a steep-rise in the early 1960s, with a

maximum in the early 1970s there are two crucial differences to the results of

Weidman (1993) and Witbaard (1997). The first is that the values of Δ14C in the

Irvine Bay samples are much higher than would be expected pre-1960. All other

marine samples show values <0 ‰, whereas Irvine Bay samples show >30 ‰.

Atmospheric data indicate that the elevated concentrations of Δ14C shown in

the shells pre-1960 (see Figure 7.6) could be due to rapid exchange with the

atmosphere, but this is unlikely for two reasons. Firstly, the maximum Δ14C values

found within A. islandica from Irvine Bay do not significantly exceed those from

other sites. In other words, if the exchange with the atmosphere were extremely rapid,

the maximum Δ14C found in these specimens would be significantly higher than those

in other A. islandica sites, as the 14C concentrations would be less affected by 14C-

depleted water. Secondly, Weidman et al. (1994) found the Δ14C-bomb signature of

Norwegian specimens to be weaker than that of deep water specimens of Witbaard

(1997) despite being sampled at 3 m. These data show that the local hydrography

plays an important role. Another hypothesis is that the coastal setting of the Irvine

Bay samples may result in elevated 14C concentrations, due to terrestrial input.

However, as discussed earlier, A. islandica derives its carbonate from DIC (Cage et
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al., 2006). Terrestrial 14C is also unlikely to be the cause of the continued elevated

concentrations after the bomb peak (i.e. post 1970). Therefore, it would suggest that

Sellafield provided significant (>30 ‰) 14C to the A. islandica specimen prior to the

bomb pulse.

Another explanation for the presence of 14C prior to other A. islandica sites

could be due to errors in the sclerochronology. Independent analysis of the

sclerochronology at the umbo put the age at 47 + 3-5 years for ligament correction

(the ligament correction is applied to compensate for the fact that early growth years

that are eroded). This would place the specimen at a minimum of 50 years (our age

estimate was 50 years). It could therefore be that 2-3 bands in the outer shell prismatic

layer (classified as sub-annual/disturbance lines) may in fact be annual bands, actually

increasing the age of the specimen. Typically, errors in the sclerochronology for this

age of specimen would be 2-3 years. Therefore, the increase in A. islandica prior to

the other sites is most likely due to Sellafield discharge.

The maximum in 14C is reached between 1965 and 1972, which is generally

consistent with other A. islandica 14C data (e.g. Weidman and Jones, 1993; Witbaard,

1997) (see Figure 7.7). Unfortunately, the poor resolution of data makes it impossible

to ascribe a precise date to this maximum. The 14C peak is higher than that of any of

the other sites from which 14C in A. islandica data have been reported (by ~15 ‰). It

is likely the actual peak in 14C was higher, especially given the initial offset between

the Irvine Bay and other samples was >30 ‰. In addition, the continued elevated

values of 14C in the Irvine Bay data, suggests that Sellafield discharges influence the

14C concentrations in this region. There are no primary data on 14C output from

Sellafield but estimates of 99Tc discharge show significant flux from 1952-1969 but a

sharp decrease 1970-1990 (Figure 7.2). These data, combined with the 14C
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measurements, could indicate that Sellafield was discharging material containing both

99Tc and 14C. However, perhaps more likely, the coincidence may reflect prevailing

management attitudes to the discharge of medium-level radioactive waste into the

environment. The period from 1990 onwards shows an increase of 99Tc discharge due

to increased processing of medium radioactive waste onsite. It is therefore likely that

significant discharges of 14C from Sellafield are superimposed on the bomb signature.

This can be seen particularly post-1970s when all other A. islandica records show a

decrease in radiocarbon, but whereas the specimen from Irvine Bay continues to show

elevated radiocarbon concentrations. Further samples would be required to

deconvolute these components further.

The use of the microcorer for sampling had severe drawbacks. It was designed

to provide a better sampling technique than milling, as the sample surface could be

etched prior to 14C analysis. However, the coring was a difficult sampling technique

to use, with the large crater and short cores meaning that a lot of surrounding sample

material was lost, and therefore reducing the temporal resolution that could be

obtained. In addition, the long extraction time (typically 1-2 days) increased the

likelihood of cross contamination. It addition because material is removed around

each core, it produces significant hiatuses in the data. Thus, the use of the micromill,

which would produce a continuous record, would have been much better.



Chapter 7: Tracing the uptake of radiocarbon in Arctica islandica

281

Table 7.2: Sample details and results for A. islandica from Irvine Bay. The sample

years are those determined by sclerochronology. * ages were adjusted from those

originally logged after a revision in the sclerochronology. Note the 14C enrichment (%

modern absolute) is the 14C measurement corrected for the 14C decay of the standard

(in this case Oxalic acid II) from 1950 to the year of measurement (2006). The years

are estimated for each core, and the combined estimate of the date is shown as the

“average year.” The years selected for coring were intended to provide the most detail

during the earliest part of the shell.

SUERC sample
identifier

core
reference

Average
year

(A.D.)

14
C

enrichment
(% modern)

±1σ

14
C

Enrichment
(% Modern
absolute) ±1σ


13

CVPDB‰

±0.1

Core 1 1956.0 1956.0
Core 2 1957.0 1957.0

core 3 1957.0 1957.0

Core 4 1958.0 1958.0

core 5 1958.5 1959.5

core 6 1960.0 1960.0

core 7 1961.0 1961.0

core 8 1962.0 1963.0

core 9 1963.0 1963.0

core 10 1966.0 1966.0

core 11 1970.0 1970.0
core 12 1973.0 1973.0
core 13 1978.0 1979.0
core 14 1984.0 1986.0
core 15 1986.0 1989.0
core 16 1991.0 1993.0

SUERC-9936 0.46 0.45 0.45 0.01 1.5

SUERC-9937 0.10 0.10 0.10 2.00 2.0

1964.5

1971.5

1982.0

Years (A.D.)*

1956.5

1957.5

1959.2

SUERC-9926

SUERC-9927

SUERC-9928

SUERC-9929

SUERC-9932

SUERC-9933

SUERC-9934

SUERC-9935

Core from Arctica islandica 3.7 Ma
specimen

Iceland spar calcite core

103.81

104.17

104.38

124.15

124.101989.5

1962.0

0.45 103.14 0.45

0.45

2.60

103.49 0.45 2.50

0.45 103.70 0.45 2.30

107.61

116.41

126.13 0.55

106.91 0.47 2.10

0.51 115.65 0.51 2.00

0.47

125.31 0.55 1.80

0.54 123.34 0.54 1.20

0.54 123.30 0.54 1.20
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Figure 7.6: Plot of the 14C results from this study (with 1 error bar) compared to

atmospheric central East Atlantic (errors in measurements were not noted by

Weidman, 1993). Note that 14C data cover for A. islandica specimen multiple but not

continuous years (see Table 7.2 for more information).
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Figure 7.7: Plot of 14C results from A. islandica, Irvine Bay compared to existing A.

islandica datasets from 1950 onwards. Note that Irvine Bay data cover multiple but

not continuous years (see Table 7.2 for more information). 1 error is too small to be

shown for Irvine Bay specimen (see Table 7.2).
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7.6 Conclusion

The 14C data can be interpreted in a number of ways but there is strong evidence that

this site is influenced by discharge of 14C from Sellafield as well as the bomb-pulse

14C. Comparison to other A. islandica samples suggests that the elevated

concentrations (of >30 ‰.) seen in pre-1960, and continued elevated concentrations

throughout the sample were due to discharges from Sellafield. Further samples, such

as those at different distances from Sellafield would be required to separate the bomb

pulse from the discharges from Sellafield. Additional shells would also provide

further confirmation of the timing of such events.

In hindsight, the microcoring was very slow since samples typically taking 2

days to core. Thus, the procedure may carry a higher risk of contamination than

conventional micromilling due to longer exposure with atmospheric CO2. The

multiple cores taken with the microcoring provide an innovative way of increasing the

sample size, but it would perhaps have been more appropriate to make multiple

sections from which to take a core. However, the risk of a hiatus and the large craters

suggest that despite the problems with handling powdered samples, micromilling

(such as that used in this PhD for 18O analysis) would have been much more

appropriate. Given the modern age of the samples, contamination by modern 14C is

less of an issue. Further work would be required to see if the slightly elevated

concentrations of 14C in the 3.7 Ma year old specimen were due to problems with

epoxy in the micropores or due to exchange with the atmospheric carbon.

This pilot study has shown that A. islandica along the west coast of Britain

might be an useful archive of 14C from thermonuclear testing of the 1950s and from

the Sellafield reprocessing plant.
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Abstract

The long-lived marine bivalve Arctica islandica has the potential to provide (sub-

annual) high resolution palaeoclimate data. This potential has been explored during

this thesis using a suite of different techniques including X-ray Absorption

Spectroscopy (XAS), Secondary Ion Mass Spectrometry (SIMS), Inductively Coupled

Plasma Mass Spectrometry (ICPMS), Scanning Electron Microscope (SEM) and

stable oxygen and carbon isotopes with the aim of better understanding how Arctica

islandica may encode aspects of the environment.

The three trace elements (Sr, Mg, Ba) measured show heterogeneity within the

same growth band (i.e. at the same temporal position) in the prismatic layer. In the

umbo, the concentrations increase away from the maximum growth axis whereas

within the outer shell they decrease e.g. in the outer shell the offset is ~45% for Sr/Ca,

~30% for Mg/Ca, and ~25% for Ba/Ca for a lateral change of 750 m.

Despite Sr being ideally substituted for Ca within aragonite, Sr/Ca fluctuations

are not dominated by temperature, but rather by other controls such as changes in

crystal nucleation and propagation, crystal growth rate and vital effects. Sr in Arctica

islandica is therefore unlikely to be suitable as a palaeoenvironmental proxy of

temperature.

X-ray Absorption Near Edge Structure (XANES) indicate Mg is hosted by

organics and thus the manner in which Mg partitioning is modelled using inorganic

equilibrium thermodynamics is flawed. Mg/Ca content in the shell results from

interaction between overall organic content and Mg partitioning into the organic

matrix.

Ba/Ca shows low concentrations with sporadic increases to over five times

this. The timing and magnitude of these maxima correspond between the prismatic
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layer of the outer shell layer and umbo region despite the lateral change in

concentration. The timing of Ba peaks is inconsistent in position within the growth

band and the timing between the shells differs. Low Ba/Ca may reflect Ba/Ca

concentrations of seawater. Further work is required with improved precision to

determine whether there is a lateral offset at low Ba/Ca concentrations.

Data from sample 248 show that 18O fluctuates between 0.6 and 2.6 ‰;

which, assuming constant salinity, gives a growth temperatures of ~+5 to +13 ºC

using the equation of Grossman and Ku (1986). This temperature range differs by

~2.1 ˚C from the sea surface temperature measured at the nearby Millport marine

station. However, modelling of 18O is most successful when contributions from

temperature, salinity and changes in temporal resolution in sampling (resulting from

changes in growth rate) are employed. Since growth rate is a significant component, it

is necessary to establish how variable growth seasons are, not only when comparing

18O within the same shell, but also when comparing shells from different regions or

times. 13C fluctuations show a strong ontogenetic effect in all three shells sampled

(with a decrease of >2.0 ‰ during the lifespan of the organism (shell 405)), but no

lateral variation was found. Vital effects play an important role in the 13C behaviour,

with damage in one sample (248) marked by a sharp decrease in 13C of >0.5 ‰.

Radiocarbon measurements within Arctica islandica show that high 14C values

from material formed before global nuclear testing. This is inferred to result from

discharges from Sellafield nuclear reprocessing plant, values of which were enhanced

by 14C from the testing of thermonuclear weapons.
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8.1 Introduction

This thesis studies the potential of Arctica islandica to reconstruct

palaeoenvironmental conditions and in particular the use of trace elements using a

multi-technique approach. This chapter compares trace element and stable isotope

results from the prismatic layer of the umbo and outer shell region of the same

individuals and interprets the data in the light of XAS data and Secondary Electron

images. Further interpretation of the controls of trace element uptake is presented, as

well as a discussion of the accuracy of 18O reconstructions.

8.2 Comparison of trace element fluctuations in the

prismatic layer of the umbo and outer shell

Quantitative data of the composition of the prismatic layer of the umbo and shell outer

layer were collected using SIMS and ICPMS respectively. Standardisation between

these two methods to allow direct comparison of the data is therefore imperative.

Analysis using SIMS and LA-ICPMS was carried out on a single OKA chip using

both methods, the results of which are shown on Table 4.7. An offset occurs in the

calculated concentration of SIMS compared to LA-ICPMS. The latter provides values

that are >24% greater for Sr/Ca, >15% greater for Mg/Ca, and >20% less for Ba/Ca

with respect to data collected by SIMS. These offsets are likely to be due to the

different matrices of the standards used in calculating absolute values within A.

islandica. LA-ICPMS concentrations were estimated with respect to rhyolite glass

(NIST610) standards whereas SIMS data were calculated using relative ion yields

from an OKA calcite standard. Neither set of standards comply with the matrix of the

A. islandica, an aragonite intimately mixed with varying amounts of organic material,
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and hence systematic matrix offsets (between LA-ICPMS and SIMS data and between

both datasets and ‘true values’) are to be expected. This offset needs to be taken into

consideration when comparing the two regions of the shell. All SIMS and LA-ICPMS

data are presented here without correction.

Understanding how trace element behaviour may differ between the two

regions of the shell is important as it provides insights into the controls on trace

element uptake e.g. growth rate, nature and amount of organics etc. As discussed in

Chapter 3 and 4, a lateral compositional gradient is present within the prismatic layer.

However, the umbo shows an increase away from the maximum growth, while the

outer shell layer shows a decrease. If the lateral change of both regions is driven by

the same mechanism, shell growth rate can be discounted as the cause.

Lateral changes in the shell architecture, may influence trace element uptake.

For example, changes in organic concentration may influence directly Me2+ if it is

hosted by the organics e.g. Mg (Chapter 2). Organic content may have a further,

indirect effect by exerting a control over the nucleation and propagation of the crystal

and with the matrix acting as nucleation surface and predefined mould, determining

size and orientation of the crystals (Watabe and Wilbur, 1960; Belcher et al., 1996;

Mann and Ozin, 2003; De Yoreo and Dove, 2004; Heinemann et al., 2006). It has

been noted in calcite that different faces having different affinities for trace elements,

resulting in zoning within the crystal (Reeder and Grams, 1987; Paquette and Reeder,

1995; Reeder et al., 2001). This partitioning may be more marked in aragonite as it

has a lower symmetry than calcite and therefore potentially a greater number of

crystallographically distinct crystal faces (Allison and Finch, 2004).

As seen in the Secondary Electron (SE) images of the outer shell prismatic

layer (Figure 4.23), changes in concentration of organic components occur laterally.
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The organics are more distinct at the growth check, but lateral changes also occur

during the growth bands, with the crystals becoming less well aligned further from the

periostracum. Therefore, changes in organics may result in lateral changes in trace

element uptake.

Rosenberg and Hughes (1991) inferred from higher S/Ca concentrations that

the slow-growing sections of Mytilus edulis of high curvature had higher organic

concentrations. Therefore, in the prismatic layer of the umbo, the organic

concentrations may become higher towards the margins, but in the outer shell

prismatic layer, the organics become less well defined away from the periostracum

suggesting lower concentrations. Thus, it could explain the apparent paradox.

Changes in the trace element (Me) concentrations to calcium (Me2+/Ca) in the

EPF as the shell grows may also explain lateral changes in trace element

concentrations. During periods of rapid growth, Wada and Fujinuki (1976) found in

three of the four types bivalves that Sr/Ca ratios in the central EPF were more

concentrated. Conversely, Sr/Ca was more dilute during periods of slow or no shell

growth. The fourth sample studied by Wada and Fujinuki (1976) however showed the

opposite trend, suggesting that the controls on Sr/Ca within the EPF are complex.

Klein et al. (1996a) hypothesised that lateral variation found within the calcite layer

of Mytilus trossulus was due to changes in metabolic activity, with higher Sr/Ca and

13C at the lateral margins. However, 13C aliquots taken across the bands in A.

islandica PL228 show no lateral variability, suggesting that the EPF is well mixed,

and therefore this mechanism of trace elemental partitioning is unlikely to occur.

Although a full explanation of the driving mechanism of the lateral variation

has not been determined, the presence of the lateral variation indicates that the trace

elements are unlikely to be suitable as palaeoproxies from which quantitative
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environmental reconstructions can be routinely obtained. In particular, it shows that

the trace element composition is not independent of lateral distance from the

maximum growth axis. In addition, initial findings indicate that Mg/Ca varies with

depth, with an increase in concentration (of >40%) after the sample was repolished (a

depth of ~125 m).

The extent of the lateral change is not constant, affecting higher concentrations

more significantly. However, if the lateral offset is significantly smaller than

fluctuations that encode environmental change, some qualitative information may be

obtained. For example, Ba/Ca changes laterally by ~25% but the sporadic increases

can be >500% of the typical value. Ba/Ca sporadic increases can be easily

distinguished, delimited by low Ba/Ca concentrations. The timing of Ba/Ca peaks

may therefore be identified. The lateral variation for Sr/Ca and Mg/Ca is >50% of the

annual variation and therefore confidentially identifying a specific environmental

signal is difficult.

A better understanding of the controls on trace element uptake can be achieved

by comparing transects taken closest to the maximum growth in the umbo and outer

shell layer within the same shell (see Figure 1.2). Understanding the behaviour of

trace elements and controls is important not only for A. islandica but also has

relevance to studies of other taxa in which these trace elements are applied for

palaeoenvironmental reconstructions. It is crucial, for example, to determine whether

the controls on trace elements are constant throughout the lifespan of the organism.
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Figure 8.1a: Sr/Ca fluctuations in A. islandica specimen 248: comparison between

the prismatic layer of the umbo and outer shell. Errors for U248 (not shown as too

small) were 0.9% (2 S). Note that standardisation to the same OKA chip analysed

showed that Mg/Ca calculated by LA-ICPMS were >24% less than equivalent values

from SIMS.
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Figure 8.1b: Mg/Ca fluctuations in A. islandica specimen 248: comparison between

prismatic layer of the umbo (unfiltered data) and outer shell layer. U248 error from

standard was too small to be shown 5.1% (2 S.E). Mg/Ca concentrations measured by

spot analyses, to the maximum concentration measured of 1.0 mmol/mol showed no

evidence of superficial contamination. Higher concentrations may however, be

affected by superficial contamination with Mg/Ca linescan data correlating

significantly with Si/Ca. Note that standardisation to the same OKA chip analysed

showed that the Mg/Ca calculated LA-ICPMS were >15% less than equivalent values

from SIMS.
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Figure 8.1c: Mg/Ca fluctuations in A. islandica shell 248: using the same scale for

prismatic layer of the umbo and outer shell. Mg/Ca concentrations measured by spot

analyses, to the maximum concentration measured of 1.0 mmol/mol showed no

evidence of superficial contamination. Higher concentrations may however, be

affected by superficial contamination with Mg/Ca linescan data correlating

significantly with Si/Ca. Despite concerns about contamination of Mg/Ca within the

umbo, the values are lower than the outer shell layer (in which no contamination

indicators were found). Note that standardisation to the same OKA chip analysed

showed that the Mg/Ca calculated LA-ICPMS were >15% less than equivalent values

from SIMS.
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Figure 8.1d: Ba/Ca fluctuations in A. islandica specimen 248: comparison between

the prismatic layer of the umbo and outer shell layer. Note that standardisation to the

same OKA chip analysed showed that the Ba/Ca calculated LA-ICPMS were >20%

more than equivalent values from SIMS. Note that low Ba/Ca measurements (<0.01

mmol/mol) in the umbo were sensitive to contamination, showing significant

correlation with Si/Ca.
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Figure 8.2a: Sr/Ca fluctuations in A. islandica specimen 228: comparison between

the prismatic layer of the umbo and the outer shell layer. U228 error from standard

was too small to be shown 0.9% (2 S.E.). Note that standardisation to the same OKA

chip analysed showed that the Sr/Ca calculated LA-ICPMS were >24% less than

equivalent values from SIMS.
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Figure 8.2b: Mg/Ca in A. islandica specimen 228: comparison between the prismatic

layer of the umbo and outer shell layer. Note only a short transect was analysed on

U228. Mg/Ca measurements of the umbo may be sensitive to contamination. Mg/Ca

concentrations measured by spot analyses, to the maximum concentration measured

of 1.0 mmol/mol showed no evidence of superficial contamination. Note that

standardisation to the same OKA chip analysed showed that the Mg/Ca calculated

LA-ICPMS were >15% less than equivalent values from SIMS.
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Figure 8.2c: Ba/Ca in A. islandica specimen 228: comparison between the prismatic

layer of the umbo and the outer shell. Note only a short transect was analysed on

U228. U228 error from standard was too small to be shown 1.8% (2 S.E.). Note that

low Ba/Ca measurements (<0.01 mmol/mol) in the umbo was sensitive to

contamination, showing significant correlation with Si/Ca. Note that standardisation

to the same OKA chip analysed showed that the Mg/Ca calculated LA-ICPMS were

>20% more than equivalent values from SIMS.
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8.2.1 Sr behaviour

Sr/Ca behaviour in the two shells (Figure 8.1a and Figure 8.2a) shows similarity in the

overall profile. High Sr/Ca peaks become less and less evident with increasing

distance from the growth edge (i.e. more juvenile). However, high Sr/Ca maxima at

the growth check are generally found when the shell growth rate is <~2000 m/yr in

the prismatic layer rather than related to a specific age in the shell. Sr/Ca increases at

the growth checks are seen through most of the prismatic layer analyses of the umbo,

although in U248 when growth rate >1500 m, no Sr peak occurs at the growth

check. Hence, high Sr/Ca within the growth checks occurs only within the latter few

years of the outer shell whereas it is found through the majority of the umbo. These

Sr/Ca peaks are higher within the outer shell layer with increases >2.4 mmol/mol

compared to ~2.0 mmol/mol, and when the offset between LA-ICPMS and SIMS is

accommodated the difference is >40%.

The average Sr/Ca fluctuations in the outer shell prismatic layer of 248 is

~0.5 mol/mol (without correction), which with compensation for the offset equates to

~60% higher than in the prismatic layer of the umbo. In shell 228 there was a much

less marked difference between the two, with there only being an offset in the last few

years of growth, but as LA-ICPMS underestimates values with respect to the ion

probe by >24%, concentrations in the outer shell prismatic layer are notably higher

than in the prismatic layer of the umbo.

The aragonite of the shell precipitates from a highly regulated water-soluble

proteins (Belcher et al., 1996; Falini et al., 1996), with trace element composition of

the precipitate, modelled by the empirical equation:

[Me/Ca]carbonate = Dme[Me/Ca]H2O
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where [Me/Ca]carbonate is the composition, Dme is the partition coefficient and [Me/Ca]

is the concentration of the trace element in the water (Boyle, 1988; Morse and Bender,

1990; Lea and Spero, 1992; Lea and Spero, 1994). In an equilibrium thermodynamic

system:

ln (DMe) = - Gf/RT

where Gf is the Gibbs free energy of formation of the solid, R is the molar gas

constant and T is temperature. However, in practise, many studies call upon a variety

of other factors to control the observed coefficient including salinity, metal site,

crystal growth rate, shell architecture and vital effects. Note that when such factors

are invoked to explain trace element variability, it is implicit that the system is not at

thermodynamic equilibrium. Thus, the observed Sr behaviour (Dobs) can be written as:

Dobs = f(Srwater). f(host). f(temperature). f(growth rate). f(shell architecture).

f(vital effects)

The relative impacts of each of these functions on Dobs are discussed in the following

section.

f(Srwater)

As discussed in earlier chapters, salinity has been shown to have negligible effect on

Sr concentrations in bivalves when salinity is >~10 (Dodd and Crisp, 1982). de

Villiers et al. (1995) however showed that Sr content of water did vary by ~2% with

change of latitude between 10ºS to 30ºN.
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f(host)

Analysis of the synchrotron data (in Chapter 2) shows Sr substitution within A.

islandica fits well with the model of ideal substitution for Ca in aragonite, i.e. Sr is

found randomly within the Ca sites. Aragonite has one Ca site and hence there is no

partitioning between different crystallographically non-equivalent sites.

f(temperature)

As Sr is ideally substituted in aragonite within A. islandica shells, substitution can in

principal, obey the thermodynamic models (in which log [Sr]) is inversely

proportional to absolute temperature (Kinsman and Holland, 1969; Dietzel et al.,

2004; Gaetani and Cohen, 2006). However, temperature variation only accounts for

~0.039 mmol/mol/ºC (Kinsman and Holland, 1969; Gaetani and Cohen, 2006), which

corresponds to approximately one third of the Sr/Ca fluctuations seen (using

temperature measurements from nearby Millport marine data station). Comparison to

the 18O record measured within the same shell provides an indication of the timing of

temperature variation. If Sr/Ca is controlled by seawater temperature, stronger

correlations between Sr/Ca and 18O may be expected over correlations between

Sr/Ca and instrumental temperature records. This is because 18Oshell indicates the

temperature only during periods when the shell was growing, in contrast to

instrumental SST measurements that also contain data lost in growth hiatuses, and

data available was for SST rather than water temperatures at 6 m. It also provides a

good comparison of the impacts of changes in temporal resolution (18O was sampled

at 75 m, with LA-ICPMS every 100 m). Comparison of the timing of Sr/Ca

fluctuations shows no correlation with the 18O record (see for example Figure 8.3).

Comparison to the instrumental record also showed not covariation, indicating that the
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effect temperature has on Sr incorporation is obscured by other factors. Indirectly,

temperature may control factors such as the growth rate, since it is likely there is a

strong correlation between temperature, shell growth and metabolism (Lewis and

Cerrato, 1997; Heilmayer et al., 2004).

f(growth rate)

A number of researchers have hypothesised growth rate of the shell influences trace

element incorporation (e.g. Pilkey and Goodell, 1963; Dodd and Crisp, 1982; Stecher

et al., 1996; Takesue and van Geen, 2004). However, inorganic aragonite

precipitation experiments such as Kinsman and Holland (1969); Mucci et al. (1989)

and Zhong and Mucci (1989) have shown that incorporation of Sr2+ is independent of

precipitation rates over range of 10-500 mol/m2/h. However, rate-dependence in

other inorganic carbonates is well established (e.g. Lorens, 1981; Rimstidt et al.,

1998). Corals precipitate at 3,000-25,000 mol/m2/h (Clausen and Roth, 1975a, b), six

times faster than the inorganic experiments (de Villiers et al., 1994). In the sections

analysed in A. islandica (i.e. not the whole shell), growth rate of the prismatic layer

varied from the slowest in the umbo (<100- 1500 m/yr) to the outer shell layer

(<500-m/yr), with a precipitation rate of 400-14,000 mol/m2/h. Thus,

analogies drawn from fast-growing coral may be applicable to A. islandica

(particularly during the faster parts of growth). Carré et al. (2006)’s study of the

bivalves Mesodesma donacium and Chione subrugosa attributed up to 74% of Sr/Ca

variations to crystal growth rate, with higher growth rates showing higher Sr/Ca.

Typically the linear growth rate of the shell is considered to reflect the crystal

extension rate (e.g. Klein et al., 1996a; Gillikin et al., 2005a). Carré et al. (2006)

extended this model by assuming that the crystal growth direction may not be aligned
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to the shell growth direction. Non-parallel growth can be seen in SE images of A.

islandica (Figure 4.23). However, neither of these scenarios considers whether

increased nucleation could cause increased shell growth rate, as it is inherently

assumed that crystal growth rate and shell growth rate are linked. The possible impact

of increased nucleation is discussed within the f(shell architecture) section.

Gaetani and Cohen (2006) used the surface growth entrapment model

developed by Watson (1996, 2004) to explain why both compatible and incompatible

trace elements were found in higher concentrations at the inorganic aragonite crystal

surface compared to the fluid. Crystal growth rate and diffusivity prevent equilibrium

with the fluid in this model. They applied these findings to explain Sr/Ca seasonal

fluctuations in the skeletal composition of Diploria labyrinthiformis (brain coral),

concluding that Sr/Ca fluctuations were due to a combination of growth entrapment

and what they termed “precipitation efficiency.” This term describes the mass fraction

of aragonite precipitated from the calcifying fluid from a given volume of fluid. This

is important as the partition coefficient for Sr is greater than Ca in aragonite and thus

the Sr/Ca ratio of the calcifying fluid decreases over time (Gaetani and Cohen, 2006).

. If however we consider the linear shell growth rate, it would be expected that

during a year, the fastest rate would occur within the growth band. Measurements of

Sr/Ca reach a maximum mid-way through the growth band in the outer shell prismatic

layer (e.g. PL248 1993-1995) initially suggesting that there is a growth control.

However, these variations can be explained by changes in the shell shape during the

year, which effectively change the lateral distance from the periostracum. As

discussed in Chapter 3, it is difficult to determine the exact position of the maximum

growth in the umbo, and therefore Sr/Ca changes result from lateral changes in the

sampling position. It is estimated that the distance from the measurement transect to
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the maximum growth axis could be >500 m (see Figure 3.4b, c). Transects ~750 m

apart showed changes in Sr/Ca of >45%, with changes in Sr/Ca during the growth

bands being ~30% suggesting that lateral changes can account for a significant

proportion of Sr/Ca variation.

Comparison of the concentration of Sr/Ca in the prismatic layer of the umbo

and shell outer layer however show that the latter is higher, e.g. in PL248 by

~0.4 mmol/mol. This nominal value is in reality higher due to offset between values

calculated by SIMS and LA-ICPMS. This therefore could suggest that the average

Sr/Ca is affected by shell growth rate. Comparison however, of the Sr/Ca in the outer

shell prismatic layer of 228 and 248, shows that the latter has the faster shell growth

rate shows a lower Sr/Ca.

Modelling of the 18O profile is consistent with significant changes in shell

growth rate through the year and in particular, that there are two growth seasons per

year. Such changes in shell growth rate are likely to be linked to changes in crystal

growth rate. No relationship between Sr/Ca fluctuations and the changes in shell

growth rate was found, indicating that Sr/Ca is independent of shell growth rate.

Thus, it appears that any shell growth rate effect is relatively minor, with

lateral variation accounting for changes during the growth band. There is no

significant ontogenetic effect in Sr/Ca. Further work is however, required in the umbo

to separate out the result of lateral changes from other effects, and determine the in

situ crystal growth rate, which was may not be directly attributed to shell growth rate.

f(shell architecture)

The shell architecture is not constant through the shell. In the outer shell prismatic

layer, the crystals close to the periostracum are interlocking crystals, aligned with
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growth direction whereas further away from the periostracum there is no clear

alignment (Figure 4.23). The organics in the SE image closest to the periostracum can

be clearly discerned whereas ~1000 m from the periostracum it is much harder.

The manner in which biominerals grow affects the uptake of the trace

elements as different faces of the crystals have different affinities for trace elements

(Reeder and Grams, 1987; Paquette and Reeder, 1995; Reeder et al., 2001). In non-

biogenic crystals (of speleothems), data presented by Finch et al., (2003b) clearly

infers a change of ~50% across a single aragonite crystal. A change in crystal habit

may therefore be reflected in the Sr/Ca values. Partitioning of trace elements within

biogenic crystals such as that found in A. islandica and non-biogenic crystals such as

that found in a speleothems may however differ. In other words, whether partitioning

in biogenic crystals could be significant enough to be the sole driving factor behind

Sr/Ca increases at the growth checks, which can be >100% is unclear. However, it

could explain why Carré et al. (2006) found for the same crystal growth rate higher

Sr/Ca in the curved sections, with increased nucleation with shorter crystals likely to

occur during these sections.

Rosenberg and Hughes (1991) measured the changes in S/Ca in Mytilus edulis

in the outer calcitic layer bivalve, and found that S/Ca values along the slow-growing

sections were 1.25 higher than along rapidly growing axes of low curvature. S/Ca

were interpreted as an index of matrix content, as S is primarily concentrated in

various acid mucopolysaccharides and amino acids within the shell (Rosenberg and

Hughes, 1991). Thus, such changes in organics could influence Sr/Ca partitioning,

with shorter crystals likely to provide greater affinity for Sr.



Chapter 8: The potential of high resolution palaeoclimate reconstruction from Arctica
islandica

307

f(vital effects)

Some researchers have cited metabolic efficiency as a control on Sr/Ca (e.g. Klein et

al., 1996a; Purton et al., 1999). Klein et al. (1996a) demonstrated that lower Sr/Ca at

lateral margins (which are more curved) in the calcitic section of the bivalve Mytilus

trossulus which were associated with changes in 13C, and concluded that lateral

variation resulted from lateral changes in metabolic activity. Results presented in this

thesis show that Sr/Ca lateral variation is not associated with 13C changes. While

some researchers (e.g. Mook and Vogel, 1968; Fritz and Poplawski, 1974; Buchardt

and Simonarson, 2003) concluded that 13C variation was the product of dissolved

inorganic carbon in the water column, 13C in A. islandica is, at least in part,

influenced by changes in metabolic activity. This can be seen clearly in Figure 6.9a

which shows a sharp change in 13C of >0.5 ‰ after a shell damage event. It is

difficult to envisage an abiogenic mechanism that could account for such an isotopic

shift, indicating that the damage triggered a long-term change in the metabolic rate of

the organism. Therefore, the lack of lateral change in 13C across the bands is likely to

indicate that EPF is well mixed, and lateral variation across the bands is not due to

heterogeneity within the EPF.

High Sr/Ca is found within the growth checks (with increases of

>0.5 mmol/mol) during the latter years of growth. They are however, generally

present when the growth rate is <2000 m/yr in the outer shell prismatic layer (see

Chapter 4). In the prismatic layer of the umbo, the picture is less clear, with Sr/Ca

peaks occurring at the growth checks of U228 during most of the shell. In U248

however, Sr/Ca peaks do not occur when the growth rate is >1500 m/yr. Epplé

(2004) also found high Sr/Ca peaks at the growth check in A. islandica, but Toland et

al. (2000) found a minimum in Sr/Ca at the annual growth checks. However, the latter
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only sampled the youngest part of the shell and never covered a period when the

growth rate was slow. This is further consistent with the hypothesis that high Sr/Ca

concentrations are associated with slow growth (which generally occurs in the latter

years).

As discussed in Chapter 3 and 4, three pathways are considered for Ca2+

transport through the calcifying mantle;

1) Passive non-selective intercellular pathway (direct exchange with

seawater).

2) Active (energy consuming) selective intracellular pathway involving Ca2+-

ATPase enzymes (Ca2+-pump) (Klein et al., 1996a; Gillikin et al., 2005a).

3) Calcium channels (Carré et al., 2006). Ca2+-ATPase enzymes may be an

important control for Sr/Ca at the growth checks.

Increased activity of enzyme Ca2+-ATPase increases the calcification rate. As Ca2+-

ATPase has a higher affinity for Ca2+, it results in a decrease in the proportion of Sr2+;

conversely, at lower calcification rates, the proportion of Sr2+ increases (Gillikin et

al., 2005a). However, Sr peaks at the growth check are typically only seen when the

growth rate is <~2000 m in the prismatic layer, indicating either that the Ca2+-

ATPase pathway is not a controlling factor, that the uptake pathway changes, or that

another mechanisms become more dominant during the lifetime of the bivalve.

Carré et al. (2006) showed that the ion fluxes through either the passive or the

active pathway were not sufficient for biomineralisation in a bivalve (with a daily

growth rate of 20 m/day). Therefore, they proposed the use of calcium channels for

the ion fluxes. A calcium channel is an aqueous pore facilitating Ca2+ diffusion (Carré

et al., 2006) and can support very high ionic fluxes (Sather and McCleskey, 2003).



Chapter 8: The potential of high resolution palaeoclimate reconstruction from Arctica
islandica

309

The gradient in Ca2+ caused by mineralisation drives the ion flux, and thus as

mineralisation rate increases, Sr2+ ions cross the pores more easily (Carré et al.,

2006). They suggested however that the model would not be applicable to “very

slow” growing specimens (“very slow” is not defined), as they may not involve Ca2+-

channels in ionic transport. Thus, the uptake channels could change during the

lifetime of A. islandica. However, if partitioning in the Ca2+ during growth were a

controlling factor, it would require that separate pathways were invoked for

biomineralisation in the umbo to the outer shell despite both being the same prismatic

layer, as the presence of high Sr/Ca relates to the slower growth rate, and not to a

specific annual band within the shell. 13C data indicate the EPF is relatively well

mixed prior to deposition in the outer shell prismatic layer, suggesting such pathways

cannot result in lateral changes. Whether differing pathways could occur for

deposition of the prismatic layer in the umbo compared to the outer shell requires

further research.

Preliminary research presented by Nägler et al. (2006) found that Sr/Ca and

44Ca/40Ca are highly correlated for the three years analysis 1956-1958 (r=0.92 for

1957) This provides more data to understand the controls on Sr behaviour, as it

suggests that controls (and hence uptake pathways) for Sr is similar to that which

control Ca fractionation.

The aragonitic M. arenaria and the calcitic M. mercenaria are both long-lived

bivalves and show a strong Sr/Ca peak within the growth check (Palacios et al., 1994;

Thorn et al., 1995). The former has a lifespan of <28 yr (MacDonald and Thomas,

1980) and <50 yr respectively thus suggesting that the longevity of the species may

play a role.
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Overall findings on Sr

A number of possible controls on Sr behaviour have been discussed, including how Sr

is hosted, changes in temperature and salinity, growth rate (both shell and crystal),

changes in shell architecture (in particular how it influences crystal propagation), and

vital effects. Changes in crystal nucleation and propagation as well as crystal growth

rate and vital effects could be significant controls on Sr/Ca. Wada and Fujinuki (1976)

found that the EPF in bivalves did not greatly differ from seawater suggesting Sr2+

discrimination occurred during shell crystallisation. High Sr/Ca at the growth checks

may relate to a biological effect associated with the slowing of the shell growth rate.

No relationship between temperature and Sr/Ca is found despite Sr being ideally

substituted, indicating that other controls are dominant.

8.2.2 Mg behaviour

XANES of Mg within A. islandica indicate that Mg is hosted in the shell by

organics and not aragonite. Mg/Ca counts by SIMS in the umbo are partly

compromised by superficial contamination and thus comparison of the compositional

data between the umbo and the outer shell layer (by LA-ICPMS) should be treated

with caution. In the outer shell prismatic layer, no evidence for contamination was

found with good replication of the pattern of Mg/Ca fluctuations, though the absolute

values decreased laterally across the band. In addition, preliminary research suggested

that there is also a change in Mg/Ca with depth, which could not be accounted for by

lateral variation with a change in depth of ~125 m (after repolishing) showing a

>40% change in Mg/Ca concentration.

In the outer shell prismatic layer, Mg/Ca increases within the annual growth

check, which is as expected, with increased organics found during the growth checks.
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This concurs with Takesue and van Geen (2004) who found 52% less Mg in the

aragonitic bivalve Protothaca staminea, when the organic fraction was removed. The

XANES profile from A. islandica is consistent with the dominant host for Mg being

organic material. This profile shows no discrepancy when compared with the organic

standard that would indicate the presence of a secondary phase, notably aragonite.

Therefore, it is inferred that Takesue and van Geen (2004)’s estimate of the organic

content hosting Mg is an underestimate.

However, the relationship of high Mg/Ca at the growth check is not

straightforward, with some growth checks not associated with high Mg/Ca. Mg/Ca

concentration is sometimes higher in the growth band than in the growth check. Epplé

(2004) reported a similar observation in A. islandica from the German Bight. It

suggests that the organics vary significantly within the growth bands or that, while

Mg is hosted by organics, there is no linear relationship between organic content and

Mg. In other words, Mg content is not a simple function of total organics within the

structure, but that vital effects may modify Mg uptake by the organics. Further work

is required to determine the controls on Mg, but it is clearly not a simple, quantitative

environmental proxy. Application of inorganic-based equilibrium models to

organically-hosted Mg in A. islandica is unlikely to provide a route for accurate

palaeoenvironmental reconstruction. Those attempts that have been applied (e.g.

Takesue and van Geen, 2004) are probably erroneous and demonstrate a weakness in

the largely empirical approaches to environmental reconstruction widely used. X-ray

absorption spectroscopy may find an important niche in “ground truthing”

environmental proxies in a manner similar to that applied here.
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8.2.3 Ba behaviour

Ba/Ca shows similar profiles in the prismatic layer of the umbo and outer shell layer,

with low average values (e.g. in the U228 <0.02 mmol/mol), and sporadic increases of

as much as 500%. There is good agreement between the timing of these events

between the umbo and outer shell layer in the prismatic layer of the same shell. The

magnitude is at higher Ba/Ca concentrations within error (i.e. Ba/Ca

>0.025 mmol/mol) despite the lateral offset (using data from 248). Ba/Ca low values

in the outer shell prismatic layer are lower, but low Ba/Ca counts in the umbo

(<0.1 mmol/mol) were affected by contamination, approximately one-third of counts

at the lower concentration. Comparison between the timing of Ba/Ca peaks in

different individuals (PL228 and PL248) show that these maxima are not

synchronous.

Research in inorganic aragonite has found Ba is more dependent on

temperature than Sr (e.g. Dietzel et al., 2004; Gaetani and Cohen, 2006). Little is

known about the mechanisms of Ba substitution in the shell and XAS was not

possible in the present study due to the low concentrations. Ba maybe ideally

substituted in carbonate, or maybe precipitated as secondary minerals such as barite

(BaSO4). Ba may also be trapped in crystal defects or adsorbed on crystal surfaces.

Filter feeding bivalves, such A. islandica, may uptake Ba directly (through

dissolved Ba in the seawater) or by the ingestion of Ba rich particles associated with

diatom blooms, as phytoplankton or barite particulates (Stecher et al., 1996; Putten et

al., 2000; Toland et al., 2000; Torres et al., 2001; Lazareth et al., 2003; Gillikin et al.,

2006). Primary productivity and barite formation are closely associated (e.g. Dehairs

et al., 1987). The pattern of high sporadic Ba/Ca maxima from low Ba/Ca

concentrations has been noted in bivalves by numerous researchers (e.g. Stecher et al.,



Chapter 8: The potential of high resolution palaeoclimate reconstruction from Arctica
islandica

313

1996; Putten et al., 2000; Lazareth et al., 2003; Gillikin et al., 2006) as well as within

corals (Sinclair, 2005). These similarities hint at a common source.

Laboratory and field tests by Gillikin et al. (2006) found a linear correlation

with [Ba/Ca]water and background [Ba/Ca]shell, but this differed between the laboratory

and field experiments. Gillikin et al. (2006) suggested the difference in the equations

related to inaccuracies in the field measurements or stress induced by handling in the

laboratory experiments. Differences in Ba/Ca between the two experiments may

however also relate to temperature differences, with inorganic experiments (Dietzel et

al., 2004; Gaetani and Cohen, 2006) as well as [Ba/Ca] in corals showing a

temperature relationship (Allison and Finch, 2007). Comparison of [Ba/Ca]shell within

A. islandica to that reported by Gillikin et al. (2006) for Mytilus edulis (a calcite

bivalve) show similar concentrations. However, it is unclear whether a lateral

variation also occurs at lower concentrations (measurements were within error).

Analysis with an instrument with a higher precision at lower concentrations would be

required to determine that the background [Ba/Ca]shell was unaffected by lateral

changes in concentration.

The cause of the sporadic increases in Ba/Ca in A. islandica remains unclear

with the timing of these increases differing between years. The timing also differed

between the two shells. Replication of the peaks in the prismatic layer of the umbo

and shell outer layer however suggests that the increase in Ba/Ca occurs is mediated

by the EPF, and is not the result of local incorporation of Ba-rich detritus.

Comparison of Ba/Ca fluctuations to the 18O and 13C from PL228 (with the split

aliquots) also fails to reveal any relationship (Figure 8.3). Gillikin et al. (2006)

tentatively concluded that the Ba/Ca increases relate to the ingestion of barite crystals.
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Further research on such a hypothesis is required to measure in situ Ba/Ca

concentrations and possible sources.

Ba/Ca data presented in this thesis indicate a slight decline in the Ba/Ca peaks

during the latter years, but the numbers of peaks are too few to be fully conclusive.

However, Ba/Ca fluctuations in other bivalves (e.g. Putten et al., 2000; Lazerth et al.,

2003) as well as in other A. islandica specimens (e.g. Epplé, 2004) all showed an

ontogenetic decrease.

Thus, in summary, Ba/Ca sporadic fluctuations are recorded within different

regions of the prismatic layers are the same, but the timing between the two

individuals measured is different. Developments in instrumentation, notably the

opening of the DIAMOND facility at the Rutherford Appleton Laboratories in

Oxfordshire, may provide more brilliant X-ray sources that will allow the

coordination of Ba (and other trace elements currently below detection limits) to be

explored. Further research is required to determine the controls on Ba/Ca.
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Figure 8.3: Comparison of the trace element fluctuations measured during solution-

ICPMS to 18O and 13C fluctuations from outer shell prismatic layer of shell 228.

Note the horizontal errors bars represent the area milled. The red lines mark the

annual termination bands.
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8.3 Reconstruction using stable isotopes

The use of oxygen isotopes to reconstruct temperature fluctuations is widely used

within sclerochronology. However, concerns about the impacts of micromilling on the

oxygen isotopes have been raised by Aharon (1991) and Gill et al. (1995). XRD of A.

islandica and cod otoliths show that aragonite converts to calcite during milling and

drilling. 18O measurements of aliquots taken from cod otoliths reared at a constant

temperature however show that any changes in 18O could be accounted for by

variation in salinity. Thus, within the precision of the mass spectrometer, any impacts

of sample modification during micromilling on 18O values are negligible.

Aliquots for 13C and 18O were extracted using a fixed platform drill and a

micromill. The former provides discrete sampling providing some indication of

fluctuations in 18O and 13C, although with hiatuses in the data. The micromill is

much superior, providing a more continuous higher resolution sampling.

Oxygen isotopes are dependent on both temperature and salinity, with the

latter often assumed constant. 18O profiles within the outer shell prismatic layer of

shell 248 (PL248) were compared to SST measurements from nearby Millport Marine

station. Data from PL248 show that 18O fluctuates between 0.6 and 2.6 ‰; which

assuming a constant salinity suggests growth temperatures of ~+5 to +13 ºC using the

equation of Grossman and Ku (1986) Measured SST at Millport Marine station for the

same period were between +6.3 and +15.6 ˚C. The maximum fluctuation of the

salinity during the year is 1.2 (determined from Irvine bay measurements of salinity

profiles at 7 m in a water depth of >30 m). The salinity variations at Millport give rise

to uncertainties in the estimated from 18O of ~2.1 ˚C, i.e. if we assume a constant

salinity, this gives an error of ±1.1 °C. Assuming that the lowest salinity occurs
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during the coldest months, the lowest reconstructed temperature would be within error

(of 1.2 °C the standard deviation (2) found between the snapshot Irvine Bay data and

that of Millport). Conversely the maximum temperature would be reduced, and

therefore not show the extremes shown in the SST measurements at Millport. This

may reflect the fact that the sea surface is particularly susceptible to diurnal warming

during the summer (with seawater temperatures typically >0.8 ˚C cooler in Irvine Bay

in situ measurements taken at 7 m). It could also, as the constructed model suggests,

result from a growth slowdown or shutdown during the summer months.

Discrepancies could also result from differences in local water circulation of Millport

vs. Irvine Bay, inaccuracies with the measurements at Millport station due to the use

of the “bucket method,” or inaccuracies of the equation of Grossman and Ku (1986).

To study further the relative importance of temperature, salinity and growth

rate on 18O, a simple model was produced. The effect growth rate has on the 18O

profile is particularly significant, as it shows that changes in temporal resolution of

sampling significantly impact the 18O data. Modelling shows that the relative

importance of changes in the growth rate on temporal resolution was 0.8 compared to

0.7 for the seawater temperature and 0.1 for salinity (the other two modelled

components). Thus indicating that changes in temporal resolution significantly impact

on the 18O profile. Such findings concur with those of Goodwin et al. (2003), who

modelled 18O fluctuations in the bivalve Chione Cortezi, and concluded that isotopic

amplitudes and averages may reflect decreases in growth rate rather than direct

environmental fluctuations (i.e. temperature and salinity).

While this has lead to “adaptive sampling” for ontogenetic changes (e.g.

Schöne et al., 2004c), the model highlights that intra-annual variations in the growth

season are also important.
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The model suggests that salinity has a relatively small impact and therefore

assuming a constant value, even within shallow water sites is valid. This fits well with

the instrumental measurements, which shows that fluctuations in salinity from Irvine

Bay are 1.2 with a mean of 33 (1990-1996) equating to a maximum temperature error

of ~2.1 ˚C using the equation of Ganssen (unpublished, cited in Witbaard et al., 1994)

to reconstruct 18Oseawater with the equation of Grossman and Ku (1986) for the

temperature reconstruction.

Further development of the 18O model would allow a better understanding of

how changes in temporal resolution of sampling of trace elements would impact on

the concentrations measured within the prismatic layer of both the outer shell and the

umbo. This may provide further insights and discussions into the controls of trace

elements. Initial comparison of the modelled changes in shell growth rate, failed to

show any significant correlation, though further, more detailed analyses may provide

some additional insights.

Research by Ghosh et al. (2006) has shown that the temperature of formation

of calcium carbonate may be determined independently of the salinity, by measuring

the state of ordering of 13C and 18O i.e. bound together vs. separated into different

CO3
2- units. In addition, by comparing these results with bulk 18O measurements, a

calculation of the in situ 18Owater, rather than an approximation from salinity

measurements, can be made. This could be especially helpful in intertidal zones where

there is significant salinity variation. The precision however of this technique at

present is ca. ±2 °C (1) (Ghosh et al., 2006) compared to ±1.2 °C (1) using a bulk

18O determination and a constant salinity used in A. islandica (Weidman et al.,

1994). The technique of Ghosh et al. (2006) may however become more common

with improved precision and development.
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Another technique being developed is the use of SIMS to measure 18O

fluctuations on microvolumes within the shell. It has recently been successfully

applied to corals using the Cameca-1270 series instruments with spot sizes of ~30 m

diameter at precisions of 0.2 ‰ (Allison et al., unpublished; Rollion-Bard et al.,

2007) Further development of SIMS instrument will allow microscale fluctuations to

be examined, vastly increasing the temporal resolution.

Analysis of 13C shows a decline in ontogeny in all three shells sampled (405,

228 and 248) (Figure 6.7, 6.8, and 6.9a respectively). This was contrary to findings by

Schöne et al. (2005a) whom found no ontogenetic trend and Witbaard et al. (1994)

who found an increase. 13C measurements within A. islandica from Irvine Bay show

a maximum 13C of 3 ‰ (PL405), suggesting that 13Cshell could be depleted relative

to 13CDIC in the water. During and after damage to the outer shell prismatic layer in

shell 248 a sharp decrease of >0.5 ‰ was seen. This observation is a strong indication

that metabolic rate has a key influence. McConnaughey et al. (1997) proposed that

metabolic carbon can account for ~10% of the 13C signal in molluscs, and findings

from Owen et al. (2002); Lorrain et al. (2004); and Gillikin et al. (2005b) supported

this conclusion. However, the results presented here suggest that in times of stress,

this percentage can be considerably higher, with 13C in PL248 showing a decrease of

>50% after damage to the shell occurred. Thus, indicating that >50% of carbon is

metabolic. This observation, combined with an ontogenetic change in these faster

growing specimens, suggests that metabolic activity plays an important role.

However, it does not explain why specimens presented in this thesis showed the

opposite ontogenetic trend to that reported by Witbaard et al. (1994).
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8.4 Using fluctuations in radiocarbon

A. islandica has the potential to reconstruct recorded fluctuations in

radiocarbon concentrations. The pilot project shows elevated concentrations of 14C

occurred prior to the bomb-14C pulse that is attributed to discharges from the

Sellafield Nuclear and Reprocessing plant. 14C concentrations remain more elevated

than in other regions, such as the North Sea, which is ascribed to renewed discharge

of 14C from reprocessing at the Sellafield plant after 1985. Ideally, a comparison of

sites, close to Sellafield and further from the effects of Sellafield (but with similar

water depth) would allow greater deconvolution of radiocarbon fluxes attributable to

Sellafield discharge and from testing of the thermonuclear weapons. The latter would

also provide data that may be used to calibrate marine radiocarbon dates post-bomb.

The present study shows that A. islandica is a suitable archive to record 14C in the

marine environment. In addition, the use of microcoring should not be used, but rather

continuous micromilling (as used in the stable isotope work) is more appropriate.
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Summary and future directions

A key aim of this thesis is to understand the potential of Arctica islandica for climate

reconstruction, in order that findings from this study on live-collected specimens can

be applied to dead collected specimens in future studies. The study of trace elements

shows that the uptake is complex and cannot, at present, be readily used for

quantitative palaeoenvironmental reconstruction. Findings on the behaviour of trace

elements within Arctica islandica provide insights into processes that may occur not

only in other bivalves but also for other aragonitic systems.

The trace elements Sr, Mg and Ba showed heterogeneity within the prismatic

layer, with the umbo showing increases in concentration of Sr and Ba away from the

maximum growth line (Mg in the umbo was affected by contamination), whereas in

the outer shell layer an increase of Sr, Mg and Ba was found.

Sr EXAFS shows that it is substituted for Ca in the aragonite skeleton,

indicating that thermodynamic equations and inorganic temperature experiments such

as that of Kinsman and Holland (1969) are applicable. Temperature is however not a

dominant control in this system, but rather other factors dominant. This may include

crystal nucleation and propagation, crystal growth rate (but not shell growth rate) and

vital effects. Analysis of changes and impacts on crystal growth could be investigated

using critical point drying, which would allow the structure to maintain integrity once

etched. This would allow changes in the organic concentration and composition and

possible impacts on the crystal shape and propagation also to be understood better, as

well as the possibility to accurately measure crystal growth. Particularly when SE

images are combined with in situ quantitative analysis (either LA-ICPMS or SIMS), it

will allow the controls on Sr uptake to be more fully understood.



Summary and future directions

322

Of the other trace element systems, XANES analysis indicates that Mg is

hosted by organics and inorganic-based thermodynamics are inapplicable to this

system. Quantitative analysis of Mg in the umbo by SIMS was complicated by

superficial contamination, but the outer shell prismatic layer shows increases spatially

associated with increased concentration of organic components at the growth checks

consistent with XANES data. However, the relationship between Mg content and

organics does not appear to be linear but rather is consistent with vital effects playing

a dominant role in controlling Mg uptake into organics. The outlook for Mg as an

environmental proxy for temperature is unpromising.

Ba/Ca variation shows sporadic increases in both shells and in both prismatic

shell regions- the umbo and the outer shell layer and, although the timings between

shells are not identical, those within a single shell are. The cause of sporadic increases

in Ba/Ca is unknown but background Ba/Ca may reflect Ba/Ca concentrations within

the seawater. Further research with an instrument capable of higher precision Ba/Ca

measurements is required to determine if lateral variation occurs at low

concentrations.

The oxygen isotope data show the greatest potential of all the proxies in

Arctica islandica in the present thesis. Concerns about the effect milling and drilling

may have on 18O is unfounded and any changes in isotopic ratio caused by sampling

are within analytical precision.

18O results from Arctica islandica show good agreement with the range of

SST data (within 2.1 ºC) from Millport marine station, the correlation of individual

years with SST is less clear. As modelling highlights, changes in temporal resolution

of the sampling, due to changes in the shell growth can significantly affect the 18O

profile. In particular, changes in growth intra-annually is important, and may be
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important in comparing shells where there has been a significant change in the growth

season or in examining the impact of vital effects such as growth rate. The 13C is

strongly influenced by metabolic carbon.

Results from the radiocarbon pilot study show that Arctica islandica is a

suitable archive of changes in radiocarbon and, in principle, can be used to distinguish

discharges of radiocarbon from nuclear reprocessing (in this case the Sellafield plant)

and 14C from the testing of thermonuclear weapons. Sampling however should be

done using a micromill.

In summary, the future of palaeoenvironmental reconstruction using trace

elements fluctuations recorded within Arctica islandica is unclear. Trace element

incorporation has been shown to be complex, and the study of multiple shells from the

same location may yet yield some data on environmental controls. Arctica islandica is

not however alone in demonstrating complex trace element uptake mechanisms in

which vital effects and growth rate play a role. Most aragonitic proxies (e.g. corals,

speleothems) have initially appeared simple however, detailed microanalytical studies

have in every case demonstrated greater complexity e.g. in speleothems, Holmgren et

al. (2001) compared to Finch et al. (2003b); in corals, Tudhope et al. (2001)

compared to Allison et al. (2005). Nonetheless there are a number of temperature

reconstructions from corals using Sr/Ca, which have been published, despite the vital

controls (e.g. Beck et al., 1992; Alibert and McCulloch, 1997; Stephans et al., 2004).

Using the average variation of trace element uptake in multiple shells, a

technique similar to that used to study coral colonies (Stephans et al., 2004) and trees

(see Stokes and Smiley, 1996) may help to extract climate data. However, the costs of

such analyses may prohibit this, and insights into environmental controls may be

better achieved by examining changes in the width of the growth bands, which can
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show growth synchrony (e.g. Thompson et al., 1980a; Marchitto et al., 2000; Schöne

et al., 2003).

Ba/Ca peaks are extremely interesting as they are within error for the outer

shell prismatic layer and umbo (comparing transects closest to the maximum growth

axis). They may provide environmental information as the presence of Ba/Ca peaks in

other taxon suggests that there may be a common driving mechanism (Stecher et al.,

1996; Putten et al., 2000; Lazareth et al., 2003; Sinclair, 2005; Gillikin et al., 2006).

Low Ba/Ca also has the potential to reconstruct Ba/Ca concentrations within the water

(e.g. Gillikin et al., 2006). Studies on a larger number of Arctica islandica specimens

and perhaps other bivalves from the same location will help to understand better the

controls on Ba/Ca.

18O measurements show that reconstructed temperatures are within a 2.1 ºC

range of SST measurements from Millport. Continuing improvements in

understanding the growth season, temporal resolution of sampling, including in situ

analysis with the ion probe will provide improvements in temporal resolution.

13C measurements show evidence of stress events, which could be used to

examine the timing of particular events, such anoxic events (which could be

combined with visual analysis to examine shell damage). This may be of particular

interest in areas where mass extinction of Arctica islandica (or other bivalves) has

occurred as it may help to interpret the cause e.g. was it a long-term stress or did it

occur through a single event. In addition, further research into the metabolic controls

may also help to yield information on the relative uptake of metabolic vs. seawater

DIC. The deconvolution of these signals may yield further environmental data, with

13C providing important information about DIC within the water column, which is
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influenced by variations in primary productivity, upwelling and mixing (Killingley

and Berger, 1979; McConnaughey et al., 1997; Purton and Brasier, 1997).
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