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Abstract

This paper discusses how to identify individual-specific causal effects of an
ordered discrete endogenous variable. The counterfactual heterogeneous causal
information is recovered by identifying the partial differences of a structural
relation. The proposed refutable nonparametric local restrictions exploit the
fact that the pattern of endogeneity may vary across the level of the unobserved
variable. The restrictions adopted in this paper impose a sense of order to an
unordered binary endogeneous variable. This allows for a unified structural
approach to studying various treatment effects when self-selection on unob-
servables is present. The usefulness of the identification results is illustrated
using the data on the Vietnam-era veterans. The empirical findings reveal that
when other observable characteristics are identical, military service had posi-
tive impacts for individuals with low (unobservable) earnings potential, while
it had negative impacts for those with high earnings potential. This hetero-
geneity would not be detected by average effects which would underestimate
the actual effects because different signs would be cancelled out. This partial
identification result can be used to test homogeneity in response. When homo-
geneity is rejected, many parameters based on averages may deliver misleading
information.

1 Introduction

Policies provide individuals with incentives to change their choices. Different peo-
ple might respond to a policy change differently. If there exists heterogeneity in
responses, many econometric methods based on "averages" may fail to provide cor-
rect information.1 Policy evaluation literature typically uses the potential outcomes
approach in identifying treatment responses. This paper demonstrates how additively
nonseparable structural functions are used in recovering heterogeneous causal effect

1See Angrist (2004) for the potential outcomes approach, and Hahn and Ridder (2011) for the
structural approach.
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and provides a model that identifies the signs of individual treatment effects.2 The
proposed model does not require differentiability of the structural functions nor con-
tinuity of observed vairiables. The model does not impose weak separability which
would render it impossible to recover individuals’ heterogeneous treatment responses.

1.1 Causality, Heterogeneity, and Nonseparable Structural

Relations

Suppose we are interested in the impact of a variable (Y ) chosen by individuals
on their outcome (W ) of interest, and suppose the economic process of W can be
described by the following relation3

W = h(Y,X, U), (1)

whereX is a vector of characteristics that are exogenously given to individuals such as
age, gender, and race, and U is unobserved individual characteristics.4 Even among
the individuals with the same observed characterisics we observe a distribution of
the outcome due to the unobserved elements, U. Causal effects of a variable indicate
the effects of the variable only, separated from other possible influences. When the
outcome is determined by (1), the causal effects of changing the value of Y from ya

to yb on W other things being equal would be measured by the partial difference of
the structural function, h

∆(ya, yb, x, u) ≡ h(ya, x, u)− h(yb, x, u)

evaluated atX = x and U = u. Individuals with different values ofX and U may have
different values of ∆(ya, yb, x, u), thus, heterogeneity can constitute of both observed
and unobserved components.

2Under the potential outcomes framework, individuals’ treatment effects - difference between the
outcomes with and without a treatment - are impossible to measure because only either of them is
observed, not both.

3The structural relation may be derived from some optimization processes such as demand/supply
functions. We are agnostic about this. If there is not a well-defined economic theory behind them,
then the structural relations can be simply understood as how the outcome and the choice are
determined by other relevant (both observable and unobservable) variables. The structural relation
delivers the information on "contingent" plans of choice or outcome when different values of X and
U are given.

4In contrast with (1), switching regression models with a selection equation of the following form
have been widely used :

W0 = h0(0, X, U0)

W1 = h1(1, X, U1) (2)

The counterfactual outcomes are determined by distinct functional relations, h0 and h1, and the
unobserved heterogeneity for the two counterfactual events, U0 and U1, are allowed to be different.
The partial difference of h0 or h1would not be interpretaed as causal effects.
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When Y is binary, the ceteris paribus effect of Y can be expressed by

∆(1, 0, x, u) = h(1, x, u)− h(0, x, u).

Adopting the notation of the potential outcomes framework, letWdi denote the hypo-
thetical outcome with Y = d for the individual i whose observed and unobserved char-
acteristics are x and u. Suppose there is a binary choice decision and let d ∈ {0, 1}.
If we can assume that W1i and W0i are generated by the structural relation then we
can write

W1i −W0i = h(1, x, u)− h(0, x, u).

This way we map the potential outcomes framework into the structural approach5.
This is the key relation that justifies the interpretation of h(1, x, u) − h(0, x, u) as
individual-specific treatment response. In contrast with the potential outcomes ap-
proach, this paper focuses on identification of h(1, x, u)− h(0, x, u), by assuming the
existence of economic processes and by imposing restrictions on such decision mech-
anisms.
The conditional distribution of the outcome, FW |Y X , is determined by the inter-

action, indicated by the following Hurwicz Relation (HR), between the distribution
of the unobserved elements, FU |Y X and the structural relation, h(·, ·, ·)

FW |Y X(w|y, x) = Pr[W ≤ w|Y = y,X = x]

= Pr[h(Y,X, U) ≤ w|Y = y,X = x] (HR)

︸ ︷︷ ︸
”Data”

=

∫

{u:h(y,x,u)≤w}

dFU |Y X(u|y, x)

︸ ︷︷ ︸
Hurwicz Structure

The two components, h(·, ·, ·) and FU |Y X , are called the Hurwicz (1950) structure.
The identification problem in this paper is to recover ∆(ya, yb, x, u) or ∆(1, 0, x, u) by
imposing restrictions either on the Hurwicz (1950) structure, {h(·, ·, ·), FU |Y X} or on
the observed distribution, FW |Y X(w|y, x), (or Data). A novel restriction is imposed
on the mode of the interaction between h and FU |Y X . It exploits the fact that the
pattern of endogeneity may vary across the level of the unobserved variable. This
model would be particularly informative when the signs of individual effects vary
across the population, in which case average effects would underestimate the true
effects as different signs will be canceled out.

5By the structural approach we mean the sort of analysis in classical simultaneous equations
systems model. This should be distinguished from "structural estimation" where the underlying
optimization processes such as preferences are fully specified. Rather, the structural approach
we are considering simply assumes the existence of decision processes which can be expressed as
relationships between variables. Further specification of the decision processes is not required.
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1.2 Related Studies and Contributions

Since Roehrig (1988)’s recognition of the importance of nonparametric identification,
there have been many studies that aim to clarify what can be obtained from data
without parametric restrictions (see Matzkin (2007) for a survey on nonparametric
identification and the references therein). When parametric assumptions are avoided,
point identification is often not possible6 with a discrete endogenous variable. In such
a case one could aim to define a set in which the parameter of interest can be located.
This partial identification idea, which was pioneered by C. Manski (see Manski (2003)
for a survey of earlier results), has been actively used in many different setups and
since it now constitutes a vast literature we only focus on policy evaluation literature.
Many authors7 emphasize the existence of heterogeneity in individual responses

in practice and the importance of the information regarding individual-specific, pos-
sibly heterogeneous causal effects of a binary endogenous variable was recognized
earlier. Many interesting parameters are functionals of the distribution of individual
treatment effects as Heckman, Smith, and Clements (1997) noted8.
Certain information regarding heterogeneity can be recovered by using quantiles.

One particular object that has been the focus of research is the quantile treatment
effect (QTE) defined by Lehman (1974) and Doksum (1974)9. The QTE can be
found from the marginal distributions in principle. To control for possible slection
issues, Abadie, Angrist, and Imbens (2002) study the QTE under the LATE-type as-
sumptions using a linear quantile regression model, Firpo (2007) under the matching
assumption, and Frandsen, Frolich and Melly (2012) under the regression disconti-
nuity design. Chernozhukov and Hansen (2005)’s moment condition based on their
IV-QR model provides a way to estimate QTE controlling for selection or endogene-
ity problem. However, QTE is not justified to use for individual-specific treatment
effects.
One approach to recover individual-specific causal effects is to recover hetero-

geneity in treatment effects by identifying the distribution of W1 − W0 directly
10.

6Under the "complete" system of equations as Roehrig (1988) and Matzkin (2008), identification
analysis relies on differentiability and invertibility of the structural functions. However, differentia-
bility and invertibility fail to hold with discrete endogenous variables. Another well known example
is discussed by Heckman (1990) using the selection model - without parametric assumptions point
identification is achieved by the identification at infinity argument, which may not hold in practice.

7See, for example, Heckman (2001).
8When the treatment effects are homogeneous the problem is trivial and the distribution of the

treatment effects is degenerate. See Firpo and Ridder (2008) for more discussion.
9By estimating quantile treatment effects (QTE) using the Connecticut experimental data Bitler,

Gelbach, and Hoynes (2006) found that welfare reforms in the ninties had heterogeneous effects on
individuals as predicted by labour supply theory. They conclude that "welfare reform’s effects are
likely both more varied and more extensive". Average effects may miss much information and can
be misleading if the signs of individual treatment effects are varying across people. However, when
experimental data are not available, QTE does not have causal interpretation on individuals because
individuals’ rankings in the two marginal distributions of the potential outcomes may change.
10The quantiles of treatment effects recovered from the distribution of W1i−W0i are examples of
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Heckman, Smith and Clements (1997) use the Hoeffding-Frechet bounds, and Fan
and Park (2011) and Firpo and Ridder (2008) used Makarov bounds to derive in-
formation on the distribution of the treatment effects from the "known" marginal
distributions of the potential outcomes.
Alternative to these potential outcomes setups, one could use structural ap-

proaches. By adopting a triangular structural setup, Chesher (2003,2007) study
identification of ∆(ya, yb, x, u) when Y is continuous, by the quantile-based control
function approach (QCFA, hereafter). Chesher (2005) showed how the QCFA pro-
posed by Chesher (2003) can be used to find the intervals that the values of the
structural function lie in when the endogenous variable is ordered discrete with more
than three points in the support. Jun, Pinkse, and Xu (2010) report tighter bounds
when a different rank condition from Chesher’s (2005) is used, while the same restric-
tions on the structure as in Chesher (2005) are adopted. Jun, Pinkse, and Xu (2010)
does not have identifying power for a binary endogenous variable if the IV is binary.
Vytalcil and Yildiz (2007) use a triangular system and report a point identification
result of the average treatment effect of a dummy endogenous variable under weak
separability and an exclusion restriction. Their results rely on certian characteristics
of variation in exogenous variables as well as exclusion restrictions to achieve point
identification. Vytalcil and Yildiz (2007) does not guarantee identification of par-
tial difference. They focus on identificaiton of the average effect, not the structural
function. Manski and Pepper (2000) and Shaikh and Vytlacil (2011) have partial
identification results on average effects.
This paper contributes to the nonparametric identification literature by providing

new identification results on a non-additive structural function when an endogenous
variable is discrete/binary by using a control function approach without relying on
continuity of exogenous variables. Use of nonseparable relation is not just a gener-
alization.11 One of the key implications of additively nonseparable functional form
is that partial differences are themselves stochastic objects that have distributions12.

D∆− treatment effects, while the quantile treatment effects (QTE) are examples of ∆D−treatment
effects discussed in Manski (1997). Neither of them is implied by the other, and they deliver different
information regarding distributional consequences of any policy. As Firpo and Ridder (2008) nicely
discussed, ∆D−treatment effects, such as QTE can deal with the issues such as the impact of a
policy on the society (population) in general, while D∆−treatment effects can be used to address
issues such as policy impacts on "individuals".
11If there exist different responses among the observationally identical agents, and if there exists

endogeneity, then nonseparable structural relation should be used. In this case conditional moment
conditions do not have identifying power. See Hahn and Ridder (2011).
12If the structural function is linear, that is, W = a+ bY + cX1+U, then the partial derivative of

this linear function with respect to Y is b. Thus, assuming a linear structural relation corresponds
to assuming "homogenous" responses. If an additively separable structural function, for example,
W = f(Y,X1) + U, allows for heterogeneity in responses, but once conditioning on the observables,
there are no differences among the people with different unobserved characteristics as the ceteris

paribus effect measured by the partial derivative,
∂f(y, x)

∂y
, is determined by observed characteristics

5



Thus, heterogeneity in individual causal effects can be found by identifying partial dif-
ferences of a non-additive structural function. Nonetheless, individual-specific causal
effects have not been discussed so far.
On the one hand, in the structural approach many studies dealing with endogene-

ity focus on identification of the structural function, rather than its partial differences,
but identification of partial differences is not necessarily guaranteed from the knowl-
edge of identification of structural function when it is non-additive. Existing identifi-
cation results of a nonadditive structural function are not applicable to identification
of the partial difference of a nonadditive function with respect to a binary endoge-
neous variable. Single equation IV models as in Chernozhukov and Hansen (2005)
and Chesher (2010) do not guarantee identification of partial differences. Imbens and
Newey (2009)’s control function approach is not applicable to discrete endogenous
variables. Chesher (2005) reports identification results of partial differences with re-
spect to an ordered discrete endogenous variable, but it is not applicable to a binary
endogenous vairiable. Jun, Pinkse, and Xu (2010) is not applicable if the IV is binary.
On the other hand, individual treatment effects are not recovered from the poten-

tial outcomes approach since both counterfactual outcomes are never observed. In-
stead, usually average effects are the focus of interest. Several papers (see Imbens and
Rubin (1997), Abadie (2002), and more recently, Chernozhukov, Fernandez-Val, and
Melly (2010), Kitagawa (2009), for example) focus on identification of the marginal
distributions of the counterfactuals whose information may be useful in recovering
QTE, but the individual treatment effect cannot be recovered from the information
on the marginal distributions of the potential outcomes.
Another distinct feature of the proposed model is that the identifying power does

not come from restrictions on data such as continuity, rich support in exogenous
variation, large support conditions or certain rank conditions. Such results therefore
may have limited applicability since many microeconomic variables are discrete or
show limited variation in the support. In this paper nonparametric shape restrictions
on the structure are imposed, rather than relying on properties of observed variables.
In contrast with other studies, the new resuls in this paper can be applied to a discrete,
including binary, endogenous variable when the IV is binary or when the IV is weak.
The proposed model does not require differentiability of the structural function and
thus, can be applied to discrete outcomes. The proposed weak rank condition can
be applied to examples such as regression discontinuity designs, a case with a binary
endogenous variable or weak IV or a binary IV. We also present refutable implications
of the model which can be used to investigate whether some of the restrictions are
satisfied or not.

only.
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1.3 Organization of the Paper

The remaining part is organized as follows. Section 2 introduces the model for "or-
dered" discrete endogenous variables and contains the main identification results.
Section 3 discusses "unordered" binary endogenous variable as a different case of dis-
crete endogenous variable. Section 4 discusses the restrictions imposed in the model
and other related studies in more detail. Section 5 illustrates the usefulness of the
identification results by examining the effects of the Vietnam-era veteran status on
the civilian earnings using a binary IV. Section 6 concludes.

2 Local Dependence and ResponseMatch (LDRM)

model - MLDRM

2.1 Restrictions of the Model MLDRM

In this section a set of restrictions is introduced that interval identifies the value of
the structural function evaluated at a certain point in the presence of an endogenous
discrete variable. The model,MLDRM , is defined as the set of all the structures that
satisfy the restrictions13.

Restriction QCFA14 : Scalar Unobservables Index (SIU)/Monotonicity/Exclusion

W = h(Y,X, U),

Y = g(Z,X, V ),

with g(z, x, v) = ym, Pm−1(z, x) < v ≤ Pm(z, x),

m ∈ {1, 2, ...,M − 1},

the function h is weakly increasing15 with respect to variation in scalar U. The con-
ditional distribution of Y given X = x and Z = z is discrete with points of support
y1 < y2 < ... < yM , invariant with respect to x and z, with positive probability

13Koopmans and Reiersol’s (1950) definition of a model is adopted as a set of structures satisfying
the restrictions imposed.
14Triangularity enables us to avoid the issue of coherency that may be caused due to discrete

endogenous variables when the outcome is discrete.
15Both h and g are restricted to be monotonic. This monotonicity restriction is one of the key

restrictions in the QCFA identification strategy. This enables us to use the equivariance property of
quantiles and g evaluated at Z = z, X = x and V = τV , g(z, x, τV ) is identified by QY |Z(τV |z, x).
In many applications this can be justified. See Imbens and Newey (2009) for examples that justify
monotonicity.
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masses {pm(z, x)}
M
m=1.Cumulative probabilities {P

m(z, x)}Mm=1 are defined as

Pm(z, x) ≡

m∑

l=0

pl(z, x) = FY |ZX(y
m|z, x), m ∈ {1, 2, ...,M},

p0(z, x) = P 0(z, x) = 0, and PM(z, x) = 1.

The scalar unobserved variables U and V are jointly continuously distributed and
their marginal distributions are normalized uniformly distributed on (0, 1).

If g is weakly increasing in v, then h needs to be weakly increasing in u and if g
is weakly decreasing, h needs to be be weakly decreasing as well. The monotonicity
restriction on g is reflected in the threshold crossing structure. As g is assumed to
be weakly increasing, h is assumed to be weakly increasing in Restriction QCFA.
Because a binary variable is often unordered, Restriction QCFA imposes a sense
of order. Whether to assume that h is weakly increasing or weakly decreasing is
dependent on how to define the binary variable16.
From here on other exogenous variables, X, are ignored. X can be added as

conditioning variables in any steps of discussion without changing the results. The
variable W is a discrete, continuous, or mixed discrete continuous random variable
and all the results apply regardless of whether W is continuous or not. The model
admits multiple factors of unobserved heterogeneity as long as they affect the outcome
though a scalar index.17

Restriction CQ-I (Conditional Quantile Invariance) : QU |V Z(τU |v, z) is
invariant with z ∈ zm ≡ {z

′
m, z

′′
m} for v ∈ V for u ∈ U .

Restriction CQ-I is a weaker form of exclusion restriction imposed on Z. What is
required for identificaion is quantile independence locally at certain points.

Restriction RC (Rank Condition) There exist instrumental values of Z,
{z′m, z

′′
m}, such that

16For example, in the example of Vietnam-era verans, Y is 1 if joining in the army and it is
assumed that individuals with higher V joins the army, the annual labour earnings eqaution, h,
needs to be weakly increasing in U.
17However, this scalar unobserved index assumption does not admit measurement error models

or duration outcomes. For structures with vector unobservables that cannot be represented by a
scalar unobservable, see Chesher (2009), where examples of such case are illustrated. The vector of
unobservables is called "excess heterogeneity" in Chesher (2009) - "excess" in the sense that we allow
for more unobservable variables than the number of endogenous variables. The distinction of the
number of endogenous variables from the number of unobservable variables stems from the analysis
of classical simultaneous equations models of the Cowles Commission, and more recent studies
on nonparametric identification of simultaneous equations models in Roehrig (1988), and Matzkin
(2008), for example, where the number of unobservables is equal to the number of endogenous
variables.
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Pm(z′m) ≤ τV ≤ P
m(z′′m)

for m ∈ {1, 2, ...,M − 1}.

Define V ≡ (VL, VU ], where VL = minz∈zm P
m−1(z), and VU = maxz∈zm P

m+1(z).18

Define alsoU ≡ (UL, UU ], where UL = minτV ∈V QU |V Z(τU |τV , z), and UU = maxτV ∈V QU |V Z(τU |τV , z).
V is determined by the variation between Y and Z, and U is determined by the "de-
gree of the endogeneity", for example, U and V were highly dependent, U would be
large. Any value u∗ ∈ U can be written as a quantile of the conditional distribution
of U given V and Z The value, u∗, is not known, but it indicates τU− ranked indi-
vidual’s value of U in the conditional distribution of U given V and Z. (See Appendix
A.1)

For a given value u∗ ∈ U, the case in which FU |V Z(u
∗|v, z) is nonincreasing in

v is called PD (Positive Dependence) and the other case in which FU |V Z(u
∗|v, z) is

nonincreasing in v is called ND (Negative Dependence). Also, for a given value u∗ ∈
U, if h(ym+1, u∗) ≥ h(ym, u∗), it is called Strong-PR (Strong Positive Response) and if
h(ym+1, u∗) ≤ h(ym, u∗), it is called Strong-NR (Strong Negative Response). Weaker
versions are also used. The case in which h(ym+1, u) ≥ h(ym, u∗) for u, u∗ ∈ U, with
u ≥ u∗ is called PR (Positive Response) and the case in which h(ym+1, u) ≤ h(ym, u∗),
u, u∗ ∈ U, with u ≤ u∗, is called NR (Negative Response). There can be distinct
patterns of interaction between h and FU |V Z locally in U and V. The next condition
restricts the pattern of the interaction in certain ways.

Restriction LDRM (Local (Quantile) Dependence Response Match) :
FU |V Z(u|v, z) is assumed to be weakly monotonic in v ∈ V for u ∈ U. If FU |V Z(u|v, z)
is weakly decreasing in v ∈ V for u ∈ U , then h(ym+1, u) ≥ h(ym, u∗) for u, u∗ ∈ U,
with u ≥ u∗. Conversely, FU |V Z(u|v, z) is weakly increasing in v ∈ V for u ∈ U ,
then h(ym+1, u) ≤ h(ym, u∗), u, u∗ ∈ U, with u ≤ u∗ for m ∈ {1, 2, ...,M − 1}. See
<Figure 1>.

2.2 Discussion on Restrictions

2.2.1 Restriction QCFA - Scalar Index Unobservables, U and V

There is a tradeoff between using a vector and a scalar unobserved heterogeneity
- allowing for a vector unobserved heterogeneity in the structural relation would
be more realistic. Several studies report identification results without monotonicity
restrictions. However, what can be identified without monotonicity is objects with the
heterogeneity in responses averaged out, while the quantile-based approaches under

18For a binary endogenous variable V ≡ [0, 1].
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FU|V

0 U

FU|V=v

FU|V=Pm?1ÝzÞ

FU|V=Pm+1ÝzÞ

ULÝzÞ UUÝzÞu1
D u 2

D

bU

u1
D = QU|VZÝbU |v, zÞ for v 5 V

Figure 1: "Local" nature of Restriction LDRM : the information on endogeneity is

contained in FU |V under triangularity- if Y is exogenous, then FU |V is invariant with V. FU |V is

drawn for different values of V by assuming monotonicity in V . The solid line is the distribution

of U given V = v. Monotonicity of FU |V (u
∗|v) does not have to be global in U , all that is

required is monotonicity in some region U of u. In this graph, FU |V (u
∗
1|v) is decreasing in v,

while FU |V (u
∗
2|v) is increasing in v ∈ V in distinct range of U. Notice that the range U is

determined by the "degree of endogeneity", that is, if U and V were highly dependent, U would

be large.

monotonicity can be adopted to recover heterogeneous treatment response only if a
scalar (index) unobserved heterogeneity is assumed.

2.2.2 Rank Condition19

When the structural relation is linear, weak IVs are considered to cause problems in
inference, not in identification. Under the nonparametric setup, weakness of IV (how
closely the endogenous variable and the IV are related) causes problems not only in
inference, but also in identification. In the nonparametric setup point identification
fails if certain rank conditions or completeness conditions that specify how IV and
the indigenous variable are related, are not satisfied.
As in Chesher (2005) the identification and testability results of this paper re-

quire restrictions on how the endogeneous variable is related with the IV. The point-
identifying power of Restriction QCFA and Restriction CQ-I in Chesher (2003) is
lost when the endogeneous variable is discrete. The set-identifying power of Chesher
(2005) for an ordered discrete endogenous variable comes from the rank condition in
addition to Restriction QCFA and Restriction CQ-I. Consider Chesher (2005)’s rank

19The name "rank condition" comes from the classical linear simultaneous equations model where
a rank condition of a matrix indicates how certain variables are correlated. Under the nonparametric
setup the rank conditions do not necessarily indicate the rank of a matrix, but they play a similar
role - they specify how the endogeneous variable and the IVs are related.
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condtion of the following :

Restriction RCC (Rank Condition in Chesher (2005)) There exist instru-
mental values of Z, {z′m, z

′′
m}, such that

Pm(z′m) ≤ τV ≤ P
m−1(z′′m)

for m ∈ {1, 2, ...,M − 1}.

As is illustrated in Chesher (2005) by using the Angrist and Krueger (1992)’s
quarters of birth IV example, if the IV is weak, Chesher (2005)’s rank condtion is
not satisfied. If Chesher (2005)’s rank condition holds, our rank condition also holds
since Pm−1(z′′m) ≤ P

m(z′′m). In this sense, Chesher (2005)’s rank condition is stronger
than our rank condition, that is, even when Restriction RCC fails, Restriction RC can
be satisfied. Chesher (2005) is not applicable to a binary endogenous variable case
as Restriction RCC is not satisfied. All the rank conditions specified in this paper in
principle can be tested once data are available.

2.2.3 Local Dependence and Response Match (LDRM)

Endogeneity is often defined as the dependence between explanatory variables and the
unobserved elements in the structural relationship. They can be positively dependent
or negatively dependent. "Dependence" is used instead of "correlation" to clarify the
local information contained in Restriction LDRM. Under triangularity the source of
endogeneity is caused by the dependence between U and V and this information is
contained in the conditional distribution of FU |V . The shape of FU |V would be varying
significantly as the value of V changes if U and V were highly dependent.
Restriction LDRM is concerned with how the pattern of dependence varies with

the level of the unobserved characteristic and the modes in which the pattern is linked
with that of the response function. Restriction LDRM applies to locally each point in
the support of the unobserved variable U. As U is normalized to be uniform (0,1) and
each point in (0,1) is indicated by expressing it as quantiles, thus, "local" implications
of Restriction LDRM can be understood in terms of quantiles.
To identify the sign of the partial difference with respect to a binary endogeneous

variable, a stronger version of LDRM of the following is required.

Restriction S-LDRM (Strong Local (Quantile) Dependence Response
Match) : FU |V Z(u|v, z) is assumed to be weakly monotonic in v ∈ V for u ∈ U. If
FU |V Z(u|v, z) is weakly decreasing in v ∈ V for u ∈ U , then h(ym+1, u∗) ≥ h(ym, u∗),
(Strong PDPR) and if FU |V Z(u|v, z) is weakly increasing in v ∈ V for u ∈ U , then
h(ym+1, u∗) ≤ h(ym, u∗), (Strong NDNR) for any u∗ ∈ U for m ∈ {1, 2, ...,M − 1}.

11



U

hÝym ,uÞ
hÝym+1,uÞ

uD u

W

A

B
C

P osit iv e Dependence

Figure 2: Restriction S-LDRM as well as Restriction LDRM are satisfied (A<B<C) around the

region of U exhibiting positive dependence.

For example, college graduates may be different from high school graduates in
terms of unobservable ability (U) when other observed characteristics are identical.
It may be the case that individuals with very low ability are not allowed to get into
college due to low test scores, on the other hand, individuals with extremely high
ability may not choose to go to college if they have better options that will lead to
higher income. The case in which our model is not applicable is when education
is so deterimental that the hypothetical wage with one more year of education is
smaller than that without it, among those with "similar" ability. On the other hand,
S-LDRM assumes that wage with one more education needs to be larger or equal to
than without it among the "same" level of ability if more able individuals choose to
get educated more.
<Figure 2>, <Figure 3>, and <Figure 4> are drawn for the case where the

unobserved elements are positively dependent in the range specified in U and V .
The lines need to be increasing in U showing positive dependence under Restriction
QCFA. Restriction S-LDRM specified that h(ym+1, u∗) ≥ h(ym, u∗) (A<B), thus,
by monotonicity of h with respect to u, h(ym+1, u) ≥ h(ym+1, u∗) ≥ h(ym, u∗), for
u ≥ u∗ (A>B>C). <Figure 2> shows the case in which Restriction S-LDRM is
satisfied (A>B>C). <Figure 3> shows the case in which Restriction S-LDRM fails
(A>B), but Restriction LDRM holds (A<C), and <Figure 4> shows the case in
which Restriction LDRM fails (A≥ B and A>C).
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U

hÝym , uÞ

hÝym+1 ,uÞ

uD u

W

A

B

C

P o s it iv e D e p e n d e n c e

Figure 3: Restriction LDRM is satisfied (C>A), although Restriction S-LDRM fails to hold (A>B)

around the region of U exhibiting positive dependence.

B

U

hÝym , uÞ
hÝym+1 ,uÞ

uD u

W

A

C

P o s it iv e D e p e n d e n c e

Figure 4: Both Restriction LDRM and Restriction S-LDRM fail to hold (A>C>B) around the

region of U exhibiting positive dependence.
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3 Main Results

3.1 Ordered Discrete Endogenous Variables

3.1.1 Bound on the Value of the Structural Relation

We first consider the case with an ordered discrete endogenous variable. The following
interval identification of the value, h(ym, u∗) can be established for m ∈ {1, 2, ...,M−
1}, where u∗ ≡ QU |V Z(τU |τV , z). Form =M, the bound in Theorem 1 is not applied20.

Theorem 1 Under Restriction QCFA,CQ-I,RC, and LDRM, the following holds
for m ∈ {1, 2, ...,M − 1} and τ ≡ {τU , τV }

qLm(τ , y
m, zm) ≤ h(ym, u∗) ≤ qUm(τ , y

m, zm)

where u∗ ≡ QU |V Z(τU |τV , z),

for some τU ∈ (0, 1) and τV ∈ [P
m(z′m), P

m(z′′m)],

z ∈ zm = {z
′
m, z

′′
m},

qLm(τ , y
m, zm) = min{QW |Y Z(τU |y

m, z′m), QW |Y Z(τU |y
m+1, z′′m)},

qUm(τ , y
m, zm) = max{QW |Y Z(τU |y

m, z′m), QW |Y Z(τU |y
m+1, z′′m)}.

The interval is not empty.
Proof. See Appendix A2.

To identify all the values of the structural function, say, h(y1, u∗), h(y2, u∗), ..., h(yM−1, u∗),
for given u∗, we need to guarantee the rank condition holds for all m ∈ {1, 2, ...,M −
1}.That is, there should exist at least two values of Z, {z′m, z

′′
m} for each m, such that

Pm(z′m) ≤ τV ≤ Pm(z′′m). Therefore, how closely Y and Z are related and whether
we have enough variation in Z are key to the identification of the whole function.

3.1.2 Sharpness

Suppose that the value of the structural feature is identified by a set. Then all dis-
tinct "admitted" structures that are "observationally equivalent" to the true structure
produce values of the structural feature that are contained in the identified set. All
such structures that generate a point in the set, are indistinguishable by data. A
sharp identified set contains all and only such values that are generated by admitted
and observationally equivalent structures.
Common support restriction is imposed for sharpness.

20The bounds cannot be applied to m =M. This restricts the identification results when M = 2,
as we will see in the next section.
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Restriction CSupp (Common Support) The support of the conditional dis-
tribution of W given Y and Z has support that is invariant across the values of Y
and Z.

Theorem 2 Under Restrictions CSUPP, QCFA,CQ-I,RC,and LDRM, the bound
I(τ , ym, z) ≡ [qLm(τ , y

m, zm), q
U
m(τ , y

m, zm)], specified in Theorem 1 for each m =
1, 2, ..,M − 1 and for some τ ≡ {τU , τV }, is sharp.

Proof. See Appendix A3.

3.1.3 Testable implications of the Model

Since identification results would be reliable only if the restrictions imposed were
satisfied, it would be more credible if there is a way to convince that the restrictions
imposed by the model were in fact ture description of the structure and the data.
In this section testable implications are derived so that the validity of some of the
restrictions is examined.
Lemma 1 reports the implications on the observed distribution, more specifically,

on QW |Y Z(τU |y
m, z′m) and QW |Y Z(τU |y

m+1, z′′m). It is required to regularize the vari-
ation between Y and Z by the following rank condition to derive Lemma 1.

Restriction RCL1 (Rank Condition for Lemma 1) There exist instrumental
values of Z, {z′m, z

′′
m}, such that

Pm(z′m)− P
m−1(z′m) ≥ P

m+1(z′′m)− P
m(z′′m), (RCL1)

for m ∈ {1, 2, ...,M − 1}.With P 0(z) = 0 and PM(z) = 1, for the binary case with
M = 2, this condition is statated as

P 1(z′1) + P
1(z′′1 ) ≥ 1.

Restriction RCL1 has implications on the conditional probability mass of Y on
Z. Restriction RCL1 can be equivalantly expressed as pm(z

′
m) ≥ pm+1(z

′′
m), for m ∈

{1, 2, ...,M − 1}. Lemma 1 states the observable implications of the Model LDRM.

Lemma 1 Under Restriction QCFA,CQ-I,RCL1, and LDRM, we observe locally
in U and V,

QW |Y Z(τU |y
m, z′m) ≤ QW |Y Z(τU |y

m+1, z′′m) iff PDPR, and

QW |Y Z(τU |y
m, z′m) ≥ QW |Y Z(τU |y

m+1, z′′m) iff NDNR,

for m ∈ {1, 2, ...,M − 1}.

Proof. See Appendix A6.
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According to Lemma 1, by comparingQW |Y Z(τU |y
m+1, z′′m) withQW |Y Z(τU |y

m, z′m)
for given τU , it can be determined whether PDPR or NDNR is implied by the
model locally in U and V. We conclude that if we observe QW |Y Z(τU |y

m, z′m) ≤
QW |Y Z(τU |y

m+1, z′′m), PDPR is implied, and if we observe QW |Y Z(τU |y
m, z′m) ≥

QW |Y Z(τU |y
m+1, z′′m), NDNR is implied. With this result in hand we can further

find a way to investigate data to detrmine whether all the restrictions imposed in
the model hold true. Another Rank Condition on the variation between Y and Z is
required.

Restriction RCL2 (Rank Condition for Lemma 2) There exists a instru-
mental value of Z, z, such that

Pm(z) ≥
1

2

[
Pm−1(z) + Pm+1(z)

]
, (RCL2)

for m ∈ {1, 2, ...,M − 1}.With P 0(z) = 0 and PM(z) = 1, for the binary case where
M = 2, this condition is statated as

P 1(z) ≥
1

2
.

For example, if the probability mass at Y = ym is not too small relative to at
other points, RCL2 holds. Lemma 2 states the observable implications of PDPR and
NDNR without relying on Restriction CQ-I. Once Restriction RCL2 is verified from
data, under Restriction QCFA the implications of LDRM can be derived as follows.

Lemma 2 Suppose Restriction QCFA is satisfied. For any z that satisfies Re-
striction RCL2, it can be shown that locally U and V we observe

QW |Y Z(τU |y
m, z) ≤ QW |Y Z(τU |y

m+1, z) iff PDPR and

QW |Y Z(τU |y
m, z) ≥ QW |Y Z(τU |y

m+1, z) iff NDNR,

for m ∈ {1, 2, ...,M − 1}.

Proof. See Appendix A7.

From Lemma 1 and Lemma 2 we can state the following testable implications.

Theorem 3 Suppose Restriction QCFA is satisfied and that {z′m, z
′′
m} satsify RC

and RCL1. Then we conclude the following : for any z that satisfies RCL2,

16



(i) if QW |Y Z(τU |y
m, z′m) ≤ QW |Y Z(τU |y

m+1, z′′m),

then QW |Y Z(τU |y
m, z) ≤ QW |Y Z(τU |y

m+1, z)

and

(ii) if QW |Y Z(τU |y
m, z′m) ≥ QW |Y Z(τU |y

m+1, z′′m),

then QW |Y Z(τU |y
m, z) ≥ QW |Y Z(τU |y

m+1, z),

for m ∈ {1, 2, ...,M − 1}.

Proof. This is by Lemma 1 and Lemma 2. If we observe QW |Y Z(τU |y
m+1, z′′m) ≥

QW |Y Z(τU |y
m, z′m), PDPR is implied by Lemma 1. Then by Lemma 2 we need to

observe QW |Y Z(τU |y
m, z) ≤ QW |Y Z(τU |y

m+1, z) locally in U and V. The same logic
applies to the case in which we observe QW |Y Z(τU |y

m, z′m) ≥ QW |Y Z(τU |y
m+1, z′′m).

If all the restrictions imposed in Model LDRM were true description of the struc-
ture, then Theorem 3 would hold. However, the fact that Theorem 3 holds does not
mean that all the restrictions are satisfied since both lemmas assume that Restriction
QCFA holds. If Theorem 3 fails to hold then it indicates some of the restrictions in
the model are violated locally in U and V, nevertheless, it is impossible to tell which
specific restriction(s) is(are) violated. In other words, Thorem 3 can be used to refute
the restrictions imposed in the model LDRM, not to confirm them.

3.1.4 Many Instrumental Values, Overidentification, and Refutability

If there are many pairs of values of Z that satisfy Restriction RC (overidentification),
then each pair defines the causal effect for a different subpopulation defined by each
pair. Taking intersection of each identified set cannot be a sharp identified set as is
discussed Lee (2011). To use all the information available from data and to justify
taking intersection of each set defined by distinct pairs of values of Z in producing a
sharp identified set in this case, a different restriction is imposed.

Let SUPP (Z) be the support of Z. Define Vm(zm) ≡ [Pm(z′m), P
m(z′′m)] for

the pair, zm = {z′m, z
′′
m} that satisfies Restriction RC. Each pair defines different

subpopulation over which a causal interpretation is given. Define Zm as the set of
pairs of zm = {z′m, z

′′
m} that satisfies Restriction RC, Zm ≡ {zm : P

m(z′m) ≤ τV ≤
Pm(z′′m). Let Vm(Zm) ≡ {Vm(zm) : zm ∈ Zm} be a class of the set defined by Zm.
Denote V ≡ ∩zmVm(zm).

Restriction CQ-IM (Conditional Quantile Invariance with Many Instru-
mental Values) : The value of U, u∗ ≡ QU |V Z(τU |τV , z) is invariant with all
z ∈ zm(∈ Zm).
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Corollary 1 Under Restriction QCFA,CQ-IM , RC,and LDRM, there are the
inequalities for m ∈ {1, 2, ...,M − 1}, τ ≡ {τU , τV },

QLm(τ , y
m,Zm) ≤ h(ym, u∗) ≤ QUm(τ , y

m,Zm)

where u∗ = QU |V Z(τU |τV , z),

for some τU ∈ (0, 1) and τV ∈ V ≡ ∩zmVm(zm)

QLm(τ , y
m,Zm) = max

zm
qLm(τ , y

m, zm), zm ∈ Zm

QUm(τ , y
m,Zm) = min

zm
qUm(τ , y

m, zm), zm ∈ Zm

qLm(τ , y
m, zm) = min{QW |Y Z(τU |y

m, z′m), QW |Y Z(τU |y
m+1, z′′m)}

qUm(τ , y
m, zm) = max{QW |Y Z(τU |y

m, z′m), QW |Y Z(τU |y
m+1, z′′m)}.

This intersection interval is sharp and can be empty.
Proof. Idenitified intervals for each pair zm ∈ Zm, are shown in Theorem 1. The
bound in this corollary is found by taking intersection of all such identified intervals.
This intersection bound is sharp. The same sharpness proof of Thorem 2 applies with
some modification in (S2) constructed in the proof in Appendix. When there exist
many instrumental values that satisfy the rank condition, RC, the partition, {P l}Ml=1
defined in the proof of Theorem 2 can be re-defined as the following :

P l =

{
minz∈SUPP (Z){P

l(z)}, if l < m− 1

maxz∈SUPP (Z){P l(z)}, if l > m

}

Pm−1 = min
z∈zL

{Pm(z)}

Pm = max
z∈zU

{Pm(z)},

where zL ≡ {zL : zL = min zm, zm ∈ Zm}

zU ≡ {zU : zU = max zm, zm ∈ Zm}

Zm ≡ {zm : P
m(z′m) ≤ τV ≤ P

m(z′′m),with zm = {z
′
m, z

′′
m}}.

zL(zU) is the set of smaller (larger) values of zm = {z
′
m, z

′′
m} ∈ Zm. The partition of

the support of V, (0, 1), is constructed such that P 1 < P 2 < ... < PM .

Intersection of identified sets may be empty, and even if it is not empty, the causal
interpretation of the intersection bound needs to be given to a different subpopulation.
Suppose that V 6= ∅. Then the bound defined by Corollary 1 should be interpreted

as causal effects for the subpopulation defined by V. If V = ∅, no causal interpretation
would be possible, even though the intersection bound may not be empty since the
subpopulation that is affected by the change in the values of Z does not exist. If
V 6= ∅, but the intersection bound is empty, then this means that some of the
restrictions in the model are not satisfied. However, which restrictions are misspecified
is not known by the fact that the identified set is empty. This way one can falsify the
econometric model, rather than a specific restriction.
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3.1.5 Bound on the Partial Difference

Theorem 4 reports the result on the partial difference with respect to the ordered
discrete endogenous variable.

Theorem 4 Under Restriction QCFA,C-QI,RC,and LDRM, the following holds
for m ∈ {1, 2, ...,M − 2} and τ ≡ {τU , τV }

∆L
m,m+1 ≤ h(ym+1, u∗)− h(ym, u∗) ≤ ∆U

m,m+1

where u∗ = QU |V Z(τU |τV , z),

for some τU ∈ (0, 1) and

τV ∈ Vm(zm) ∩ Vm+1(zm+1)

∆L
m,m+1 = qLm+1(τ , y

m+1, zm+1)− q
U
m(τ , y

m, zm)

∆U
m,m+1 = qUm+1(τ , y

m+1, zm+1)− q
L
m(τ , y

m, zm)

with qLk (τ , y
k, zk), q

U
k (τ , y

k, zk),

and zk, k = m,m+ 1 defined in Theorem 1.

The interval is not empty.
Proof. It follows from Theorem 1.

If either the upper bound, ∆U
mm+1, is negative, or the lower bound, ∆

L
mm+1, is

positive, then the sign of the patial difference, that is, the ceteris paribus effect of
changing Y, can be identified. This result does not apply to a binary endogeneous
variable in which case will be discussed in the next subsection. Stronger version of
LDRM restriction is required to identify the sign of partial difference.with respect to
a binary endogenous variable

3.2 Binary Endogenous Variable

Although in many empirical studies, the distribution of the treatment effects can
deliever valuable information for any policy design, quantiles of the distribution of
differences of potential outcomes, W1 −W0, have been considered to be difficult to
point identify without strong assumptions.21 In this section we apply the LDRM
model to a binary endogenous variable and identify the ceteris paribus impact of
the binary variable, or treatment effects. As Chesher (2005) noted, models for an
ordered discrete endogenous variable can not directly be applied to binary endogenous
variables due to the "unordered" nature of binary variables, however, our model
imposes a sense of order to a binary endogenous variable, which enables the model
to identify the partial difference.

21Note that in general, quantiles of treatment effects, QW1−W0|X(τ |x) 6= QW1|X(τ |x)−QW0|X(τ |x),
where the right hand side is the QTE.
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3.2.1 Bound on the Value of the Structural Relation

The model interval identifies h(1, u∗) and h(0, u∗) as is shown in the following corol-
lary.

Corollary 2 Under Restriction QCFA,C-QI,RC,and LDRM the following holds
for y1 = 0 and y2 = 1, z ∈ z = {z′, z′′}, and τ ≡ {τU , τV },

qL(τ , y, z) ≤ h(y, u∗) ≤ qU(τ , y, z)

where u∗ = QU |V Z(τU |τV , z), y ∈ {0, 1}

for some τU ∈ (0, 1) and τV ∈ [P
1(z′), P 1(z′′)],

qL(τ , y, z) = min{QW |Y Z(τU |0, z
′), QW |Y Z(τU |1, z

′′)}

qU(τ , y, z) = max{QW |Y Z(τU |0, z
′), QW |Y Z(τU |1, z

′′)}

The bound is sharp.
Proof. See Appendix A4.

Although the identified intervals for h(1, u∗) is the same as that for h(0, u∗), this
is still informative in the sense that the identified interval restricts the possible range
that the values h(1, u∗) and h(0, u∗) lie in, and that the sign of h(1, u∗)− h(0, u∗) can
be identified as either the upper bound or the lower bound is zero by strengthening
Restriction LDRM to Restriction S-LDRM.

3.2.2 Bound on Partial Difference of the Structural Relation

Corollary 2 and Lemma 1 are used to recover heterogeneous treatment responses.
Theorem 5 states the partial identification result of heterogeneous treatment effects.To
define the bound on partial difference, Restriction S-LDRM is required.

Theorem 5 Under Restriction QCFA,C-QI,RC,RCL1and S-LDRM, h(1, u∗) −
h(0, u∗) is identified by the following interval:

BL ≤ h(1, u∗)− h(0, u∗) ≤ BU

BU = max{0, Q∆τU}

BL = min{0, Q∆τU},

where Q∆τU ≡ QW |Y Z(τU |1, z
′′)−QW |Y Z(τU |0, z

′)

Proof. Suppose QW |Y Z(τU |1, z
′′) ≥ QW |Y Z(τU |0, z

′). From Corollary 2 we have

QW |Y Z(τU |0, z
′) ≤ h(1, u∗) ≤ QW |Y Z(τU |1, z

′′)

QW |Y Z(τU |0, z
′) ≤ h(0, u∗) ≤ QW |Y Z(τU |1, z

′′)
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then we have

−(QW |Y Z(τU |1, z
′′)−QW |Y Z(τU |0, z

′)) ≤ h(1, u∗)− h(0, u∗) (3)

≤ QW |Y Z(τU |1, z
′′)−QW |Y Z(τU |0, z

′).

By Lemma 1, if QW |Y Z(τU |1, z
′′) ≥ QW |Y Z(τU |0, z

′), we need to have

h(1, u∗)− h(0, u∗) ≥ 0

applying this to (3) yields the result. The case whenQW |Y Z(τU |1, z
′′) ≤ QW |Y Z(τU |0, z

′)
can be shown similarly.

Whether the treatment effect is positive or negative can be determined by data
from the sign of Q∆τU based on Theorem 5. If Q∆τU > 0, then

0 ≤ h(1, u∗)− h(0, u∗) ≤ Q∆τU ,

and if Q∆τU < 0, then

Q∆τU ≤ h(1, u
∗)− h(0, u∗) ≤ 0.

If Q∆τU = 0, then h(1, u
∗) − h(0, u∗) is point identified as zero. Note that either the

upper bound or the lower bound is always zero.

3.3 Discussion

3.3.1 Control Function Methods and Discrete Endogenous Variables in
Non-additive Structural Relations

Control function approaches are understood as a way to correct endogeneity or the
selection problem by conditioning on the residuals obtained from the reduced form
equations for the endogenous variables in a triangular simultaneous equations sys-
tem. Control function methods (see Blundell and Powell (2003) for a survey) are
not considered to be applicable when the structural function is non-additive and the
endogenous variable is discrete. If the structural relation is additively separable, the
control function method can be applied to a case with a discrete endogenous variable.
(See Heckman and Robb (1986)).
Imbens and Newey’s (2009) control function method under non-additive structural

relation is conditioning on the conditional distribution of the endogenous variable
given other covariates as an extra regressor for the outcome equation. Chesher (2003)
used the QCFA. This uses the same information as Imbens and Newey (2009), but
instead of conditioning on the conditional distributions of the endogenous variable
given other covariates, the QCFA can be understood as conditioning on a quantile
of the conditional distribution. Imbens and Newey (2009) show that the two control
function approaches are equivalent when the endogenous variable is continuous.
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When the endogenous variable is discrete22, Imbens and Newey (2009)’s approach
does not have identifying power.23 Chesher (2003)’s QCFA fails to produce point
identification since the one-to-one mapping between the endogenous variable and the
unobserved variable that exists with a continuous endogenous variable does not exist
with a discrete endogenous variable. Rather, with a discrete endogenous variable, a
specific value of the endogenous vairiable maps into a set of values of the unobservable
variable. Without imposing further restrictions, a sharp bound cannot be defined.
Chesher (2005) suggested to impose monotonicity of FU |V (u|v) in v and a rank
condition to define a bound on the value of the structural funciton. Jun, Pinkse,
and Xu (2010) imposed the same monotonicity restriction on FU |V (u|v), but impose
a different rank condition.

3.3.2 Nonparametric Shape Restrictictions

The identifying power of an econometric model comes from restrictions imposed by
the model. The restrictions can be categorized into two : those imposed on the
structure, and those on data. One could impose restrictions on data - existence of a
variable exhibiting certain patterns such as large support condition, rank conditions,
or completeness conditions.
Alternatively, one could adopt restrictions on the structure. Apart from Chesher

(2005) and Jun, Pinkse, and Xu (2011)’s monotonicity imposed on the distribution of
the unobservables, Manski and Pepper (2000) and Bhattacharya, Shaikh and Vytlacil
(2008) adopt certain monotonicity restrictions in the structural relations. Under
the MTS (Monotone Treatment Selection) - MTR (Monotone Treatment Reponse)
restriction Manski and Pepper (2000) estimated the upper bounds on the returns to
schooling. With monotonicity in response, the lower bound is always zero.
Manski and Pepper (2000) develop their arguments by assuming that both selec-

tion and response are increasing, but by assuming that both are decreasing also leads
to identification of average effects. In contrast, with Restriction LDRM, weakly in-
creasing response should be matched with weakly increasing selection and vice versa.
MTR is equivalent to monotone response assumption in our model, and MTS holds if
FU |V (u|v) is weakly decreasing in v over the whole support of U. Restriction LDRM
allows the direction (either PDPR or NDNR) of the match to vary over the sup-
port of U, while the MTR-MTS imposed on the mean - either positive response with
positive selection or negative response with negative selection. Roughly speaking,
the LDRM restriction can be described as a local (quantile)24 version of MTR-MTS.

22Several studies adopted the potential outcomes approach. See Heckman, Florens, Meghir, and
Vytlacil (2008) for average effects of continuous treatment, and Angrist and Imbens (1995), and
Nekipelov (2009) for average effects of multi-valued discrete treatment.
23Imbens and Newey (2009) defines a bound, but this is for the case in which the common support

assumption fails, not for a discrete endogenous variable.
24Restriction MTR-MTS is regarding the mean, while Restriction LDRM is regarding each point

(locally) in the support of the unobserved variable, U. Every point in the support of U can be
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Manski and Pepper (2000) identifies average treatment effects, thus the heterogeneity
in treatment effects can be found for the subpopulation defined by the observed char-
acteristics, while LDRM model can recover heterogeneity in treatment effects even
among observationally identical individuals.
Bhattacharya, Shaikh and Vytlacil (2008) compare Shaikh and Vytlacil (2011)

bounds with Manski and Pepper (2000)25 by applying them to a binary outcome -
binary endogenous variable case. Bhattacharya, Shaikh and Vytlacil (2008)’s bounds
are found under the restriction that the binary endogenous variable is determined by
an IV monotonically. When IV, Z, and Y are binary, their monotonicity is equivalent
to the monotonicity here. Note also that when Y is binary, we can always reorder
0 and 1 due to the "unordered nature" of a binary variable. In contrast with their
claim, when Manski and Pepper (2000) is applied to a binary case, the direction of
the monotonicity of response and selection does not have to be determined a priori26.
Data will inform about the direction of the monotonicity, however, the direction of
MTR and MTS should be matched in a certain way27.
The advantage of the LDRM assumption is that it allows the match to vary across

the level of the unobserved characteristic in contrast with MTS-MTR in Manski and
Pepper (2000) or Bhattacharya, Shaikh and Vytlacil (2008). The LDRMmodel would
be useful when the direction of the dependence is likely to be different across different
values of the unobserved characteristic. On the other hand, LDRM may not be very
informative when the outcome is binary in practice, since the values that the partial
difference can take are -1,0, and 1, although it is still legitimate to apply the model
to binary outcomes in principle.

expressed as quantiles of the distribution of U .
25In fact, what they consider is MTR-MIV in Manski and Pepper (2000) with the upper bound

of the outcome 1 and the lower bound 0 when the outcome is binary.
26When the endogenous variable is ordered discrete with more than two points in the support,

the direction should be assumed a priori to find the bounds.
27Following the notation of Manski and Pepper (2000) if data show that E(y|z = 0) ≤ E(y|z = 1),

then this is the case where non-decreasing MTR and non-decreasing MTS are matched because

E(y|z = 0) = E(y(0)|z = 0)
MTR

≤ E(y(1)|z = 0)
MTS

≤ E(y(1)|z = 1) = E(y|z = 1).

Whereas if the data show that E(y|z = 0) ≤ E(y|z = 1), then this is the case where non-increasing
MTR matched with non-increasing MTS as follows :

E(y|z = 0) = E(y(0)|z = 0)
MTR

≥ E(y(1)|z = 0)
MTS

≥ E(y(1)|z = 1) = E(y|z = 1).

The counterfactural E(y(1)|z = 0) can be bounded by E(y|z = 0) and E(y|z = 1), and the data
will inform us of which is the upper/lower bound - the direction of the match will be determined by
data.
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3.3.3 Heterogeneous Causality Measured by Partial Differences

The major object of interest in this paper is the partial difference of the structural
quantile function, h(1, u∗) − h(0, u∗). The value u∗ is unknown, but is assumed to
be u∗ = QU |V Z(τU |τV , z) for some τU , τV ∈ (0, 1). h(1, u

∗) − h(0, u∗) is interpreted
as a ceteris paribus impact of Y . When the value of Y changes from 1 to 0, the
value of U would change as well if there exists endogeneity. This is in contrast with
other identification results in additively nonseparable models. Other studies identify
the values of a nonadditive structural function, but their results do not guarantee
identification of partial differences.

3.3.4 Rank Condition and Causal Interpretation

The rank condition restricts the group for whom the identification of causal impacts
is justifiable into those who are ranked between P (z′) and P (z′′), where P (z) =
Pr(Y = 0|Z = z). h(1, u∗)− h(0, u∗) would be understood as the treatment effects of
the τU−ranked individuals in the subpopulation whose V− ranking is between P (z

′)
and P (z′′). When the value of Z changes from z′ to z′′, their treatment status changes
from y = 1 to y = 0.We call this group "compliers" following the potential outcomes
framework.

3.3.5 Applicability to Regression Discontinuity Designs (RDD) and Ran-
domised Trials

Recently, many studies (see Lee and Lemieux (2009), for a survey) adopted regres-
sion discontinuity design (RDD) to measure causal effects. Under this design if the
continuity condition at the threshold point of the "forcing variable" holds, the causal
effects of individuals with the forcing variable just above and below the threshold
point are shown to be identified. When the RDD is available, our rank condition28

is guaranteed to hold, thus, as long as Restriction LDRM is applicable in the con-
text of interest, the proposed model can be applicable to an RD design even when
all other variables are not continuous in the treatment - determining variable at the
threshold.29

3.3.6 Tests of Homogeneous Signs

Homogeneous signs can be tested by adopting existing results on stochastic dominance
of order 1 as the null of homogeneity can be expressed as follows, for Z = z′, z′′,

H0 : FW |Y Z(w|Y = 1, Z = z
′′) ≥ FW |Y Z(w|Y = 0, Z = z

′),∀w.

28Suppose a threshold point t0 of a variable T is known by a policy design such that the treatment
status (Y ) is partly determined by this vairiable. Then we can construct a binary variable Z such
that Z = 1(T > t0). In such a case, our rank condition holds.
29For example, age or date of birth, which are used for eligibility criteria, are often only available

at a monthly, quarterly, or annual frequency level.
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See, for example, Barret and Donald (2003), for recent developments of test of sto-
chastic dominance of various orders.

3.3.7 Discrete Data

The restrictions imposed do not require continuity/differentiability of structural re-
lations nor rely on continuity of covariates/large support condition. This makes the
proposed model more useful since many variables in microeconometrics are discrete
or censored.

4 Empirical Illustration - Heterogeneous Individ-

ual Treatment Responses

By heterogeneous treatment responses we mean idiosyncratic treatment effects even
after accounting for observed characteristics30. Several studies allowed for individual
heterogeneity in response, yet, identification is achieved by integrating out the hetero-
geneity in these studies.31 Average responses may hide heterogeneity in response and
information regarding the distributional consequences of a policy would be lost. We
demonstrate how the "partial" information, the signs and the bounds of treatment
effects, not the exact size of them, regarding who benefits can be recovered from data
when "who" is indicated by individual observed characeristics and the ranking in the
distribution of the unobserved characteristic. This is illustrated by examining the
effects of the Vietnam-era veteran status on the civilian earnings using the data used
in Abadie (2002)32

4.1 Bounds on Individual-specific Causal Effects of Vietnam-
era Veteran Status on Earnings

Let W be annual labour earnings, Y be the veteran status, and Z be the binary
variable determined by draft lottery. Age, race, and gender are controlled so that
the subgroup considered is observationally homogenous. The unobserved variables

30This is called "essential heterogeneity" by Heckman, Urzua, and Vytlacil (2006).
31The standard linear IV model cannot identify heterogeneus treatment effects. See Heckman and

Navarro (2004) and Heckman and Urzua (2009). For identification under heterogeneous responses
see Heckman, Urzua, and Vytlacil (2006) for binary endogenous variable, and Florens, Heckman,
Meghir, and Vytlacil (2008), Imbens and Newey (2009),and Hoderlein and White (2009), among
others. There is another line of research using random coefficient models to recover the distribution
of the response, see Card (1999) for example. The averaged objects however can exhibit a certain
degree of heterogeneity by allowing for treatment heterogeneity.
32A sample of 11,637 white men, born in 1950-1953, from the March Current Population Surveys

of 1979 and 1981-1985 is used. The data are obtainable in Angrist Data Archive : http://econ-
www.mit.edu/faculty/angrist/data1/data
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U and V indicate scalar indices for "earnings potential" and "participation prefer-
ence"/"aptitude for the army" each. There can be many factors that determine these
indices, but we assume that these multi-dimensional elements affect the outcome only
through a "scalar" index.

4.1.1 Selection on Unobservables

Enrollment in military service during the Vietnam-era may have been determined by
the factors which are associated with the unobserved earnings potential. This concern
about selection on unobservables is caused by several aspects of decision processes
both of the military and of those cohorts to be drafted. On the one hand, the
military enlistment process selects soldiers on the basis of factors related to earnings
potential. For example, the military prefer high school graduates and screens out
those with low test scores, or poor health. As a consequence, men with very low
earnings potential are unlikely to end up in the army. On the other hand, for some
volunteers military service could be a better option because they expected that their
careers in the civilian labour market would not be successful, while others with high
earnings potential probably found it worthwhile to escape the draft. This shows that
the direction of selection could vary with where each individual is located in the
distribution of the unobservable earnings potential.

4.1.2 Draft Lottery as an Instrument - Exclusion, Rank Condition, and
Independence

As in Angrist (1990) the Vietnam era draft lottery is used as an instrument to identify
the effects of veteran status on earnings. The lottery was conducted every year
between 1970 and 1974. The lottery assigned numbers from 1 to 365 to dates of birth
in the cohorts being drafted. Men with the lowest numbers were called to serve up to
a ceiling33 which was unknown in advance. We construct a binary IV based on the
lottery number. It is assumed that this IV is not a determinant of earnings, and the
unobserved scalar indices are independent of draft eligibility34.

4.1.3 Rank Conditions - RC, RCL1, and RCL2

To apply the identification results in Theorem 5, we investigate first whether the
data satisfy Restriction RC in the model. The participation rate among the draft-
non-eligible (Z = 0) is about 0.14 and the participation rate among the eligible is

33See Angrist (1990) for more details.
34There has been some discussion on whether individuals’ draft lottery numbers caused their

behavior, e.g. some men could have volunteered in the hope of serving under better terms and
gaining some control over the timing of their service once the lottery numberw were known. If those
who change their behavior according to their draft lottery number show certain patterns in their
unobserved factors, then the quantile invariance restriction may be violated.
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0.22. Thus, Restriction RC is satisfied as

P 1(1) ≡ P (Y = 0|Z = 1, X = x) = 0.78 (RC)

< P 1(0) ≡ P (Y = 0|Z = 0, X = x) = 0.86.

That is, z′1 = 1 and z
′′
1 = 0 in this example and age, gender, and rac are controlled.

The compliers35 (or draftees) are defined as those whose V -ranking is between 78%
and 86%.
Both Restriction RCL1 and Restriction RCL2 are satisfied, which allows us to use

Theorem 3 to refute some of the restrictions in Model LDRM. RCL1 is satisfied as
P 1(z′1) + P

1(z′′1 ) = 0.78 + 0.86 ≥ 1. For both values of Z, RCL2 is also satisfied as
P 1(z′1) = 0.78 ≥

1
2
, and P 1(z′′1 ) = 0.86 ≥

1
2

4.1.4 Signs of the Effects - Use of Theorem 5

We use Hansen (2004) in estimating the distribution functions and the quantiles
are found based on the estimated distribution function following the definition of
a quantile. Smoothing is suggested in Hansen (2004) for efficiency gain in finite
samples. Soomthing is also reasonable in this context as it is more likely to believe
that treatment effects for individuals in similar ranks would not vary drastically.
Thus, the signs of treatment effects are not expected to show a large variation across
different ranks. The optimal bandwidth is selected following Hansen (2004).

4.1.5 Causal Interpretation

Veterans have been provided with various forms of benefits in terms of insurance,
education, etc. How serious the impact of military service on veterans’ labour market
outcomes, or whether they are compensated for their service enough has been an
important political issue and there has not been any consensus on this matter. Angrist
(1990) reports Vietnam-era veteran status had a negative impact on earnings later in
life on average, possibly due to the loss of labour market experience.
Our quantile based analysis reveals that when age, gender, and race are controlled

the veteran status had positive causal impacts for individuals with low earnings po-
tential, but negative causal impacts for individuals with high earnings potential (see
Figure 5). The results in <Figure 5> show that the sign is positive for those whose
U- rank is less than 75%, while negative sign for those ranked higher than that.36

The lifetime cost of military service may be larger than the benefits provided by the
government for those with high earnings potential, while the benefits provided may
be sufficient for those with low earnings potential. Considering the fact that benefits

35Note that the V- ranking is never observed, so we cannot tell whether an individual is a complier
or not.
36The results in <Figure 5> are interpreted as the causal effects for those who change their

participation decision as the value of Z changes.
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Figure 5: LDRM bounds on individual treatment effects of Vietnam-era veteran status among

observationally identical individuals.

in the form of insurance, pension, or education opportunities should be targeted at
people with less potential, the findings indicate that the compensation was enough for
this group. However, the Vietnam-era military service may have higher opportunity
costs for individuals with high earnings potential.
This can be compared with the results using QTE. By applying his identification

results of the marginal distribution of the potential outcomes for compliers, Abadie
(2002) reports that military service during the Vietnam era reduces lower quantiles of
the earnings distribution, leaving higher quantiles unaffected. The information from
the marginal distribution of the potential outcomes (for compliers) may be used to
recover QTE, however, it does not reveal information on individual-specific impact on
earnings of Vietnam-era veteran experience as individuals’ranking in each marginal
distribution can be different.

4.1.6 Refutability of the Model LDRM - Use of Theorem 3

As both Restriction RCL1 and Restriction RCL2 are satisfied, Thorem 3 is applied to
examine whether all the restrictions in the model are satisfied. <Figure 6> shows
that some of the model’s restrictions are violated for those ranked between 20—45%
and 65-75%. Theorem 3 states that in the range in which positive treatment is
implied, QW |Y Z(τU |1, z) ≥ QW |Y Z(τU |0, z) and in the range where negative treatment
is implied, QW |Y Z(τU |1, z) ≤ QW |Y Z(τU |0, z), for z that satisfies RC

L2. <Figure 6>
is drawn for Z = 1 as there is small observation when Z = 0. As is discussed, Thorem
3 can be used to refute, rather than confirm the model. That is, even those whose
U-rank is other than 20-45% or 65-75%, it is still possible that Restriction QCFA is
violated. Restriction QCFA needs to be assumed to derive Lemma 1 and Lemma 2,
therefore, it is not refutable.
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black line.

5 Conclusion

The presence of endogeneity and discreteness of the endogenous variable cause loss
of the identifying power of the quantile-based control function approach (QCFA) in
the sense that the model based on the QCFA does not produce point identification.
A refutable model that set identifies certain structural features is proposed when one
of the regressors is ordered discrete. The model is applied to a binary endogenous
variable. This structural approach turns out to be useful in defining the bounds on
heterogeneous individual treatment effects, which have not been studied so far under
the structural framework without parametric assumptions.
The set identification result of this paper is applied to recover heterogeneous

impacts of the Vietnam-era military service on earnings later in life. As we can see in
this example, average effects may miss much information. Even though the proposed
model can give only partial information on the individual causal effect, this may be
useful in some economic contexts, especially when the sign of the effects may be
varying across individuals with different characteristics. The causal interpretation is
justified on the group of compliers defined by the pair of instrumental values that
satisfy the rank condition. The information on the signs of individual treatment
effects is crucial if they vary across the population, since in such a case the average
effects would be smaller as different effects with different signs will be canceled out
leading to a misleading conclusion. The model can also be used for robustness checks
for whether there exists any heterogeneity in causal responses.

29



References

[1] Abadie, A. (2002), "Bootstrap tests for distributional treatment effects in in-
strumental variable models," Journal of the America Statistical Association, 97,
284-292.

[2] Abadie,A., J. Angrist, and G. Imbens (2002), " Instrumental variables estimates
of the effect of subsidized training on the quantiles of trainee earning," Econo-
metrica, 70(1), 91-117.

[3] Angrist, J. (1990), "Lifetime earnings and the Vietnam-era draft lottery : evi-
dence from the social security administrative records," American Economic Re-
view, 80, 313-336.

[4] Angrist, J. and A. Krueger (1991), "Does Compulsory School Attendance Affect
Schooling and Earnings?," Quarterly Journal of Economics, 106, 979-1014.

[5] Angrist, J. and G. Imbens (1995), "Two-stage least squares estimation of aver-
age causal effects in models wth variable treatment intennsity," Journal of the
American Statistical Association, 90 (430), 431-442.

[6] Angrist, J. (2004), "Treatment effect heterogeneity in theory and practice," The
Economics Journal, 114, C52-C83.

[7] Barret, G. and S. Donald (2003), "Consistent tests for stochastic dominance,"
Econometrica, 71(1), 71—104.

[8] Bhattacharya, J., A. Shaikh, and E. Vytlacil (2008), "Treatment effects bounds
under monotonicity assumptions : an application to Swan - Ganz Catheteriza-
tion," American Economic Review, 98, 351-346.

[9] Bitler, M., J. Gelbach, and H. Hoynes (2006), "What mean impacts miss : dis-
tributional effects of welfare reform experiments," American Economic Review,
96, 988-1012.

[10] Blundell, R. and J. Powell (2003), "Endogeneity in nonparametric and semipara-
metric regression models, " in M. Drewatripont, L.P. Hansen and S.J. Turnovsky
(eds.) Advances in Economics and Econometrics : Theory and Applications,
Eighth World Congress, Vol II (Cambridge : Cambridge University Press).

[11] Card, D. (1999), "The causal effect of education on earnings," Handbook of
Labour Economics, 1801—1863.

[12] Chernozhukov, V. and C. Hansen (2005), "An IV Model of quantile treatment
effects," Econometrica, Vol.73, No. 1, 245-261.

30



[13] Chernozhukov, V., I. Fernandez-Val, and B. Melly (2010), "Inference on coun-
terfactual distributions in nonseparable Models,” mimeo.

[14] Chesher, A. (2003), "Identification in nonseparable models," Econometrica, 71,
1405-1441.

[15] Chesher, A. (2005), "Nonparametric identification under discrete variation,"
Econometrica, 73(5), 1525-1550.

[16] Chesher, A. (2007), "Instrumental values," Journal of Econometrics, 139, 15-34.

[17] Chesher, A. (2009), "Excess heterogeneity, endogeneity, and index restrictions,"
Journal of Econometrics, 152, 35-47.

[18] Doksum, K. (1974) "Empirical probability plots and statistical inference for non-
linear models in the two sample case," The annals of Statistics, 2. 267-277.

[19] Fan, Y. and S. Park (2010), "Sharp bounds on the distribution of treatment
effects and their statistical inference," Econometric Theory, 26, 931-951.

[20] Firpo. S. and G. Ridder (2008), "Bounds on functionals of the distribution of
treatment effects," IEPR working paper 08.09.

[21] Florens, J., J. Heckman, C. Meghir, and E. Vytlacil (2008), "Identification of
treatment effects using control functions in models with continuous endogenous
treatment and heterogeneous treatment effects," Econometrica, 76. 1191-1206.

[22] Brandson, B, M. Frolich, and B. Melly (2008), "Quantile treatment effects in the
regression discontinuity design," Journal of Econometrics, 168, 382-395.

[23] Hansen, B (2004), "Bandwidth selection for nonparametric distribution estima-
tion," mimeo.

[24] Hahn, J. and G. Ridder (2011), "Conditional moment restrictions and triangular
simulatenous equations," Review of Economics and Statistics, forthcoming.

[25] Heckman, J., J. (2001), "Micro data, heterogeneity, and the evaluation of public
policy: Nobel lecture," Journal of Political Economics,

[26] Heckman, J., J. Smith, and N. Clements (1997), "Making the most out of pro-
gram evaluations and social experiments accounting for heterogeneity in program
impacts," Review of Economic Studies, 64, 487-535.

[27] Heckman, J., S. Urzua, and E. Vytalcil (2006), "Understanding instrumental
variables in models with essential heterogeneity," The Review of Economics and
Statistics, 88, 389-432.

31



[28] Heckman, J. and E. Vytalcil (2001), "Instrumental variables, selection models,
and tight bounds on the average treatment effect," in M. Lechner and F. Pfeiffer
(Eds.), Econometric evaluation of labour market policies, New York.

[29] Hoderlein, S. and E. Mammen (2007), "Identification of marginal effects in non-
separable models without monotonicity," Econometrica, 75. 1513-1518.

[30] Hurwicz, L. (1950) "Generalization of the concept of identification," in Statisti-
cal Inference in Dynamic Economic Models, Cowles Commision Monograph 10.
Wiley, New York.

[31] Imbens, G. and J. Angrist (1994), "Identification and estimation of Local average
treatment effects, " Econometrica, 62, 467-476.

[32] Imbens, G. and D. Rubin (1997), "Estimating outcome distributions for compli-
ers in instrumental variable models," Review of Economic Studies, 64, 555-574.

[33] Imbens, G. and W. Newey (2009), "Identification and estimation of triangular
simultaneous equations models without additivity," Econometrica, 77(5),1481 -
1512.

[34] Jun, S., J. Pinkse, and H. Xu (2011), "Tighter bounds in triangular system,"
Journal of Economcetrics, 161(2),122—128.

[35] Kitagawa, T. (2009), "Identification region of the potential outcome
distributions under instrument independence," cemmap working paper.

[36] Lee, D. and T. Lemieux (2009), "Regression discontinuity designs in economics,"
NBER working paper.

[37] Lehman, E. (1974), Nonparametric Statistical Methods Based on Ranks, San
Francisco, Holden-Day.

[38] Manski, C. (2003), Partial identification of probability distribution, Springer-
Verlag.

[39] Manski, C. and J. Pepper (2000), "Monotone instrumental variables : with an
application to the returns to schooling," Econometrica, 68(4), 997-1010.

[40] Matzkin, R. (2003), "Nonparametric estimation of nonadditive random func-
tions," Econometrica, 71, 1332-1375.

[41] Matzkin, R. (2007), "Nonparametric identification," Handbook of Econometrics,
5307-5368.

32



[42] Matzkin, R. (2008), "Identification of nonparametric simultaneous equations,"
Econometrica, 76, 945-978.

[43] Nekipelov, D. (2009), "Endogenous multi-valued treatment effect model under
monotonicity," mimeo.

[44] Roehrig, C. (1988), "Conditions for identification in nonparametric and para-
metric models," Econometrica, Vol. 56, No. 2, pp. 433-447.

[45] Shaikh, A. and E. Vytlacil (2011), "Partial identification in triangular systems
of equations with binary dependent variables," Econometrica, 79, 949-955.

[46] Vytlacil, E. and N. Yildiz (2007), "Dummy endogenous variables in weakly sep-
arable models," Econometrica, 75(3), 757-779.

Appendix - proofs

A.1 A note on the proofs

U and V are defined in Section 2.1. For given τV ∈ V, any point u ∈U can be expressed as

a quantile of the conditional distribution of U given V and Z,

u = QU |V Z(τU |τV , z)

for some τU ∈ (0, 1). The following observations, (O1),(O2), and (O3), as well as definition (*),
will be used in the proofs.

(O1) For given τV ∈ V, for any u ∈ U there can be many pairs of (a, b) s.t

u = QU |V Z(τU |τV , z) = QU |V Z(a|b, z) (O1)

for some τU , a, b ∈ (0, 1).

Note that any u ∈ U can be expressed in terms of the structural function by defining the

inverse function of h. We use the definition of Chesher (2005) of the following

h−1(ym, w) ≡ sup
u

{u : h(ym, u) ≤ w} (*)

with equality holding when h(ym, u) is strictly increasing in u as in Chesher (2005).
(O2) For a given structural function, h, and a given value of Y = ym, an arbitrary u ∈ (0, 1)

can be written as

u = h−1(ym, w)

for some w ∈ SUPP (W ) where h−1 is defined by (*)37. Let w1, w2, ..., wM be the values such

that for given u = h−1(ym, w)

37If W is discrete, h−1c (y, w) indicates only jumping points in U, not all the points of U.
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wl= hc(y
l
, h−1(ym, w)), for l = 1, 2, ...,M. (O2-1)

Note that wm = hc(y
m, h−1c (y

m, w)) = w. Then we can find wl such that

u = h−1(ym, w) = h−1(yl, wl) for some l. (O2)

(O3) Let S0 = {h0, F
0
U |V Z} be the true unknown structure that generates the data we

have, F 0W |Y Z(w|y, z). The model LDRM is proposed to identify certain features of the true struc-

ture, S0, by using the data, F 0W |Y Z(w|y, z). Suppose that w
∗ = h0(y

m, u∗), where u∗ ≡

Q0U |V Z(τU |τV , z). Then note that u
∗ can be expressed in terms of the structural function by (*)

u∗≡ Q0U |V Z(τU |τV , z) = h
−1
0 (y

m
, w∗). (O3)

The proofs involve establishing the order of the values of the strucual function evaluated at

different points. To establish inequalities between them, we use (O3). The properties of a quantile

are used and they are expressed in terms of the structural function by using the definition (*) when

necessary.

A.2 Proof of Theorem 1

Proof. We show the case with PDPR. The other case, NDNR, can be shown similarly. Suppose
thatQU |V Z(τU |v, z) is weakly increasing in v ∈ V, then by Restriction LDRM, PDPR is assumed.
By Lemma 2 in Chesher (2005) we have that the quantile of the distribution of the observed variables

is bounded by values of the structural function as follows

h(ym, QU |V Z(τU |VL, z
′
m)) ≤ QW |Y Z(τU |y

m, z′m) (A2-1)

≤ h(ym, QU |V Z(τU |P
m(z′m), z

′
m))

h(ym+1, QU |V Z(τU |P
m(z′′m), z

′′
m)) ≤ QW |Y Z(τU |y

m+1, z′′m) (A2-2)

≤ h(ym+1, QU |V Z(τU |VU , z
′′
m)).

Let u∗≡ QU |V Z(τU |τV , z
′′
m), u ≡ QU |V Z(τU |P

m(z′′m), z
′′
m), and u≡QU |V Z(τU |P

m(z′m), z
′
m).Then

u∗, u, u ∈ U. As QU |V Z(τU |v, z) is weakly increasing in v ∈V, by Restriction RC we have

u ≤ u∗ ≤ u.

Then because h is weakly increasing in u, we have

h(ym, QU |V Z(τU |τV , z
′′
m)) ≤ h(ym, u) (A2-3)

h(ym, u) ≤ h(ym, QU |V Z(τU |τV , z
′
m)).

Note that u∗≡ QU |V Z(τU |τV , z
′′
m) = QU |V Z(τU |τV , z

′
m) by Restriction C-QI. Therefore,

from (A2-3) we have

h(ym, u) ≤ h(ym, u∗) ≤ h(ym, u). (A2-4)
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By (A2-2) and Restriction LDRM we can find the upper bound on h(ym, u∗),

h(ym, u∗) ≤ h(ym+1, u) ≤ QW |Y Z(τU |y
m+1

, z′′m)

where the first inequality is due to Restriction LDRM (PDPR in this case) for u∗, u ∈ U with

u∗ ≤ u, and the second inequality is due to (A2-2).
The lower bound on h(ym, u∗) can be found by (A2-1) and (A2-4) :

QW |Y Z(τU |y
m
, z′m) ≤ h(y

m
, u) ≤ h(ym, u∗),

where the first inequality is due to (A2-1), the second is due to (A2-4).

Similarly, when QU |V Z(τU |v, z) is weakly decreasing in v ∈ V , we have

QW |Y Z(τU |y
m+1

, z′′m) ≤ h(y
m
, u∗) ≤ QW |Y Z(τU |y

m
, z′m).

A.3 Proof of Theorem 2 : Sharpness

Let SUPP(A) indicate the support of a random variable A and let I(τ , ym, zm) denote the iden-
tified interval. What is required to show sharpness is to construct a structure (Sc≡ {hc, F

c
U |V Z(u|v, z)})

such that (a) for any value in the identified interval,w∗∈ I(τ , ym, zm), for u
∗≡ QcU |V Z(τU |τV , z),

the structural function crosses w∗, that is, w∗= hc(y
m
, u∗) , (b) that the constructed structure is

observationally equivalent to the true structure and (c) that the constructed structure is admitted

by the LDRM model. In Part 1 we propose a structure {hc, F
c
U |V Z(u|v, z)} and in Part 2 we show

(a),(b), and (c).The results hold for both continuous and discrete W.

Part 1 - Construction of an admitted and observationally equivalent
structure

1-A Construction of a structural function
We consider the case in which QW |Y Z(τU |y

m
, z′m) ≤ QW |Y Z(τU |y

m+1
, z′′m). The structural

function is constructed as follows : for some v ∈ (Pm−1(z), Pm(z)]

hc(y
m
, u)≡ Q0W |Y Z(τm|y

m
, z), where u = QcU |V Z(τU |τV , z) = Q

c
U |V Z(τm|v, z), (S1)

for m= 1, 2, ...,M. That is, Q0W |Y Z(τm|y
m
, z) is assigned as the value of hc(y

m
, u) by

choosing τm such that u = QcU |V Z(τU |τV , z) = Q
c
U |V Z(τm|v, z) for given v. Then hc(y

m, u)
is a well-defined function.

1-B Construction of the conditional distribution of the unobservables
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We partition SUPP (V ) by38

P l =



maxz∈SUPP (Z){P

l(z)} if l 6= m− 1,m
minz∈zm{P

m(z)} if l = m− 1
maxz∈zm{P

m(z)} if l = m




l = 1, 2, ...,M, for zm defined in Section 2.

The conditioning value of Y is determined by the value of V as follows : for l = 1, 2, ...,M

Y = yl if P l−1 < v ≤ P l

with P 0 = 0 and PM = 1.

Note that by (O2) any point u ∈ (0, 1) can be expressed as u = h−1c (y
k, w̃) for some yk and w̃.

F cU |V Z(u|v, z) is constructed as follows
39 : for given z ∈ SUPP (Z),

F cU |V Z(u|v, z), for u = h
−1
c (y

k, w̃) and P l−1 < v ≤ P l (S2)

≡

{
F 0W |Y Z(w̃|y

l, z) if k = l, l + 1

F 0W |Y Z(w
l|yl, z) o.w.

}

where w1, w2, ..., wM are found such that wl = hc(y
l, h−1c (y

k, w̃)), for l = 1, 2, ...,M and

wk = hc(y
k, h−1c (y

k, w̃)) = w̃ (as is specified in Appendix A1).

1-C Weakly increasing h in u and proper distribution, F cU |V Z(u|v, z)
Then hc is weakly increasing in u.We show that as u increases, h weakly increases. Note that

any point u can be expressed as a conditional quantile (as is noted in Appendix A1). The value of

a conditional quantile can increase for two different reasons :

• First, fix vm, then hc(y
m, u) is weakly increasing in u since higher τm implies higher

u = QU |V Z(τm|vm, z), as well as higher QU |Y Z(τm|y
m, z), which is the value assigned

to hc(y
m, u). That is, as u increases, h weakly increases.

• Next, fix τm, if we observe higher u, then it is because of higher vm if FU |V (u|vm, z) is non-
increasing in vm and lower vm if FU |V Z(u|vm, z) is nondecreasing in vm ∈ (P

m−1, Pm].
However, regardless of the direction of monotonicity, for vm ∈ (Pm−1, Pm], Y = ym.

Thus, the value of vm does not affect the value of hc. That is, for fixed τm, and Y, hc(y, u)
is constant as u increases due to change in vm.That is, as u increases, h weakly increases.

Moreover, the proposed F cU |V Z(u|v, z) is a proper distribution by the following arguments :

since each F 0W |Y Z(w|y
m
, z), for allm ∈ {1, 2, ...,M} is a proper distribution, F 0W |Y Z(w|y

m
, z)

38This partition is chosen to be fixed irrespective of the value of Z.
39If W is discrete, h−1c indicates jumping points only. To define the values of FU |V Z , other than

in jumping points, we need to partition (0, 1) by jumping points and assign the same value to the
points in between jumping points (to all the points in each partition) as that which is assigned to
the lower jumping point among the two jumping points defining the partition.
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lies between zero and one, and is weakly increasing in w. Thus, the constructed distribution,

F cU |V Z(u|v, z), lies between zero and one, but to guarantee nondecreasing property ofF
c
U |V Z(u|v, z)

in u, we need to show that as w increases, u = h−1c (y, w) increases for given v and z. This follows
from the definition of h−1c in (*) in Appendix A1 and the fact that hc is weakly increasing in u.

Part 2
We now show (a),(b), and (c).

Part 2 - (a)40 :
To show (a) note that under Restriction CSUPP, any point in the identified interval, w∗ ∈

I(τ , ym, zm) can be written as (see <Figure 7>)
41

w∗= Q0W |Y Z(τm|y
m
, z′m) for some τm≥ τU . (A3-3)

That is,

τm≤ F
0
W |Y Z(w

∗|ym, z′m) for some τm≥ τU (A3-4)

with equality holds when W is continuous.

Now consider u = h−1c (y
m, w∗) and v ∈ (Pm−1, Pm]. From (S2)

F cU |V Z(h
−1
c (y

m, w∗)|v, z′m)
(S2)
= F 0W |Y Z(w

∗|ym, z′m) ≥τm,

due to (A3-4), which implies, by definition of a quantile,

h−1c (y
m, w∗) = QcU |V Z(τm|v, z

′
m) for some v ∈ (P

m−1, Pm]. (A3-5)

Note thatQcU |V Z(τm|v, z
′
m) is not varying with v ∈ (P

m−1
, Pm] sinceF cU |V Z is constant over

the interval v ∈ (Pm−1, Pm]. This then implies by construction in (S1) the value ofQ0W |Y Z(τm|y
m, z)

is assigned as the value of hc(y
m
, u), by choosing τU ∈ (0, 1) and τV ∈ (P

m−1, Pm], s.t.
u = QcU |V Z(τm|v, z

′
m) = Q

c
U |V Z(τU |τV , z), that is, for given v,

hc(y
m
, QcU |V Z(τm|v, z

′
m)) = Q0W |Y Z(τm|y

m
, z) (A3-6)

and u = h−1c (y
m, w∗) = u∗ (A3-7)

as u = QcU |V Z(τm|v, z
′
m) = Q

c
U |V Z(τU |τV , z) ≡ u

∗
. Finally, from (A3-3) and (A3-6) we con-

clude that

w∗= hc(y
m
, u∗), for u = QcU |V Z(τm|v, z

′
m) = Q

c
U |V Z(τU |τV , z).

In other words, hc passes through an arbitrary point, w
∗ ∈ I(τ , ym, zm).

42 .

40 for an arbitrary point in the identified interval, w∗ ∈ I(τ , ym, zm), such that w
∗ = hc(y

m, u∗),
u∗ ≡ Qc

U |V Z(τU |τV , z) ∈ U, we define w
l = hc(y

l, h−1c (ym, w∗)), with wm

= w∗ l = 1, 2, ...,M in Part 1-B.
41Alternatively, one can find τm such that w∗ = Q0

W |Y Z(τm|y
m+1, z′′m) for some τm ≤ τU

42By (O1) in Appendix A1, we can find τU and τV ∈ (P
m−1, Pm] such that

u = QcU |V Z(τm|v, z
′
m
) = Q

c

U |V Z(τU |τV , z
′
m
).

37



wD =QW|YZ
0 Ýb|ym,zmv Þ forsome b ³ bU

QW|YZÝbU|ym ,zmv Þ

QW|YZÝbU|ym+1,zmvv Þ

FW|YZÝw|ym ,zmv Þ

Figure 7: Any point in the interval, w∗ ∈ I(τ ,m, zm), can be expressed using the
quantiles of FW |Y Z(w|y

m, z′m) under the common support restriction.

Part 2 - (b) : Observational equivalence43 (F cW |Y Z = F
0
W |Y Z)

To show (b) we need to show that the data generated by the constructed structure in Part 1,

(Sc = {hc, F
c
U |V Z}), is actually the data we observe, in other words, F

c
W |Y Z = F 0W |Y Z : for

pcm = P
m − Pm−1, for all m ∈ {1, 2, ...,M},

F cW |Y Z(w|y
m, z) =

1

pcm

∫ Pm

Pm−1
F cU |V Z(h

−1
c (y

m, w)|s, z)ds

=
1

pcm

∫ Pm

Pm−1
F 0W |Y Z(w|y

m, z)ds

= F 0W |Y Z(w|y
m, z)

the first equality is due to Lemma 1 in Chesher (2005), the second equality is by construction in

(S2), that is, F cU |V Z(h
−1
c (y

m, w)|v, z) = F 0W |Y Z(w|y
m, z), for v ∈ (Pm−1, Pm] and the last

equality is due to integration over constant and the definition of pcm.

Part 2 - (c) : Admissibility by the model
We next show (c). To show sharpness it is required to show that any point in the identified

set is generated by a structure that satisfies all the restrictions imposed by the model. To show

exsitence of such a structure, we constructed a structure in part I, thus, it is required next to show

that the structure suggested in part I actually satisfy all the restriction.

0. Rank condition : this can be shown using data. We suppose this restriction is satisfied.
1. Monotonicity of hc(y

m, u) in u : This is shown in Part 1-A.
2. Conditional Quantile Invariance : The distinction of the true structure, S0, from

the constructed structure, Sc, needs to be made in this proof. Recall that w∗∈ I(τ , ym, zm), and

43That is, the data distribution that is generated by the structure, constructed in part 1, is actually
what we observe.

38



u∗≡ QcU |V Z(τU |τV , z). Note that h
−1
c (y

m, w∗) = u∗, where u∗ ≡ QcU |V Z(τU |τV , z) (from

(A3-7)). For u∗ = h−1c (y
m, w∗)

τU ≡ F cU |V Z(u
∗|τV , z

′
m)

= F cU |V Z(h
−1
c (y

m, w∗)|τV , z
′
m)

= F 0W |Y Z(w
∗|ym, z′m)

=
1

pm(z′m)

∫ Pm(z′m)

Pm−1(z′m)

F 0U |V Z(h
−1
0 (y

m, w∗)|s, z′m)ds

=
Pr(U ≤ h−10 (y

m, w∗) ∩ Pm−1(z′m) ≤ V ≤ P
m(z′m))

pm(z′m)

= F 0U |V Z(h
−1
0 (y

m, w∗)|V ∈ (Pm−1(z′m), P
m(z′m)])

= F 0U |Y (h
−1
0 (y

m, w∗)|ym)

the second equality is by construction in (S2), the third equality is due to Lemma 1 in Chesher

(2005), and the fourth equality follows by integration. The fifth equality is by definition of the

conditional probability, the sixth equality is due to how the value of Y is determined. Similarly for

Z = z′′m,

τU ≡ F cU |V Z(u
∗|τV , z

′′
m)

= F cU |V Z(h
−1
c (y

m, w∗)|τV , z
′
m)

= F 0W |Y Z(w
∗|ym, z′′m)

=
1

pm(z′′m)

∫ Pm(z′′m)

Pm−1(z′′m)

F 0U |V Z(h
−1
0 (y

m, w∗)|s, z′′m)ds

=
Pr(U ≤ h−10 (y

m, w∗) ∩ Pm−1(z′′m) ≤ V ≤ P
m(z′′m))

pm(z′′m)

= F 0U |V Z(h
−1
0 (y

m, w∗)|V ∈ (Pm−1(z′′m), P
m(z′′m)])

= F 0U |Y (h
−1
0 (y

m, w∗)|ym).

This yields that u∗ = QcU |V Z(τU |τV , z
′
m) = QcU |V Z(τU |τV , z

′′
m) = Q0U |Y (τU |y

m), invariant
with respect to z ∈ zm.

3. S-LDRM :
Proof. Note that if Restriction S-LDRM is satisfied, Restriction LDRM is guaranteed to be

satisfied, thus, it is shown whether the constructed structure, Sc≡ {hc, F
c
U |V Z(u|v, z)}, satisfies

Restriction S-LDRM, omitting Restriction LDRM.

(1) First, it is noted that F cU |V Z(u|v, z) is monotonic in v, for u ∈ U and v ∈ V. This

is so since F cU |V Z(u|v, z) is defined as a step function. In the range of V only two constants
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(F 0W |Y Z(w
∗|ym, z), and F 0W |Y Z(w

m+1|ym+1, z)) should be considered, and with two constants,
monotonicity always holds.

(2) It needs to be shown that S-LDRM holds locally in U and V. That is, the sign of

hc(y
m+1, u∗) − hc(y

m, u∗), where u∗ ≡ QcU |V Z(τU |τV , z), needs to be established. We use

(O3) for this purpose. Note that by (A3-7) u∗ = h−1c (y
m, w

∗
), for some w∗ ∈ I(τ , ym, zm), and

that by (O2) we can express u∗ = h−1c (y
m, w∗) = h−1c (y

m+1, wm+1) for some wm+1, where
wm+1 = hc(y

m+1, h−1c (y
m, w∗)).

Consider u∗ = h−1c (y
m, w∗) ∈ U and v = Pm(z′′m)

44. Let τ ′′m be

τ ′′m ≡ F cU |V Z(u
∗|Pm(z′′m), z

′′
m)

= F cU |V Z(h
−1
c (y

m, w∗)|P
m
(z′′m), z

′′
m) (A3—6)

(S2)
= F 0W |Y Z(w

m|ym, z′′m) where w
m = hc(y

m, h−1c (y
m, w∗))(= w

∗
)

as k = m = l in (S2). Next consider u∗= h−1c (y
m+1

, wm+1) ∈U and v = Pm+1(z′′m). Let
τ ′′m+1 be:

τ ′′m+1 ≡ F cU |V Z(u
∗|Pm+1(z′′m), z

′′
m)

= F cU |V Z(h
−1
c (y

m+1, wm+1)|P
m+1

(z′′m), z
′′
m) (A3-7)

(S2)
= F 0W |Y Z(w

m+1|y
m+1

, z′′m),where w
m+1 = hc(y

m+1, h−1c (y
m+1, wm+1)),

as k = l = m+1 in (S2).Then consider u∗= h−1c (y
m+1

, wm+1) ∈U andPm(z′m) <v< P
m(z′′m),

we have

τ ≡ F cU |V Z(u
∗|v, z′′m)

= F cU |V Z(h
−1
c (y

m+1, wm+1)|v, z′′m) (A3-8)

(S2)
= F 0W |Y Z(w

m+1|y
m
, z′′m), where w

m+1 = hc(y
m+1, h−1c (y

m+1, wm+1)),

as k = m + 1 and l = m in (S2). Note Pm(z′m) ≤ P
m(z′′m) ≤ P

m+1(z′′m). Then PD implies
that

τ ′′m+1≤ τ
′′
m≤τ , (*PD)

since we are comparing the values of the three conditional distributions evaluated at the same value

u∗.ND implies that

τ ′′m+1≥ τ
′′
m≥τ . (*ND)

Note that (*PD) and (*ND) hold regardless of whether W is continuous or discrete.

44Note that if W is continuous, u∗ = h−1c (ym, w∗) = h−1c (ym+1, wm+1), where wm+1 =
hc(y

m+1, h−1c (ym, w∗)), that is, u∗ = ũ. If W is discrete, h−1c (ym, w∗) < h−1c (ym+1, wm+1), by
definition of h−1c in (*) in Part 1-A as h−1c (ym, w∗) indicates jumping points.
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We then express u∗, w∗(= wm) and wm+1 as quantiles of the distributions so that we can find
the order of the two, hc(y

m, u∗) and hc(y
m+1

, u∗) by utilizing (*PD) and (*ND). (A3-6)-(A3-8)
imply (A3-9) and (A3-10) under continuity of W and U :

u∗ ≡ h−1c (y
m+1, wm+1) = h−1c (y

m, w∗) (A3-9)

= QcU |V Z(τ
′′
m|P

m(z′′m), z
′′
m)

= QcU |V Z(τ
′′
m+1|P

m+1(z′′m), z
′′
m)

= QcU |V Z(τ |v, z
′′
m), for P

m(z′m) <v< P
m(z′′m)

wm(= w∗)
(a)
= Q0W |Y Z(τ

′′
m|y

m
, z′′m) (A3-10)

wm+1
(b)
= Q0W |Y Z(τ

′′
m+1|y

m+1
, z′′m)

(c)
= Q0W |Y Z(τ |y

m, z′′m)

(a) follows from (A3-6), (b) from (A3-7) and (c) is by (A3-8).

Finally we can determine the direction of the response : we have 45

hc(y
m
, u∗)− hc(y

m+1
, u∗), for u∗ ∈ U,

= hc(y
m
, QcU |V Z(τ

′′
m|P

m(z′′m), z
′′
m))− hc(y

m+1
, QcU |V Z(τ

′′
m+1|P

m+1(z′′m), z
′′
m))

= Q0W |Y Z(τ
′′
m|y

m
, z′′m)−Q

0
W |Y Z(τ

′′
m+1|y

m+1
, z′′m)

= Q0W |Y Z(τ
′′
m|y

m
, z′′m)−Q

0
W |Y Z(τ |y

m
, z′′m)(

≤ 0 if PD

≥ 0 if ND

)

the first equality is by (A3-9), the second equality is due to by (S1) (or (A3-6)), and the third

equality is by (c) in (A3-10). Then the inequality follows because τ ′′m≤τ (*PD), τ
′′
m≥τ (*ND),

and the property of quantiles.

A.4 Proof of Corollary 2

Proof. We show the case with PDPR. The other case, NDNR, can be shown similarly. Sup-
pose that QU |V Z(τU |v, z) is weakly increasing in v ∈ V, then by Restriction LDRM, PDPR is
assumed.We adopt Lemma 2 in Chesher (2005) whenm = 1 with P 0(z) = 0 and P 1(z) = P (z),
where P (z) = Pr(Y = 1|Z = z) and when m = 2 with P 2(z) = 1 and P 1(z) = P (z). We
denote z′ ≡ z′1 and z

′′ ≡ z′′1 that satisfy Restriction RC. Then we have

h(0, QU |V Z(τU |0, z
′)) ≤ QW |Y Z(τU |0, z

′) (A4-1)

≤ h(0, QU |V Z(τU |P (z
′), z′))

h(1, QU |V Z(τU |P (z
′′), z′′)) ≤ QW |Y Z(τU |1, z

′′) (A4-2)

≤ h(1, QU |V Z(τU |1, z
′′))

45Recall that this is the case for Pm−1(z′′) ≤ Pm(z′). The other case can be shown similarly.
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Let u∗≡ QU |V Z(τU |τV , z
′′
m), u ≡ QU |V Z(τU |P (z

′′), z′′), and u≡QU |V Z(τU |P (z
′), z′).Then

u∗, u, u ∈ U, with u ≤ u∗ ≤ u by Restriction RC. Note that u∗≡ QU |V Z(τU |τV , z
′) = QU |V Z(τU |τV , z

′′)
by Restriction CQ-I. Then by the same logic as Appendix A2, the upper bound on h(1, u∗) can be
found as

h(1, u∗) ≤ h(1, u) ≤ QW |Y Z(τU |1, z
′′)

where the first inequality is due to monotonicity of h in u and the second inequality is due to (A4-2).

Applying (A4-1) and Restriction LDRM yields the lower bound as follows

QW |Y Z(u|0, z
′) ≤ h(0, u) ≤ h(1, u∗). (A4-3)

where the first inequality is by (A4-1) and the second inequality is by Restriction LDRM.

Consider next the identification of h(0, u∗). Under Restriction RC, using Restriction LDRM
and (A4-2) we can find the upper bound on h(0, u∗)

h(0, u∗) ≤ h(1, u) ≤ QW |Y Z(τU |1, z
′′)

where the first inequality is due to Restriction LDRM and the second inequality is by (A4-2).

Similarly, the lower bound on h(0, u∗) can be found by

QW |Y Z(τU |0, z
′) ≤ h(0, u) ≤ h(0, u∗)

where the first inequality is by (A4-1) and the second is by monotonicity of h in u. Thus, we have

QW |Y Z(τU |0, z
′) ≤ h(0, u∗) ≤ QW |Y Z(τU |1, z

′′)

Note that the identified intervals for h(0, u∗) and h(1, u∗) are the same.

A.5 Lamma A1

Lemma A1 is used in proving Lemma 1 and Lemma 2.

Lemma A1. Let Qτyz ≡ QW |Y Z(τ |y, z). Then by definition of a quantile we have

τ = FW |Y Z(Q
τ
yz|Y = y, Z = z)

= Pr (W ≤ Qτyz|Y = y, Z = z)

= Pr (h(y, U) ≤ Qτyz|Y = y, Z = z)

= Pr (U ≤ h−1(y,Qτyz)|Y = y, Z = z).

A.6 Proof of Lemma 1

Proof. To show that PDPR iff QW |Y Z(τU |y
m
, z′m) ≤ QW |Y Z(τU |y

m+1
, z′′m), let Q

′′
m+1 and

Q′m indicate the values of τU− quantiles,Q
′
m≡ QW |Y Z(τU |y

m
, z′m) andQ

′′
m+1 ≡ QW |Y Z(τU |y

m+1, z′′m).
By Lemma A1 we have

τU=Pr (U ≤ h
−1(ym, Q′m)|Y = y

m
, Z = z′m) (A6-1)
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and

τU = Pr(U ≤ h
−1(ym+1, Q′′m+1)|Y = y

m+1, Z = z′′m). (A6-2)

Suppose PD. Then for46

Pm(z′m)− P
m−1(z′m) ≥ P

m(z′′m)− P
m+1(z′′m), (RCL1)

we have

τU = Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = y
m+1, Z = z′′m)

= Pr(U ≤ h−1(ym+1, Q′′m+1)|V ∈ (P
m(z′′m), P

m+1(z′′m)])

=

∫ Pm+1(z′′m)

Pm(z′′m)

FU |V Z(h
−1(ym+1, Q′′m+1)|s, z

′′
m)ds

≤

∫ Pm(z′m)

Pm−1(z′m)

FU |V Z(h
−1(ym+1, Q′′m+1)|s, z

′
m)ds,

= Pr(U ≤ h−1(ym+1, Q′′m+1)|V ∈ (P
m−1(z′m), P

m(z′m)])

= Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = y
m, Z = z′m) ≡ τU

where the first equality is due to Lemma A1, and the second equality follows from the fact that

the event {V ∈ (Pm(z′′m), P
m+1(z′′m)]} is equivalent to the event {Y = y

m+1, Z = z′′m}. The
third equality is by expressing the probability using the conditional distribution, FU |V Z , and the

last two equalities result from the same logic. The inequality is due to PD, Restriction RCL1 and

C-QI (this follows by comparing the areas under an weakly decreasing function over two distinct

intervals whose size is specified in Restriction RCL1). Then

τU ≤ τU . (A6-3)

From (A6-1) - (A6-3), we have

τU
(A6−1)
= Pr (U ≤ h−1(ym, Q′m)|Y = y

m
, Z = z′m)

(A6−2)
= Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = y

m+1, Z = z′′m)

(A6−3)

≤ Pr (U ≤ h−1(ym+1, Q′′m+1)|Y = y
m
, Z = z′m) ≡τU ,

the inequality follows since τU ≤ τU . This implies that

h−1(ym, Q′m) ≤ h
−1(ym+1, Q′′m+1)

46For a binary case, this holds if
P (z′) + P (z′′) ≥ 1
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by the nondecreasing property of distribution function, i.e., a ≤ a′ iff FA|B(a|b) ≤ FA|B(a
′|b).

Let u∗ ≡ h−1(ym, Q′m) and u
∗∗ ≡ h−1(ym+1, Q′′m+1). Then inverting h

−1 yields

Q′m = h(ym, u∗)

Q′′m+1 = h(ym+1, u∗∗).

By PDPR, we have

h(ym, u∗) ≤ h(ym+1, u∗∗),

which results in Q′m ≡ QW |Y Z(τU |y
m, z′m) ≤ Q

′′
m+1 ≡ QW |Y Z(τU |y

m+1, z′′m). That is, in the
case of PD if we restrict the interaction such that PD is matched with PR, we need to have

QW |Y Z(τU |y
m, z′m) ≤ QW |Y Z(τU |y

m+1, z′′m).

The other case, NDNR, can be shown similarly. Thus, we conclude that if we observe

QW |Y Z(τU |y
m
, z′m) ≤ QW |Y Z(τU |y

m+1
, z′′m),

PDPR is implied, and if we observe

QW |Y Z(τU |y
m
, z′m) ≥ QW |Y Z(τU |y

m+1
, z′′m),

NDNR is implied.

A.7 Proof of Lemma 2 : Testable Implications of the Model

Proof. Let Qzm and Qzm+1 indicate the value of τU− quantile, Qzm ≡ QW |Y Z(τU |y
m, z), and

Qzm+1 ≡ QW |Y Z(τU |y
m+1, z). Then by Lemma A1

τU=Pr (U ≤ h
−1(ym, Qzm)|Y = y

m
, Z = z) (A7-1)

τU=Pr (U ≤ h
−1(ym+1, Qzm+1)|Y = y

m+1
, Z = z). (A7-2)

Consider PD. Then for

Pm(z) ≥
1

2

[
Pm−1(z) + Pm+1(z)

]
, (RCL2)

we have

τU = Pr (U ≤ h−1(ym, Qzm)|Y = y
m
, Z = z) (A7-3)

= Pr (U ≤ h−1(ym, Qzm)|V ∈ (P
m−1(z), Pm(z)])

=

∫ Pm(z)

Pm−1(z)

FU |V Z(h
−1(ym, Qzm)|s, z)ds

≥

∫ Pm+1(z)

Pm(z)

FU |V Z(h
−1(ym, Qzm)|s, z)ds

= Pr (U ≤ h−1(ym, Qzm)|V ∈ (P
m(z), Pm+1(z)])

= Pr (U ≤ h−1(ym, Qzm)|Y = y
m+1

, Z = z) ≡τU . (A7-4)
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by the same logic as in Appendix A6. Note that Restriction CQ-I is not used in deriving inequality.

Then from (A7-2) and (A7-4), we have

τU = Pr (U ≤ h−1(ym+1, Qzm+1)|Y = y
m+1

, Z = z)

≥ Pr (U ≤ h−1(ym, Qzm)|Y = y
m+1

, Z = z) ≡τU

the inequality follows since τU ≤ τU . This implies that

h−1(ym, Qzm) ≤ h
−1(ym+1, Qzm+1)

by the nondecreasing property of a distribution function, i.e. a ≤ a′ iff FA|B(a|b) ≤ FA|B(a
′|b).

Let u∗ ≡ h−1(ym, Qzm) and u
∗∗ ≡ h−1(ym+1, Qzm+1). Then inverting h

−1 yields

Qzm = h(ym, u∗)

Qzm+1 = h(ym+1, u∗∗).

If PR is matched with PD, that is, if h(ym, u∗) ≤ h(ym+1, u∗∗) for u∗, u∗∗ ∈ U with u∗ ≤ u∗∗,
then we have

Qzm= h(y
m
, u∗) ≤ h(ym+1, u∗∗) = Qzm+1.

The cases for ND can be derived in a similar manner.
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