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We study the inhomogeneous semilinear parabolic equation

ut = ∆u + up + f(x),

with source term f independent of time and subject to f(x) � 0 and with
u(0, x) = ϕ(x) � 0, for the very general setting of a metric measure space. By
establishing Harnack-type inequalities in time t and some powerful estimates, we give
sufficient conditions for non-existence, local existence and global existence of weak
solutions, depending on the value of p relative to a critical exponent.

1. Introduction

In recent years, the study of partial differential equations on self-similar fractals
has attracted increasing interest (see, for example, [7–9, 13, 14]). We investigate a
class of nonlinear diffusions with source terms on general metric measure spaces.
Diffusion is of fundamental importance in many areas of physics, chemistry and
biology. Applications of diffusion include sintering, i.e. making solid materials from
powder (powder metallurgy, production of ceramics); catalyst design in the chemical
industry; diffusion of steel (e.g. with carbon or nitrogen) to modify its properties;
doping during production of semiconductors.

Let (M, d, µ) be a metric measure space, that is, (M, d) is a locally compact
separable metric space and µ is a Radon measure on M with full support. We
consider the following nonlinear diffusion equation with a source term f on (M, d, µ):

ut = ∆u + up + f(x), t > 0 and x ∈ M, (1.1)

with initial value
u(0, x) = ϕ(x), (1.2)

where p > 1 and f, ϕ : M → R are non-negative measurable functions. With an
appropriate interpretation of weak solutions of (1.1) on (M, d, µ), we shall investi-
gate the non-existence (or blow-up) of solutions, the local and global existence of
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weak solutions to (1.1) and (1.2), and the regularity of these solutions. Although
we were partly motivated by a series of earlier papers [1,9–11,15–17], there are new
ideas in this paper which allow conditions for the existence and non-existence of
nonlinear parabolic equations to be developed for the very general setting of metric
measure spaces.

Recall the definition of the heat kernel which will be central to our approach. For
(µ × µ)-almost all (x, y) ∈ M × M and for all t, s > 0, a function k(·, ·, ·) : R+ ×
M × M → R is called a heat kernel if the following conditions are satisfied.

(k1) Markov property: k(t, x, y) > 0, and
∫

M
k(t, x, y) dµ(y) � 1.

(k2) Symmetry: k(t, x, y) = k(t, y, x).

(k3) Semigroup property: k(s + t, x, z) =
∫

M
k(s, x, y)k(t, y, z) dµ(y).

(k4) Normalization: for all f ∈ L2(M, µ),

lim
t→0+

∫
M

k(t, x, y)f(y) dµ(y) = f(x) in the L2(M, µ)-norm.

We assume that the heat kernel k(t, x, y) considered in this paper is jointly
continuous in x, y, and hence the above formulae in (k1)–(k4) hold for every
(x, y) ∈ M × M .

Two typical examples of heat kernels in Rn are the Gauss–Weierstrass and the
Cauchy–Poisson kernels:

k(t, x, y) =
1

(4πt)n/2 exp
(

−|x − y|2
4t

)
,

k(t, x, y) =
Cn

tn

(
1 +

|x − y|2
t2

)−(n+1)/2

, Cn =
Γ ( 1

2 (n + 1))
π(n+1)/2 .

Jointly continuous sub-Gaussian heat kernels exist on many basic fractals, for exam-
ple, on the Sierṕınski gasket [4] and on Sierṕınski carpets [2, 3]. For other fractals,
see [12,13]. For non-sub-Gaussian heat kernels, see [5, 6].

A heat kernel k is called conservative if it satisfies the following.

(k5) Conservative property: ∫
M

k(t, x, y) dµ(y) = 1

for all t > 0 and all x ∈ M .

We will also assume that the heat kernel satisfies the following estimates.

(k6) Two-sided bounds: there exist constants α, β > 0 such that, for all t > 0 and
all x, y ∈ M ,

1
tα/β

Φ1

(
d(x, y)
t1/β

)
� k(t, x, y) � 1

tα/β
Φ2

(
d(x, y)
t1/β

)
, (1.3)

where Φ1 and Φ2 are strictly positive and non-increasing functions on [0,∞).
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The parameter α in (1.3) is the fractal dimension, and β is the walk dimension
of M (see, for example, [11]).

Two-sided estimates (1.3) hold on various fractals where

Φi(s) = Ci exp(−cis
β/(β−1)) for all s � 0

for constants Ci, ci > 0, i = 1, 2, and β > 2 is the walk dimension.
To prove the regularity of solutions, we need to assume that the heat kernel k is

Hölder continuous in the space variables.

(k7) Hölder continuity: there exist constants L > 0, ν � 1 and 0 < σ � 1 such
that

|k(t, x1, y) − k(t, x2, y)| � Lt−νd(x1, x2)σ

for all t > 0 and all x1, x2, y ∈ M .

Given a heat kernel k, the operator ∆ in (1.1) is interpreted as the infinitesimal
generator of the heat semigroup {Kt}t�0 in L2 := L2(M, µ). Thus, we let

Ktg(x) =
∫

M

k(t, x, y)g(y) dµ(y), t > 0, g ∈ L2, (1.4)

and define ∆ by

∆g = lim
t↓0

Ktg − g

t
in L2-norm. (1.5)

Observe that {Kt}t>0 is a strongly continuous and contractive semigroup in L2,
that is, for all s, t � 0 and all g ∈ L2,

Ks+t = KsKt,

lim
t→0+

‖Ktg − g‖2 = 0,

‖Ktφ‖q � ‖φ‖q for all 1 � q � ∞.

⎫⎪⎪⎬
⎪⎪⎭ (1.6)

The domain of ∆ is dense in L2. Note that the operator ∆ defined in this way is
not necessarily local, unlike in the classical case.

A function u(t, x) is termed a weak solution to (1.1), (1.2) if it satisfies the
following integral equation:

u(t, x) = Ktϕ(x) +
∫ t

0
Kτf(x) dτ +

∫ t

0
Kt−τup(τ, x) dτ, (1.7)

where Kt is the heat semigroup defined in (1.4).
We identify critical exponents for the problem which depend only on α and β:

p0 =

{
α/(α − β) if α > β,

+∞ if α � β.

In § 2 we show the non-existence of weak global solutions to (1.1), (1.2) for 1 < p �
p0. In § 3 we obtain various sufficient conditions for the local and global existence
of solutions for a range of parameters p, particularly global solutions for p > p0 for
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sufficiently small source terms f and initial values ϕ. Finally, in § 4 we investigate
the Hölder continuity of weak solutions.

Our results extend to a very general setting the familiar situation where M = Rn

and µ is n-dimensional Lebesgue measure, and where the heat kernel k is the Gauss–
Weierstrass function, so that ∆ is the usual Laplacian. In this case, α = n and β = 2,
with critical exponent p0 = ∞ if n � 2 and p0 = n/(n−2) if n > 2 (see [1,10,15,16]).
See also [9] for the case where M is a fractal and µ is an α-dimensional Hausdorff
measure, and where k is the Gauss-type heat kernel on M .

Notation. The letters C, Ci, i = 1, 2, . . . , denote positive constants whose values
are unimportant and may differ at different occurrences.

2. Non-existence of solutions

In this section we give sufficient conditions for the non-existence of essentially
bounded solutions. Writing ds for the spectral dimension ds = 2α/β, the exponents
p = 1+β/α = (ds+2)/ds (where α, β > 0) and p0 = α/(α−β) = ds/(ds−2), where
α > β > 0, which occur in the heat kernel bounds (1.3), play a crucial role in our
analysis (see theorem 2.2). First, we establish lemma 2.1, where condition (k6) is
our only assumption on the heat kernel k (we do not need the conservative property
of k at this stage).

The following properties of the functions Φ1 and Φ2 in condition (k6) may or may
not hold. There exist positive constants ai, bi and ci such that, for all s, t � 0,

Φ1(s) � a1Φ2(a2s), (2.1)
Φ2(s + t) � b1Φ2(b2s)Φ2(b3t), (2.2)

Φp
1(s) � c1Φ2(c2s). (2.3)

Note that if (2.1) holds, then 0 < a1 � 1 by letting s = 0 and using the fact that
Φ2(0) � Φ1(0). Without loss of generality, we may assume that a2 > 1 in (2.1),
since if (2.1) holds for some a2 � 1, it also holds for any constant a2 > 1 by the
monotonicity of Φ2.

The Gauss-type functions

Φ1(s) = C1 exp(−C2s
γ), Φ2(s) = C3 exp(−C4s

γ), s � 0, (2.4)

for constants γ > 0 and Ci > 0, 1 � i � 4 satisfy properties (2.1) and (2.3). The
Cauchy-type functions

Φ1(s) = C1(1 + s)−γ , Φ2(s) = C2(1 + s)−γ , s � 0 (2.5)

for constants γ > 0 and Ci > 0, i = 1, 2, satisfy properties (2.1) and (2.2), but not
(2.3) if p > 1.

Condition (k6) and inequality (2.1) lead to the following key lemma.

Lemma 2.1. Assume that the heat kernel k satisfies condition (k6) and (2.1). Then,
for all non-negative measurable functions g on M , and for all t > 0, x ∈ M ,

Ktg(x) � A1KBtg(x), (2.6)∫ t

0
Kτg(x) dτ � A2tKB2tg(x), (2.7)
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where A1 = a1a
−α
2 < 1, A2 = a1a

−2α
2 (1−a−β

2 ) < 1 and B = a−β
2 < 1. Consequently,

for all non-negative measurable functions ϕ,

Ktϕ(x) +
∫ t

0
Kτg(x) dτ � A[KB1tϕ(x) + tKB1 tg(x)], (2.8)

where A = min{A2
1, A2} < 1 and B1 = B2 = a−2β

2 .

Proof. It follows from condition (k6) and (2.1) that

Ktg(x) =
∫

M

k(t, x, y)g(y) dµ(y)

�
∫

M

1
tα/β

Φ1

(
d(x, y)
t1/β

)
g(y) dµ(y)

� a1

∫
M

1
tα/β

Φ2

(
a2

d(x, y)
t1/β

)
g(y) dµ(y). (2.9)

which, using (k6) again, yields

Ktg(x) � a1a
−α
2

∫
M

k(a−β
2 t, x, y)g(y) dµ(y)

= a1a
−α
2 Ka−β

2 tg(x)

= A1KBtg(x),

proving (2.6).
To show (2.7), we see from (2.9) that, for all τ ∈ [a−β

2 t, t], using the monotonicity
of Φ2 and condition (k6),

Kτg(x) � a1

∫
M

1
τα/β

Φ2

(
a2

d(x, y)
τ1/β

)
g(y) dµ(y)

� a1

∫
M

1
tα/β

Φ2

(
a2

d(x, y)

(a−β
2 t)1/β

)
g(y) dµ(y)

� a1a
−2α
2

∫
M

k(a−2β
2 t, x, y)g(y) dµ(y)

= a1a
−2α
2 KB2tg(x).

Therefore, ∫ t

0
Kτg(x) dτ �

∫ t

a−β
2 t

Kτg(x) dτ

�
∫ t

a−β
2 t

a1a
−2α
2 KB2tg(x) dτ

= a1a
−2α
2 (1 − a−β

2 )tKB2tg(x),

proving (2.7).
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Finally, replacing t by Bt, we see from (2.6) that

KBtϕ(x) � A1KB2tϕ(x) = A1KB1tϕ(x),

and thus,
Ktϕ(x) � A1KBtϕ(x) � AKB1tϕ(x). (2.10)

Adding (2.7) and (2.10), we obtain (2.8).

Lemma 2.1 gives the following estimate (2.11) that plays an important role in
proving the non-existence of global bounded solutions.

Theorem 2.2. Assume that the heat kernel k satisfies conditions (k6) and (2.1).
Let u(t, x) be a non-negative essentially bounded solution of (1.7) in (0, T ) × M .
Then, for all (t, x) ∈ (0, T ) × M ,

t1/(p−1)KB1tϕ(x) + tp/(p−1)KB1tf(x) � C1, (2.11)

where B1 = a−2β
2 as before, and C1 depends only on p, a1 and a2 (and, in particular,

is independent of T, ϕ and f).

Proof. Observe that, by condition (k1) and using a weighted Hölder inequality, for
all t > 0, x ∈ M , and for all non-negative functions g,

Kt(gp)(x) =
∫

M

k(t, x, y)gp(y) dµ(y)

�
[ ∫

M

k(t, x, y)g(y) dµ(y)
]p

= [Ktg(x)]p.

It follows from (1.7) and (2.10) that

u(t, x) �
∫ t

0
Kt−τup(τ, x) dτ

� A

∫ t

0
KB1(t−τ)u

p(τ, x) dτ

� A

∫ t

0
[KB1(t−τ)u(τ, x)]p dτ. (2.12)

From (1.7) and (2.8), we see that

u(t, x) � Ktϕ(x) +
∫ t

0
Kτf(x) dτ

� A(KB1tϕ(x) + tKB1tf(x)). (2.13)

Starting from (2.13), we shall apply (2.12) repeatedly to deduce the desired inequal-
ity (2.11). Indeed, we obtain from (2.12) and (2.13) that, using the semigroup prop-
erty (1.6) of {Kt}t�0 and the elementary inequality (a + b)p � ap + bp for all p � 1
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and a, b � 0,

u(t, x) � A

∫ t

0
[KB1(t−τ)u(τ, x)]p dτ

� A

∫ t

0
[KB1(t−τ){A(KB1τϕ + τKB1τf)}(x)]p dτ

= Ap+1
∫ t

0
[KB1tϕ(x) + τKB1tf(x)]p dτ

� Ap+1
{

t(KB1tϕ(x))p +
∫ t

0
τp(KB1tf(x))p dτ

}

= Ap+1
{

t(KB1tϕ(x))p +
1

1 + p
t1+p(KB1tf(x))p

}
.

Repeating the above procedure, we obtain that, for all n � 1,

u(t, x) � A1+p+···+pn

{
t1+p+···+pn−1

[KBtϕ(x)]p
n

(1 + p)pn−2(1 + p + p2)pn−3 · · · (1 + p + · · · + pn−1)

+
t1+p+···+pn

[KBtf(x)]p
n

(1 + p)pn−1(1 + p + p2)pn−2 · · · (1 + p + · · · + pn)

}
.

It follows that

A(pn+1−1)/(p−1)pn

t(p
n−1)/(p−1)pn

KBtϕ(x) � u(t, x)p−n
n∏

i=2

(1 + p + · · · + pi−1)p−i

,

(2.14)

A(pn+1−1)/(p−1)pn

t(p
n+1−1)/(p−1)pn

KBtf(x) � u(t, x)p−n
n∏

i=1

(1 + p + · · · + pi)p−i

.

(2.15)

Since

log
n∏

i=2

(1 + p + · · · + pi−1)p−i �
∞∑

i=2

1
pi

log(ipi) < +∞,

log
n∏

i=1

(1 + p + · · · + pi)p−i �
∞∑

i=1

1
pi

log((i + 1)pi) < +∞,

and that u(t, x) is essentially bounded on (0, T )×M , we pass to the limit as n → ∞
in (2.14) and (2.15), and conclude that

t1/(p−1)KBtϕ(x) � 1
2C1, (2.16)

tp/(p−1)KBtf(x) � 1
2C1 (2.17)

for some C1 > 0. Adding (2.16) and (2.17), we obtain (2.11).

We are now in a position to obtain the main results of this section.
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Theorem 2.3. Assume that the heat kernel k satisfies conditions (k6) and (2.1).
Then the problem (1.1), (1.2) does not have any essentially bounded global solution
in each of the following cases:

(i) if p < 1 + β/α and if either ϕ(x) � 0 or f(x) � 0;

(ii) if α � β and if f(x) � 0;

(iii) if α > β and p < α/(α − β)(> 1 + β/α) and if f(x) � 0.

Proof. We prove the results by contradiction. Assume that u(t, x) is a non-negative
essentially bounded global solution. Replacing B1t by t, we see from (2.11) that,
for all x ∈ M and t > 0,

t1/(p−1)Ktϕ(x) + tp/(p−1)Ktf(x) � C1, (2.18)

where 0 < C1 < ∞ is independent of ϕ and f .

Proof of case (i). If ϕ(x) � 0, we see from (k6), using Fatou’s lemma, that

lim inf
t→∞

tα/βKtϕ(x) � lim inf
t→∞

∫
M

Φ1

(
d(x, y)
t1/β

)
ϕ(y) dµ(y) � C2,

where C2 = 1 if ‖ϕ‖1 = ∞, and C2 = Φ1(0)‖ϕ‖1 if ‖ϕ‖1 < ∞. However, as

1
p − 1

>
α

β
,

this is impossible by using (2.18). Hence, (1.1), (1.2) do not have any global essen-
tially bounded solution.

If f(x) � 0, observe that u(t+ t0, x) is a weak solution of (1.7) with initial datum
ϕ(x) = u(t0, x). We may find t0 > 0 such that u(t0, x) � 0. Repeating the above
argument, we again see that (1.1), (1.2) do not have any global essentially bounded
solution.

Proof of case (ii). Observe that, by (1.7) and (2.7),

u(t, x) �
∫ t

0
Kτf(x) dτ � A2tKB1tf(x). (2.19)

We distinguish two cases: α < β and α = β.

Case 1 (α < β). It follows from (2.19) and (k6) that

lim inf
t→∞

t(α/β)−1u(t, x) � A2 lim inf
t→∞

tα/βKB1tf(x)

� A2 lim inf
t→∞

tα/β

∫
M

1
(B1t)α/β

Φ1

(
d(x, y)

(B1t)1/β

)
f(y) dµ(y)

� C3, (2.20)

where C3 = 1 if ‖f‖1 = ∞ and C3 = A2B
−α/β
1 Φ1(0) > 0 if ‖f‖1 < ∞. However,

since u is globally essentially bounded and α/β < 1, we see that

lim inf
t→∞

t(α/β)−1u(t, x) = 0,

which is a contradiction.
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Case 2 (α = β). For t > 1, it follows from (k6), (2.1) and the monotonicity of Φ2
that

u(t, x) �
∫ t

0
Kτf(x) dτ

�
∫ t

0
dτ

∫
M

τ−1Φ1

(
d(x, y)
τ1/β

)
f(y) dµ(y)

� a1

∫ t

1
dτ

∫
M

τ−1Φ2

(
a2

d(x, y)
τ1/β

)
f(y) dµ(y)

� a1

∫ t

1
τ−1 dτ

∫
M

Φ2(a2d(x, y))f(y) dµ(y). (2.21)

Since f(x) � 0, we can find a point x ∈ M such that∫
M

Φ2(a2d(x, y))f(y) dµ(y) > 0.

Passing to the limit as t → ∞ in (2.21), this contradicts that u is globally essentially
bounded.

Proof of case (iii). It follows from (2.18) and (k6) that

lim inf
t→∞

C1t
α/β−p/(p−1) � lim inf

t→∞
tα/βKtf(x)

� lim inf
t→∞

∫
M

Φ1

(
d(x, y)
t1/β

)
f(y) dµ(y) � C4,

where C4 = 1 if ‖f‖1 = ∞ and C4 = Φ1(0)‖f‖1 if ‖f‖1 < ∞. However, this is
impossible since α/β − p/(p − 1) < 0. The proof is complete.

In theorem 2.3, we do not know in general whether there exists any essentially
bounded global solution for the two critical cases p = 1 + β/α, α, β > 0, and
p = α/(α − β), α > β > 0.

However, theorem 2.3(i) may be improved to include the critical exponent p =
1 + β/α under further assumptions (2.2) and (2.3) on the heat kernel k. We first
need the following property.

Proposition 2.4. If Φ2 satisfies (2.2), then, for all t > 0 and all x, y ∈ M ,

Φ2(d(x, y)t−1/β)
Φ2(b2d(x, 0)t−1/β)

� b1Φ2(b3d(y, 0)t−1/β), (2.22)

where the constants bi, i = 1, 2, 3, are as in (2.2).

Proof. Since Φ2 is strictly positive and decreasing on [0,∞) and d(x, y) � d(x, 0)+
d(y, 0), we have

Φ2(d(x, y)t−1/β) � Φ2(d(x, 0)t−1/β + d(y, 0)t−1/β). (2.23)

It follows from (2.2) that

Φ2(d(x, 0)t−1/β + d(y, 0)t−1/β) � b1Φ2(b2d(x, 0)t−1/β)Φ2(b3d(y, 0)t−1/β),

which combines with (2.23) to give (2.22).
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Theorem 2.5. Assume that the heat kernel k satisfies conditions (k5), (k6) and
(2.1)–(2.3). Then (1.1), (1.2) does not have any essentially bounded global solutions
if p � 1 + β/α and if either ϕ(x) � 0 or f(x) � 0.

Proof. In view of part (i) of theorem 2.3, it is sufficient to consider the critical
exponent p = 1 + β/α. We only consider the case ϕ(x) � 0 (the case f(x) � 0 may
be treated in a similar way). Then (2.18) becomes

tα/βKtϕ(x) + t1+α/βKtf(x) � C1.

From condition (k6), ∫
M

ϕ(y) dµ(y) � C2, (2.24)

where C2 = C1/Φ1(0). For any t0 > 0, the function v(t, x) ≡ u(t + t0, x) is a weak
solution to (1.7) with initial datum ϕ(x) = u(t0, x). Repeating the procedure of
(2.24), we have that, for all t0 > 0,∫

M

u(t0, y) dµ(y) � C2. (2.25)

We claim that there exist positive constants γ, ρ possibly depending on t0 and ϕ
such that, for all x ∈ M ,

u(t0, x) � ρk(γ, x, 0). (2.26)

To see this, observe that

Φ2(d(x, 0)γ−1/β) � k(γ, x, 0)γα/β ,

and thus, using (2.22) and setting γ = (a1b2)−βt0,

Φ2(a2d(x, y)t−1/β
0 ) � b1Φ2(a1b3d(y, 0)t−1/β

0 )Φ2(a1b2d(x, 0)t−1/β
0 )

� b1Φ2(a1b3d(y, 0)t−1/β
0 )k(γ, x, 0)γα/β .

Using (1.7) and (2.1),

u(t0, x) �
∫

M

k(t0, x, y)ϕ(y) dµ(y)

� t
−α/β
0

∫
M

Φ1(d(x, y)t−1/β
0 )ϕ(y) dµ(y)

� a1t
−α/β
0

∫
M

Φ2(a2d(x, y)t−1/β
0 )ϕ(y) dµ(y)

� a1b1

(
γ

t0

)α/β

k(γ, x, 0)
∫

M

Φ2(a1b3d(y, 0)t−1/β
0 )ϕ(y) dµ(y),

hence, inequality (2.26) holds by setting

ρ := a1b1

(
γ

t0

)α/β ∫
M

Φ2(a1b3d(y, 0)t−1/β
0 )ϕ(y) dµ(y),

proving our claim.
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Consider v(t, x) ≡ u(t + t0, x) such that u(t0, x) � 0. Applying (2.26), we obtain

v(t, x) �
∫

M

k(t, x, y)u(t0, y) dµ(y) � ρ

∫
M

k(t, x, y)k(γ, y, 0) dµ(y)

= ρk(t + γ, x, 0),

which yields, using (1.7), (k5) and Fubini’s theorem, that∫
M

v(t, x) dµ(x) �
∫

M

dµ(x)
∫ t

0
dτ

∫
M

k(t − τ, x, y)vp(τ, y) dµ(y)

=
∫ t

0
dτ

∫
M

vp(τ, y) dµ(y)

� ρp

∫ t

0
dτ

∫
M

kp(τ + γ, y, 0) dµ(y). (2.27)

As p = 1 + β/α, we see from (2.3) and (k6) that

kp(τ + γ, y, 0) � (τ + γ)−(1+α/β)Φp
1(d(y, 0)(τ + γ)−1/β)

� c1(τ + γ)−(1+α/β)Φ2(c2d(y, 0)(τ + γ)−1/β)

= c1c
−α
2 (τ + γ)−1[c−β

2 (τ + γ)]−α/βΦ2(c2d(y, 0)(τ + γ)−1/β)

� c1c
−α
2 (τ + γ)−1k(c−β

2 (τ + γ), y, 0),

which combines with (2.27) to give∫
M

v(t, x) dµ(x) � c1c
−α
2 ρp

∫ t

0
(τ + γ)−1 dτ. (2.28)

Passing to the limit as t → ∞, we conclude that∫
M

v(t, x) dµ(x) → ∞,

which contradicts (2.25).

3. Existence of solutions

In this section we give sufficient conditions for local existence and global existence
of weak solutions.

Theorem 3.1 (local existence). Suppose that the heat kernel k satisfies (k6). Let
b(t) be a continuously differentiable function on [0, T0) satisfying

b′(t) = bp(t)
[ ∫ t

0

‖Kτf‖∞
b(τ)

dτ + ‖Ktϕ‖∞

]p−1

(3.1)

with initial value b(0) = 1. If∫ T0

0

[ ∫ s

0

‖Kτf‖∞
b(τ)

dτ + ‖Ksϕ‖∞

]p−1

ds � 1
p − 1

, (3.2)

then (1.1), (1.2) has a non-negative local solution u ∈ L∞((0, T ), M) for all 0 <
T < T0, provided that ‖ϕ‖∞ < ∞.
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Remark 3.2. By Peano’s theorem, there exists some T0 > 0 and some continuous
differentiable function b(t) such that (3.1) holds in [0, T0). Clearly, such a b(t) is
non-decreasing in [0, T0). On the other hand, condition (3.2) may be verified for
some specific cases. For example, if (k5) holds and if f = 0, ϕ = C > 0, then

b(t) = [1 − (p − 1)Cp−1t]−1/(p−1)

satisfies (3.1) in [0, T0), where T0 = (p − 1)−1C−(p−1), and (3.2) also holds. As
another example, let f = 1, ϕ = 0 and assume that (k5) holds. Then, for p = 2, we
see that b(t) = 1/(cos t) satisfies (3.1) for t ∈ [0, 1

2π), and that (3.2) holds.

Proof. Define

a(t) = b(t)
∫ t

0

‖Kτf‖∞
b(τ)

dτ.

Note that a(0) = 0 and a(t) � 0 for t ∈ [0, T0). Incorporating this into (3.1), we get

b′(t) = b(t)[a(t) + b(t)‖Ktϕ‖∞]p−1.

Moreover,

a′(t) = ‖Ktf‖∞ +
b′(t)a(t)

b(t)
= ‖Ktf‖∞ + a(t)[a(t) + b(t)‖Ktϕ‖∞]p−1.

Together with the initial conditions, these differential equations are equivalent to

a(t) =
∫ t

0
‖Kτf‖∞ dτ +

∫ t

0
a(τ)(a(τ) + b(τ)‖Kτϕ‖∞)p−1 dτ, (3.3)

b(t) = 1 +
∫ t

0
b(τ)(a(τ) + b(τ)‖Kτϕ‖∞)p−1 dτ. (3.4)

Let H be the family of continuous functions u satisfying

Ktϕ(x) � u(t, x) � a(t) + b(t)Ktϕ(x) for all (t, x) ∈ [0, T0) × M. (3.5)

Define

Fu(t, x) = Ktϕ(x) +
∫ t

0
Kτf(x) dτ +

∫ t

0
Kt−τup(τ, x) dτ. (3.6)

We claim that if u ∈ H, then Fu ∈ H, that is,

Ktϕ(x) � Fu(t, x) � a(t) + b(t)Ktϕ(x), 0 � t < T0, x ∈ M. (3.7)

Using (k1), observe that∫ t

0
Kt−τ [a(τ) + b(τ)Kτϕ]p(x) dτ

=
∫ t

0
dτ

∫
M

k(t − τ, x, y)[a(τ) + b(τ)Kτϕ(y)]p dµ(y)

�
∫ t

0
[a(τ) + b(τ)‖Kτϕ‖∞]p−1[a(τ) + b(τ)Ktϕ(x)] dτ.
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It follows from (3.6) and (3.5) that

Fu(t, x) � Ktϕ(x) +
∫ t

0
Kτf(x) dτ +

∫ t

0
Kt−τ [a(τ) + b(τ)Kτϕ]p(x) dτ

�
[ ∫ t

0
‖Kτf‖∞ dτ +

∫ t

0
a(τ)[a(τ) + b(τ)‖Kτϕ‖∞]p−1 dτ

]

+
[
1 +

∫ t

0
b(τ)[a(τ) + b(τ)‖Kτϕ‖∞]p−1 dτ

]
Ktϕ(x)

= a(t) + b(t)Ktϕ(x)

using (3.3) and (3.4), so (3.7) holds, proving our claim.
For n = 0, 1, 2, . . . , define

u0(t, x) = Ktϕ(x),
un+1(t, x) = Fun(t, x).

Using (3.6) inductively, it follows that the sequence {un(t, x)} is non-decreasing
in n, and, for all n � 0 and all x ∈ M and t ∈ [0, T0), satisfies

Ktϕ(x) � un(t, x) � a(t) + b(t)Ktϕ(x).

Let u(t, x) := limn→∞ un(t, x). Note that Ktϕ(x) � u(t, x) � a(t) + b(t)Ktϕ(x).
Using the monotone convergence theorem, we have

lim
n→∞

∫ t

0
dτ

∫
M

k(t − τ, x, y)up
n(τ, y) dµ(y) =

∫ t

0
dτ

∫
M

k(t − τ, x, y)up(τ, y) dµ(y).

Since un(t, x) satisfies

un+1(t, x) = Ktϕ(x) +
∫ t

0
Kτf(x) dτ +

∫ t

0
Kt−τup

n(τ, x) dτ, (3.8)

we pass to the limit as n → ∞ to obtain

u(t, x) = Ktϕ(x) +
∫ t

0
Kτf(x) dτ +

∫ t

0
Kt−τup(τ, x) dτ,

which shows that u(t, x) is a non-negative local solution of (1.1), (1.2) for t ∈ [0, T0).
Since a(t), b(t) are differentiable functions on [0, T0), we see from (3.5) that, for

all t ∈ [0, T0),
‖u(t, ·)‖∞ � ‖a(t) + b(t)Ktϕ‖∞ < ∞.

The proof is complete.

Recall that, by theorem 2.3, (1.1), (1.2) do not have any essentially bounded
global weak solution if α > β and p < α/(α − β) and if f(x) � 0. However, we can
show that (1.1), (1.2) possess an essentially bounded global solution if p > α/(α−β),
for small functions f and ϕ (cf. [17] for Euclidean spaces). To do this, we need some
integral estimates which are consequences of measure bounds for small and large
balls.
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Recall that a measure µ on a metric measure space is upper α-regular if there
exist some C, α > 0 such that

µ(B(x, r)) � Crα for all x ∈ M, r > 0, (3.9)

and is α-regular if there exists a constant C > 0 such that, for all x ∈ M and all
r > 0,

C−1rα � µ(B(x, r)) � Crα for all x ∈ M, r > 0. (3.10)

It was shown in [11, theorem 3.2] that if the heat kernel k satisfies (k5) and (k6)
with Φ2(s) satisfying ∫ ∞

0
sα−1Φ2(s) ds < ∞, (3.11)

then the measure µ is α-regular. Note that, by the monotonicity of Φ2, condi-
tion (3.11) implies that sαΦ2(s) � C < ∞ for all s ∈ [0,∞).

Proposition 3.3. Assume that µ is upper α-regular and x0 is a reference point in
M . If 0 < λ1 < α and λ1 + λ2 > α, then there exists a constant C0 > 0 such that∫

M

1
d(y, x)λ1 [1 + d(y, x0)λ2 ]

dµ(y) � C0 for all x ∈ M. (3.12)

Proof. For each x ∈ M , let Ω1 = {y ∈ M : d(y, x) � d(y, x0)} and Ω2 = M \ Ω1.
Then∫

Ω1

1
d(y, x)λ1 [1 + d(y, x0)λ2 ]

dµ(y) �
∫

M

1
d(y, x0)λ1 [1 + d(y, x0)λ2 ]

dµ(y)

and ∫
Ω2

1
d(y, x)λ1 [1 + d(y, x0)λ2 ]

dµ(y) �
∫

M

1
d(y, x)λ1 [1 + d(y, x)λ2 ]

dµ(y).

Routine estimates using upper regularity (3.9) now give uniform bounds on these
integrals near x0 and x (since λ1 < α) and, for large d(y, x0) and d(y, x) (since
λ1 + λ2 > α), to give (3.12).

Proposition 3.4. Assume that µ is upper α-regular and x0 is a reference point in
M . If 0 < λ1 < α and λ2 > α, then there exists a constant C1 > 0 such that∫

M

1
d(y, x)λ1 [1 + d(y, x0)λ2 ]

dµ(y) � C1

1 + d(x, x0)λ1
. (3.13)

Proof. Fix x ∈ M . If d(x, x0) � 1, then (3.13) directly follows from (3.12), since∫
M

1
d(y, x)λ1 [1 + d(y, x0)λ2 ]

dµ(y) � C0 � 2C0

1 + d(x, x0)λ1
.

Assume that d(x, x0) � 1. If d(y, x0) � 1
2d(x, x0), we have that

1
1 + d(y, x0)λ2

� C

[1 + d(y, x0)λ2−λ1 ][1 + d(x, x0)λ1 ]
,
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where C is independent of x0, y. Using proposition 3.3, it follows that∫
d(y,x0)�d(x,x0)/2

1
d(y, x)λ1 [1 + d(y, x0)λ2 ]

dµ(y)

� C

1 + d(x, x0)λ1

∫
d(y,x0)�d(x,x0)/2

1
d(y, x)λ1 [1 + d(y, x0)λ2−λ1 ]

dµ(y)

� C1

1 + d(x, x0)λ1
. (3.14)

If d(y, x0) < 1
2d(x, x0), then

d(y, x)−λ1 � [d(x, x0) − d(y, x0)]−λ1 � [ 12d(x, x0)]−λ1 � 2λ1+1

1 + d(x, x0)λ1
, (3.15)

and hence,∫
d(y,x0)<d(x,x0)/2

1
d(y, x)λ1 [1 + d(y, x0)λ2 ]

dµ(y) � C2

1 + d(x, x0)λ1
, (3.16)

where we have used that∫
M

1
1 + d(y, x0)λ2

dµ(y) < ∞ as λ2 > α.

Adding (3.14) and (3.16), we see that (3.13) also holds if d(x, x0) � 1.

We now show the global existence of weak solutions for small ϕ and f .

Theorem 3.5 (global existence). Let α > β > 0 and suppose that the heat kernel k
satisfies (k5), (k6) and that Φ2 satisfies (3.11). Let λ > α and let x0 be a reference
point in M . Then, for each p > α/(α − β), there exists δ > 0 such that if

0 < ϕ(x), f(x) � δ

1 + d(x, x0)λ
,

then (1.1), (1.2) has an essentially bounded global solution.

Proof. Recall that conditions (k5), (k6) and (3.11) imply that µ is α-regular. Let
the map F be defined as in (3.6):

Fu(t, x) = Ktϕ(x) +
∫ t

0
Kτf(x) dτ +

∫ t

0
Kt−τup(τ, x) dτ.

For ε > 0, let Sε be the complete subset of the Banach space L∞([0,∞)×M) given
by

Sε =
{

u ∈ L∞([0,∞) × M) : 0 � u(t, x) � ε

1 + d(x, x0)α−β

}
.

We will use the contraction principle to show that, for appropriately small ε and δ,
there exists a global solution in Sε.

For λ > α, we claim that there exists C2 > 0 such that, for all 0 � g(x) �
δ/(1 + d(x, x0)λ), we have

Ktg(x) � C2δ

1 + d(x, x0)α
for all x ∈ M and all t > 0. (3.17)
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To see this, let x ∈ M . If d(x, x0) � 1, then (3.17) is clear, since

Ktg(x) =
∫

M

k(t, x, y)g(y) dµ(y)

�
∫

M

δ

1 + d(y, x0)λ
k(t, x, y) dµ(y)

� δ

∫
M

k(t, x, y) dµ(y) � δ

� 2δ

1 + d(x, x0)α
.

So assume d(x, x0) > 1. Using condition (k6), we have that

Ktg(x) �
∫

M

δ

1 + d(y, x0)λ
k(t, x, y) dµ(y)

� δ

{ ∫
Ω1

1
1 + d(y, x0)λ

1
tα/β

Φ2

(
d(y, x)
t1/β

)
dµ(y)

+
∫

Ω2

1
1 + d(y, x0)λ

k(t, x, y) dµ(y)
}

, (3.18)

where Ω1 = {y ∈ M : d(y, x0) � 1
2d(x, x0)} and Ω2 = M \ Ω1. For y ∈ Ω1, noting

from (3.11) that sαΦ2(s) is bounded, we have

1
tα/β

Φ2

(
d(y, x)
t1/β

)
=

1
d(y, x)α

(
d(y, x)
t1/β

)α

Φ2

(
d(y, x)
t1/β

)

� C

d(y, x)α
� 2αC

d(x, x0)α

� 2α+1C

1 + d(x, x0)α
,

and hence, using ∫
M

dµ(y)
1 + d(y, x0)λ

< +∞ for λ > α,

we have∫
Ω1

1
1 + d(y, x0)λ

1
tα/β

Φ2

(
d(y, x)
t1/β

)
dµ(y) � 2α+1C

1 + d(x, x0)α

∫
Ω1

dµ(y)
1 + d(y, x0)λ

� C

1 + d(x, x0)α
. (3.19)

For y ∈ Ω2,∫
Ω2

1
1 + d(y, x0)λ

k(t, x, y) dµ(y) � 2λ

1 + d(x, x0)λ

∫
Ω2

k(t, x, y) dµ(y)

� C

1 + d(x, x0)α
. (3.20)
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using that λ > α. Adding (3.19) and (3.20), we see that (3.17) follows from (3.18),
proving our claim.

Observe that, by (k6) and (3.11),∫ t

0
k(τ, x, y) dτ �

∫ t

0

1
τα/β

Φ2

(
d(y, x)
τ1/β

)
dτ

=
β

d(y, x)α−β

∫ ∞

d(x,y)/t1/β

sα−β−1Φ2(s) ds

� β

d(y, x)α−β

∫ ∞

0
sα−β−1Φ2(s) ds

� C

d(y, x)α−β
, (3.21)

since ∫ ∞

0
sα−β−1Φ2(s) ds � Φ2(0)

∫ 1

0
sα−β−1 ds +

∫ ∞

1
sα−1Φ2(s) ds < +∞,

using the monotonicity of Φ2 and (3.11).
Therefore, using (3.21) and (3.13) with λ1 = α − β > 0 and λ2 = λ > α,∫ t

0
Kτf(x) dτ =

∫
M

[ ∫ t

0
k(τ, x, y) dτ

]
f(y) dµ(y)

�
∫

M

C

d(y, x)α−β

δ

(1 + d(y, x0)λ)
dµ(y)

� Cδ

1 + d(x, x0)α−β
(3.22)

for all x ∈ M and t > 0. Similarly, for u ∈ Sε, using (3.13) with λ1 = α − β,
λ2 = p(α − β) > α, we have that∫ t

0
Kt−τup(τ, x) dτ �

∫ t

0

∫
M

k(t − τ, x, y)
εp

(1 + d(y, x0)α−β)p
dµ(y) dτ

�
∫

M

C

d(y, x)α−β

εp

(1 + d(y, x0)α−β)p
dµ(y)

� Cεp

∫
M

1
d(y, x)α−β

1
1 + d(y, x0)(α−β)p dµ(y)

� Cεp

1 + d(x, x0)α−β
(3.23)

for all x ∈ M and t > 0. It follows from (3.17), (3.22) and (3.23) that if u ∈ Sε,
then

Fu(t, x) � C2δ

1 + d(x, x0)α
+

Cδ + Cεp

1 + d(x, x0)α−β

� C1(δ + εp)
1 + d(x, x0)α−β

� ε

1 + d(x, x0)α−β

provided that C1(δ + εp) � ε, in which case FSε ⊂ Sε.
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Next we show that F is contractive on Sε. Indeed, for u1, u2 ∈ Sε, we have

|Fu1(t, x) − Fu2(t, x)| �
∫ t

0

∫
M

k(t − τ, x, y)|up
1(τ, y) − up

2(τ, y)| dµ(y) dτ.

Using the elementary inequality

|ap − bp| � p max{ap−1, bp−1}|a − b| for a, b � 0, p > 1,

and the definition of Sε, we obtain, using (3.21) and (3.12), that

|Fu1(t, x) − Fu2(t, x)|

� ‖u1 − u2‖∞

∫ t

0

∫
M

k(t − τ, x, y)
pεp−1

[1 + d(y, x0)α−β ]p−1 dµ(y) dτ

� ‖u1 − u2‖∞

∫
M

C

d(y, x)α−β

pεp−1

1 + d(y, x0)(α−β)(p−1) dµ(y)

� C3pεp−1‖u1 − u2‖∞.

Thus, if ε is small enough to ensure that both C3pεp−1 < 1 and C1ε
p < ε, and then

if δ is chosen small enough so that C1(δ + εp) � ε, applying Banach’s contraction
principle to F on the complete set Sε implies that (1.7), and thus (1.1), (1.2) have
a global positive solution in Sε.

4. Regularity

In this section we discuss the regularity of weak solutions. We show that weak
solutions are Hölder continuous in the spatial variable x if the source term f and
initial value ϕ are both Hölder continuous. We adapt the method used in [9].

In order to obtain the regularity of weak solutions, we need to assume that the
function Φ2 in condition (k6) satisfies the following assumption:∫ ∞

0
sαΦ2(s) ds < ∞, (4.1)

where α is as in condition (k6). Since Φ2 is non-increasing on [0,∞), condition (4.1)
implies that s1+αΦ2(s) = o(1) as s → ∞.

Clearly, the Gauss-type function Φ2 defined as in (2.4) satisfies condition (4.1)
for all γ > 0, while the Cauchy-type function Φ2 defined as in (2.5) satisfies condi-
tion (4.1) for all γ > 1 + α.

Note that condition (4.1) is stronger than (3.11), and hence it implies that µ is
α-regular.

Proposition 4.1. Assume that µ is upper α-regular. If Φ2 satisfies (4.1), then, for
all λ ∈ (0, 1],∫

M

d(x, y)λΦ2

(
d(x, y)
t1/β

)
dµ(y) � C2t

(α+λ)/β for all x ∈ M, t > 0, (4.2)

for some constant C2.
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Proof. Let g(r) = rλΦ2(r/t1/β) for r > 0. From (4.2), g(r) = o(r−α) so, by a
standard argument using α-regularity and integration by parts [9, proposition 4.1],
it follows that∫

M

d(x, y)λΦ2

(
d(x, y)
t1/β

)
dµ(y)

=
∫

M

g(d(x, y)) dµ(y)

� C1

∫ ∞

0
rα|g′(r)| dr

= C1

∫ ∞

0
rα

∣∣∣∣λrλ−1Φ2

(
r

t1/β

)
+ rλΦ′

2

(
r

t1/β

)
t−1/β

∣∣∣∣ dr

� C2t
(α+λ)/β

[ ∫ ∞

0
λsα+λ−1Φ2(s) ds +

∫ ∞

0
sα+λ(−Φ′

2(s)) ds

]
.

By an easy calculation, the last integral∫ ∞

0
sα+λ(−Φ′

2(s)) ds = −sα+λΦ2(s)|∞0 + (α + λ)
∫ ∞

0
sα+λ−1Φ2(s) ds

= (α + λ)
∫ ∞

0
sα+λ−1Φ2(s) ds

� C3

using (4.1). Therefore,

∫
M

d(x, y)λΦ

(
d(x, y)
t1/β

)
dµ(y) � C2t

(α+λ)/β ,

as desired.

We now show the Hölder continuity of weak solutions of (1.7).

Theorem 4.2 (Hölder continuity). Assume that ϕ, f ∈ L1(M) are Hölder contin-
uous with exponents θ1, θ2 ∈ (0, 1], respectively. Then, for all x1, x2 ∈ M ,

|ϕ(x1) − ϕ(x2)| � C5d(x1, x2)θ1 , (4.3)

|f(x1) − f(x2)| � C6d(x1, x2)θ2 , (4.4)

where C5, C6 > 0. Assume that the heat kernel k satisfies (k5)–(k7) and that Φ2

satisfies (4.1) with λ = max{θ1, θ2}. Let u(t, x) be a non-negative weak solution to
(1.1), (1.2) that is bounded in (0, T ) × M for some T > 0. Then u(t, x) is Hölder
continuous. For all x1, x2 ∈ M and all t ∈ (0, T ),

|u(t, x1) − u(t, x2)| � Cd(x1, x2)θ, (4.5)

where θ = θ1σ/(θ1 + νβ) and C > 0 may depend on T but is independent of t, x.
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Proof. From (k6), (4.3) and (4.2), there exists C > 0 such that, for all t > 0 and
x ∈ M ,∫

M

k(t, x, y)|ϕ(y) − ϕ(x)| dµ(y) � C5t
−α/β

∫
M

d(x, y)θ1Φ2

(
d(x, y)
t1/β

)
dµ(y)

� Ctθ1/β . (4.6)

By (1.7), it is sufficient to show that each of the functions u0, u1 and u2 is Hölder
continuous in (0, T ) × M , where

u0(t, x) = Ktϕ(x),

u1(t, x) =
∫ t

0
Kτf(x) dτ,

u2(t, x) =
∫ t

0
Kt−τup(τ, x) dτ.

We first show the Hölder continuity of u0. Indeed, for t > 0 and x1, x2 ∈ M , we see
from (k7) that

|u0(t, x1) − u0(t, x2)| =
∣∣∣∣
∫

M

(k(t, x1, y) − k(t, x2, y))ϕ(y) dµ(y)
∣∣∣∣

� Lt−νd(x1, x2)σ‖ϕ‖1

� L‖ϕ‖1d(x1, x2)σ−νs0 (4.7)

if t � d(x1, x2)s0 , where s0 > 0 will be specified later on. On the other hand, if
t � d(x1, x2)s0 , we have, using (k5), (4.6) and (4.3), that

|u0(t, x1) − u0(t, x2)| �
∣∣∣∣
∫

M

k(t, x1, y)(ϕ(y) − ϕ(x1)) dµ(y) + [ϕ(x1) − ϕ(x2)]

−
∫

M

k(t, x2, y)(ϕ(y) − ϕ(x2)) dµ(y)
∣∣∣∣

� 2Ctθ1/β + C5d(x1, x2)θ1

� C[d(x1, x2)s0θ1/β + d(x1, x2)θ1 ].

Combining this with (4.7), it follows that

|u0(t, x1) − u0(t, x2)| � C[d(x1, x2)σ−νs0 + d(x1, x2)s0θ1/β + d(x1, x2)θ1 ]

� Cd(x1, x2)θ1σ/(θ1+νβ) (4.8)

for all t > 0 and x1, x2 ∈ M with d(x1, x2) � 1, taking s0 = σ/(ν + θ1/β) so that
σ − νs0 = s0θ1/β, and where we have used the fact that θ1 � s0θ1/β for σ � 1 � ν
and β � 1.

Next we show the Hölder continuity of u1. As with (4.6), from (k6), (4.4) and
(4.2), we have that∫

M

k(τ, x1, y)|f(y) − f(x1)| dµ(y) � Cτθ2/β ,
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which yields, using (k5) and (4.4), that

|u1(t, x1) − u1(t, x2)|

=
∣∣∣∣
∫ t

0
[Kτf(x1) − Kτf(x2)] dτ

∣∣∣∣
=

∣∣∣∣
∫ t

0
dτ

∫
M

k(τ, x1, y)(f(y) − f(x1)) dµ(y) + t[f(x1) − f(x2)]

−
∫ t

0
dτ

∫
M

k(τ, x2, y)(f(y) − f(x2)) dµ(y)
∣∣∣∣

� 2C

∫ t

0
τθ2/β dτ + C6td(x1, x2)θ2

= Ctθ2/β+1 + C6td(x1, x2)θ2

� C[d(x1, x2)s1+s1θ2/β + d(x1, x2)s1+θ2 ] (4.9)

if t � d(x1, x2)s1 , where s1 > 0 will be chosen later.
On the other hand, if t > d(x1, x2)s1 , and setting t1 = d(x1, x2)s1 , we obtain,

using (k7), that∣∣∣∣
∫ t

t1

[Kτf(x1) − Kτf(x2)] dτ

∣∣∣∣ �
∫ t

t1

dτ

∫
M

|k(τ, x1, y) − k(τ, x2, y)| |f(y)| dµ(y)

�
∫ t

t1

Lτ−νd(x1, x2)σ‖f‖1 dτ

� L
t1−ν
1 − t1−ν

ν − 1
d(x1, x2)σ‖f‖1

� L

ν − 1
d(x1, x2)s1(1−ν)+σ‖f‖1. (4.10)

It follows from (4.10) and (4.9) that

|u1(t, x1) − u1(t, x2)|

�
∣∣∣∣
∫ t1

0
Kτf(x1) − Kτf(x2) dτ

∣∣∣∣ +
∣∣∣∣
∫ t

t1

Kτf(x1) − Kτf(x2) dτ

∣∣∣∣
� C[d(x1, x2)s1+s1θ2/β + d(x1, x2)s1+θ2 + d(x1, x2)s1(1−ν)+σ]

� Cd(x1, x2)σ(θ2+β)/(θ2+νβ) (4.11)

if d(x1, x2) � 1, taking s1 = σβ/(θ2 + νβ) so that s1 + s1θ2/β = s1(1 − ν) + σ, and
where we have used the fact that

s1 + θ2 � s1 + s1θ2/β

for σ � 1 � ν and β � 1.
Finally, we show the Hölder continuity of u2. As u(t, x) is bounded on (0, T )×M ,

we see that ∫ t

t−η

dτ

∫
M

k(t − τ, x, y)up(τ, y) dµ(y) � Cη.
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Hence, using (k7), we obtain

|u2(t, x1) − u2(t, x2)|

=
∣∣∣∣
∫ t

t−η

dτ

∫
M

k(t − τ, x1, y)up(τ, y) dµ(y)

−
∫ t

t−η

dτ

∫
M

k(t − τ, x2, y)up(τ, y) dµ(y)

+
∫ t−η

0
dτ

∫
M

(k(t − τ, x1, y) − k(t − τ, x2, y))up(τ, y) dµ(y)
∣∣∣∣

� 2Cη + L

∫ t−η

0
dτ

∫
M

|t − τ |−νd(x1, x2)σup(τ, y) dµ(y)

� C(η + η1−νd(x1, x2)σ).

Taking η = d(x1, x2)σ/ν , we thus have

|u2(t, x1) − u2(t, x2)| � Cd(x1, x2)σ/ν . (4.12)

Combining (4.8), (4.11) and (4.12), we conclude that

|u(t, x1) − u(t, x2)| � Cd(x1, x2)θ1σ/(θ1+νβ)

for all t ∈ (0, T ) and x1, x2 ∈ M with d(x1, x2) � 1, for some C > 0, where we have
used that

θ1σ

θ1 + νβ
� σ

ν
� σ(θ2 + β)

θ2 + νβ
.

The proof is complete.

Finally, one may show that if the heat kernel k satisfies (k5), if |f |∞ < ∞ and if
ϕ(x) satisfies

|Kt+δϕ(x) − Ktϕ(x)| � Cδ for all t > 0, x ∈ M,

then the essentially bounded weak solution u of (1.7) is Lipschitz continuous in
time t on (0, T ) × M , that is,

|u(t + δ, x) − u(t, x)| � C1δ, t ∈ (0, T ), δ > 0, x ∈ M.

We omit the details, which are similar to the special case considered in [9].
We note that, unlike the blow-up and the existence, the regularity of solutions is

not related to the Hausdorff dimension α and the walk dimension β.
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Can. J. Math. 51 (1999), 673–744.

4 M. T. Barlow and E. A. Perkins. Brownian motion on the Sierṕınski gasket. Prob. Theory
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