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A default prior distribution is proposed for the Bayesian analysis of
contingency tables. The prior is specified to allow for dependence
between levels of the factors. Different dependence structures
are considered, including conditional autoregressive and distance
correlation structures. To demonstrate the prior distribution, a
dataset is considered which involves estimating the number of
injecting drug users in the eleven National Health Service board
regions of Scotland using an incomplete contingency table where
the dependence structure relates to geographical regions.
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1. Introduction

Contingency tables (e.g. [1]) are formed when a population is cross-classified according to a series
of categories (or factors). Each cell count of the table gives the number observed under each cross-
classification. The aim of forming such a table is to summarise the data, and typically, with a view to
identifying interactions or relationships between the factors.

The standard statistical practice to model such interactions is the log–linear model (e.g. [1, Chap-
ter 7]). In this case the logarithm of the expected cell count is proportional to a linear predictor de-
pending on the main effect terms and interaction terms between the factors. Each combination of
interaction terms defines its own log–linear model so that the identification of the non-zero interac-
tion terms translates to an exercise in model comparison. Additionally incomplete contingency tables
with missing cell counts can be used to estimate closed populations [4] where some of the factors
correspond to sources that have either observed or not observed individuals in the population.
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In this paper, we consider the casewhere the levels of one ormore of the factorsmay be dependent
on one another. An obvious example is when one of the factors has levels corresponding to geograph-
ical regions or locations which may be dependent due to their geographical proximity. In these cases,
we may expect the parameters of the log–linear model to have some dependence structure. Bayesian
analysis of contingency tables is common (e.g. [3,13,5]) and is the approach taken here. One feature of
the Bayesian approach is that prior information on the interaction terms can be incorporated through
the prior distribution. We take the position of having weak prior information on the magnitude of the
log–linear parameters but wish to incorporate the information provided by the dependence structure
mentioned above. In the case of weak prior information and model uncertainty, care must be taken
when specifying prior distributions due to Lindley’s paradox (e.g. [16, pp. 77–79]). There have been
several attempts in the literature (e.g. [3,15,18]) to specify ‘‘default’’ prior distributions that can be
applied for log–linear models under model uncertainty. We extend these approaches by developing
a default prior that can take account of the dependence structure between the factor levels and can
be seen as a generalisation of the above mentioned priors. The proposed prior is constructed by con-
ditioning on the constraints on the parameters which are introduced in contingency table analysis to
maintain identifiability of the parameters.

This paper is organised as follows. In Section 2 we set out our notation and briefly describe log–
linear models. In Section 3 we derive our proposed default prior distribution including descriptions
of different dependence structures. Finally, we apply our proposed prior to a real data application in
Section 4, which involves estimating the number of injecting drug users in Scotland. Here, one of the
factors corresponds to geographical regions, and we wish to take account of the possible dependence
structure that may exist for the regions.

2. Notation and log–linear models

2.1. Notation

We assume that there are a total of c factors such that each factor k = 1, . . . , c has lk levels. The
corresponding contingency table has n =

c
k=1 lk cells. Let y be the n × 1 vector of cell counts with

elements denoted as yi and where i = (i1, . . . , ic) identifies the combination of factor levels that
cross-classify the cell i. Let S be set of all n cross-classifications so that

S = {(i1, . . . , ic) : il ∈ {1, . . . , lk}} .

Finally, let N =


i∈S yi be the total population size. In the case of an incomplete contingency table,
N is unknown, since elements of y are unknown.

As a pedagogic example that we use for illustrative purposes throughout, suppose that there
are three factors used to cross-classify a population of hospital patients: age (2 levels: young; old),
hypertension (2 levels: no; yes) and region (3 levels: A; B; C). In this example, c = 3, where
l1 = 2, l2 = 2 and l3 = 3, and the three factors (age, hypertension and region) have been labelled 1,
2 and 3, respectively. It follows that there are n = 2 × 2 × 3 = 12 cells.

2.2. Log–linear models

We now briefly describe log–linear models and initially assume that the form of the log–linear
model is known, i.e. it is known which interactions are present. We extend to the case of model
uncertainty later in this section. Let ηi denote the linear predictor associated with cell i ∈ S, where

ηi = φ + zTi θ,
with φ ∈ R denoting the intercept term, θ the q × 1 vector of log–linear parameters (i.e. the main
effects and interaction terms) and zi the q× 1 vector of zeros and ones identifying which elements of
θ are applicable to cell i ∈ S.

For identifiability, certain elements of θ are constrained, e.g. by sum-to-zero, or corner-point
constraints, so we can rewrite ηi as

ηi = φ + xTi β,
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where β ∈ Rp is the p × 1 vector of unconstrained regression parameters, and xi is the p × 1 vector
which identifies which elements of β correspond to cell i ∈ S, with p < q.

Finally, let η be the n × 1 vector with elements ηi, and let X be the n × p model matrix with rows
xi. Then we can write

η = φ1n + Xβ,

where 1n denotes the n × 1 vector of ones.
For the statistical analysis of contingency tables, it is common to assume that

yi|φ,β ∼ Poisson (λi) , (1)

independently, where log λi = ηi.
In practice, we typically do not know the form of the log–linear model. This is equivalent to not

knowing the elements of zi and xi, or the columns of X. Let M be the set of competing log–linear
models which are indexed bym ∈ M. Associated with each log–linear model are z(m)

i , x(m)
i ,X(m), θ(m)

and β(m), where z(m)
i and θ(m) are q(m)

× 1 vectors, x(m)
i and β(m) are p(m)

× 1 vectors, and X(m) is an
n × p(m) matrix.

In the next section,we derive a default prior distribution forβ(m)
|m. For the intercept,φ, we assume

a prior given by π(φ) ∝ 1. Although this prior is improper, the resulting posterior is still proper [5].
This prior will not cause a problem under Lindley’s paradox since it is present for all models in M
[16, p. 174].

3. A default prior distribution for β(m)|m

3.1. Derivation

In this sectionwe develop a default prior distribution forβ(m)
|m. For notational simplicity, we drop

the dependency on the modelm by removing the superscript (m).
Suppose that there are a total of T log–linear terms and β =


β1, . . . ,βT


where βt , for t =

1, . . . , T , is the pt × 1 vector corresponding to the regression parameters for the main effect or
interaction term t . Similarly let θt denote the corresponding qt × 1 vector of log–linear parameters,
for t = 1, . . . , T .

Let Rt be the set of f main effect terms that define the f -way interaction βt . Dellaportas and
Forster [3] refer to Rt as the constituent terms of the interaction. Note that qt =


j∈Rt

qj and if
βt corresponds to a main effect then Rt has only one element, i.e. t . Consider the pedagogic example,
from Section 2.1, and t corresponding to the 2-way interaction between age and region so that qt = 6
and pt = 2. The constituent terms,Rt , have two elements: the terms corresponding to age and region.

We initially consider deriving the default prior distribution under sum-to-zero constraints. We
describe how the prior can be extended to any system of constraints in Section 3.4. Following
Dellaportas and Forster [3] we assume that β has a multivariate normal distribution with mean zero,
where βr and βt are independent for r, t = 1, . . . , T and r ≠ t . Thus, all that remains is to specify the
pt × pt covariance matrix for each βt , for t = 1, . . . , T .

The elements of θt are subject to constraints and can be written in the form

θt = Atβt , (2)

where At is a qt × pt matrix defining the constraints. Under sum-to-zero constraints, At can be writ-
ten as

At = Pt


Ipt
Ct


, (3)
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where Ipt is the pt × pt identity matrix, Ct is a (qt − pt) × pt matrix and Pt is a qt × qt permutation
matrix. For t corresponding to the age and region interaction in the pedagogic example,

θt =


θt1
θt2
θt3
θt4
θt5
θt6

 , At =


1 0
0 1

−1 −1
−1 0
0 −1
1 1

 , Ct =

−1 0
0 −1
1 1

−1 −1

 ,

Pt =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 .

The elements of θt are ordered so that the factor levels of region vary the fastest.
Initially, ignoring the constraints that are applied to θt , we assume that the distribution of θt is

θt |σ
2
t ,Dt ∼ N


0, σ 2

t Dt

,

where σ 2
t > 0 and Dt is a qt × qt positive-definite scale matrix. The off-diagonal elements of Dt

control the dependence structure or correlation between the elements of the constrained parameters,
θt , corresponding to different factor levels.

It follows from (2) and (3) that

PT
t θt =


βt
Ctβt


. (4)

Let

γ t =


γ

(1)
t

γ
(2)
t


= PT

t θt

be the permuted elements of θt according to the inverse permutation P−1
t = PT

t , so that γ (1)
= βt and

γ (2)
= Ctβt . The prior distribution for βt is the conditional distribution of γ (1) (which is βt ) given that

γ (2)
= Ctβt , i.e. we find the distribution of βt from (4) subject to the constraints. It can be shown (see

Appendix A) that

βt |σ
2
t ,Dt ∼ N


0, σ 2

t 6t

, (5)

where

6t =

AT
t D

−1
t At

−1
. (6)

In the next two sections we consider Dt . It may be that Dt is completely specified a priori. The most
plausible situation for this is when we assume independence between the levels of this term and
Dt = Iqt . We consider this case in Section 3.2. In Section 3.3 we also consider where Dt is unknown
due to its dependence on some unknown hyperparameter which controls the strength of correlation
between the elements of θt .

3.2. Independent correlation structure

Suppose we assume that the factor levels are independent, i.e. Dt = Iqt , so that

6t =

AT
t At
−1

.
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Denote by Xt the n × pt matrix formed by the columns of X corresponding to βt . Since Xt is a
permutation of the matrix formed by stacking At to form an n × pt matrix, it follows that

XT
t Xt =

n
qt

AT
t At ,

and therefore 6t = (n/qt)

XT

t X
−1. The corresponding prior distribution for βt is

βt |σ
2
t ∼ N


0,

σ 2
t n
qt


XT

t Xt
−1


.

If σ 2
t = gqt/n, then since (under sum-to-zero constraints) XT

t Xr ≠ 0, for all t ≠ r [14], it follows that
the prior distribution for β =


β1, . . . ,βT


is

β|g ∼ N

0, g


XTX

−1


. (7)

If g > 0 is unknown and given a prior distribution, then (7) is a hierarchical prior distribution that
is identical to the generalised hyper-g prior proposed by Sabanes-Bové and Held [18] for generalised
linear models (GLMs) when applied to log–linear models. If, instead, g is fixed then (7) is the default
prior distribution considered by Dellaportas and Forster [3] who advocate setting g = kn for some
constant k, which represents the number of units of prior information. Ntzoufras et al. [15] use k = 1
under their unit information prior for GLMs when applied to log–linear models.

3.3. General correlation structure

We now consider terms, t , whose constituent terms, Rt , contain factors with correlated levels
and Dt depends on some unknown hyperparameter τ . This hyperparameter, τ , controls the strength
of correlation through some structure imposed on Dt . Initially consider a main effect term t . In this
paperwe focus on the casewhere the factor levels correspond to geographical regions or locations and
propose two structural forms for Dt . However there exist many possible applications with correlated
factor levels and other correlation structures that can be used depending on the nature of the factor
levels.

1. Conditional autoregressive structure
Suppose that the qt levels correspond to regions. Let G be the qt × qt neighbourhood matrix with
ijth element

Gij =


1 if regions i ≠ j are neighbours,
0 if otherwise,

for i, j = 1, . . . , qt . Then for the conditional autoregressive (CAR) structure (e.g. [2]),

Dt =

Iqt − τG

−1
,

where τ determines the strength of spatial correlation for the constrained parameters. To ensure
thatDt is positive-definite, the hyperparameter τ must lie in the interval (τmin, τmax) =


e−1
qt , e−1

1


,

where e1 and eqt are the maximum and minimum eigenvalues of G, respectively.
2. Distance correlation structure

Suppose the qt levels correspond to locations such as cities. Then the ijth element of Dt is given
by a correlation function that depends on the distance, dij, between locations i and j, and τ . For
example, the Gaussian correlation function gives

Dt,ij = exp


−

d2ij
2τ 2


,

where, again, τ > 0 controls the strength of correlation.



A.M. Overstall, R. King / Statistical Methodology 16 (2014) 90–99 95

Note that in both examples, the hyperparameter, τ , is not actually a correlation coefficient; it
merely controls the strength of correlation. We need to specify a prior distribution for τ . This will
depend on the application.

For a term t that corresponds to an interaction term, we propose

Dt =


r∈Rt

Dr . (8)

The form given by (8) has been chosen for its consistency. Suppose that the correlation between two
levels of a main effect term is d. Then, for an interaction involving this main effect, the correlation
between the two levels will be d if and only if the factor levels of the other constituent terms are
identical. To demonstrate this we return to our pedagogic example where the regions A and B, and B
and C are neighbours, but A and C are not neighbours. A CAR structure is specified. In this example,
the neighbourhood matrix is

G =

0 1 0
1 0 1
0 1 0


,

so that Dt for the main effect of region is

Dregion =
1

1 − 2τ 2

1 − τ 2 τ τ 2

τ 1 τ

τ 2 τ 1 − τ 2

 .

The eigenvalues of G are (−
√
2, 0,

√
2), so, therefore, τ ∈ (τmin, τmax) = (−1/

√
2, 1/

√
2). If an

independent correlation structure is specified for the main effect of age, then

Dage:region =
1

1 − 2τ 2


1 − τ 2 τ τ 2 0 0 0

τ 1 τ 0 0 0
τ 2 τ 1 − τ 2 0 0 0
0 0 0 1 − τ 2 τ τ 2

0 0 0 τ 1 τ

0 0 0 τ 2 τ 1 − τ 2

 . (9)

The correlation between A and B for the main effect of region is τ(1− τ 2)−1/2. For the age and region
interaction, the correlation between levels involving A and B is τ(1 − τ 2)−1/2 if and only if they have
the same level for age. It now follows from (6) and (9) that the scale matrix for the prior distribution is

6age:region =
1

3 + 4τ


1 + τ −1/2
−1/2 1


.

If we denote the regression parameters for this term as βt = (βt1, βt2), where t = age : region, then
the prior correlation between βt1 and βt2 is

corr (βt1, βt2) = −
1

2
√
1 + τ

.

If τ = 0, corresponding to independence between the regions, i.e. Dt = Iqt , and thus we have the
Sabanes-Bové and Held [18] prior, then corr(βt1, βt2) = −1/2. The function corr(βt1, βt2) is increas-
ing in τ but the correlation is always negative. This is caused by the sum-to-zero constraints. As τ
increases, the magnitude of the negative correlation decreases.

A further advantage of using the structure defined by (8) is computational. If we assume that the
independencemodel, containing only themain effect terms, is the simplestmodelwewish to consider
then we will always have the same set of hyperparameters in each model.
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3.4. Alternative constraint systems

We now consider alternative constraint systems to sum-to-zero constraints, e.g. corner-point or
Helmert constraints. Let βA and β denote the vectors of regression parameters under the alternative
and sum-to-zero constraints, respectively. Since, under the sum-to-zero constraints, each component,
βt , ofβ has a normal distribution, thenβ has a normal distributionwithmean zero and variancematrix
9 = diag


σ 2
161, . . . , σ

2
T 6T


. It can be shown (see Appendix B) that

βA =


XT

A


In −

1
n
Jn

XA

−1

XT
A


In −

1
n
Jn

Xβ,

= RAXβ, (10)

where XA and X are the model matrices under the alternative and sum-to-zero constraints, respec-
tively, Jn is the n × nmatrix of ones and

RA =


XT

A


In −

1
n
Jn

XA

−1

XT
A


In −

1
n
Jn


.

Therefore βA ∼ N (0,9A), where the prior variance matrix,9A, is given by

9A = RAX9XTRT
A.

Note that, under the alternative constraints, βt and βr may no longer, necessarily, be independent.
This is equivalent to the fact that 9A (given by the above expression) may no longer, necessarily, be
block diagonal.

Under the independence structure described in Section 3.2, where Dt = Iqt , for t = 1, . . . , T , then

9A = gRAX

XTX

−1 XTRT
A.

ThematrixH = X

XTX

−1 XT is called the hat matrix and is invariant to the type of constraint system

used, i.e. H = HA = XA

XT

AXA
−1 XT

A and therefore

9A = g

XT

AXA
−1

.

Therefore the proposed prior distribution is a generalisation of the default prior distribution of
Sabanes-Bové and Held [18] for any type of constraint system.

4. Example: estimating the number of injecting drug users (IDUs) in Scotland from cap-
ture–recapture data

In this section we apply our proposed default prior distribution to an incomplete contingency
table which has six factors and 352 cells that involves estimating the number of injecting drug users
(IDUs) in Scotland in 2006. These data have been previously analysed by King et al. [12] and Overstall
et al. [17]. The six factors are social enquiry reports (2 levels: observed; unobserved); hospital records
(2 levels: observed; unobserved); Scottish drug misuse database (2 levels: observed; unobserved);
age (2 levels: ≤35 years; >35 years); gender (2 levels: male; female) and region (11 levels: National
Health Service (NHS) board regions—see Fig. 1). The first three factors are sources and the 44 cells
which correspond to not being observed by any of these sources for the different age/gender/region
combinations have missing counts. Therefore the total population of IDUs, N , is unknown. We use
Markov chain Monte Carlo (MCMC) methods to obtain posterior distributions for the missing cell
entries and therefore a posterior distribution for the total population of IDUs.

King et al. [12] and Overstall et al. [17] merged the eleven regions into just two levels: Greater
Glasgow and Clyde, and the Rest of Scotland. Without merging, using all eleven distinct regions, there
are small cell counts for many of the regions. For instance, in one region there are only 19 observed
IDUs over all source, age and gender cross-classifications. This suggests that a prior distribution that
involves smoothing (or borrowing of information), such as the prior proposed in Section 3, is required.
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Fig. 1. Map showing the eleven regions of Scotland which correspond to National Health Service (NHS) board regions.

Weapply the proposed priorwhere the independence structure is specified for all of the factors except
region where we use the CAR structure described in Section 3.3. By calculating the eigenvalues of the
neighbourhood matrix, G, for this example, τmin = −0.457 and τmax = 0.247. We place a uniform
prior on τ in the interval (τmin, τmax). The prior distribution for each βt is

βt |σ
2
t ,Dt ∼ N


0, σ 2

t 6t

,

where 6t is given by (6). Following from Section 3.2, we set σ 2
t = gqt/n, with

g ∼ IG

a
2
,
bn
2


,

where IG denotes the inverse-gamma distribution, and a = b = 10−3, as suggested by Sabanes-
Bové and Held [18]. We only specify non-zero prior model probabilities for the log–linear models that
contain at most two-way interactions and assume a discrete uniform prior over all of these models. It
was found that this allowed enough complexity to obtain an adequate overall model when using the
Bayesian p-value to assess model adequacy (see, [8, Chapter 6]).

We use the data-augmentation MCMC approach proposed by King and Brooks [13] with the re-
versible jump implementation for GLMs of Forster et al. [6] to make moves between log–linear mod-
els and the weighted least squares Metropolis–Hastings implementation of Gamerman [7] to make
moves within the same log–linear model. We ran the algorithm for one million iterations (discarding
the first 10% as burn-in).

For the total population size of IDUs, we obtain a posterior distribution for the total population size
with amean of 21700 and a 95% highest posterior density interval (HPDI) of (18900, 24800). Overstall
et al. [17] obtained a posterior mean of 24000 and a 95% HPDI of (19 500, 29700) and King et al. [12] a
mean of 25000with a 95%HPDI of (20700, 35000). The advantage of our approach over the latter two
analyses is that we are able to provide posterior distributions of the total population size in each NHS
board region, broken down by age and gender. Our approach also results in a smaller credible interval
for the total population size due to it allowing for correlated regions and not discarding information
by merging the factor levels of region.

The posterior mean of τ is 0.108 with a 95% HPDI of (−0.096, 0.247). The posterior probability of
τ being positive is 0.816. It follows that the Bayes factor in support of the hypothesis that τ > 0 is
8.205. Therefore there appears to be positive evidence [11] in support of positive spatial correlation
between the regions of Scotland.

5. Concluding remarks

In this paper we have proposed a default prior distribution for the regression parameters of a
log–linearmodel that can take account of any dependence structure thatmay exist between the factor
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levels. This prior can be applied in situations of model uncertainty and can be seen as a generalisation
of other default prior distributions applied to log–linear models including those of Dellaportas and
Forster [3], Ntzoufras et al. [15] and Sabanes-Bové and Held [18].
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Appendix A. Justification of default prior distribution

In this appendix we give justification for the prior given in Section 3.1, given by (5) and (6).
The prior distribution for βt is the conditional distribution of γ (1) given that γ (2)

= Ctγ
(1), where

γ =

γ (1), γ (2)

T
∼ N


0, σ 2

t M

, andM = PT

t DtPt . Define

ψ =


ψ(1)

ψ(2)


=


I 0

−Ct I


γ (1)

γ (2)


,

so that we now require the conditional distribution of ψ(1) given that ψ(2)
= 0. It follows, from the

properties of the multivariate normal distribution, thatψ has a multivariate normal distribution with
mean 0 and covariance matrix σ 2

t Twhere

T =


T11 T12
T21 T22


,

and

T11 = M11,

T12 = M12 − M11CT
t ,

T21 = M21 − CtM11,

T22 = M22 − M21CT
t CtM12 + CtM11CT

t .

The partitioning of M and T follows from the partitioning of γ into γ (1) and γ (2). Using the properties
of the multivariate normal distribution the covariance matrix of βt is σ 2

t 6t , where

6t = M11 −

M12 − M11CT

t

 
M22 − CtM12 − M21CT

t CtM11CT
t

−1
(M21 − CtM11) .

Consider the inverse of 6t . It can be shown using, e.g., [10], and after some matrix algebra, that

6−1
t = M−1

11 + M−1
11 M12S−1

M M21M−1
11 − M−1

11 M12S−1
M Ct − CT

t S
−1
M M21M−1

11 + CT
t S

−1
M Ct ,

where SM = M22 − M21M−1
11 M12 is the Schur complement (e.g. [9, p. 95]) ofM11 in M. As

M−1
=

PT
t DtPt

−1
= L =


L11 L12
L21 L22


,

then it can be shown that

6−1
t = L11 + L12Ct + L21CT

t + CT
t L22Ct ,

=

I CT

t

 
PT
t D

−1
t Pt

  I
Ct


,

= AT
t D

−1
t At .

Therefore 6t =

AT
t D

−1
t At

−1
as required.
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Appendix B. Correspondence of parameters between different constraint systems

In this appendix we provide a justification of the correspondence between the regression
parameters under any constraint system and sum-to-zero constraints, given by (10). Let ZA = (1n,XA)
and Z = (1n,X) be the n × (p + 1) matrices formed by appending the vector of ones to the model
matrices under the alternative and sum-to-zero constraints. The vector


φA,βA


, where φA is the

intercept under the alternative constraints, is given by
φA
βA


=

ZT
AZA
−1 ZT

AZ


φ
β


,

=


n 1T

nXA

XT
A1n XT

AXA

−1 
nφ + 1T

nXβ
φXT

A1n + XT
AXβ


,

=


1
n

+
1
n2

1T
nXAU−1

A XT
A1n −

1
n
1T
nXAU−1

A

−
1
n
U−1

A XT
A1n U−1

A

 nφ + 1T
nXβ

φXT
A1n + XT

AXβ


,

where UA = XT
A


In −

1
n Jn

XA. The expression for βA, given by (10), easily follows.

References

[1] A. Agresti, An Introduction to Categorical Data Analysis, second ed., Wiley, 2007.
[2] N. Cressie, H. Stern, D. Wright, Mapping rates associated with polygons, Journal of Geographical Systems 2 (2000) 61–69.
[3] P. Dellaportas, J. Forster, Markov chainMonte Carlo model determination for hierarchical and graphical log-linear models,

Biometrika 86 (1999) 615–633.
[4] S. Fienberg, The multiple recapture census for closed populations and incomplete 2k contingency tables, Biometrika 59

(1972) 591–603.
[5] J. Forster, Bayesian inference for Poisson and multinomial log-linear models, Statistical Methodology 7 (2010) 210–224.
[6] J. Forster, R. Gill, A. Overstall, Reversible jumpmethods for generalised linearmodels and generalised linearmixedmodels,

Statistics and Computing 22 (2012) 107–120.
[7] D. Gamerman, Sampling from the posterior distribution in generalised linear mixed models, Statistics and Computing 7

(1997) 57–68.
[8] A. Gelman, J. Carlin, H. Stern, D. Rubin, Bayesian Data Analysis, second ed., Chapman and Hall, 2004.
[9] J. Gentle, Matrix Algebra: Theory, Computation, and Applications in Statistics, Springer, 2007.

[10] H. Henderson, S. Searle, On deriving the inverse of a sum of matrices, SIAM Review 23 (1981) 53–60.
[11] R. Kass, A. Raftery, Bayes factors, Journal of the American Statistical Association 90 (1995) 773–795.
[12] R. King, S. Bird, A. Overstall, G. Hay, S. Hutchinson, Injecting drug users in Scotland, 2006: number, demography, and

opiate-related death-rates, Addiction Research and Theory 21 (2013) 235–246.
[13] R. King, S. Brooks, On the Bayesian analysis of population size, Biometrika 88 (2001) 317–336.
[14] M. Knuiman, T. Speed, Incorporating prior information into the analysis of contingency tables, Biometrics 44 (1988)

1061–1071.
[15] I. Ntzoufras, P. Dellaportas, J. Forster, Bayesian variable and link determination for generalised linear models, Journal of

Statistical Planning and Inference 111 (2003) 165–180.
[16] A. O’Hagan, J. Forster, Kendall’s Advanced Theory of Statistics, second ed., in: Bayesian Inference, vol. 2B, John Wiley &

Sons, 2004.
[17] A. Overstall, R. King, S. Bird, S. Hutchinson, G. Hay, Incomplete contingency tables with censored cells with application to

estimating the number of people who inject drugs in Scotland. Tech. Rep., School of Mathematics and Statistics, University
of St. Andrews, 2013.

[18] D. Sabanes-Bové, L. Held, Hyper-g priors for generalized linear models, Bayesian Analysis 6 (2011) 387–410.

http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref1
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref2
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref3
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref4
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref5
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref6
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref7
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref8
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref9
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref10
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref11
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref12
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref13
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref14
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref15
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref16
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref17
http://refhub.elsevier.com/S1572-3127(13)00069-5/sbref18

	A default prior distribution for contingency tables with dependent factor levels
	Introduction
	Notation and log--linear models
	Notation
	Log--linear models

	A default prior distribution for  β(m) |m 
	Derivation
	Independent correlation structure
	General correlation structure
	Alternative constraint systems

	Example: estimating the number of injecting drug users (IDUs) in Scotland from capture--recapture data
	Concluding remarks
	Acknowledgements
	Justification of default prior distribution
	Correspondence of parameters between different constraint systems
	References


