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| ASBTRACT

A theoretical study of population IT variables with
periods in the range 10 - 20 days (VW Virginis variables) is
presented. A modified hydrodynamic Christy code is used in
conjunction with the Carson opacities, in preference to the Los
Alamos tables, following the work of Carson, Stothers and
Vemury on the shorter period BL Herculis variables.

Twenty-five survey models are presented, along with nine other

comparison models of varying masses and opacities.

A study of the observations shows that the division of
rhese variables into two types by observers might be explained
by a slightly different mass for each type, thus making the

division dependent on the star's previous evolution.

The non-linear results obtained by this study show that a
mass of 0.6 M, is a good one to use, and that M = 0.5 M, makes
1ittle difference (although M = 0.8 My, seems to be too high).
The results in general compare well with the observations, as
both also show the split into two types of light curve. Three
gdod models of individual stars are presented, on a par with
the models of BL Herculis published by Carson, Stothers and
Vemury. The bumps in the\light and velocity curves of many of

the models seem to be real, caused by the Christy "echo'.

A few of the models show some RV Tauri behaviour. One in
particular shows very strange behaviour, involving a violent
alternation of light curve shapes. lodels constructed using
the Los Alamos opacities do not produce results as consistent

with observations as those of the main survey.



The study shows that these stars can be represented by
hydrodynamic models of mass 0.6 Mg, using the Carson opacities,
but also that convection may be important in the cooler stars
in order to model them accurately. This indicates the

direction in which further theoretical work may lie,
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ASBTRACT

A theoretical study of population II variables with
periods in the range 10 - 20 days (W Virginis variables) is
presented. A modified hydrodynamic Christy code 1is used 1in
conjunction with the Carson opacities, in preferencé to the Los
Alamos tables, following the work of Carson, Stothers and
Vemury on the shorter period BL Herculis variables.

Twenty-five survey models are presented, along with nine other

comparison models of varying masses and opacities.

A study of the observations shows that the division of
these variables into two types by observers might be explained
by a slightly different mass for each type, thus making the

division dependent on the star's previous evolution. 5

The non-linear results obtained by this study show that a
mass of 0.6 M, is a good one to use, and that M = 0.5 M, makes
1ittle difference (although M = 0.8 Uy seems to be too high).
The results in general compare well with the observations, as
both also show the split into two types of light curve. Three
géod models of individual stars are presented, on a par with
the models of BL Herculis published by Carson, Stothers and
Vemury. The bumps in the light and velocity curves of many of

the models seem to be real, caused by the Christy "echo".

A few of the models show some RV Tauri behaviour. One in
particular shows very strange behaviour, involving a violent
alternation of light curve shapes. Models constructed using
the Los Alamos opacities do not produce results as consistent

Wwith observations as those of the main survey.



The study shows that these stars can be represented by
hydrodynamic models of mass 0.6 My, using the Carson opacities,
but also that convection may be important in the cooler stars
in order to model them accurately. This indicates the

direction in which further theoretical work may lie.
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CHAPTER 1

INTRODUCTION

It has been known since ancient times that some of the
stars in the night sky vary in their brightness. However, the
discovery that many of these variable stars show periodic
variations that are cyclic, semi-regular or regular had to wait
until about the sixteenth century. By 1800 only sixteen
variable stars were known (two of these were later found to be
eclipsing binaries and five were novae), of which two were
classical cepheids, § Cephei and n Aquilae. Now about 25000
igtrinsic variable stars are known in this Galaxy, the vast
majority of which are pulssting variables. Only about one star
in 105 - 106 is such a variable, so stellar pulsation is quite
rare. Nevertheless, it is very important in astrophysics. For
instance, many of these stars follow strict Period-Luminosity
relationships, first determined for classical cepheids by
Leavitt (Pickering 1912). These relationships provide us with

basic distance indicators, both in the Galaxy and the Universe.

The theoretical study of pulsating variables is important
in providing us with a test for our theories of stellar
structure. Without it, the tests would be left to simple
models of static stars and to the slow processes of stellar
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evolution. OCnly stellar pulsation provides us with dynamic and

observable properties (concerning a large part of the stellar

envelope) which can be modelled.

Previous modellers of pulsating variables have studied the
classical cepheids, RR Lyrae stars and many of the other types,
Most of these studies have used the opacities calculated by
A.N.Cox and his various co-workers, but recently a new set of
stellar opacities has been calculated by Carson (1976). These
opacities have been used successfully to model RR Lyrae stars,
classical cepheids and BL Herculis variables. In many cases
the new opacities seem to produce better results than those
obtained with the Cox opacities; however, as there is some

yavious
debate as to the validity of the Carson opacities, it is
important to use them to model as many different types of
variaﬁle stars as possible, to see how they handle these B
variations. With this in mind, this study has been made of the
W Virginis variables, also known as population II cepheids,
with periods between 10 and 20 days. These stars are the
population IT counterparts of the classical cepheids, although
they do not seem to show quite the same trends as are seen in

the latter. In particular there is no counterpart to the

so-called Hertzsprung progression.

Because of their faintness, observations of W Virginis
variables ére not as good as those of classical cepheids, and
in fact observations of the velocity curves are almost
non-existent. Howecver, it has been possible to classify the
light curves of these stars in many ways because some of them
do have secondary bumps. The most recent classification by

Kwee divided them into two groups.

)



In this study the V Virginis stars are modelled using the
Carson opacities in an attempt to reproduce the observed light
curves, and in particular the dichotomy of the light curves
observed by Kwee. These variables have not been studied very
extensively theoretically heretofore, so this work provides not
only a test of the new opacities, but also a further test of

pul sation theory.

This study follows on from that of Carson, Stothers and
Vemury (1981) and Carson and Stothers (1982), who modelled the
BL Herculis stars (population II cepheids with periods between
1 and 10 days). One aim of those works was to reproduce the
observed light curves in some detail. This éim was achieved
with a good model of BL Herculis itself, which reproduces both
the light and velocity curves very well, and may be the beét
published model of an individual star. This aim is continued
in this work, as the reproduction of the observed properties of
variable stars is surely one of the most important aims of the
theoretical study of pulsation. Since true light and velocity
curves can only be obtained by hydrodynamic modelling, that 1is

the method used here.

In section 2 a review of pulsating stars is presented in
three parts; a summary of pulsation theory in general, a study
of the available observations of W Virginis stars (with a
review of current evolutionary ideas about these variables),
and a review of the application of pulsation theory to the BL
Herculis and W Virginis variables. In section 3 non-linear
pul sation theory is discussed, and the method used is
presented. Section U describes the procedure used to calcul ate

Cthe static model which served as a starting point. In section

-3 -




5 the equation of state and the opacity are discussed. The

D

results of the models and an extensive discussion of them is
presented in section 6. Section 7 concludes the study, and

suggests improvements and further areas for study.



CHAPTER 2

PULSATION AND POPULATION II CEPHEIDS

2.1 THE PULSATION THEORY OF VARIABLE STARS

The hypothesis that cyclic pulsations could account for
the variability of many stars was put forward in the Nineteenth
century. Shapley (1914) put the theory onto a firmer basei‘and
then Eddington (1918a, 1918b, 1926) established the
mathematical foundations of the theory of adiabatic free radial
oscillations of gaseous spheres. He showed that free
oscillations would quickly decay, contrary to observations, and
therefore that a driving mechanism was required to keep the
star pulsating. Eddington discussed two possible driving
mechanisms, one of which (the "valve'" mechanism) provided the
basis for our present understanding of stellar pulsation.
Reviews of the early history of the pulsation theory may be

found in Rosseland (1949), Ledoux and Walraven (1958) and

Zhevakin (1963).

In looking for possible driving agents for the pulsation

$ov5C stltaoes (-

of cepheids, Eddington belicfed that the nuclear reactions
towards the stellar centre were the cause of the instability,;

in particular, that the increasc in energy output on
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compression would cause expansion, and the corresponding drop
in nuclear energy production would allow subsequent compression
and thus the maintenance of the cycle. This mechanism has now
been shown to be untenable, since the pulsation amplitude
“towards the centre of the star is aboutb 10% times smaller than

that at the surface (Epstein 1950; J.P.Cox 1955) .

The other possible cause discussed by Eddington was the
tyalve" mechanism in which the outer layers of the star behave
rather like a thermodynamic heat engine. If a mass element in
a star can absorb heat on compression, and release it on
expansion, then it will act as a driving force, pushing the
pulsation. Regions which act in the opposite manner will thus
tend to damp the motion. It is this modulation of the heat
flow through the layers of the star that modern theories are
based on, though the way in which a driving region works varies
according to the way heat energy is "trapped". Various wa;; of

trapping heat energy on compression (which thus cause driving)

are discussed later.

The basic equations used in the study of stellar pulsation
are those of stellar structure, with time dependent terms added
(coﬁpare section 3.1). These equations, in differential form,
and with the variables defined as in section 3.1 are given

here.

Continuity of Mass

dMe = Urr#o(r) (2.1)
dr

Equation of Motion (or Hydrodynamic equilibrium)

%11,._ 2 <Gl = 1gF (2.2)
t rt Qar ' ’

« B &



The Heat Flow Equation

é_E;. + PV = g - dL (2.3)
ot at by edr

and the luminosity is given (in the diffusion

approximation) by;

Lr = - im?le _a(1h) (2.u)
3 ke, Tigdr

These equations, along with formulae (or tables) for the
opacity k:(e ,T), energy generation &(¢@,T) and equation of
state P = P(Q,Ts and suitable boundary conditions can be solved
for the radial pulsations of a star, neglecting convection,
rotation, and magnetic fields, and assuming that the diffusion
approximation for energy transfer holds throughout. For mo;t
problems the central core of the star can be ignored, since‘it
has been shown that this regioﬁ plays very little part in t;é
pulsation. In this case the energy generation, € , can be put
equal to zero in equation (2.3). Using modern fast digital
computers the problem is usually solved by linear or non-linear
methods, both of which require an initial stétic solution of
the equations as a starting point (see section Y4),  Reviews of

modern work on stellar pulsation can be found in Christy

(1966¢), and J.P.Cox (1G74,1680).

In the linear theory, the pulsation equations are
linearized and we thus consider small-amplitude oscillations
about the equilibrium state (as defined by the static model).
For many stars the motion is nearly adiabatic throughout the
star, and so by simply assuming adiabatic heat changes (the
Linear Adiabatic Theory) it is possible to obtain some quite
good results for the dynamical aspects of the pulsation. Using

-7 -



sdiabatic theory, periods can be predicted, along with the
dynamical stability and the relative pulsational amplitudes
inside the star. However, since the heat changes are adiabatic
it is not possible to obtain information regarding either the
"pulsational stability of the star or the luminosity variations.
Only by using non-adiabatic changes can we determine the
stabiiity or instability of a star against pulsation. It is
near the surface, where the heat capacity becomes very small,
that the non-adiabatic effects are most noticeable. In the
linear treatment the‘star is divided into some number of mass
zones, just as in the non-linear treatment used here, but with
many more zones. By measuring the change, ATm, in kinetic
'energy in each zone over one period it is possible to find
which of the zones are driving and which are damping, since a
driving region gains heat at maximum compression and a damping
region loses heat at maximum compression. So AT, > O 7
indicates driving while ATm<O shows damping. Summing over
all of the mass zones we obtain the change AT in kinetic
energy for the whole star. Since the gravitational energy term
is conservative we can put AT = VW, where W is the PdV work
dong by all of the mass zones in one pericd. So for the whole
star, AT = W > 0 indicates pulsational instability, or the
growth of pulsations, and AT ¢ 0 indicates pulsational
stability, or the damping of any pulsations. It is also
possible to determine the e-folding time T4 for decay of the
pulsations (the time required for the amplitude to decay to 1/e

of its former value). This is defined by

aw
{IE

1 = ~ 1
Td 2 <5 (2.%)

vihere 5}% is the total pulsation cnergy of the star (kinetic
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and potential). The angular brackets indicate means over a
period. For the linear theory (i.e. small amplitudes) we

define the stability coefficient X,
o= 1/4cg

So K > 0 indicates stability and X < O indicates
instability., Typical values of the damping time, T4 , for
variable stars range (in units of P , the fundamental pulsation
period) from 1 - 10 for the long period red variables to 104
to 106 for the short period & scuti stars. For classical
cepheids T,/P ~ 10 - 163 and for population II cepheids
IQ/P ~ 10 - 20. Using linear, non-adiabatic methods, much can
be learned about the pulsations of variable stars; the mode
and cause of pulsation can be established, along with the
instability/stability of the star. Thus linear theory is véqy
useful in determining the areas of pulsational instability in
the HR diagram, the "blue edges" of instability regions, and if
convection is included in some way, the "red edges" also.
However, because the treatment is linear and the amplitudes are
small, the linear theory cannot usually describe individual
stars very well, particularly those with moderate to large
amplitudes. At these amplitudes non-linear effects enter;
they cause the light and velocity curves to deviate from pure
sine waves, and have other effects such as lengthening the
pulsation period. This is where non-linear methods are
superior; in the modelling of individual stars and in trying

to reproduce observed light and velocity curves.

Before discussing the non-linear methods used it is
appropriate to discuss the possible driving mechanisms that may

cause pulsational instability in stars. These are the



descendants of Fddington's original valve mechanism, and they
all rely on the fact that the jonization of a constituent of
the stellar envelope can mcdulate the flux variations., Vhen
such a region is gaining heat on compression and losing it on
éxpansion maximum pressure occurs after maximum density, thus
causing a "pumping up" of the pulsation. In most stars the
luminosity variation 8L,/L, increases outwards; thus each zone
is losing energy on compression, giving what is termed
radiative damping. This behaviour is due to the fact that on
compression the opacity usually decreases, allowing the heat to
leak out. In most stars the important ionization zones in the
envelope are those of hydrogen, neutral helium and single
ijonized helium. These three will usually only comprise two

regicns of ionization, the He TII one at about 4 x 104 K and the
4

combined region of H and He I ionization at about 1-1.5 x 10
K. The latter acts very much like a single region and is
frequently simply called the H-ionization zoné. In an
jonization zone the adiabatic exponent (-1 becomes very small,
as most of the energy on compression is going into ionizing the
material, not raising the temperature. The smaller temperature

4

varigtions also cause S§L,./Ly to be small (since Ly T Yy, and

thus the radiation is effectively "dammed" on compression.
Then, on expansion, the temperature rises more than would be
the case in adiabatic motion, and so does the pressure, which
causes the driving of any incipient pulsation. This driving
mechanism is called the )/“mechanism (Cox, Cox, Olsen, King and

Eilers 1966),



Another mechanism, called by Baker and Kippenhahn (1962)
the KX -mechanism, is caused by the possibility that for an
opacity law of the form XKe< Q“T'S(n,s > 0) the opacity may
increase on compression if /3 -1 (and so 6T/T) is small, i.e.
in a region of ionization. This local opacity increase dams

the radiation on compression, causing further driving.

Stellingwerf (1978, 1979) notes another possible cause of
driving, which he called the bump-mechanism. If, in the above
opacity dependence, s is large and negative (or even just less
positive) as happens in the H-ionization zone, then there can
be a damming of radiation on compression even if f3-1 is close
to its normal value of 5/3. This may be important in the

driving of some stars.

hether or not a particular ionization region will cause
driving in an actual star depends on where it lies in the
stellar envelope in relation to a region known as the
transition region, which divides the quasi-adiabatic interior
from the non-adiabatic exterior. As the radius of a star
increases (for given mass, luminosity and composition) the
transition region moves outwards in mass. Above the transition
region, in the non-adiabatic zones, the luminosity variations
tend t; be "frozen-in". There is no variation of §L,/L, with
space. If both ionization zones lie in this region then the
star remains stable, since 6L,./L, remains constant, despite the
variation of (5Lr/Lr)a, the adiabatic variation. For a star
with lafger radius the He II ionization region may coincide
with the transition region. In this case in the inner portion
of the He TI ionization zone the luminosity variation follows

the adiabatic variation, whilst in the outer portion the

- 11 -



variation §L,/Ly 1is sti11l constant in space, frozen at the
small value it had in the middle of the zone. So the damping
effect of the outer regions is eliminated and the driving of
the inner portion can make the star unstable. The H-ionization
zone still lies too far out to have a large effect. This
coincidence of He II ionization zone and transition region
seems to be the cause of pulsation in the whole cepheid

instability strip in the HR diagram.

As the radius increases further (moving redwards in the HR
diagram) the H-ionization region moves into coincidence with
the transition region, potentially causing very strong driving.
However, by this stage convection has usually appeared to damp
the driving, bringing a return to stability and defining a "red
edge". The effect of convection on pulsation is discussed

later.

After suggestions by Zhevakin (1953, 1954a,b), Cox and -~
Whitney (1958) and Aleshin (1959) that second helium ionization
might be the scene of the valve mechanism of Eddington, work by
Baker and Kippenhahn (1962) and J.P.Cox (1963) confirmed the
effectiveness of He II ionization as a driving mechanism. Many
studies have since reconfirmed this. It has also been
suggested that H—ionization may be the major driving agent in

the red variables.

Since most real stars are obviously non-linear (the
non-sinusoidal light curves evidence this), only by solving the
full set of non-linear equations can we hope to describe the
pulsation of individual stars, including the light curves,
velocity curves, 1imiting amplitudes etc. However, the set of

non-linear equations is not soluble analytically except in a

Gobuh g
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few, totally unrealistic cases. (For adiabatic motion with
constant ﬂ" and the homogenous model with constant /T ).
However, some one zone non-linear models are relatively simple,
and can help our understanding of some of the features of
pulsation (for example Baker 1966; Usher and Whitney 1968; Rudd

and Rosenberg 1970; and Stellingwerf 1972).

Most non-linear methods treat the equations as an initial
value problem, integrating the equations forward in time from
some initial conditions, usually a model envelope in
hydrostatic and thermal equilibrium. The usual treatment is to
divide the star between 25 to 50 mass zones and put the
equations into difference form, Given sufficient computer time
these methods provide information about the limiting amplitude,
the growth (or decay) of the pulsations, the non-linear
effects, the light and velocity curves, etc. The methods used
by different investigators vary widely with no way of telling
the "best" method, leaving the study looking somewhat like an
art form. One problem associated with all non-linear
approaches is the need to use an artificial viscosity, to
spread the H-ionization front over several zones. The form
that this takes is almost arbitrary, including at least one
unknown parameter. The techniques used in this study
originated with Christy (1964, 1966a, 1967) and have been used

and modified by many authors since.

MAleshin's (196U4) non-linear method was a little different.

He just treated the region T <(~5§5 x 104 K (normally most
&
methods use r >Ry/10 or T <~10 K), and he used only 10 zones,

with the inner boundary having 2 sinusoidal oscillation with

period and luminosity variations obtained from the linear
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theory. The results were rather limited, but the inner
boundary of sinusoidal variation has since been used by
‘Stellingwerf (1974) in his non-linear scheme. Stellingwerf's
scheme is a modification of that proposed by Baker and von
Sengbusch (1969), and von Sengbusch (1973). In the von
Sengbusch approach 101;L linear equations are solved for A
variables in J zones for K time-steps in a period. This gives
BJ(K+1)+1 unknowns, including the period. The sqlution is
jterated until exact periodic repetition is obtained. The
non-linear calculation is in fact treated as an eigenvalue

problem with the period being a solution.

Stellingwerf's approach is a compromise between the usual
Christy techniques and the von Sengbusch method. An initial .
model is found in the usual way, and an estimate of the periqg
is made. A normal non-linear code then integrates through one
period. Corrections arevthen made to the period and the
physical variables, and the code integrates another period.
This iteration proceeds until exact repetition is achieved. On
convergence the non-linear code can be run for a time to allow
compléte analysis. Each mode can be studied in this manner,
and the time taken to reach full amplitude is generally
considerably shorter than with the usual e-folding growth
approach, For stars that are not fully periodie, or aperiodic,
this approach is limited. This is the case with certain
population II cepheids, and in any case their growth rates are
large enough (10-20 periods) so as to make any time-saving

minimal.



Another approach to the problem is due to Castor, and is
deseribed by Castor, Davis and Davison (1977) and Davis and
Davison (1978). 1In this approach the static Lagrangian mass
zoning is replaced by a dynamic zoning in which the zones move
during the time integration so as to keep a large number of
zones in the hydrogen ionization front. This method produces a
far better resolution of the ionization front, eliminating some
of the spurious bumps sometimes seen in the light curves

produced by normal Lagrangian codes.

One problem experienced in all attempts to solve the
pulsation equations is the question of what to use as an
external boundary condition, and where to apply it. Unno
(1965) made a study of some boundary conditions. Most studies
use a form of the perfect reflection (or standing wave)

boundary condition, Here in the linear form, we have,

@éﬁ) = 0
dr / surface (2.6)

This assumes that the gas density veanishes at the surface.
Equation (2.6) is correct for radiation pressure being
negligible or significant. The equivalent non-linear boundary
conditions are Pe,e = 0 or Pg = 0. These "standing wave"

boundary conditions give perfect reflection at the stellar

surface and are the ones used in this study.

Another dynamic boundary condition is the "running wave"
condition, where the reflection is not perfect, and some of the
pulsational energy is allowed to run into a corona surrounding

the star,

i
—
W

|



For the surface boundary condition on the heat equation ve
assume that there is some surface in the stellar atmosphere
_where there is no radiation incident from outside, and where
the optical depth T 1is zero. 1In the thermal diffusion

approximation we can assume the Eddington relation,

& Lt s s
T =;;7e(’L+ 2/3)

Baker and Kippenhahn (1965) applied their outer boundary
condition at the photosphere, i.e. at T =2/3. However, it is
much better to apply the condition at small T, Y=0 (sometimes
called the Castor-Iben boundary condition). This is what most
investigators now choose. Another approach is to treat the
optically thin zones using radiative transfer, and not
diffusion theory, (Davis 1972). This is more correct, and the
boundary condition on the radiation flow is obtained ﬁ>
automatically. However, the increased complexity naturally

increases the computing time required.

Until recently the effect of convection on pulsation has
only been studied in an elementary way. There are two effects
to consider, the change in the static structure and the
interaction with the pulsation. One treatment, using linear
methods, is to create a static model including convection and
then ignore the convective flux variations. (Baker and
Kippenhahn, 1965, for example). The problem with including
convection in the pulsation itself is that of the time
dependence. Some attempts have been made to include
time-dependence in the conventional mixing: length theory, by
(for example) Gough (1977) and Unno (1967). Gough's work has
been applied to RR Lyrae variables (Baker and Gough 1979),

concluding that convection has a negligible effect near the
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blue edge, but that it can be responsible for the return to
stability at the red edge. BRaker and Gough's linear worlk
provided a red edge in about the right place. Convection has
largely been ignored in non-linear worl, but Deupree included
ponvection in a new fundamental way in a series of papers
(1977a,b,c,d). He treats two spatial dimensions, allowing the
formation of two-dimensional eddies, in a non-linear
Fuler-Lagrange formulation, which makes no assumption about the
time behaviour of convection, and makes no use of the mixing
length theory. The limitations of the approach are that only
two space dimensions are used, and that Deupree had to
introduce an eddy viscosity coefficient to treat the break up
of large eddies and the conversion of convective kinetic energy
into heat. More recently Stellingwerf (19%2a,b) derived a
scheme for treating non-local convection in a conventional
spherically symmetric non-linear code. This approach is also
different from the conventional mixing length theory.

Turbulent pressure and viscosity are included in the treatment.
Stellingwerf has also applied his work to the RR Lyrae

variables.

’All of the studies using convection indicate that
convection has little effect near the blue edge of the
instabhility strip, and can thus be safely ignored for the
hotter models. However, on approaching the red edge,
convection pltays an increasing part, and the studies of Eaker
and Gough, Deupree, and Stellingwerf all indicate a return to
stability here, as the convective motions increase.
Stellingwerf has not determined the red edge of the PRR Lyrae
strip, but the edges obtained by Deupree (1977a) and Baker and

Couzh (1979) are essentially in agreement. According to
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Deupree's work it seems that at maximum compression the
convection causes the energy stored in the driving regions by
the - and )/—mechanisms to leak out, thus reducing the
.driving. It seems that only a small amount of convection in an

ionization zone 1is necessary to bring about stability.

Thus the problems of including convection in pulsation are
beginning to be solved, although much useful work can still be
done without the inclusion of convection; it generally only
has a large effect near the red_edge, and has only a small
effect on the light and velocity curves of the stars. For the
cooler models it probably limits the growth of the pulsation,

possibly to a large extent near the red edge.

2.2 OBSERVATIONAL AND EVOLUTIONARY ASPECTS OF POPULATION II

CEPHEIDS -

Population II cepheids were first noticed as being
distinct from the population I "classical" cepheids by virtue
of their light curves, which are usually very different from
those of classical cepheids of similar periods.
Payne:Gaposchkin (1958) points out that this was noticed as a
deviation from the Hertzsprung progression of classical
cepheids. Having drawn this distinction, the position of many
of these variables far from the galactic plane (as well as
spectroscopic analysis) identified them as population II
objects, As such they are also found in globular clusters,

along with those other population II variables, RR Lyrae stars.



The periods of type II cephelds (also frequently called W
Virginis stars, although it might be better to restrict this
title to a specific class of these stars, those with
~1Q < P < 20 days), range from 1 day up to about 50 days, where
at the upper end the range overlaps that of the so-called RV
Tauri variables, also population II objects. However, there
are minima in the Period-Fregquency distribution of population
1I cepheids, one between P ~ 6 days and P ~ 10 days, and
another at P ~ 22 days. (See Kraft 1972). the first gap seems
to be related to the evolutionary mechanisms for feeding the

stars into the instability strip.

Iben and Rood (1970) have shown that as population II
stars evolve off the horizontal branch, they move upwards in
the HR diagram before moving towards the asymptotic giant
branch, giving rise to the short period group of variables
(1 < P <~6 days), or AHB cepheids (for "above the horizontal
branch®). Then as the star acends the asymptotic giant branch,
evolutionary studies have shown that the helium burning shell
source undergoes a series of "flashes", or thermal
instab;lities, causing the star to execute a blue loop in the
HR diagram (similar to the case for classical cepheids) which
might take it through the population IT instability strip
(Schwarzschild and Harm 1970; Mengel 19735 Sweigart 1973). In
particular, Mengel shows that an asymptotic giant branch star,
of mass 0.6Mp, undergoing thermal relaxation cycles, may make
several blueward loops, but only for the later relaxation

cycles, at higher luminosities and lower envelope mass.



These evolutionary ideas seem in general to explain the
presence of type II cepheids in globular clusters, though many
details still have to be explained (among them an explanation

for the gap at P ~ 22 days).

If these current theories of post horizontal branch
evolution in globular clusters are correct, then the masses and
helium abundances of population II cepheids must be constrained
to the ranges 0.5 ¢ M/Mo€ 0.7, and 0.2 £ Y £ 0.3. Bohm-Vitense
et al. (597M) add more weight to this argument, giving a range
for M/Mg of 0.U47 -~ 0.8, where the lower limit is the minimum
likely mass of the helium core in a star undergoing the helium
flash on the Red-Giant branch, and the upper limit is the
currently accepted mass of a cluster star at the main sequence

turn-off.

For the short period type II cepheids (often referred to
as the BL Herculis stars) many of their light and velocity
curves show bumps, reminiscent of the bump in the Hertzsprung
progression for classical cepheids. Petersen's (1980) analysis
of 18 BL Herculis stars with bumps on their light curves
yielded. a mean "bump mass™ of 0.60 + 0.09 , in good agreement
vith the expected evolutionary massges (a situation very
different from that previously experienced with classical bump

cepheids!).

Observations of those stars with periods of 10 days and
upwards are very scarce, with the possible exception of VW
Virginis itself. Payne-Gaposchkin (1356) reviews the light
curves of Several, and the series of papers by Kwee (1967a,
1967b, 1968) and Kwee and PRraun (1967) produce fairly good
light curves for some field variables (see figure 2.1), and
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Figure 2.1 Observed crested and flat-topped light curves
(taken from Kwee 1967, figures 4 and 5)




compares the observations with those of previous observers,
generally getting good agreement. W Virginis itself has been
studied in detail by a few authors, in particular Abt (1951)
and Barker et al., (1971). Apart from W Virginis, the only
radial velocity observations available in this period range
would appear to be by Joy (194¢), sufficient for only rough

curves of two stars,

Kwee (1967b) divided the type II cepheids observed by Kuwee
and. Braun (1967) into three groups (most were type II cepheids,
with three RR Lyrae stars and five classsical cepheids, the
latter largely being uséd for comparison). Those with

1 < P < 3 days were called short period population II cepheids

(now the BL Herculis stars), and those with 13 < P < 20 days
vwere divided, by the shape of their light curves, into crested\
and flat-toppeg variables. A similar classification had been
made by Payne-Gaposchkin (1956), though the groupings were very
different. Those with 3 < P < 13 days were scarce and had

generally featureless curves.

The light curve of a crested variable (hereafter sometimes
referred to as c-type) is characterized by a distinct maximum,
followed by a shoulder or bump on the descending branch, and a
faster rise to maximum than fall to minimum. The flat-topped
variables (hereafter sometimes called f-type) do indeed have a
flat top to their light curves - a difficult to define maximum,
and in general less asymmetry. However this classification
must still be regarded with some doubt. For example, Kuwee
classifies the light curve of V1187 Sgr as flat-topped. Could
it not be justifiably be called crested? The observations

still leave in many cases a margin of error in the shape of the

-



light curve. Sometimes earlier observations would suggest a
different classification. Since Kwee's observations cover only
field stars the question arises as to whether the cluster
“variables divide in the same manner, Observations of the
ciuster variables by several authors (in particular Arp 1955;
Demers 1969; Demers and Wehlau 1971; Fernie 1963) seem to

confirm the dichotomy, though still with the reservations noted

above.

Also as noted above, radial velocity curves for W Virginis
stars are scarce, Abt's study of W Virygnis probably providing
the best available. However, from the data available, and from
observations of longer period population II variables (e.g.
Wallerstein 1958), some conclusions can be drawn. On rising
light most of these stars, particularly those with periods ofi,
about 16 - 20 days, show hydrogen emission lines, frequently ~
quite bright. This effect is not seen in the observations of
classical cepheids (though it may be apparent in the
ultra-violet). Also, related to this, the velocity curves are
discontinuous, with double lines appearing in the spectra at
maximum light. Both the emission lines and the discontinuous
velocity curves can be explained in terms of a shock wave
moving out through the atmosphere at, and just before, maximum
light (Abt 1954, Wallerstein 1959, and references therein). So
it is likely that any models of these stars should show a large

outward velocity on approach to maximum light.

The population II cepheids follow a period-luminosity
relation rather like that of the classical cepheids, though
with a slightly different gradient and lying lower in the

period-luminosity diagram. Arp (1955) first demonstrated the



existence of two period-luminosity relations for the cepheids,
though his observational errors were rather large. Demers and
Wehlau (1971) studied cluster population IT variables,
producing a P-M,, relation which was later improved by the study

of Demers and Harris (1974, equation [2.7)).
My> = - (0,08 £ 0.09) -~ (1.59 & 0.11)1ogP (2.7)

Demers and Harris used equation (2.7) to estimate the
absolute visual magnitudes of 11 field variables, whose colour
excesses had been estimated from UBV photometry. Mean colours
for the stars were already known since the field variables
could be placed on a colour-magnitude diagram. The cluster
variables already had UBV data (except for some which were not
observed in the UBV system. These had been transfofmea by Kwee}
1968). The combined colour-magnitude diagram for field. and )
cluster population II variables shows a wide instability strip

situated below that of the classical cepheids, and about three

times the width.

Using the tables of Bohm-Vitense (1973), Demers and Harris
converted their (My, B-V) values into (log(L/Lg), log Te)
values so that the instability strip could be plotted on an HR
diagram (figure 2.2). The boundaries of their instability
strip are defined by

wz. 5~ (blue ec/gze}

424 (red edge) -0

1og(L/Le) = ~ 10.75logTe +

Also plotted in figure 2.2 are estimates of (log(L/Lg),
log Te) for 11 population II cepheids by Bohm-Vitense et al,
(1974). A1l but two of the stars studied by Bohm-Vitense et

al. are also studied by Demers ané Harris, but the agreement
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is not in general very close; for instance, their estimates
for the log Tg of W Vir differ by over 0.03. This would seem
to indicate a possible error on the Demers and Harris blue edge

_of about £0,03 in log Te, or more.

In figure 2.2 the distinction between the short-period
(P <~3 days) BL Herculis variables and the longer period
(P >~6 days) W Virginis variables can be clearly seen. The BL
Herculis stars form a definite group at log(L/Lg) < 2.3, whilst
the W Virginis stars cover a wide luminosity range above
log(L/Le) ~2.5. This wide spread of luminosities can be
explained by the fact that the phase of asymptotic giant branch
evolution at which the star executes a '"blue loop" is very
sensitive to the mass, so a small range of masses suffices to

provide the large observed spread in luminosity (Mengel 1973).

Two stars (M13 no. 2 and cCen no. 48) fall in the gap”
with periods of 5.12 and 4.48 days. Demers and Harris state
that about 6% of the cluster population II variables have
3 ¢ P <6 days and that a similar percentage of the field
variables seem to fall in this range. Thus we see that the
perio§ distribution and the appearance of the variables on the

HR diagram confirm the division of the variables into the two

groups.

Since the radial velocity data for the stars with
10 ¢ P < 20 days is very scarce, the light curves and periods
are the only observational data that theoretical work can aim
at reproducing. Even here there are problems. Several authors
(Kwee 1967a, 1967b; Vasiljanovskaja and Erleksova 19687 Coutts
1973; and Stobie 1975, for exanple), have noted that the V
Virginis variables show variations in period and light curves
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from cycle to cycle. Sometimes their variations are regular,
providing a period doubling effect somewhat like that of the RV
Tauri variables. More often it is apparently random (though
some of the observations may be insufficient to find any
regularity if it exists), consisting of small period changes
and/or slight changes in the shape of the light curve.
Possibly, in marginal cases, this may even change its
classification from crested to flat-topped and vice versa (for
instance, see the plots of the light curve of V741 Sgr given in
Payne-Gaposchkin [1956] and in Kwee [1967b]). Also for the
star AP Her, Kwee and Braun's observations give a
classification of x (i.e. no distinctive features, neither c-
nor f-type), but those of Michslowska-Smak and Smak (1965)
suggest that AP Her has a slight shoulder or incipient bump,
and may be at least xc. RU Cam appears to be an extreme
example of irregularity. In 1964 it stopped pulsating (Demers
and Fernie 1966), but it has since restarted (Broglia and

Guerrero 1973).

Tn tables 2.%a and b are presented data for 16 field and
11 cluster population II variables with periods between 10 and
20 days. This is by no means an exhaustive list, but includes
most (if not all) of the best observed stars. The values of
most of the parameters are taken from the study referenced in
each case, this value considered to be probably the best
available. In many cases the values are taken from graphs or
curves and are therefore subject to a reading error, which is
represented by the number of figures given. This error is
probably far smaller than the actual error, which generally is

not known.
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Star P(days) logP (V) (MV> (B—ﬁ>o log(L/Lé) logTe log(R/R@) AV Asym( lum) ¢é , ¢i—¢% Type
AL Vir 10.3%  1.012 9.54% -1.357 0.56% 2.50 3,736 1.300 0.82201.450 10
AP Her® 10.4°  1.017 10.78% -1.36 0.59% 2.s2 3.728 1.326 0.75°% 1,87 — = K
V1077 Sgr  13.4°  1.127 13.01% —2.26 0.54% 2.85 3,742 1.463 1,208 2.37 0.42" 0.307 &7
V802 Sgr  13.5° 1,130 13.67° -1.76 0.59° 2.68 3,728 1.406 0.96° 1.25° — _— ¢’
va10 sgr  13.8°  1.140 12.58% —2.20 0.53% 2.87 3,744 1.469 0.97% 1.97 0.427 0.27" &’
S Cas 14.7°  1.167 12.05° -2.38 0.56° 2.91 3.736 1.505 1,448 2,07 0.48" 0.25 <’
FI Sct 14.97 1,173 14.09% —2.41 0.53% 2.92 3.744 1.494 1.19% 1.87 0.427 0.297 7
V1187 Sgr  15.1°  1.179 13.85° -1.93 0.62° 2.75 3.724 1.449 1.18% 2,27 0.357 0.26 £’
v74l sgr  15.2°  1.182 12.728 —1.04 0.5¢% 2.7s 3,728 1.441 0.98% 1.677  0.317 0.217 ¢’
CZ Ssct 15.4°  1.188 14.40° -1.96 0.61° 2.76 3.726 1.450 1.05° 1.257 — £’
AL Sct 15,67 1.193 14.02° —1.97 0.62° 2.77 3,724 1.459 1.28% 1,117 — ¢
V377 sgr  16.2° 1.210 13.32% -2.03 0.60° 2.79 3.727 1.463 0.96° 1.07 - = £
v478 Ooph  16.4°  1.215 12.94% —2.05 0.59% 2.80 3,728 1.466 0.93% 1.0” - — £
Co Sct 17.1%  1.233 14.17° —2.61 0.59% 3.03 3,728 1.581 1.45% 2,337 0.477 0.317 &’
Wovir 17.3°  1.238 9.93° -2.13 0.1 2.83  3.726 1.485 1.18% 1,86’  0.307 0.187 £’
v1303 sgr  18.5° 1.267 12.88° -2.73 0.57% 3.06 3.734 1.584 1.24% 3,037 0.457 0.317 &’
{
Table 2.1a

Observational detaills for 16 field wvariables




Star P(days) logP (V> (MV> (B—v>o log(L/L@) 1o;Te 1og(R/R®) AV Asym(lum) ¢i . ¢i—¢ﬁ Type
M14 No.17  12.1%  1.082 14.81% -1.52% 0.65% 2.60 3.718 1.386 0.62° 2.0°  — — g
M14 No.7  13.6% 1.134 14.807 -1.53% 0.69% 2.62 3,711 1,410 0.71° 1.35° — — X
w Cen No.20%14.7%  1.167 11.82% -2.08% 0.85% 2.86 3,68 1.592 1,067 1.267 — — £l
M3 No.154  15.3%  1.185 12.32% -2.71% 0.51% 3.04 3,745 1.552 1.331 1.9 0.a87 0.38% !
M12 No.18  15.5 1.190 |

M2 No.1l 15.6%  1.194 13.46% -1.99% 0.48% 2.74 3.752 1.388 1.1° 2.22  0.39° o0.25% £°
M80 No.1  15.6° -1.194 13.42% -1.88% 0.50% 2.73 3.728 1.431 0.9 = ? > 0
M2 No.5 17,67 1.246 13.34% —2.11% 0.47% 2.78 3.754 1.404 1.05° 1.6°  0.34° 0.25° £°
M14 No.1  18.7%  1.272 14.06% -2.27% 0.75% 2.93 3.70 1.587 1.29° 1.5°  0.42° 0.22° xc°
M10 No.2%  18.8%  1.274 11.82% -2.20% 0.65% 2.90 3.720 1.532 1.22 3.0%  0.38% o0.24" £t
M2 No.6 19.3%  1.286 13.18% -2.27% 0.49% 2.85 3,750 1.247 1.1 2.0°  0.3a7 o0.19% !

Table 2.1b Observational details for 11 cluster variables

Notes for tabtes 2.l1la and 2.1b are on the next page
References: 1 Arp (1955), 2 Bohm-Vitense et al (1974), 3 Demers (1969), 4 Demers & Harris (1974),
5 Demers & Wehlau (1971), 6 Eggen (1961), 7 Kwee (1967b), 8 Kwee (1968), 9 Kwee & Braun

(1967), 10 Michalowska-Smak & Smak (1965)




Motes for tables 2.%a and 2.1b

P(days) Period in days

log P Logarithm of period in days
) Mean apparent visual magnitude
<NQ> Mean absolute visual magnitude
B~V Mean intrinsic colour

log(L/Lg) Logarithm of luminosity in solar units

log Tg Logarithm of effective temperature

1og(R/Re) Logarithm of radius in solar units (from log(L/Lg) and logTe)
ov | Range in visual magnitude

Asym(lum) Asymmetry of light curve = (time spent on descending branch)/

(time spent on ascending branch)

¢é Phase of secondary bump on light curve from mean light ascending
Q%-—¢; Phase of secondary bump from maximum light
Type Crested (c), flat-topped (f) or neither (x).

The values come from the study referenced in each case.

a Reference 10 gives V = 0.95 for AP Her

b For the (log(L/Ly),logTe) of W Vir reference 2 gives (2.89,3.736) and
reference U gives (2.86,3.705)

¢ For o> Cen No. 29 the light curve in reference 1 is only photographic

d For M12 No. 1 Joy (1949) gives some velocity data (not sufficient to
deéermine the curve), the arplitude is about 30 km/s

e Joy (1949) also gives velocity data for M10 No. 2, amplitude about

84 km/s, again not sufficient to determine the curve.



The values of log P and <My> for the cluster variables
define a P - <My> relation for the period range 10 - 20 days.
Kwee (1968) split his P - <My> relation for the cluster stars
into two parallel relations, one for the flat-topped variables
;and one for the crested type. The available evidence for this
is scarce (there being few c-type cluster stars) but not
contradictory, and it seems that the theoretical models may

also follow two relations (section 6.6).

Consequently, using the data in table 2.1, we arrived at
the following relation for the f-type cluster variables with

10 < P < 20 days.
My> = 2.17 — 3.UBlogP ’ (2.9)

For the c~type we assume a parallel relation, slightly
higher in the <(My> - log P plane. Looking at the crested
cluster variables M3, no. 154, and M5 nos. 42 and 8Y4 (with
P > 20 days), and comparing their acutal <My> values with those
they would have if they followed equation (2.9), it appears
that a decrease of 0.5 in the <My> value is a reasonable one.

So for the crested variables we get

I

My> = 1,67 - 3.48logP (2.10)

The two relations (2.9) and (2.10) then allow us to find
{My> values for the field variables. Then for all variables
(log(L/Le), log Te) pairs are found from the (<My>,<B-V>,)

pairs using the tables of Bohm-Vitense (1972).



For the unclassified variables (not the unknown ones, i.e.
ST Pup and RS Pav) relation (2.9) is used, since the
unclassified cluster variables M14 nos. 1 and 7 seem to fall

‘closer to this one than to (2.10).

Figure 2.3 shows the <My>-log P relations - in this and
succeeding figures, circles are cluster stars, triangles are
field stars, filled figures are f-type and open figures are
c-type. The x-type stars have a cross inside an open symbol .
As a note to these new estimations of log(L/Lg) and log Tg, the
result for W Vir seems to fall nicely between the values given

by Demers and Harris (1974) and Bohm--Vitense et al. (1974).

From the determinations of log(L/Le) and log Te it is

possible to find the stellar radius, from

L = tnieTd

From these figures a Period-Radius relation can be found.
In figure 2.4 log P is plotted against log (R/Re). We see that
because of the two distinct P-My relations we get two P-R
relations. At the same period the crested variables have a
larger mean radius. These relations are, for the crested

variables,

P = 0.U80(R/Rg) " (2.11)

and for the flat topped variables

3/
P = 0.10U(R/Ry) (2.12)
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These form two roughly parallel lines in the
log P-log(R/Rp) plane. This compares with Bohm-Vitense et
al.'s results for population II cepheids of all periods for a

P-M-R relation.

poc §7F u 077 (2.13)

The different P-R relations, the different P-4y relations
and maybe the suspicion of a trend in the light curve suggests
a possible progression, which could be caused by a variation in

the mass (which, as has been stated before, need only be

small).

Figures 2.5a and 2.5b show a colour-magnitude diagram and
an HR diagram for the variables 1isted, along with the observed
instability strip given by Demers and Harris (1974). We see in
both diagrams that the crestedrand flat-topped variables form
two groups. The c-type variables appear at higher
luminosities, while the f-type variables occur at lower
log(L/Lg), and may be slightly cooler in general, The errors
in these diagrams are probably quite large (viz. the
disagreement over W Vir) but probably allow fairly general

conclusions.

One of the most obvious features to look for when
comparing observed light curves with theoreticslly obtained
ones is the amplitude of the variation. The observational
amplitude in the visual (AV) may not be accurately known since
the maximum and minimum may not be well observed. This error
is probably in general comparable to the error in the
measurement of V itself. This varies from about + 0. 01 for 10th
magnitude stars to £0.32 for 1044 magnitude stars. The other

-
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problem is knowing how to relate AV for the observed stars to
AMp for the theoretical models. This is estimated in section

6.7.

From this we see that the other features of the light
curve are very important. For the crested variables (and for
some flat-topped ones) the phase on descending light can be
measured, relative to mean light on the ascending branch
(because this can usually be measured relatively accurately)
and relative to maximum light. For the flat-topped variables
the presence or absence of a bump may be significant (or
possibly the presence of a dip in the "flat"-top). For both
the asymmetry of the light curve (defined by [time spent on
descending branchl/[time spend on ascending branch]) is an

important feature.

The secondary bumps in the crested light curves appear to
show no obvious progression with luminosity, effective
temperature or period (figures 2.6a,b). Instead, the bump
appears at an approximately constant phase (ié: 0, U484 £ 0.03
after mean light on the rising branch. For the flat-topped
variables that have secondary bumps (or maybe 'shoulders') <¢é

is also approximately constant, ¢%:=O.3” * 0.05.

In both cases the phase difference between maximum light
b L, . . .
and the bump, ¢b“’¢m, is still approximately constant, with
smaller errors. For the crested variables
¢K"QZ£ ~ 0.2940.02, and for the flat-topped variables
& - ,,179.«0.23 + 0.02. It should be noted that this data is
scarce and subject to large errors. 1t does not preclude the
possibility of a continuous progression from c-type to f-type
§% £

. 7 . ,
curves, and a decrease 1n g& and L—Pm as the luminosity and
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effective temperature are decreased. Indeed figures 2.6a and b
may indicate such a progression. In other words the crested
and flat-topped variables need not be two distinct groups,
merely extremes of a progression. If this is the case then it
might be possible in the observations or the models to find an
example of such a change at approximately constant periods.
Unfortunately with the few light curves available it is
difficult to make any firm conclusions, especially with the
limited accuracy of the light curves, and the fact that many of
these stars are subject to apparently random changes in period
and light curves. An example of the problem is variable 6 in
M2. The curve from Demers (1969) for the star is significantly
different from that of Arp (1955). (Note that Arp's
observations were given in photovisual and photographic
magnitudes.) In an HR diagram, M2, no. 6, falls roughly in the

-

gap between the c-type and f-type stars.

Turning our attention to the amplitudes of the light
curves we find a range running from 0.6 in V up to 1.45 (the
star RS Pav may have a greater range, but the available
photometric details are not sufficient to produce a full light
curve): There is a tendency for the flat-topped variables to
have amplitudes of about 1 mag., whilst the crested variables
have amplitudes a little larger, maybe 1.25 mag. Otherwise
there seem to be only two slight trends, firstly a general
increasé in /W as the period increases, secondly an increase in

AV as the effective temperature decreases., This latter is more

obvious in the flat-topped variables.
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It may be useful to note here that those stars which do
not fit into either classification generally have small

amplitudes (< 1 mag.) and short periods (< 14 days).

Sadly no such conclusions can be made from the very scarce
radial velocity data. W Virginis has a highly asymmetric
(discontinuous) velocity curve with an amplitude of 55 km/s ,
and by taking Joy's (1949) data on M12 number 1 and M10 number
2 we find, by subtracting maximum and minimum values amplitudes
of 30 km/s and 84 km/s respectively. In neither case is

the data sufficient to properly define the velocity curve.

To conclude, it seems that one of the main features that a
survey should reproduce is the two types of light curves, at
the correct values of the stellar parameters; once this is
done, perhaps the models can show if there is a progression _
between the two. Hopefully, some individual stars can also be

modelled in detail, confirming the choice of composition and

stellar parameters and the non-linear approach.

2.3 THEORETICAL ASPECTS OF POPULATION ITI CEPHEIDS

2.3.1 Introduction

Until 1980 no non-linear models of population II cepheids
had been published in detail, except for some models of V
Virginis itself. Then Carson, Stothers and Vemury (1981) and
King, Cox and Hodson (1981) produced a series of non-linear
models of the short period population IT cepheids, commonly
known as BL Herculis stars. In addition, many linear results
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for these stars have been published, and some of the linear
work stretches into the longer period region., Although the RL
Herculis stars have different properties from the longer-period
W Virginis variables, and they have different evolutionary
origins (see section 2.2), they are probably very similar in
composition and mass, so it is instructive to review the work

done on these stars.

2.3.2 The BL Herculis Variables And Blue Edges

The linear work of Iben and Huchra (1971) primarily on RR
Lyrae variables went up to a log(L/Lg) value of 2.8, thus
covering the region of the BL Herculis variables and part of
the W Virginis region. Their blue edges, calculated using the
Christy (1966a) approximation to the Cox and Stewart (1965)
opacities show reasonable agreement with the Demers and Harris
observed blue edge (1974), which was not known at the time.
ITben and Huchra used a mass of O.GH@ , @ hydrogen content
X = 0.7 and two metallicities, Z = 0.000%1 and Z = 0,01, this
showed that the blue edge had only a minimal dependence on Z,
the metai content, and also, for log(L/Lg) >~2.0, a first
harmonic blue edge far to the redward of the fundamental blue
edge, thus indicating that most population IT cepheids are

probably fundamental pulsators (this also seemed likely from

the observations).

Tuggle and Iben (1972) repeated some of these calculations
using spline interpolation in a set of Cox and Stewart opacity
tables. Three mixes were used, the Masseviteh mix (X = 0.7,

Z = 0,004), the King Ta mix (X = 0.7, 7 = 0.001), and the King
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Ib mix (X = 0.8, Z = 0.001). The switeh from Christy formula
to spline interpolation caused a shift in the blue edge of up
to about 0,008 in log Te. 1In all the Tben studies the
‘"Castor—Iben” outer boundary condition is used. 1Iben (1971)
points out that use of the "Baker-Kippenhahn" condition could
shift the blue edge by up to about 0.03 to tée red in log Te,
maybe more at higher luminosities. The Tuggle~Iben blue edge,
for M/Mg = 0.6, using the King Ia mix is plotted in Figure 2.7,

along with the observed blue and red edges of Demers and

Harris.

In the same figure is plotted the calculated blue edge of
King, Cox and Hodson (1981, hereafter frequently referred to as
KCH) for the same opacity mix, but merely estimated for
M/Mg = 0.6, as KCH only calculated models at M/Mp = 0.55 and’
0.75. These two edges agree fairly well, and indicate a helium
content of about 30% for population II cepheids, maybe a little
more, and a mass of about 0.6 Mg, again maybe a little more.
(Tuggle and Iben also noted that the blue edge in this region
moves blueward as the mass increases., For example for M/ Mg

= 9.8. the blue edge is shifted about 0.015 blueward at log
(L/Lg) = 2.0 as compared with the result for M/Mg = 0.7.) These
results are in agreement with the values derived from
observational and evolutionary considerations of
0.47 < M/Mp< 0.8, and 0.2 < Y < 0.3. Moreover, the analysis of
BL Herculis stars by Peterson (1980) indicates a mass of 0.6

Mo.

The linear results from Carson, Stothers and Vemury (1981,
hereafter CSV) for a mass of 0.6 Me and Y = 0.25, Z = 0.005,

using the Carson (1976) opacities, with the Christy
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approximation to the Cox opacities used for log T < 3.85 would
seem to give blue edges in good agreement with those of KCH and
Tuggle and Iben. However, CSV used the Baker-Kippenhahn outer
;boundary condition, which, it has already been stated, could
make a 1arge'difference. KCH (based on the Castor [1971]
theory) used the Castor-Iben condition. Also notable about the
CSV.work is the large dependence of the blue edge upon Z, a
feature not seen before, and seemingly unique to the Carson
opacities. These results have been checked by Worrell (1982a),
who used the Castor-Iben condition. The results are plotted in
figure 2.8, compared with the CSV results. We see that the
Worrell blue edges are indeed very much to the blueward of the
CSV edges. Also the dependence on Z has greatly diminished,
though not to the minimal dependence revealed by other studies
using the Cox opacities. As discussed, the first change is
expected because of the differing external boundary condition.”
The change in the Z dependence seems to be dependent on how the
switch-over from Carson opacities to the Christy approximation
is made at low temperatures. CSV scaled the Christy opacities
at log T < 3.85 to make a smooth fit to the Carson opacities.
VWorrell used essentially the same treatment as is used in this
study and described in section 5.2, an interpolation betwen the
Christy value at log T = 3.8 and the Carson values at log

T = 3.9. This seems to make the difference. Blue edges

calculated by VWorrell using the same scaling procedure as CSV

also exhibit the large Z dependence.

Figure 2.9 shows the lorrell blue edges for the Carson
opacities compared with edges calculated by Worrell for the
same parameters, using the Stellingwerf (1975a) approximation
to the Cox King Ta and King Ib opacities. The edges found
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using the Stellingwerf formula do show almost no dependence on

Z, and lie near the Tuggle-Iben and ¥CH blue edges, which seems

to validate the Vorrell results.

In figure 2.10 three calculated blue edges are compared
with the Demers and Harris observed edge. All are for 25¢%
helium (estimated in one case) and M/Mg = 0.6, using the
Castor-Iben boundary condition. As stated above, the Cox
opacities seem to indicate (for M/Me = 0.6) a helium content of
about 30% for these stars, though 25% is also reasonable. If
the Worrell results are accurate, the helium content would
appear to be less than 25% for the same mass using the Carson
opacities. These results cannot be too secure because of the
large uncertainty in the observed edge, and also because the
Worrell results with the Carson opacity still show some
dependence on Z. A reduction of Z to 0.001 or less would move
the edge towards the observed edge. A further probiem
associated with the Carson opacity is that the table used
(section 5.2) is too coarse to allow accurate determination of
the blue edge. (MNote the crossover of the edges for two
different Z values at log (L/Lg)~2.2.) However, the results are

probably correct to 0.005 in log Te.

Several of the BL Herculis variable. show bumps in their
light and velocity curves, and there appears to be a
progression rather like the Hertzsprung progression in
classical cepheids (Stobie 1973). For classical cepheids this
phenomenon has been explained by Christy (1968) and Stobie
(1969a,b) as an echo of a pressure wave. The wave is generated
in the second helium ionization zone, propagates down to the

stellar centre, is reflected off it and arrives at the sur face
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during the next period,

Simon and Schmidt (1G76) suggested that the secondary bump
is due to a close resonance of the second harmonic with the
fundamental pulsation modes:P,/P,#« 0.50. Here variables with
O;M6 £ P, /P, £ 0.50 show bumps on rising light and those with

0.50 £ P, /B € 0.53 show bumps on falling light.

The theoretical models of CSV, Carson and Stothers (1982),
KCH, and Hodson, Cox and King (1980, 1982 — HCK I and IT)
confirm that the phase, ¢ , of the secondary bump is related to
P, /B, . However the linear work of KCH predicts a bump
transition period (where the bump switches from the descending
branch of the light curve to the ascending branch) that is too
long (for M/Me = 0.55), whilst the non-linear results of CSV

(for M/Meg = 0.6) give about the correct transition period.

CSV (and also Vemury and Stothers 1978) express
reservations about the significance of the resonance. They
point out that for type II cepheids, there are resonances at
P,~14 days (P,/Po = 0.333) and at PF,~17 days (P, /Ps = 0.5).
Assuming a band width comparable to that for the P, /P = 0.5
resonance then the P, /Py = 0.5 resonance should give an analog
of the Hertzsprung progression for type II cepheids in the
period range 10 - 25 days. However, sueh a progression is not
observed (section 2.2). CSV and Carson and Stothers had as a
main objective the reproduction of the wide variety of light
curves observed for these stars. Their results are very
successful in this respect. Tn their paper a model is produced
of the prototype star, BL Herculis. This exhibits very good
apreement with the observed star, probably the bhest model of an
individual variable star to be published. The light curve and
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bump phases are reproduced very well. In the second paper a
variety of curves at constant periods are produced by adjusting
the stellar parameters. A model constructed by CSV using the
Cox-Stewart opacities in the Christy formulation did not
‘produce results that were as good. Probably the major flaw in
this series of non-linear models is that the amplitudes are
frequently too large. For the redder models, this can perhaps
be attributed to the omission of convection, which would be

expected to restrict the amplitude.

For the KCH and HCK I and II non-linear models only 2
light curves have been published (HCK I), for P = 1.55 days
and 3.82 days, and also one more for a reconstruction of CSV
model 1 (the BL Herculis model). In this reconstruction their
results differ somewhat from those of CSV. The bumps they get
appear to be local phenomena; this does not seem to be the
case for the CSV version, which reinforces the Christy "echo"c
idea. Also, no shoulder is observed following light maximum, a
facet of the observations that CSV manage to reproduce. It is
suggested that if KCH used the Carson opacity table given in
CSV, without using the Christy formula for log T < 3.85, then
their results would not be in agreement with those of CSV,

since as is discussed in section 5.2 the low temperature Carson

opacities are probably in error. (see section 6.2.)

KCH suggest that the overlarge amplitudes of the CSV
models are due to over-estimation of the bound-free helium
opacity at about U0,000 K, which causes excessive driving.
Also, their plot of the luminosity variations through their
model using the Carson opacities shows an anomalous zone at a

temperature of about 106 K. This strance behaviour is probably
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caused by the carbon-oxygen "bump" in the Carson opacities (see

section 5.2).

In the HCK II paper, the disagreement between the
transition period in the calculated models and that observed in
KdH is attributed to the use of linear methods. Results from
non-linear models bring agreement with the observed transition
period and the predicted transition period of the CSV

non-linear work.

To summarise, it appears that non-linear models can give
better results than linear models for certain aspects of the
obsefved trends. Use of the Carson opacities supports the
Christy "echo" phenomenon for the cause of secondary bumps,
whilst the Cox opacities appear to give more weight to the
P, /P, resonance idea. Despite the over-estimated amplitudes of
some of the CSV models, the light curves do seem to'resemble
those observed to a large degree. From the few light curves
published using Cox opacities it seems that such good agreement

is more difficult to obtain.

’

2.3.3 The W Virginis Variables

Considerably less work has been done on the longer period
(> 10 days) population II cepheids. Apart from the
already-mentioned 1ineaf determinations of the blue edge only
four detailed non-linear models have been published, of the
17.3 day variable W Virginis (Christy 1966b¢ Davis 19725 Davis

and Bunker 1975).



Christy's model was based on his non-linear method of
1964, It had the objective of trying to find a model with a
mass near 1 Mg that could produce a periocd of about 17 days.
The stellar parameters were based on Abt's (1954) study, and

3,262, log Te = 3.740. The

we}e M/Mg = 0.88, log(L/Lg)
composition was Y = C.45, Z = 0.002, which has an improbably
high helium content in the light of more recent results. The
model was violently unstable with a growth rate of about 3
periods and a fundamental period of 18.5 days. Because Christy
confused the surface radius with the photospheric radius this
was later changed to 19.6 days to compare with Davis' 1952
model. The violence of the pulsation and the generation of
strong photospheric shocks caused the eventual ejection of the
outer layer. The model also showed alternations in pulsation
amplitude from period to period, reminiscent of so called RV
Tauri behaviour. The resulting light variation of the model V
was not very like that of W Virginis, nor indeed of population
II cepheids in general. From the published graphs of the

motion we can estimate the following amplitudes:

AR/R = 0,3 (full amplitude)
AV~ 60 - 80 km/s

AMpey &= 1.5 - 2.0

In Davis' first model of W Virginis (1972), he improved
the non-linear methods of Christy by replacing the diffusion
treatment of the energy transfer with the variable Eddington
method of radiation transfer. Radiative transfer is a much
better way to treat optically thin zones, especially where
strong shock waves are involved. The stellar parameters used

by Davis were the same as those used for Christy's model with
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the exception of the composition, which was changed to

Y = 0.296, Z = 0.004 (the Massevich T mixture). Cox and
Stewart opacity tables were again used. This is a much more
reasonable helium content. Davis also calculated a pure
diffusion model to allow direct comparison of diffusion theory
with radiative transfer. The model produced has a fundamental
period of 20.0 days, again with a large growth rate and an RV
Tauri effect in both the velocity and light curves. The outer
zone did not escape, but did show a distorted path. The main
differences between the light curves for diffusion theory and
radiative transfer are that the latter gives a smaller
amplitude and produces a slight shoulder after light max imum,
slightly closer to the observed W Virginis light curves. the

amplitudes could once again be established from the published

curves to give:

AR/R % 0,3
AV & 60 - 75 km/s
OMpor & 1.9-2.2 (diffusion)

oz 1.1-1.3 (radiative transfer)

Fven with radiative transfer, however, the light curves

still look unlike those observed,

For a further improvement, Davis (1974) included
relativisite velocity terms in the radiative transfer
hydrodynamics, since the large shocks that occur could well
need such a treatment. The major change Davis reported was a
stronger coupling of the radiation field with the velocity
field, resulting in a light curve looking more like the
velocity curve. This time the RV Tauri alternation of periods
was not observed, and the shoulder after light maximum was more
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pronounced, more like the observed curve of W Virginis. The
velocity amplitude AV, was about 55 km/s, and the light
amplitude, AMgoy about 1.2. For comparison the observed
‘amplitudes of W Virginis are AV = 55 km/s, and AMy, = 1.2 (see
section 2.2), so this last model would seem to be quite

reasonable.

The model of W Virginis published by Davis and Bunker
(1975) was essentially the same as that of Davis (1972), except
for the use of the Xippenhahn IA opacity tables. This paper
emphasizes the differences between W Virginis models, and
models of classical cepheids in the same period range. W
Virginis stars have larger dynamic motion in the atmosphere
because of a much stronger shock that develops. The radiative
transfer hydrodynamics predicts hydrogen emission lines as thé
shock propagates. As pointed out in section 2.2 these emissiSh

lines are seen in the observations, along with a doubling of

the absorption lines at about the correct phase.

The models of W Virginis stars so far presented still do
not show light curves very like those observed; the dichotomy
of light curve shapes mentioned by Kuee (1976b) has not been
considered in these models. Those investigators have used a
mass M = 0.88 Mp, since the mass of BL Herculis variables has
been determined to be close to 0.6 Mo, & similar mass is
probably appropriate to W Virginis variables, which is somewhat
smaller than the 0,88 Mgy, and so different values of log(L/Le)
and log Te are needed. Similarly the determinations of
loo(L/Lg) and log Te for W Virginis by Demers and Harris
(1974) and Pohm-Vitense et al., (1974) indicate a different

position in the HR diagram. The determination of the



instability strip by the authors provides an opportunity to
construct a series of non-linear models surveying this region,

to see if the observed light curves can be reproduced using the

Carson opacities.
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CHAPTER 3

THE EQUATIONS OF STELLAR PULSATION

3,1 THE BASIC EQUATIONS

The equations describing the dynamics of a model star are
essentially those of static stellar structure (see, for
example, Cox and Giuli 1968; Clayton 1068) with the time

dependence of the variables included. Here these equations are

solved by difference methods. (See section 3.32)
In a Lagrangian form the equations to be solved are:

Continuity of mass:

roo= 1 2.1

d
dM,.  brr?e(r)

Hydrodynamic Equilibrium:

d%r = -~ GMp = LwrZdP (3.2)
> rx Il

Radiative Energy Transfer:

L. = - Gmrrfae arh) | (2.3)
ARCr)dty

where r is the space variable and t is the time variable. My

is the mass contained within radius r, Q(r) is the matter
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density at this radius, Ly the radistion flow (Juminosity), P
the total pressure, T the temperature and K (r) the opacity,

all at the radius r. 0" is the St efan-Roltzmann constant.

Omitting energy generation we can write 2 heat flow

equation:

T3S =90 = - dL (3.4)
ot ot dM,.

where E is the internal energy per unit mass, ¥ is the PdV work

done, S is the entropy and Q is the heat flow per gram. By the

First Law of Thermodynamics we have,

CAE = Q - W
S50
QE = -~ dL - POV
ot ar, ot
or
9E + PQV + dL = 0 (3.5)

ot ot dMr

"For the dynamics we can write an energy conservation

equation:

g_(%fz - gg% = - Ugrfop (3.6)
‘ dt r oM,
and then, using (3.1),
i{ﬁﬂ..@% = - d_(4m?FP) + PdV (2.7)
dt r dMy dt

Finally by combining this with (2.5) we pet the overall energy

conservation equation:

d__érz ~ GM, + F) + d (UmrrZ P o« L)Y =0 (3.8)
dt r dM,



Tn equation (3.3) convection is ignored as a possible
energy transport mechanism, although parts of the envelopes of
the stars considered will be unstable to convection (the
* hydrogen ionization region in particular). This should still
Se a fairly good approximation for most of the models, since
the convection will be very inefficient in the tenuous
envelopes of type II cepheids, because of the low matter
density. Results from computed static model envelopes (section
6.1) confirm this for the blueward half of the instability
strip, though it seems that the redder stars might have a
significant convective flux (see section 6.1 for a further
discussion). Ignoring convection also makes the non-linear

pulsation problem far more tractable.

Only the stellar envelope appears to partake in the
pulsation, and so energy generation is omitted. (See section

2.1

3.2 THE BOUNDARY CONDITIONS

The inner boundary is defined by choosing a constant inner
radius, Rimmer -~ 0.1Rx, and inside this we assume there to be
an adiabatic sphere radiating a constant luminosity, an
approximation to the non-pulsating stellar core. So, at the

inner boundary of the envelope:

(_d_r_) =0 (3-9)
dt Rinner

and

L(Rinmner > = Lo (3.10)



The outer boundary condition for the dynamics is defined

by Christy (16567} to be zero total pressure,

Peoe (surface) = 0 (2.11a)

However, a better boundary condition would be zero gas

pressure,
gg(surface) = 0 (3.11b)
or

Pe¢ot (surface) = Py (surface) (3. 11¢)

This is a much better condition where radiation pressure
is not insignificant at the surface of a star, which is the
case with many type Il cepheids. Both of these conditions are

"standing wave" or total reflection boundary conditions.

Possibly a "running wave" boundary condition might be
better for some of these stars (see section 2.1), but this
would be more difficult to incorporate into a non-linear

scheme.

Near the surface of the star the radiation flow should
properly be described by a time-dependent transport equation.
However, the transport equation provides a much harder
numerical problem, since the temperature of any point depends
on that of all neighbouring points within several mean free
paths. In the diffusion theory it only depends on the two
adjacent points, and so diffusion theory (although it is not a
good description of the optically thin regions) provides a
simpler problem. Tn classical cepheids and RR Lyrae stars the

diffusion approximation seems to be sufficient, however it
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might provide better results for some type 11 cepheids (again

see section 2.1).

The radiative boundary condition is chosen to approximate
“the results of transport theory by using an "extrapolated

boundary" (Christy 1967). 1In the Eddington approximation this

can be expressed as:

! : !
a(T*) - iré’ = T (3.12)
~ -
a7 5urFClCP ‘&/3

The equations (3.1),(3.2),(3.3) and (3.5) are considered
as an initial value problem. As such they can be solved by
putting them into difference form and integrating them forward
in time starting from some given initial conditions, after the
methods given in Richtmyer and Morton (1967). The initial
conditions usually considered are a previously integrated
static model envelope, and an initial velocity profile throhgg

the star, chosen to approximate the pulsational mode it is

desired to excite.

3.3 THE DIFFERENCE ECQUATIONS

The method used (following Christy 1967) is a
semi-implicit one. The dynamical equations>are integrated
explicitly for each time step, while the thermodynamical

equations are treated in an implicit manner.

The envelope of the star is divided into a number of
zones, each containing a constant (with time) mass. The
boundaries between each zone are represented by an integer T,

where T = 1 is the inner boundery of the envelope and I = i
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represents the surface of the star, Half integral values of I
represent values of that quantity at the centre of the zone, so
at each boundary we can give the mass contained within that
- boundary, Mz . Then the mass AMg-j , contained in the zone

between I-1 and I, is given by

AMpoy, = Mg = Mrey (3,12)

Also the mass associated with a boundary, i.e. contained

between 1-1/2 and I+1/2, is then given by
AMy = 3(BMpoy, + AMziy) (2.1

The radius of each boundary, representing the variable
r{M,t), is given by R; , where n represents the time t". %o
the specific volume of each mass zone is

= a((RDY - (RY,

u; ) (3.15)
3 AL ~

~%

Yo
Similarly the mean temperature and pressure at time t"” of zore

n
I-1/2 are represented by Tﬁ{k and_PI_gL.

Since the radius is defined at t", it is best to

, . n+a. 1
time-~centre the velocity at t =t 4+ 1/2At, so that
[ iy
A A (2.16)
where.
Y,
I

Since a constant time step is not used (it is changed to
satisfy various stability conditions) there is also another

At, given by

AT s g 1
So the time variable is defined in two ways;
RN (3.17a)
R PN (7. 17h)

and we also have

l«'.. -,
O = Lae™ 7 AT (7.170)

L
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In pulsating sters a shock wave develops during the
pulsation, causing rapid compression of some zones,
particularly in the region of hydrogen ionization. These shock
waves are treated by the Von Heumann-Richtmyer method
(Richtmyer and Morton 1067), which introduces an artificial
viscosity, acting like an extra pressure, the effect of which
is to spread the shock front over several zones, thus improving
the stability. The exact form of this viscosity has varied
since Christy's work. Here the form used is that given by

Stellingwerf (1975)

B
0L = GaPry EHN<( UE* 0T oty 0}] (3.18)

n- -1/
(R ',}‘,V:- )

As in Christy (:a is a constant chosen to achieve stability
without losing too much accuracy. The usual values of C:@
range between 1.6 and 4.0. Stellingwerf introduced the
parameter Xy , given in units of the sound speed, as a
"turn-on' compression, providing a low level cut-off for the
viscosity. Stellingwerf found that with &y = 0 (the original
Christy formula) the artificial viscosity was producing a
significant amount of damping in the lower regions of the
envelope, thus affecting the limiting amplitude‘of the
pulsation, an effect that had been néted by others. A small
value of Xy, of the order of 0.1, is sufficient to eliminate
most of the dissipative effects and still satisfy energy

conservation.

From (3.2) we can write the equation of motion in

difference form;

n+ML n n-'
UI "At[R”L+UﬁWI%(%” 4}&_ “Zforhﬁ (3.19)

At the inner boundary we have frem (3.9)

Nn+a

ult* = 0



The outer houndary is treated by defininm 2 fictitious pressure

at T = N+1/2, For Pty =@ (2,11a),

L, " n
'Z'(PN*"/Q, + PN"'I‘i ) = 0
S0
n r
‘ PN+‘/z_ T e PN__ Yy
and
n n n
PNMr;L - PN-VZ = - EPN'..'/;L
For P3 = 0.0 we require,
..L v} N ~ )V)
Z(I;*Jf'ﬁ_ -+ PN_J/.Z’) pou F';N
where ﬁnl is the radiation pressure at the surface.
2

the atmosphere is almost isothermal a good approximation to

this (probably to within 1%) is,

we require,

“ ~ 11 N
Pt‘,'N "':}'a”N-'/z
thus
¥ . 4] r
- Lt
PN—}"/:_ = §8"!N_|4( ~ P]‘j"'/,’L
and
n n kel
- Ay
Pury = Bieyy = 2y =Sl

Equations (3.20a) and (3.20b) can be combined as

n L]
Py = Pu

N+ -4

where B = 0 for condition (3.112) and B = 1 for

(3.11b).

)

1 jal
2 e ?(P,J,,yzl -— Bé‘,IlJ‘&)
32

condition

Since

(3.20b)

-~

(3.20c)

There is one further possible outer boundary condition.

If the star is considered to extend beyond the defined

surface" (see the discussion below about the mass associated

with the surface boundary) then the pressures of zones N-1/2

and N+1/2 can be considered to be in proportion to the masses

contained in these zones. So we have,

Puetg = DMy,
Py,  OMuy,
S0
PN&'{.L = &J'TP/‘*-'/Q‘
Disty = Py, = Fuogg (V-T2

(3, 20)



This condition mipht be useful as an ouber boundary condition
for stars of low effective temperature, acting to prevent the

outer layers from escaping.

So a2t the outer boundary,

' n—/ -

Ut = Uy - A G N lrrr(m (2 (). , ~Batiyl, ) szl)] (3.21)

2
N

AM, is an approximation to the mass associated with the
outermost boundary. Christy put .thq & AMHJ&‘. It is
usually assumed that some mass remains outside the defined
stellar surface. The amount of mass remaining can be estimated
in several ways, yielding a value for AMN. If the mass zoning
is continued beyond the boundary I = N, then the next zone out
will contai.n a mass AMypy, = 1/X AMNA‘/Z , where o is the mass

ratio between succesive zones (defined later). So AMy can be

estimated by ) ) -
AMy = S(BMy + Al )
AWy 2 Q0 AM. Va ‘ {522}

20K
This is the épproximation used in m&st cases in this study. An
alternative is to attempt to take account of all of the mass
remaining outside the star. A possibility is to continue the

zoning out to infinity, giving a2 total mass external to I = N,

' !
AV.N = i’ (AM“'I/L +§°'Z<A”N_Y )
’(‘:l
Lo =
= ZAA\N__I/’LZ oK
K=o
Dty = & AMyovy (3.72)
2@=1) (since > 1)



For a typical value of o<, say ot ~1.3, formulae (3.22) and

{3.23) can give quite different results.

As in Christy, W = T4 is used as the temperature variable,
_since it varies approximately linearly with mass over much of
the envelope. From (3.3) a difference formula can be written

for the luminosity at a boundary,

2L L .
LT = (RO, - Vg, y2Fy (3.2U)

h
where 2Fy i{s a difference approximation to the quantity
4s73/(KkAM). A suitable form for this is discussed later. Now

the energy equation can be written down in difference form.

M W ‘ 1 ﬂ}l n :

(EB%;— LT«P/ + ( (PT é/ + PL—*/ )+ Qrf'i>( l'f',’_ VI}’/?,))AMI{-’/Z_ ‘_,
,»n‘ &/ ntl

e (Ly LY+ Lg' Ly, - LI‘H ) - (3.2%)

This form of the energy equation is an implicit one, -~
involving>the new temperatures at three ad jacent mass points.
It is time ceﬁtred at n+1/2 and space centred at I+1/2. As in
Christy the equatlon is solved by a process of iteration at
each time step. (Christy points out that another poss1b111ty

would be to linearize the equation and solve it as a set of N

coupléd linear equations.)
The .inner boundary condition, equation (3.10) is given by,

iy + 2, At nt 1+
L a0l - Wy, 02F T = Lo (3.26)
where L, is the equilibrium luminosity of the star. This

Nt
determines Wy,



At the outer boundary Christy (and others) used the
relation,
= Uyl 2gTY (3.27)
incorporated into equation (3.25) at T = N-1, The luminosity

radiated by.a star, assuming it to be a black body, is given

by,

) A
L = lr(Rphot Vo To (3.28)

where Rphot 1is the photospheric radius, defined at T = Te

A

Replacing Té& ‘by 2Ts"  (from the‘Eddington approximation), we

get

L = Ur(Rphot V' 2014 B . (3.29)

Christy used Rp. as his value for Rg, sinée the radius
Ry is somewhat unreliable. Here equation (3.29) is used, using
an approximation to Rphet . This treatment probably makes
1ittle physical difference, but it does seem to aild in |
overcoming some numerical problems (see section 3.9). Judging
by the plots of velocity histories given in section 6.9, and
inferring the radius variations, it seems that both Ry and
Ry~; might be unreliable in some models. Use of Rphgt seems
to help. The value of Rphot 1is found by 1nterpolation,
estimating Teﬁ' from d@N %J The position of Te 1is found,

and Rphst interpolated, taking care to use the correct space

centring.

So at the outer boundary, we have

n+'%. nel
IHI ] N ‘/1) )AMN

(E,y = Enyg + (J’(P + Pu Y+ Qo /)(V o (3.30)

I/1

/

{
AR e L, - pet (R phet Y W), + (Rphoe V' w"* )

__.—

;\
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3,1 THE SOLUTION OF THE IMPLICIT FORM OF THE EMERGY EQUATION

Equation (3.25) is solved by a Newton-Raphson type
n+
iteration procedure, for the new temperatures wr~L ., The

corrections to the temperatures at each iteratinn are defined
by
iﬂwm-/' i dw\%?:{/’ wnu (3.21)

iy "

The (i+1)th iterate is expressed as,

i ¥ 1] . '
et T Prn, L@_g”" TA,
é\dr"‘“'i
it j ! nl Ay,
EIM, = TErp, ﬁar A”I—%"z _ (3.32)
. ()”I)‘“é_
’ . T ‘L +
7f./F£:I - 1%32 zQFMI 7AWE,‘/L N 151:.1 ) 7[5‘ n /
4. awﬂf‘/k ()NI vy
s fep el
and the luminosity, Lt is given by (3.24). -

Using equations (3.32) to linearize (3.25), the energy

equation can be written in a simple form,

npf n+! ~
a3 A“”;cﬂ/ + frey N'm v " 0% A” = Srpy, (3233
where
Ve A N+l ‘ o+f 3t
Ky = I e FT+I ‘)F'J-’*j, ¢ ey - Wran )
A5 ondl Taom] oyt " .
= ae™ . QM (v - Vo Y Al + Xy 4
T ~ It I+ I+ I-%,. d/ I+3/7.
/? 2 gﬁ@uy ;13ﬁi+% 2.
(3.34)
AP T S AL 3t {4y H
Ty, = AL (A, )Y (Fp + dfy Cuno= M )
Vi, St T- % T+,
Nty ﬂ+ " e "
gu,/ﬁ_@_t_ 2Ly o+ Lp - L, - Lpy)
Nl " n 1 1l Rl
- AMI!‘"/( EI{‘/ - .E.T’-f‘/,j'(_ljv(PIF/;,"’ F,’I)"V:' )+ O;L Z)(V,I+/ - I+VZ>)
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and

ntl L Nt -
AI = UTT'(P.I )

Note that in the definition of /éiguithe inclusion of
ag}gl aﬁd)ég+32 refers to the functional form given here, not
to the values of these quantities, as the values may be

different at the boundaries from those that would be found

using equations (3.34)

This set of equations, together with the boundary
conditions as given in (3.26) and (3.30), form a matrix
equation of the form i@g = d, where {iis a tridiagonal matrix
containing the elements Qi_%_,f3:+%',324;&, on the leading
diagonal, d 1is a vector containing the 5&39& and X is the

) L et 0 s
solution vector containing the new ZSWE+%1' The matrix set

up looks like this,

— S — -
ot fap o] |
Fr, ~n Y, o,

_ 3y
’ —8/7/2. ﬁ?/fk O('.?/Z' &wg/z_ 8,(5/7_




Ry linearizing (2,08) and comparing with (3.33) it is

possible to write down the elements for the inner boundary,

) Y NS P A TR A Y
oy, = 200 Y R - a;”“( Wiy = Yagy )
C) ‘2/2

PR L M Ty

I/Z = X ,3-
/ aw”*’ G o (3.35)
f = 0
Q//z 2 + / !
. ,) - m
5y, = - 2R i - ut ) e L

Similarly, by linearizing (3.30) and comparing with (3.32) the

elements for the outer boundary can be written down,

Q’N-'/lx 0
(PR pH R e LR R ) B ARy Nl
Bty = DR CR - ar,n,_;'/( Mez,m WD)+ Thehe
aw~~z: ' ' 6
(3.36)
_ n;./; Nl ne! ! N n-H
Yu-y =B ((AN_/) ¢ YR+ 2% ¢: ”rw{ iy, )
H=3/7
s ; . D
Sy =28 (Lyy + U~ 20 Mphes Wiy + 1AF;,U6 ‘w”"’ 1))
ra
n+/ n Lo NnH N
_AM,\,,/( - By * (1(34-.&.&”_%) )(v fjmr Ur )

Equation (3.33) can now be solved by a conventional matrix
method. The one used here is the same as that used by Christy,

described by Richtmyer and Morton (1967).

I3

To solve (3.33), we look for two sets of quantities, Xaz.v,
and Yr, , such that

e _ 2+ v ’).2
AWz, = Xrwy WOV st Y1t (3.37)

Substituting (3.37) into (3.32) and dropping time superscripts,

"O(I+|/7‘l/.yn’\lr+3’/ = (ﬁ+,§_xl~ "ﬁT-f‘/'L A"T—r‘ll"' (5E+€+J/Ifﬁ s l(Z_)

1

or qAWH‘i = Ot/ DY,z + (Stayg + /50 Yrota)

v = Viwvs "x-%) (ﬂﬂ!' Jewve, T4
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So that

X.L_*f"»i = ( O(I+|/’z, 7 |_)
324, &3:*&5' L (2.20)

Yoy = (Sravp + d7am Yz-14)
(/gf'*"[ Kty Xpy)

Since {}/:/2,: 0 (equation 3.35),

X‘f:n: 0{%/ 73
YA = Sl/z_//};/l’

So from these starting values at I-1/2 = 1/2, all of the XI+71
and Yry, can be calculated from equations (3.38). At the
surface we know CKN~2§ =0, s0 )(,\,_f/;,L = 0, and therefore

{AWN—‘Q = N-va
and so all of the iﬁwzfzz can be found from (3.37). This gives
the solution vector. The iterations proceed until the -
corrections ESWI+%_ are reduced to a sufficiently small size

(usually to five figures).

The gradients JE/JVyr.y, and aP/6wI+%L can be found from
the equation of state (see section 5.1). TheﬁFI and gradients

are discussed below,

3.5 THE LUMINOSITY INTERPOLATION

Christy at first used a very simple opacity average to
find FI’

n _ uq,r/:} (’3-?9)

[al izl
(K'C*‘{L['\MI«AJL + }\L"v,‘AMT’V:Z_)

H'Tl
1

where ‘k&+5 is the opacity in zone J+1/2, given by Tril, and

1/VI+%‘. However, this caused convergence problems in the



solution of the heat equation when the radiation front which
develops in the hydrogen ionization zone is moving through the
star at large amplitudes. This is because equation (3.39
cannot handle the large change in opacity across a zone that
occurs in such cases. It gives too little weight to the larger
opacity. Christy then developed the following difference

expression for Fp (dropping time superscripts)

F o= U (Wrpa/Kepn + Mzva/Keotg ) (3.40)

3 (AN 2oy + DMy O, + Vr_ty)

This permitted the use of quite coarse zoning in the hydrogen

ionization region without causing numerical difficulties. This

is the treatment used here.

Stobie (1969a) considered several forms of the opacity
mean, concluding that the form (3.40) used by Christy gave the

best overall representation of the effective opacity.

Then Stellingwerf (1975) introduced a formula which
appears to give better results than the Christy formula for
areas slightly away from the main opacity peak. At the peak

itself it produces much the same error.
In the formulation used here, Stellingwerf's formula can

be written as

F o= lo CAV/XD ' (3.41)
3 (Allpyy + MMy y) Olprpy = Wrll)

wheyre dW/K> = (geya /¥gevy = Mz=Va /Kx-Ya) (3.42)
(1 - (1og(Krgﬁ/Kr_zg/log(Y&F%/wk_%J)

. ; . , n
This expression is exact for all variations of the form ¥We<W

n # 1, however, if

i
L
jole}

!



dlogX/dlogh &7 log (Krply /Mgy )/ log (Wryy, /Np. !/2) approaches
unity then equation (3.41) can become very inaccurate. In this
case the expression

AW/ & ‘-JI—‘/—LlOg(\'lﬂ'/l/\z'I-yL) (3.42)
Kr-lgy

may be used.

The two derivatives of Fp, aar/awI-%l and OEI/aWI+&’ are

also required. Writing

(A}“ll;'/z + N’I_ l{_LS

(3.40) can be expressed as

Fr = Sg (/Yoo + Moy /Kzop)
. (Wopag, + W i)

So 3\,51 Sy [( M+ Yz (1 SKety = Mz-va JK
-k ( K- Y%, s Wy

2

Qs

2
- (HI-*}:,{—» \é_&) (W-r,’/z /KI—,.’/ + \‘JI_%{&/KIN}/;)}

- FI 1/K.Z"’é"- .{r_ i-r‘/-'é.‘._‘? JI'-.H bt /1 v"
Z-72, ' (K-E 94,) W T-% VI+ Kr %, (W + ”r.,. )

o
o
i

W
similarly
(3.44)
‘ -4
oF¢ = Fp{ dV/Kgy, - Wrsg 5}( ,.&Jr Upele, |- 1 [
IV, (Kreig, (}\Lﬂ/ Krvs Y"‘“;, (W + Wr.is)

The gradients of the Stellingwerf formuls are a little

more involved, but can be found in much the same manner. From

equation (3.41)

o= Sy<dWi/ie>
(W Iwlsy = "‘!I._ '/ZT
OF = Sy [Mﬂyb— Moy, ) 7 yean J/}c> + AU/ (Wpasg = Hgo ,j:) (3.15)
Iy Yr- .

Then from (3.42)

ILAW/m> = <dW/R> (1 9K - _1 Mr.y/Ks- e
5 UI“‘/Q, VI_ \é_awf_lé. ”I" ‘/L (‘-"!I,,a.'/x /["L‘ff_;L —HI—i /}(E_ )

L
3

1 -
_.éog( et /ur—i)— )oq(K;+i/KI-ﬁ)> ) - 1/(HZ_%loq( U;‘/Lr' ){J

2




Then 'substituting inte (3,45) gives,

OFr = F [ 1 dK = 1N/ Wiw/Kr4
BW;U - K],LL 3\‘[1;}1 ‘.‘.’r_i> ( (wz‘*fz /KIL;- —"{f_li_ /KI.,,_'&—)
- 1 - 1/\ebs - 1 _W
(log(\ln_ /M },) lod(Kr,,r /I\I_, )] log(‘! oy . J_) (wwi-\-lr_ih
Similarly, (3.46)
Lg_gt_ = (___1__ - __L aK Wrd /Kapig
Tl - AVWzes K oW, (Ve /¥orpss —Moi /i)
~ 1 + 1/VTY - 1 ]
(Log (Mppy /Vz_y )~ log (K /K ) Tog (Npyk /Wy ) (Vg -wIJi)/'

If expression (3.43) is used for <G(W/)§> instead of (3.42) then

the derivatives of {(dw/x> are,

ACAU/R> = <AV 1 -1 0K - /Wl
Wpty, Wr-ly  Kpl awf"‘i Yog (Vi /Vp_t)

QAW = <dW/x> 1/Wryy,

) Wrpd log (WIH,L;/» /Wr,é )

2.6 THE TIME STEP,

The time step to be found at each integration step is

.
Atm’g' . Having found this then Atﬂ can be found from equation
(3.17¢). Two conditions are placed on Zlnw&" . The first and

usually the most stringent is that the time step usad must he
less than the time taken for a sound wave to traverse a zone

(see Christy 1964; Richtmyer and Morton 1067). Approximating

the sound speed by \lPI—“g_ V;_-_Li , then we have
el
At < _AR (3.47)

where AR = Ry - Ry

Secondly we must ensure that two zone boundaries cannot cross
during a time step. This is pgiven by,

/Hl?_ HES
At T < AR/ANU for &U =l = Up, <O (2.08)
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This condition cannot be fully satisfied, since it is

calculated from the velocities for the time step t". Those at
th‘H are still to be found. Thus in a rapidly accelerating
compression this condition might be violated. Therefore a

‘ qheck still has to be made to prevent boundaries crossing,
which would cause negative densities. To help with this
problem, and to ensure that the missing factor of Y’ (the ratio
of specific heats) in equation (3.U47) is taken care of, only a

fraction, about 1/2 - 2/3, of the maximum time-step allowed by

(3.47) and (3.48) is used.

3.7 THE INITIAL MODEL

The difference scheme described here requires as a
starting point an initial model in hydrostatic and
thermodynamic equilibrium. Thermodynamic equilibrium is
required because the time scale for the thermal relaxation of
stars is much greater than the pulsation period. A separately
calculated stellar envelope (see section 4) divided into N mass

zones is used for this purpose.

The envelope is divided into about 35 - 50 mass zones in
such a way as to compromise between accuracy (more zones) and
speed (fewer zones). The ratio of is defined as the ratio of.

the masses of two adjacent zones,
O( = AMI—;‘L/L\MI\{«I/—,
[/ .
so that the mass contained in each zone decreases geometrically

as the zones move deeper into the star, coinciding with the

rise in density. This keeps the sound travel time
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approximately the same in all 7zones.

The static model from the differential equations has about
1000 - 1500 layers in it, allowing the mass division to proceed
fairly accurately. PReginning at the surface, withzﬁMNaé., the
‘values of SMr from the finely divided nodel are accumuiated
until Aﬂﬂ~é is surpassed. The final value of &¥, is then
split in two, one part to finish the sum at exactly Aﬂﬂ_i , the
other to begin the accumulation for ANN‘g . This is really
hardly necessary, but since it is an overhead, performed once
per. model, the ensured accuracy is useful, This is continued
through the star until the inner boundary is reached. The
variables Ry, TE%and Prtare initially estimated from the
boundaries of the zones (for Rg), or from mean values through

the zone.

Tt still remains, however, to specify the values of X angt
AMN-é , the mass of the outermost zone. By specifying the
total number of zones required, Hg, along with the number
required in the atmosphere (¥ 2/3 or T T Y, Ng, it is
possible to define & and AMy_t . If Mg is the total mass of

the envelope, and My is the mass of the atmosphere (measured

from the finely zoned model) then,
e

Mﬂ = E: LXMI
T=pe—Ng Na N
=1 A
= Arm-;:goc =AHN—{(1 - %)
N3 T =
Similarly
' Mg = Aoy (1 - o8
(1 -ot)
Ma = & 1) (3.50)
= Y, <Y

This equation can he solved iteratively for &, and then,

AMyL = Melon= 1) = Malx - 1)
e 1) (o= 1)
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Here we also follow Christy in increasing the size of the zones
above a certain temperature (2 X 10° K and 105 K were both
used), to satisfy the criterion that the time for a sound wave
to traverse a zone should not decrease any further beyond this
. point. This is because the pgreater sound speed in the denser
interior would cause the maximum allowable time-step to become
quite small (see equation [3.47]). Since the pulsation
amplitudes in this region are quite small these locally larger
zones (larger values of ®) should have little effect on the
models. It does of course mean that the number of zones in the

final model will in general be less than Ng, the number asked

for.

A solution of the differential equations of stellar
structure will not necessarily also be a solution to ?he
difference equations used here, so it is usually necessary to .
relax the newly divided model into the difference scheme. The
difference equations can be rewritten for the case of zero

velocity, spatially constant luminosity and no time variations:

Hydrostatic Equilibrium

Mz = - Br(Rp) (Pruy = Pr_s) (3.51)
(Rp)” AMy

Thermal Equilibrium
Ly = (ip(ReE ¥ (ipmy = Upys )2Fr = Lo (3.52)

From (3.51) Pr.i, can be found, knowing Ry and Prel,s then (3.52)
can be solved iteratively for Wr.y,. Thus Vr.L can be found,

and Rr-; calculated from (3,15).

- 63 -



At the surface, the outer boundary condition (3.11) can be

applied to find Puy.y. So

p = Gl ‘{AMM + Bally-k (2.53)
B9 Ry) 3

where B is defined as before. Schematically the relaxation is

shown below.

Approximate model from
finely zoned static model

y
Apply outer b.c., gives
& P, R
N, 3 n~L
/
. Calculate Pgz.y from
R’z P} Pr*”fi‘
' From Ry, Proi s LO solve
Repeat iteratively for Wrte
for and thus Vge.y
§ IsTN-1 v

L—~@k- From Vr_i, find Rz

Are the correctiom
to the Ry small enough?

~

N
Repeat procedure

Relaxation
converged

o
T

This is by no means the only method of relaxation, but it
is the one adopted here. MNormally only two or three grand
iterations are required. Without such a relaxation it is found
that the integration of the pulsation equations will frequently
break down quite quickly. The final thing to be done to the
initial model is to give it an initial velocity profile as a
starting point for the pulsation, Occasionally it might be
desirable to start with a zero velocity distribution, and start

- O -



the growth of the pulsation from computational "white noise".

This procedure might be preferable for testing stable stars, or
modelling only marginally unstable stars; for most cases the
time taken for the oscillations to grow to full amplitude from
;nqise is far too long for it to be useful. So most models are
begun with a velocity distribution. One profile used is that

of Christy,

1o g
u(r) - 13(r/R) - T(r/R} km/s (3.54)

Another is

n

ulr) -'m(r/mg K/ s (3.55)

which is based on formulae given in Stobie (1969a). 1In that
paper Stobie gives power law distributions for the fundamental,
and first and second harmonics (for classical cepheids), and he
also discusses the effect of the choice of the initial
distribution. For the type II cepheids (mostly fundamental ~
pulsators) the possible contamination by other modes is not
thought to be too much of a problem, partly because of the
short e-folding timesrof these stars, and also because the
first harmonic blue edge is considerably redder than the
fundsmental blue edge (section 2.3). Since the e-folding times
are so short, 1t was decided not to use artificial
amplification of the motion, also discussed by Stobie (1969a),
Most of these stars are almost full grown after 10 periods or

so in any case,




3.8 TESTING FOR A PERIOD

The beginning and ending of a period is defined here as
being when a chosen radius, while decreasing, crosses its
Eqpilibrium value. Two possible radii are normally used,
either the radius of the boundary of INT(N/2) (halfway through
the zones of the envelope), or the radius of the boundary used
as the observation point. The observation boundary is chosen
as the one closest to T = 0.2 in the equilibrium model. This
value is chosen following Carson, Stothers and Vemury (1981).
CSV, however, chose the boundary nearest T = 3 X 10; K in
determining the period. During each period the following
quantities are all taken from the zone nearest T = 0.2;

maximum inward velocity

o
3
!

Uput - maximum outward velocity

B

Uin = Uout -
Rrnayxs Rmin - maximum and minimum radii
AR/R - full amplitude = (Ryax ~Rmijn )/R
Lisaxs Lenn - maximum and minimum luminosities

MMpor, = 2.5208 (Lyax /Lyin )

The peak kinetic energy of the star for the period is also

noted, the kinetic energy being found from

N .
K.E. = AWMy L (Ug )L
=/

L
hy 5

N

where

Ur-4 = (U + Uz~ )
The work done in each cycle, for each zone, £“4DJQg;dW is also
calculated, where d¥W = (P+Q)dV. C is included since it is a
pressure and thus does work, even if it ié artificial. Since

(while the pulsation is growing, and later for numerical
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reasons), the P-V loop will in general not close exactly, the
value 1/2(P1itiat  ~Feinat ) Vinibiad ~Veinal ) is added for each
zone (Vemury and Stothers 1978). The integrated work function

N
for the star then comes from 5515“I~£§;(P + Q)dv
. Izl

3.9 NUMERICAL PROBLEMS

To avoid problems of numerical overflow on the machine
used, the luminosity, along with such things as the kinetic
energy, the 52Ha_and the work done were scaled downwards by a
factor of 103§. Also the gradients 3EI/BW3,%1 and aﬁf/éwr+%L
tended to be rather small, and were therefore scaled up. Other
possible overflows were avoided by choosing the order of -

calculation carefully.

Several problems occur in the solution of the energy
equation. These were usually overcome by halving the

time-step. However, in the instance of having a fractional

AWy

that is greater than (say) 0.8, rather

correction

T+,
than halving the time-step (which is time consuming) only some

of the correction is applied, say a fraction 1/q, where

n=2 DWre

L’\/):{. 1/1,
would be Y . This avolds some convergence problenms
I+9 r)

S0 the correction applied to each temperature

without the need to halve the time-step and recompute the
integration step. A specific problem encountered in the
modelling of type II cepheids was the occurence of negative
luminosities between zones, caused by the inner zone having a

lower temperature than the one just outside it. S0 a further
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restriction was placed on the corrections Aﬁﬁ}%l, - that they
must not cause this inversion. If it occured then A¢"+ZL would
be halved. This restriction was not totally successful. In
_many cases where the luminosity would have become negative, it
simply meant that the time-step was halved over and over again
until the program crashed because Ot was too small., The
introduction of the boundary condition (3.29) has partially
overcome this problem, though it still occasionally occurs.
Another partial solution to this seems to be to decrease the
number of zones, or increase ¢ the zone ratio. This probably
helps just by separating the rogue zones a little more widely
in temperature. Of course this can only be taken so far, too
few zones or too large a value of X will mean a decrease in

accuracy.

The integration of the pulsation is shown schematically -~

here.
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CHAPTER X

THE STATIC MODEL

The starting point of the pulsation integrations is

usually taken to be a model stellar envelope in hydrostatic

equilibrium.

is is found by solving the differential

equations of stellar structure for the case of no motion

(hydrostatic equilibrium), and constant luminosity (no energy

generation). These equations are: (see, for example Cox and

Giuli 1968; Clayton 1968).

Continuity of Mass

dMy = Unrz@(r)
dr

Hydrostatic Equilibrium

, dP

dr

n

- Gx\"-y-e(l")

Radiative energy transport

dT = - 3e(r)x(r)ly
dr Baclpr®=T3

Energy generation

dLy =

“WTle(r)é(r)
dr

In this case the luminosity gradient in (U4.4) is set equal

= 0 for the case of no
energy generation

zero since energy egeneration is ignored, because only the

stellar envelope 1is considered
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temperature will in general never recach a point where nuclear
reactions can begin. In (4,3) convection is ignored because
the equation used for the pulsation (sectiocn 3.1, equation
(3.3]) does not include it, for reasons described there, Also

“ignored are the effects of rotation and magnetic fields.

So by taking three stellar parameters, L, M, and Tga (or
R) ana a set of boundary conditions, along with an equation of
state, P = P(p,T) an opacity for stellar material 7{:‘K(Q,T),
and a given composition X, Y, Z (assumed to be constant)
equations (4,1) - (4.4) can be solved to produce a stellar

envelope in hydrostatic and thermal equilibrium,

It has already been mentioned (section 2.1) that only the
stellar envelope participates in the pulsation for most stars,
and so the equations only have to be solved down to a finite
inner radius, Rimper ~ Rx/10. This is also why the 1uminosi§y
and composition are assumed to be constant in the initiai
model. The equations are solved by using a numerical
quadrature method to integrate from the photosphere inwards,
until R; ey 1s reached. 1In this work Ry ner = Ryw/12, and a
further criterion is applied, in that T;ppey must be 2 ~ 7 X
107 K: Insisting on a minimum value for the inner temperature
ensures that the inner boundary is far away from the important

driving and damping zcnes,

For the surface boundary condition the Eddington
approximation is used to represent the atmosphere, So the
photosphere, T = Te , is defined at optical depth T = 2/3.

The temperature distribution in the atmosphere is given by
o I
RAC SR £ Y E D (.

—17- .
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Other formulae for the temperature distribution are possible
(see, for example, Bohm-Vitense 10583 Baker and Kippenhahn
1962: Gingerich 1971), and equation (U.5) can be written in
the more general form (Mihalas 1978)

oy - g're’fmuqm) (1. 6)

where q{7T) is the Hopf function.

The Eddington approximation is used for simplicity and to agree

with the treatment in section 3.

The boundary condition on pressure is chosen to
approximate to P3 = 0, or Peot = P at the surface, i.e. at
T = 0. By taking the definition of optical depth;
dr = - Hr)plridr .7
and combining this with equations (H4.1) and (4.2) we get,

assuming Mp and r to be constant throughout the atmosphere,

4P = _ G (4.8)
dr K(ryR= :
So at the surface, to approximate to P9 = 0, we have
P o~ _1_(@>d . PA(TEN (1.9)
2\aC/n=4

where § << 1.0. It is not possible to use = 0, since at the
surface @ —» 0, so by solving (4.9) by iteration for a small
value of T (finding E#% from [4.8)) the "surface" (T=§)

values of P and e can be found.

Mow equation (4,8) can be solved for S<Tg 2/3 by
numerical methods (for example a simple Runge-Kutta procedure),
thus giving values of P and @ at ‘U= 2/3. These values at the
photosphere can be used as the starting point for the envelope

integration.



To solve equations (U4.1) - (4,23) for the stellar envelope
it is best to change to a better set of variables than Mp, r, P
and T. Before the advent of fast, digital computers it was
common to use the Schwarzschild reduced variables q, x, p and t
(Sehwarzschild 1958), which simplified the equations. That is
no longer necessary. It is still useful to use logarithmic
variables, because of the wide range of these variables (as
much as 15 orders of magnitude in the case of P, for example).
Since the equations are not solved at the stellar centre it is
not necessary to use a transformation of the r and M, variables

to avoid the singularity in their logarithms there. So we

define
q = log r
S = log P
(4.10)
§ = log M .
9 = log T

In the outer regions of the envelope r and My are very slow
moving variables, and near the surface the temperature becomes
almost constant. For integratng the envelope alone it was
decided that the pressure would be a better independent
variable than mass or radius. Applying the transformations
(4.10) to equations (4.1) - (4.3), and using T as the

independent variable, we find

4525
af = - o’ 5 (4. 12)
a3 G
M = -1 01+ (1.13)
dg Ge

‘. __4&
48 = 2ml m§ ’ (1. 10)

|

161m00G

a
vy



Here common logarithms are used, since the real value of a

variable is more easily estimated from them, but there is no

reason why natural logarithms should not be used .

Equations (4.12) - (4.14) can be solved by, for example,
Runge-Kutta integration (Ralston {1965] provides a good
introduction to numerical quadrature). Fourth order
Runge-Kutta integration is the method used here. For a system

of differential equations,
(4,15)

y’:/ = f¢ (y,‘_,X)

where x is the independent variable, to integrate to the point

Xng = %+ d, beginning at a point x,, we can write
by, = _(;_(k, + 2Ky + Ky + k) (4.16)
where i
kp = folyn + Ldk, , xp+ £d) 17y
ke = £} (Y,'_m + "idkj.' Xp+ id)
k4 = f (yhn + dhizy xp+ d)
Then .
Yinu = Yyn + B¥yn o (1.18)

So for equations (4,12) - (4.14) we put T= x, § =Y =Yz
and &= Y3 Starting from the values at T = 2/3 (from the

atmosphere integration), the envelope can be integrated into

some desired value of Rjppep.

We also required is the mass, $My., of each layer
integrated, to be used in the division into mass zones (see
section 3.7) Using the mass transformation given in (4.,10), S My

can be found from

g5

Sty = m(10%7 - 1 (h.10)
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vhere Sf is the change 1in § calculated from the Runge-Kutta

integration step. Since &My, << My, this section is calculated

in double precision to attain sufficient accuracy.

Since the pulsation equations treat the atmosphere in the
same way as the envelope, by assuming the diffusion
approximation, it is necessary to integrate the static model of
the atmosphere in the same way as the envelope. Having
completed the envelope integration, the atmosphere is then
integrated in the same way, beginning at T = 2/3 and ending at
Pymin = P(T=§). Tt is found that this does give a surface
temperature Tg o~ T(Z=§), to a good approximation. This
reintegration of the étmosphere also allows r and Mp to vary,

thus providing values of &My for T< 2/3.

This procedure provides a solution to the differential
equations (4.1) - (4.3), describing the structure of a stellar
envelope of homogeneous composition and constant luminosity. It
should be noted that for a real stellar model only certain
combinations of L, M, and Te would give solutions, but since
we are avoiding the central regions a wide range of values will

provide solutions.

Mo particularly difficult problems are encountered in
computing a model stellar envelope, so long as care is taken in
the order of some calculations to avoid the occué%nce of
numerical underflows or overflows. It would also be a good
idea to scale the mass and luminosity in the case of high mass

or luminosity stars,

e Tl =



The envelope is covered in 1000 - 1500 steps, with about
50 in the atmosphere (T < Te ), to allow accurate division

into mass zones.




CHAPTER 5

THE STELLAR PHYSICS

5.1 THE EQUATION OF STATE

In order to solve the equations of stellar structure it is
necessary to have an equation of state representing the
dependences P = P(g,T) and E = E(,T), where P is the pressure
of a gas/radiation mixture, E its internal energy per unit ~
mass, @ its density and T its temperature. The equation of
state used here applies to a mixture of radiation and a
non-degenerate gas consisting of hydrogen, helium and two
metals. The Saha equations are solved simultaneously at every
call for all the elements considered. Since the temperatures
in the envelopes of the stars to be considered will probably
not reach 106.degrees it was thought pointless to assume
complete ionization for high temperatures., Similarly, these
envelopes will never reach degenerate conditions, so degeneracy
is ignored. However, radiation pressure can be very important,
and is included. The partition functions of the various ionic
configurations are considered to be constant, rather than
including their variation with pressure and temperature. Trial
runs on static models including varyine partition functions

showed the effect of their variation to be neglipgible.



One negative ion (H7) is considered, since its effect in
the low temperature atmospheres of these stars might be
significant, as it soaks up some electrons. For the metals,
some of the higher ionization states were completely ignored,
on the justification that the temperature would never be high
enough to remove the electrons. The two metals considered were
nitrogen, representing the abundant group of elements carbon,
nitrogen, oxygen, neon; and magnesium, representing the group
of elements such as silicon and aluminium which have low first
ionization energies, and thus act as electron donors in stellar
atmospheres. The ratio (by mass) of these two metals was taken

as nitrogen:magnesium = H:1,

Molecules have not been included, and this might be an
improvment for future work, since they may have some effect in

the cooler stars modelled.

The total pressure, P, can be written as,

P = P +Pe +Pr (5.1)
where P. is the radiation pressure, given by,
Pr :?-T‘f
3

a is the radiation energy density constant.
Pe = NgkT is the electron pressure. Ng is the electron number
density
P, = NpkT is the ion pressure. Ny is the number density of
nuclei
k is Boltzmann's constant

N = Ny + Ne is the total number density of all particles



Usually the temperature of the gas will be known, along
with either the density @, or the pressure P, and so either M
or N, must be found in order to calculate the third quantity.
Either way Ng, the electron density, has to be caiculated. The

electron density is given by,

Ne = Nn%w%jf’,k(me.ﬂ (5.

where Xx is the fraction by number of element k, fﬁk is the
fraction of element Xk in ionization state j (where j = 0 is the
ground state), and a summation written without explicit limits
means "sum over all values", Equation (5.2) is a non-linear
equation in Ne which can be solved exactly in some simple cases
(pure hydrogen, hydrogen plus one metal ion), but in general

needs to be solved by some sort of iteration.

The O% can be found from the fractions by mass,/%<, whieh
are given as input (the usual X, Y, Z represent mass fractions

for hydrogen, helium, and metals), and the atomic masses, Ak.

™ = /7{'7/0/‘<

Ak

where

The quantity N, may or may not be known, depending on whether

the pressure or density is known, If P is known then

Ny = N - Ne , and H = 22/RT

where Fb = P; + Pp is the gas pressure.
If the density is known then

Uy = Mog /Hn
where MNe is Avogadro's number.
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So My is a2lso known.,

The fgu are given by {number density of element k in sfate

3) / (number density of element k) = AUk/QdK

P = My Mgk ) (Ngmz,k Ma=L KD ooee v NGR/MGHGK )
1+(']p—//</"3'/<)+( Tfk/”fk’”b‘z k /My k )+ "+“\}J:/,/</?'!J’K)'"“371’( /?'I}'ij)

or
R/
6k } JNC (K(T) (5.3)
Mz : fﬁlN QK(T) A

Jk is the maximum ionization state of element k.
sz/(NQHK MNg) is given by Saha's equation;

PulD
o2, <3l ( Xak/KT)

Qo™ = s 1 Q : | (5.4)

U-(HK 2\2m
Ui are the partition functions

]

X¢k is the ionization energy (1 = 1+1) of ionization state 1
h is the Planck constant

m is the electron mass

So equation (5.2) is solved by direct substitution iteration,
calculating Ne i from Ne and substituting it directly into
(5.2), until convergence is reached. Use of the geometric mean
of the i and (i+1) values of Na provides surer but slower

convergence,

Mewton-Raphson iteration could be used to solve(S.Fi but
since it depends on BHe /P. being small it was not used since
for a fast convergence the initial value of Neg must be a fairly
good approximation. The method used here is more flexible and
usually converges in 2 or % iterations (to five figures).
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Having found Mg and the I;k, ﬂhon/u, the mean molecular

weight can be found from
= 1/; N
Ax
where n, = 1/Ax(1 + Ya(k)) is the number density per unit mass

of particles and electron for element k and »@(k) = Ziﬁ}k is
J

the number of electrons provided by each state.

The major numerical problems encountered in the equation
of state are caused by having very large or very small numbers
for the values of some of the ratios. On the machines used the
limits are 1dt3?, and the products found in equation (5.4)
would quickly underflow or overflow. To circumvent this
problem logarithms are used in calculating the numerators (i.e.
finding sums instead of products). Then the numerators are
normalized, so that for each element the largest value of

Jic=}
log(gNe@gk) is 1.0. Then to speed calculations, values below
-10.0 are ignored. Antilogarithms are taken to find the scaled
numerators. Since the denominators are sums of the numerators

this is in fact a renomalization process, the scaling factor is

divided out.

The internal energy per unit mass is found from the

following equation (Cox and Giuli 1968, page 334).

- Jk & ‘
E- = Np(1 + PI3KT + HpShoy £ Xk + al (5.
2 € k=1 sl e

The first term is the thermal (kinetic) energy, wvhere

r

%WE——J'QK

The third term is the energy density of the radiation field.

The second terrm is the summed contribution of the various

-~ 50 -



ionization states. For just positive ions this has the fornm
given in (5.%); however, if nezative ions are present they

must be included separately,;
-1
Eion Mk(zf&kzz = z f‘ukéf :t )
Z KL - PP mk»

where -q is the most negatively charged ionized state. Eion

thus has its zero point at the ground state of the neutral

atom.

Two other quantities are required from the equation of
state; these are the gradients (bP/bT)e and (aE/ST)e. From

(5.1) P can be expressed as

P = N keT + NegkT + aT
An 3

(ﬂ» =P /T + dNg) kT + 4Py
gTe JT b P

and from (5.5)

B\ = Np(14F)3k + 3KTHy, 4N UaT>
@'ir‘)q T 2 7 () nz"’{( ?i%""Jr’ﬁe“

where

GRS

then

(5.6)

(5.7)

éﬁé =1 m:)<f =9 = Tiy Gi (=)0 + (2107 —}T&lﬂTé y
(QT e N hY) P Jk K / OLZJ § otk (_ T e <TT—£‘€ ‘/k (5. R
Ol D )

!

(&[nﬁx) = - ___1_ 2 (ZkT +Xj/<)
oT KT*
¢ 22

So to find both (dP/dT)e and (OE/T)p, the gradient (Ne/OT)pis

required. From (5.2)

5. 0)



Then, from (5.2)

o Al 2

- \aT
i

vwhere

then substituting into (5.9), and solving for (aNe/aT)e, gives

/ANE) . N,,gwi (5.10)
377, (T = My Mg 25
K

Using (5.10) the required gradients can be found from (5.6) and
(5.7). Analytic expressions are used for (JP/dT)o and (OE/IT)p
since it seems likely that computing them will be quicker than
using any numerical method, which would involve at least one -

further call to the equation of state.

The routine as used accepts X, Y, Z, the A's, C(ﬂés and
Ji's as original input data. Then in a call to subroutine
STATE T is required as input, along with either P or e- The
major output is @ or P, along with E, (dP/0T), and (aE/éT)e if

desired.

It should be noted that a routine is also available to
carry out interpolation in tables to provide values of P, E and
their gradients. This routine is not as accurate as using an
on-line version, but is considerably faster, and was used for
some test runs, also for checking such things as the possible
stability or instability of a particular star. The tables used

are constructed in & format similar fo that of the Carson
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opacity tables, but with more points. This allows the same

interpolation routines to be used for all tables.

Some references that were generally useful here are
Clayton (1958, Chapter 2), Cox and Giuli (1928, Chapters 9,15)

and Mihalas (1978, Chapter 5).

5.2 THE OPACITY

5.2.1 The Carson Opacities And Their Use

Until fairly recently most theoretical work on stellar
pulsation has used the Cox-Stewart (1965) opacities, or some
later modification of them, or an interpolation formula fitted
to them. These opacities (also referred to as the Los Alamos
opacities) are based on the early work of Stromgren (1932) and
Keller and Meyerott (1955). The methods used are described
mainly in the review by Cox (1965). These opacities use as an
atomic model the "hydrogenic" approximation, treating the atom
as having a hydrogen-like coulomb field, due to an effective
nuclear charge, and dealing with perturbations from this field.
Carson et al. have questioned the validity of this
approximation., Carson and Hollingsworth (1968) used
numerically exact methods on one electron model to check the
hydrogenic approximation. They found that only if care is
taken in the choice of the effective nuclear charges is the

approximation a good one.
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In 1968 Carson, Hayers and Stibbs applied non-hydrogenic
methods to the problem, using the generalized {non-zero
temperature or "hot'") Thomas—Fermi model for the atom. The few
results obtained showed that the Cox-Stewart values for the
opacity could pe increased by a factor of two or three using

the new methods.

Carson (1976) went on to calculate a full series of
stellar opacities. His methods involved a mixture of earlier
procedures, plus several improvements., In the atomic opacities
hydrogen and helium are treated "exactly", whilst for the
heavier elements the generalized Thomas-Fermi statistical model
is used. At the lower temperatures negative ions are included
along with a few diatomic molecules. Conauction was treated

using the code of Hubbard and Lampe (1968).

The main agreement between these new opacities and those”
of Cox and Stewart is quite good. However, there are
differences of detail. The main H-He T peak shows an opacity
that is up to two times lower, whilst beyond log T ~ 4.5 the
opacity is generally higher than the Cox-Stewart values. At
5.4 < log T < 6.4 there is a double bump feature not present
in earlier work. These peaks are due to the final ionization
of carbon and oxygen, with contributions from nitrogen. At
higher values of log T the opacity reaches the normal

scattering limit.

The Carson opacities are the ones used in this work.
Opacity tables exist for a number of compositions, but only one
is close to that of population IT stars. This is for
composition X = 0,7U5, Y = 0.25, 7 = 0.0n5, The population IIT
variables considered in this work have compositions of
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0.2 ¢ Y < 0.3 and 10~4 <7< 10_2, so the composition used is
not unrecasonable., It seems that Y = 0,25 is an accepted value,
while Z = 0.001 is a more usually accepted metallicity. Since
no table was available for Z = 0,001, and as it was thought
that interpolating between tables to produce one would

introduce unwanted errors, the 0,005 value for Z was used.

Cach table gives log ¥ for 38 values of log T, with 9 or
10 values of log ¢ for each temperature. The table for the
population II mix is given in table 5.1. The opacity for this
mixture is plotted in figure 5.1, Figure 5.2 shows the
Cox~Stewart opacity for this mixture, computed from the Christy
interpolation formula (1966). These two figures show the
general differences in the opacity noted above. Also figure
5.1 shows that for low temperatures, log T ¢ 3.8, the Carson
opacity almost stops decreasing as log T decreases, leveling
off to a plateau, leaving the Carson opacity up to 4 or 5 N
orders of magnitude greater than the Cox-Stewart values. This
has been interpreted as an error in the program or the use of
it at these temperatures. The effect of this plateau is
demonstrated in the test run on model 1 from CSV (see section
6.2). Consequently for log T < 3.85 the Carson opacities are
replaced by the Cox-3Stewart ones, again in the Christy
formulation. This also fits in with the work of Carson,
Stothers and.Vemury in various papers (Carson and Stothers
1976; Vemury and Stothers 19783 Carson, Stothers and Vemury
1981; Carson and Stothers 1982), who used the Christy opacity
for log T < 3.85, since at that time the Carson opacity values

were not available for these lower temperatures. This mixed

opacity is plotted in figure 5.3.



Opacity c74525 for composition 3 H=0,745, He=0,250, 2=0,00%
Log Opacity (cms2/gm)

Log Rho I I+1 Iv2 I+3 1¢4 I+5 1+6 - 1+7 i+8
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Table 5.1 Carson opacity for X=0,7U5, ¥Y=0.25,



x107!
log T

Carson opacity for X=0,745, Y=0.25.
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Figure 5.2 The Cox-Stewart opacity for X=0.745, Y=0, from

the Christy formaula
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Figure 5.3
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The combined Carson/Christy opacity for X=0.745,
v=0.25., Uses Christy formula for logT < 3.85



This work uses linear or quadratic interpolation of the
opacity tables, linear interpolation usually being preferred
because simple quadratic interpolation can produce unrecliable
values of (QK/977Q, which is also calculated numerically.
However some test runs showed little difference between the

results using the two forms of interpolation.

5.2.2 The Effect Of The Cpacity

The Carson opacities have been used recently by Carson,
Stothers and Vemury in several studies of stellar structure,

evolution and pulsation.

Stothers (1974a) compared the Carson and Cox-Stewart
opacities in a series of homogeneous stellar models in the mass
range 1 ¢ M/Mp ¢ 120. He found few differences in the models;
except that the larger mass stars had slightly larger radii,
and therefore lower effective temperatures, using the Carson
opacities. The Carson opacities have alsc been used to reduce
the discrepancy between theory and observation for the apsidal

motion constant of binary systems (Stothers 1974b).

Carson and Stothers (1976) examined the effect of the new
opacities on the evolution of giants and on classical cepheid
pulsation. They found very little change in the evolutionary
tracks for stars with masses 5 Mg and 7 M. The theoretical
mass-luminosity relation was changed by a small amount, and the
inferred "evolutionary" masses for cepheids were increased only
slightly. The theoretical blue edge for the cepheid
instability strip was moved bluecwards with the new opacities,
in better agreement with the observations., The theoretical
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"pulsational" masses were only increased by a small amount,
thus failing to remove the discrepancy between pul sational and
evolutionary masses. This discrepancy now seems to have been
removed by a redetermination of the cepheid distance scale (for
a review of the cepheid mass problem see A.N.Cox 1979, 1280).
Vemury and Stothers (1977, 1978) extended the work on cepheids
using the new opacities by studying the so-called "bump"
cepheids. It had been found that to correctly reproduce this
feature, the mass of the star had to be only about one-half the
mass expected from evolutionary theory. The use of the Carson

opacities seems to remove most of this discrepancy.

Stothers (1976) has also found that in hot massive stars
the CNO opacity bump, present only in the Carson opacities,
can act as a source of pulsational instability.

Recently Carson, Stothers and Vemury (1981) and Carson and
Stothers (1982) have used the Carson opacities in modelling the
BL Herculis variables (type II cepheids, with periods from
1 - 3 days). This work, along with that of A.N.Cox et al. in
several papers, is reviewed elsewhere (section 2.3). Briefly,
the Carson opacities seem to produce results in more general
agreement with those observed, in particular for the shape of
the light and velocity light curves. However, the higher
opacity near the He II driving zone may give light and velocity

amplitudes considerably larger than those observed.



CHAPTER 6

RESULTS

6.1 THE RED EDGE OF THE INSTABILITY STRIP

Before presenting the non-linear pulsation results, it may
be instructive to look at the amount of convection in these
stars. Convection is not included in the pulsation eguations,
and is therefore also ignored in the static model calculations.
However, a routine to construct static model envelopes
including the effects of convection wasbavailable, courtesy of
C.S.Jeffery. Local Mixing Length theory (Bohm-Vitense 1958) is
used, including the more recent modifications to this theory.

A mixing length/pressure scale height ratio of 1.0 was used,
The results presented are for models with M/Mgy = 0.6 and using
the Carson population II opacity, composition ¥ = 0.745,

Y = 0.25, Z = 0.005. In the envelopes, the amount of
convection in the hydrogen and helium IT ionization zones was
looked at. 1In figure 6.1 is plotted the observed instability
strip of Demers and Harris, along with the lorrell blue edge
for M/Mgp = 0.6, and the above composition. Line a represents
the region where convection carries approximately 507 of the
flux in the hydrogen ionization zone. This can be compared
with line b, which represents the sane amount of convection,
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Figure 6.1 Possible red edges for the Instability Strip



but comes from ¥ing, Cox and Hodson (19£1) and uses the Cox
opacities, being their estimated red edge. The two are close
enough to suggest that the only main difference is the use of
different opacities. UMNeither line is close to the observed red
edge. However, for these stars, even when convection accounts
for half the flux in the hydrogen ionization zone, the amount
in the helium II ionization zone is still negligéble. This is
because of the high L/M ratio of these stars. Deupree (1977a)
concludes that if convection cafries just a few percent of the
flux in the helium IT convection zone, it will quench the
pulsation. Line c¢ represents the region in which convection
has this approximate level of significance for the envelopes
calculated using the Carson opacity. Line ¢ is very much
closer to the observed red edge, and can be regarded as an
estimated red edge for this work. For this line the convection

A

in the hydrogen zone is 90-1007%.

From these results we can see that convection plays little
part in the pulsation near the blue edge, and is probably
responsible for the red edge by supressing the helium II
driving zone. Also, from the middle of the instability strip
to the red edge, convection in the hydrogen ionization zone is
very significant, and is probably diminishing or supressing any
hydrogen driving. This may play a part in determining the
amplitudes of these stars, and may even alter their light
curves. Deupree (1977a), however, suggests that the shape of
light curves is not altered greatly by convection. So whilst
ignoring convection in the pulsational models, it must be
remembered that it could be very significant for the rédder

models.



¢&.2 THE TEST MCDEL

To test the independently written programs described in
sections 3-5, model 1 of Carson, Stothers and Vemury (1981) was
repeated. Hereafter the original model is referred to as CSV1.
This model is characterized by the following parameters:

W/M, = 0.6

log(L/Lg) = 2.0

log Te = 3.¢81

Composition (X,Y,Z) = (0.745,0.250,0.005)

Following CSV, the "surface" of the star is taken to be
the zone having optical depth closest to 0.2 in the equilibrium
model. This is taken to be roughly comparable to the observed

surface of a real star. The following gquantities are also

defined:

Peak K.E. Peak kinetic energy of the pulsation

AR/R Full radius amplitude/equiiibrium radius

Vout »Vin Maximum outward (positive) and inward (negative)
surface velocities

AV Full surface velocity amplitude

Lmaw + Lymin Maximum and minimum surface luminosities

AMbol Full amplitude of bolometric magnitude variation

(=2.5108 Lmax /Lo ).
(Note: Since Luay and Lmn are sometimes subject
to computer generated noise or spikes, it is
usually better to measure this from the surface
light curve).
Asymmetry (vel. Asymmetry of the light or velocity curve,
or lum.) = (Time to go from maxinmum to minimum)/
(Time to go from minimum to maximum)
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Qézl Phase of the secondary bump on the velocity curve
after the phase of zero velocity on the ascending
branch, plus un%&y.

¢1 Phase of the secondary bump on the light curve
after the phase of mean light on the ascending

branch, plus unity,

Firstly the riodel was constructed using the full Carson
opacity at all temperatures, taken from table 5.1. Though the
period obtained was approximately correct, the result was
obviously in disagreement with CSV1, as is demonstrated by the
curves plotted in figure 6.2. A large pre-maximum shock or bump
is present in the light curve, essentially a much 1arger
version of the smaller pre-maximum shock present in C3V's light
curve. This problem was found to be caused by the opacity.

The only feature of the input different from that used by CSV/
was that the Carson opacity was used for the lower
temperatures. So the model was repeated, now following C3V
precisely, the Christy formulation of the Cox opacities used
for log T < 3.85. The results for this are presented in table
6.1 (compared with CSV1) and figure 6.3. These results show
very good agreement with CSV1, validating the program,
confirming CSV's results, and also indicating that the Carson
opacities aré probably incorrect at low temperatures. The test
run was repeated once more (after some minor program
improvements, and after transferring the code to another

computer), and the same result was obtained (to within

reasonable limits),
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*
Parameter CcSsvl Test model
M/MO vvvvinnneenn . 0.6 0.6
1og(L/Lo) .vvvunn.. 2.0 2.0
log Teff ... 3,81 3.81
R/R® vvvuvun e . 8.13 8.0
P (daysS) v.ovvvwwve.. 1.23 1.21
40
Peak K.E. (10 “ergs) 1.4 1.3
AR/R i i it iii i 0.16 0.16
VOut (km/s) ....... , 31 33
Vin (km/sS) ...... L. =42 -39
av (km/s) v.vvvnn. 74 72
Lmax(ergs/s) e 5.3 5.4
Lmin(ergS/S) e, 2.4 2.2
AMbOl 8 9 & 8 5 % 2 0 4 9 0 O.g 0.9 N
Asymmetry (vel.,) ... 3.6 3.2
Asymmetry (lum.) ... 4.1 4.0
v g
¢% e cee 1.57 1.57
qu ...... . e 1.61 1.57
Bump ..... e D D
Opacity used ,...... CCH CCH
Dynamic B.C, . ? 2
C e e . 1,0 1.0
0 "
o 0.1 0.1
No. of zZones .,...... ? 44/5
: * P T T S S Y 7 0.18
inner
o]
Mo/ M e Cee e 0.01

Table 6.1 Comparison of test model and CSV model 1

* Values taken from Carson, Stothers & Vemury (1981), model 1




Having discovered that the low temperature Carson
opacities were unreliable, only a few models were run with the
full Carson opacity to get periods in the range 10 - 20 days.
These also showed a large pre-maximum shock, distorting the
light curves so as to make them unlike either of the types seen

in the observations (crested or flat-topned). It was then

decided to use the combined Carson/Christy opacity in the

future.

6.3 THE INSTABILITY STRIP SURVEY

A series of 25 medels was constructed to cover the
instability strip from the Worrell blue edge for Y = Of25,
Z = 0.005, to the observed red edge, for a mass of 0.6 Mg. The
luminosities and effective temperatures were chosen so as to -
obtain periods approximately in the range 10 - 20 days. The
mass of 0.6 M, seems to be appropriate iﬁ the light of
observations, and of the bump mass determinations for BL
Herculis stars. Later some models for 0.8 Mg and 0.5 Mg, were
constructed to look at the effect of varying the mass, and a

few models were run using the Cox opacities, for comparison.

The models calculated for 0.6 Mg are shown on an HR
diagram in figure 6.39. The luminosity and temperature ranges
used were 2.6 ¢ log(L/L.) & 3.2 and 3.71  log T, € 3.79.
Difficulties were encountered in constructing cool models at
log(L/Lg) values of 2.7 and 2.8, largely because of the
excessive driving encountered here. This is in the region
where it has been suggested that convection is very important

in the driving zoncs. Tt is also wherr we expect to find the



flat~topped variables, thus unfortunately it has proved
difficult to model this type. However, some of the models gave

reasonable facsimilies of the flat-topped curves.

In addition, five models are presented using M/Mg = 0.8,
one with‘M/MQ = 0.5, two using the Cox opacities in the Christy
formulation and the above composition, and finally one model
using the Cox and Tabor (1976) opacity table for the King Ia
mix (Y = 0.299, Z = 0.001), The static and dynamic results for
these three models are presented in tables €.2 a and b and 6.3

a and b.

In most cases, the equations have been integrated forward
in time until periodic repetition is achieved and/or the ratio
AMzv, §d
Z: Iﬁr A§.PV is very small. Exact repetition is rarely

F Ay 6 W] |

achieved, both for numerical reasons, and (sometimes) because

o~

of real physical causes.

For some models, full growth was not achieved, or was
doubtful, usually for reasons of time. These models are

indicated by footnotes.

Most of the various quantities listed in tables 6.2 and
6.3 are the same as are defined for the test model. An
exception is that gﬁg and ¢£ do not have unity added to
them. Once again, the surface is taken to be that zone which
in the equilibrium model was closest to Y= 0.2, In addition,
a classification is added suggesting which class (crested or
flat-topped) the 1ight.curve belongs to, an X indicating
neither. Here upper-case letters are used for the
classification (to aid in distinguishing models from observed

stars in later discussion), and an X preceding the
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classification indicates some doubf. The surface light and
velocity curves are plotted in fipgures 6.0 - 6,37. In each,
zero phase is taken at minimum radivs. For the plotting, about
one in four calculated points wvere used per period, and these
were smoothed by taking a two-point running mean twice in
succession (the same procedure used by CSV). Since observed
light curves are smoothed, and subject to large errors and
variations, smoothing of the modelled light and velocity curves

is quite reasonable,.

In tables 6.2 and 6.3 the following abbreviations are

used :

Roa/Rm R at the observed zone (nearest to Ts= 0.2)/Re

0.B.C Outer Boundary Condition 1 means B, =0

u
=]

2 means Pg

3 means Byyy, = PN—'/ZA_M
AMy-

For the opacity used: &
CCH Carson table with Christy formula for log T < 3.85
CHR Full Christy formula
KIN Cox and Tabor King Ia mix table, Y = 0.299, Z = 0.001

For number of zones: Ng/My = Number in envelope/Number in atmosphere

Rinner /Ry Ry /Ry for equilibrium model

Menv /Mx ZAMLy /M

The Christy luminosity interpolation, on-line equation of
state, and linear interpolation in the opacity tables are used
throughout. Test runs with the Stellingwerf luminosity
interpolation or with quadratic interpolation showed no
significant changes. However, interpolation of the equation of

state would have introduced significant errors.
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Model M/Mo log(L/Lo) logTe RO.Z/Ro log(R/Ro) OBC Cpac. CQ &, Ne/Na X Menv/M* Rinner/ﬁzj
1 0.6 2.6 3.71 25.1 1.402 2 CCH 2.0 0.02 30/7 1.30 0.0033 0.09
2 0.6 2.7 3.75 23.5 1.372 2 CCH 1.0 0.1 36/5 1.18 0.0022 0.11
3 0.6 2.7 3.74 24.5 1.392 2 CcCH 2.0 0.1 32/7 1.26 0.0026 0.13
4 0.6 2.7 3.73 25.7 1.412 2 CCH 2.0 0.02 32/7 1.26 0.0027 0.12
5 0.6 2.8 3.76 25.1 1.402 2 CCH 2.0 0.1 35/7 1.24 0.0023 0,03
6 0.6 2.8 3.75 26.2 1.422 2 CCH 2.0 0.1 39/5 1.17 0.0020 0.08
7 0.6 2.8 3.74 27.5 1.442 2 CCH 2.0 0.1 41/5 1.15 0.0018 0.09
8 0.6 2.8 3.73 29.6 1.462 3 CCH 2.0 0.1 30/7 1.25 0.0023 0.10
9 0.6 2.9 3.79 24.4 1.392 2 CcH 2.0 0.1 43/6 1.18 0.0013 0.10

10 0.6 2.9 3.78 25.6 1.412 2 CCH 2.0 0.1 39/5 1,18 0.0013 0.12
11 0.6 2.9 3.77 26.8 1.432 2 CCH 2.0 0.1 39/5 1.17 0.0013 O0.11
12 0.6 2.9 3.76 28.1 1.452 2 CCH 2.0 0.1 43/5 1.14 0.0012 0.09
13 0.6 2.9 3.75 29.4 1.472 2 CCH 2.0 0.1 41/5 1.15 0.0020 0.07
14 0.% 2.9 3.74 30.8 1.492 2 CCH 4.0 0.1 42/5 1.14 0.0015 0.07

‘15 0.6 2.9 3.73 32.5 1.512 2 CCH 2.0 0.1 34/5 1.17 0.0034 0.06
16 0.6 3.0 3.78 28.7 1.4862 2 CCH 2.0 0.1 41/5 1.15 0.0011 o0.1C
17 0.6 3.0 3.77 30.0 1.482 2 CCH 2.0 0.1 41/5 1,15 0.0011 0.07
18 0.6 3.0 3.76 31.4 1.502 2 CCH 2.0 0.1 41i/5 1.14 0.0012 0.06
19 0.6 3.0 3.75 32.9 1.522 2 CCH 2.0 0.1 40/5 1.13 0.0012 0.09

20 0.6 3.0 3.74 34.8 1.542 2 ccH 2.0 0.1 41/5 1.12 0.0013 0.05
21 0.6 3.1 3.78 32.1 1.512 2 CCH 2.0 0.1 41/5 1.14 0.0009 0.08
22 0.6 3.1 3.77 33.5 1.532 2 CCH 2.0 0.1 43/6 1.13 0.0002 0.08
23 c.6 3.1 3.76 35.2 1.552 2 CCH 2.0 0.1 40/5 1.12.-0.0010 0.08
24 0.6 3.1 3.75 36.8 1.572 2 ccH 2.0 0.1 42/6 1.11 0.0010 0O.C8
25 0.6 3.2 3.77 37.7 1.582 2 CCH 2.0 0.1 41/5 1.11 0.0008 0.11

Table 6.2a

The Survey Models - static details




Model P {(d) PKE AR/R VOut in AV Lmax Lmin AMbol Asym(vel) Asym(lum) ¢g ¢% ¢i~¢i Type

1 11.1 12.0 0.362 16 -42 58 25 3 2.3 2.2 1.4 — 0.54 0.25 F

2 9.18 9.63 0.336 22 =27 48 28 10 1.15 2.8 2.4 —_ —_— — X

3 10.1 12.0 0.357 20 =33 53 29 7 1.5 2.6 2.0 —_ —_— — X
4 11.6 15.2 0.429 20 -48 69 31 3 2.2 3.3 1.6 — —_— —_ F

5 10.6 11.9 0.378 24 -30 54 34 13 1.0 2.7 2.8 — 0.60 0.35 XC

6 12.6 17.0 0.508 23 -32 75 42 4 2.0 4.3 3.0 0.50 0.49 0.30 ¢

7 13.4 20.2 0.606 29 -52 81 41 6 1.9 4.3 4.9 0.29 0.36 0.25 C/F

8% 15.2 26.0 0.7 39 =53 92 44 11 1.55 7.3 2.7 — — —

9 9.06 3.02 0.234 20 -20 40 39 25 0.49 9.0 0.7 0.62 — —_— X
10 10.2 5.9%5 0.304 22 -19 41 42 24 0.6 6.7 8 0.58 — —_— X
11 11.4 10.3 0.367 25 ~30 55 45 20 0.9 3.0 1.8 0.57 0.61 0.40 XC
12 13.0 16.1 0.453 23 -46 69 48 13 1.4 4.3 2.6 0.54 0.38 0.37 ¢
13 14.6 20.7 0.568 25 -51 76 53 12 1.5 4.0 3.2 0.35 0.40 0.27 C
14b 16.0 26 0.62 30 -48 78 48 13 1.4 5.7 5.3 —_ 0.31 0.23 F
15 17.4 32.1 0.75 31 -44 75 52 12 1.6 4.3 8.5 —_ 0.30 0.23 F
16 12.5 7.58 0.327 23 -21 44 55 28 0.68 2.4 1.7 0.53 0.56 0.39 XC
17 14,2 13.3 0.422 22 =37 59 60 22 1.05 2.7 4.0 0.53 0.51 0.35 C
18 15.9 19.1 0.524 24 -~47 71 65 15 1.5 4.3 2.6 0.40 0.47 0.31 C
19 17.3 24.1 0.60 26 -46 72 67 15 1.6 6.8 3.2 0.22 0.35 0.26 C/F
205 19.3 32.4 0.61 30 ~-41 71 81 15 1.65 3.8 2.8 — 0.32 0.23 cC/F
21 15.4 8.34 0.359 22 -26 48 71 35 0.70 2.0 1.7 0.48 0.50 0.35 C
22 17.1 14.8 0.475 24 -39 63 76 28 1.05 2.4 4.3 0.46 0.49 0.32 ¢C
23 18.8 20.5 0.545 23 -43 66 83 20 1.45 5.3 3.2 0.31 0.40 0.30 ¢
24 20.6 30.1 0.62 26 -44 70 86 20 1.6 8.0 3.3 — 0.34 0.24 C
25 20.6 13.6 0.485 26 -29 55 91 39 0.9 2.1 1.5 0.36 0.38 0.29 ¢C

Table 6.2b The Survey models - dynamic details

after 12 perilods

bt Showed 2 states, .
data given for the "steadier" (non-RV Tauri) state

C

lost outer zone




Model M/MO log(L/LO) lagTe RO_Z/RO log(R/Ro) OBC Opac. Cn o Ne/Na =% MenV/M* Rinner/R*

51 0.5 3.0 3.76 31.4 1.502 2 CCH 2.0 0.1 25/7 1.21 0.0009 0.09

81 0.8 2.7 3.70 30.1 1.472 3 CCH 2.0 0.1 33/6 1.26 0.0056 0.11

82 0.8 2.8 3.72 30.9 1.482 3 CCH 2.0 0.1 33/6 1.25 0.0046 0.10

83 0.8 2.8 3.71 32.3 1.502 3 CCH 2.0 0.1 33/6 1.24 0.0048 0.09

84 0.8 2.9 3.72 34.8 1.532 3 CCH 2.0 0.1 36/6 1.20 0.0040 0.12

85 0.8 3.0 3.76 31.5 1.502 2 CCH 2.0 0.1 30/7 1.31 0.0029 0.09

cl 0.6 2.8 3.73 29.5 1.462 3 CHR 2.0 0.1 30/7 1.28 0.0037 0.10

c2 0.6 2.9 3.75 29.5 1.472 2 CHR 2.0 0.1 32/6 1.23 0.0030 0.12

K1l 0.6 3.0 3.76 31.5 1.502 2 KIN 2.0 0.1 29/7 1.28 0.0031 0.07

Table 6.3a The Comparison Models - static details
Model P (&) PKE AR/R Vout Vin & oo Tnin Mpor Asym(vel) Asym{lum) ¢§ ¢; ¢é—¢; Type

51 17.8 17.3 0.613 23 -44 67 67 15 1.8 6.7 3.8 o .38 0.29 C
81 11.3 11,9 0.225 12 -24 36 27 7.8 1.35 3.3 1.3 — — — X
82 12.0 15.1 0.267 14 -25 39 34 8.6 1.5 2.0 1.3 —_ — —_— X
83 13.7 22.3 0.32 15 =32 47 37 6.8 1.8 2.0 1.2 — —_ —— X
84 17.0 45.0 0.71 38 -~58 96 56 3.5 3.0 4.3 2.6 — —_ — F
B5 1z.7 19.2 0.350 25 -25 50 55 25 0.9 3.0 1.8 — — — X
c1l 13.9 18.1 0.381 18 -35 53 37 8.1 1.65 3.3 2.3 —_ 0.59 0.34 ¢C
c2 13.4 11.8 0.325 Z0 -~22 42 45 i9 0.95 2.3 1.9 0.50 0.57 0.43 XC
K1l 16.0 33.3 0.610 33 ~53 86 68 14 1.7 4.6 5.7 0.40 0.43 0.33 ¢

Table 6.3b The Comparison Models - dynamic details




Figures 6.4 to 6.37 show the light and veiocity curves
all/of the models, plotted against phase from minimum
radius

-1
Phase x18

Figure 6.4 Model 1 P = 11.1 days
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6.4 THE STATIC MCDELS

For some of the models, the total number of zones used was
surprisingly small, ~30, Despite this small number of zones,
the accuracy would seem to be good, since &/, the mass ratio
between zones, is still quite small, 1.1 <X < 1,3, and a
repeat run for one model showed no improvement in accuracy when
using 50 zones. This is a result of the low envelope mass of
these stars. For all the models, there were about 1 - 3 zones
in the hydrogen ionization region. An example of the relaxed
equilibrium zoning is shown in figure 6.38. The hydrogen
ionization region is the only region not well covered, but,
with the artificial viscosity, 1 - 3 zones is usually
sufficient. 1In only a few models were bumps due to the zoning
apparent (generated as the hydrogen ionization front slips from
one zone to another during the pulsation). These bumps were

more apparent in the 0.8 Mg models.

In the plot of opacity through the star there is a bump at
log T ~ 5.6, at the base of the envelope. This is due to the
C-0 bump described in section 5. In the models using the Cox

opacities this feature does not appear.

6.5 GENERAL FEATURES OF THE SURVEY MODELS

In discussing these results there are several features to
look at: Trends and individual features in the calculated
models, including a P-R or P-L~Tg relation, and the comparison
of these with observations, Do we find similar periods, light

curves, and amplitudes? For V¥ Virginis stars in particular, do
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the modelled light curves show the same dichotomy of crested
and flat-topped, with a few looking like neither or possibly as
if they were halfway between? Finally, is it possible to model

individual stars with accuracy?

In addition to making comparisons with observations, we
can look at the effect of changing the mass, and do some
comparison with models made using the Christy opacity formula

and the Cox-Tabor King Ia mix.

Classifying the modelled light curves is sometimes as
difficult as classifying the observed ones. Although many are
obviously crested, or flat-topped, or neither, a few seem to
present a halfway state. For example, although the curve for
model 15 has a pronounced dip following the first maximum, the
following bump or shoulder is at the same height as the
maximum; thus it might easily be classified as flat-topped.
Similar arguments apply to a few curves. Also, for some curves
which might be classified as X-type, there is a suggestion of a
secondary bump, thus they might be almost of the crested

variety.

Remaining with the general features of the light curves,
many of the models show a pre-maximum shock, 1like that seen in
the CSV1 test model curve. Some of the observed curves
(particularly V741 3Sgr, CZ Sct, AL Sct) show some evidence of
such a shock, and it may be that the observations are in
general insufficient to detect this feature should it be
present, since it only lasts for a small fraction of the
period. These shocks are frequently present in the X-type, or
unclassified curves., In addition these curves only occur for
P < 13 days, very much in agreement with the observations.
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Displaying the models on an HR diagram (figure 6.3Q) we
see grouping into crested and flat-topped types in general
agreement with the observations, though slightly brighter and
cooler, This is within the range of likely observational
errors, and in any case may be corrected by an acceptable
change in mass and/or composition., (In this diagram, and others
following, the same procedure was adopted as in describing the
observed stars. Open circles are C-type, filled are F-type,
those half-filled are C/F and cirecles with crosses represent

either Y-types or XC-types.)

Lower luminosity X-curves also seem to lie in the right
place, but there is no observational equivalent of the X-curves

at high log Te and log(L/Lgl)= 2.9 - 3.0.

It can be seen that there are unstable models to the blue
side of the observed blue edge. Given the possible errors
associated with the observed edges, as mentioned in section
2.2, this should not be cause for concern. Reduction of M/My
and/or the helium abundance could provide much better agreement
without altering the pulsational properties too significantly
(For example see model 51, with M/Mg = 0.5). The approximate
non-linear blue edge would seem to be in agreement with the
Vorrell linear blue edge for the same mass and composition, as

presented in section 2.3.

The growth rates of the models were generally quite fast.
For some of the redder models the e~folding time was only 3 or
4 periods, though more generally the e-folding time was about
10 - 20 periods. Hear the blue edge, where the models are less

unstable, this increased to about U0 - SO periods. For a few
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models, although the ¢growth rate was large and the model
reached full growth in about 10 - 20 periods, there followed a
number of periods when the star had not settled into its final
state. During this time, the amplitudes and periods alternated
high and low, generally only by approximately + 5%. For most
such models, this behaviour died down, but for a few it
persisted. In particular, model 14 exhibited very strange
behaviour. These cases are discussed later. 1In the case of
model 20, the star only settled into a good repetitive state
after the outer boundary radius had escaped, having reached
escape velocity. This interesting case is also discussed
later, in connection with possible RV Tauri behaviour (see
section 6,12). This loss of the outer zone brings up the
question of the effect of the outer boundary condition. The
majority of the models were run with the approximation to

39 = 0 as the outer dynamic boundary condition (equation
[3.20b]). Model 8 and some of the comparison models were run
with the third choice, equation (3.20d). In the case of model
8, use of this boundary condition allowed the model to run;
previous attempts with the second choice had failed. The outer
zone had almost escaped, causing the run to halt because of
numerical difficulties caused by low densities., (These
numerical problems did not occur in the case of model 20
mentioned above, allowing it to run to completion). Use of the
new boundary condition solved the problem, although the model
was still the same in behaviour and so presumably only just
avoided failure., All attempts to model a star at

log(L/Lg) = 2.8, log Te = 3.72 failed.
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Use of a larger value of , the mass ratio between zones,
also helped here. Although this caused the model to have fewer
zones, it probably did not affect the results significantly. A
test run of another model (number 13) was made with about 10
fewer zones to see what effect this might have (this model
originally had 41 zones). MNo significant changes from the

original model could be seen.

tle also consider the effects of changing the parameters Cq
and Xy. the value of Cq most used was 2.0, although values
between 1.0 and 4.0 seemed to have much the same effect. Below
1.0 a noticeable loss in stability of the light and velocity
curves could be seen. Above 4.0 the hydrogen ionization front
becomes much too spread out. Similarly, the exact value of ofy
had little effect, as long as Xy £ 0.1 times the local sound
speed. Larger values caused the viscosity to be cut-off by too

-~

great an extent.

6,6 THE PERIOD-MASS-RADIUS RELATION

The log P-log R diagram for the models with M/Mg = 0.6 is
plotted in figure 6.40, The values of log(R/Rg) used were
calcul ated from log(L/Lg) and log Te, to follow the method used
for calculating the observed P-R relation. For all types the

P-R relation turns out to be:

IS
P = 0.0’H(R/R@)

which lies above and to the left of the P-R relations for
M/Me = 0.6 of C3V and Pohm-Vitense et 21. (1974). This is

explained by the larger amount of non-linearity in the
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pulsations of these stars. This causes longer periods than

would be predicted by linear methods, and hence a P-R relation

higher in the P-~R plane.

The high non-linearity and large amplitudes probably also
account for the models not following the P-R relation exactly.
The different models will have different amounts of deviation
from linearity, and thus form a strip in the P-R plane rather

than a line,.

By also using the results for M/Mg = 0.5 and M/Mgy = 0.8,

we find a theoretical P-M-R relation of:

147 ~0.72,
P = 0.020(R/Rp) < (H/M) (6.2)

The powers agree well with Bohm~Vitense's result. The
difference in the multiplying constant (and the position of the’
P-R relation) is probably due to the fact that both C3V and .
Bohm-Vitense et al. wused all or mostly BL Herculis variables,
those with P < 3 days, in their calculations. Here we have

restricted ourselves to stars with 10 < P < 20 days.

Bohm-Vitense et al.'s relation was:

,071 —0.72
P = 0.023(R/Rg) (M/¥e) (6.3)
and CSV's theoretical P-M-R relation:
178 ~0 75 '
P = 0.022(R/Ry) (M/ M) (6.1)

Whilst admitting the scarcity of the observational data,
it is clear that the results for the models calculated here
agree with the observed P-R relation(s) (also plotted in figure

6.480) to well within any estimated errors. In the theoretical
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P-R relation, it is possible to sze a difference between the
crested and flat-topped types, a split into two relations, but
only by a small amount. The lack of clearly flat-topped
modelled light~curves also make it difficult to be sure of a
differentiation in the P-R plane. However, such distinction as

exists is in the correct direction.

It is worth pointing out that the theoretical P-R relation
found here is based on models of constant mass. The separation
of the observed ¢ and f classes could be due to a difference in
mass, even a slight difference sufficing to separate the
relations by a significant amount. If for the purpose of this
discussion we assume that the crested and flat-topped variables’
follow identical P~M—ﬁ relations and that their log P - log R
relations are parallel, differing only by virtue of having
different mésses, then we may estimate the ratio M /Mg, where
M¢ 1s the mass of a crested variable and Mg is the mass of a
flat-topped variable. UWe obtain a relation (for constant
radius, R/Rg) of the form,

P /e = (Me/MEY (6.5)
where Pc is the period of the crested variable of a given
radius and Pg is the period of a flat-topped variable of the
same radius, Taking// (the power of the mass variable in

equations [6.2) -~ [6.4]) to be -0.72 we obtain an average

result for the two observed P-R relations of

Me/Me a2 1.2

So, for instance, if the mass of a flat-topped variable is
approximately 0,55 Mo, then the mass of a crested variable
would be about 0,7 Hp. This agreces very well with the
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currently accepted averape mass of these variables and also
very well with the approximate range of possible masses as
defined by evolutionary ideas (see section 2.2). A likely
conclusion here is that the mass of a population II star
ascending the Red~Giant branch determines when (and, on the HR
diagram, where) it will underge a "blue-loop'", taking it into
the instability strip. This in turn determines what type of
type 11 cepheid it becomes, crested or flat-topped in the Kwee
definition. Of course, we are not dealing here with a strict
dichotomy but rather with a range of possibilities, governed

by the limiting masses of stars undergoing blue-loops that take
them into the instability region, say those with masses

0.5 & M/Mg £ 0.75. At the lower end of this range the star
leaves the giant branch rather early and gives rise to a
low-luminosity flat-topped type II cepheid. At the other end
of the range the higher mass stars leave the giant branch late;
and produce the higher luminosity crested variables. 1In
between these extremes it is possible to get the stars of

doubtful classification, having slight characteristics of both

kinds.

Mow looking again at the theoretical models we have to
bear in ﬁind the fact that those plotted are all of the same
mass, 0.6 M- _It is easy to imagine a wider spreading of the
C- and F-types if a lowver mass had been used to obtain F-type
models and a higher mass to obtain C-types. The only result
obtained for a lower mass (0.5 Mg, model 51) in fact turns out
to be crested, but that is because the luminosity and effective
temperature were deliberately chosen to compare with model 18
(i.e. with a C-type light curve). The higher mass stars are
all of 0.8 Mg, at the edse of the acceptable mass range, and
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possibly outside it. Tt is significant that most of the light
curves for these models do not really resemble either C- or
F-types. It may be that they are of an unrealistically high
mass, and so in this period range do not produce light curves

that are observed.

6.7 THE LIGHT AND VELOCITY CURVES

Turning our attention to the features of the light and
velocity curves we first look at their amplitudes. In order to
compare the computed light amplitudes with observed ones it is
necessary to translate the bolometric magnitude amplitudes
(AMpot ) into visual magnitude amplitudes (AMy). This relation
is not easy to define, being dependent upon the variation of
{B-V>, during the pulsation. An approximate idea can be
obtained if we assume limits to the <B-V>, variations of these
stars of about 0.4 to 0.9. This would give, for most of these

stars, a correction to AMgs of about +0.2 to +0.U4, So we can

say

AMy & Mpor + (0.2 &= 0.1 (6.6)

For the 0.6 My models the range of values of AMp, is from
0.49 to 2.6, With the adjustment above we would get a likely
range for AMy of about 0.7 to 3.0. The lowest amplitudes
(which are for classless curves of stars near the blue edge)
agree well with the lowest observed visual amplitudes, which
are also for classless light curves. Amplitudes as large as
3.0 are not observed in the 10 - 20 day types II cepheids, the
largest being ~1.5 mag. Those models with large light

amplitudes frequently show a pronounced '"dip" in the light



curves, just before the rise to maximum., The cause of this dip
is unknown, and may or may not be a "real" feature., However it
does increase the amplitude of the light curve by considerable
amounts (maybe even doubling it) and is sometimes quite
sensitive to the smoothing of the light curves, indicating
variation on quite a small time scale, However, whether or not
this dip is ignored, there is still a discrepancy between
theory and observation here. A similar dip also occurs in
model C2, although it is not large enough here to affect the
amplitude, This may indicate that it is not an effect of the
opacity, but more models using the Los Alamos opacities would

be required to check this.

The probable cause of the difference in amplitudes of the
theoretical and observed models is the assumption of no

convection used in the modelling. The models that show large

light amplitudes are those at the long period end of the range,

also lying to the red side of the instability strip, This.is
exactly where convection would have most effect (see section
6.1) and we are almost certainly seeing the effects of ignoring
it for some of these stars. What effect convection might have
on the aforementioned dip in the light curves is not known, but
it might calm the oscillations of some of these redder models,
which were very difficult to build because the amplitudes grew

to be so large.

There are two major trends in the amplitudes of the light
curves, increasing AMpe, with period, and inereasing Z“UML as
the effective temperature decreases., The latter is to be
expected because of the increased driving as the red edge of

the instability strip is approached. Cince period increases
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this way as well the former trend follows. There is no

particularly obvious trend with respect to changing luminosity.

The range of velocity amplitudes lies between about 40 and
90 km/s. The previous arguments about the lack of convection
still apply in the case of the velocity amplitudes, so some
overestimation of the amplitudes may have occured. There is
also the multiplying factor of 24/17 to be applied to the
observed velocity curves to correct for line of sight and
limb-darkening effects. This is almost academic because of the
paucity of observed velocity curves. 1In the case of W Virginis
this gives an amplitude of 78 km/s, and for M12 No. 1 and M10
No. 2 we get 42 km/s and 119 km/s respectively (note that these
two curves are rather poor). The velocity amplitudes therefore
lie in the correct range, but no firm conclusions can be made.
Like the light curves, there is a tendency towardsbgreater

amplitudes at longer periods and cooler effective temperatures,

As expressed in section 2.2 the most important features of
the observed light curves are the shapes, and the bump and
phase details. Tﬁese details can also be measured for the
calculated models, more easily than for the observed curves.

In figupes 6.41a and b the phases ¢é and ¢é—¢£ are plotted
against period, luminosity and effective temperature for the
survey models, For C-type models we find a mean

¢é'= 0.49 + 0.04 and for the F or C/F curves the mean éé is
about 0.36 + 0.04 (comparing with 0.44 # 0.03 and 0.34 4 0.05

respectively for the observed light curves).
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The hest phase difference to measure is probably ¢g"'éé'
the phase of the secondary bump on the light curve minus the
phase of maximum light. For the C-type curves an average value
for gfg- /(:7 of 0.33 + 0.04 is obtained, For the F and
C/F-types ?%f—g@v = 0.24 & 0D.02 (for just the F-types this
might be slightly lower, =< C.22). For the observed curves we
found ¢%-—¢g = 0.29 + 0,02 for the crested curves and
¢§-—¢%$:= 0.22 + 0.02 for the flat-topped curves that have
discernable secondary bumps. This is really very good
agreement with observation, within either the estimated
theoretical or observed error limits. Tt was decided to use
§b§~¢'£ as a measure of the bump because gﬁj(phase of mean
light on the ascending branch) can be very difficult to
determine from observational data, since it is very susceptible
to subjective decisions and errors in the observations (compare
light curves for the same star produced by different -

¢
observers). 96 is also susceptible to these errors, but to a

i
lesser extent. As for the general shapes of the light curves,
it looks as though the crested types observed curves can be
reproduced very well, and in the variety observed, by the
C-type theoretical curves. The flat-topped curves cannot be

reproduced as well, but curves in between, the c/f-type curves

seem also to be well represented in the modelling.

The inability to faithfully reproduce well the f-types
curves is probably due to the omission of convection as a
method of energy transport, discussed elsewhere. At the
stellar parameters likely to produce good F-type curves the
models begin to fail for the reasons given previously (section
6.2,
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The calculated velocity curves can bhe looked at in the
same way as the light curves, with the exception of the
comparison with observation. For the observed velocity curves
%hgt exist the general conclusion (section 2.,2) is that the
curves are highly asymmetric (discontinuous). This feature is
generally found in the calculated curves as well., Secondary
bumps are present, but there is not always a clear velocity
bump when there is a light bump. This usually occurs when
%%7— ¢£ is small, for a C/F or F-type curve, and any secondary

velocity bump is likely to coincide with the velocity maximum,

The difference iif; ?%7is a varying quantity with an
average value of ~ 0.03., In their work on BL Herculis
variables, CSV found ég- ¢g7¢40.0, so there would seem to be a
significant difference here. It is probably too simple to
treat these stars as merely long period extensions of the BL

Herculis variables.

The causes of the secondary bumps on the light and

velocity curves are discussed in section 5,90

6.8 TREND3S IN THE LIGHT AND VELOCITY CURVES

The trends of some aspects of the light curves with
changing luminosity and effective temperature are discussed
under the section dealing with that aspect. Here we discuss
the trends in the shapes of the lipght curves, which include the

secondary bumps and bump phases.

O i g



In the observational data we saw the dichotomy of F and
C-type light curves and contended that there might be a
continuous, though possibly sudden, progression between these
types as log(L/Lg) and log Tg were altered. In the
theoretically modelled light curves we see a much firmer case

for this contention.

Figures 6.2 -~ 6.52 show the trends in light curve for
various constant values of log(L/Lg) and log To. If we take a
line of constant luminosity (for instance the log(L/Le) = 2.9
series) and reduce log Te we may be seeing a change from X-type
light curves, through ¥C, C, and C/F all the way to F-type.

For extremes in luminosity this may not be the case. For
log(L/Lg) < ~ 2.8 the luminosity is too low to produce crested
curves, and for log(L/Lg) > ~ 3.1 it maybe too high to produce
flat-topped curves. We also see here a tendency for ¢{" ; }5
decrease, suggesting that the merging of the light max imum and

the secondary bump may produce the flat-top in the F-type

curves.

When looking at lines of constant effective temperature,
similar trends are seen. For low log Te (~3.73 - 3.7H) as
log(L/Lg) increases the light curve retains the features of an
F-type curve, though it may develop a slight crest at the
highest value of log(L/Lg). At higher luminosity the curves
may well become crested, but here the periods stretch beyond
the range studied, and the models become harder to produce.
These stars (maybe the RV Tauri variables) could be the subject

of a later study.
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Figures 6.42 to 6.52 show the trends in the light curves for
various constant values of logL/Le and logTe. Phase is measured

from minimum radius
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For higher values of léqrfé (3 3.75) it is not clear that
F-type light curves exist at all, the trend as log(L/Lg)
increases may be from X or YC-type to C-type. Certainly at
high luminosity (log(L/Lg) >~ 2.9) these models produce light
curves that are very clearly crested. In fact, for model 25
there is a very clear crest but the secondary bump has become

an extended shoulder.

The phases (from minimum radius) of the maximum and
{ ¢
secondary bump ( ¢mand ¢@) both generally decrease as log{L/L&)
, . . ¢ f
increases (at constant log Te), while the difference ¢%—giv

decreases.

Looking at the overall trends (see figures 6.41a and b) we
see that at higher log(L/Lg) the curves are more likely to be
crested, this being caused by the higher luminosity which
creates a greater driving and a higher asymmetry. Also at
higher log(L/L@g) ¢Z—¢$; is slightly smaller, and the seconda;y
bump follows sooner after primary maximum. Superimposed on
this is the more obvious trend for ¢%-—@£ to decrease as
log Te decreases, creating F-type curves if the luminosity is
not too great. If the luminosity is high, the.crest is simply
too high for the secondary bump to be of sufficient height to
merge with it and create the flat top. So we see no F-type

curves at the higher luminosity range of the area considered.

This is borne out by observations.

The phase ¢g(decreases with increasing period, but ‘ég*g@;
only shows this tendency slightly. Something definitely not
seen here is the secondary bump travelling backwards in phase
as the period increases and crossing the maximum to end up on
the ascending branch of the light curve, an effect seen very
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clearly in the PL Herculis variables, Tn other words the
models, like the observed stars, do not follow a Hertzsprung

progression (as is seen in classical cepheids).

6.9 THE DRIVING REGIONS

The driving in most types of variable stars studied up to
now has been almost entirely in the helium II ionization
region, caused by one of the methods described in section 2.1,
or by a combination of them. In the models presented here we
begin to see the hydrogen-helium I region taking a significant,
if not dominant, role in the driving of the pulsation. Looking
at the general trends we see that as luminosity increases and
effective temperature decreases the driving from both regions
increases. As log Te decreases, the driving from both regions
increases quite rapidly, probably without limit because of the
neglect of convection. As 1og(L/L@) increases both regions
produce more driving, but the hydrogen/helium I driving region
increases in strength faster than the helium II region, which
appears to level off in power after about log(L/Lg) = 3.0. For
example, in model 23 (log(L/Lg) = 3.1, log Te = 3.76) the H/He
I driving region's peak is about three times that of the He II
driving region (figure 6.54) Figure 6.53 shows more normal
He II driving. MNote that the large width of thevH region is
mainly due to spreading of the shock front by the artificial

viscosity.

These results seem to indicate that the hydrogen/helium I
ionization region may contribute a significant if not major

portion of the driving. However, the inclusion of convection
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as a possible méans of energy trénsport might reduce the amount
of H/He I driving considerably, especially for the redder
stars. The brief investigations of convection in static
stellar envelopes carried out in section 6.1 indicates that,
for instance in model 23, convection probably carries about 30%
of the flux in the H/He I ionization region. Convection of
this order will certainly reduce the driving, and may well
eliminate it entirely. However, H/He I driving is probably
very significant in some of these stars, and undoubtedly grows
in importance as the effective temperature drops and the
luminosity rises. RV Tauri and Mira-type variables are the
likely places to look for stars truly driven by the H/He I
ionization region. o the driving region in these stars still
appears to be the He II ionization region, though in some cases
with. additional driving from the H/He I ionization region.

What is the mechanism behind the driving? Section 2.1
discusses three main driving mechanisms, but which applies
here? The mechanism seems likely to be the same for both He II
and H/He I driving. 1In both cases the driving peak usually
lies just inside the ionization peak, at a slightly higher
temperature., The probable mechanism at work here is the

K-mechanism, as evidenced by the large temperature variations.

Some results were obtained on the driving of models, using
variations in mass and in the Cox-3tewart opacities.

Comparisons with these results are presented in section 6.13,
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6.10 ANALYSIS OF THE MODELS - THE CAUSES OF THE SECONDARY

BUMPS

In this section the history of the pulsation in the
stellar envelopes is considered in an attempt to find out the
causes of various features of the light and velocity curves, in
particular the cause of the secondary bump. It is the C-type
1ight curves that most obviously show this bump similar to the
secondary bumps in BL Herculis variables (section 2.2 and

references therein), though not precisely the same.

The secondary bumps in the BL Herculis light curves have
been explained in two ways, which may be equivalent; the
techo" model of Christy (1968) and the resonance model of Simon
and Schmidt (1976) (see section 2.3). The results of CSV and
others confirm that the phase of the secondary bump is related
to the value of P,/B,, around the resonance P,/F = 0.5,however
CSV point out that if the resonance idea is correct, then there
should be similar progressions for tyo other resonances of type
1I cepheids, P,./P, = 0.33 at Py = MQf and P, /Py = 0.5 at
P, = 17d , and there is no evidence for such progressions in

the observations.

Tn the calculated models described here there is some
evidence of a progression in the secondary bumps, although it
is not as pronounced as the Hertzsprung progression in the
classical cepheids or the progression in the BL Herculis
variables. Also, no bumps are seen on the ascending branches
of the light curves, the extent of the bumps being from about
0.2 after light maximum to about C.U after light maximum. So

though a progression does exist, it is not convincing evidence
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for the resonance idea.

Another way to ascertain the cause of the secondary bumps
is to examine the light and velocity histories of the models.
Here evidence of the Christy "echo" phenomenon can be looked
for, and this also provides a test of the Carson opacities.

The CSV models clearly support the Christy idea for the origin
of their bump; however, using the Carson opacities KCH found
the bump to be a local phenomenon (see section 2.2), confined
to the surface layers of the star. For the C-type light curves
produced in this study, examples of light and velocity

histories are plotted in figures 6.55 to 6.59.

Model 18 shows the reflection phenomenon most clearly,
along with model 22. Tn both of these, and to a lesser extent
in the other models of this type, a pressure wave seems to be
generated in the He 1T ionization zone. This wave travels
inwards, reflects off the (adiabatic) core and arrives at the
surface during the next period, creating the secondary light
and velocity bumps. The velocity bump precedes the light bump
in phase, except for the very topmost surface layers (caused by
the "freezing-in" of the luminosity variations in the
atmosphere); that is, the Juminosity variation of the outer
layer is the same as that a few zones deep (it travels at the
speed of light), but the velocity variation lags in time (it
travels at approximately sound speed). However, the velocity
variation in the outermost layers of real stars is probably not
usually observed. In these cases the bump does not seem to be
atmospheric, and the Christy echo phenomenon is its cause.
However, this does not rule out the resonance idea of Simon and

Sehmidt, which may be equivalent. Linear study of these models



in conjunction with this work should answer this question,

What of the models that do not show a secondary bunp?
Model 16 is one of these (figure 6.60), although its
classification as XC-type indicates that there is an incipient
bump on its light curve. Tt is one of the shorter period (12.5
days) models that are neither C nor F-type. In the velocity
history we see a weak bump generated by the Christy echo, but
this only generates a late shoulder in the light curve rather
than a bump. Incidently, this model also demonstrates another
occasional feature of models built with the Carson opacities.

A low-lying zone (in this case the second from the bottom)
shows a reversed luminosity behaviour, which seems to be caused
by the C-0 bump of the Carson opacities (see section 5.2).

This does not invalidate the opacities, as its overall effect

on the model seems to be negligible.

Model 16 is an example of the first appearance of the
secondary bump at short periods. As the period increases the
bump generally moves packward in phase, forming first the

C-type models.

Tn these models the bump is present in both the light and
velocity curves, but there are models for which there is a
clear secondary light bump, but apparently no secondary bump in
the velocity éurve. Models 19 and 24 are examples of this.
Closer examination of the velocity histories (figures 6.56,
6.58) show that the Christy echo does indeed give rise to a
bump or potential bump, but it is very close to the velocity
max imum, and is almost "suallowed". This seems to be caused
more by a later maximum than an earlier bump. The rise to
velocity maximum is less steep than normal, causing this
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effect.

Turning our attention to the F-type models, the problems
are different. Here we seek to support the idea that the
secondary bump may still exist, but has merged with the max imum
to produce the flat-top observed. Also the flat-topped curves
were very difficult to produce. A detailed study of the models

might aid understanding of why this is the case.

Model 8 is probably the best example of this idea.
Unfortunately it is not a very stable model. It was difficult
to produce, needing gentle tcoaxing" to reach anything like a
stable condition. Even then only 12 periods were obtained. It
may also show RV Tauri behaviour, increasing its problems (see
section 6.11). In figure 6.61 we see that the Christy
reflection fadés out, not appearing to produce a bump.

However, if it had managéd to produce one it seems likely that-
it would have been close to the velocity peak. The suspicion
of RV Tauri behaviour is evidenced by the next period shown,
which does not have much of a wave travelling down to be
reflected. This behaviour was maintained for several periods.
In the luminosity behaviour for this star we see considerable
evidence of the problems associated with modelling this star.
In the first period we see a spike on the downward side of the
curve, which is probably caused by numerical problems. This
spike repeated at irregular intervals, always in the same
position. ‘I%ere is some evidence in this history of a
secondary bump on the light curve, and if it does exist it is

very close to peak light, almost completely merged with it.
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Model 2 is probably the closest to a flat-topped curve as
observed. However, in model 14 there is another possible
example, This model (see section 6.12) seemed to pulsate in
t@o separate states. The state shown in figure 6.62 is the
non-alternating, perfectly repeatable state. 1In the velocity
history we again see that the Christy "echo", if it results if
a bump at all, gives one very close to the maximum velocity,
creating a broader velocity peak rather than a secondary bump.
This star was a little easier to model and shows the reflection
of the pressure wave very clearly. ﬁlthough this model's light
curve is not a true F-type, its secondary bump is very near

maximum light and is of approximately the same height.

Continuing the detailed look at some features of the
models there is another particular feature to be examined.
Some of the models (notably numbers ¢, 11, 16) show a
pre-maximum shock in the light (and velocity) curves. Some
observed light curves also appear to have this shock in some
form. It is the longer period analogue of the pre-maximum
shock seen in CSV's BL Herculis model. The shock seems to be
generated in the helium II ionization zone, maybe as a
reflection of the pressure wave that has travelled inwards,
after being reflected from the stellar surface at veloéity

max imum.

Model 20 proved to be an interesting model. It was not
repeatable in its pulsations (haviné an almost RV Tauri-like
alternation) until it threw off its outer shell; the rest of
the model then settled into a regular, stable, repeatable
pulsation, rather like that of model 14 (state 2). In figure

6.53 we see the outside zone with an almost constant
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(increasing slightly) surface velocity, which is greater than
the escape velocity of the star. The problems with the model
prior to this escape seemed to be caused by the irregular
nreturns" of the outer zone to the rest of the star. When
these returns were biperiodic the alternating RV Tauri-like
behaviour was obtained. The velocity nistory of this model is
another example in which the Christy echo returns to the

surface very close to the velocity max imum.

Another oddity appears in model 1, and also to a
considerably smaller degree in some others. In and near the He
1T ionization zone both the velocity and luminosity variations
are rather strange. At one point here, the light and velocity
variations are oscillating twice in one period (figure 6.064).
this_might be some sort of "almost harmonic" behaviour, an idea
that would need further work (with some linear studies) to
confirm. In fact, the linear studies of Worrell (1982b) have
suggested that some higher luminosity stars show a decrease in
5R/R at one point (going out through the star in mass) though a
true node is not present. This might in some way be connected

with the behaviour seen here.

Detailed histories for the models with different masses or
different opacities were also obtained. The differences
between these and the standard survey models are presented in

section 6.12.
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.11 MODELS OF OBSERVED STARS

In their 1981 paper, CSV produced a series of models of
type II variables with periods less than 10 days, but they also
proddced a model of an individual star, BL Herculis. This
model was very successful in imitating the light and velocity
curves of the observed star. Are any of the models produced in

this survey good candidates for models of particular observed

stars?

In general the survey models seem to have produced a good
selection of C-type light curves, covering the variations seen
in the observations. One of these models, number 13, seems to
be a good candidate for a model of CS Cas, one of the field
variables observed by Kwee, and classified as crested. The
parameters known for both the model and the star are listed in_
table 6.4, and their light curves are plotted’in figure 6.65.
In table 6.4 the visual light amplitude (AMy) quoted for model

13 is estimated from AMpy by adding 0.2 mag.

The diserepancies in the quantities Asym(lﬁm) and éé can
easily be ascribed to the difficulties in measuring these
quantities, especially from the observed curve of CS Cas. The
light curve may seem to be well defined but this is not so, and

small errors can create large changes, especially in Asym(1lum).

WVhat is impressive about this correspondence of model and

star is the overall similarity of the light curves in
conjunction with the closeness of periods and positions on the

HR diagram.
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Parameter Model 13 CS Cas
log(L/Lo) 2.9 2,91
log Teff 3,75 3.74
P (days) 14,6 14.7
AMV 1.8 1.44
Asymmetry (lum.) 3.2 2.0

1
¢ 0.40 0.48

1 T
qsb - P 0.27 0.25

Table 6.4 Comparison of Model 13 and CS Cas

o2

Model 13

Intervals

L i t { ] ¢ 1 { { { ¢ ] 1

0,8 0.9 0.0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0,1 0.7
Phase '

Figure 6.65 The light curves of model 13 and CS Cas



Another good C-type model to star correspondence is that
between model 18 and FI Sct. The comparable parameters are
given in table 6.5, and their light curves are plotted in

figure 6. 66.

Here the correspondence is not as pgood as that between CS
Cas and model 13, in particular the periods and visual light
amplitudes show greater disparity; still, the overall

similarity of model and observed star is very impressive.

The similarity of C-type model light curves and crested
observed light curves is in general close and impressive,
Unfortunately, the same cannot be said for the F-type models
and flat-topped variables. Probably the best correspondence
here is between model 14 and AL Sct. The correspondence is

nowhere near as good as that for the C-type curves.

The survey models have also shown that it is possible to
model those stars at the low period end of the range (10 to 13
days) where light curves show no secondary bumps and are not
flat—topped. ,ﬁ few modelled light curves show this lack of
features, but model 10 shows best the similarity to the
observed star AL Vir. The lieght curves are plotted in figure
6.67. The comparable features of model and star are given in
table 6.6. Unfortunately, since AL Vir is not a C or F-type
star, it is difficult to be sure of the estimates for

log(L/Lp) (see section 2.2).

The models representing Kwee's crested variables (along
with those representing the featureless light curve stars) show
an excellent modelling of the light curves, seemingly as good

as CSV's model of BL Herculis. The attempts to model the



Parameter ' Model 18 FI Sct
log(L/Lo) 3.0 2,92
log Teff T 3.76 3,744
P (days) 15,9 14,9
AMV 1.8 - 1.19
Asymmetry (lum,) 2.6 1,8

1
¢b ' 0.47 0.42

1 1 :
é. - gﬁm 0.31 0.29

Table 6.5 Comparison of model 18 and FI Sct

m
T

= 0.2

Model 18

Intervals

L i

0.8 0.9 0.0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 0,0 0,1 0.2
Phase

Figure 6.66 The light curves of model 18 and FI Sct



Parameter Model 10 AL Vir
log(L/Lo) 2,9 2.5
log Teff 3.78 3.74
P (days) ' 10,2 10.3
AMV 0.8 0.82
Asymmetry (lum,) 1.8 1.45

Table 6.6 Comparison of model 10 and AL Vir

SR)

Intervals

Model 10

0.8 0.9 0.0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2
Phase

Figure 6.67 The light curves of model 10 and AL Vir



flat-topped light curves were less successful, but showed
promise, and could probably be improved by the inclusion of
convection and (perhaps) by using an improved external boundary

condition.

Recause of the lack of observed velocity curves, it has
not been possible to compare those produced by the models with
observations. In general terms the high asymmetry of the model
velocity curves does seem to be what is needed, but more

observations are required here.

6.12 RV TAURI AND OTHER "PECULIAR" BEHAVIOUR

In carrying out this survey of the population II
instability strip some "peculiar" behaviour might be expected
in a few models, whether it be numerical instabilities or a
real physical effect. For these stars in particular we might
expect to see some signs of so-called RV Tauri behaviour, or
behaviour similar to that seen in the RV Tauri variables. RV
Tauri stars show "period-doubling", caused by the alternation
in the light and}or velocity curves of larger and smaller
amplitudes, and possibly longer and shorter periods. The cause

of this behaviour in these stars is not known.

In the W Virginis variables we do see small changes in the
periods and amplitudes that seem to be more or less random in
time. 1In the models produced for the survey are either of

these features seen?
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Of the 25 survey models it seems that numbers 14, 15, 22
and 24 best exhibit some sort of RV Tauri behaviour. In the
latter three it is really only incipient and most easily seen
in the velocity curves. TIn model 14 we see a clear
demonstration of the alternation of periods, But this model
also provides another puzzle. During the time the model was
studied (approximately 50 periods) it changed from the RV Tauri
behaviour to a more normal "single period" behaviour for ahout
8 - 10 periods, and then back again. This switching occured
roughly every 8 - 10 periods, the switch from one mode to the
other taking just 3 - U periods. Figure 6.68 illustrates the
switch from normal behaviour to the RV Tauri behaviour. The
period of model 14, in its single period behaviour, was 16,0
days. In its RV Tauri mode the period was 32,0 days, made up
of one period of ~19 days and one of ~13 days. There are
several questions presented by this model. Firstly, when in
its RV Tauri state, is it really exhibiting what is seen in the
observed RV Tauri stars, or is it alternating in some other
way? Then we must ask what causes this behaviour, and also

what causes the alternation between two types of behaviour.

When in its RV Tauri state model 14 shows an alternation
in period, a change in the shape of the light curve (the
shorterkperiod is F-type, the longer period is C-type), and an
alternation in the amplitudes of both the light and velocity
curves (from 1,0 mag. and 70 km/s to 2.3 mag. and 80 km/s).
These changes seem to be characteristic of most observed
RV Tauri behaviour (see, for example, J.P.Cox 1974;
Payne-Gaposchkin 1951). The major difference is that observed
RV Tauri variables have periods greater than 20 days (that is
the time for one oscillation, not the period of exact
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repetition). So what is seen in this (and other) models may be
RV Tauri behaviour, but it might also be caused by the method

of modelling used, and merely look like RV Tauri behaviour

without having a real physical counterpart,

What seems to be the cause of the behaviour in the models?
To help with this, two other models can be examined, numbers 20
and 24, Both show RV Tauri behaviour as described , but to a
lesser extent. In both of these models, and in the RV Tauri
state of model 14, the outer radius boundary is not well
connected to the rest of the model; 1in fact it does not
"return' once per period, but once every second period. On the
return of the outer zone a larger velocity amplitude results,
To be precise, in model 2C it is not the outer zone that is
doing this, but zone N-1, since the outer zone has by now

escaped the rest of the model.

Model 20 presented a very interesting case. The model
reached full growth quickly, but was still irregular in its
pulsation, with no consistent periodicity. After some time it
settled down into the more or less reliable behaviour shown
here. On examination it was discovered that, whilst showing
unreliable behaviour, the outer zone was only tenuously
connected to the rest of the model, and was exhibiting wildly
irregular oscillations. Eventually this zone "escaped", with
its outward velocity exceeding the escape velocity. At this
time, with the "disturbance" of the outer zone gone, the model

settled down.



The velocity history for model 20 (figure /.63) shows the
outer zone heading steadily away at ahove escape velocity.
This seems to show that the outer zone has quite an effect on
the light and velocity curves of the model, Possibly, in the
case of the outer radius returning every second period, it
might cause RV Tauri-like behaviour, All this of course is a
possible explanation only for the events seen in the models,
not in real stars. Do these descriptions have physical
analogues, and is it reasonable to expect these events to occur
in real stars? Firstly the loss of the outer zone is obviously
"mass loss", but this is equally obviously a very crude
description of any real mass loss that might occur in these
stars. It is known that mass loss does occur in red variables,

and might occur in RV Tauri stars,

Secbndly,,in reference to the RV Tauri behaviour, we might
have a thin atmosphere tenuously connected to the envelope oft
the star, As the star pulsates, this atmosphere is pushed and
pulled around, but since the connection is loose it can only
follow the motion in an approximate manner. It will soon lose
synchronization and wobble around in a less certain way.
Whether this atmosphere would have enough energy to affect the
rest of the star is another matter. What might be happening is
that another oscillation of longer period is superimposed on
the star, affecting the main star and the atmosphere (the
latter to a greater extent because of its lower inertia). To
examine these possibilities a linear analysis would be

required, possibly even a non-radial pulsation analysis to look

at oscillations in a2 ftenuous atmosphere.
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To conclude, it appears that the behaviour might well be
"real", but highly over-estimated because of the nature of the
model, which was not set up to study these effects., A more

specialized modelling technique aiming at reproducing these

effects might be a future step in this study.

6.13 THE EFFECTS OF VARYING MASS AMD OPACITY

To gain more information about these stars and about the
effects of varying some parameters, nine further models, in
addition to the survey models, were produced; one for a mass
0.5 MO,Vfive for a mass of 0.8 My, and three using the
Cox-Stewart opacities instead of the Carson opacities. Of
these last three, two used the Christy formulation of the
Cox-Stewart opacity (Christy 1966a) and one used the opacity

table given for the King Ia mix (Cox and Tabor 1976),

For model 51, with M/My = 0.5, the other parameters used
were log(L/Lg) = 3.0, log Te = 3.76. Comparing this with
model 18 we find little difference, except of course that model
51 has a longer period. Comparing 51 with a model of similar
period, for instance model 19, we find even less difference
between them. It seems that the main differgnces that using
M/Mg = 0.5 wopld produce would be in the p&sition of the
instability strip. This is also discussed in section 2.3,
where arguments for using W/Mgp = 0.6 are discussed. Basically
Wwe see téat using M/Mp = 0.5 vould most likely not alter the

survey results significantly.
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The five models produced using W/VFg = 0.8 give 2 different
picture. The instability strip for models of 0.8 Mg would be
in entirely the wrong place. For instance at log(L/Lg) = 3.0
and log Tg = 3.76, where we would expect to find a crested
light curve variable, we get the light curve of model 85. 1In
none of the five models of 0.8 Mg do we see a crested light
curve, nor do we see a Kwee flat-topped curve, although the
light curve of model 84 might be called flat-topped. The
general conclusion would be that 0.8 Mg is too high a mass for
the W Virginis variables in this period range, except possibly
for any "unusual" stars that might lie in the same general area
on the HR diagram. Another argument against this mass is that
the He II driving is significantly greater, giving amplitudes
that are far too large. As seen in section 2.2 the

incorrectness of this mass is not surprising for other reasons.

These six models show that the choice of M/Mg = 0.6 was
good. The masses of the W Virginis variables will vary, and
may vary so as to produce the two Kwee classifications (as argued

in section 6.6) but they will very likely lie near 0.6 My.

This project has used the Carson opacities as part of its
atomic data, in preference to the earlier opacities of Cox et
al. of Los Alamos, and a comparison of these opacities is in
order, To this end three models were calculated using the Cox
opacities, in two forms. Two were calculated using the Christy
formula, and one was calculated using the Cox and Tabor (1976)

opacity for the King Ta mix (Y=0.299, Z=0.001),



Firstly we consider the model K1, which used the King Ta
opacity. This has stellar parameters of M/Mg = 0.6,
log(L/Lg) = 3.0 and log Te = 3.76, the same as model 18. A
direct comparison between these models is not possible because
the King Ia mix has 30% helium to the 25% of the Carson opacity
used. The periods are almost identical (16.0 days to 15.9

days), but the light and velocity curves are very different.

The light curve of model Kt is very asymmetric, showing a
very rapid rise to light maximum, and also does not show the
same crested light curve shape of model 18. It does not
resemble the Kwee observed light curves very well at all in
fact. This could be due to the increased helium abundance
(which would give greater driving and thus higher asymmetry),
or to the Cox-Tabor opacity. The model's work function does

show a greater He II driving, and very little H driving.

Another comparison for these stellar parameters cannot be
found using Cox opacities with 25% helium, because the model
would be blueward of the blue edge for these opacities (see
section 2.3). However the comparison can be made at other
values of log(L/Lp) and log Te for 25% helium and using the
Christy formulation of the Cox opacities. Models C1 and C2 do

this.

Model Cé, at log(L /Lg) = 2.9 and log Tg = 3.75 shows
very different behaviour from model 13 which has the same
stellar parameters, differing only in the opacity used. The
period is significantly different, as are the light and
velocity curves. The light curve of model 13 is undoubtedly of
the crested variety, and while the light curve of model C2 has
a secondary bump it is merely incipient and considerably later
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in phase. In fact at similar periods in the survey models, a
light curve like that of model C2 is not seen, and such a light

curve is also not seen amongst the available observed stars.

On comparing the detailed velocity histories of these two
stars (figures 6.55 and 6.6Q) we can see only some differences
in the velocities. The reflected Christy '"echo" is weaker and
does return to the surface a little later for the Cox opacity.
The asymmetry of the velocity curve is greater for model C2,
having a faster rise to maximum, Why this shock front should
be stronger for the Cox opacities is not obvious, though it
might be caused by the higher hydrogen opacity seen in the Los

Alamos opacities,

fodel C1, with log(L/Lg) = 2.8 and log Tg = 3.73, serves
as a comparison for survey model 8. Again there is a
significant disparity in the periods, and the light and
velocity curves do not match well at all. Model 8 is
definitely not C-type, and is classified as F, but model C1
would be classified as C-type, although its light curve does

not look much like Kwee's crested curves.

The general conclusions that can be made are that whilst
the Carson opacities can reproduce at least the crested variety
of light curves very well, using the Cox opacities for some
comparable models did not produce results that were as good. A
full survey using the Cox opacities would of course be
necessary before firm conclusions regarding their use in these

types of stars could be reached.

- 127 -




1

4
LR LA
" A Y, »rt T, o, .
n, A7 5, N R e Ty Y, ", "~
oy P "~

=
nmv

or “
e NN
. waf”w\ﬁx

w7
_.J _.._._ _... _.......u.f ujﬁf.‘“f,wf:.
N NN

)

Q

s

o I,
e N T
\\I”nr%hr/}r

|

e T e NS
b,
Jfru”.ﬂdb{f/zf

>

I

i
y,;

<

LU fooqq
Ry T )

Y 1 1

!

U

Y

w

11

e

-

248 258 252 254 258

3§ 240 293 244 298

1 1
234 238

5 228 232

(A34JIp S370DS) M} 1D079p

Aa1souTwn™

i
2

732

3.
22

224

e

Time (secs>

Figure 6.69 Velocity and luminosity histories of model C2
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CHAPTER 7

CONCLUSION

The major aim of this work was to produce hydrodynamical
models of the W Virginis variables (population II cepheids)
with periods in the range ten fo twenty days. In particular it
was hoped that by using the Carson opacities not only could the
general features of these stars be reproduced in an instability
strip survey, but also that good models could be made of
individual stars, simulating the light curves closely. This

aim was at least partially achieved.

As detailed in section 2.2 the observed stars in this
period range could be split into two main types (with a third
unclassified type). The 25 survey models constructed in this
work to cover some of the instability strip managed to
reproduce all three of these types with varying4degrees‘of
success, as it proved much more difficult to reproduce the
flat-topped variety. The gencral features of the observed
stars - the position of the variables in the HR diagram, the
periods, amplitudes and light and velocity curve shapes - were
fairly well reproduced. Certainly agreement to within the
observational errors is obtained. Unfortunately, observations
of these stars are scarce, particularly observations of radial
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velocity curves. There is some evidence that the observational
period-radius relation for these stars splits into two,
representing extremes of a gradation {rom flat-topped to
crested light curves. Assuming a similar period-mass-radius
relation for the two types this indicates that a range of
masses may be responsible for the dichotomy. This ties in
quite well with evolutionary arguments for feeding stars into
the instability strip at this level, Unfortunately, the survey
models produced were all of the same mass, 0.6 Mg. Some models
were constructed with differing masses, but the variation was
not sufficient to add theoretical weight to this suppositior.
More work could be done here, using a rangé of masses, to check

this argument.

In section 6.10, models of three observed stars were
presented, CS Cassiopeia, FI Scutum and AL Virginis. The first
two of these have crested light curves, and we saw that the
models reproduced the pulsational -features and the light curves
very well., With the variation in crested light curves seen in
the models it would seem that this type can be modelled very

well.

AL Vir had a featureless, unclassified light curve,
reproduced very well in the comparison model. This shows that
the shorter period, rather characterless, observed light curves

can also be modelled.

Unfortunately it has not been possible to produce an
equally good model for any of the observed flat-topped light
curves. Most of the modelled curves labelled as F-type still
had a slight crest, or were of the wrong shape (viz. model 1).
This failure could be due to many things. We expect to find
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these stars at comparatively low values of log(L/Lgy) and log

Tes and it is here that the best F-type models were constructed,
and also where most of the difficulties were encountered.

These difficulties may have been caused by an inadequate outer
boundary condition, but the alternate cause of the problem may
be excessive driving in the He IT zone and (perhaps) also in

the hydrogen zone. Convection in these stars may not bring
about stability, but it may reduce the driving significantly,
thereby perhaps making the modelling easier near the red edge.
This may enable the production of a good flat-topped model

light curve.

During the course of this work it was realised that RV
Tauri type behaviour might be observed in some of the models.
This had been seen before by Vemury and Stothers (1978) in
models of classical cepheids. Indeed a suspicion of such
behaviour was observed in some stars, though it may be that
these stars were still settling into their final state., What
was not expected was the behaviour of model 14, The very model
dependent explanations of model 14 (and possible RV Tauri
behaviour) would need to be explored with a far more realistic
description of what happens in the outer layers of these stars,
to see if there are equivalent events in the very tenuous
atmospheres of these stars and also of the longer period red

variables.

A comparison of the Carson opacities with the earlier
opacities of Cox and his co-workers was not one of the aims of
this study; however, since few published models of these stars
{using the Cox opacities) exist, some comparison was done. The

easiest direct comparison, changing only the opacity used, is

1?0 -



hetween model 13 and model C2. Ue saw here that use of the
Carson opaci£ies led to a much better agreement with
observation, a conclusion alsoc reached by CSV in their work on
the RL Herculis variables. AL the present time it seems that
some problems may still exist in the Carson opacities; the low
temperature opacities are suspect, and the helium II opacity
may be over-estimated, causing excessive driving. In general,
however, it seems that use of the Carson opacities produces

better agreement with observations.

This study largely succeeded in its aim of modelling W
Virginis stars, but has indicated in many places that more work
is needed. More extensive observations of the light and
velocity curves (particularly the latter) of these stars would
be very useful in confirming our theoretical understanding of"
them. The observed velocity curves are cur?ently too scarce to

be of much use in a survey.

On the theoretical side a great deal more work can be
done. The outer boundary condition normally used in
hydrodynamic codes is still not very realistic,‘and appears to
cause difficulties when used in models of stars with very
tenuous outer layers. Some sort of running-wave boundary

condition may well help here,

The major improvement on this work would probably be to
include convection as a form of energy transport. There are
now several published methods of doing this, but as yet they
all involve even more "unknown" parameters, and the search for
better ways to handle convection in pulsation is by no means
over. The inclusion of convection would probably have little
effect on most of the crested and unclassified model light
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curves produced, but could well help in modelling the

flat-topped variety.

Both of these improvements may help in studying the
"peculiar" models (those with suspected RV Tauri behaviour),
but in the light of the ideas presented it may be that
something new is needed to accurately represent what is
happening. Modelling the RV Taurl variables would seem to be
the next step in moving up the population II instability strip,

on the way across to the long period red variables.
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