
A THEORETICAL STUDY OF POPULATION II CEPHEIDS
WITH PERIODS IN THE RANGE 10-20 DAYS

Alan Bridger

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

1984

Full metadata for this item is available in
Research@StAndrews:FullText

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/4009

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/4009


-0
 

>
 

r-
1 

::
0

 
~
 

,-
4

 
~
 

0 
r-

1 
t:1

 
0 

(J
l 

::
0

 
r-

1 
H

 
~
 

:::
: 

H
 

("
) 

~
 

>
 

c:
 

>
 

:c
 

r 
z 

r 
r-

1 

H
 

>
 

(J
l 

<
 

Z
 

::
0

 
~
 

r-
1 

;7
>

 
c:

 
::

0
 

to
 

z 
t:1

 
(J

l 
::

0
 

("
) 

>-<
: 

[r
J

 
H

 
H

 
~
 

0 
0 

>-<
: 

("
) 

""r
J 

r-
1 

0 

':
:)

 
::

0
 

-0
 

""r
J 

0 -0
 

(J
l 

f\
) 

c:
 

~
 

0 
r >

 
0 

~
 

>
 

>
 

H
 

>-<
: 

0 
(J

l 
Z

 
0 ::

0
 

H
 

t::.
l 

H
 

-:.
.. 

(,
1

 
("

) 

r-
1 

-0
 

:c
 

(7
1 

r
l
 

0 (J
l 

:E
: 

H
 
~
 

:c
 



ASBTRACT 

A theoretical study of population II variables with 

periods in the range 10 - 20 days (W Virginis variables) is 

presented. A modified hydrodynamic Christy code is used in 

conjunction with the Carson opacities, in preference to the Los 

Alamos tables, following the \.Jork of Carson, Stothers and 

Vemury on the shorter period DL Herculis variables. 

Twenty-five survey models are presented, along with nine other 

comparison models of varying masses and opacities. 

A study of the observations shows that the division of 

these variables into tHO types by observers might be explained 

by a slightly different mass for each type, thus making the 

division dependent on the star's previous evolution. 

The non-linear resul ts obtained by this study sho\-! that a 

mass of 0.6 Me;, is a (Sood one to use, and that ~1 = 0.5 M0 makes 

little difference (although M = 0.8 M0 seems to be too high). 

The results in general compare well with the observations, as 

both also show the spl it into two types of light curve. Three 

, good models of individual stars are presented, on a par with 

the models of BL Herculis published by Carson, Stothers and 

Vemury. The bumps in the light and velocity curves of many of 

the models seem to be real, caused by the Christy "echo". 

A feH of the models shOH some RV Tauri behaviour. One in 

particular shows very strange behaviour, involving a violent 

81ternation of light curve shapes. 110dels constructed using 

the Los Ala~os opacities do not produce results as consistent 

with observations 83 those of the main survey. 



The study shows that these stars can be represented by 

hydrodynamic models of mass 0.6 tIl;)' using the Carson opacities • 

. but also that convection may be important in the cooler stars 

in order to model them accurately. This indicates the 

direction in Vlhich further theoret ical work may 1 ie. 
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ASBTP.I\CT 

A theoretical study of population II variables with 

periods in the range 10 - 20 days (W Virginis variables) is 

presented. A modified hydrodynamic Christy code is used in 

conjunction with the Carson opacities, in preference to the Los 

Alamos tables, followin~ the work of Carson, Stothers and 

Vemury on the shorter period BL Herculis variables. 

Twenty-five survey models are presented, along with nine other 

comparison models of varying masses and opacities. 

A study of the observations shows that the division of 

these variables into two types by observers might be explained 

by a slightly different mass for each type, thus making the 

division dependent on the star's previous evolution. 

The non-linear results obtained by this study show that a 

mass of 0.6 "" is a good one to use, and that ~\ = 0.5 H", makes 

little difference (although M = 0.8 Mo seems to be too high). 

The results in general compare well with the observations, as 

both also show the split into tHO types of light curve. Three 

good models of individual stars are presented, on a par with 

the models of BL Herculis published by Carson, Stothers and 

Vemury. The bumps in the light and velocity curves of many of 

the models seem to be real, caused by the Christy "echo". 

A few of the models show some RV Tauri behaviour. One in 

particular ShOHS very strange behaviour, involving a violent 

alternation of light curve shapes. 110dels constructed using 

the Los Alamos opacities do not produce results as consistent 

with observations as those of the main survey. 



The study shows that these stars can be represented by 

hydrodynamic models of tnClSS 0.6 11 0 , using the Carson opacities, 

.but also that convection may be important in the cooler stars 

in order to model them accurately. This indicates the 

direction in which further theoretical work may lie. 
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CHA PTER 1 

INTRODUCTION 

It has been known since ancient times that some of the 

stars in the night sky vary in their brightness. However, the 

discovery that many of these variable stars show periodic 

variations that are cyclic, semi-regular or regular had to wait 

until about the sixteenth century. By 1800 only sixteen 

variable stars were known (two of these Here later found to be 

eclipsing binaries and five Here novae) I of Hhich two Hel~e 

classical cepheids, S Cephei and '7 Aquilae. Now about 25000 

intrinsic variable stars are known in this Galaxy, the vast 

majori ty of which al'e pul sating variables. Only about one star 

in 105 _ 106 is such a variable, so stellar pulsation is quite 

rare. Nevertheless, it is very important in astrophysics. For 

instance, many of these stars follow strict Period-Luminosity 

relationships, first determined for classical cepheids by 

Leavitt (Pickering 1912). These relationships provide us with 

basic distance indicators, both in the Galaxy and the Universe. 

The theoretical study of pulsating variables is important 

in providing us with a test for our theories of stellar 

structure. Without it, the tests would be left to simple 

models of static stars and to the slow processes of stellar 

- 1 -



evolut ion . Only stellar pul sation provides us \.Ji th dynamic ;}wi 

observabl e properties (conce rnin g a lar ge part of th e stell ar 

envelope) which can be modelled. 

Pre vious modell ers of pulsating variables hove studied the 

classical cepheids, RR Lyr ae stars and many of the other types. 

Most of these studies have used t he opacities calculated by 

A.N.Cox and his various co-workers, but recently a new set of 

stellar opacHies ha s been calculated by Ca rson (1976). These 

opacitie s hav e been used successfully to model RR Lyrae sta r s , 

cl assi cal cepheids and BL Hercul is var i ables . In many c ases 

the new opacities seem to produce better r e sul ts than those 

obtained with the Cox opacities; howe ver , as there is some 

Va Y lrY-'f5 

debate as to the validHy of t;..R~ opaciti es, it is 

i mpo rtant to use them to model as many different type s o f 

variable stars a s possibl e , to see how they handl e the se 

variations. With this in mind, this study ha s bee n made of t he 

H Virginis vari ables, also knovm as population II cephe id s, 

Hith periods betwe en 10 and 20 days. Th ese star s are the 

population II counterpar ts of the cl assical cepheids, although 

they do not seem to shoH quite the same trend s as are seen in 

th~ latter. I n parti c ul ar there is no co unter part to the 

so-called Hertzsprung progression. 

Because of their faintness, observations of W Virginis 

vari ables ar e not as good as those of classical cephe id s, and 

in f ac t observations of the velocity c urv es are almost 

non-exist ent. l~wc v er, it has been possibl e to c l ass ify the 

light c urv es o f these stars in ma ny ways because some of them 

do have seco nda ry humps. Thp most r ecent c l as sific ntio n b y 

KHee d ivi.ried them into tl-.'O gr o ups . 

- ? -



In this study th" \.' Virgini!'i stars are modelled using the 

Carson op~cities in 2n attempt to reproduce the observed light 

curves, and in particular the dichotomy of the light curves 

obsel~vcd by Kv/ec. These variables !lave not been studied very 

extensively theoretically heretofore, so this Hork provides not 

only a test of the neH opacities, but also a further test of 

pulsation theory. 

This study follo\"3 on from th8t of Carson, Stothers and 

Vemury (1981) and Carson and Stothers (1982), Hho modelled the 

BL Hercul is stal~ s (popul ation II cepheid S HUh period s between 

1 and 10 days). One aim of those works Has to reproduce the 

observed light curves in some detail. This aim Has achieved 

with a good model of BL Herculis itself, which reproduces both 

the light and velocity curves very well, and may be the best 

published model of an individual star. This aim is continued 

in this \-Iork, as the reproduction of the observed properties of 

variable stars is surely one of the most important aims of the 

theoretical study of pulsation. Since true light and velocity 

curves can only be obtained by hydrodynamic modelling, that is 

the method used here. 

In section 2 a review of pulsating stars is presented in 

three parts; a summnry of pulsation theory in general, a study 

of the available observations of W Virginis stars (with a 

revieH of current evolutionary ide(-]s about these variables), 

and a review of the application of pulsation theory to the BL 

Herculis and W Virginis variables. In section 3 non-linear 

pulsation theory is discussed, and th0 method used is 

presented. :~ection II de:'cl'i.bes the procedure used to ccllcu12te 

the static model which serv~d ~s n startinG point. In section 
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5 the equation of st;)te Clwi the OpClCity are discussed. TIle 

results of the models and ~n extensive discussion of them is 

presented in section 6. Section 7 concludes the study, and 

suggests improvements and further are;)s for study. 

- q -



CHAPTER 2 

PULSATION MiD POPULATION II CEPHEIDS 

2. 1 THE PULSATION THEORY OF VARIABLE STARS 

Th e hypothesis tha t cyclic pulsa tions could Rcco unt for 

the vari ability of many s ta rs was put forward in t he Nineteenth 

century. Shapley (1914) put the theory onto a firmer base, and 

then Eddington (191 8a, 191 8b, 1926) established the 

mathem atical foundations of the theory of adiabatic fr ee radial 

oscillations of gaseo us spheres. He showe d that free 

oscillations Hould quickly deca y, contrary to observations, ;md 

therefore that a drivin ~ mechan ism \-1 8 5 requi.red to keep the 

star pul sa tin g . Eddington discuss ed tHO possible drivin G 

mechanisms, one of '·/hj.ch (the "v alv e " mec hanj.sm) provided th e 

basis for our present understandin g of stellar pulsation. 

Re views of t he early histo ry of th e pul sa tion theory may be 

found in Ross cl and (1 949 ), Ledoux ,md \!a lraven (1958 ) and 

Zh e vakin (1963). 

In lookin g for possible 
f(f')f :;-U 

of cepheids, Eddington -I7e-:H'~ 

agents for the pulsation 

th8t the nuclc 8r reactions 

tO Vl ;:ll"c1 :~ the s tell ar ce n tre' \'Ie r '~ th e c ause o f th e i nst ability; 

i.n r8rticular, thCl t th e in e l" C;~s(, in en0rgy output on 
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cOMpr ession \.Iould cause ex pClnsion, an d the correspond ing drop 

in nucl c~ r energy production would Cl llow subsequent compression 

and thus the mClinten<1nce of the cycle. This mech,mism has now 

been shown to be untenable, since the pulsation amplitude 

towards the centre of the star is about 10 6 times smaller than 

that at the surface (Epstein 1950; J.P.Cox 1955). 

The other possible callse discussed by Edd ing ton 148 s th e 

"valve" mechanism in which the outer laye rs of the star behave 

rathe r like a the rm od ynamic heat engine. If a mass elem ent in 

a star can absor b heat on compression, and release it on 

expa nsion. then it Hill act as a driving force, pushin~ the 

pul sation. Region s Hhich act in th e opposite manner Hill thus 

tend to damp the mo t ion. It is this modulation of the heat 

flow throug h the layers of the star that mod er n theories are 

based on, though the Hay in Hhich a driving region HorKs varies 

a ccording to the Hay heat energy is "trapped" . Various ways of 

trapping heat energy on compression (which thus cause driving) 

are d iscusse d later. 

Th e ba s ic e quations lls e d in the study of stellar pulsation 

are those of stel lar structure, with time dependent terms added 

, 
(com pare section 3.1). These equations, in differential form, 

and Hith the vari ab les defined as in section 3.1 are given 

her e . 

Continuity of Mass 

(H~r 

dr 

47Tr:2. e( r) 

Equation of 1'lotion (or Hydrodynamic eq\lUibrium) 

~- = - GrIt-- - 1;jP 
r'2 9~ 

" 

- 6 -
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The Heat FloH EquCltion 

~E + PdV 
at dt 

= €-~ 
1171redr 

and the luminosity is given (in the diffusion 

approximation) by; 

Lr = 'Irrr'.14a- d(TIf-) 
3 xCt?, T)~dr 

(2.3) 

(2. lj) 

These equations, alon~ with formulae (or tables) for the 

opacity k (e ' T), energy generation ~ (~, T) and equation of 

state P = P(~,T) and suitable boundary conditions can be solved 

for the radial pulsations of a star, neglecting convection, 

rotation, and magnetic fields, and assuming that the diffusion 

approximation for energy transfer holds throughout. For most 

problems the central core of the star can be ignored, since it 

has been shovm that this region plays very little part in the 

pulsation. In this case the energy generation, € t can be put 

equal to zero in equation (2.3). Using modern fast digital 

computers the problem is usually solved by linear or non-linear 

methods, both of which r'equire elll initial static solution of 

the ,equations as a starting point (see section 4L . RevieHs of 

modern Hork on stellar pulsation can he found in Christy 

( 1 966c), and J. P. Cox (197 11, 1980) • 

In the linear theory, the pulsation equations are 

linearized and we thus consider SMall-amplitude oscillations 

about the equilibrium state (as defined by the static model). 

For many stars the motion is nearly adiabatic throughout the 

star, and so by simply assumin~ adiabatic heat changes (the 

Linear Adinl:latic Theory) it is possible to obt;:;lin some quite 

good resul ts for the dynar1ical Clspects of the pulsGltion. Using 
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adiabatic theory, perjoris c~n be pre1icted, along with the 

dynamical stability and the relative pulsationsl amplitudes 

inside the star. However, since the heat changes are adiabatic 

it is not possible to obtain information regarding either the 

pulsational stability of the star or the luminosity variations. 

Only by using non-adiabatic chanc:es can we determine the 

stability or instability of a star against pulsation. It is 

near the surface, where the heat capacity becomes very small, 

that the non-adiabatic effects are most noticeable. In the 

1 inear treatment the star is divided into some number of mass 

zones, just as in the non-linear treatment used here, but with 

many more zones. By measuring the change, C::,f;.", in kinetic 

energy in each zone over one period it is possible to find 

"'hich of the zones are driving and Hhich are damping, since a 

driving region gains heat at maximum compression and a damping 

region loses heat at maximum compression. So ~1n? > 0 

inc! iestes driving Hhile 61m < 0 shows damping. Summing over 

all of the mass zones He obtain the change 61 in kinetic 

energy for the ",hole star. Since the gravitational energy term 

is conservative He can put 6r = VI, \-,here H is the PdV Vlork 

done by all of the mass zones in one period. So for the Hhole 

star, C::,.J' = VI > 0 indicates pulsational instability, or the 

growth of pulsations, and .6.T< 0 indicates pulsational 

st8bility, or the dclrnping of any pulsations. It is also 

possible to determine the e-folding time 't'd for decay of the 

pul sation s (the time l'equi red for the ampl itud e to decay to 1 Ie 

of its former' value). This is defined by 

1 

'rei 
= 

dv-J 
-~~ 

2 U, y> (2. 5) 

,Ihere 61' is the tot"l pul ;,;"t ion cnerr,y of the star (ki netic 

- i3 -



and potential). The ;mp;ular br2ckets indicate meAns over R 

period. For the 1 ine;~r theory (i.e. small arJpl itud es) we 

define the stability coefficient J<;, 

K = 1/,(;,.:;( 

So X > 0 indicates stability and X < 0 indicates 

instability. Typical values of the damping time, "rcl ' for 

variable stars range (in units of P , the fundamental pulsation 

period) from _ 10 for the long period red variables to 10~ 

to 10 6 for the short period 5 scuti stars. For classical 

cepheid s 't'd/P;-oJ lcf- - 10
3 

and for population II cepheids 

't'd/ P "'" 10 - 20. Using linear, non-adiabatic methods, much can 

be learned about the pulsations of variable stars; the mode 

and cause of pulsation can be established, along with the 

instability/stability of the star. Thus linear theory is ver,y 

useful in determining the areas of pulsational instability In 

the HR di8gram, the IIblue edges" of instability regions, and if 

convection is included in some way, the "red edges" also. 

However, because the treatment is linear and the amplitudes are 

small, the linear theory cannot usually describe individual 

stars very well, particularly those with moderate to large 

amplitudes. At these amplitudes non-linear effects enter; 

they cause the light and velocity curves to deviate from pure 

sine waves, and have other effects such as lengthening the 

pulsation period. TIlis is 1.-1here non-linear methods are 

superior; in the modelling of individual stars and in trying 

to reproduce observed light and velocity curves. 

Before discussing the non-linear rJethods used it is 

appropriate to discllss the ros'3ible drivin~ mechanisms thilt rJ8y 

cause ruls8tional instability in ~;tClrs. These are the 
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descendants of Eddington's ori~in~l valve ~echanism, and they 

all rely on the fact that the ionization of a constituent of 

the stellar envelope can modulate the flux variations. \~en 

such a region is gaining heat on compression and losing it on 

expansion maximum pressure occurs after maximum density, thus 

causing a "pumping upl! of the pulsation. In l':lOst stars the 

1 uminosi ty variation SLI"'/L,.. increases outHard s; t.hus each zone 

is losing energy on compression, giving what is termed 

radiative damping. This behaviour is due to the fact that on 

compression the opacity usually decreases, allowing the heat to 

leak out. In most stars the important ionization zones in the 

envelope are those of hydrogen, neutral helium and single 

ionized helium. These three will usually only comprise tVJO 

t'egions of ion5_ zation, the He II one at about 4 x 10't K and the 

combined region of H and He I ionization at about 1-1.5 x 104-

K. The latter acts very much like a single region and is 

frequentl y simpl y called the H-ioni zation zone. In an 

ionization zone the adiabatic exponent G -1 becomes very small, 

as most of the energy on compression is going into ionizing the 

material, not raising the teMperature. The smaller temperature 

vari 9 tions also cause SL,../L/-- to be smnll (since Lroc T4 ), and 

thus the l~adiation is effectively "dar.Jmed" on cOr.Jpression. 

Then, on expansion, the temperature rises more than Hould be 

the case in adiabatic motion, and so does the pressure, which 

causes the driving of any incipient pulsation. This driving 

mechanism j.s called the 'y-mechanism (Cox, Cox, Olsen, King and 

E i I er s 19(0). 

- 10 -



Another mechanism, called by Raker and Kippenhahn (1952) 

the X -mechanism, is caused by the possibility that for Cln 

11 -s opacity law of the form /(0< ~ T (n,s > 0) the opacity may 

increase on compression if fJ -1 (and so STIT) is small, i.e. 

in a region of ionization. This local opacity increase dams 

the radiation on compression, causing further driving. 

Stellingwerf (197B, 1979) notes another possible cause of 

driving, which he called the bump-mechanism. If, in the above 

opacity dependence, s is large and negative (or even just less 

positive) as happens in the H-ionization zone, then there can 

be a damming of radiation on compression even if 13-1 is close 

to its normal value of 5/3. 1~is may be important in the 

driving of some stars. 

~~ether or not a particular ionization region will cause 

driving in an actual star depends on where it lies in the 

stellar envelope in relation to a region known as the 

transition region, which divides the quasi-adiabatic interior 

from the non-adiabatic exterior. As the radius of a star 

increases (for given mass, 1 uminosity and composition) the 

transition region moves outwards in mass. Above the transition 

region, in the non-adiabatic zones, the luminosity variations 

tend to be "frozen-in". There is no variation of 5Lr lLr- with 

space. If both ionization zones lie in this region then the 

star remains stable, since 6L~/L~ remains constant, despite the 

variation of (SLr/Lr)a' the adiabatic variation. For a star 

with larger radius the He II ionization region may coincide 

with the transition region. In this case in the inner portion 

of the He II ionization zone the luminosity variation follows 

the 8diabatic variation, whilst in the outer portion the 

- 11 -



variation &Lr/Lr is still constant in space, frozen at the 

small value it had in the middle of the zone. So the damping 

effect of the outer regions is eliminated and the driving of 

the inner portion can make the star unstable. The H-ionization 

40ne still lies too felr out to have a large effect. TIlis 

coincidence of He II ionization zone and transition region 

seems to be the cause of pulsation in the whole cepheid 

instability strip in the HR diagram. 

As the radius increases further (moving redwards in the HR 

diagram) the H-ionization region moves into coincidence with 

the transition region, potentially causing very strong driving. 

However, by this stage convection has usually appeared to damp 

the driving, bringing a return to stabil Hy and defining a "red 

edge!!. The effect of convection on pul sation is discussed 

later. 

After suggestions by Zhevakin (1953, 1954a,b), Cox and 

Hhi tney (1958) and Aleshin (1959) that second hel ium ioni zation 

might be the scene of the valve mechanism of Eddington, \·/ork by 

Baker ,md Kippenhahn (1962) and J.P.Cox (1963) confirmed the 

effectiveness of He II ionization as a driving mechanism. Many 

studies have since reconfirmed this. It has also been 

suggested that H-ionization may be the major driving agent in 

the red variables. 

Since most real stars are obviously non-linear (the 

non-sinusoidal light curves evidence this), only by solving the 

full set of non-linear equations can we hope to describe the 

pulsation of individual stars, including the light curves, 

velocity curves, limiting amplitudes etc. However, the set of 

non-linear equations is not soluble analytically except in a 
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few, totally unrealistic cases, (For adiabatic motion with 

constant r; and the homogenous model with constant r, ), 

However, some one zone non-linear models are relatively simple, 

and can help our understanding of some of the features of 

pulsation (for example Baker 1966; Usher and Hhitney 1968; Rudd 

and Rosenberg 1970: and StellingHerf 1972). 

Most non-linear methods treat the equations as an initial 

value problem, integrating the equations forward in time from 

some initial conditions, usually a model envelope in 

hydrostatic and thermal equil ibri urn. The usual treatment is to 

d iv ide the star between 25 to 50 mass zones and put the 

equations into differe.nce form, Given sufficient computer time 

these methods provide information about the limiting amplitude, 

the growth (or decay) of the pulsations, the non-linear 

effects, the light and velocity curves, etc. The methods used 

by different investigators vary widely Hith no way of telling 

the "best" method, leaving the study looking somewhat like an 

art form. One problem aasoel ated with all non-linear 

approaches is the need to use an artificial viscosity. to 

spread the H-ioni zation front over several zones. The form 

that thi~ takes is almost arbitrary, including at least one 

unknovm parameter. The techni.ques used in this study 

originated Hith Christy (1964, 1966a, 1967) and have been used 

and modified by many authors since. 

Aleshin's (1964) non-linear method was a little different. 

He just treated the region T < "'5 x 104 K (normally most 

6 
methods use r >~/10 or T <"-'10 K), and he used only 10 zones, 

Hith the inner boundary havin~ ? sinusoidal oscillation with 

period and luminosity variations obtained from the linear 
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theory. The resul ts Here r8ther 1 imi ted, but the inner 

boundary of sinusoidal variation has since been used by 

,Stellingwerf (1974) in his non-linear scheme. Stellingwerf's 

scheme is a modification of that proposed by Baker and von 

Sengbusch (1969), and von Sengbusch (1973). In the von 

Sengbusch approach 104 linear equations 8re solved for 4 

variables in J zones fOI- K time-steps in a period. This gives 

IIJ(K+1)+l unknowns, including the period. The solution is 

iterated until ex ac t period ic l-epeti tion is obtained. The 

non-linear calculation is in fact treated as an eigenvalue 

problem with the period being a solution. 

StellingHerf's approach is a compromise betHeen the usual 

Christy techniques and the von Sengbusch method. An ini tial ~ 

model is found in the usual Ha y, and an estimate of the perio~cl 

is made. A normal non-linear code then integrates through one 

period. Corrections are then made to the period and the 

physical variables, and the code integrates another period. 

This iteration proceeds until exact repetition is achieved. On 

convergence the non-linear code can be run for" a time to alloH 

compl~te analysis. Each mode can be studied in this manner, 

and the time taken to reach full amplitude is generally 

considerably shorter than Hith the usual e-folding growth 

approach. For stars that are not fully periodic, or aperiodic, 

this approach is limited. This is the case Hith certain 

population II cepheids, and in any case their growth rates are 

large enough (10-20 periods) so as to make any time-saving 

minimal. 
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Another approach to the problem is due to Castor, and is 

described by Castor, Davis and Davison (1977) and Davis and 

Davison (1978). In this approach the static Lagrangicln mass 

zoning is replaced by a dynamic zoning in which the zones move 

during the time inteRration so as to keep a large number of 

zones in the hydrogen ioni zation front. This method produces a 

far better resolution of the ionization front, eliminating some 

of the spurious bumps sometimes seen in the light curves 

produced by normal Lagrangian codes. 

One problem experienced in all attempts to solve the 

pulsation equations is the question of what to use as an 

external boundary condition, and where to apply it. Unno 

(1965) made a study of some boundary conditions. Host studies 

use a form of the perfect reflection (or standing wave) 

boundary condition. Here in the linear form, we have, 

tdsp\ :: 0 
ldr J sur face (2.6) 

This assumes that the gas density vanishes at the surface. 

Equation (2.6) is correct for radiation pressure being 

negligible or significant. The equivalent non-linear boundary 

conditions are Pt;ot:. :: 0 or Pg :: O. These "standing wave" 

boundary conditions give perfect reflection at the stellar 

surface and are the ones used in this study. 

Another dynamic boundary condition is the "running wave" 

condition, Hhere the reflection is not perfect, and some of the 

pulsational energy is allowed to run into a corona surrounding 

the st8r. 
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For the surface boundary condition on the heat equation we 

assume that there is some surface in the stellar atmospher e 

, where there is no radiation incident from outside, and where 

the optical depth !: is zero. In the thermal di ffusion 

approximation we can aSSUM e the Eddington relation, 

Tlf = I T:(1; + 213) 
'f-

Bakel' and Ktppenhahn (1965) applied their outer boundary 

condition at the photosphere, i.e. 8t 1:: =2/3. HOHever, it is 

much better to apply the condition at small 't, "C~O (someUmes 

called the Castor-Iben boundar y condition). This is Hhat most 

investtgators now choose. Another approach is to treat the 

optically thin zones using radiative transfer, and not 

diffusion theory .. (Davis 1912). 111is is more correct, and the 

boundary condition on the radiation rlOH is obtained 

automatically. However, the increased complexity naturally 

increases the computing time required. 

Until recently the effect of convection on pulsation has 

only been studied in an elementary Hay. TIlere are tHO effects 

to corysider, the change in the static structure and the 

interaction vii th the pulsation . One treatment, using linear 

methods, is to create a static model i ncluding convection and 

then ignore the convective flux variations. (Baker and 

Kippenhahn, 1965, for example). The problem V1ith includ ing 

convection in the pulsation itself is that of the time 

depencience. Some attempts have he en made to include 

time-dependence in the conventional mixing- length theory, by 

(for example) Gough (1917) and Unno (F167). Gou~hls Hark h8s 

been i'lpplied to RR LyrC'le vC'lrl;,bles (E;::il:er cmd Gough 1979), 

concluding th8t convection has 0 ne p,l igible effect near the 
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blue edge, but thnt it CAn he responsible for the return to 

stability Flt the red edge. Flaker anrl Gough's linear \-lark 

provided a red edge in About the right place. Convection has 

largely been ignored in non-lineAr \-lark, but Deupree tncluded 

convectton in a ne\-l fundamental \-lay in a series of pFlpers 

(19778 ,t ,c ,rl). Ile txeAts tHO spattal rlirnensions, (1llovlinr~ the 

form8tion of tHo-dimensional erlrlies, i.n a non-linear 

Euler-Lagrange formulation, Vlhich makes no assumption about the 

time behaviour of convection, and makes no use of the mixing 

length theOl~y. The limitations of the Approach are that onl y 

tV/o space dimensions are used. and that Deupree had to 

introduce an eddy viscosity coefficient to treat the break up 

of large eddies and the conversion of convective kinetic energy 

into heat. More recently StellingVlerf (19R2a,b) derived a 

scheme for treating non-locaJ convection in a conventional 

spherically symmetric non-linear code. This 8pproach is Fliso 

different from the conventional mixing length theory. 

Turhulent pressure anrl viscosity are included in the treatment. 

Stell ingHer f has a1 so applierl hi s Hork to the RR Lyrae 

vFlriables. 

All of the stUdies llsinr:; convection indic8te th8t 

convectton has little effect near the blue edge of the 

instabtlity strtp, and can thus be safely ignored for the 

hotter models. HOHever, on 8pproaching the rerl edge, 

convection plays An increasinR p8rt, 8nrl the sturlies of Eaker 

8nd Gough, Deupree, and StellingHerf all indicClte a return to 

stability here, as the convectivp motjons increase. 

Stellin~werf has not determined the red edge of the RR Lyrae 

strip, but the edges obtained by Deupree (19778) rmd Baker ;mrl 

COURh (1979) are essentially jn a~reement. According to 
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Deupree's work it seems that nt maximum compression the 

convection causes the energy stored in the driving regions by 

the 1<:- and y-mechanisms to leak out, thus reducing the 

,driving. It seems that only a small amount of convection in an 

ionization zone is necessary to bring about stability. 

Thus the problems of including convection in pulsation are 

beginning to be solved, although much useful work can still be 

done without the inclusion of convection; it generally only 

has a large effect near the red edg~, and has only a small 

effect on the light and velocity curves of the stars. For the 

cooler models it probably limits the growth of the pulsation, 

possibly to a large extent near the red edge. 

2.2 OBSERVATIONAL AND EVOLUTIONARY ASPECTS OF POPULATION II ' 

CEPHEIDS 

Population II cepheids were first noticed as being 

distinct from the population I "classical" cepheids by virtue 

of their light curves t which are usually very different from 

those of classical cepheids of similar periods. 

Payne":Gaposchkin (1956) points out that this Has noticed as a 

deviation from the Hertzsprung progression of classical 

cepheids. Having drawn this distinction, the position of many 

of these variables far from the galactic plane (as well as 

spectroscopic analysis) identified them as population II 

objects. As such they are also found in globular clusters, 

810ng with those other population II variables, RR Lyrae stars. 
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The periods of type II cepheids (~lso frequently called W 

Virginis stars, although it might be hetter to restrict this 

title to a specific class of these stars, those with 

10 < P < 20 days), range from 1 day up to about 50 days, where 

at the upper end the range overlaps that of the so-called RV 

Tauri variables, al so population II objects. However, there 

are minima in the Period-Frequency distribution of population 

II cepheids, one between P - 6 days and P - 10 days, and 

another at p,.,., 22 days. (See Kraft 1972). the first gap seems 

to be related to the evolutionary mechanisms for feeding the 

stars into the instability strip. 

Iben and Rood (1970) have shown that as population II 

stars evolve off the horizontal branch, they move upwards in 

the HR diagram before movinB towards the asymptotic giant 

branch, giving rise to the short period group of variables 

(1 < P <",6 days), or AHB cepheid s (for If above the hori zontal 

bl'snch"). Then as the star acend s the asymptotic giant branch, 

evolutionary studies have shown that the helium burning shell 

source undergoes a series of If fl ashes lf
, or thermal 

instab~lities, causing the star to execute a blue loop in the 

HR diagram (similar to the CClse for classical cepheids) which 

might take it throu~h the population II instability strip 

(SchwarzschHd and Harm 1970; l'iengel 1973; Sweigart 1973). In 

particular, Mengel shows that an asymptotic giant branch star, 

of mass 0.6M Q , undergoing thermal relaxation cycles, may make 

several blueward loops, but only for the later relaxation 

cycles, at higher luminosities and lower envelope mass. 
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These evolutionary ideas seem in general to explain the 

presence of type II cepheids in globular clusters, though many 

details still have to be explained (among them an explanation 

for the gap at P ~ 22 days). 

If these current theories of post horizontal branch 

evolution in globular clusters are correct, then the masses and 

helium abundances of population II cepheids must be constrained 

to the ranges 0.5 -& Hn1G>~ 0.7, and 0.2 ~ Y -C 0.3. Bohm-Vitense 

et al. (1974) add more weight to this argument, giving a range 

f6r M/M~ of 0.47 - 0.8, where the lower limit is the minimum 

likely mass of the helium core in a star undergoing the helium 

flash on the Red-Giant branch, and the upper limit is the 

currently accepted Mass of a cluster star at the main sequence 

turn-off. 

For the short period type II cepheids (often referred to 

as the BL Herculis stars) many of their light and velocity 

curves show bumps, reminiscent of the bump in the HertzspJ-ung 

progression for classical cepheids. Petersen's (1980) analysis 

of 18 BL Herculis stars with bumps on their light curves 

yielded, a mean "bump mass" of 0.60 ± 0.09 , in good agreement 

with the expected evolutionary mass~es (a situation very 

different from that previously experienced with classical bump 

cepheids! ). 

Observations of those stars with periods of 10 days and 

upwards are very scarce, with the possible exception of W 

Virginis itself. Payne-Gaposchkin (1956) revievls the light 

curves of several, and the series of p~pers by Kwee (1967a, 

1967b, 1968) and KHce and 8t'aun (1967) rroduce fairly good 

light curves for some field vClri2blps (sec figure ~.1), nnd 
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compares the observations with those of previous observers, 

generally getting good agreement. W Virginis itself has been 

studied in detail by a few authors, in particular Abt (1954) 

and Barker et al. (1971). Apart from W Virginis, the only 

radial velocity observations available in this period range 

would appear to be by Joy (1949), sufficient for only rough 

curves of two stars. 

Kwee (1967b) divided the type II cepheids observed by KHee 

and Braun (1967) into three groups (most were type II cepheids, 

with three RR Lyrae stars and five classsical cepheids, the 

latter largely being used for comparison). Those with 

1 < P < 3 days Here called short period population II cepheids 

(now the BL Herculis stars), and those with 13 < P < 20 days 

were divided, by the shape of their light curves, into crested 

and flat-topped variables. A similar classification had been 

made by Payne-Gaposchkin (1956), though the groupings Here very 

different. Those with 3 < P < 13 days were scarce and had 

generally featureless curves. 

The light curve of a crested variable (hereafter sometimes 

referred to as c-type) is characterized by a distinct maximum, 

followed by a shoulder or bump on the descending branch, and a 

faster rise to max imum than fall to minimum. The flat-topped 

variables (hereafter sometimes called f-type) do indeed have a 

flat top to their light curves - a difficult to define maximum, 

and in general less asymmetry. However thts cl assi fication 

must still be regClrded \-lith some doubt. For example, Kwee 

classifies the light curve of Vl187 Sgr as flat-topped. Could 

it not be justifiably be called crested? The observations 

still leave tn many cases a margin of error in the shape of the 
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light curve. Sometimes earli e r observations ~Iould sugg est. a 

different classification. Since Kwee's observations cover only 

field stars the que s tion arises as to whether the cluster 

' variables divide in the same manner. Observations of the 

cluster variables by se vera l authors (in particular Arp 1955; 

Demers 1969; Demers and Hehlau 1971; Ferni e 1963) seem to 

confirm the dic hotomy, though still with the reservations noted 

above. 

Also as noted above, radial velocity curves for W Virginis 

stars are scarc e , Abt's s tudy of H virgg nis probably providing 

the best available. Howe ver, from the data available, and from 

observations of long er period population II variables (e. g . 

\~a llerstein 1958), some conclusions can be drawn. On risin g 

light most of these stars, particularly those with periods of . 

about 16 - 20 days, show hydrogen emission lines, frequently ~ 

quite bdght. This effect is not seen in the observations of 

clas sical cepheids (though i t may be apparent in the 

ultra-violet), Also, rel at ed to this, the velocity curves are 

discontinuous, with double line s appearing in the spectra at 

maximum light. P~th the emission lines and the discontinuous 

velocity c urv es can be ex plained in terms of a shock wave 

mov ing out t hrough the atmo sphere at, and just befor e , max irnum 

ligh t (Abt 1954 , ilallerstein 1959, and refer ences therein). So 

it is likely t hat any mod el s of these stars should show a large 

outward velocity on approach to maximum light. 

The populaUon II ce pheirls follow a pe riod - luminosity 

relation rather like that of the class i ca l cepheids, thoug h 

with a sli ghtly different gr ad i ent and lyin g lowe r in the 

period-luminosi ty diaGr am . Ar p ( 1955 ) fi rs t demonstrated th c 
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existence of tHO period-luminosity re18tions for the cepheids, 

though his observ8tion<l1 errors I-Jere rather large. Demers ,mel 

Wehlau (1971) studied cluster population II variables, 

producing a P-t1v relation \-'hich was later improved by the study 

of Demers and Harris (1974, equation [2.7J). 

(tl V> = - (0.08 ± 0.09) - (1.59 ± O.l1)logP (2.7) 

Demers and Harris used equation (2.7) to estimate the 

absolute visual magnitudes of 11 field variables, whose colour 

excesses had been estimated from UBV photometry. Mean colours 

for the stars Here already known since the field variables 

could be placed on a colour-magnitude diagt'am. The cluster 

variables already had UBV data (except for some vmich were not 

observed in the UBV system. These had been transformed by Kwee 

1968). The combined colour-magnitude diagram for field and 

cluster population II variables shows a wide instability strip 

situated below that of the classical cepheids, and about three 

times the Hidth. 

Using the tables of &Ohm-Vi tense (1973), Demers and Harris 

converted their (M.", B-V) values into (log(L/L 0 ), log Te) 

values so that the instability strip could be plotted on an HR 

diagram (figure 2.2), The boundaries of their instability 

strip are defined by 

log (L/Le ) = If3.S 
- 1O.7510gTe + 42.;'" 

- (blue edge) 

(jed edge) 

Also plotted in figure 2.2 are estimates of (log(L/Lo)' 

log Te) for 11 population II cepheids by Bohm-Vitense et al. 

(197 LI). All but tHO of the stClrs studied by Bohm-Vitcnse et 

(2. R) 

al. are also studied by Der'lers Clnd llarris, but the agreement 
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is not in general very close; for instance, their estimates 

for the log Te of \l Vir differ by over 0.03. This would seem 

to indicate a possible error on the Demers and Harris blue edge 

of aboutxO.03 in log Te, or more. 

In figure 2.2 the distinction between the short-period 

(P <"'3 days) BL Herculis variables and the longer period 

(P >",6 days) H Virginis variables can be clearly seen. The BL 

Herculis stars form a definite group at 10g(L/L 0 ) < 2.3, whilst 

the W Virginis stars cover a wide luminosity range above 

log( L/L0) ~2. 5. This wide spread of luminosities can be 

explained by the fact that the phase of asymptotic giant branch 

evolution at which the star executes a "blue loopn is very 

sensitive to the mass, so a small range of masses suffices to 

provide the large observed spread in luminosity (Hengel 1973), 

Two star s (M 13 no. 2 and c,.) Cen no. 48) fall in the gap' 

Vlith periods of 5. 12 and it. 48 days. Demers and Harris state 

that about 6% of the cluster population II variables have 

3 < P <6 days and that a similar percentage of the field 

variables seem to fall in this range. Thus \ole see that the 

perio? distribution and the appearance of the variables on the 

HR diagram confirm the division of the variables into the two 

groups. 

Since the radial velocity data for the stars with 

10 < P < 20 days is very scarce, the light curves and periods 

are the only observational data that theoretical work can aiM 

at reproducing. Even here there are problems. Several authors 

(KVlee 1967a, 1967bj VasiljClnovsk8ja and Erleksova 1968; Coutts 

1973; and Stob ie 1975, for ex ampl e), hiW€ noted that the V" 

Virginis variables show variations in period and light curves 
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from cycle to cycle. Sometimes their variC'ltions are re~ular t 

providing a period doub]ing effect somewhC'lt like that of the RV 

Tauri variables. More often it is apparently random (though 

some of the observations may be insufficient to find any 

regularity if it exists), consisting of small period changes 

and/or slight changes in the shape of the light curve. 

Possibly, in marginal cases, this may even change its 

classification from crested to flat-topped and vice versa (for 

instance, see the plots of the light curve of V741 Sgr given in 

Payne-Gaposchkin [1956J and in Kwee [1967bJ). Also for the 

star AP Her, Kwee and Braun's observations give a 

classification of x (i.e. no distinctive features, neither c­

nor f-type). but those of l~ichslowska-Smak and Smak (1965) 

suggest that AP Her has a slight shoulder or incipient bump, 

and may be at least xc. RU Cam appears to be an extreme 

example of irregularity. In 1964 it stopped pulsating (Demer-s 

and Fernie 1966), but it has since restarted (Broglia and 

Guerrero 1973). 

In tables 2.1a and b are presented data for 16 field and 

11 cluster population II variables with periods between 10 and 

20 days. This is by no means an exhaustive list, but includes 

most (if not all) of the best observed stars. The values of 

most of the parameters are taken from the study referenced in 

each case, this value considered to be probably the best 

available. In many cases the values are taken from graphs or 

curves and are therefore subject to a reading error, which is 

represented by the number of figures given. This error is 

probably far smaller than the actual error, which generally is 

not kno~m. 
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Star P(days) logP <v) (M > <B-V> 0 log(L/L) logTe log(R/R ) j).,V Asym(lum) ¢~ <t1o-¢! Type v 0 G 

i\L Vir 10.34 1.012 4 -1.35- 0.564 2.50 1.300 }-O 5'-0 10 9.54 3.736 0.8_ 1.4 x 

_L..P Her a 10.49 1.017 10.788 
-1. 36 0.598 2.52 3.728 1.326 0.758 1. 8 '7 7 

x 

V1077 Sgr 13.49 1.127 13.018 
-2.26 0.548 2.85 3.742 1,463 1.298 2.37 0,427 

0.307 7 e 

v802 Sgr 13.59 1.130 13.67
8 

-1.76 0.598 
2.68 3.728 1.406 0.968 1. 25

7 f7 

V410 Sc;r 13.89 1.140 12.58
8 

-2.29 0.538 2,87 3.744 1.469 0.978 
1. 9

7 
0.42

7 
0.27

7 7 
e 

CS Cas 14.79 1.167 12.058 -2.38 0.568 2.91 3.736 1.505 1.448 
2.0

7 
0.48 7 0.257 7 

e 

FI Set 14.99 1.173 14.098 -2.41 0.538 2.92 3.744 1.494 1.198 1.8
7 

0.42 7 
0.297 7 e 

v1187 Sgr 15.19 1.179 13.858 -1.93 0.628 2.75 3.724 1.449 1.188 2.27 0.357 0.26 7 f7 

V741 Sgr 15.29 1.182 12.728 
-1.94 0.598 2.75 3.728 1.441 0.98 8 1.677 0.317 0.21 7 f7 

CZ Set 15.49 1.188 14.40
8 

-1.96 0.618 2.76 3.726 1.450 1.058 1. 257 f7 

AL Set 15.69 1.193 14.02 
8 

-1.97 0.62
8 

2.77 3.724 1.459 1. 28
8 1.117 f7 

v377 Sgr 16.29 1.210 13.328 
-2.03 0.608 2.79 3.727 1.463 0.968 1. 0

7 f7 

'/478 Oph 16.49 1.215 12.948 -2.05 0.598 2.80 3.728 1.466 0.93 8 
1. 0

7 f7 

17.19 1.233 14.178 -2.61 0.598 3.03 3.728 1. 581 1.458 
2.33

7 0.47 7 0.31 7 7 CO Set e 
1D 

17.39 
9.93

8 
-2.13 0.618 

2.83 3.726 1.485 1.18 8 
1. 86

7 
0.30

7 0.18 7 f7 W Vir 1.238 
< 

18.59 1.267 12.888 
-2.73 0.57 8 3.06 3.734 1.584 1. 24 8 3.03

7 
0.45

7 
0.31 7 7 V1303 Sgr e 

Table 2.1a Observational details for 16 field variables 



Star P(days) logP <V> {M > <B-V) log(L/L
0

) logTe log(R/R ) AV Asym(lum) rflo ¢~-f~ v 0 0 

M14 No.17 12.1
4 

1.082 14.814 
-,1. 52 

4 
0.654 2.60 3.718 1.386 0.62

5 
2.05 

M14 No.7 13.64 1.134 14.804 
-1. 53 4 0.694 2.62 3.711 1.410 0.715 1.355 

w Cen No.29 c I4.74 1.167 11.824 _2.08 4 
0.854 

2.86 3.68 1.592 1.06
1 

1. 26
1 

M3 No.154 1- -:)4 
~ . ..) 1.185 12.32

1 _2.714 
0.51

4 
3.04 3.745 1.552 1.33

1 
1.9

1 
0.46

1 
0.38

1 

M12 No.1 d 15.5 1.190 

4 13.464 L1 
0.484 1.13 2.23 0.393 0.25 3 M2 No.1 15.6 1.194 -1. 99 ~ 2.74 3.752 1.388 

M80 No.1 15.64 -1.194 13.42
4 

-1.88 
4 

0.59
4 

2.73 3.728 1.431 0.9 6 
? ? ? 

1'12 No.5 17.64 
1.246 13.34

4 
-2.11 

4 0.474 2.78 3.754 1.404 1.053 
1. 6

3 0.343 0.253 

1'-114 No.1 18.74 1.272 14.064 _2.274 0.754 2.93 3.70 1.587 1. 29 5 1. 55 0.42 5 0.22 5 

MID No.2 e 18.84 
1. 274 11. 824 

-2.29 
4 

0.654 1.532 1.22 3.0
1 

0.38
1 1 

2.90 3.720 0.24 

M2 No.6 19.34 1,286 13.184 -,2.27 4 0.494 2.85 3.750 1.447 1.13 2.03 0.34 1 0.19
1 

Table 2.1b Observational details for 11 cluster variables 

Notes for tab~es 2.1a and 2.1b are on the next-page 

References: 1 Arp (1955), 2 Bohm-Vitense et al (1974/, 3. Demers (1969), 4 Demers &.Harris (1974), 

5 Demers & Wehlau (1971), 6 Eggen (1961), 7 Kwee (1967b), 8 Kwee (1968), 9 Kwee & Braun 

(1967), 10 Michalowska-Smak & Smak (1965) 

Type 
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fl 

1 
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f8 

f3 

5 xc 

fl 
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Notes for tables 2.1a and 2.1b 

P(days) Period in days 

log P Logarithm of period in days 

(v) Hean apparent visual magnitude 

(Ny) Hean absolute visual magnitude 

<B-V>o ~lean intrinsic colour 

log(L/L0 ) Logarithm of luminosity in solar units 

log Te Logarithm of effective temperature 

10g(R/R<9) Logarithm of radius in solar units (from 10g(L/L<D) and 10gTe) 

~V Range in visual magnitude 

Asym(lum) Asymmetry of light curve = (time spent on descending branch) I 

¢~ 
¢b-¢~ 

Type 

(time spent on ascending branch) 

Phase of secondary bump on light curve from mean light ascending 

Phase of secondary bump from maximum light 

Crested (c), flat-topped (f) or neither (x). 

The values come from the study referenced in each case. 

a Reference 10 gives V = 0.95 for AP Her 

b For the (log(L/L0 ),logTe ) of W Vir reference 2 gives (2.89.3.736) and 

reference 4 gives (2.86,3.705) 

c For w Cen No. 29 the light curve in reference 1 is only photographic 

d For H12 No.1 Joy (1949) gives some velocity data (not sufficient to 

determine the curve), the a~plitude is about 30 km/s 

e Joy (1949) also gives velocity data for /·110 No.2, amplitude about 

84 km/s, again not sufficient to determine the curve. 



The values of log P and <Mv> for the cluster variables 

define a P _ <Mv> relation for the period range 10 - 20 days. 

Kwee (1968) split his P - <Mv> relation for the cluster stars 

into two parallel relations, one for the flat-topped variables 

and one for the crested type. The available evidence for this 

is scarce (there being few c-type cluster stars) but not 

contradictory, and it seems that the theoretical models may 

also follow two relations (section 6.6). 

Consequently, using the data in table 2.1. we arrived at 

the folloHing relation for the f-type cluster variables with 

10 < P < 20 days. 

<MV> = 2.17 - 3.4BlogP (2.9) 

For the c-type we assume a parallel relation, slightly 

higher in the <Mv> - log P plane. Looking at the crested 

cluster variables M3, no. 154, and M5 nos. lQ and 84 (wHh 

P > 20 days), and comparing their acutal <Mv> values with those 

they would have if they follovled equation (2.9), it appears 

that a decrease of 0.5 in the <My> value is a reasonable one. 

So for the crested variables we get 

<Mv> = 1.67 - 3. 4RlogP (2.10) 

The two relations (2.9) and (2.10) then alloH us to find 

<lvlv> values for the field variables. Then for all variables 

(log(L/L
0

), log Te) pairs are found fl"Om the «Mv>,<B-V>o) 

pairs using the tables of Bohm-Vitense (1973). 
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For the unclassified variables (not the unknown ones, i.e. 

ST Pup and RS Pav) rel aUon (2.9) is used, since the 

unclassified cluster variables M14 nos. 

closer to this one than to (2.10). 

and 7 seem to fall 

Figure 2.3 shows the <Mv>-log P relations - in this and 

succeeding figures, circles are cluster stars, triangles are 

field stars, filled figures are f--type and open figures are 

c-type. The x-type stars have a cross inside an open symbol. 

As a note to these new estimations of log(L/L Q ) and log Te , the 

result for VI Vir seems to fall nicely betVleen the values given 

by Demers and Harris (1974) and Bohm-Vitense et a1. (197 11). 

From the determinations of log(L/L0) and log Te it is 

possible to find the stellar radius, from 

2. Ir 
L = 47TR erTe 

From these figures a Period-Radius relation can be found. 

In figure 2.1~ log P is plotted against log(R/R 0 ). He see that 

because of the tHO distinct P-H y relations we get two P-R 

relat~ons. At the same period the crested variables have a 

larger mean radius. These relations are, for the crested 

variables, 

0-97 
P = (). II B 0 ( R I R (!)) 

and for the flat topped variables 

(,3/ 

P = O.1911(R/F0) 

-- 27 --

(?11) 

(2.12) 
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These form two roughly parallel lines in the 

log P-log(R/RGI) plane. 'This comprlres with Pohm-Vitense et 

a1.'s results for population II cepheids of all periods for a 

P-I'I-H relation. 

P oc R'·7::z... ~1-o'75' (2.13) 

The different P-H relations, the different P-t~v relations 

and maybe the suspicion of 8 t~end in the light curve suggests 

a possible progression, Hhich could be caused by a variation in 

the mass (which, as has been stated before, need only be 

small) . 

Figures 2.5a and 2.5b show a colour-magnitude diagram and 

an HR diagram for the variables listed. along 'vii th the observed 

instability strip given by Demers and Harris (1974). He see in 

both diagrams that the crested and flat-topped variables form' 

tHO groups. The c-type variables appear at higher 

luminosities, Hhile the f-type variables occur at 10Her 

logCL/L e ), and may be slightly cooler in general. The errors 

in these diagrams are probably quite large (viz. the 

disagreement over W Vir) but probably allow fairly general 

conclusions. 

One of the most obv ious features to look for Hhen 

comparing observed light curves with theoretically obtained 

ones is the amplitude of the variation. The observational 

amplitude in the visual (6V) may not be accurately known since 

the maximum and minimum may not be Hell observed. This error 

is probably in general comparable to the error in the 

measurement of V itself. This varies from about±O.01 for 10th 

mae;ni tud e star s ~,o ± 0.3 for 19th mrlgni tud e stars. The other 
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problem is knovlinr, how to relate D.V for the observed stars to 

t'.Hbcl. for the theoretical models. This is estimated in section 

6.7. 

From this we see that the other features of the light 

curve are very important. For the crested variables (and for 

some flat-topped ones) the phase on descending light can be 

measured, relative to mean light on the ascending branch 

(because this can usually be measured relatively accurately) 

and relative to maximum light. For the flat-topped variables 

the presence or absence of a bump may be significant (or 

possibly the pl~esence of a dip in the "flatU-top). For both 

the asymmetry of the light curve (defined by [time spent on 

descending branch]/[time spend on ascending branch]) is an 

important feature. 

The secondary bumps in the crested light curves appear t; 

show no obvious progression with luminosity, effective 

temperature or period (figures 2.6a,b). Instead, the bump 

appears at an approximatel y constant phase ¢~ = 0.44 ± 0.03 

after mean light on the rising branch. For the flat-topped 

variables that have secondary bumps (or maybe 'shoulders') ¢, 
1.S also approximately constant, ¢i'::t.O.34 ± 0.05. 

In both cases the phase difference between maximum light 

and the bump} ¢~-¢~, is still approximately constant, Hith 

smaller errors. For the crested variables 

<pI-9ft, ~ 0.2910.02, and for the flat-topped variables 

¢t -¢;-::::O. 23 ± 0.02. It should be noted that this data is 

scarce and subject to large errors. It does not preclude the 

possibility of a continuous progression from c-type to f-type 

curves, and Cl decrease in ¢: Clnd 9f,-9~J as the luminosity ;md 
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effective temperature are decreased. Indeed figures 2.6a and b 

may indicate such a progression. In other words the crested 

and flat-topped variables need not be two distinct groups, 

merely extremes of a progression. If this is the case then it 

might be possible in the observations or the models to find an 

example of such a change at approximately constant periods. 

Unfortunately with the feH light curves available it is 

difficult to make any firm conclusions, especially with the 

limited accuracy of the light curves, and the fact that many of 

these stars are subject to apparently random changes in period 

and light curves. An example of the problem is variable 6 in 

1'12. The curve from Demers (1969) for the star is significantly 

different from that of Arp (1955). (Note that Arp's 

observations were given in photovisual and photographic 

magnitudes.) In an HR diagram, M2, no. 6, falls roughly in the 

gap between the c-type and f-type stars. 

Turning our attention to the amplitudes of the light 

curves we find a range running from 0.6 in V up to 1.115 (the 

star RS Pav may have a greater range, but the available 

photometric details are not sufficient to produce a full light 

curve). There is a tendency for the flat-topped variables to 

have amplitudes of about 1 mag., whilst the crested variables 

have amplitudes a little larger, maybe 1.25 mag. Otherwise 

there seem to be only two slight trends, firstly a general 

increase in ~V as the period increases, secondly an increase in 

AV as the effective temperature decreases. This latter is more 

obvious in the flat-topped variables. 
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It rn8Y be useful to note here that those stars which do 

not fit into either classification generally have small 

8mplitudes « 1 mag.) and short periods « 14 days). 

Sadly no such conclusions can be made from the very SCArce 

radial velocity data. 1-1 Virginis has a highly 8symmetric 

(discontinuous) velocity curve with an amplitude of 55 km/s 

and hy taking Joy's (1949) data on t-112 number 1 ,and ~110 number 

2 He find I by subtracting minimum and minimum values amplitudes 

of 30 km/s and 84 kml s respectively. In neither case is 

the data sufficient to properly define the velocity curve. 

To conclude, it seems that one of the main features that a 

survey should reproduce is the tHO types of light curves, at 

the correct values of the stellar parameters; once this is 

done. perhaps the models can show if there is a progression 

between the two~ Hopefully, some individual stars can also be 

modelled in detail, confirming the choice of composition and 

stellar parameters 8nd the non-linear approach. 

2.3 THEORETICAL ASPECTS OF POPULATION II CEPHEIDS 

2.3.1 Introduction 

Until 1980 no non-linear models of population II cepheids 

had been published in detail, except for some models of H 

Virginis itself. Then Carson, Stothers and Vemury (1981) and 

King, Cox and Hodson (1981) produced a series of non-linear 

models of the short periocl popu};)ti.on IT cepheirJs, commonly 

knoym as RL Herculis stnrs. Tn nddition, many linear l'esu]ts 
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for these stars have been ~lblished. and some of the linear 

work stretches into the longer period region. Although the PL 

Herculis stars have different properties from the longer-period 

H Virginis v8riables. and they have different evo] utionary 

origins (see section 2.2), they are probably very similar in 

composition and mass, so it is instructive to revieH the \-lOrk 

done on these stars. 

2.3.2 The IlL Herculis Variables And Blue EdGes 

The linear Hork of Iben and Huchr8 (1971) primaril y on RR 

Lyrae variables Hent up to a log(L/L o ) value of 2.8, thus 

covering the region of the BL Herculis variables and part of 

the H Virginis region. Their blue edges, calculatecl using the 

Christy (1966a) approx imation to the Cox and SteHart (1965) 

opacities shoH reasonable agreement Hith the Demers and Harris 

observed blue edge (1974), which Has not knovm 8t the time. 

Tben ,md Huchra used a mass of 0.6110 , a hydrogen content 

X = 0.7 and two metallicities, Z = 0.0001 8nd Z = 0.01. this 

showed that the blue edge had only a minimal dependence on Z, 

the metal content, and also, for log(L/L e ) >-2.0, a first 

harmonic blue edge far to the redHard of the fundamental blue 

edge, thus indicating that most population IT cepheids are 

probably fundaMental pulsators (this also seemed likely from 

the observations). 

Tuggl e and Tben (1972) repeated some of these calculations 

using spline interpolation in a set of rox and ~tewRrt opacity 

tables. Three ~ixes H~re used, the ~8ssevitch mix (X = 0.7, 

z = n.OOLI), the Kinr, Ta mix (X = '1.7, '1 = n,(01), Clnn the Kinr; 
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Ib mix (X = 0.8, Z = 0.001). The svlitch from Christy formula 

to spline interpolation caused a shift in the blu~ edge of up 

to about 0.008 in log Te. In all the Iben stud ies the 

"Castor-Iben" outer boundary condition is used. Iben (1971) 

points out that use of the "Raker-Ki ppenhahn" cond ition could 

shift the blue edge by up to about 0.03 to the red in log Te, 

maybe more at higher luminosities. TIle Tuggle-Iben blue edge. 

for MIMe = 0.6, using the King Ia mix is plotted in Figure 2.7, 

along with the observed blue and red edges of Demers and 

Harris. 

In the same figure is plotted the calculated blue edge of 

King, Cox and Hodson (1931, hereafter frequently referred to as 

KCH) for the same opacity mix, but merely estimated for 

t-Vl~Q = 0.6, as KCH only calculated models at tVI'10 = 0.55 and· 

0.75. These two edges agree fairly well, and indicate a helium 

content of about 30% for population II cepheids, maybe a little 

more, and a mass of about O. 6 ~10, again maybe a little more. 

(Tuggle and Iben also noted that the blue edge in this region 

moves blueward as the mass increases. For example for I'Vt1 0 

= 0.8, the blue edge is shifted about 0.015 blueward at log 

(L/L0) = 2.0 as compared vii th the resul t for H/~ = 0.7.) These 

results are in agreement with the values derived from 

observational and evolutionary considerations of 

0.47 < 19M0< 0.8, and 0.2 < Y < 0.3. t'lOreover, the analysis of 

BL Herculis stars by Peterson (1980) indicates a mass of 0.6 

1·10. 

The linear results from Carson. Stothers and Vemury (19Rl, 

hereafter CSV) for a mass of O.G M0 and Y = 0.25. Z = 0.005, 

using the Carson (1976) opacities, with the Christy 
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approximation to the Cox op~cities used for log T < 3.85 would 

seem to give blue edges in good C:lgreement with those of KCH i3nd 

Tuggle and Iben. However, CSV used the 8aker-Kippenhahn outer 

boundsry condition, which, it has already been stated, could 

make a large difference. KCH (based on the Castor [1971J 

theory) used the Castor-Iben condition. Also notable about the 

CSV.work is the large dependence of the blue edge upon Z, a 

feature not seen before, and seemingly unique to the Carson 

opac i ties. These resul ts have been checked by Horrell (1982a), 

\-lho used the Castor-Tben cond ition. The resul ts are plotted in 

figure 2.8, compared \-lith the CSV results. We see that the 

Horrell blue edges are indeed very much to the blueward of the 

CSVedges. Also the dependence on Z has greatly diminished, 

though not to the minimal dependence revealed by other studies 

using the Cox opacities. As discussed, the first change is 

expected because of the differing external boundary eond ition .~­

The change in the Z dependence seems to be dependent on hO\-l the 

switch-over from Carson opacities to the Christy approximation 

is made at low temperatures. CSV scaled the Christy opacities 

at log T < 3.85 to make a smooth fit to the Carson opacities. 

Worrell used essentially the same treatment as is used in this 

study and described in section 5.2, an interpolation betHen the 

Christy value at log T = 3.8 and the Carson values at log 

T = 3.9. This seems to make the difference. Blue edges 

calculated by Horrell using the same sc81 ing procedure as CSV 

also exhibit the large Z dependence. 

Figure 2.9 shows the \lorrell blue eriges for the Carson 

opacities compared Hith eriGes calculated by Horrell for the 

same parameters, using the Stelling\-lerf (1975a) approximation 

to the Cox King Ia and K1nr, Ib opacities. The edges found 
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using the Stellin~werf forrnu18 do show almost no dependence on 

Z, and lie near the Tuggle-Iben and KCH blue edges, which seems 

to validate the Horrell results. 

In figure 2. 10 three calculated blue edges are compared 

Hith the Demers and Harris observed edge. All are for 25~ 

helium (estimated in one case) and IVI-1 0 = 0.0, using the 

Castor-Iben boundary condition. As stated above, the Cox 

opacities seem to indicate (for M/M0 = 0.6) a helium content of 

about 30% for these stars, though 25% is also reasonable. If 

the "Jorrell resul ts are accurate, the hel ium content Hould 

appear to be less than 25% for the same mass using the Carson 

opacities. These resul ts cannot be too secure because of the 

lat'ge uncer'tainty in the observed edge, and also because the 

HorTell results \-lith the Carson opacity still show some 

dependence on Z. A reduction of Z to 0.001 or less \-Jould move 

the edge towards the observed edge. A further problem 

associated \-lith the Carson opacity is that the table used 

(section 5.2) is too coarse to allow accurate determination of 

the blue edge. (Note the crossover of the edges for two 

different Z val ues at log (L/L0)",,2. 2.) HOViever, the resul ts are 

probably correct to 0.005 in log Te. 

Several of the BL Herculis variable, shaH bumps in their 

light and velocity curves, and there appears to be a 

progression rather like the Hertzsprung progression in 

classical cepheids (Stobie 1913). for classical cepheids this 

phenomenon has been explained by Christy (1968) and Stobie 

(1969Cl,b) as an echo of Cl pressure Have. The W3ve is generated 

in the second hel ium ioni zCltion zone, rrop8gates davin to the 

stellar centre, is reflected off it and arrives at the surface 
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and Cox opacities, compared with the observed edge 



during the next period. 

Simon ;:md Schf'1idt (1976) suggested thClt the secondary bump 

is due to a close resonance of the second harmonic \.,rith the 

<fundamental pulsation Plodes:P.z/Po -::' 0.50. Here vari8bles with 

O. 46 ~ P:,.../Po -6. 0.50 show bumps on rising light and those with 

0.50 -C P
2 

IPo ~ 0.53 show bumps on fall ing light. 

The theoretical models of CSV, Carson and Stothers (1982), 

KCH, and Hodson, Cox and King (19RO, 1982 - HCK I and II) 

confirm that the phase, ¢ . of the second8ry bump is re18ted to 

Pz IPo ' HOHever the 1 inear Hork of KCH pred ic ts a bump 

transition period (where the bump switches from the descending 

branch of the light curve to the ascending branch) that is too 

l.ong (fOl' tVM0 = 0.55), whilst the non-linear results of CSV 

(for t1/I-1G = 0.6) give about the correct transition period. 

CSV (and also Vemury and Stothers 1978) express 

reservations about the significance of the reson8nce. They 

point out that for type II cepheids, there are resonances at 

Po ""14 days (P:t../Po = 0.333) and at Po""'17 days (Pr IPo = 0.5). 

Assuming a band width comparable to that for the P',7../Po = 0.5 

resonance then thr P,IPo = 0.5 resonance should give an analog 

of the Hertzsprung progression for type II cepheids in the 

period range 10 - 25 days. However, such a progression is not 

observed (section 2.2), CSVand Carson and Stothers had as a 

main objective the reproduction of the wide variety of light 

curves observed for these stars. Their resul ts are very 

successful in this respect. In their paper a model is produced 

of the prototype star, BL Herculis. This exhibits very good 

agreement with the observed star, probably the hest model of an 

individual vari(lble star to he published, The light curve and 
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bump rhases are reproduced very \-Iell. In the second paper a 

variety of curves at constant periods are produced by adjusting 

the stellar parameters. A model constructed by CSV using the 

Cox-Ste\-lart opacities in the Christy formulation did not 

produce results that were as good. Probably the major flaw in 

this series of non-linear models is that the amplitudes are 

frequently too large. For the redder models, this can perhaps 

be attributed to the omission of convection, \vhich would be 

expected to restrict the amplitude. 

For the KCH and HCK I and II non-linear models only 2 

light curves have been published (HCK I), for P = 1.55 days 

and 3.82 days, and also one more for a reconstruction of CSV 

model 1 (the BL Herculis model). In this reconstruction their 

results differ somewhat from those of CSV. The bumps they get 

appear to be local phenomena; this does not seem to be the 

case for the CSV version, which reinforces the Christy "echo" 

idea. Also, no shoulder is observed following light maximum, a 

facet of the observations that CSV manage to reproduce. It is 

suggested that if KCH used the Carson opacity table given in 

CSV, without using the Christy formula for log T < 3.85, then 

their .resul ts would not be in agreement with those of CSV, 

since as is discussed in section 5.2 the low temperature Carson 

opacities are probably in error. (see section 6.2.) 

KCH suggest that the overlarge amplitudes of the CSV 

models are due to over-estimation of the bound-free helium 

opacity at about 40,000 K, which causes excessive driving. 

Also, their plot of the lu~inosity variations through their 

model using the Carson op~cities shows an anoMulous zone at a 

temperature of <lbout 1\16 K. This stranoc behaviour is probably 
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cClused by thp cClrbon-oxygen "bu'l1p" in the Carson op8cities (see 

section 5.2). 

In the HCK II paper, the disagreement between the 

transition period in the calculated models and that observed in 

KCH is attributed to the use of linear methods. Results from 

non-linear models bring agreement with the observed transition 

period and the predicted transition period of the CSV 

non-linear work. 

To summarise, it appears that non-linear models can give 

better results than linear models for certain aspects of the 

observed trends. Use of the Carson opacities supports the 

Christy "echo" phenomenon for the cause of secondary bumps, 

whilst the Cox opacities appear to give more weight to the 

P.zlPo resonance idea. Despite the over-estimated amplitudes of 

some of the CSV models, the light curves do seem to resemble ~­

those observed to a large degree. From the few light curves 

published using Cox opacities it seems that such good agreement 

is more difficult to obtain. 

2.3.3 The 'vl Virginis Vadables 

Considerably less work has been done on the longer period 

(> 10 days) popul aUon II cepheid s. f,part from the 

already-mentioned linear determinations of the blue edge only 

four detailed non-linear models have been published, of the 

17.3 day vadable '" Virginis (Christy 1966b~ Davis 1972~ Davis 

and Bun ker 1975). 
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Christy's model was based on his non-linear method of 

1964. It had the objective of trying to find a model with a 

mass ne ;:H' t~E> that could produce a period of about 17 days. 

~he stellar parameters were based on Aht's (1954) study, and 

were M/~10 ~ o. R8, log(L/L0) = 3.2f.2, log Te = 3.740. The 

composition was Y = 0.45, Z = 0.002, which has an improbably 

high hel ium content in the 1 ight of more recent resul ts. The 

model was violently unstable with a growth rate of about 3 

periods and a fundamental period of 18.5 days. Because Christy 

confused the surface radius with the photospheric radius this 

\.las later changed to 19.6 days to compare Hith Davis' 191 2 

model. The violence of the pulsation and the generation of 

strong photospheric shocks caused the eventual ejection of the 

outer layer . Th e model also shoHed al ternations in pul sation 

amplitude from period to period, reminiscent of so called RV 

Tauri behaviour. The resul ting light variation of the model 

was not very like that of VI Virginis , nor indeed of population 

II cepheids in general. From the published graphs of the 

motion He can estimate the follo\Oling ampl i tudes: 

~R/R ~0.3 (full amplitude) 

6v,:<: 60 - 80 l<m/s 

.d H bot c:!. 1 • 5 -- 2. 0 

In Davis' fi.rst model of VI Virginis (1972), he improved 

the non - linear methods of Christy by replacing the diffusion 

treatment of the en ergy tran s fer with the variable Eddington 

method of radiation transfer. Radiative tr ans fer is a much 

better way to treat optically thin zones, especially where 

strong shocl< \"aves are involved. The stelli3r parameters used 

by Davis \"er e the same as those used for Christy's model Hith 
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the exception of the composition, which was chan~ed to 

Y = 0.296, Z = 0.004 (the t~assevich r mixture). Cox ,mel 

Stewart opClcity tables \~ere again used. This is Cl :'Juch r:1ore 

reasonable helium content. Davis also cCllculated a pure 

diffusion model to allow direct comparison of diffusion theory 

Hith radiative transfer'. The model produced has a fund8mental 

period of 20.0 days, again with a large growth rate and an RV 

Tauri effect in both the velocity and light curves. The outer 

zone did not escape, but did show a distorted path. The main 

differences betHeen the light curves for di ffusion theory and 

radiative transfer are that the latter gives a smaller 

amplitude and produces a slight shoulder after light maximum, 

slightly closer to the observed W Virginis light curves. the 

ampl i tud es could once again be establ ished from the publ ished 

curves to give: 

.6R/R ~ 0.3 

D.V ~ 60 - 75 km/s 

L)HboL::,! 1.9-2.2 (diffusion) 

~ 1.1-1.3 (radiative transfer) 

Even with radiative transfer, hOHever, the light curves 

still look unlike those observed. 

For a further improvement, Davis (1974) included 

relativisitc velocity terms in the radiative transfer 

hydrodynamics, since the large shocks thClt occur could well 

need such a treatment. The mCljor change DC'lV is reported vias a 

stronger coupling of the radiation field with the velocity 

field, resulting in a light curve looking more like the 

velocity curve. This time the RV TCluri alternation of periods 

was not observed, and the should~r after li~ht r:18ximum was more 
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pronounced, more lik!? the observed curve of \./ Virginis. The 

velocity amplitude 6.V, HelS i1bout 55 Km/s, and the light 

amplitude, .6t·1W about 1.2. For comparison the observed 

amplitudes of W Virginis Are ~V = 55 km/s, and 6Mv = 1.2 (see 

section 2.2), so this last model IoJoulrl seem to be quite 

reasonable. 

The model of H Virginia published by Davis and Bunker 

(1975) Has essentially the same as that of Davis (1972), except 

for the use of the Kippenhahn IA opacity tables. This paper 

emphasizes the differences betHeen W Virginis models, and 

models of classical cepheids in the same period range. H 

Virginis stars have larger dynamic motion in the atmosphere 

because of a much stronger shock that develops. The radiative 

transfer hydrodynamics predicts hydrogen emission lines as the 

shock propagates. As pointed out in section 2.2 these emission 

lines are seen in the observAtions, along with a doubling of 

the Rbsorption lines at about the correct phase. 

The models of H Virginis stars so far presented still do 

not show light curves very like those observed; the dichotomy 

of light curve shapes mentioned by Kwee (1976b) has not been 

considered in these models. Those investigators have used a 

mass M = 0.88 Me, since the mass of BL Herculis variables has 

been determined to be close to O. 6 ~10' a similar mass is 

probably appropriate to W Virginis variables, Hhich is somewhat 

smaller than the 0.88 Me, and so different values of 10g(L/L0) 

and log Te are needed. Similarly the determinations of 

l09,(L/Lo ) And log Te for \1 Virginis by Demers and Harris 

(1974) and Bohm-Vitense et;)l, (19711) indicate a different 

posi tion in the fiR cl i~H!,ram. Th0 detr:'rmin<ltion of the 
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instability strip hy the nuthors provides nn opportunity to 

construct 8 series of non-linear models surveying this region, 

to see if the observed light curves can be reproduced using the 

~arson opacities. 
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CHAPTER 3 

THE EQUATIONS OF STELLAR PULSATION 

3. 1 THE BASIC EQUATIONS 

The equations describing the dynamics of a model star are 

essentially those of static stellar structure (see, for 

example, Cox and Giuli 1968; Clayton 1968) with the time 

dependence of the variables included. Here these equations are 

solved by difference methods. (See section 3.3) 

In a Lagrangian form the equations to be solved are: 

Continuity of mass: 

dr = 
Ml,.. 41rr'"e(r) 

Hydrodynrlmic Equilibrium: 

d'2..r = 
dt'l. 

_ CHI" - 41r'r:2. d P 

rA oHr 

Radiative Energy Transfer: 

Lr- = (1~1Tr?f 1\0- (l(T'r) 
3 >\( r) rI t·~ r 

C3.n 

(3.2) 

(3. :n 

where r is the space v~ri8blp and t is the time variable. M~ 

is the mass contained within radius r, ~(r) is the matter 
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densi:y elf. this r(1rii.lls, Ly- U,0 r;c~ir't.ion nOvl (Jllrlinosity), r 

the totill rressure, T the t('mper(1t\Jrc~ ;onrj X(r) the op;H-:ity, 

811 nt the r8diu.s r. (r is the ~,tef;ln-Poltzm3nn consti'mt. 

Onittinf! energy f,ener<'ltior. we c;;n \-/rite <1 heat floh' 

equCltion: 

Td S :: ~ Q ::: 
ot at 

dL 
d t~(" 

Cl. 4 ) 

where E is the internal energy per unit mass, W is the PdV work 

done, S is the entropy and Q is the heat flow per gram. By the 

Fi I'St. Lah' of Thermodynamics Vie have, 

so 

or 

b.E :: Q - H 

oE :: - dL - PoV 
dE dN, ~c 

dE + P~V + dL :: 0 
~t at d~!,-

For the dynamics we cnn write an energy conser'vation 

equation: 

j-(;kf:<' ~ ~~~~ :: 4rrrJ. r dP 
d t r' cl /-1 r 

and then, using (3.1), 

~Uf1- - ~ :: - ~(41'lrz. rr) + Pd" 
dt r dt'.,. dt 

(3.5) 

(3.6) 

(~. 7) 

Finally by comhining this Vli~h (~.S) we ~et the overall energy 

conservAtion equatjon: 

1-40 .. mi .. + F.} + ~(L1TTr2rP + L) :: 0 

d t \' r' dMr 

(3.8) 
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In equCltion (3.3) convection is ignored 23 a possible 

energy transport mechanism, although parts of the envelopes of 

the stars considered will be unstable to convection (the 

hydrogen ionization region in particular). This should still 

be a fairly good approximCltion for most of the models, since 

the convection \-,111 be very inefficient in the tenuous 

envelopes of type II cepheids, because of the low matter 

densi ty. Resul ts from computed static model envelopes (section 

6.1) confirm this for the blueward half of the instability 

strip, though it seems that the redder stars might have a 

significant convective flux (see section 6.1 for a further 

discussion). Ignoring convection also makes the non-linear 

pulsation problem far more tractable. 

Only the stellar envelope appears to partake in the 

pulsation, and so energy generation is omitted. (See section' 

2. 1) 

3.2 THE BOUNDARY CONDITIONS 

The inner boundary is defined by choosing cl constant inner 

radius, Rinn(>x"'" O.1R*, and inside this we Rssume there to be 

an adiabatic sphere radiating a constant luminosity, an 

approximation to the non-pulsating stellar core. So, at the 

inner boundary of the envelope: 

(dr) = 0 

dt , 
R'(lneY 

C3. 9) 

im:i 

L(Rinne ( ) = Lo (3.10) 
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The outer boundary conrlition for the dynamics is defined 

by Cnristy (1967) to be zero total pressure, 

Peot; (sur face) = 0 
(?, • 11 i"1 ) 

However, a better bound2ry condition would be zero gas 

pr'essure, 

Pg ( sur face) = 0 (':j. 11 b) 

or 

P{:ot (sur face) = Py- (sur fdce) (3.11c) 

This is a much better condition where radiation pressure 

is not insignificant at the surface of a star, which is the 

case with many type II cepheids. Both of these conditions are 

"standing wave" or total reflection boundary conditions. 

Possibly a "running Have" boundary condition might be 

better for some of these stars (see section 2.1), but this 

would be more difficul t to incorporate into a non-linear 

scheme. 

Near the surface of the star the radiation flow should 

properly be described by a time-dependent transport equation. 

However, the transport equation provides a much harder 

numerical problem, since the temperClture of Clny point depends 

on that of' all neighbouring points vii thin several meCln free 

p8ths. In the diffusion theory it only depends on the tHO 

adjacent points, Clnd so diffusion theory (although it is not a 

good description of the opticalJy thin regions) provides a 

simpler problem. Tn c];Jssic;'il cepheir1s im" fiR Lyrae stClI"S the 

diffusion approx ination seens to he slJffic ient, hOviover it 

- 1+6 -



mi~ht provide better results for some type II cepheids (again 

see section 2.1). 

The radiative boundary condition is chosen to approximate 

the results of trClnsport theory by using an l1extrapolated 

boundal'yl1 (Christy 19(1), In the Eddington approximation this 

can be expressed as: 

d(T~-) J! :: ~T 4- :: T. It ---- ''1- e ___ L 
d rr: 5 w.r Fa c e.' rlj3 

0.12) 

The equations (3.1),(3.2),(3.3) and (3.5) are considered 

as an initial value problem. As such they can be solved by 

putting theM into difference form and integrating them forward 

in time starting from some given initial cond itions, after the 

methods given in Richtmyer and Morton (1967). The initial 

conditions usually considered are a previously integrated 

static model envelope, and an initial velocity profile through 

the star, chosen to approximate the pulsational mode it is 

desired to excite. 

3.3 THE DIFFERENCE EQUATIONS 

The method used (following Christy 1967) is a 

semi-impl iei tone. The dynC"llnical equations are integrated 

explicitly for each time step, while the therModynamical 

equations are treated in an implicit manner. 

TIw envdope of the stClr is rlivided into a number of 

zones, each containing a constont (with time) mClSS. The 

houndaries between e~ch zone Clrc represented by an integer I, 

Hhere I = is the inner houndiTY of t.he envelope ;mrl 1= \! 
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represents the surfi1ce of the star. Ha1.f integral valucs of I 

represent values of that quantity at the centre of the zone, so 

at each boundary we can give the mass contained within that 

'boundary, ~1;r:. Then the m8SS .6HI-~' cont8ined in the zone 

betHeen 1-1 and I. is given by 

A ~'r:-:-'2 :: 'A.x - H..r-I (3.1?) 

Also the mass associated Hith a boundary, i.e. contained 

betHeen 1-1/2 and 1+1/2, is then given by 

bl·1T :: 1 (D~lI-'/::t. + .0.MX-l- '1:z) (3. 1 Ll) 

The radius of each boundary, representing the variable 

r(M,t), is given by R~ , Hhere n repr'esents the time tn. So 

the specific volume of each mass zone is 

n 
V J> "'i.. :: 41Y(RYll _ (RYl )3) _.r I-I 

3 - EH,r_yz 
(3.15) 

Similarly the mean temperature and pressure at time t
n 

of zone 

h n 
1-1/2 are represented by Tx-!;z and Pr-Y;c' 

Since the radius is defined at tH, it is best to 

n-l-'l:2... n 
time-centre the velocity at t :: t + 1/2~t, so that 

where, 

R';' :: R~ + t:.tn+'I:t u~t Ill... 

A ('I+'/'} ,,·u., 
L-> t " :: t'" t

n 

(~. 16) 

Since a constant time step is not used (it is changed to 

satisfy various stability conrlitions) there is also another 

At, given by 

A n n+~ 
~t :: t 2 

! , 

f7 - !/" 
- t "'-

So the time variable is defined in tHO 'v18yS; 

nt-l n h+'/;:z 
t :: t + 6t 

n+ !,:c.. ,,- '/ 
t :: t 7. + /:-.tY) 

Clno wc Cllso hilve 
6tYl :: ±(l\tl1 ""/.,7 -t L\tn - '/;. ) 

- 1; 8 -
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In rUt siltinG st2rs r> shock \omv(' r;evelors during the 

puls~tion, causing r2rid conpression of some zones, 

particulClrly "in the region of hydrogen ionizCltion. These shock 

waves are treClted by the Von Ileum;:mn-Ri chtrlYer metl-Jod 

(Richtf1yer C1nd ~'orton 1<)67), which introduces an 8rtifici81 

viscosity, acting like ,m extr8 pressure, the effE:'ct of wl-Jich 

is to srreact the shock front over severnl zones, thus improvin~ 

the stability. The eXClct form of this viscosity has v8ried 

since Christy's Hork. Here the form used is that given by 

Stellingwerf (1975) 
QfI- 'I;/. 

I:- '1;2. 
11- '/.2. t ( I)-''':t VI - '/,Z )]'3-= CQ P:r _ y. . MIN (U.:r -U:oF I ) + ex", 0 C3. 18) 

:z. (P"-,Y?- VIl-il7-) 
:z: - "1- r- v,:L 

As.in Christy La is a constClnt chosen to achieve stability 

without losing too much 8ccuracy. The usual values of CGI 

range beth'een 1.0 8nd II. O. StellingHerf introduced the 

p8rameter (Xv, given in units of the sound speed. 8S a 

"turn-on" compression, provid ing a low level cut-off for the 

viscosity. Stellingwerf found that Hith 0<." = 0 (the origin81 

Christy formula) the 8rtificial viscosity was producing a 

significant a~ount of damping in the lower regions of the 

envelope, thus affecting the limiting nmplitude of the 

pulsation, an effect that had been noted by others. A small 

value of (Xv, of the ord,~r of 0.1, is sufficient to eliminate 

most of the dissipative effects and still satisfy energy 

conservation. 

From (3.2) we can write the equation of notion in 

rl i fference form; 

fl4-'/L n-'/:l, YO "" 2."2. 
U = lJ - b.t ~ + I1v( 81 f (Pp~ -Pr-Y:t. +0 u ''a.. --Q r-'/z.) 

[. 

n n-~ n-v l 
I I (n;? Et1.:z: 

At the i.nnf'r bounrl8ry viP h2v0 frc1 (~.0) 

u7t-'i:z. = Q 

- li9 -
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Thr: outi"r bOlln:i2ry is t.ree>tr:rl by QC'finin;r, ? fictitiolls prf'ssure 

~t T = N+l/2. For Pcot = (} O.lli1) I vie require, 

so 

ann 

For P3 

I 11 t'l 
:z:CPNt-YA.- + PtJ-~i. ) :: (! 

11 

PNflh-

prJ 
NI-V:z... 

p 71 
'/<1- '1.2. 

f/ 
PN-Vz.. :: 

= 0.0 we require, 

1'1 

2P tJ-!?:J_ 

, '1 () Y) 

;i ( ~ r ',<: + PrJ - '/, ) :: }~- A , 

::L :l- ) '" 

(~. 202) 

Y\ where po} is the rarliation pressure ?t the surface. Since 
) 

the atmosphere is almost isothermc>l a 2,ood 8pprox imation to 

this (probably to within 11) is, 

" n 
Pit,] ~ jaHtJ_ Y;z. 

I 

t.hus 
>1 

PNry.2,. 

J >'I t) 

= ia\lN_~'t - PtJ - Y:L 
and 

l'1 Y) 71 0.. l/ 
PN+~ - PN-!,: = 2 (P", If. .- -::- \TN y: ) 

;.z. :<... -z. 3 -2... 

Equations (3.20a) and (3.20b) can be combined as 

n 

PN+'i 
f) 

p",-Y;t. 
\"l n 

= - 2( P",_~ - BE:HN~Y., ) 
l... 3 ---

Vlhere B = 0 for cond i tion (3. 118) ano R :: 1 fOl" cond ition 

(3.11b). 

C3. 20b) 

C3.20e) 

There is one further' possible outer boundary conrJition. 

If the stAr is considered to extend beyond the defined 

"surface" (see the discussion beloH about the mass 8ssociated 

with the surface boundary) then the pressures of zones N-1/2 

8nd N+1/2 c;:)n he con"iriC'red to he in proportion to the masses 

contClineri in these zones. So Vie have, 

so 

P"N~ 

P tJ-'/;t 

= 6.tl N +'r;..,_ 
Er-1 N _ y.:>_ 

P _J..p 'I 
Nj.~/ -,.; 1'1- .., 

2- C", '"_ 

r;.l+ ~:Z p , :: PI _ V (1/0< - 1) 
f 1- ';Z J.;t. 

- SO --

(~.?(1cl) 



This condition mir,ht h(' useful ?s ?n outer bOlJY1d?ry condition 

for sti'lrs of low effect iv e tel"Jperatllre, "lct.j nr, to prevent the 

outer layers from esca pin g . 

So et the outer bound ary, 

U'I~~ 
N 

= UN - ~t GMN - ~Tr( RN ) (2 (PrJ-'t: -B~l,'i tJ-' t ) +Q 1_ V: 2.) n- '/,2 1\ r') C ' '" 2-"" J1 I'l- '/ ~ 
_(R~)1. l.I. t.j N -;L 3 '? " "t. 

AM~ i s an approximi'l tio n to the mass associated with th e 

outermost boundar y. Christy rut N1r-J ~ t,NIJ_,/:z.' It is 

usually ass um ed that some mass rem ai ns outside the defined 

C3. ?1) 

stellar surface. The amo unt of ma ss remainin g can be estimated 

in several ways, yielding a value for AM N • If the mass zon in g 

is continued beyond the boundary I = N, then the next zone out 

will contain a mass f;::,11,j'f-'y-;'" = liD( L\HN--yz ' Hhere 0<. is the mass 

ratio bet\-,reen succesi ve zones (defined later). So 61--1 /\1 c a n be 

estimated by 

AMN 

L)1-1N 

= i(~MtH'/l.. + AMN-~;") 

e::. (1 +~)~HJ.J- 1/,z. 
20( 

'This is the approximation used i n most case s in this study. 

Rlternative is to attempt to take i'lccount of all of the mass 

(3 .22) 

An 

remaining outside the star. A possibility is to continue t he 

zoning out to infinity, giving a total mass external to r = N, 

_ C>O I 

M ~'rl- J !::t:Z ,-:;KAt-,!'i _'/».. 
u:.x'"' " «, '" . 

So that DI·1,.J could be estimated ,15, 

Dt\J = i (N~/" -'1l. +~~ij1N_~) 
'~= I 

= ~L1~'\rJ-'/'2-t ~K 
K=o 

~t~f'J = d.. ~Hf'I_'/'1-
2 (0( - 1 ) 

- 51 -

C3 . ??) 

("inceo<..>1 ) 

-J 

! 

I 



For Cl typical value of 0<, SCly 00",,1.3, formulae (3.22) and 

(3.23) can give quite different results. 

As in Christy, W E T~ is used RS the temperature variable, 

. since it varies approximately linearly with mass over much of 

the envelope. From (3.3) a difference formula can be written 

for the luminosity at R bound 8ry, 

L~ f\ '.t ;7.. (\ r Y\ = (4rr(R;lT») "r~l~ 
'If! . 7) 
'It-Yz. ) 2FT 

where 2F; is a difference appro~imation to the quantity 

(3.24) 

4csr/3/CKD,M). A sui table form for this is discussed later. Now 

the energy equation can be written down in difference form. 

n+1 "'I . ,'1 nI-l 
(rn ", - IS:-+~/ + C,JP!+IL + Pn~)+ 

M'i (J~I 
Qr;.'''z..) (Vrt-'i -

= Dtl'}t~~ C(;' + ~­
;£ 

nt/ 
LItJ 

V;/-J/1.) ) 6l'11+ ~ 
Y) 

Lr+ J 

This form of the energy equation is an implicit one, 

(1.25 ) 

involving the new temperatures at three adjacent mass points. 

It is time centred at n+1/2 and space centred at I+1/2. As in 

Chr'isty the equation is solved by a process of iteration at 

each time step. C Christy points out that another possibil ity 

would be to linearize the equation and solve it as a set of N 

, 
coupled linear equations.) 

The .inner boundary condition, equation (3.10) is given by, 

L ~N :: (4rT( R j +1 )7... )'- (I.('~~ T) i J 1:1'1 )2F1)tl 
fz.~ I :: Lo 

wher'e Lo is the equilibrium ]uminosity of the star. This 

Y)+I 
determines VI'I/2. 
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At the outer boundary Christy (~nd others) used the 

relation, 
;L t;. 

Ls = 4rrRs 2o-Ts 
U.27) 

incorporated into equation (3.25) at I = N-1. The 1 umino 5i t y 

radiated by.a star, assuming it to be a black body, is given 

by, 
'1- If. 

L = Ll-rr{ RpJ.,o·= ),;7"Te. 
(3.28) 

where Rfh<1t is the photospheric radius, defined at T = Te 

Replacing Tt by zrs'"'" (from the Eddington approximation), He 

get 

-;t It 
L = 11rr(Rpno-t) 2o-T5 

(3.29) 

Christy used RN-I as his value for Rs. since the radius 

RN is somewhat unreliable. Here equation (3.29) is used, using 

an approx imation to Rphot. This treatment probably makes 

little physical difference, but it does seem to aid in 

overcoming some numerical problems (see section 3.9). Judging 

by the plots of velocity histories given in section 6.9. and 

inferring the radius variations, it seems that both RN ~nd 

R
N

_
1 

might be unreliable in some models. Use of Rph~ seems 

to help. The value of 

tr 
estimating T e from 

RplJot is found by interpolation, 
, I if t,i-vJ +-. The po si tion of T e is found I 

and R plx:rt interpolated, taking care to use the correct space 

centring. 

So at the outer boundary, we have 

TIff Y7 .L Yifl Y1 !)f'll.. I'll-I Y1 
(E",-t- EN_~+ (;z.(PN-''i. + P'I_'/~)+ 0tJ-!--;,,)(VN_1I'-z..- Vtl_\--z..))61~N_'/:z. <3.30) 

ilt~ '1+1 't] 11 7-" lit I "2 H/ 
= ,6.t (L

N
-1 + L',_I - ?/rIIrr«Rp;,,,-t) \'/11-''1.+ (Rpho-t-) \-[,.;-'/.,)) 

~ ~ 
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3. II THE SOLUTION OF THE HI PLIC IT FORtI OF THE EtlERGY EQUA nON 

Equation (3.25) is solved by a Newton-Raphson type 

iteration procedure, for the nevi temper<ltures W~~'~A' The 

corrections to the temperatures at each iterati~n are defined 

by 

, OJ·1 

t..6HXf'i 
-ifIUMI 

:n.~_ 

• TJ +1 
- 1HI+~ 

The (i+1)th iterate is expl~essed as, 

1-1-1 pl'J+ 1 

• I+~ 

itl r;'~1 
~.{-'I).., 

• .)+-/ 
= 1 PI+'/.J. 

• ",1"1 
= 1 Erfl!.z.. 

i:,pntl ibHFJ+-1 
+ _C'_ I+'/2-

d\rl I+ '{ 

• I'; nt' 
+ t aE 'H ~HI+'/.2.. 

aH I'rl~ 

<3.?1) 

<3.32) 

7r1 Fl1tl 
;:n.'/;_ 

• nfl 1E , 
I . n+1 i t).J.1 l' n+{ 

i ">Flif "l t\ H 'L + of:z 6. Hr_ '.L 
= :tI~ + o:r ~ rt·J-.., ----t')H '7...-

~r)fC dNr_'/;l. o .:rf ';A. 

and the luminosity, i+1 t.{' is given by (3.24). 

Using equations (3.32) to linearize (3.25), the energy 

equation can be ywitten :in a simple form, 

i /It! ,~/I~I \ i ,n+1 _.;--
-eXr ,..'". 6\/1:+"3/;;, + h+~ h,i'i:-I.'I;:L - X+~ L\\l.r:_y;z.. - °I+'/2-

wher<.'~ 

nt'/2.. f1~1 }... i tJ+1 {MI- 11 "+/ 1, n-tl 
CX-r:-t

'L 
=b.t (Ax{-I) (FI +I _. JFr .. 1 (dr +,,,- - d::CP1'J.-)) 

- 'J.... ~" 
.r+'3·i 

1 a En-tl + 

dWnV;t. 

-1 \ nt i 'i[-' Yl. • 1 oP (VI.f'!J - VI -+,/'1--) D. t"I+~ +CXT-!.:z.. + rl+3/;;.... 
;z. 6W-r+~ -- :c 

(3I-f'1.. = 

1.1: ~ f 'E-IYz. = c,.tnf 
'.1- (A;I /' (-IF;·H + 

f'4/ 
d F.I 
"'0 rotl 
C:H-IX _ y,,--

( Y)tY~ .;, '()-I-I >'1 ; n+( Yl 
<) r, I/. = b,t (L", + Lx - L-r - L y;-, 

( i \JT'itl _ {,,,MI ) ) 
I- '/;(.. r+~ 

(3.33) 

(3.34 ) 

-'4" ?_ 2. -<. .L-/-" ,1 

i '(1+1 r1 ,'i 1 _ '(f1'1 l1tl/z nt' r'] 

_ bM.rI-'J. ( E-r'1. - E.,.. .... I, +h(P"-t';~ + Pl /v" )+ 0.,.. '/) (V.,.+'I - V,x-/-'/.)) 
1... .Lt ,. ' ..J.', "1.- ..-- ,- r l' , ..... +;C,l..: 7 2., 

- ,)4 -



and 

1)+/ 
AX 4-rr( R;.f I ?~ 

.J-

Note that in the definition of j3rt-~the inclusion of 

(X':r:-~ and YI-+3/z. refers to the functional form given here, not 

to the values of these quantities, as the values may be 

different at the bound aries from those that would be found 

using equations (3.34) 

This set of equations, toget~er with the boundary 

conditions as given in (3.26) and (3.30), form a matrix 

equation of the form J1,~ = 9., where 11is a tridiagonal matrix 

containing the elements O(:r:-~ ,f$r.:+Y;.. ,Yr-+¥:z- on the leading 

diagonal, 2 is a vector containing the 5X+Y2 and ~ is the 

1t l n+1 
solution vector containing the new 6.\.Jr -+'ti. The matrix set 

up looks like this, 

1'1
7
_ -d-.y2. -- i.t~N~+~ (j,/ 

-(,1, j311;c -OC'I", \ l . z... 
J--

'ft'6W:>d 8'3; 
,t-

-- Y'S/J,.; f3 5/'L -0<.5'/2..-
i 

\ 

"" " \ 
"-

\ 

" 
" \ 

" 
" \ 

" \ 
\ " 

\ '\ 

j -~_V7-(5N-I/:(J \itZ\W:j I ~tJ-"'" 
'- '-
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Py Jinenrizin:; (').;>r.) 2ncJ c0:'1r·"lring \.,ith (3.33) it is 

!,ossible to write dOl-in the elC!'1ents for thp inner boundary. 

0<'1/t.. 
:: 2(AMI ):2.. (iF"+1 _ i.JF~·t/ «(1/1)+1 _11'I M/ » 

I '--"+1 'h '3/:1-
d'vI"/2 

:: 2 ( A ~tl f (~~I + 1. d F,r1fl (i \1 ~fl _ 1\/1-+' » ~'/z. dHn+/ '/7" . 'Jh 
'/z-

C3 • 35) 

YV2, :: 0 

by' 
'-:t.' 1+1' J • 

:: ?C A7f
!) 'F; ('H~ _ 1.\/;H» + Lo 

2- "2.- ;t 

Simil~rly, by line~rizing ().30) 8no comparin~ with (3.33) the 

elements for the outer boundClry can be yJritten down, 

C{N-!/.::: 0 
2-

/5.--1-1-. :: 6.t flt
'liZ-« Ar:/! 

IV -I 
7. -t YI+I .;. YJ+! ,:. tH/ i , y)fl fI+' 

) ( FN_1 - ~-I ( \IN..31 - \IN_~)) + erAtlo"t 
,}H'l tl'7... 2. '2.. 

N-Yz. 

_ 1\t:{)·/-'t;.1!.«A fJ f! )2 (1-FMI idFOt/ (iH)'}t-/ _ lHnt(» <:1. 30) 

~-t - (...;}J.. II-I /oJ-I + _N-I N-'SI 1'1- '1~ 
ClI.!MI 17... .... 

~ . 
( >.. 1" 2. (11 1 ntl 
ON-X :: J:.:?::.' L/H + 1.:N-1 

... Z. 

#-1/1-. 

r'l r1 i 1111 
2<r{ Aphrrb HN_\ + Afher(; i,,/J+J ) ) 

N-~ 

" • (1 n+! :Yl 1 '11 L.. .. .rI+1 
- £...>J" N-~ EN_L - Ell.!,.. + (2... (P,~-.!.. + t'M_).. )+ 

't. 7. '2.. ':L" "2.. 

Q .,t~ ) (V 71ft _ 
;./-- N-!--

7') 
VtJ-)" ) ) 

7. 2. ..... 

Equation (3.33) can now be solved by a conventional matrix 

method. The one used here is the saMe as that. used by Christy, 

described by Richtmyer 1md }1orton (1967). 

To solve (3.33), VIe look for tHO sets of quanti ties, X J.+'i7.. 

and Y:£+,,7. I such that. 

ntl _ 
D.HXr'/:;<. - X 1'-1-\' D. \'Lr>?+~ + YIf V 

- /'2- -<.-tJ/Z .1--
C3.37) 

Substitutin~ (3.31) into (~.32) and drnppin~ time superscripts, 

-o(I+Y,?- i6 'vlr+:Jj.z.. :: (6: +'-1. X..r_ \. - flrf '1i./61/.r-. '-?-' + (Sr+l~ + {-Ct ~ Y:l-!tJ 

ot" "t.vlr+'i:: D{.f"i'I/,_ ~~!.rr~/1+..!..§t+4+!itY.1- Y:r:-~7--) 
%-tY,- -rFW"L Y r-\' - (f?r.,~VJ --rr.fY. .... X:r- 1/,7 
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So that 

XI1-~ :: c(.:r+ 1/<-

~J;fI'1- - OI+~Xr-~) 

Y.1:+l.£ 
« v 

:: ,OrfY"k + (!;C-+~~ 
j:?nl'l_- li:f~_ X~r_.~ 

Since r'J~:: 0 (equ8tion 3.35), 

XI!', = C<!7./ f l/2. 

Y;, = £ I A if '/7-

C3.?P) 

So from these starting values at 1-1/2 = 1/2, all of the Xr.+II2-

and Y:rf~i can be calculated from equations 0.38). At the 

surface we know o(tJ-Y:;z ::::0, so X,J-J-:. :: 0, and therefore 
;1_ 

~~WI'I-~ == ~-YL 

and so all of the ~\.[II-!lZ can be found from (3.37). This gives 

the solution vector. The iterations proceed until the 

corrections ~HJ:+!I:t. are reduced to a sufficiently small size 

(usually to five figures). 

The gradients dE/d\'IIf-~_ and dP/oVl:rt~ can be found from 

the equation of state (see section 5.1). The FI and gradients 

are discussed below. 

3.5 THE LUllINOSITY INTER PO LA TION 

Christy at first used a very simple opacity average to 

find Fr , 

\.Jhere 

Ff) _ 
.I -

l/ I • 
f'.L+'1l. 1S 

Il.-rl) (3.39 ) 
~-. ~ .. 

(KH '-?.{;:J't L+~ + Kr_''i tJ-1z;.... Y;:z ) 

the OpClCity in zone J+1/::?, given by T1:+ I/;;>_ and 

1 /Vr+'1z' Hovlever, thi S cilused convprgcnce problems in the 
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sol ution of the heClt equation when the red iation front '..,hich 

develops in the hydrogen ionization zone is moving through the 

star at large amplitudes. This is because equation (3.39) 

cannot handle the large change in opacity across a zone that 

occurs in such cases. It gives too little weight to the larger 

opacity. Christy then developed the following difference 

expression for Fr (dropping time superscripts) 

F = 40 (HTt'4../KtZ& + H.r~v,JKx_'/,s.) 
3 (b.1·1:r:r !:i. + .r-};z) OII.J-~ + Hr-y:z.) 

(3.40) 

This permitted the use of quite coarse zoning in the hydrogen 

ioni zation r'egion without causing numerical d ifficul ties. This 

is the treatment used here. 

Stobie (1969a) considered several forms of the opacity 

mean, concluding that the form 0.40) used by Chrl.sty gave the 

best overall representation of the effective opacity. 

Then Stellingwerf (1975) introduced a formula which 

appears to give better results than the Christy formula for 

areas slightly away from the main opacity peak. At the peak 

itself it produces much the same error. 

In the formul ation used here, Stell ingwer f' s formul a can 

be written as 

F = 110- <d~..:-> _____ ~ C3.111) 

3 (6.ll~~ + b}1x_ .... "7) (\!n.~ - Hr-~) 

vvhev ... e <dl1/K> = (11.x+-'/", /KH'!l_ - il:r-V;;>_ /K.:C- V:2J 
(1 - (loP:(K.r~K.r~y;z)/log(ihl-'t7!\·'z:_v.I!)) 

C3. 112) 

This expression is eXClct for all vCldations of the form Ko-dl
il 

, 

n#=1, however, if 
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n = dlogK/Cllog\-1-;;:: log(7CI+''7JXI-!l;l)/log(\.'I-+~.t III:[_~) Clpproaches 

unity then equation (3.41) can become very inaccurate. Tn this 

case the expression 

may be used. 

<dl1/1"<> f:j H:r-'hlors(\lI+~/H1:-/';z2 

Kr-h 

(3.43) 

The two derivatives of FX ' c)F.rloHr-V,2. and OF.1ldH,H~ are 

also required. Writing 

S - 40-13 
! - ( A " ~~bJ:Lil~':-'i) 

\J...lr1x+\,A.- + :t:.- t;L 

(3.40) can be expressed as 

So 

Fr = S.J.: (Hx-P/t./Ya;+ Ya + \<l:r-!l;t/Kz-'g) 
(\'0:+~ + t/x- 1/;1. ) 

d F:r 
J\.J.r-~ 

= s'-0 H"" + H __ ,~ )-1 (1 IK.r:_!.-: - H.r-Y;z ciK J .... _Y,.!.. .[..'A.- :z. - -- ~ 
(Kr-'iYdH.I_~ 

- (H.!t* + \~-!£L)~ n~!,~. IKr-~Yz+ "':r:_~/KI-Y.z)J 

-=> d F]: = FID(1/K.z_~ - \'&:-~ 'L dK ) /n1:r+~ + HI-~) - ~ 11 
d i1x-Y;l.,. (Kr-I{) (h!:r_~ 'j\Y':I+~ Kr_ka., ( .. lrl-xi-.+ iT-.!i) j 

similarly 
<3.44) 

-I , 
6l'!-
J Hrt!lz. 

= IS: ~(1 IKr4-Yz. - Hr+~ z. iiL J r ';!;J.t.J!1. + H.r-!.:;t) -
~ (Kr:+Xz,) d\'T+% /\'f<I-fJ£ 'Kz-,Y'"L (I'~r+~_+ H:r._~! J 

The gradients of the Stellingwerf for~ula are a little 

more involved, but can be found in much the same manner. From 

equa t.i on <3. 41) 

&- = S-=z;<dil/l-('> 

( VI I r v;:-::-~TI=---;;;; 

f ~ ~~ ~ = S..r (Hn~- Hr-~) J <dH/x> + <rlH/x.> (W.z;.'''L."- \'Iz:-'.<2..) 

r-'/z.. J \·;r-'/... . 

(3. 115) 

Then fl'om (3.42) 

d < (nl Ix.> 
d II t-'/1.. 

= < d \,1 Ix:.> G( ~ d K - _,_ ) (Ih:- 'i.~/:..:,K J..d,..--=-/~/'l-=---____ _ 

L\ I'I-·.J\!r-J~_ Ilr-'.Iz... (\!r",,~:,/I(.r:f'~ -llr-i / Y.[-k..) .. 

- () ort (I!-r/-!. IIII-..!.. ) - 1 0[l (V.xfl IKr - ~ »)-1) - , I( I'/r-.'.. lOf~ (Iln-L III L'.. »)'1 
" - 1- ~ , ;L.... ,,_ - 2. '- 2 .. j 
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Tl,en ':>ub:>titutinr, into (3. 115) fivE':> , 

() Fr = F:c n 1 JK - 1 ~ (/ \'!;::-'.;IKT-l, 
CJW;-'It- . L\KI~t (311;-1- HI-i) (\I.[~1-;I\I/.l --'=~'---_"c"="--t-I-K-.I-'_~) 

1 ) 1/H1:.J:2. 
(log (\'I;;-;;-H-r_L )-lo~(K~1.(. IK,.._-,5> fog(l-I~+.!. IlirA ) 

-']. '"l-- .J-:?_ .Ll_ -:L. z.. 

_1 _~ 
l- ~'-.:z.~ 

Similarly, ('). lj 6) 

~~L = Fx[ (_1_ - _,_ a~ )f ____ -'!.!.t! /K-:zt-Yb 
d HI-I-~ . \0:",£ V;r~. dhsti \ nT+~ /!S:-f-'3. -\'~-12 /V'L-}:'.5 

- 1 ~ + 1 /1f:I::i:' tz. 
(log OG::'-I{ /\'lX'_~) -log (X-r!;z../K:z::_'~)~ log (I!uk IHr_Q C\'T.+!:;.l_H:r_k )3 

If expression <3. 113) is useci for .(d.pl)'i) insteaci of 0. 142) then 

the derivFltives of (d""'/K> are, 

~<dH/J» = <dH/)O(. 1-' 1 dK - 1/H1:_tz ) 
-J H·T'_v~ Hr-\ K-rJ- dH1':!- log (\V:r+L IIJI_J..) 

- ~ .L." 'I- -'--7-. "L. z-

6<dH/f£> = <dH/?C> , /\,Ir-l-Y"L. 

~hlr1{ iog (WI+.t /\ir-4:)-

3.6 THE TIME STEP. 

The time step to be found at each integration step is 

il tlJ,;t Yl .1t . Having found this then D.t can he found from equation 

C3.17c) • Tl:lo cond i tions are pI aced on D.tnfYz.. 'The first and 

usually the most stringent is that the time step used must he 

less them the time tcd-<en for 8 sound 1:18Ve to tr,werse a zone 

(see Christy 1964; Richtmyer and Morton 1967), J\pproximating 

Ir I the sound speed by ~ P:;r:-.!t. V.r-~ , then He have 

I 

btt
1. < 6,R 

JF:;:;=p r===-=:.: ,\r:':r=_ k=-a., 

Hhere AR = Rt - HI-f 

Secondly VIP must pnsure thClt t\·l0 zone' boundad es CAnnot cross 

rJurinr.; a time step, This is r,ivpn hy, 

}. (I+~-
0t < - bPlhlJ 
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This condition c a nnot be fu l ly satisfied, since it is 

c a lculated from the velocities for the time step th. Those at 

t
n + I 

are still to be found. Thus in a rClpidly accelerating 

compression this condition mi g ht be violated. Ther e fore a 

chec k still ha s to be made to prevent boundaries crossing, 

which YJould cause neg a tiv e densities. To he lp t,.Jith this ,i 

probl em, a nd to ensur e that the missing factor of Y (the r ati o 

of specific he ats) in e qu a tion (3.Q7) is taken c ar e of, only a 

fraction, about 1/2 - 2/3, of the maximum tim e-step a llowed by 

(3.47) and (3.48) is used . 

3.7 THE INITIA L t10DEL 

The differ e nc e scheme descr i bed he re requires as a 

starting poi nt an initial model in hydrostat ic and 

thermod ynamic e quil ibri um. Thermodynamic equil ibr i um is 

r e quired because the time scale for the thermal relaxation of 

s t a rs is much g r ea ter t ha n the pulsation period. A se parately 

c alc ulated stellar envelope ( se e section 4) divided into N mass 

zo ne s is used for this purpose. 

The envelope is divided into about 35 - 50 mass zo nes in 

such a way as t o compromise between acc ur acy (mor e zones) and 

speed (fet,.le r . zones). The ratio 0< is defined as th e ratio of . 

t he masses of t \·JQ adjacent zones, 

« = D. t1 I- i:/.6I'1 r +- I/z. 
(~.1I<) 

s o that t he mass contained in eac h zone ~reases geomet rically 

as the zon e s move deeper into t he star, coinciding with the 

ri se in density. This kee ps the sound trav el time 
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,lpprox j mMtel y the Si1mp in ;oj 1 znrlPs. 

The S\:8tiC Model from thf' riifff'rpntial pquations h8s 8bout 

1000 - 1500 18yers in it, i1l10win~ the ~QSS division to proceed 

fairly accur8tely. Beginning at the surface, Hi th ~t'~,,_l , the 
_ /V ~ 

v8lues of Sl~-r from the finely rlivided nodel are Clccumulated 

until b.t'/'I-.L is surpassed. The fi nal vcl1.ue of &Hy is then 
1.. 

split in tHO, one p8rt to ftnish the sum at ex,gctly &l",_}. • the 

other to begin the accumulation for DJIN-~ TIlis is really 
;z. 

hardly necessary, but since it is an overhead, performed once 

per. model, the ensured accuracy is useful. This is continued 

thJ~ough the star until the inner boundClry is reached. The 

variables HI' Tr_.!.and P,...!-are initinlly estimated from the 
l- J.,-z.. 

boundaries of the zones (for RL ), or from mean values through 

the zone. 

It still remains, however, to specify the values of 0( and 

tiMN-4: ' the mass of the outermost zone. By speci fying the 

total nUr.1ber of zones required, 11 5 , 8long \-lith the number 

requi red in the atmospherr; ('t ~ 2/3 or T ~ Te ), NIh it is 

possible to define 01 <md AtlN-k.' If HE'" is the total mass of 

the envelope, and HI1 is the mass of the atmosphere (measurerl 

from the finely zoned model) then, 

Simi larly 

=? 

H)jl 

tl£ 

* = ~ ,6.1),x 
T=-,J,;-NA f'I 

A YJ-I 
= 6.1),N-Lr:- ex; 

4.n:; I 

= 6r~N-J. (1 _ cJVt;) 
'2. • ..-__ -.:.. 

(1 -eX) 

t1A = 
IJA (ex: - 1) 

t1G (c,{ tJ;-:-T) 

Th i seq u a t ion C C1 n he so 1 v ed i t e r Fl t1 V!: 1 y for eX, i1 wi the n , 

6t~ N-~ = t'k- (or - 1) 

Co!'~ -- 1) 
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Here \-le (=Ilso follow Christy in increasinr-; the size of the zone:, 

above a certClin temperature (2 X 10 S K and 10 5 K were both 

used). to satisfy the criterion that the time for a sound wave 

to traverse a zone should not decrease any further beyond this 

point. This is because the greater sound speed in the denser 

interior would cause the maximum allowable time-step to become 

qui te small (see equation [3.117]). Since the pul sation 

amplitudes in this region are quite small these locally larger 

zones (larger values of~) should have little effect on the 

models. It does of course mean that the number of zones in the 

final model will in general be less than NE, the number asked 

for. 

A solution of the differential equations of stellar 

structure will not necessarily also be a solution to the 

difference equations used here, so it is usually necessary to 

relax the newly divided model into the difference scheme. me 

difference equations can be rewritten for the case of zer'o 

velocity, spatially constant luminosity and no time variations: 

Hydrostatic Equilibrium 

Gt1..r = 
~ 

- 11m HI )'1... (PI -1--£ - P r-1-2-) 

bMr 

TIlermal Equilibrium 

Lx: = 
'Z. '2. 

(1Irr(R.r) ) (\1.r-' - HpJ.. ) 2F...r 'i.. I?-

0.51) 

.- Lo C3.52) 

From (3.51) P:r:-'ti can be found, knowing R..r ;:lOd Pr+!:2' then (3.52) 

can be solved iteratively for HI-·Vz. Thus VX- h can be found, 

and R.r-I calculated from (3.15). 
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At the surface, the outer boundary condition (3.11) can be 

applied to find P~_~. So 

p = G!,1·1 D,Yf.j + Bi'lH.u .. ~t; __ fV l-

8m RN ) ~ 

(3.53) 

where B is defined as before. Schematically the relaxation is 

shown helm.;. 

Approximate model from 
finely zoned static model 

~ 
Apply outer glves 

)t ~~~~~~ p R:r , p; ~~ ;r.-!?. from 
_+ ;L.. 

t 
.l:'rom R.r, P::C-/~' L solve 
., 0 

Repeat I. l teratl vely for Wr-'~ 
for and thus V:c_v. 
l~I~-l -

From Vr:- ~ find Rr-l 

'Are the correc·tion 
to the R~ small enough? 

N 
Repeat procedure 

~. 
y 

, .. I Relaxation 
converged 

This is by no means the only method of relaxation, but it 

is the one adopted here. Normall y onl y tHO or three grand 

iterations are required. Without such a relaxation it is found 

that the integration of the pulsation equations Hill frequently 

break dovm qui te quic kl y. The final thing to be done to the 

initial model is to p,ive it an initial velocity profile as a 

starting point for the pulsation. Occ2sionally it might be 

desir8ble to start Hith <1 zero velocity distribution, ,mel st8rt 
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the gro\>lth of the f"lul sation from CO!"1putC1tional "\-Ihi te noise". 

This procedure might he preferable for testing stable stars, or 

modelling only marginally unstable stars; for most cases the 

time taken for the oscillations to grol-l to full Elmplitude from 

noise is far too long for it to be useful. So most models are 

begun \>lith a velocity distribution. One profile used is that 

of Christy, 

to C; 
U(r) = - n(r/H) - 7(r/R) km/s (3.54) 

Another is 

U(r) 
. r; 

= -HHr/R) km/s C3. 55) 

I-Ihich is based on formulae given in Stobie (1969a). In that 

paper Stobie gives pol-ler la\ol distributions for the fund amental, 

and first and second harmonics (for' classical cepheids), and he 

also discusses the effect of the choice of the initial 

distribution. For the type II cepheids (mostly fundamental 

pulsators) the possible contamination by other modes is not 

thought to be too much of a problem, partly because of the 

short e-fold ing times of these star s, and a1 so because the 

first harmonic blue edge is considerably redder than the 

fundamental blue edge (section 2.3). Since the e-folding times 

are s~ short, it was decided not to use artificial 

amplification of the motion, also discussed by Stobie (1969a). 

Most of these stars are almost full grown after 10 periods or 

so in any case. 
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3.R TESTING FOR A PERIOD 

The beginning and ending of ~ period is defined here as 

being when a chosen radius, while decreasing, crosses its 

equilibrium value. Two possible radii. are normally used, 

either the radius of the boundary of INT(N/2) (halfway through 

the zones of the envelope), or the rad ius of the bound 8ry used 

as the observation point. The observation boundary is chosen 

as the one closest to 'T:: 0.2 in the equilibrium model. This 

val ue is chosen folloH1ng C8r son, Stother sand Vemury (1981). 

CSV, hOHever, chose the boundary nearest T :: 3 X 10~ K in 

determining the period. During each period the fo11oHing 

quanti ties are all taken from the zone nearest 'L:: 0.2; 

U in - max imum inHard velocity 

Uout - maximum outward velocity 

bJJ :: U in - Ucu-t 

RrM.')(t Rmln - maximum and minimum radii 

6R/R - full ClI:Jplitude :: (R ,roX -Rl71iY) )/R 

Lma,><, Lmlf/ - maximum and minimum luminosities 

.6r~boL :: 2. 5log(LmO-x /Lrr,(n ) 

The pe,ak kinetic energy of the star for the period is al so 

noted, the kinetic energy being found from 

N -~ 

K.L :: >' 6Hr-~(U.r:-·!:i) t=:1 '-

where 

Ur -{= i(Ur+U r -,) 

The Hork done in each cycle, for e:lch zone, 6t1:r:-yzfdW is 81 so 

calculated, where dH :: (P+Q)dV. C is included since it is a 

pressure and thus rioes work, even if it is 8rtificial. Since 

(while the pulsation is growing, and later for numerical 
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reasons), the P-V loop will in general not close exactly, the 

value 1/2 (P,nitiaL -P(i()o..~ ) (Vint.tLO) -1/nnrAt ) is added for eClch 

zone (Vemury and Stothers 1978). The integrated work function 

for the star then comes from .;f 6~~I-.!. ,.h(P + Q)dV 
T;,I "l. ::r 

3.9 NUMERICAL PROBLEHS 

To avoid problems of numerical overfloH on the machine 

used, the luminosity, along with such things as the kinetic 

energy, the by '!?._ and the work done \-Jere scaled downward s by a 

factor of 103'~. Al so the grad ients ~FI/dHT:-)/:z. and d&/<h~fJ(:L 

tended to be rather small, and were therefore scaled up. Other 

possible overflo\-Js \-Jere avoided by choosing the order of· 

calculation carefully. 

Several problems occur in the solution of the energy 

equat:ion. TIlese weJ~e usually overcome by halving the 

time-step. However, in the instance of having a fractional 

correction I AvJ.r<li \ th8t is greater than (say) 0.8, rather 
Ith+X;.. 

than halving the time-step (which is time consuming) only some 

of the correction is applied, say a fraction 1/1' where 

1 :: 2\ 0 lNnY1.. \ • So the correcUon appl ied to each temperature 
lv r.+ I/?--

would be 6WI;-'~/~' TIlis <lVoids some convergence problems 

without the need to halve the time-step and recompute the 

integration step. A specific problem encountered in the 

modelling of type II cepheids was the occurence of negative 

1 urn i nos i tie s b e tl-IC en zo n e s. c a use rl b Y the j nne r zo n e h 3 'lin g a 

lo ... :er tcmperClture than the one just outsi.de it.. So Cl further 
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restriction was placed on the corrections 6H[-/-1/
2

, ~ that they 

must not cause this inversion. If jt occw"ed then beHY::l- \·lould 

be halved. This restriction \.JClS not tot8lly successful. In 

many cases Hhere the luminosity \.Jould have become negative, it 

simply meant that the time~step was halved over and over again 

until the program crashed because Dt. Has too small. The 

introduction of the boundary condition (3.29) has partially 

overcome this problem, though it still occasionally occurs. 

Another partial solution to this seems to be to decrease the 

number of zones. or increase 0(, the zone ratio. 1rlis probably 

helps just by separating the rOf,ue zones a little more widely 

in temperature. Of course this can only be taken so far, too 

feH zones or too large a value of 0( will mean a decrease in 

accuracy. 

The integration of the pulsation is shown schematically~, 

here. 
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Halve 
time-step 
+ 1, 

y 

N 

y 

Begin with last model 
or initial model 

---

Integrate explicit+y. , " ,,,,,n f.." 
dVP?mlCS Slvlng r v ; 
Rn'f "t., Un-+..-..z.. 

N 

Set up & solve matrix I ~ 
for 4W 

Output period 
paramte rs 

N 

Write last model 1 
and stop 



CHAPTER 11 

THE STA nc r·~0DEL 

The starting point of the pulsation integrations is 

usually t<'lken to be Fl model stellar envelope in hyd rostat ic 

equiJ. ibdum. This is found by solving the differential 

equations of stellar structure for the c;:)se of no motion 

(hydrostatic equilibrium), and consLmt luminosity (no energy 

generation). These equations are: (see, for example Cox ,100 

Giuli 1968; Clayton 1968), 

Continui ty of 1'1ass 

dl~r = lJrrr'Le(r) 
dr 

Hydrostatic Equilibrium 

dP 
err 

= -: G~'~rC'( r) 
r:z. 

Radiative energy transport 

dT = -.3 e( r hc(!lh.r 
dr Llacnrrr"1-T 3 

Energy generation 

rl Lr = 
dr 

1~71T;Ce( r)6 (r) = o for the case of no 
energy generation 

(Ll. 1) 

(lJ.2) 

(11 • :.) 

( lJ • 11 ) 

In this case the lUminosity ~radicnt in C4.LI) is set equal to 

zero since energy ~pneration is j~norerl, hccause only the 

;;tcllClr enve10pe is con~)i{!pr(>cl (snr' ~;('cti.on ?), ilWJ ~.he 
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temperClture will in general never reach ;j point where nucleClr 

reactions can begin. In (~.3) convection is ignored because 

the equation used for the pulsation (section 3.1, equation 

[3.3]) does not include it, for reasons described there. Also 

'ignored Clre the effects of rotation and magnetic fields. 

So by taking three stellar parameters, L, H, rind Te (or 

R) and a set of boundary conditions, along with an equation of 

state, P = p(e,T) an opacity for stellar material 7t=7'\(e,T), 

and a given composition X, Y, Z (assumed to be constant) 

equations (4.1) - (4.4) can be solved to produce a stellar 

envelope in hydrostatic and thermal equilibrium. 

It has already been mentioned (section 2.1) that only the 

stellar envelope participates in the pulsation for most stars, 

and so the equations only have to be solved down to a finite 

inner radius, R;l'll1ev- «V R~!10. This is also Hhy the luminosit), 

and composition are assumed to be constant in the initial 

model. The equations are solved by using a 'numerical 

quadrature method to integrate from the photosphere inwards, 

until RinneY' is reached. In this work RrnYler- = R~/12, and a 

fUrther criterion is applied, in that Tjnner must be ~ ~ 7 X 

10~ K; Insisting on a minimum value for the inner temperature 

ensures that the inner boundary is far away from the important 

driving and damping zones. 

For the sUI"fC:lCe boundary condition the Eddington 

approximation is used to represent the atmosphere. So the 

photosphere I T = Te is rlefined at optical depth t' = 213. 

The temperature distribution in the atmosphere is given by 

T't eL) = 
_, II-
:2.:e (t: + ?n) 
11_ 
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Other formulae for the te~perature distribution are possible 

(see, for example, Eohm-Vitense 1958; BRker <lnd KippenhRhn 

1962; Gingerich 1971), and equation (11.5) can be written in 

the more general form (Mihalas 1978) 

TtfCrt) = fT/ ("t + q(\:» (4.0) 

where q('1;') is the Hopf function. 

The Eddington approximation is used for simplicity and to agree 

with the treatment in section 3. 

The boundary condition on pressure is chosen to 

approx imate to PJ = 0, or Pcot = P.,. at the surface, i.e. 

1; = O. By taking the definition of optical depth; 

d"t = - fiX r ) e( r ) d r 

and combining this with equations (11. 1) and (4.2) we get, 

assuming Mr and r to be constant throughout the atmosphere, 

it = G·; 
d't 1( r) R~ 

So at the sur face, to approx imate to P9 = 0, we have 

P 1(rlP)rl + 
2\dL /(.::.i 

Py- (T C'b') ) 

at 

(4.7) 

(4.8) 

(4. 9) 

where S« 1.0. It is not possible to use 1:: = 0, since at the 

surface e ~ 0, so by solving Ul. 9) by iteration for a small 

val ue of t' (find ing 
dP 
cJ.-e 

from [4.8J) the "surface" (~= S) 

values of P and e can be found. 

Now equation (4.8) C;ln be solved for 0< 't~ 2/3 by 

numerical methods (for example a simple Runge-Kutta procedure), 

thus giving values of P and 12 at '( = 213. These values nt the 

photosphere can be used as the startin~ point for the envelope 

integration. 
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To solve equations (4.1) - (11.3) for the stellar envelope 

it is best to change to a better set of variables than H~, r, P 

and T. Before the advent of fast, digital computers it W8S 

common to use the Schwarzschild reduced variables q, x, p and t 

(Schwarzschild 1958), hThich simplified the equations. That is 

no longer necessary. It is still useful to use logarithmic 

variables, because of the wide range of these variables (as 

much as 15 orders of magnitude in the case of P, for example). 

Since the equations are not solved at the stellar centre it is 

not necessary to use a transformation of the r and M~ variables 

to avoid the singularity in their logarithms there. So we 

define 

1 = log r 

~ = log P 
(4.10) 

5 = log t1 

e = log T 

In the outer regions of the envelope rand Mr- are very SlOH 

moving variables, and near the surface the temperature becomes 

almost constant. For integratng the envelope alone it was 

decided that the pressure Hould be a better independent 

variable than mass or radius. Applying the transformations 

(4.10) to equations (4.1) - (4.3), and using:r as the 

independent variable, we find 

el§ 
lf1-t )-7. ~ 

(/1 • '2) = - 4rr10 

<if r, 

elY) - 1 
1d-~ (11. n) = 10 

df -
r,e 

de 3KL 
~_~-Ite 

( 4 . 1 U ) = Fl 

ds If.T7('cG 
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Here common logarithms are used, since the real value of a 

variable is more easily estimated from them, but there is no 

reason why natural logarithms should not be used. 

Equations (LJ.12) - (LJ.1LJ) can be solved by, for example, 

Runge-Kutta integration (Ralston [1965J provides a good 

introduction to numerical quadrature). Fourth order 

Runge-Kutta integration is the method used here. For a system 

of differential equations, 

I 
Yi.. = fr:. (y t ,x) (LJ. 15) 

where x is the ind epend ent variable, to integr8te to the point 

xnl-l = xn + d, beginning at a point xn. we can write 

b,.y,,>'1 = J.!.. (k, + 2k.z. + 2k3 + kit) 
6 

where 

k, = fj,(YL
J

}) ,xI') ) 
, 

k;t = f t (y~y'\ + ~dk, " ) xn + 2-d 

k3 = fL (Y~/YJ + {dIS., xY)+ i d) 

kit- = fL (Y. + dk3 , xn+ d) 
~) n 

Then 

Yi,'Jj-1 = YlJn + /:lY;"J Y1 

(LJ. 16) 

(LJ. 17) 

(11. 18) 

So for equations (LJ.12) - (11.111) we put ~ = X, ~ = Y" '7 = Y'L 

and e = Y3' Starting from the values at 'l:' = 2/3 (from the 

atmosphere integration), the envelope can be integrated into 

some desired value of Ril?YJBr' 

He also require,ef' M the mass, H1)-o of each layer 

inte~rated, to be used in the division into mass zones (see 

section 3.7) Using the mass transformation given in (LJ.10), Stir 

can be found from 

St!)" = 1~r(lrl-~- 1) ( II • 1 0. ) 
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where 6~ is tbe cban ge in ~ c~lculated from the Runge -Kutt a 

integration step. Since 6r.'y-« t~r. th is section is c<1lcul(]ted 

in double precision to attain sufficient accuracy. 

Since the pulsation equations treat the atmosphere in the 

same way as the envelope, by assuming the diffusion 

a pproximation, it i s necessary to integrate the static mod el of 

the atmosphere in the same wa y ClS the envelope. Having 

completed the envelope inte gration, the atmosphere is then 

integrated in the same way, beginnin g a t L = 2/3 and ending at 

P07iY1 = P (1:=S). It is found that this does give a surface 

temperature Ts ~ T (?:=b) , to a good approx imation. This 

reintegration of the atmosphere also allows r and M~ to vary, 

thus providing values of .5M r for 't'< 213. 

This procedure provides a solution to the differential 

equations (4'.1) - (L1.3), describing the structure of a stellar 

envelope of homogeneous composition and constant luminosity. It 

should be noted that for a real stellar model only certain 

combinations of L, M, and Te would give solutions, but since 

we are avoidin g the central regions a wide range of values will 

provide solutions. 

No partic ul arl y d i ffic ul t probl ems are encoun tered in 

computing a model stellar envelope, so long as care is taken in 

the order of some calculations to avoici the occu~nce of 

numerical underflows or overfloVis. It Hould also be a good 

idea to scale the mass and luminosity in the caS0 of hi gh mas s 

or luminosity stars. 
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The envelope is covered in 1000 - 1500 steps, with ahout 

50 in the atmosphere (T < Te. ), to allow accurate division 

into mass zones. 
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CHA PTER 5 

THE STELLAR PHYSICS 

5. 1 THE EQUATION OF STATE 

In order to solve the equations of stellar structure it is 

necessary to have an equation of state representing the 

dependences P = p(e,T) and E = E(e,T), where P is the pressure 

of a gas/radiation mixture, E its internal energy per unit 

mass, e its density and Tits temperat.ure. The equation of 

state used here applies to a mixture of radiation and a 

non-degenerate gas consisting of hydrogen, helium and two 

metals. The Saha equations are solved simul taneously at every 

call for all the elements considered. Since the temperatures 

in the envelopes of the stars to be considered will probably 

not reach 106 degrees it was thought pointless to assume 

complete ionization for high temperatures. Similarly, these 

envelopes will never reach degenerate conditions, so degeneracy 

is ignored. However, rad iation pressure can be very important, 

and is included. The p8rtition functions of the various ionic 

configurations are considered to be constant, rather than 

includinB their variation with pressure and temperature. Trial 

runs on static models inclu~ing varyin~ partition functions 

showed the eff~ct of their v2riation to b D negligib1e. 
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One negRtive ion (!l-) js considrord, since its effect in 

the low temperature ~tmospheres of these st3rs might be 

significant, as it soaks up some electrons. For the metals, 

some of the higher ionization states were completely ignored, 

on the justificntion that the temperature Vlould never be high 

enough to remove the electrons. 111e tHO ::1etnls considered Here 

nitrogen, representing the Rbundant group of elements carbon, 

nitrogen, oxygen, neon; and magnesium, representing the group 

of elements such as silicon and aluminium Vlhich have 10H first 

ionization energies, and thus act as electron donors in stellar 

atmospheres. The ratio (by mass) of these tHO metal s was taken 

as nitrogen:magnesium = 4: 1. 

Molecules have not been included, and this might be an 

improvment for future work, since they may have some effect in 

the cooler stars modelled. 

The total pressure, P, can be vlYitten as, 

P ::: Pi + P e.. + Py-

vrhere Pr is the radiation pressure, given by, 
If. 

PI"" = ~T 
3 

a is the radiation energy density constant. 

Pe = Ne kT is the electron pressure. 

den si ty 

(5. 1) 

Ne is the electron number 

P~ = NnkT is the ion pressure. tin. is the numher density of 

n \lC 1 e i 

k is 801 tzmann' s constant 

N = Nn + \Ie is the tot;]l number density of 811 pClrticles 
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Usually the temper8ture of th~ R8S will be known, 810ng 

wi th ei ther the den si t y e., or tr.e pr essure P, and so ei ther tI 

or Nn must be found in order to calculate the third quantity. 

Either way Ne , the electron riensity, hClS to be calculated. The 

electron density is given by, 

Ne = tIn ~ D(.tfj f)k (Ne , T) 
(S. 2) 

where 0(1< is the fraction by number of element k, fJk is the 

fraction of element k in ionization state j (where j = 0 is the 

ground state), and a summation written without explicit limits 

means "sum over all values". Equation (5.2) is a non-linear 

equation in Ne which can be solved exactly in some simple cases 

(pure hydrogen, hydrogen plus one metal ion), but in general 

needs to be solved by some sort of iteration. 

The C4 can be found from the fractions by mass ,1k , which 

are given as input (the usual X, Y, Z represent mass fractions 

for hydrogen, helium, and metals), and the atomic masses, Ak· 

where 

exl.< = /!Y1jlJ< 

jJ.n = 

AI( 

1/'z6:. 
k ~I< 

The quantity Nn mayor may not be knovln, depending on whether 

the pressure or densi ty is knovln. If P is known then 

N n = N - N e ,;:md II = P;z /kT 

where P~ = Pl + Pe is the gas pressure. 

If the density is known then 

til) = Noe 0n 

where No is flvor,wlro's nll"lher. 
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So t:'() is "Iso knovtn. 

The fjk Clre given by (nu:nbcr density of element k in st?lte 

j) 1 (number density of element k) .=:. N)kIN)< 

0k = (tI.J"'~/,1< IN.:r;K )(NS"-~JK 111::r_/~k) .......... ~N)kIN.;+/)k' ) .... __ _ 
1 + (flu:./ k It!::r.k) + (i1.r-1. k Illrt ) (N.,._~ k 1'1"<'_1 k )+ .•• + ( N,,::r-/ k/!l.Tk) ... (11 Ik I!l tH k) 

J J :J v J V) ) cr or J 

or 

Gk -w Ne~.o/T) (::.J 

f 1ft tv~ PilI( C-r) 
fll;o (::..,.,., 

Jk is the maximum ionization state of element k. 

~t.,«T) = 

~()(T) = 

N1kl(Ndrll< Ne) is given by Saha's 
I 

t( "2..0312 _'3/~ (Xlk/KT) 
Uik 1 h T e 

U{f/ I< 2 2rrm ' 

U.(I< are the partition functions 

equation; 

(5. 3) 

(5.4) 

ilk is the ionization energy (1 ~ 1+1) of ionization state 1 

h is the Planck constant 

m is the electron mass 

So equation (5.2) is solved by direct substitution iteration, 

i ~t 1-
calculating Ne from Ne and substituting it directly into 

(5.2), until convergence is reached. Use of the geometric mean 

of the i and (i+1) values of Ne provides surer but slower 

convergence. 

NeHton-R8phson iteration could be used to solve (5. ~t but 

t 1 
.'since it depends on bIle 1Ne being small H. Vias not used sincE' 

for Cl fast convergencc the initinl valu p of Me Must be a fairly 

good Clpproxim2tion. 1~,e m0thod llserl beT!' is ['lore flexible Clnd 

usually converr;es in 2 or -j it.r:riJt1ons (to fi'/e figur'cs). 
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Hiw inr; foun~ lIe 0n:~ the fjk I ',r. 0 n i'" I t np mean mol ccul;:T 

v .. eir~ht CiJn be 

F= 

founn from 

1 I') n)< 

7< ,15k 

where nk = 1/Ak( 1 + VeCk)) is the number density per unit mClSS 

of prlrticles and electron for element k and Ve(k) = ~jfjk is 
pi. 

the number of electrons provided by e2ch state. 

The major numerical problems encountered in the equation 

of state are caused by having very IC'lrge or very small numbers 

for the values of some of the ratios. On the machines used the 

limits are ltf3'S', and the products found in equation (5. 11) 

would quickly underfloH or overfloH. To circumvent this 

problem logarithms are used in calculating the numerators (i.e. 

finding sums instead of products). Then the numerators are 

normalized, so that for each element the largest value of 
';k-I 

log (nNe g!ak) is 1. O. Then to speed calculations, val ues belo~l 
b; 

-10.0 are ignored. Antilogarithms are trlken to find the scaled 

numerators. Since the denominators rlre sums of the numerators 

this is in fact a renomalization process, the scaling factor is 

d i v id ed out. 

The internal energy per unit mass is found from the 

folloHing equation (Cox and Giuli 1968, page 334). 

E = 
J'k J-

Nn(l + nlkT + ~LlX/<2::.f,.J.k~~TY}-flk + 
? e I< p'/ (n.:./ 

4-
aT 
e 

111e fir st term is the thermCll C kind, i.c) energy, I-Ihere 

,- ""'" 'f f = L.. eX/{.c. J c;}-J.<. 
I< cJ 

The thirrl term is the energy density of the r8dirltion field. 

The second t.erM is thr> sumrH'd cont.rihution of the vClrio\Js 
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ionization states. For just posi~, i '1(> inns ~his ha~ the forn 

given in (5.5); hOloJevcT. if 
~ . 

npi'!(]\,lVf> ions ~re present they 

must be includecl separately; 

(

J"I( J. -I rL ) 
E;ol'l =\tXl( ~f.0z.:: X""-Jk - L f.tk~ X,M L 

~' "":../ rlc=/ ,1-=-<j, M~ 1. " 

where -q is the most negatively charged ionized state. E;o~ 

thus has its zero point Flt the g,l'ounel state of the neutral 

atom. 

Two other quantities are required from the equation of 

state j these are the gradients (clP/dT)e and (OElc?n)e' From 

(5.1) P can be expressed as 

p 

then 

(~;)e = 

and from (5. 5) 

= 
It 

MokeT + NekT + aT 
/1>1 "3 

~ IT + (J Ncl kT 
J T JE' 

+ !JPr 
p 

(f.f1e = No (l+f)lk + lk~~(df\ + ~rcXl<dill t~-o< 
e 2 2 e \.ffje e 1< lt dT JeM=1 

where 

(d~) = ~ ~rj(d fJ~ 
JT~ k J dT k 

'J 
+ !J8T 

'e 

(5.6) 

(5.7) 

,(~A = J.. (~) (fjk (Jk - j) - ~k f fJk (JI( - j) ) 

JT Je:, NtidT e "'-
+ f kft( d Inf(,k\ -\(~ ~k\ 
d\~ rfe i JT 'Ie /cs.p) 

if 

(¥rL~e = 
"J..:-I 

- l~e 'II kT;l L. i kT + A-jk.) 

~::) 

So to find both (OP/(Jr)e and (dEloT)e' the gr8dient(dNe/dT)e iS 

required. From (5.2) 

(
d t!~) = 
dTe 

lln~ WK~j ~f) 
/( J \d f , 

(I) • (I) 
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Then, fror;] (5. P) 

~j(~H~ 
J-

where 

Ek :: 
tV" 

~k :: 

:: J..r(dl: e\ -C­
N dT:! L k, 

I~ 

r-J 

+~ 
k 

r j 1J k ( J K - j - >- j k (Jk - j» 

~ J 

plJk t(d;nT1")e -> )k(d<llTTT~ ) 
~ Ie 

then substituting into (5.9), nnd solving for (dNe/aT)e' gives 

(dN~ 
\dTJe 

:: N n i <:>Il<t K 

(1 - Nil INe~o(J<~ 

(5.10) 

Using (5.10) the required gradients C<ln be found from (5.6) and 

(5.7). Analytic expressions are used for (OP/OT)e and (dE/dT)e 

since it seems likely that computing them will be quicker than 

using any numerical method, which would involve at least one ~. 

further call to the equation of state. 

The routine as used accepts X, Y, Z, the Ak's, Xjk's and 

Jk's as original input data. Then in (1 call to subroutine 

STATE T is required as input, 8long with either P or (? The 

major output is e or P, along with E, (aP/~T)e and (aE/~T)e if 

desired. 

It should be noted that n routine is also nvailable to 

carry out interpolation in tables to provide values of P, E and 

their gradients. This routine is not as accurate as using <In 

on-line version I but is considerably faster, and \Olas used for 

some t.est runs, also for checking such things a" the possible 

stability or instabil ity of n pClrticul::Jr st8r. The tClblps usprj 

8re constructed in a formClt Si::l1 J ;lr to t,h'1t ')f the Carson 
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opacity tables, but wi th more points. 'This allows the same 

interpolation routines to be used for all tables. 

Some references that were generally useful here are 

Clayton (1958, Chapter 2), Cox and Giuli (1958, Chapters 9,15) 

and Mihalas (1978, Chapter 5). 

5.2 THE OPACITY 

5.2. 1 The Carson Opacities And Their Use 

Until fairly recently most theoretical work on stellar 

pulsation has used the Cox-Stewart (1965) opacities, or some 

later modification of them, or an interpolation formula fitted 

to them. These opac i ties (al so referred to as the Los Al amos 

opacities) are based on the early vlork of Stromgren (1932) and 

Keller and Me yerott (1955). The method s used are described 

mainly in the review by Cox (1965). These opacities use as an 

atomic model the "hydrogenic" approx imation, treating the atom 

as having a hydrogen-like coulomb field, due to an effective 

nuclear charge, and dealing with perturbations from this field. 

Carson et al. have questioned the validity of this 

a pprox imation. Car son and Holl ingsworth (1968) used 

numerically exact methods on one electron model to check the 

hydrogenic approximation. They found that only if care is 

taken in the choice of the effective nuclear charges is the 

approximation a ~ood one. 
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In 196G Carson, 1·1aycrs Clncl Stihbs rlpplied non-hydrogenic 

methods to the problcn, llsing the r,enerCllized (non-zero 

temperature or "hot") ThOMas-Fermi morlel for the atom. The fev' 

results obtained showed that the Cox-Stewart values for the 

opacity could be increClsed by a factor of tv'o or three using 

the new method s. 

Carson (1976) went on to calculate a full series of 

stellar op;:lCities. His methods involved a mixture of earlier 

procedures, plus several improvements. In the atomic opacities 

hydrogen and heliu:;) are treated "exactly", whilst for the 

heavier elements the generalized Thomas-Fermi statistical model 

is used. At the lower temperatures negative ions are included 

along with a few diatomic molecules. Conduction was treated 

using the cod e of Hubbard and Lampe (1968). 

The main agreement betHeen these nevl opacities and those' 

of Cox and Stewart is qui te good. HOVlever, there are 

differences of detail. The main H-He I peak shows an opacity 

that is up to two times 10Vler, \-Ihilst beyond log T IV 4.5 the 

opacity is generally higher than the Cox-SteViart values. At 

5.4 < log T < 6.4 there is a double bump feature not present 

in earl ier Vlork. These peaks are due to the final ioni zation 

of carbon and oxygen, Vlith contributions from nitrogen. At 

higher values of log T the opacity reaches the normal 

scattering limit. 

The Carson opacities are the ones used in this Vlork. 

Opacity tables exist for a number of compositions, but only one 

is close to that of population II stars. This is for 

composition X = n.7LJS, Y = n. ?S, 7 = 0.005. T'r)e population II 

vClriables consid(~rcj in thi;:; "I<il"k hrive cOr:1positi.on:, of 
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~ -4 
O.? < Y < O. j cmo 1 r 1()-:1. tl ·t' I' < Z < . ,SO ",c composl l.on usc' 1 s 

not unreasonable. It seems that Y = 0.25 is an ~ccepterl value, 

while Z = 0.001 is a more usually accepted Metallicity. Since 

no table was available for Z = 0.001, and as it was thought 

that interpolAting between tAbles to prorluce onp Hould 

introduce unHanted errors, the 0.005 value for Z Has used. 

Each table gives log K for 38 values of log T, Hith 9 or 

10 values of log E' for eAch temperature. The tnble for the 

population II mix is given in table 5.1. The opacity for this 

mixture is plotted in figure 5.1. Figure 5.2 shoHS the 

Cox-SteHart opacity for this mixture, computed from the Christy 

interpolation formula (1966). These two figures shaH the 

general differences in the opacity noted above. Also figure 

5.1 shows that for low temperatures, log T , 3.8, the Carson 

opacity almost stops dec~easing as log T decreases, leveling 

off to a plateau, leaving the Carson opacity up to 4 or 5 

orders of magnitude greater than the Cox-Stewart values. This 

has been interpreted as an error in the program or the use of 

it at these temperatures. The effect of this plateau is 

demonstrated in the test run on model 1 from CSV (see section 

6.2). Consequently for log T < 3.85 the Carson opacities are 

replaced by the Cox-SteHart ones, again in the Christy 

formulation. This Also fits in Hith the vlorl< of Carson, 

Stathers And Vemury in various papers (Carson and Stothers 

1976: Vemury and Stothers 1978~ Carson, Stothers and Vemury 

1981: Carson cmd Stathers 1982), Hho used the Christy OpclCity 

for log T < 3.85, since at that time the Carson opacity values 

Here not ;WAilable for these lovll,r temperatures. This mixed 

opClcity is plotted in fizure t'}.3. 
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OJ08city c74525 for composition H:::O.7i.5, lio~O. 250, l=O.O05 

Log Opacity (cl11s2!gm) 

Log [,1,0 It1 I+;! Iod 1 + I, 1+5 1+6 1+7 1+8 

Log T 

3.3 -12 -2.1626 -2.2670 -2.5656 -2.985"( -3.4170 •. 1. 4402 -2.cd1;' -1.0556 -0.6564 

3.4 -12 -2.1252 -2.1246 -2.1302 -2.1796 -2.3IJ5Y -2.5405 "<!.1742 -'l.2419 -0.1702 

3.5 -12 -2.0992 -~.0970 -2.0916 -2.0702 -1.9928 -1.8407 -1.00I:d -1).1l9?9 0.12'13 

3.6 -11 -2.0633 -2.0566 -2.0~07 -1.B626 -1.4676 -0.p,303 -0.11l3:~ 1.0931 1.3760 

3.7 -11 -1.9779 -1.9705 -1.9013 -1.70U7 -1.256U -U.5382 U.2443 ~.32t!9 1.0082 

3.8 -11 -1.3903 -1.4450 -1.23B6 -U.8230 -0.31311 0.2392 U.8537 4.17ll3 2.(J458 

3.9 -11 -0.2225 -tl.1245 0.0269 0.2715 0.6000 1.17ill 1.4831 c.0501. 2."1664 

4.0 -11 -0.1104 0.5225 1.1324 1.4191 1.65fH 1.'1237 2.2n~ 2./358 3.JP(J8 

4.1 -10 0.226( '1.1307 1.9500 2.4716 2. 7[;O:~ 3.0655 3.3/S( 3.9152 4.6178 

4.2 -10 -0.0546 0.6911 1.6666 2.6372 :3.301 'I 5.l0r3 3.9tl33 4./,218 3.40tJl 
4.3 -10 -0.2298 0.3405 1. 27~6 2.3148 3.314tl 4.12c8 4.4683 4.tJ1110 4.7931 

4.4 -10 -0.2831 0.1263 0.9868 ~.O444 3.1576 4.Gil36 4.9070 ~.2222 5.0725 

4.5 -10 -0.2294 0.0762 0.829<! 1.tJ6~8 2.9966 4.1983 5.0.S34 5.34$8 3.20B7 

4.6 -9 0.1447 0.8299 1.7775 2.1:l392 3.9969 4.11806 5.4531 4.0504 5.6402 
4.7 -9 -0,1331 0."1417 1.7168 2.68t,5 3.6669 4.,248 5.~311 4.6848 ~ ./.636 

t •• 8 -9 -0.7.661 0.4521 1.1932 2.32/.1 3.2684 4.1628 4.8975 4.!l619 5.('617 

4.9 -9 -0.2356 0.1163 0.7641 1.1\41:)9 2. !l1:3IJ j. R4111 4,610.3 4.1l340 5.06('6 

5.0 -9 -0.3476 -0.0991 0.5454 1.47117 2.4406 .s. 51 (2 4,:'016 4.6592 4.1;23<'> 

5.2 -8 -0.3505 0.0271 0.8U73 ') .6532 2.5486 3.5360 .3. 9~'12 / •• U3U8 4.8CJ{!l 

5.4 -8 -0.;::,7.3 -0.2031 U.0439 0.(513 1 .5434 2.1922 ~.Y82() 5.4460 3.d~j.s 

5.6 -( 0.1734 0.1758 0.21tl5 0.t665 1 .3160 2.092f 2.6762 3.39.>7 3.00"(2 

5.8 -7 0.325~ 0.04/.3 0.0350 0.2'1'14 0.7030 1.4115 1.9127 2.4752 2.9270 
6.0 -7 -0.0223 -0,0901 -O.Ojl.l"( U.U066 0.1053 . 0.7910 i . 4'/O~ ~.u704 2. () 7uO 

6.2 -6 -0.2787 -0.2690 -O.C866 U.3108 0.1913 0.9931 '1.5150 2.U422 2. ,:\.:. (.5 

6.1. -6 -0. 1.189 -0.421'1 -0.3tl55 -U.IJ'«S8 -0.2093 0 •. HZ4 U.'143Y 1.1771 '1. h'71 j 

6.<'> -5 -0.4534 -0.4509 -U.4457 -0 • .s9UIl -O.'18l19 iI.26(1j U.623Y 1.3040 1,22'1(, 

6.8 -5 -0.4624 -0.4618 -0.4610 -U.4526 -0.3944 -0.1513 1l.120(J I). 68(10 1.2551 

7.0 -5 -0.4655 ~O,4650 -0.4646 ~0.4643 -0.,.513 -J.372U "'U.1Y24 0.1764 0.611 ~ 

7.2 -4 n(j.4{01 ~0.4699 -0.4692 -0.46::>5 -0.4420 -0.341.5 ~\J.1U3(j u,3053 0.525? 

7. '. -4 -0,476/. -0.4764 -0.476.5 -0. 1.761 -0.4714 -0.4390 -0. 3/i 5'1 -0.07'19 0.21.(5 

7.6 -,5 -0.4859 -0.4IlS9 -O.4U60 -0.48~2 -0.4793 -(). i.4;~.5 -0.;'1.71 -0.0(:52 ""'O.lt51f~ 

7.8 -3 -0.5001 -0,5001 -O.~UOl -O.~OlJl -0.I.99S -u ,1,9.3:1 -U .. ti522 -vu53U4 -t) to ~-Sf;UO 

R.O -j -0.5210 -0.5210 -O.>21U -u. ;;,211.1 -0.':>211 -l!.~2lJ~ -U.5114 -0.4('60 ... 0." 11 f cd 
8.2 -2 -0.5;'07 ~0.551)7 -0.5;'1)7 -I).;,!>()i\ -0.550'1 -0 .. ~149)1 -0.53'16 -0. ;'I,b l• -1 "U41)1 

11.4 -2 -0.5911 -0.5911 -0,5911 -0.5911 -0.5913 -U.5919 -vl~Y2~ -d.63112 -O.94'ti( 

8.6 -1 -0.643U -0.6430 -0.643U -0.64.31 -0.6',35 -n.64;'S -1J.667ll ~(J.~~1i6 "'(;.7'1 i. C) 

1l,Il -1 ... 0.7U6 / .. -0.7064 -O.lu64 -U,7064 -0.70/)o ->i.fJ(8 ·v.711'1 -0.95,'l2 -O,79U 

9.0 -1 -0.7805 -0. ";1\05 -1).7805 -1).7805 -0. (IH15 -O.{d11 -0.71l7' -1J.H944 -0.8 2 t'.~ (. 

Tabh~ 5. Cnrson opClclty fOI' X:::O.7 1IS, Y=0.25. 
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Tll i s wo r k use s 1 in ear 0 r q u ? :j r ;J 'c, i c i n t c r po 1 Cl t ion 0 f the 

opacity tables, lincCll- interroJation usually boins preferred 

because simple qUi1d ratic inter pol ation cem prod \Jce unrel ii'lbl e 

values of (J7C/JT)e., Hhich 1.S also calcul?ted numericc:llly. 

However some test runs showed little difference between the 

resul ts using the tHO forms of interpo18tion. 

5.2.2 The Effect Of The Opacity 

The Carson opacities have been used recently by Carson, 

Stothers and Vemury in several studies of stellar structure, 

evolution and pulsation. 

Stothers (1974a) compared the Carson and Cox-Stewart 

opacities in a series of homogeneous stellar models in the mass 

range 1 , M/MQ ~ 120. He found few differences in the model~i 

except that the larger mass stars had slightly larger radii, 

and therefore lower effective temperatures, using the Carson 

opacities. The Carson opacities have also been used to reduce 

the discrepancy between theory and observation for the apsidal 

motion constant of binary systems (Stothers 1974b). 

Carson and Stothers (1976) examined the effect of the new 

opacities on the evolution of giants and on classical cepheid 

pulsation. They found very little change in the evolutionary 

tracks for stars with masses 5 ~'10 and 7 t·1(!). The theoretici'll 

mass-luminosity relation Has changed by a small amount, and the 

inferred "evolutionClry" masses for cepheids Here increased only 

slightly. The theoretical blue edge fOl- the cepheirl 

insti'lbility strip was moved blu~w8rds with the new oracities, 

in bC'tter ar,recInent ~Iith tile ob;,crvations. The t.heoreticCll 
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"pulsation3l" masses Here only increrlsed by a small amount, 

thus failing to remove the discrepancy betHe~n pulsational and 

evolutionary masses. This discrepancy nOH seems to have been 
I -_ ~ 

removed by a redetermination of the cepheid distance scale (for 

a revieH of the cepheid mass problem see A.N.Cox 1979, 191"),0). 

Vemuryand Stothers (1977,1978) extended the Hork on cepheids 

using the new opacities by studying the so-called "bump" 

cepheids. It had been found that to correctly reproduce this 

feature, the mass of the star had to be only about one-half the 

mass expected from evolutionary theory. The use of the Carson 

opacities seems to remove most of this discrepancy. 

Stothers (1976) has also found that in hot massive stars 

the CNO opacity bump, present only in the Carson opacities, 

can act as a source of pulsational instability, 

Recently Carson, Stothers and Vemury (1981) and Carson and 

Stothers (1982) have used the Carson opacities in modelling the 

BL Herculis variables (type II cepheids, with periods from 

1 _ 3 days), This work, along with that of A. N. Cox et a1. in 

several papers, is revieHed elsewhere (section 2.3). Briefly, 

the Carson opacities seem to produce results in more genera l 

agreement with those observed, in particular for the shape of 

the light and velocity l~ curves. HOHever, the higher 

opacity near the He II driving zone may give light and velocity 

amplitudes consider<1bly larger than those observed. 
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CHA PTER 6 

RESULTS 

6. 1 THE RED EDGE OF THE INSTABILITY STRIP 

Be fore presenting the non-linear pul sation resul ts, it may 

be instructive to look at the amount of convection in these 

stars. Convection is not included in the pulsation equations, 

and is therefore also ignored in the static model calculations. 

However, a routine to construct static model envelopes 

including the effects of convection was available, courtesy of 

C.S.Jeffery. Local t~ixing Length theory (Bohm-Vitense 1958) is 

used, including the more recent modifications to this theory. 

A mixing length/pressure scale height ratio of 1.0 was used. 

The results presented are for models with M/Mm = 0.6 and using 

the Carson population II opacity, composition X = 0.745, 

Y = 0.25, Z = o. 005. In the envelopes, the amount of 

convection in the hydrogen and helium II ionization zones was 

looked at. In figure 6.1 is plotted the observed instability 

strip of Demers and H3rris, 8long vrith the I-Jorrell blue edge 

for tl/t\?> = 0.6, <'mel the above composi tion. Line a represents 

the region vrhere convection carries approximately 507 of the 

flux in the hydrOGen ioniziltion zonE'. TIlis can be comprlred 

vrith line h, vrhich represents the samp amount of convection, 
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Figure 6.1 Possible red edges for the Instability Strip 



hut comes fr ofll l~i n?" Cox ~~ n j liod ~o n (1 9P 1) anj use s the Co x 

opacities, bejn~ their es tim a ted red edr,e. The tl-IO Clre clo s~ 

enough to suggest that the only main difference is the use of 

different opacities. Ne ithe r line is close to the obse rved red 

edge. However, for t.hese stars, even \'/hen convection accounts 

for half the flux in the hydrogen ioni zation zone, th e amount 

in the helium II ionization zone is still neglig ~ble. This is 

because of the hi gh L!~1 ratio of these stars. Deupree (19778) 

concludes that if convection carries just a few percent of the 

flux in the helium II convection zone, it will quench the 

pulsation. Line c represents the region in which convection 

has this approximate level of significance for the envelope s 

calculated using the Carson opacity. Line c is very much 

closer to the observed red edge, and can be regarded as an 

estimated red edge for this \-/ork. For this line the convection 

in the hydrogen zone is 90-100r. 

From these results we can see that convection plays little 

part in the pulsation near the blue edge, and is probably 

responsible for the red edge by supressing the helium II 

driving zone. Also, from the middle of the instability strip 

to the red edge, convection in the hydrogen ionization zone is 

very significant, and is probably diminishing or supressing any 

hydrogen driving. This may play <l pal"t in determining the 

amplitudes of these st8rs, and may even alter their light 

curves. Deupree (19778), howe ver, suggests that the shape of 

light curves is not al tered greatly by convection. So whilst 

ignoring convection in the pulsation a l models, it must be 
. 

remembered that it could be very significant for the redd er 

mod el s. 
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6.2 THE TEST MODEL 

To test the independently written progra~s described in 

sections 3-5, model 1 of Carson, Stothers and Ve~ury (1981) was 

repeated. Hereafter the original model is referred to as CSV1. 

This model is characterized by the following parameters: 

H/M Q = 0.6 

log(L/L@) = 2.0 

log Te = 3.81 

Composition (X,Y,Z) = (0.7~5,0.250,0.005) 

Following CSV, the "surface" of the star is taken to be 

the zone having optical depth closest to 0.2 in the equilibrium 

model. This is taken to be roughly comparable to the observed 

surface of a real star. The following quantities are also 

defined: 

Peak K. E. 

l'J11 R 

Vovt , V1Y1 

6..V 

Lm~)( 'Ynm 

llMW 

Peak kinetic energy of the pulsation 

Full rad ius ampl itud el equil ibrium rad ius 

Haximum oubl8rd (positive) and inward (negative) 

surface velocities 

Full surface velocity amplitude 

t!aximum and minimum surface luminosities 

Full amplitude of bolometric magnitude variation 

(=2.5101:'; L!'k:t'l,,ILm1f) ) . 

(Note: Since L,,74X and LrOlf) are sometimes subject 

to computer generat~d noise or spikes, it is 

usually better to measure this from the surface 

1 ight curve). 

Asymmetry (vel. i\syPlmctry of the light or velocity curve. 

or lurn.) = (Timp to 1,0 from r1Dxi~1LJrl to r'linimum)1 

(Tiler> to f'O frol'1 r~ini~n\JC1 1.0 max ir'lum) 
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¢t 

~t 

Phase of the secondary bump on the velocity curve 

after the phase of zero velocity on the Clscending 

branch, plus unity. 

Phase of the secondary bump on the light curve 

after the phase of mean light on the ascending 

branch, plus unity. 

Firstly the r,odel Vias constructed using the full Carson 

opacity at all temperatures, taken from table 5.1. Though the 

period obtained was approximately correct, the result was 

obviously in disagreement with CSV1, as is demonstrated by the 

curves plotted in figure 6.2. A large pre-maximum shock or bump 

is present in the light curve, essentially a much larger 

version of the smaller pre-maximum shock present in CSV's light 

curve. This problem was found to be caused by the opacity. 

The only feature of the input different from that used by CSV 

was that the Carson opacity was used for the lower 

temperatures. So the model was repeated, now following CSV 

precisely, the Christy formulation of the Cox opacities used 

for log T < 3.85. The results for this are presented in t3ble 

6.1 (compared i-Ii th CSV1) 3nd figure 6.3. These resul ts show 

very good agreement with CSV1, validi'lting the program, 

confirming CSV's results, and also indicating that the Carson 

opacities are probably incorrect at low temperatures. 1he test 

run Vl3S repeated once more (after some minor program 

improvements, and after transferrinR the code to another 

computer), and the same result was obtained (to within 

reasonable limits). 
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* Parameter CSV1 Test model 

M/tv10 <I •• , ••••• ,..... O. 6 0.6 

log(L/L0) .......... 2.0 2.0 

log Teff ........... 3.81 3.81 

R/R0 .. ,............ 8. 13 8.0 

P (days) ........... 1.23 1.21 

40 Peak K.E. (10 ergs) 1.4 1.3 

.6R/R 0.16 0.16 

Vout (km/s) ........ 31 33 

(km/s) -42 V. 
In 

/jv (km/s) ........ 74 

L (ergs/s) 
max 

Lmin(ergs/s) 

5.3 

2.4 

-39 

72 

5.4 

2.2 

L1Mbol .............. 0.9 0 • 9 

Asymmetry (vel.) 3.6 3.2 

Asymmetry (lum.) 4.1 4.0 

~~ 
¢~ 

............... f' • 

.................. 
1. 57 

1. 61 

Blllnp ............... D 

Opacity used CCH 

Dynamic B.C . ....... ? 

1. 57 

1. 57 

D 

CCH 

2 

C
Q 

••••••••••••••••• 1.0 1.0 

~v ................. 0.1 0.1 

No. of zones ....... ? 44/5 

R. /R lnner * t........ ? 0.18 

M /M env * .......... ? 0.01 

Table 6.1 Comparison of test model and CSV model 1 

* Values taken from CarSOY1, SLothers & Vemury (19B1), model 1 



Ilavine discovered that the low tpmperClture Carson 

opacities were unreliable, only a few models were run with the 

full Carson opacity to get periods in the ranlSe 10 - 20 d8ys. 

These also showed a large pre-mClximum shock, distorting the 

light curves so as to make them unlike either of the types seen 

in the observations (crested or flat-topoed). It WClS then 

decided to use the combined Carson/Christy op;:wHy in the 

future. 

6.3 THE INSTABILITY STRIP SURVEY 

A series of 25 models was constructed to cover the 

instability strip from the Horrell blue edge for Y = 0.25, 

Z = 0.005, to the observed red edge, for a mass of 0.6 I-le. The 

luminosities and effective temperatures were chosen so as to ~ 

obtain periods approximately in the range 10 - 20 days. The 

mass of 0.6 Mo seems to be appropriate in the light of 

observations, and of the bump mass determinations for BL 

Herculis stClrs. Later some models for 0.8 1'10 and 0.5 t1Q were 

constructed to look at the effect of varying the mass, and a 

few models were run using the Cox opacities, for comparison. 

The model s calcul ated for O. fi H0 are shown on an HR 

diagram in figure 6.39. The luminosity and temperature ranges 

used were 2.6 ~ log(L/L;) ~ 3.2 Clnd 3.71 ~ log Tf' ~ 3.79. 

Difficulties were encountered in constructing cool models at 

10g(L/L0 ) values of 2.7 and 2.8, largely because of the 

excessive driving encountered here. TIlis is in the region 

where it has been suggested that convection is very importClnt 

in the driving zones. It is Cllso 1-11-)0,(> W"" expect to find the 
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flat-topped vAriables, thus unfortun~tely it h~s proved 

difficult to model this type. !loV/ever, sotTle of the Models g?ve 

reasonabl e facsimil ies of the fl at-to pped curves. 

In addition. five models ;we presented using M/H(i) = 0.8, 

one V/ith M/M~ = 0.5, two using the Cox opacities in the Christy 

formulation and the above composition, and finally one model 

using the Cox and Tabor (1976) opacity table for the King Ia 

mix (Y = 0.299, Z = 0.001). The static and dynamic resul ts for 

these three models are presented in tables 6.2 a and band 6.3 

a and b. 

In most cases, the equations have been integrated forward 

in time until periodic repetition is achieved and/or the ratio 

LIlt1r:s,§ ~ TiS v or y sm all. Ex ao t repe ti t io n is r arel y 

IJiMx-~lfdW 
achieved, both for nwnerical reasons, and (sometimes) because 

of real physical causes. 

For some model s. full growth 1-13S not achieved, or was 

doubtful, usually for reasons of time. These models are 

ind icated by footnotes. 

Most of the various quantities listed in tables 6.2 and 

6.3 are the same as are defined for the test model. An 

exception is that s6t and ¢~ do not have unity added to 

them. Once agC'lin, the surface is taken to be that zone which 

in the equilibrium model was closest to 1: = 0.2. In addition, 

a classification is added suggestin~ which class (crested or 

flat-topped) the li~ht curve belongs to, an X indicatin~ 

neither. Here upper-CClse letters are used for the 

classification (to aid in distinguishin~ models from observed 

stars in later discussion) I ,mel ,m X rrecerl ing the 

- (J) -



classification indicates SOrlO rJollht. The surf8ce lir,ht imd 

velocity curvE'S sre plotted in figures f.. II - 6.37. In e3ch, 

zero phase is taken at minimum radius. For the plottin~, about 

one in four calcul<lted points vlere used per period, and these 

were smoothed by taking a two-point running mean twice in 

succession (the same procedure used by CSV). Since observed 

light curves are smoothed, and subject to large errors and 

variations, smoothing of the modelled light and velocity curves 

is quite reasonable. 

used: 

In tables 6.2 and 6.3 the following abbrevi.ati.ons Clre 

Ro~/R0 R at the observed zone (nearest to ~= 0.2)/R0 

O.B.C Outer Boundary Condition P- - 0 mean s i.,ot- -

- 0 2 means P;t - t1 I 

D I b. Nf 1:11. - rt-J-'i 

For the opacity used: 

3 mean s PNr'/;L - fj,M
N

- 'iz 

CCH Carson table with Christy formula for log T < 3.85 

CHR Full Christy formula 

KIN Cox and Tabor King Ia mix table, Y = 0.299, Z = 0.001 

For number of zones: NE /NA = Number in envelope/Number in atmosphere 

R/nne:r /R~ Rl /R~ for equilibrium model 

1-1eYlv /1-1~ I~~~-~ /H N 

The Christy luminosity interpolation, on-line equation of 

state, and linear interpolation in the opacity tables are used 

throughout. Test runs with the Stellingvlerf luminosity 

interpolation or with quadratic interpolation showed no 

significcmt changes. HOViever, interpolation of the equation of 

state would have introduced signifjcant errors. 

- 1)11 -



1 

2 

3 

4 

5 

6 

7 

S 

9 

10 

11 

12 

13 

14 

15 

16 

17 

IS 

19 

20 

22 

23 

24 

25 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

O.S 

0.6 

0.6 

0.6 

0.6 

O.S 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

2.6 

2.7 

2.7 

2.7 

2.8 

2.8 

2.8 

2.8 

2.9 

2.9 

2.9 

2.9 

2.9 

2.9 

2.9 

3.0 

3.0 

3.0 

3.0 

3.0 

3.1 

3.1 

3.1 

3.1 

3.2 

3.71 

3.75 

3.74 

3.73 

3.76 

3.75 

3.74 

3.73 

3.79 

3.78 

3.77 

3.76 

3.75 

3.74 

3.73 

3.78 

3.77 

3.76 

3.75 

3.74 

3.78 

3.77 

3.76 

3.75 

].77 

25.1 

23.5 

24.5 

25.7 

25.1 

26.2 

27.5 

29.6 

24.4 

25.6 

26.8 

28.1 

29.4 

30.8 

32.5 

28.7 

30.0 

31.4 

32.9 

34.8 

32.1 

33.5 

35.2 

36.8 

37.7 

1.402 

1.372 

1.392 

1.412 

1.402 

1.422 

1.442 

1.462 

1.392 

1.412 

1.432 

1.452 

1.472 

1.492 

1. 512 

1.462 

1.482 

1.502 

1.522 

1. 542 

1.512 

1.532 

1. 552 

1.572 

1.582 

2 CCH 2.0 

2 CCH 1.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

3 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 4.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

2 CCH 2.0 

0.02 30/7 

0.1 36/5 

0.1 32/7 

0.02 32/7 

0.1 35/7 

0.1 39/5 

0.1 41/5 

0.1 30/7 

0.1 43/6 

0.1 39/5 

0.1 39/5 

0.1 43/5 

0.1 41/5 

0.1 42/5 

0.1 34/5 

0.1 41/5 

0.1 41/5 

0.1 41/5 

0.1 40/5 

0.1 41/5 

0.1 41/5 

0.1 43/6 

0.1 40/5 

0.1 42/6 

0.1 41/5 

Table 6.2a The Survey Models - static details 

H M* R. /R env -- lnner * 

1.30 0.0033 

1.18 0.0022 

1.26 0.0026 

1.26 0.0027 

1.24 0.0023 

1.17 0.0020 

1.15 0.0018 

1.25 0.0023 

LIS 0.0013 

1.18 0.0013 

1.17 0.0013 

1.14 0.0012 

1.15 0.0020 

1.14 0.0015 

1.17 0.0034 

1.15 0.0011 

1.15 0.0011 

1.14 0.0012 

1.13 0.0012 

1.12 0.0013 

1.14 0.0009 

1.13 0.0009 

1.12·0.0010 

1.11 0.0010 

1.11 0.0008 

0.09 

0.11 

0.13 

0.12 

0.03 

0.08 

0.09 

0.10 

0.10 

0.12 

0.11 

0.09 

0.07 

0.07 

0.06 

0.10 

0.07 

0.06 

0.09 

0.05 

0.08 

O.OS 

0.08 

0.08 

0.11 



a 

I ) ) v rl-.b
l 

"'bl-"/'m
l 

Typ e Hodel P (d) PKE AR R Vout V in L>V Lmax Lmin t.Mbo1 Asym(vel Asym( lum cfJb 'I-' II-' 't'J 

1 11.1 12.0 0.362 16 -42 58 

2 9.18 9.63 0.336 22 -27 49 

3 10.1 12.0 0.357 20 -33 53 

4 11.6 15.2 0.429 20 -49 69 

5 10.6 11.9 0.378 24 -30 54 

6 12.6 17.0 0.508 23 -52 75 

7 13.4 20.2 0.606 29 -52 81 

8a 15.2 26.0 0.7 39 -53 92 

9 9.06 3.02 0.234 20 -20 40 

10 10.2 5.95 0.304 22 -19 41 

11 11.4 10.3 0.367 25 -30 55 

12 13.0 16.1 0.453 23 -46 69 

13 14.6 20.7 0.568 25 -51 76 

14b 16.0 26 0.62 30 -48 78 

15 17.4 32.1 0.75 31 -44 75 

16 12.5 7.58 0.327 23 -21 44 

17 14.2 13.3 0.422 22 -37 59 

18 15.9 19.1 0.524 24 -47 71 

19 17.3 24.1 0.60 26 -46 72 

20 c 19.3 32.4 0.61 30 -41 71 

21 15.4 8.34 0.359 22 -26 48 

22 17.1 14.8 0.475 24 -39 63 

23 18.8 20.5 0.545 23 -43 66 

24 20.6 30.1 0.62 26 -44 70 

25 20.6 13.6 0.485 26 -29 55 

25 

28 

29 

31 

34 

42 

41 

44 

39 

42 

45 

48 

53 

48 

52 

55 

60 

65 

67 

81 

71 

76 

83 

86 

91 

3 

10 

7 

3 

13 

4 

6 

11 

25 

24 

20 

13 

12 

13 

12 

28 

22 

15 

15 

15 

35 

28 

20 

20 

39 

2.3 

1.15 

1.5 

2.2 

1.0 

2.0 

1.9 

1. 55 

0.49 

0.6 

0.9 

1.4 

1.5 

1.4 

1.6 

0.68 

1.05 

1.5 

1.6 

1. 65 

0.70 

1.05 

1.45 

1.6 

0.9 

2.2 

2.8 

2.6 

3.3 

2.7 

4.3 

4.3 

7.3 

9.0 

6.7 

3.0 

4.3 

4.0 

5.7 

4.3 

2.4 

2.7 

4.3 

6.8 

3.8 

2.0 

2.4 

5.3 

8.0 

2.1 

Table 6.2b The Survey models - dynamic details 

Showed 2 states, 

1.4 

2.4 

2.0 

1.6 

2.8 

3.0 

4.9 

2.7 

0.7 

1.8 

1.8 

2.6 

3.2 

5.3 

8.5 

1.7 

4.0 

2.6 

3.2 

2.8 

1.7 

4.3 

3.2 

3.3 

1.5 

0.54 0.25 F 

x 

x 

F 

0.60 0.35 xe 

0.50 0.49 0.30 C 

0.29 0.36 0.25 elF 

F 

0.62 x 

0.58 x 

0.57 0.61 0.40 xe 

0.54 0.58 0.37 e 

0.35 0.40 0.27 e 

0.31 0.23 F 

0.30 0.23 F 

0.53 0.56 0.39 xe 

0.53 0.51 0.35 C 

0.40 0.47 0.31 e 

0.22 0.35 0.26 elF 

0.32 0.23 elF 

0.48 0.50 0.35 e 

0.46 0.49 0.32 e 

0.31 0.40 0.30 e 

0.34 0.24 C 

0.36 0.38 0.29 e 

Stopped after 12 periods b 
data given for the "steadier" Cnon-RV Tauri) state 

c Lost outer zone 



51 0.5 3.0 

81 0.8 2.7 

82 0.8 2.8 

83 0.8 2.8 

84 0.8 2.9 

85 0.8 3.0 

C1 0.6 2.8 

C2 0.6 2.9 

Kl 0.6 3.0 

3.76 31.4 

3.70 30.1 

3.72 30.9 

3.71 32.3 

3.72 34.8 

3.76 31.5 

3.73 29.5 

3.75 29.5 

3.76 31.5 

1. 502 

1.472 

1.482 

1. 502 

1. 532 

1.502 

1.462 

1.472 

1. 502 

N /N 0< e a 

2 CCH 2.0 0.1 29/7 1.21 0.0009 0.09 

3 CCH 2.0 0.1 33/6 1.26 0.0056 0.11 

3 CCH 2.0 0.1 33/6 1.25 0.0046 0.10 

3 CCH 2.0 0.1 33/6 1.24 0.0048 0.09 

3 CCH 2.0 0.1 36/6 1.20 0.0040 0.12 

2 CCH 2.0 0.1 30/7 1.31 0.0029 0.09 

3 CRR 2.0 0.1 30/7 1.28 0.0037 0.10 

2 CRR 2.0 0.1 32/6 1.23 0.0030 0.12 

2 KIN 2.0 0.1 29/7 1.28 0.0031 0.07 

Table 6.3a The Comparison Models - static details 

Model P (d) PKE ~R/R Vout Yin bV Lmax LminAMbol Asym(vel) Asym(lum) ¢~ ¢; ¢£-¢! Type 

51 

81 

82 

83 

84 

85 

C1 

I C2 

I K1 

17.8 17.3 0.613 23 -44 67 67 15 1.5 

11.3 11.9 0.225 12 -24 36 27 7.8 1.35 

12.0 15.1 0.267 14 -25 39 34 8.6 1.5 

13.7 22.3 0.32 15 -32 47 37 6.8 1.8 

17.0 45.0 0.71 38 -58 96 56 3.5 3.0 

12.7 19.2 0.350 25 -25 50 55 25 0.9 

13.9 18.1 0.381 18 -35 53 37 8.1 1.65 

13.4 11.8 0.325 20 -22 42 45 19 0.95 

16.0 33.3 0.610 33 -53 86 68 14 1.7 

6.7 

3.3 

2.0 

2.0 

4.3 

3.0 

3.3 

2.3 

4.6 

3.8 

1.3 

1.3 

1.2 

2.6 

1.8 

2.3 

1.9 

5.7 

Table 6.3b The Comparison Models - dynamic details 

0.38 0.29 C 

x 

x 

x 

F 

x 

0.59 0.34 C 

0.50 0.57 0.43 XC 

0.40 0.43 0.39 C 
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Figures 6.4 to 6.37 show the light and velocity curves 
all/of 'the models, plot.ted against phase from minimum 
radius 
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6.4 THE STATIC HODELS 

For some of the models, the total number of zones used was 

surprisingly small, ""30. Despi te this small number of zones, 

the accuracy vlould seem t.o be good, since 0(, the mass rat.io 

between zones, is still qui te small, 1. 1 < ex < 1.3, and a 

repeat run for one model showed no improvement in accuracy when 

using 50 zones. This is a resul t of the low envelope mass of 

these stars. For all the models, there were about 1 - 3 zones 

in the hydrogen ionization region. An example of the relaxed 

equilibrium zoning is shoHn in figure 0.38. The hydrogen 

ionization region is the only region not well covered, but, 

Hith the artificial viscosity, 1 - 3 zones is usually 

suffic ient. In onl y a few model s Here bumps due to the zoning 

apparent (generated as the hydrogen ioni zation front slips from 

one zone to another rluring the pulsation). These bumps Vlere 

more apparent in the O.A Me models. 

In the plot of opacity through the star there is a bump at 

log T A/ 5. 0, at the base of the envelope. This is due to the 

C-O bump described in section 5. In the models using the Cox 

opacities this featUre does not appear. 

6.5 GENERAL FEATURES OF THE SURVEY MODELS 

In discussing these results there are several features to 

look at: Trends ;=md individual featUres in the calculated 

models, including a P-R or P-L-Te relation, and the comparison 

of these Vlith observations. Do VIe find similar pedods, light 

curves, and aMplitudes? For'" Virginis stars in particular, do 
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the modelled li~ht curves show the s~me dichotomy of crested 

and flat-topped, with a few looking like neither or possibly as 

if they Here halfway betHeen? Finally, is it possible to model 

individual stars with ClCCUr<1cy? 

In addition to making comparisons Hith observations, we 

can look at the effect of changing the mass, and do some 

comparison with models made using the Christy opacity formula 

and the Cox-Tabor King Ia mix. 

Classifying the modelled light curves is sometimes as 

difficult as classifying the observed ones. Although mClny are 

obviously crested, or flat-topped, or neither, <1 few seem to 

present a halfway state. For example, although the curve for 

model 15 has a pronounced dip following the first maximum, the 

following bump or shoulder is at the S<1me height as the 

maximum; thus it might easily be classified as flat-topped. 

Similar arguments <1pply to a few curves. Also, for some curves 

Hhich might be classified as X-type, there is a suggestion of a 

secondary bump, thus they might be almost of the crested 

vClriety. 

Remaining with the generCll features of the light curves, 

many of the models shoH a pre-maximum shock, like that seen in 

the CSVl test model curve. Some of the observed curves 

(particularly V741 Sgr, CZ Sct, AL Sct) shoH some evidence of 

such a shock, and it may be that the observations are in 

general insufficient to detect this feature should it be 

present, since it only lasts for a small fraction of the 

period. These shocks are frequently present in the X-type, or 

unclassified curves. In addition these curves only occur for 

P < 13 days, very much in agreement with the observations. 
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DisplayinG the mode] s on ,in fJP ci lrlGrnm (figure 6.39) He 

see grouping into crested And flat-topped types in general 

agreement with the observations, though slightly brighter and 

cooler. This is Hi thin the range of likely observational 

errors, and in any case may be corrected by an acceptable 

change in mass and/or composition. (In this diagra~, and others 

following, the same procedure was adopted as in describing the 

obsel'ved stars. Open circles ()re C-type, filled are F-type, 

those half-filled 8re e/F i'lnd circl(~s with crosses represent 

either X-types or XC-types.) 

Lower luminosity X-curves also seem to lie in the right 

place, but there is no observational equivalent of the X-curves 

at high log Ie and 10g(L/L0 )= 2.9 - 3.0. 

It can be seen that there are unstable models to the blue 

side of the observed blue edge. Given the possible errors 

associated with the observed edges, as mentioned in section 

2.2, this should not be cause for concern. Reduction of H/H0 

and/or the helium abundance could provide much better agreement 

without altering the pulsational properties too significantly 

(For example see model 51, with Hn10 = 0.5). The approximate 

non-linear blue edge Hould seem to be in agreement with the 

Horrell linear blue edge for the same mass and composition, as 

presented in section 2.3. 

The growth r8tes of the models Here generally quite f8st. 

For some of the redder models the e-folding time was only 3 or 

4 periods, though more generally the e-folding time was about 

10 - 20 periods. t1eClJ' the blue edge, Vlhere the models arc less 

unstable, this jncrc;]sr;cl to ,lbout 110 - 50 periods. For a few 
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models, although th~ ~rov:th rilte I-I"lS ]ilrrI~ and the model 

reClched full ~rovlth in obout 10 - 20 periods, there followed a 

number of perjods when the star had not settled into its final 

state, During this time, the amp] itudes and periods C1lternClted 

high and low, genel'ally only by ilpproxillC1tely ± 51:. For most 

sue h r:J od e 1 s, t his be h a v i 0 u r die d rl 0 wn, but for <1 few i t 

persisted. In particular, model 14 exhibited very strimp.;e 

behaviour. These cases are discussed later. In the case of 

model 20, the star only settled into <3 good repetitive state 

after the outer boundary radius had escaped, having reached 

escape velocity. This interesting case is also discussed 

later, in connection with possible RV Tauri behaviour (see 

section 6.12). This loss of the outer zone brings up the 

question of the effect of the outer boundary condition. The 

majority of the models were run with the approximation to 

Ps = 0 as the outer dynamic boundary condition (equation 

[3. 20b] ), Model 8 and some of the comparison models were run 

with the third choice, equation (3.20d). In the case of model 

8, use of this boundary.condition allowed the model to run; 

prev ious attempts wi th the second choice had failed. The outer 

zone had almost escaped, causing the run to halt because of 

numerical difficulties c3used by 10Vl densities. (These 

numerical problems did not occur in the case of model 20 

mentioned above, allovling it to run to completion). Use of the 

new boundary condition solved the problem, although the model 

Vias still the same in behaviour and so presumably only just 

avoiried failure. All rittempts to model rl star 3t 

10g(L/Le) = 2.8, log Te ::: ':j.n failed. 
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:Jse of a larr,er VC1] \Ie of 0(, the [,18SS ratio betl-Jeen zones, 

Al so helped here. .41 though this cC1used the model to h:we fpl-:er 

zones, it probabl y did not affect the resul ts signi ficantl y. !" 

test run of another model (number 13) ,,18S mClde Hith about 10 

fewer zones to see wt1Clt effect this mip;ht have (this model 

originally had 111 zones). No significant changes from the 

originAl model could be seen. 

We also consider the effects of changing the parameters CQ 

and <Xv. the value of C~ most used Has 2.0, al though values 

betHeen 1.0 and 11.0 seemed to have much the same effect. B€loH 

1.0 a noticeable loss in stability of the light and velocity 

curves could be seen. Above 4.0 the hydrogen ionization front 

becomes much too spread out. Similarl y, the ex ac t val ue of eXv 

had little effect, as long as O<v-f- 0.1 times the local sound 

speed. Larger values caused the viscosity to be cut-off by too 

great an ex tent. 

6.6 THE PERIOD-!'1ASS-RADIUS RELATION 

The log P-log R diagram for the model s Hi th IVP-€) :: 0.6 is 

plotted in figure 6.1.J0. The values of 10g(R/R0 ) used Here 

calculClted from 10g(L/L/D) and log 'je, to folloH the method used 

for calculating the observed P-R relation. For all types the 

P-R relation turns out to be: 

P :: ().(]111(R/F~) 
{·7?. 

Hhich 1 ies above And to the left of the P-R relations for 

tVIA<9 :: 0.6 of CSV ilnd Pohrl-Vitense et a1. (1974). This is 

explained by the larger Amount of non-linearity in the 

- 9t) -

(6. 1) 



", 
XI0- L 

134 

132 r 
,j ):>0 

130 l 
IrS) 

128 ~ / /0 
/ 

126 l-
F/ ;, / 

124 [ / ·"'0 /c 
122 I 

p.., 120 / tn 
0 t), 
rl 118 / 

116 I 
114 t 

/ 
112 ~ / 
110 ~ V/ / <Sl 

108 L / 
/ 

106 

104 

102 
0 

100 I " 

98 

96 l ~ ~ 

94 I I -L, __ -4 ____ ~ __ +_--~---L---L--~--

134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 

Jog(R/R ) Xl0-
2 

- 8 

Figure> 6. /10 ThE? JoqP-loCjJ-z rCc'lation for the sun,"('y rnodc'ls 



,-

pulsations of these stnrs. This C;->llses IoniSe: perio:is thnn 

would be predicted by linear methods, and hence a P-R relation 

higher in the P-R plane. 

The high non-linearity ;md large amplitudes probably also 

account for the models not follovling the P-R I'elation exactly. 

The different Models will have different amounts of deviation 

from linearity, and thus form a strip in the P-R plane rather 

than a line. 

By also using the results for H/HQ = 0.5 and M/MQ = 0.8, 

He find a theoretical P""}l-R ,'el ation of: 

P 
'·7Z -°7 = O. 029 ( R I R a ) (IV ~1 ) .:.z- (6.2) 

The poHers agree vlell Hith Bohm-Vitense's result. The 

difference in the mul ti pI ying constant (and the posi tion of the 

P-R relation) is probably due to the fact that both CSV and 

Bohm-Vi tense et al. used all or mostly BL Herculis variables, 

those Hith P < 3 days, in their calculations. Here He have 

restricted ourselves to stars Hith 10 < P < 20 days. 

Bohm-Vitense et al.'s relation Vias: 

"72. -0.'72. 
P = O.023(R/R$) (tune» (6. 3) 

and CSV' s theoreUcal P-H-R reI at ion : 

P = 
/.75" -0.7s" 

O. O?2(R/R0 ) (t~/t10) (6. 11 ) 

'vIhil st admi tUng the scarcity of the observational data, 

it is clear that the results for the models calculated here 

agree ~Iith the observed P-R relatione s) (also plotted in figure 

6.110) to Vlell vii thin any cstimilted errors. In the theoretical 
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P-R relation, i.t is possible' to S-2e a rlifference betHeen the 

crested and flat-topped types, 3 sr] it into tI.;o relations, but 

only by a small amount. The lack of clearly fl<lt-topped 

modelled light-curves also make it difficult to be sure of a 

differentiation in the P-R plane. However, such distinction as 

exists is in the correct direction. 

It is worth pointing out that the theoretical P-R relation 

found here is based on model s of constant mass. The separation 

of the observed c and f classes could be due to a difference in 

mass, even a slight difference sufficing to separate the 

reI ations by a significant amount. If for the purpose of this 

discussion we assume that the crested and flat-topped variables 

follow identical P-M-R relations and that their log P - log R 

relations are parallel, differing only by virtue of having 

different masses, then we may estimate the ratio Mc/MF' where 

Me is the mass of a crested variable and Mp is the mass of a 

flat-topped variable. He obtain a relation (for constant 

radius, R/R<?1) of the form, 

Pc /P~ = U~c/HF)Y (6.5) 

where Pc is the period of the crested variable of a given 

radius and PF is the period of a flat-topped variable of the 

same radius. Taking r (the pO\-ler of the mass variable in 

equations [6.2J - [6.~J) to be -0.72 \-Ie obtain an average 

resul t for the t\-lO observed P-R relntions of 

t'lc/t~F ~ 1.3 

So, for ins t Cl n c e, i f the mas s 0 f a fl a t - to P p e d v n ria b lei s 

Cl pprox imatel y D. 55 ~'0' then the m2SS of CJ crested var iabl P 

vlould be ahout r.7 t1Q. This C1~rces very \-:("~ll Vlith the 
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currently ~cceptcd average ~ass of these variables and also 

very well with the approxjmate rango of possible masses as 

defined by evolutionClry ideas (see section 2.2). /\ likely 

conclusion here is thRt the mass of a population II stal' 

ascending the Red-Giant branch determines when (and, on the HR 

diagram, where) it. Hill undergo a "hlue-loop", takin~ it int.o 

the inst<1bility strip. 111is in turn det.ermines Hhat type of 

type II cepheid it becomes, crested or flat-topped in the KHee 

definition. Of course, He are not dealing here with a strict 

dichotomy but rather with a range of possibilities, governed 

by the limiting masses of stars undergoing blue-loops that take 

them into the instability region, say those with masses 

0.5 ~ M/M~ < 0.75. At the lower end of this range the star 

leaves the giant branch rather early and gives rise to a 

low-Iuminosi ty flat-topped type II cepheid. At the other end 

of the r~nge the higher mass stars leave the giant branch later 

and produce the higher luminosity crested variables. In 

between these extremes it is possible to get the stars of 

doubtful classification, having slight characteristics of both 

ki nd s. 

NOH looking again at the theoretical models we have to 

bear in mind the fact that those plotted are all of the same 

mass, 0.6 M~. It is easy to imagine a wider spreading of the 

C- and F-types if a IOHer mass had been used to obtain F-type 

models and a higher mass to obtain C-types. The only result 

obtRined for a lower mass (0.5 /·1(:), model 51) in fact turns out 

to be crested, but that is because the luminosity and effective 

temp0rnture were deliberntely chosen to compare with model 18 

(i.e. Ylith ,] C-type lir;ht CIJrI/P). The hir:h?: mass stars RIl' 

nIl of n.r M0 , at the ed~p of the ncceptable mnss range, nnd 
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possib!y outside it. It is si~nific2nt tb2t most of the li~ht 

ClJrVPS for these morlels co not really resemble either C- or 

F-types. It may be that they are of an unrealistic,311y high 

mass, and so in this period range do not produce li~ht curves 

that are observed. 

6.7 THE LIGHT AND VELOCITY CURVES 

Turning our attention to the features of the light and 

velocity curves we first look at their amplitudes. In order to 

compare the computed light amplitudes with observed ones it is 

necessary to translate the bolometric magnitude amplitudes 

ct-HboL) into visual magnitude amplitudes CD-M v ). This relation 

is not easy to define, being dependent upon the variation of 

<B-V)o during the pul sation. An approx imate idea can be 

obtained if we assume limits to the <B-V)o variations of these 

stars of about 0.4' to 0.9. This would give, for most of these 

stars, a correction to.6.Mbol. of about +0.2 to '-1-0.4. So we can 

say 

,l\f-1v C:!. j:'\l'bo L -I- (() • 2 f---7 O. U) 
C 6. f) 

For the O. 6 t~CJ models the range of values of 6t~bol- is from 

0.49 to 2.6. 1·1ith the adjustment above we would get a likely 

range for bt-1v of about 0.7 to 3. o. The lowest amplitudes 

(which are for classless curves of stars near the blue edge) 

agree well with the lowest observed visual amplitudes, which 

are 81so for classless light curves. Amplitudes 8S lClrge as 

3.0 are not observed in the 10 - 20 d?y types II cepheids, the 

largest bein?, """1.5 mag. Those f10dpls with large light 

;H'1pliturles fre<1uently shovl CJ pronounced "dip" i.n thE' 1 ir;ht 
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curves, just hefore the rise to fll8xir:1llm. The CClUse of this dip 

is un known, and mayor m8Y not be 3 "real" feClture. However it 

does increase the ~mplitude of the light curve by considerable 

amounts (maybe even douhling it) And is sometimes quite 

sensitive to the smoothing of the light curves, indicating 

variation on qui te a small time scale. However, whether or not 

this dip is ignored, there is still a discrepancy between 

theory and observation here. A similar dip also occurs in 

model C2, although it is not large enough here to affect the 

amplitude. This may indicate that it is not an effect of the 

opacity, but more models using the Los Alamos opacities ... Iould 

be required to check this. 

The probable cause of the difference in amplitudes of the 

theoretical and observed models is the assumption of no 

convection used in the modelling. The models that shoH large 

light amplitudes are those at the long period end of the range, 

also lying to the red side of the instability strip. This is 

exactly where convection Hould have most effect (see section 

6.1) and He are almost certainly seeing the effects of ignoring 

it for some of these stars. \-That effect convection might have 

on the aforementioned dip in the light curves is not known, but 

it might calm the oscillations of some of these redder models, 

which were very difficult to build because the amplitudes grew 

to be so large. 

There are two major trends in the amplitudes of the light 

curves, increasing ,6t~bol. wi th period, and increasing bJ~boL as 

the effective temperature decr'eClses. The latter is to be 

expected because of the increased driving 3S the red edge of 

the instability strip i~ ~ppro3ched. ~tnce period incre2ses 
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thi s \-my as well the former tren~J fOll Ol-'S. There is no 

particularly obvious trend with respect to changing luminosity. 

The range of velocity amplitudes lies between about 40 and 

90 km/s. The previous 8rguments Clbout the lack of convection 

still apply in the case of the velocity aMplitudes, so some 

overestimation of the amplitudes may have occured. TIlere is 

also the multiplying factor of 24/17 to be applied to the 

observed velocity curves to correct for line of sight and 

limb-darkening effects. This is nlmost academic because of the 

paucity of observed velocity curves. In the case of W Virginis 

this gives an amplitude of 78 km/s, and for M12 No.1 and H10 

No.2 we get 42 l<m/s and 119 km/s respectively (note that these 

two curves are rather poor). The velocity amplitudes therefore 

lie in the correct range, but no firm conclusions can be made. 

Like the light curves, there is a tendency towards greater 

amplitudes at longer periods and cooler effective temperatures. 

As expressed in section 2.2 the most important features of 

the observed light curves are the shapes, and the bump and 

phase details. These details can also be measured for the 

calculated models, more easily than for the observed curves. 

In figures 6.41a and b the phases ¢~ and <Pb-</J~ are plotted 

against period, luminosity and effective temperature for the 

survey mod el s. For C-t ype mod el s \-,e find a meiln 

¢t :: O. LI9 .:!: 0.04 8nd for the F or e/F curves the mean ~6 is 

about 0.36 ~ 0.04 (comparing with 0.44 .:!: 0.03 and 0.34 ± 0.05 

respectively for the observed light curves). 
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If ),c 
The bf'st ph;]se diff~rence t,Q :'If'?sure is prob2bly ¢b-i{J~, 

the phase of the secondary bunp on the U~ht curve minus the 

phase of maximum light. For the C-type curves an averar,e v21ue 

for ~b -Pt~ of 0.33 :t. 0.04 is obtained. For the F Clnd 

C/F-types ft-¢~:::: 0.24 ± 0.02 (for just the F-types this 

might be slightly lower, ~ 0.23). For the observed curves we 

found ~b -¢~ ::: 0.29 ± 0.02 for the crestpd curves and 

! j,.f ¢;b - "Pm::: 0.23 :t 0.02 for the flat--topped curves that have 

d iscernable secondary bumps. This is really very good 

agreement with observation, within either the estimated 

theoretical or observed error linits. It WClS decided to use 

eft -p~ as a measure of the bump because ¢~ (phase of mean 

light on the ascending branch) can be very difficult to 

determine from observational data, since it is very susceptible 

to subjective decisions and errors in the observations (compare 

light curves for the same star produced by different 

observers). ¢;~ is also susceptible to these errors, but to a 

lesser extent. As for the general shapes of the light curves, 

it looks as though the crested types observed curves can be 

reproduced very Vie 1 1 , and in the variety observed, by the 

C-type theoretical curves. The flat-topped curves cannot be 

reproduced as Vlell, but curves in betVleen, the elf-type curves 

seem also to be Vlell represented in the modelling. 

The inability to faithfully reproduce well the f-types 

curves is probably due to the omission of convection as a 

method of energy transport, discussed elseVlhere. At the 

stellar parameters likely to produce good F-type curves the 

models begin to fail for the reaSons given previously (section 

6. 3) . 
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The calculated velocity curves eRn he lookerl at in the 

same v18y 8S the 1 ight Cllrves, \·Ii th the exception of the 

compnrison with observC!tion. For the ohserved velocity curves 

that exist the general conclusion (section 2.2) is thnt the 

curves are highly asymmetric (discontinuous). This feature is 

generally found in the calculated curves as well. Secondary 

bumps are present, but there is not always Q clear velocity 

bump vlhen there is a light bump. This usually occurs Hhen 

pi - p~ is small, for a elF or F -type curve, and any second ary 

velocity bump is likely to coincide Hith the velocity maximum. 

TIle difference 1>[- ¢t is a varying quantity Vii th (In 

average value of ,v 0.03. In their work on FlL Herculis 

variabJ es, es V founo pt - ¢t ~ 0.0, so there Hould seem to be 8 

significant difference here. It is probably too simple to 

treat these st(lrs as merely long period extensions of the RL 

Herculis variables. 

The causes of the secondary bumps on the light and 

velocity curves are discussed in section 6.9 

6. 8 TRENDS IN THE LIGHT A ND \IE LOe TTY CUR VES 

The trend s of some Aspects of the] ight curves with 

chanr,ing luminosity clOd effecti ve temperature are discussed 

under the section decllinr; with thnt aspect. Here vie discuss 

the tremls in thp shapes of the lip;ht curves, Vlhich tnc)urle the 

secondary humps and hump phases . 
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In the observational data we s~w the dichotomy of F and 

C-type light curves and contended that there might be a 

continuous, though possibl y surlden, progression betvleen these 

types as 10g(L/L0 ) and log Te were altered. In the 

theoretically modelled light curves we see a much firmer case 

for this contention. 

Figures 6.42 - 6.52 show the trends in light curve for 

various constant values of log(L/L€)) C'lnd log Te. If we take (1 

line of constant luminosity (for instance the 10g(L/LQ ) = 2.9 

series) and reduce log Te we may be seeing a change from X-type 

light curves, through XC, C, and elF all the Hay to F-type. 

For extremes in luminosity this may not be the case. For 

log(L/Le) < '" 2.8 the luminosity is too 10\-1 to produce crested 

curves, and for log(L/Le) > -v3.1 it maybe too high to produce 

flat-topped curves. \·le also see here a tendency for ¢: -cp~ .~o 
decrease, suggesting that the merging of the light maximum and 

the secondary bump may produce the flat-top in the F-type 

curves. 

Hhen looking C'lt lines of constant effective temperature, 

similar trends are seen. For loVi log Te ("" 3.73 - 3.74) as 

log(L/Le ) increases the light curve retains the features of an 

F-type curve, though it may develop a slight crest at the 

highest value of log (L/L<!») . At higher luminosity the curves 

may well become crested, but here the periods stretch beyond 

the range studied, and the models become harder to produce. 

These stars (maybe the RV Tauri varl?bles) could be the subject 

o f a 1 ate r stud Y • 
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Figures 6.42 to 6.52 show the trends in the light curves for 
various constant values of logL/LG and logTe. Phase is measured 
from minimum radius 
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For hj~~cr v21u D s of lo~ Te (> ~.75) it is not clear that 

F-type light curves exist at all, the trend as lo~(L/L~) 

increases may be from X or XC-type to C-type. Certainly at 

high luminosity (log(L/L o) > ~ 2.9) these models produce light 

c urv es that <lre ver Y cl earl y crested. Tn fac t, for mod el 25 

there is a very clear crest but the secondary bump has become 

an extended shoulder. 

The phases (from minimum radius) of the m8ximulTI and 

",.t f secondary bump ( Y'r'1and ¢;b) both generally decrease as 10g(L/Le) 

increases (at constant log Te ), Hhile the difference rpb-¢~ 

decreases. 

Looking at the overall trend s (see figures 6. lIla and b) \-Ie 

see that at higher 10g(L/Le) the curves are more likely to be 

crested, this being caused by the higher luminosity Hhich 

creates a greater driving and a higher asymmetry. Also at 

higher 10g(L/L@) ~i-<b~ is slightly smaller, and the secondary 

bump follows sooner after pr imary max imum. Superimposed on 

this is the more obvious trend for ¢J£ -¢~ to decrease as 

log Te decreases, creating F-type curves if the luminosity is 

not too great. If the luminosity is high, the crest is simply 

too high for the secondary bump to be of sufficient height to 

merge Hi th it and create the fl at top. So vie see no F -type 

curves at the higher luminosity range of the are8 considered. 

This is borne out by observations. 

The phase ¢~ decreases Hi th increasing period, but ~t -¢~ 
only shaHs this tendency slightly. Something definitely not 

seen here is the secondary bump travelling backHards in phase 

as the period increases and crossing the maximum to end up on 

the ascending branch of the light curve, an effect seen very 

- 109 



cleClrly in the f'L H<orcul is v2riClh~ps. Tn other vloros the 

models, like the ohserved sUlrs, do not foJ.low a Hertzsprung 

progression (2S is seen in classical cepheids). 

6.9 THE DRIVING REGIONS 

T11e driving in most types of variBble stars studied up to 

nOH has been almost entirel y in the hel ium II ioni zation 

region, caused by one of the methods described in section 2.1, 

or by a combination of them. In the models presented here we 

begin to see the hydrogen-helium I regjon taldng a significant, 

if not dominant, role in the driving of the pulsation. Looking 

at the general trends He see that as luminosity increases and 

effective temperature decreases the driving from both regions 

increases. As log Te decreases, the driving from both regions 

increases quite rapidly, probably without limit because of the 

neglect of convection. As log(L/LG) increases both regions 

produce more driving, but the hydrogen/helium I driving region 

increases in strength faster than the helium II region, which 

appears to level off in poI-fer after about log(L/Le) = 3. O. For 

example, in model 23 (log(L/L0 ) = 3.1, log Te = 3.16) the H/He 

I driving region's peak is about three times that of the He II 

driving region (figure 6.54) Figure 6.53 shows more normal 

He II driving. Note that the large width of the H region is 

mainly due to spreading of the shock front by the artificial 

v iscosi ty. 

These results seem to indicate that the hydrogen/helium I 

ionization region may contribute a significant if not major 

portion of the driving. However, the in~lusion of convection 
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as a possible means of energy transport might reduce the amount 

of H/He I driving considerably, especially for the redder 

stars. The brief investigations of convection in static 

stellar envelopes carried out in section 6.1 indicates that, 

for instance in model 23, convection probably carries about 30% 

of the flux in the H/He I ionization region. Convection of 

this order will certainly reduce the driving, and may well 

eliminate it entirely. However. H/He I driving is probably 

very significant in some of these stars, and undoubtedlY grows 

in importance as the effective temperature drops and the 

luminosity rises. RV Tauri and Mira-type variables are the 

likely places to look for stars truly driven by the H/He I 

ionization region. So the driving region in these stars still 

appears to be the He II ionization region, though in some cases 

wi th additional driving from the H/He I ionization region. 

Hhat is the mechanism behind the driving? Section 2.1 

discusses three main driving mechanisms, but which applies 

here? The mechanism seems likely to be the same for both He II 

and H/He I driving. In both cases the driving peak usually 

lies just inside the ionization peak, at a slightly higher 

temperature. The probable mechanism at Hork here is the 

x-mechanism, as evidenced by the large temperature variations. 

Some results were obtained on the driving of models, using 

variations in mass and in the Cox-Stewart opacities. 

Comparisons with these results are presented in section 6.13. 
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6.10 ANf\LYSIS OF THE tlODELS - THE CAUSES OF THE SECONDARY 

BUl'IPS 

In this section the history of the pulsation in the 

stellar envelopes is considered in an attempt to find out the 

causes of various features of the light and velocity curves, in 

particular the cause of the secondary bump. It is the C-type 

light curv~s that most obviously show this bump similar to the 

secondary bumps in BL Herculis variables (section 2.2 and 

references therein), though not precisely the same. 

The secondary bumps in the BL Herculis light curves have 

been explained in tvlO ways, Hhich may be equivalent; the 

"echo" model of Christy (1968) and the resonance model of Simon 

and Schmidt (1976) (see section 2.3). The results of CSV Rnd 

others confirm that the phase of the secondary bump is related 

to the value of P:z /Po ' around the resonance P.z./Po = 0.5, however 

CSV point out that if the resonance idea is correct, then there 

should be similar progressions for tHO other resonances of type 

II cepheids, P:<,-/Po = 0.33 at Po ~ 14
Gi1 

and PI/PO = 0.5 at 

Po -;: 17d , and there is no evidence for such progressions in 

the observations. 

In the calculated models described here there is some 

evidence of a progression in the secondary bumps, although it 

is not as pronounced as the Hertzsprung progression in the 

classical cepheids or the progression in the BL Herculis 

variables. Also, no bumps are seen on the ascending branches 

of the light curves, the extent of the humps bein~ from about 

0.2 after light maximum to about r.LI after lir,ht maximum. So 

though <l progression does exist, it is not convincinl<, evidence 
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for the reson~nce ide~. 

Another way to ascertain the cause of the secondary bumps 

is to examine the li~ht and velocity histories of the models. 

Here evidence of the Christy "echo" phenomenon c~n be looked 

for, and this also provides a test of the Carson opacities. 

The CSV models clearly support the Christy idea for the origin 

of their bump; however, usin~ the Carson Dpacities KCH found 

the bump to be a local phenomenon (see section 2.2), confined 

to the surface layers of the star. For the C-type light curves 

produced in this study, examples of light and velocity 

histories are plotted in figures 6.55 to 6.59. 

Model 18 shows the reflection phenomenon most clearly, 

along with model 22. In both of these, and to a lesser extent 

in the other models of this type, a pressure wave seems to be 

generated in the He II ioni za tion zone. Thi s wave travel s 

inwards, reflects off the (adiabatic) core and arrives at the 

surface during the next period, creating the secondary light 

and velocity bumps. The velocity bump precedes the light bump 

in phase, except for the very topmost surface layers (cClused by 

the "freezing·oin" of the luminosity vari8tions in the 

atmosphere): that is, the luminosity variation of the outer 

layer is the same as that a few zones deep (it travels Clt the 

speed of light), but the velocity variation lags in time (it 

travels at approximately sound speed). However, the velocity 

variation in the outermost layers of real stars is probably not 

usually observed. In these cases the bump does not seem to be 

atmospheric, and the Christy echo phenomenon is its cause. 

However, this does not rule out the n~sonance idea of SirlOn ,md 

Schnidt, which may be equivC1lent. Line(]r study of these morlels 
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in conjunction with this Hork should Cl!1Sl-Ip r this question. 

Wh~t of the Models that do not show a secondary bUMp? 

Model 16 is one of these (figure 6.60), although its 

classification as XC-type indic8tes that there is an incipient 

bump on its light curve. It is one of the shorter period (12.5 

days) models that are neither C nor F-type. In the velocity 

history we see a weak bump generated by the Christy echo, but 

this only generates a late shoulder in the light curve rather 

than a bump. Incidently, this model also demonstrates another 

occasional feature of models built with the Carson opacities. 

A low-lying zone (in this case the second from the bottom) 

shows a reversed luminosity behaviour, which seems to be caused 

by the C-O bump of the Carson opacities (see section 5.2). 

This does not invalidate the opacities, as its overall effect 

on the model seems to be negligible. 

Model 16 is an example of the first appearance of the 

secondary bump at short periods. As the period increases the 

bump generally moves backward in phase, forming first the 

C-type models. 

In these models the bump is present in both the light and 

velocity curves, but there are models for which there is a 

clear secondary light bump, but apparently no secondary bump in 

the velocity curve. Models 19 and 2~ are examples of this. 

Closer examination of the velocity histories (figures 6.56, 

6.58) show that the Christy echo does indeed give rise to 8 

bump or potential bump, but it is very clos~ to the velocity 

maximum, and is 8lmost "svl8lloVICd". This seems to be caused 

more by a later m8X imum than an e8rl ier bump. The rise to 

velocity maximum is less steep th8n normal, causing this 
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effect. 

Turning our ~ttention to the F-type models, the problems 

are different. Here He seeK to support the idea that the 

secondary bump may still exist, but has ~er~ed with the maximum 

to produce the flat-top observed. Also the fl~t-topped curves 

were very difficult to produce. A detailed study of the models 

might aid understand ing of why this is the case. 

Model 8 is probably the best example of this idea. 

Unfortunately it is not a very stable model. It was difficult 

to produce, needing gentle l1coaxingl1 to reach anything like a 

stable condition. Even then only 12 periods were obtained. It 

may also show RV Tauri behaviour, increasing its problems (see 

section 6.11). In figure 6.61 we see that the Christy 

reflection fades out, not appearing to produce a bump. 

However, if it had managed to produce one it seems likely tha~ 

it would have been close to the velocity peak. The suspicion 

of RV Tauri behaviour is evidenced by the next period shown, 

which does not have much of a wave travelling down to be 

reflected. This behaviour \-las maintained for several periods. 

In the luminosity behaviour for this star \-le see considerable 

evidence of the problems associated \-lith modelling this star. 

In the first period He see a spi ke on the down\-lard side of the 

curve, \-lhich is probably caused by numerical problems. This 

spike repeated at irregular intervals, always in the same 

position. There is some eviclence in this history of a 

secondary bump on the light curve, and if it does exist it is 

very close to peak light, almost completely merged \-lith it. 
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Model P is probahly the closest to a flat-topped curve as 

observed. However, in [:lodel 14 there is another possible 

example. This model (see section 6.12) seemed to pulsate in 

two separate states. The stClte shovln in figure 6.62 is the 

non-al ternating, per fectl y repeatable state. In the velocity 

history \-le again see that the Christy "echo", if it results if 

a bump at all, gives one very close to the maximum velocity, 

creating a broader velocity peak rather than a secondary bump. 

This star \-las a little easier to model and shows the reflection 

of the pressure \-lave very clearly. t31 though this model's light 

curve is not a true F -type, its second ary bump is very near 

maximum light and is of approximately the same height. 

Continuing the detailed look at some features of the 

models there is another particular feature to be examined. 

Some of the models (notably numbers 9, 11, 16) show a 

pre-maximum shock in the light (and velocity) curves. Some 

observed light curves also appear to have this shock in some 

form. It is the longer period analogue of the pre-maximum 

shock seen in CSV's BL Herculis model. The shock seems to be 

generated in the hel ium II ioni z::Jtion zone, r.Jaybe as a 

reflection of the pressure wave that has travelled inwards, 

after being reflected from the stellar surface at velocity 

max imum. 

Model 20 proved to be an interesting model. It was not 

repeatable in its pulsations (having an almost RV Tauri-like 

alternation) until it threw off its outer shell; the rest of 

the model then settled into a regular, stable, repeatable 

pulsation, rather like that of model 1 tl (state 2). In figure 

6.53 we see the outsirle zone with an almost constant 
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(increasing slightly) surf{lce velocity, vlhich is greClter thCln 

the escape velocity of the stur. The problems with the model 

prior to this escape seemed to be caused by the irregular 

"returns" of the outer zone to the rest of the star. Hhen 

these returns were biperiodic the alternating RV Tauri-like 

behaviour was obtained. The veloctty history of this model is 

another example in which the Christy echo returns to the 

surface very close to the velocity maximum. 

Another oddity appears in model 1, and also to a 

considerably smaller degree in some others. In and near the He 

II ionization zone both the velocity 8nd luminosity variations 

are rather strange. At one point here, the light and velocity 

variations are oscillating twice in one period (figure 6.64). 

this might be some sort of "almost harmonic" behaviour, an idea 

that would need further work (Hith some linear studies) to 

confirm. In fact, the linear studies of Horrell (1982b) have 

suggested that some higher luminosity stars show a decrease in 

ER/R at one point (going out through the star in mass) though a 

true node is not present. This might in some Hay be connected 

with the behaviour seen here. 

Detailed histories for the models Hith different masses or 

different opacities Here also obtained. The differences 

betHeen these· and the standard survey models are presented in 

section 6.12. 
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6.11 tlODELS OF OBSERVED STAPS 

In their 1981 paper, CSV produced a series of models of 

type II variables with periods less thAn 10 days, but they also 

produced a model of ,m individual star, BL Herculis. This 

model was very successful in imitating the light and velocity 

curves of the observed star. Are ,my of the models pI'oduced in 

this survey good candidates for models of pal'ticular observed 

stars? 

In general the survey models seem to have produced a good 

selection of C-type light curves, covering the variations seen 

in the observations. One of these models, number 13, seems to 

be a good candidate for a model of CS Cas, one of the field 

variables observed by K.,'lee, and classified as crested. The 

parameters known for both the model and the star are listed inG 

table 6.4, and their light curves are plotted in figure 6.65. 

In table 6.4 the visual light amplitude (c.Hv) quoted for model 

13 is estimated from fJ!-~Jx4, by adding 0.2 mag. 

The discrepancies in the quantities Asym(lum) and ¢b can 

easily be ascribed to the difficulties in measuring these 

quantities, especially from the observed curve of CS Cas. The 

light curve may seem to be well defined but this is not so, and 

small errors c'an create large chClnlSes, especially in Asym(lum). 

Hhat is impressive about this correspondence of model and 

star is the overall similarity of the light curves in 

conjunction with the closeness of periods and positions on the 

HR d iagra:n. 
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Parameter Model 13 CS Cas 

log(L/Lo) 2.9 2.91 

log Teff 3 075 3.74 

P (days) 1406 14.7 

liM 1.8 1044 I v I 

.Asynuuetry (lum.) 3.2 2.0 ! 

cf;~ 0.40 0.48 

~ -¢~ 0.27 0.25 

Table 6.4 Comparison of Hodel 13 and CS Cas 
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Phase 

Figure 6.65 The light curves of model 13 and CS Cas 



Another good C-type model to stRr correspondence is that 

betHeen model 1 Rand FI Sct. The comparable p8r8meters are 

~iven in table 6.5, and their light curves are plotted in 

figure 6.66. 

Here the corr e spondence i s not 8S [;ood as that between CS 

Cas and model 13, in particular the periods and visual light 

amplitudes show greater disparity; still, the overall 

similarity of model and observed st8r is very impressive. 

The similarity of C-type model light curves and crested 

observed light curves is in general close and impressive. 

Un fortunatel y, the same cannot be said for the F -type model s 

and flat-topped variables. Probably the best correspondence 

here is betHeen model 14 and AL Sct. The correspondence is 

nOHhere near as good as that for the C-type curves. 

The survey models have also shovm that it is possible to ! 

model those stars a t the 10H period end of the range (10 to 13 

days) Vlhere light curves show no secondary bumps and are not 

flat-topped. Ai feVi f:lOdelled light curves show this lack of 

features, but model 10 shows best the similarity to the 

observed star AL Vir. The light curves are plotted in figure 

6.67. The comparable featUres of model and star are given in 

tabl e 6.6. Un fortunatel y, since AL Vi r is not a C or F -type 

star, it is difficult to be sure of the estimates for 

10g(L/Le ) (see section 2.2). 

The models representing Kwee's crested variables (along 

with those representing the fe a tureless light curve stars) show 

an excellent modellin~ of the light curves, se em ingly as good 

as CSV's model of BL I-Ierculis. The <lttempts to model the 
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Parameter Model 18 FI Sct 

log(L/Lo) 3.0 2.92 

log Teff 3.76 3.744 . 

P (days) 15.9 14.9 

AM 1.8 1.19 
v 

Asyrnmetry( lumo) 2.6 1.8 

¢l 
b 

0 0 47 0.42 

cp~ - r/;:u 0,31 0.29 

Table 6.5 Comparison of model 18 and FI Sct 
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Phase 

Figure 6.66 The light curves of model 18 and FI Sct 



Parameter Model 10 AL Vir 

log(L/Lo) 209 2.5 

log Teff 3.78 3.74 

P (days) 10.2 lO'H 
l\M 0.8 0.82 v i 

Asymmetry (lum.) 1.8 1.45 
• _ .. - -- .. ~.-.- ...... ----~ ... -

Table 6.6 Comparison of model 10 and AL Vir 
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Figure 6.67 The light curves of model 10 and AL Vir 



flat-topped light curves were less successful, but showed 

promise, and could probably be improved by the inclusion of 

convection and (perhaps) by using an improved external boundary 

condition. 

Because of the lack of obsp.rved velocity curves, it has 

not been possible to compare those produced by the models with 

observations. In general terms the high asymmetry of the model 

velocity curves does seem to be what is needed, but more 

observations are required here. 

6. 12 RV TAURI AND OTHER "PECULIAR" BEHAVIOUR 

In carrying out this survey of the population II 

instability strip some "peculiar" behaviour might be expected 

in a few models, Hhether it be numerical instabilities or a 

real physical effect. For these stars in particular we might 

expect to see some signs of so-called RV Tauri behaviour, or 

behaviour similar to that seen in the RV Tauri variables. RV 

Tauri stars show "period-doubling", caused by the alternation 

in the light and/or velocity curves of larger and smaller 

amplitudes, and possibly longer and shorter periods. The cause 

of this behaviour in these stars is not known. 

In the W Virginis variables we do see small changes in the 

periods and amplitudes that seem to be more or less random in 

time. In the models produced for the survey are either of 

these features seen? 
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and 24 best exhibit some sort of RV TRuri behaviour. Tn the 

latter three it is really only incipient Clnd ~ost easily seen 

in the velocity curves. In model 14 we see a clear 

demonstration of the alternation of periods. But this model 

also provides another puzzle. Luring the time the model Has 

studied (Clpproximately 50 periods) it changed from the RV TCluri 

behaviour to a more normal lIsingle period ll behaviour for n~out 

8 - 10 periods, and then back again. This switching occured 

roughly every R - 10 periods, the switch from one mode to the 

other taking just 3 - 4 periods. Figure 6.68 illustrates the 

switch from normal behaviour to the RV Tauri behaviour. The 

period of model 14, in its single period behaviour, was 16.0 

days. In its RV Tauri mode the period was 32.0 days, made up 

of one period of "",19 days and one of ,.,.,13 days. There are 

several questions presented by this model. Firstly, when in 

its RV Tauri state, is it really exhibiting what is seen in the 

observed RV Tauri stars, or is it alternating in some other 

way? Then He must ask what causes this behaviour, and also 

what causes the alternation between two types of behaviour. 

Hhen in its RV Tauri state model 14 shows an al ternation 

in period, a change in the shape of the light curve (the 

shorter period is F-type, the longer period is C-type), and an 

alternation in the amplitudes of both the light and velocity 

curves (from 1.0 mag. and 70 km/s to 2.3 mag. and AO km/s). 

These changes seem to be characteristic of most observed 

RV Tauri behaviour (see, for example, J.P.Cox 1974; 

P3yne-Gaposchkin 1951). The major difference is that observed 

RV Tauri vClriables have periods greClter than 20 dClyS (that is 

the time for one oscillation, not the period of exact 
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repetition). 50 what is seprl in this (an:! other) r::odels may bp 

RV Tauri behaviour, but it ~ight also hp caused by the method 

of modellin~ used, and merely look like RV TclUri beh,wiour 

without having a real physical counterpart. 

Vlhat seems to be the cause of the behclViour in the models? 

To help with this, two other models can be examined, numbers 20 

and 24. Both sho\-1 RV Tauri behaviour as described , but to a 

lesser extent. In both of these models, and in the RV Tauri 

state of model 14, the outer radius boundary is not well 

connected to the rest of the model; in fact it does not 

"return" once per period, but once every second period. On the 

return of the outer zone a larger velocity amplitude resul ts. 

To be precise, in model 20 it is not the outer zone that is 

doing this, but zone N-l, since the outer zone has by now 

escaped the rest of the model. 

Model 20 presented a very interesting case. The model 

reached full growth quickly, but was still irregular in its 

pulsation, with no consistent periodicity. After some time it 

settled down into the more or less reliable behaviour shown 

here. On examination it \-Ias discovered that, whilst showing 

unreliable behaviour, the outer zone was only tenuously 

connected to the rest of the model, and was exhibiting wildly 

irregular oscillations. Eventually this zone "escaped", ""ith 

its outward velocity exceeding the escape velocity. At this 

time, with the "disturbance" of the outer zone gone, the model 

settled down. 
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The velocity history for model ?0 (fj~ure 5.63) shows the 

outer zone heClcl inp; stead i 1 Y Clvl8Y at 8hove esc8pe veloc i ty. 

Thi s seems to shoVi that the outer zone h;,s qui te an effect on 

the light and velocity curves of the model. Possibly,:in the 

case of the outer radius returning every second period, it 

might cause RV Tauri-like behaviour. All this of course is a 

possible explanation only for the events seen in the models, 

not in tOeal stars. w these descriptions have physical 

analogues, and is it reasonable to expect these events to occur 

in real stars? Firstly the loss of the outer zone is obviously 

" mass loss", but this is equally obviously a very crude 

description of any real mass loss that might occur in these 

stars. It is known that mass loss does occur in red variables, 

and might occur in RV Tauri stars. 

Secondly, in reference to the RV Tauri behaviour, we might 

have a thin atmosphere tenuously connected to the envelope of 

the star. As the star pulsates, this 8tmosphere is pushed and 

pulled around, but since the connection is loose it can only 

follow the motion in an approximate manner. It will soon lose 

synchronization and wobble around in a less certain way. 

Hhether this atmosphere ¥lould have enough energy to affect the 

rest of the star is another matter. v~at might be happening is 

that another oscillation of longer period is superimposed on 

the star, affecting the main star 8nd the atmosphere (the 

latter to a gre8ter extent because of its 10Vier inertia). To 

examine these possibiljties a linear '3nalysis would be 

required, possibly even '3 non-radial pulsation analysis to look 

at oscillations in a tenuous 8tmosphere. 
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To conclude, it appe2rs th~t the behaviour might well be 

"real", but hir,hly over-estimated becAuse of the n8ture of the 

model, which WAS not set up to study these effects. A more 

specialized modelling technique Diming at reproducing these 

effects might be a future step in this study. 

6.13 THE EFFECTS OF VARYING MASS AND OPACITY 

To gain more in formation About the se star s and about the 

effects of varying some parameters, nine fUrther models, in 

addition to the survey models, ,-Jere produced j one for a mass 

0.5 H0' five for a mass of 0.8 H(?), and three using the 

Cox-Stewart opacities instead of the Carson opacities. Of 

these last three, two used the Christy formulation of the 

Cox-Stewart opacity (Christy 1966a) and one used the opacity 

table given for the King Ia mix (Cox and Tabor 1976). 

For model 51, with M/M0 = 0.5. the other parameters used 

were log(L/L 0 ) = 3.0, log Te = 3.76. Comparing this with 

model 18 we find little difference, except of course that model 

51 has a longer period. Comparing 51 with a model of similar 

period, for instance model 19, we find even less difference 

between them. It seems that the main differences that using 

M/Mg = 0.5 would produce would be in the position of the 

instability strip. This is also discussed in section 2.3, 

where arguments for using tVM0 = 0.6 are discussed. BasicallY 

we see that using M/M0 = 0.5 Ylould most likely not alter the 

survey results significantly. 
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The five models produced using rV~~0 = o.e give a different 

picture. The instability strip for models of 0.8 Mo Vlould be 

in entirely the \-Ironf, place. For instance at 10g(L/LQ ) = 3.0 

and log Te = 3.76, Hhere Vie Hould expect to find a crested 

light curve variable, we get the light curve of model 85. In 

none of the five models of O.R Mo do we see a crested light 

curve, nor do we see a KHee flat-topped curve, al though the 

light curve of model R4 mi.ght be called flat-topped. The 

general conclusion Hould be that O. 8 ~10 is too high a mass for 

the W Virginis variables in this period range, except possibly 

for any "unusual" stars that might lie in the same general area 

on the HR diagram. Another argument against this mass is that 

the He II driving is significantly greater, giving amplitudes 

that are far too large. As seen in section 2.2 the 

incorrectness of this mass is not surprising for other reasons. 

These six mod el s shoH that the choice of t1/~ = 0.6 Has 

good. The masses of the Vi Virginis variables \.[ill vary, and 

may vary so as to produce the tHO KHee classi fications (as argued 

in section 6.6) but they will very likely lie near 0.6 Me. 

This project has used the Carson opacities as part of its 

atomic data, in preference to the earlier opacities of Cox et 

al. of Los Alamos, and a comparison of these opacities is in 

oreler. To this end three models were calcul(lted using the Cox 

opacities, in two forms. THo Vlere calculated using the Christy 

formula, and one Has calculated using the Cox and Tabor (1976) 

opacity for the King Ii1 mix (Y=0.299, Z=O. 001). 
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Firstly we consider the model K1, which used the King J~ 

op8city. This has stel13r pClrClmeters of l/n~0 = 0.6, 

log(L/Le ) = 3.0 and log Te = 3.76, the saMe as model 18. A 

direct comparison between these models is not possible because 

the King Ia mix has 30% helium to the 25% of the Carson opacity 

used. The periods are alMost identical (16.0 days to 15.9 

days), but the light and velocity curves are very different. 

The light curve of model Kl is very asymmetric, showing a 

very rapid rise to light maximum, and also does not show the 

same crested light curve shClpe of model 18. It does not 

resemble the Kwee observed light curves very well at all in 

fact. This could be due to the increased helium abundance 

(which Hould give greater driving and thus higher asymmetry), 

or to the Cox-Tabor opacity. The model's Hor\< function does 

show a greater He II driving, and very little H driving. 

Another comparison for these stellar parameters cannot be 

found using Cox opacities with 25% helium, because the model 

would be blueward of the blue edge for these opacities (see 

section 2.3). HOVlevcr the comparison can be made at other 

values of 10g(L/Le) Clnd log Te for 25% helium and using the 

Christy formulation of the Cox op8cities. Models C1 and C2 do 

this. 

Hodel C2, at log(L /Le» = 2.9 and log Te = 3.75 ShOHS 

very different behaviour from model 13 Vlhich has the same 

stellar p8rameters, differing only in the opacity used. The 

period is significantly different, 8S are the light and 

velocity curves. The light curve of model 13 is undoubtedly of 

the crested variety, and while the light curve of morlel C2 hClS 

a second8ry bump it is merely incipient and considerably lClter 
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in phase. Tn fClct Clt similclr periods in tr.e survey models, Cl 

light curve like that of model C2 is not seen, and such a light 

curve is also not seen amongst the available observed stars. 

On comparing the detailed velocity histories of these two 

stars (figures 6.55 and 6.69) we can see only some differences 

in the velocities. The reflected Christy "echo" is weaker 2nd 

does return to the surface a little later for the Cox opacity, 

The asymmetry of the velocity curve is greater for model C2, 

having a faster rise to max imum. Hhy this shock front should 

be stronger for the Cox opacities is not obvious, though it 

might be caused by the higher hydrogen opacity seen in the Los 

Alamos opacities. 

~10del el, with 10g(L/L0 ) = 2.8 and log Te = 3.73, serves 

as a comparison for survey model 8. Again there is a 

significant disparity in the periods, and the light and 

velocity curves do not match well at all. Model 8 is 

definitely not C-type, and is classified as F, but model Cl 

would be classified as C-type, although its light curve does 

not look much like Kwee's crested curves. 

1ne general conclusions that can be made are that whilst 

the Carson opacities can reproduce at least the crested variety 

of light curves very Hell, using the Cox opacities for some 

comparable models did not produce results that were as good. A 

full survey using the Cox opacities Hould of course be 

necessary before firm conclusions regarding their use in these 

types of stars could be reached. 
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CHAPTER 7 

CONCLUSION 

The major aim of this Vlork Has to produce hydrodynamical 

models of the H Virginis variables (population II cepheids) 

Vlith periods in the range ten to tVlenty days. In particular it 

VIas hoped that by using the Carson opacitl.es not only could the 

general features of these stars be reproduced in an instability 

strip survey, but also that good models could be made of 

individual stars, simulating the light curves closely. This 

aim was at least partially achieved. 

As detailed in section 2.2 the observed stars in this 

period range could be split into tHO main types (with a third 

unclassified type). The 25 survey models constructed in this 

Vlork to cover some of the instability strip managed to 

reproduce all three of these types Vlith varying degrees of 

success, as it proved much more difficult to reproduce the 

flat-topped variety. The general features of the observed 

stars _ the position of the variables in the HR diagram, the 

periods, amplitudes and light And velocity curve shapes - were 

fairly well reproduced. Certainly a~reement to Vlithin the 

observational errors is obtained. l~fortunately, observations 

of these stars are scarce, p~rticularly observations of rarlial 
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velocity curves. There is so:ne evidence that the observationnl 

period-radius relation for these stnrs splits into tYlO, 

representing ex tremes of a gr3d at ion fr'om fl at-topped to 

crested light curves. Assuming a similar period-mass-radius 

relation for the tVlO types this indicates that a range of 

masses may be responsible for the dichotomy. This ties in 

qui te well Hi th evol utionar y arguments for feed ing stClr s int.o 

the instability strip at this level. Unfortunately, the survey 

models produced were all of the same mass, 0.6 He. Some models 

were constructed with differing masses, but the variation was 

not sufficient to add theoretical weight to this suppositior. 

~'ore work could be done here, using a range of masses, to check 

thi s argument. 

In section 6.10, models of three observed stars were 

presented, CS Cassiopeia, FI Scutum and AL Virginis. The first 

two of these have crested light curves t and we saw that the 

models reproduced the pulsational featUres and the light curves 

very well. With the variation in crested light curves seen in 

the models it would seem that this type can be modelled very 

well. 

AL Vir had a featureless, unclassified light curve, 

reproduced very well in the comparison model. This shows that 

the shorter period, rather characterless, observed light curves 

can also be modelled. 

Unfortunately it has not been possible to produc'e an 

equally good model for any of the observed flat-topped light 

curves. l'~ost of the Modelled curves labelled as F-type still 

had a slight crest, or V/(~re of the ylrong shape (viz. model 1). 

This failure could be due to many thinc;s. 1;)e expect to find 
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these stars Rt comp~r8tively Jaw values of 10g(L/LQ ) and lo~ 

Te, snri it is here that the best F-type models were constructed, 

and also where most of the difficulties were encountered. 

These difficulties may have been caused hy an inadequate outer 

boundary condition, but the alternste cause of the problem may 

be excessive driving in the He II zone and (perhaps) also in 

the hydrogen zone. Convection in these stars may not bring 

about stability, but it may reduce the driving significantly, 

thereby perhaps msking the modelling essier near the red edge. 

This may enable the production of a good flat-topped model 

light curve. 

During the course of this work it was realised that RV 

Tauri type behaviour might be observed in some of the models. 

This had been seen before by Vemury and Stothers (1978) in 

models of classical cepheids. Indeed a suspicion of such 

behaviour was observed in some stars, though it may be that 

these star s were still settl ing into their final state. Hhat 

was not expected was the behsviour of model 14. The very model 

dependent explanations of model 14 (and possible RV TCluri 

behav iour) would need to be ex plored wi th a far more real istic 

description of what happens in the outer layers of these stars, 

to see if there are equivalent events in the very tenuous 

atmospheres of these stars and also of the longer period red 

variables. 

A comparison of the Carson opacities with the earlier 

opacities of Cox and his co-workers was not one of the aims of 

this study; howevpr, since few published models of these stars 

(using the Cox opacities) exist, some comparison WClS done. The 

easiest direct comparison, channin~ only the opacity used, is 
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betl-Ieen model 13 ~nd model C2. I/e S8Vl here thilt use of the 

Carson opacities led to 8 much better agreement Vlith 

observation, a conclusion also reached by CSV in their Hork on 

the BL Herculis variables. At the present time it seems that 

some problems may still exist in the Carson opacities; the low 

temperature opacities are suspect, and the helium II opacity 

may be over-estimated, causing excessive driving. In general, 

hOHever, it seems that use of the Carson opacities produces 

better agreement with observations. 

This study largely succeeded in its aim of modelling VI 

Virginis stars, but has indicated in many places that more work 

is needed. I·lore extensive observations of the light and 

velocity curves (particularly the latter) of these stars would 

be very useful in confirming our theoretical understanding of 

them. The observed velocity curves are currently too scarce to 

be of much use in a survey. 

On the theoretical side a great deal more work can be 

done. The outer boundary condition normally used in 

hydrodynamic codes is still not very realistic, and appears to 

cause difficulties when used in models of stars with very 

tenuous outer layers. Some sort of running-t,.,ave boundary 

condition may well help here. 

The major improvement on this work would probably be to 

include convection as a form of energy transport. There are 

now several published methods of doing this, but as yet they 

all involve even more "unknown" parameters, and the search for 

better W8YS to handle convection in pulsation is by no means 

over. The inclusion of convection \'Iould probably have little 

effect on most of the crested ann unclassified model light 
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curves produced, but could well help in modpllin~ the 

flat-topped variety. 

Both of these improvements may help in studying the 

"peculiar" models (those with suspected RV Tauri behaviour), 

but in the light of the ideas presented it may be that 

something new is needed to accurately represent what is 

happening. flodelling the RV Tauri variables would seem to be 

the next step in moving up the population II instability strip, 

on the way across to the long period red variables. 
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