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ABSTRACT

Context. The majority of studies on stressed 3D magnetic null points consider magnetic reconnection driven by an external pertur-
bation, but the formation of a genuine current sheet equilibrium remains poorly understood. This problem has been considered more
extensively in two-dimensions, but lacks a generalizationinto 3D fields.
Aims. 3D magnetic nulls are more complex than 2D nulls and the field can take a greater range of magnetic geometries local to the
null. Here, we focus on one type and consider the dynamical non-resistive relaxation of 3D spiral nulls with initial spine-aligned
current. We aim to provide a valid magnetohydrostatic equilibrium, and describe the electric current accumulations invarious cases,
involving a finite plasma pressure.
Methods. A full MHD code is used, with the resistivity set to zero so that reconnection is not allowed, to run a series of experiments
in which a perturbed spiral 3D null point is allowed to relax towards an equilibrium, via real, viscous damping forces. Changes to the
initial plasma pressure and other magnetic parameters are investigated systematically.
Results. For the axi-symmetric case, the evolution of the field and theplasma is such that it concentrates the current density in two
cone-shaped regions along the spine, thus concentrating the twist of the magnetic field around the spine, leaving a radial configuration
in the fan plane. The plasma pressure redistributes in orderto maintain the current density accumulations. However, itis found that
changes in the initial plasma pressure do not modify the finalstate significantly. In the cases where the initial magneticfield is not
axi-symmetric, a infinite-time singularity of current perpendicular to the fan is found at the location of the null.

Key words. Magnetohydrodynamics (MHD) – Sun: corona – Sun: magnetic topology – Magnetic reconnection

1. Introduction

Three-dimensional magnetic null points have been studied in
detail within the last decade in the main context of three
dimensional magnetic reconnection. Their importance in so-
lar and magnetospheric environments have been observation-
ally identified by many authors, for example, in solar flares
(Fletcher et al. 2001; Masson et al. 2009), in solar active re-
gions (Ugarte-Urra et al. 2007) or at the Earth’s magnetotail
(Xiao et al. 2006). However, a complete understanding of the
formation of current layers in three-dimensional magneticnull
points, through a physical dynamical relaxation, is still to be
achieved, either mathematically or phenomenologically.

In two dimensions, current sheet formation and current ac-
cumulations have been widely studied around X-points both an-
alytically (e.g. Dungey 1953; Green 1965; Somov & Syrovatskii
1976; Vekstein & Priest 1993; Craig 1994; Bungey & Priest
1995) and numerically, including the effects of plasma pres-
sure (e.g. Rastätter et al. 1994; Craig & Litvinenko 2005;
Pontin & Craig 2005; Fuentes-Fernández et al. 2011). For a
more comprehensive review of current sheet formation in two
dimensions see (Priest & Forbes 2000) and (Biskamp 2000).

All these studies assume the magnetic field is line -tied at the
boundaries. This assumption imposes the constraints that energy
and flux cannot leave or enter the system, and is reasonable since
throughout the solar corona, most of the magnetic field linesare
anchored in the photosphere. Furthermore, line-tying, along with
ideal relaxation ensures that helicity must be conserved during
the relaxation (Moffatt 1985) and mass is conserved within flux
tubes.

In three dimensions, the processes of current accumulation
and reconnection in three dimensions are significantly differ-
ent to, and much more complex than, those in two-dimensions
at X-type null points (e.g. Hesse & Schindler 1988; Priest etal.
2003). In general, in three-dimensions, currents can accumulate
and magnetic reconnection can occur either at nulls or in the
absence of them. Away from magnetic null points, magnetic re-
connection may take place in different structures, such as separa-
tors (Longcope & Cowley 1996; Longcope 2001; Haynes et al.
2007; Parnell et al. 2008, 2010a,b) and quasi-separatrix lay-
ers (Priest & Démoulin 1995; Demoulin et al. 1996, 1997;
Aulanier et al. 2006; Restante et al. 2009; Wilmot-Smith et al.
2009). On the other hand, locally at null points in three di-
mensions, magnetic reconnection can occur in several dif-
ferent regimes (Pontin et al. 2004, 2005; Masson et al. 2009;
Al-Hachami & Pontin 2010; Pontin et al. 2011; Priest & Pontin
2009; Masson et al. 2012).

The nature of the reconnection that can take place around
a three-dimensional null depends directly on the flows and the
boundary disturbances (Rickard & Titov 1996; Priest & Pontin
2009). One particular example of these reconnection regimes is
fan-spine reconnection, where a shearing of the spine or the fan,
drives the collapse of the null point. That is, the resultingLorentz
forces act in the same direction as the initial disturbance,thus in-
creasing it and resulting in a folding of the spine and fan towards
each other. The resulting reconnection takes place in the vicinity
of the null, and implies that magnetic flux is transferred across
the different topological regions of the system (see Pontin et al.
2005; Pontin & Galsgaard 2007; Pontin et al. 2007b,a).
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Another example of 3D null reconnection, and the one rel-
evant for this paper, istorsional reconnection, where the flows
are such that the spine and fan plane remain perpendicular to
each other, and the field lines are twisted around the spine in
the same direction above and below the fan (torsional spine re-
connection) or in opposite directions above and below the fan
(torsional fan reconnection). The resulting reconnection of field
lines takes place about the spine or the fan, respectively, caus-
ing a slippage of the magnetic field through the plasma in a
direction opposite to that of the twist, dissipating the current
density. These regimes do not involve flow across the spine or
the fan, and hence, the global topology of the field remains
unchanged (see Bulanov et al. 2002; Pontin et al. 2004, 2007a;
Wyper & Jain 2010; Pontin et al. 2011).

In most cases that focus specifically on the field about the
null, they also assume that the initial field is symmetric about the
axis of the spine. However, such an assumption does not need
to be made (Parnell et al. 1996). Al-Hachami & Pontin (2010)
and Pontin et al. (2011) relax this assumption showing that the
degree of asymmetry changes the rate of reconnection, but not
its nature.

Parnell et al. (1997) proved that the magnetic field locally
about a non-potential 3D null point, i.e. the linear field about a
non-potential null, produces a Lorentz force that cannot bebal-
anced by a plasma pressure force. So there are no static equi-
librium models of linear non-potential or force-free nulls. This
means that in 3D, the relaxation towards an equilibrium mag-
netic field very close to a magnetic null point has the same
choices that a 2D linear null has, i.e., i) to evolve towards a
potential null or ii) to develop a current singularity (current
accumulation) at the null. Klapper (1997) proves analytically
that in 2D, in the absence of plasma, the collapse of an X-type
null results in the current building up at the null forming an
infinite-time singularity. Numerical experiments of null collapse
in non-zero beta plasmas show that an infinite-time singularity
is still found (Craig & Litvinenko 2005; Pontin & Craig 2005;
Fuentes-Fernández et al. 2011).

In general terms, most of the studies mentioned already con-
sider magnetic reconnection at an initially potential 3D null
driven by some external force. Reconnection, however, is likely
to occur at the location where current has accumulated. For in-
stance, in the case of spontaneous reconnection initiated by mi-
croinstabilities, it can occur in an equilibrium current density
structure. The aim of this paper is to investigate the natureof cur-
rent accumulations at a 3D magnetic null, after a torsional-type
disturbance. The current structures will be formed via the ideal
magnetohydrodynamic (MHD) evolution of the field and the
plasma. The nature of non-force-free equilibrium found after a
non-resistive MHD evolution of a stressed 3D null point, andthe
effects of the plasma pressure in the formation of current layers,
to our knowledge, have not been widely studied. Pontin & Craig
(2005) analysed the collapse of 3D nulls after a shearing-type
perturbation (fan-spine collapse). In particular, they studied the
formation of a current singularity at the location of the null in a
non-force-free equilibrium, in an equivalent manner to thetwo-
dimensional singularities studied by Craig & Litvinenko (2005).
However, the formation of a static non-force-free equilibrium
after a torsional-type disturbance has not yet been studied. We
carry out such a study here.

Here, we consider the ideal evolution of a spiral null (non-
potential) with an initial homogeneous current density parallel
to the spine line, which may be thought of as the result of a
torsional-spine disturbance. In particular, we are interested in the
current accumulations that arise when a non-force-free equilib-

rium is reached. We evaluate the effects of the plasma pressure in
the evolution, as both the initial disturbance and the background
plasma pressure are changed systematically. This work is a con-
tinuation of the work carried out in Fuentes-Fernández et al.
(2010, 2011), on non-resistive MHD relaxation of magnetic
fields embedded in non-zero beta plasmas, using viscous forces
to drive the relaxation, and allowing heat to be transferredto the
plasma via the physical viscous heating term. Departures from
axial symmetries are studied, obtaining current accumulations of
a different nature, such as the formation of an infinite time singu-
larity in some cases (which does not exist in the axi-symmetric
case).

The paper is structured as follows. In Sec. 2, we present the
equations that define the initial three-dimensional configuration
and in Sec. 3 we present details of the numerical experiments.
In Sec. 4 we present the results for 3D axi-symmetric nulls with
initial spine-aligned current, and, in Sec. 5 we present theresults
for non-symmetric nulls, and evaluate the formation of a current
singularity at the location of the null. Finally, we conclude with
a general overview of the problem in Sec. 6.

2. Magnetic field configurations

The basic structure of a three-dimensional null point is illus-
trated in Fig. 1. The topological structure involves the spine line
and the fan plane. In a positive 3D null (such as the one in the
figure), the field lines approach the null parallel to the spine, and
recede parallel to the fan plane. A negative null would show the
opposite behaviour.

Following the description given in Parnell et al. (1996) for
linear 3D nulls, the magnetic field,B, close to a null point may
be expressed as

B =M · r , (1)

whereM is a matrix with elementsMi, j = ∂Bi/∂x j, andr is
the position vector (x, y, z)T , which is likely to be small for gen-
eral nulls where linearity may be weak. For linear nulls the cur-
rent density is constant, and it can be divided into two compo-
nents, parallel and perpendicular to the spine line. In the partic-
ular cases studied in this paper, the only non-zero component of

Fig. 1. General topological structure of a 3D null point, including
the spine line (thick) and fan plane (dashed). Field lines (thin) on
either side of the fan plane run along the spine towards the null
and then spread out just above or below the fan plane.
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the initial current density will be the one parallel to the spine, so
that

j =
1
µ

(0, 0, jsp) . (2)

Where, we have chosen a coordinate system in which the spine
lies along thez-axis (Parnell et al. 1996). In this case, the matrix
M can be reduced to

M =



























∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂z



























∼



















1 − 1
2 jsp 0

1
2 jsp b 0
0 0 −(b+ 1)



















. (3)

where 0< b < ∞, in order to ensure that the spine of the null is
along thez-axis, and that the null is positive.

For such non-potential nulls, the associated Lorentz force
has noz-component and simply acts in planes parallel to the fan
plane of the null. Furthermore,j×B = 0 on x = y = 0, hence, in
our final non-force-free equilibrium, there will be no flux trans-
ferred across the fan, and this will remain perpendicular tothe
spine, but the geometry of the field lines and the distribution of
current density and plasma will change.

3. Numerical scheme

For the numerical experiments studied in this paper, we have
used Lare3D, a staggered Lagrangian-remap code, which is sec-
ond order accurate in space and time, with user controlled vis-
cosity, that solves the full MHD equations, with the resistivity
set to zero (see Arber et al. 2001). The staggered grid is usedto
build conservation laws and maintains∇ ·B = 0 to machine pre-
cision, by using the Evans and Hawley’s constrained transport
method for the magnetic flux (Evans & Hawley 1988). The nu-
merical domain is a 3D box with a uniform grid of 5123 points.

Magnetic field lines are line-tied at the boundaries and all
components of the velocity are set to zero on the boundaries.
The other quantities have their derivatives perpendicularto each
of the boundaries set to zero. Hence, the quantities that arecon-
served over the whole domain are total energy and total mass.
Since the field is frozen to the plasma (there is no diffusion to
within numerical limits), the mass in a single flux tube (or along
a field line) must be conserved.

The numerical code uses the normalised MHD equations,
where the normalised magnetic field, density and lengths,

x = Lx̂ , y = Lŷ , B = BnB̂ , ρ = ρnρ̂ ,

imply that the normalising constants for pressure, internal en-
ergy, current density and plasma velocity are,

pn =
B2

n

µ
, ǫn =

B2
n

µρn
, jn =

Bn

µL
and vn =

Bn√
µρn
.

The subscriptsn indicate the normalising constants, and thehat
quantities are the dimensionless variables used in the code. The
expression for the plasma beta can be obtained from this normal-
ization as

β =
2p̂

B̂2
.

In this paper, we will work with the normalised quantities, but
thehat is removed from the equations for simplicity.

The (normalised) equations governing our ideal MHD dy-
namical processes are

∂ρ

∂t
+ ∇ · (ρv) = 0 , (4)

ρ
∂v
∂t
+ ρ(v · ∇)v = −∇p+ (∇ × B) × B + Fν , (5)

∂p
∂t
+ v · ∇p = −γp∇ · v + Hν , (6)

∂B
∂t
= ∇ × (v × B) , (7)

whereFν andHν are the terms for the viscous force and viscous
heating. The internal energy,ǫ, is given by the ideal gas law,
p = ρǫ(γ − 1), with γ = 5/3.

Finally, the time-scale in our experiments may be defined as
the fast mode crossing time,tF , i.e. the time for a fast magne-
tosonic wave to travel from the null to one of the boundaries (for
instance in they-direction), which is calculated as

tF =
∫ y=1

y=0

dy
cF(y)

, (8)

wherecF(y) =
√

v2
A + c2

s is the local fast magnetosonic speed.

4. Axi-symmetric nulls

4.1. Initial state

We first look at the relaxation of initial configurations of mag-
netic null points with constant current density everywherein the
direction parallel to the spine, of the form (0, 0, jsp), and we as-
sume axial symmetry in the initial field by makingb = 1 in Eq.
(3). The magnetic field is then given by

(Bx, By, Bz) = (x−
jsp

2
y,

jsp

2
x+ y ,−2z) . (9)

The fan is perpendicular to the spine and lies in thez= 0 plane.
We have run various experiments with different initial pressure.
Figure 2 shows the magnetic configuration of the initial state, for
jsp = 1 andp0 = 1. The magnetic field lines show a homoge-
neous twist about the spine, and the field lines lying in the fan
define a logarithmic spiral. The only initially non-zero force in
the fan plane is the magnetic tension force, which during there-
laxation, will act to straighten the magnetic field lines. This force
is such that, in principle, the system can evolve towards a poten-
tial configuration (a radial null) if energy and helicity is allowed
to leave the system.

4.2. Final equilibrium state

We concentrate on the case shown in Fig. 2, which hasjsp = 1
andp0 = 1. The final state is achieved after more than 300 fast
magnetosonic crossing times. The magnetic field configuration
at the end of the simulation is shown in Fig. 3. Owing to the
line-tied boundaries, and the restriction of an ideal evolution, the
field cannot dissipate the original twist. Instead, the relaxation
appears to concentrate it onto the portions of field lines that are
about the spine, above and below the null.

As can be seen in Fig. 3b, the field lines expand radially from
the null and then bend slightly as they reach the boundaries of the
domain. This bending is a consequence of the fact that the mag-
netic field lines are line-tied in a way that is not axi-symmetric.
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Fig. 2. Magnetic configuration for the initial non-equilibrium state with homogeneous spine-aligned current, for the case with b = 1,
jsp = 1 andp0 = 1, showing (a) the 3D configuration with field lines above and below the fan in purple and orange respectively. The
fan plane is outlined in dashed black and the spine is represented in green, with projections onto thexz-plane andyz-plane (dashed
green lines). In (b), the field lines in the fan plane are plotted.

Fig. 3. Magnetic configuration for the final equilibrium state for the spiral null, for the same experiment as in Fig. 2, showing (a)
the 3D configuration with field lines above and below the fan inpurple and orange, respectively. The fan plane is outlined in dashed
black and the spine is represented in green, with projections onto thexz-plane andyz-plane in dashed green lines. In (b), the field
lines in the fan plane are plotted.

In Sec. 4.3, we consider a 2.5D approximation assuming cylin-
drical symmetry in a region close to the null point.

The total energy of the evolution is checked and is found
to be conserved throughout the relaxation to within an errorof
0.03%. This conservation of energy demonstrates that undesir-
able effects, such as numerical diffusion, do not play a signifi-
cant role in the relaxation. By the end of the experiment, only
1% of the initial magnetic energy has been transferred into inter-
nal energy of the plasma, due to viscous damping. At this point,
the velocities are effectively zero in the whole domain.

In order to establish the nature of the final equilibrium, we
evaluate the forces at the end of the relaxation. Fig. 4 showsthe
different forces, namely, the Lorentz force, the pressure force
and the total force (the sum of the two) in the final equilib-
rium state. The system is only force-free locally close to the
null (where it is effectively potential) and along the spine line.
Everywhere else, non-zero Lorentz forces are balanced by non-
zero pressure gradients in a non-force-free equilibrium. This is

the result of both the closed boundary conditions, which does
not allow magnetic flux to be transferred through the boundaries,
and the full MHD relaxation, which allows the different forces
to balance each other. Note, the Lorentz force is such that, if the
field lines were free to move at the boundaries, they would un-
twist, expelling their free magnetic energy and helicity out of the
system, hence, achieving a potential state.

Around the axis of the spine, away from the null, a non-
force-free envelope has formed (Fig. 4a and b). These regions
get larger and further apart as we move away from the null. Also,
regions ofnon-force-free-nessappear about the plane of the fan,
away from the null. Only small residual forces remain on the fan
close to the boundaries (Fig. 4c).

A non-force-free equilibrium implies an inhomogeneous dis-
tribution of the current and the plasma pressure. The final distri-
butions of electric current density, parallel and perpendicular to
the magnetic field, are shown in Fig. 5. These two components
account for the force-free and the non-force-free contributions to

4
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Fig. 4. Contour plots of the different forces acting in the final equilibrium state in thex = 0 plane, for the same experiment as in
Fig. 2. Showing, from left to right, the magnitude of the pressure force (−|∇p|), of the Lorentz force and of the total force. Values
are normalised to the maximum force of the initial state. It can be observed that the pressure and Lorentz forces balance each other
creating a non-force-free equilibrium.

Fig. 5. Contour plots of the final equilibrium current density vector for a vertical cross section in thex = 0 plane, for the same
experiment as in Fig. 2. The current has been split in two components: (a) parallel and (b) perpendicular to the magnetic field.

the final equilibrium, respectively. The parallel component (Fig.
5a) is one order of magnitude larger than the perpendicular com-
ponent (Fig. 5b), indicating that the equilibrium is not farfrom a
force-free state.

At the exact location of the null point, the current density
remains with its initial value ofjsp = 1. This is not inconsistent
with Parnell et al. (1997), as the current is zero everywhereelse.
From the beginning of the experiment, at the location of the null
itself, the Lorentz forces are zero, and so are the pressure forces.

The system is potential (i.e. current free) in a very localised
region about the null point, wherer < 0.1, as expected from
Parnell et al. (1997). The parallel current is mainly concentrated
along the spine line, forming an hourglass shape centered onthe
null and lying along this axis (Fig. 5a). As already mention the
field is force-free in these regions. The perpendicular current is
enhanced at the edges of the hourglass cones, and about the fan
plane (Fig. 5b). Naturally, these are the locations of the non-zero
Lorentz and pressure forces (Fig. 4a and b).

Finally, a comparison has been made of results with different
background plasma pressures, withp0 = 0.1, 0.5, 1.0, 1.5. In Fig.

6 we show the parallel electric current density through a horizon-
tal cut of Fig. 5a, atz= 0.7, and in a vertical cut along the spine
(z-axis). The plots show the results for the four different initial
plasma pressures, but since they all overlap, only one line is vis-
ible, with the exception of the smallest pressure case (p = 0.1),
which shows a slightly smoother profile. Hence, changes in the
plasma pressure do not appear to lead to significant changes in
the formation of the current concentrations.

4.3. The 2.5D Approximation

As has been discussed above, close to the null point, the field
lines expands radially and the system can be assumed to have
cylindrical symmetry about the axis of the spine. This symmetry
breaks slightly when we approach the edges of the box, due to
the squared line-tied boundaries. Under the assumption of cylin-
drical symmetry, all the quantities depend only on two coordi-
nates, namely, the height,z, and the radius,r, and the equilib-
rium can be described as a 2.5 dimensional state (that is, there
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Fig. 6. Plot of the parallel (to the magnetic field) component of
the electric current density (a) in a horizontal cutx = 0 plane,
at heightz = 0.7, and (b) along the spine axis (z-axis), for four
different experiments withp0 = 0.1 (dotted),p0 = 0.5 (dashed),
p0 = 1 (solid) andp0 = 1.5 (dash-dotted).

Fig. 7. Numerical dependence of poloidal field (black) and
plasma pressure (blue) with the functionAc. All points of a re-
gion about the null that goes from -0.5 to 0.5 both inr andz are
plotted here.

are three spatial coordinates, but all the quantities only depend
on two of them).

Using the solenoidal constraint (i.e.∇ ·B = 0), the magnetic
field for a two-dimensional cylindrical system must satisfy,

1
r
∂

∂r
(rBr) +

∂Bz

∂z
= 0 . (10)

Also, if ∂/∂φ = 0, the magnetic field,B = (Br , Bφ, Bz), may be
rewritten as

B(r, z) =
1
r
∇Ac(r, z) × eφ + Bφ(r, z)eφ , (11)

whereAc(r, z) is a function analogous to the flux function in 2D,
for systems with cylindrical symmetry, which satisfies

(Br , Bφ, Bz) = (−1
r
∂Ac

∂z
,

bφ(Ac)

r
,

1
r
∂Ac

∂r
) , (12)

wherebφ(Ac) is an unknown function that depends uniquely on
Ac.

As in the 2D case, in a magnetohydrostatic (MHS) equilib-
rium that satisfies these conditions, the plasma pressure must
be a unique function ofAc, as well asbφ. Therefore, a Grad-
Shafranov equation can be derived, which defines the force bal-
ance between the plasma and magnetic forces in final equilib-
rium, as

1
µ0

[

∂2Ac

∂r2
− 1

r
∂Ac

∂r
+
∂2Ac

∂r2

]

+ bφ
dbφ
dAc
+

dp
dAc
= 0 . (13)

Fig. 7 shows the numerical functionality of the poloidal field
functionbφ(Ac) and the plasma pressurep(Ac) of the final equi-
librium state, for all the points within a region about the null (to
avoid non-cylindrical asymmetries) that goes from -0.5 to 0.5
both in r andz. Both quantities show a good dependence in this
region, and the term of the poloidal field,bφ. In particular, it
shows that, in the region about the null, where the boundaries do
not have a strong effect, a non-force-free description is found,
where the plasma pressure plays an important role.

The assumption of axial symmetry about the spine is non-
generic. It is very likely that some sort of asymmetry in the field
would arise in a realistic situation. In the next section, wecon-
sider the current structure generation due to the collapse of non-
axi-symmetric spiral nulls, where the field lines have a preferred
direction in the fan plane, and therefore, the 2.5D assumption is
not valid even close to the null point.

5. Magnetic field asymmetries

By removing the constraint thatb = 1 in Eq. (3), we can intro-
duce axial asymmetries to the initial state. Hence, from Eq.(3)
our initial magnetic field is of the form

(Bx, By, Bz) = (x−
jsp

2
y,

jsp

2
x+ by ,−(b+ 1)z) . (14)

Depending on the value ofb relative to the magnitude of
the initial current density,jsp, the magnetic field lines can take
different shapes. According to Parnell et al. (1996), we can de-
fine a threshold for the current density, which for our field is
jthresh= |b− 1|, above which the fan field lines are spiral, below
which they are said to be of skewed improper form. We consider
here the case where| jsp| > |b − 1|. The fan field lines form a
spiral null, as in theb = 1 axi-symmetric case. Ifb , 1, this
spiral will bend towards a preferred direction (in our case,the
preferred direction is thex-axis if 0 < b < 1, or they-axis if
b > 1).

Previous studies on the effect of magnetic field asymmetries
in 3D spiral nulls have been considered by Pontin et al. (2011).
They focus on the reconnection rate for both torsional spineand
torsional fan reconnection, but do not look at the formationof
equilibrium current structures. In the particular torsional spine
case, they start with a potential configuration with different val-
ues ofb, and then introduce a localised magnetic field perturba-
tion in the form of a ring of magnetic flux. They find that the peak
current and the reconnection rate do not depend strongly on the
degree of asymmetry (given by the value ofb). This dependence
is shown to be more important for torsional fan reconnection
case (which is not considered here).

Equation (14) gives a generic form for the magnetic field
around a 3D magnetic null point with a homogeneous current
parallel to the spine line (Parnell et al. 1996). The case ofb = 1
makesjthresh = 0, and hence, corresponds to the axi-symmetric
case studied in Sec. 4, where the two eigenvectors lying on the
fan plane are perpendicular to each other, and their eigenvalues
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Fig. 8. Magnetic field lines lying on the fan surface for the initial (top row) and final equilibrium (bottom row) state, for four different
experiments, with, from left to right,b = 1, 1/2, 1/4, 1/8, and jsp = 1.

Fig. 9. Current density on the fan plane for the final state, for the same four experiments of Fig. 8. The central current layer extends
along the direction of one of the eigenvectors (the minor axis) associated with the linear analysis of the initial magnetic field about
(dashed lines), whereα is the angle (in degrees) this eigenvector makes with they-axis. The maximum current density value in these
plots (dark green) isjz = 20, with jz = 0 as the minimum (white).

are complex conjugates. This is not the case for the asymmet-
ric fields, where the eigenvectors are no longer perpendicular,
although their eigenvalues are still complex conjugates. Note,
from Eq. (3), that the effect of increasing or decreasingb by the
same amount (i.e. multiplying or dividing by the same value)is
analogous. The only difference in doing so is the preferred axis
that the magnetic field lines will follow, being eitherx or y (i.e.
a rotation of 90◦ around the spine axis). Therefore, without lost
of generality, we have chosen only values ofb smaller than 1.
We run relaxation experiments for various values ofb < 1, with
a fixed current parallel to the spine,jsp = 1. As before, during
the relaxation the energy is checked to ensure that it is conserved
to within numerical error and we note that a similar amount of
viscous dissipation occurs, resulting in a rise in internalenergy
of order 1%.

In Fig. 8 we show the fan plane field lines in the initial
non-equilibrium and the final equilibrium state for four differ-
ent experiments with four different values ofb, namely,b =
1, 1/2, 1/4, 1/8, and with jsp = 1 for all of them. As the parame-
terb is systematically decreased, the fan field lines show a more
pronounced bend towards thex-axis, both in the initial and in
the final state. Initially, the asymmetry appears as a skewedspi-
ral, and after the dynamical relaxation, the fan field lines show a
more complex geometry.

To evaluate the deviations from the potential field in the fi-
nal state, we look at the current accumulations at the fan plane.
The only non-zero component of the current density for all cases
is checked to bejz. This implies that the current density at the
null is parallel to the spine, and hence, the spine and the fan
plane remain perpendicular to each other. In Fig. 9 we show
the z-component of the current density for the same four ex-
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Fig. 10. Forces in the final state, in the fan plane, for the case
b = 0.25, showing (a) they-component along they-axis (along
the current accumulation) and (b) thex-component along thex-
axis, of the Lorentz forces (dotted), the pressure forces (dashed)
and the total forces (solid).
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Fig. 11. Time evolution, with logarithmic axes, of the null point
current current density for four asymmetric experiments, with
b = 1/2, 1/4, 1/8 and 1/16. Dotted lines show fits tojnull = mtn.

periments as in Fig. 8. The final state is a non-force free equi-
librium, as in the axi-symmetric case, but here, a new feature is
formed along one of the eigenvectors of the fan plane (known
as the minor fan axis). This is formed because the initial forces
in the fan plane are not axi-symmetric and are weaker along
the minor axis. Note, that in the symmetric case, the only non-
zero initial force is the magnetic tension force, which actsaxi-
symmetrically, while here, there is also a magnetic pressure
force. The overall Lorentz force in the fan plane is such that
it prevents the field from evolving towards a potential configura-
tion. Instead, it accumulates the current in a current layerthrough
the null itself.

Again, by considering the forces, we find that in the final
state, the system is in a non-force-free equilibrium everywhere
except very close to the null, where tiny residual forces remain
on the fan plane. These are shown in Fig. 10, for two cuts along
the y and x axes. The Lorentz forces are directed towards the
null. The pressure forces act against the Lorentz forces butare
not able to balance them. This results in a non-zero net total
force which causes the gradual accumulation of current at the
null point and is consistent with the formation of a singularity
whose nature is discussed shortly. These results are in agreement

with Parnell et al. (1997), which found that the linear field about
a non-potential null cannot be balanced by a pressure gradient.
Hence, since the field in the vicinity of the null is not potential,
an equilibrium cannot be achieved there. Moreover, the magnetic
field in the fan plane is weaker along the minor axis of the null,
thus, as already mention, too are the Lorentz forces, and there-
fore that is the axis along which the current density is able to
extend.

The larger the initial field asymmetry, the larger the ampli-
tude of the null current layer. Note, this current layer is a feature
of the asymmetry, and does not appear in the axi-symmetric case.
Also, it is not related to a fan-spine collapse, as the current den-
sity about the null remains parallel to the spine. It is noticeable
how, for the largest degree of asymmetry, the null current density
is the maximum current of the domain.

The creation of a pronounced layer of current density
perpendicular to the spine, at the location of the magnetic
null point and along the minor fan axis, and the associ-
ated forces plotted in Fig. 10, suggest the formation of a
singularity (Craig & Litvinenko 2005; Pontin & Craig 2005;
Fuentes-Fernández et al. 2011). Figure 11 shows the time evo-
lution of the current density at the null point for four different
asymmetric experiments. Each of these evolutions is modelled
with a function of the form

jnull = mtn , (15)

where bothm andn are positive and both depend on the degree
of asymmetry, defined byb. The null current density seems to
have entered an asymptotic regime similar to the one studied
by Fuentes-Fernández et al. (2011) for 2D X-points. The results
shown in Fig. 11 suggest the formation of an infinite-time sin-
gularity at the null point, associated with a creation of theper-
pendicular current density caused simply by an initial asymme-
try of the magnetic configuration. Note, that the appearanceof
such a singularity is strictly linked to the asymmetric nature of
the initial state. This singularity does not exist if the field is axi-
symmetric, because in that case, the field can become potential
locally about the null point.

Current singularities at three-dimensional magnetic null
points have been found after the fan-spine collapse of a tilted
null (Pontin & Craig 2005). The key difference between these
singularities and the ones described in this paper is the direction
of the current density vector. In the fan-spine collapse, the cur-
rent is directed along the tilt axis of the fan, for example, the x-
axis (Pontin et al. 2005; Pontin & Galsgaard 2007; Pontin et al.
2007b,a; Masson et al. 2009, 2012). On the contrary, our current
density is directed along the spine line, i.e. thez-axis. Therefore,
our singularity is not due to a collapse of the fan and the spine
towards one another, but is a completely new feature that has
never been observed in the past. This study is the first signature
of a current density singularity at a purely spiral null, andfurther
studies are needed to show if it is associated with a new regime
of 3D null reconnection.

6. Summary and conclusions

The three-dimensional relaxation of spiral magnetic null points
with initial spine-aligned current has been investigated under
non-resistive conditions, resulting, in all cases, in a non-force-
free equilibrium, where all the velocities have been dampedout
by the viscous forces. In the final states, forces of the plasma
pressure and magnetic field, which are of about the same order
as the initial non-equilibrium Lorentz forces, balance each other
in a genuine non-force-free state.
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In the axi-symmetric case, the initial field is a spiral null
with a uniform twist of the field lines everywhere. During the
relaxation, the field evolves by concentrating the initial constant
current density around the spine, above and below the fan, and
hence, the twist of the field lines also resides there. The fanfield
lines show a radial configuration, with small departures from the
radial field caused by the squared line-tied boundaries. In the fi-
nal equilibrium, we decompose the electric current densityvec-
tor into two components, parallel and perpendicular to the mag-
netic field, and we find that the parallel component is about ten
times higher than the perpendicular component. This means that
the field is very close to a force-free field, although cannot ex-
actly be described as such.

The parallel current, which is the dominant component, is
maximum along the spine line, and draws an hourglass shape
with two cones that meet at the location of the null. The accu-
mulations of perpendicular current (regions of non-force-free-
ness) occur at the edges of the two cones about the spines, above
and below the fan. In the axi-symmetric case, the field is shown
to be potential only for the small region about the null, where
r < 0.1. Systematic changes of the initial plasma pressure have
been studied, finding the same amplitudes for the current accu-
mulations in all cases. This indicates that changes in the plasma
pressure may not play an important role in the evolution of axi-
symmetric spiral nulls.

Also, the magnetic field in the axi-symmetric case shows
cylindrical symmetry about the spine forr < 0.5. A Grad-
Shafranov equation can be used in this case to describe the field
analytically, demonstrating the importance of the plasma pres-
sure force to balance the Lorentz force.

Overall, the final equilibrium for the initially axi-symmetric
null point shows three distinct regions, i) a potential envelope
surrounding the null, atr < 0.1, ii) an axi-symmetric region
where the system is in non-force-free equilibrium (0.1 < r <
0.5), and iii) the region close to the boundaries, where the cylin-
drical symmetry is broken by the squared line-tied boundaries,
but where the system is still able to achieve a non-force-free
equilibrium.

By breaking the initial axial symmetry of the field lines, we
obtain new features that were not present in the axi-symmetric
case. The fan field lines are not radial any more. Instead, they
bend towards a preferred direction, and they build a pronounced
perpendicular current accumulation at the null, elongatedalong
the direction of the minor axis, about which the magnetic field
strength is smaller. In these cases, locally about the null,the
plasma pressure forces are not able to balance the Lorentz forces,
which are directed towards the null forming an infinite-timesin-
gularity. This is not present in the axi-symmetric case, since it
can reach a potential equilibrium very close to the null, save ex-
actly at the null itself. The current at the null is directed along
the spine axis and the spine and fan remain perpendicular, there-
fore, it is not caused by a fan-spine collapse, like the commonly
known current singularities previously found at three dimen-
sional null points (Pontin & Craig 2005). The kind of singular-
ity observed in this paper for the asymmetric spiral nulls has, to
our knowledge, never been observed in the past. It is proposed
that this new singularity, which arises naturally from the non-
symmetric character of our initial state, may be linked to a new
regime of magnetic reconnection at 3D magnetic nulls.

The MHD evolution of tilted nulls with initial fan-aligned
current, the effects of plasma pressure, and the formation of a
current accumulations such as the one studied by Pontin & Craig
(2005), will be studied in a follow-up paper from the series of
dynamical relaxation of coronal magnetic fields.
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