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Abstract. In this paper, we introduce and study the α-Farey map and its associated
jump transformation, the α-Lüroth map, for an arbitrary countable partition α of the unit
interval with atoms which accumulate only at the origin. These maps represent linearized
generalizations of the Farey map and the Gauss map from elementary number theory. First,
a thorough analysis of some of their topological and ergodic theoretical properties is given,
including establishing exactness for both types of these maps. The first main result then
is to establish weak and strong renewal laws for what we have called α-sum-level sets for
the α-Lüroth map. Similar results have previously been obtained for the Farey map and
the Gauss map by using infinite ergodic theory. In this respect, a side product of the paper
is to allow for greater transparency of some of the core ideas of infinite ergodic theory.
The second remaining result is to obtain a complete description of the Lyapunov spectra of
the α-Farey map and the α-Lüroth map in terms of the thermodynamical formalism. We
show how to derive these spectra and then give various examples which demonstrate the
diversity of their behaviours in dependence on the chosen partition α.

1. Introduction and statement of results
In this paper, we consider the α-Farey map Fα : U → U , which is given for a countable
infinite partition α := {An : n ∈ N} by non-empty left-open and right-closed intervals An

of the unit interval U := [0, 1] by

Fα(x) :=


(1− x)/a1 if x ∈ A1,

an−1(x − tn+1)/an + tn if x ∈ An , for n ≥ 2,

0 if x = 0,

where an is equal to the Lebesgue measure λ(An) of the atom An ∈ α, and tn :=
∑
∞

k=n ak

denotes the Lebesgue measure of the nth tail of α. (It is assumed throughout that the
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FIGURE 1.1. The alternating Lüroth and αH -Farey map, where tn = 1/n, n ∈ N.

atoms of α are ordered from right to left, starting with A1, and that these atoms accumulate
only at the origin.) Similarly to the way in which the Gauss map coincides with the jump
transformation of the Farey map with respect to the interval (1/2, 1], one finds that the
map Fα gives rise to the jump transformation Lα with respect to the interval A1. It turns
out that for the harmonic partition αH , given by an := 1/(n(n + 1)) (see Figure 1.1), we
have that the so-obtained jump transformation LαH coincides with the alternating Lüroth
map (see [15]). For a general partition α, we therefore refer to Lα as the α-Lüroth map,
and we will see that this map is explicitly given by

Lα(x) :=

{
(tn − x)/an if x ∈ An, n ∈ N,
0 if x = 0.

Note that this type of generalized Lüroth map has also been investigated, amongst
others, in [3, 5]. Also, a class of maps very similar to our class of α-Farey maps has
been considered in [27].

The main goal of this paper is to give a thorough analysis of the two maps Fα and Lα .
This includes the study of the sequence of α-sum-level sets (L(α)

n )n∈N arising from the
α-Lüroth map, for an arbitrary given partition α. These sets are defined by

L(α)
n :=

{
x ∈ Cα(`1, `2, . . . , `k) :

k∑
i=1

`i = n, for some k ∈ N
}
,

where

Cα(`1, `2, . . . , `k) := {x ∈ U : L i−1
α (x) ∈ Ali , for all i = 1, . . . , k}

denotes a cylinder set arising from the map Lα . The sets L(α)
n can also be written

dynamically in terms of Fα , that is, one immediately verifies that L(α)
n = F−(n−1)

α (A1)

for all n ∈ N.
Throughout, α is said to be of finite type if for the tails tn of α we have that

∑
∞

n=1 tn
converges, otherwise α is said to be of infinite type (for some examples, see Figure 1.2).
Moreover, a partition α is called expansive of exponent θ if its tails satisfy the power law
tn = ψ(n)n−θ for all n ∈ N, for some θ ≥ 0 and for some slowly varying† functionψ . Note

† A measurable function f : R+→ R+ is said to be slowly varying if limx→∞ f (xy)/ f (x)= 1 for all y > 0.
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that in this situation we have that limn→∞ tn/tn+1 = 1, and hence the right derivative of Fα
at zero is equal to 1, which explains why this type of partition is referred to as expansive.

Also, a partition α is said to be expanding if limn→∞ tn/tn+1 = ρ for some ρ > 1. In
this situation we have that the right derivative of Fα at zero is equal to ρ, and that is why
we refer to it as expanding (cf. Lemma 4.1(2)). Clearly, if α is expanding, then Fα is of
finite type. Furthermore, a partition α is called eventually decreasing if an+1 ≤ an for all
n ∈ N sufficiently large.

Throughout, we use the notation an ∼ bn to denote limn→∞ an/bn = 1.

THEOREM 1. (Renewal laws for sum-level sets)
(1) For the Lebesgue measure λ(L(α)

n ) of the α-sum-level sets of a given partition α of U ,
we have that

∑
∞

n=1 λ(L(α)
n ) diverges, and that

lim
n→∞

λ(L(α)
n )=


0 if α is of infinite type;( ∞∑

k=1

tk

)−1

if α is of finite type.

(2) For a given partition α which is either expansive of exponent θ ∈ [0, 1] or of finite
type, we have the following estimates for the asymptotic behaviour of λ(L(α)

n ).
(i) WEAK RENEWAL LAW. With Kα := (0(2− θ)0(1+ θ))−1 for α expansive of

exponent θ ∈ [0, 1], and with Kα := 1 for α of finite type, we have that

n∑
k=1

λ(L(α)
k )∼ Kα · n ·

( n∑
k=1

tk

)−1

.

(ii) STRONG RENEWAL LAW. With kα := (0(2− θ)0(θ))−1 for α expansive of
exponent θ ∈ (1/2, 1], and with kα := 1 for α of finite type, we have

λ(L(α)
n )∼ kα ·

( n∑
k=1

tk

)−1

.

Remark 1. Note that, by using a result of Garsia and Lamperti [10], we have for an
expansive partition α of exponent θ ∈ (0, 1) that

lim inf
n→∞

(n · tn · λ(L(α)
n ))=

sin πθ
π

.

Moreover, if θ ∈ (0, 1/2), then the corresponding limit does not exist in general. However,
in this situation the existence of the limit is always guaranteed at least on the complement
of some set of integers of zero density†.

In order to state our remaining main results, recall that the Lyapunov exponent of a
differentiable map S : U → U at a point x ∈ U is defined, provided the limit exists, by

3(S, x) := lim
n→∞

1
n

n−1∑
k=0

log |S′(Sk(x))|.

† The density of a set of integers A is given, where the limit exists, by d(A)= limn→∞(#A(n)/n), where
A(n) := {1, . . . , n} ∩ A.
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FIGURE 1.2. The graphs of two α-Farey maps with α expansive. The partition on the left is of finite type with
tn = 1/n2, n ∈ N, and the partition on the right is of infinite type with tn = 1/

√
n, n ∈ N.

Our second main theorem gives a complete fractal-geometric description of the Lyapunov
spectra associated with each of the maps Lα . In other words we consider the spectral sets
{s ∈ R : {x ∈ U :3(Lα, x)= s} 6= ∅} associated with the Hausdorff dimension function
τα , which is given by

τα(s) := dimH ({x ∈ U :3(Lα, x)= s}).

In the following, p : R→ R ∪ {∞} denotes the α-Lüroth pressure function, given by
p(u) := log

∑
∞

n=1 au
n . We say that Lα exhibits no phase transition if and only if the

pressure function p is differentiable everywhere (that is, the right and left derivatives of p
coincide everywhere, with the convention that p′(u)=∞ if p(u)=∞). We refer to [26]
for an interesting further discussion of the phenomenon of phase transition in the context
of countable state Markov chains.

THEOREM 2. (Lyapunov spectrum for α-Lüroth systems) For a given partition α, the
Hausdorff dimension function of the Lyapunov spectrum associated with Lα is given as
follows. For t− :=min{−log an : n ∈ N}, we have that τα vanishes on (−∞, t−), and for
each s ∈ (t−,∞) we have

τα(s)= inf
u∈R

(u + s−1 p(u)).

Moreover, τα(s) tends to t∞ := inf{r > 0 :
∑
∞

k=1 ar
n <∞} ≤ 1 for s tending to infinity.

Note that t∞ is also equal to the Hausdorff dimension of the Good-type set G(α)
∞ associated

to Lα , given by

G(α)
∞ :=

{
[`1, `2, . . .]α : lim

n→∞
`n =∞

}
.

Concerning the possibility of phase transitions for Lα , the following hold.
• If α is expanding, then t∞ = 0 and Lα exhibits no phase transition.
• If α is expansive of exponent θ > 0 and eventually decreasing, then t∞ = 1/(1+ θ),

and Lα exhibits no phase transition if and only if
∑
∞

n=1 ψ(n)
1/(1+θ)(log n)/n

diverges.
• If α is expansive of exponent θ = 0 and eventually decreasing, then t∞ = 1, and Lα

exhibits no phase transition if and only if
∑
∞

n=1 an log(an) diverges.
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Note that the Lyapunov spectra for the Gauss map and the Farey map have been
determined in [16]. Also, the sets G(α)

∞ are named for Good [12], for his results concerning
similar sets in the continued fraction setting.

In our final main theorem we consider the Lyapunov spectra arising from the maps Fα .
That is, we consider the spectral sets {s ∈ R : {x ∈ U :3(Fα, x)= s} 6= ∅} associated with
the Hausdorff dimension function σα(s), given by

σα(s) := dimH ({x ∈ U :3(Fα, x)= s}).

We define the α-Farey free energy function v : R→ R, given by

v(u) := inf
{

r ∈ R :
∞∑

n=1

au
n exp(−rn)≤ 1

}
.

Note that we will say that Fα exhibits no phase transition if and only if the α-Farey free
energy function v is differentiable everywhere, that is, the right and left derivatives of v
coincide everywhere.

THEOREM 3. (Lyapunov spectrum for α-Farey systems) Let α be a partition that is
either expanding, or expansive and eventually decreasing. The Hausdorff dimension
function of the Lyapunov spectrum associated with Fα is then given as follows. For
s− := inf{−(log an)/n : n ∈ N} and s+ := sup{−(log an)/n : n ∈ N}, we have that σα(s)
vanishes outside the interval [s−, s+], and for each s ∈ (s−, s+), we have

σα(s)= inf
u∈R

(u + s−1v(u)).

Concerning the possibility of phase transitions for Fα , the following hold.
• If α is expanding, then Fα exhibits no phase transition. In particular, v is strictly

decreasing and bijective.
• If α is expansive of exponent θ and eventually decreasing, then Fα exhibits no phase

transition if and only if α is of infinite type. In particular, v is non-negative and
vanishes on [1,∞).

The structure of the paper is as follows. In §2, we will collect various basic properties of
the α-Farey map and the α-Lüroth map. In particular, this will include a discussion of the
topological dynamics of these two maps and the way in which they give rise to a family of
distribution functions which are all in the spirit of the Minkowski question mark function
(see [17, 23, 25]). Then, we will locate the invariant densities associated with the α-Farey
system and the α-Lüroth system and also establish exactness for both of these maps.

In §3, we study the sequence of Lebesgue measures of the α-sum-level sets, defined
above. We first show that this sequence satisfies a renewal-type equation. We then employ
the discrete renewal theorem by Erdős et al [8], as well as some renewal results by Garsia,
Lamperti [10] and Erickson [9], and show how these give rise to the proof of Theorem 1.

In §4, we will give a complete description of the multifractal spectra arising from the
α-Farey map and the α-Lüroth map. For this, we use a general method obtained in [14].
Furthermore, we give a detailed discussion of the phenomenon of phase transition. These
are the main steps in the proofs of Theorems 2 and 3.
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In the Appendix, we will first consider the map FαH arising from the harmonic
partition αH . As already mentioned above, the associated map LαH coincides with the
alternating Lüroth map. We end the paper by giving various further examples which
demonstrate the diversity of different behaviours of the spectra given by Theorems 2 and 3
in dependence on the chosen partition α.

Remark. Let us also briefly comment on the behaviour of the Lyapunov spectra at their
boundary points. Note that in all the examples given at the end of the paper (see
Figures 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6), we have that σα(s+)= τα(t−)= 0. However,
in general, this is not necessarily true. For instance, one immediately verifies that for a
partition α for which a1 = a2, one has that τα(t−)≥ (log 2)/(−log a1) > 0. Likewise, if α
is given such that a1 =

√
a2, then σα(s+)≥ (log((1+

√
5)/2))/(−log a1) > 0. Also note

that if α is a partition which is expanding and eventually decreasing, then we always have
that s− > 0, whereas σα(s−) can be either equal to zero or strictly positive. Furthermore,
for an expansive partition α, we always have that s− = 0 and σα(0)= 1. In order to see
that σα(0)= 1 is in fact true for any partition α, one argues as follows. On the one hand,
if α is of infinite type, then this follows from the fact that 3(Fα, x)= 0, for λ-almost all
x ∈ U . On the other hand, if α is of finite type, then the proof follows along the lines of the
proof of [11, Proposition 10].

Remark 2. Note that for the Farey map and its jump transformation, the Gauss map, the
analogue of Theorem 1 has been obtained by the first and the third author in [18]. There
the results were derived by using advanced infinite ergodic theory, rather than the strong
renewal theorems employed in this paper. This underlines the fact that one of the main
ingredients of infinite ergodic theory is provided by some delicate estimates in renewal
theory. Likewise, as already mentioned above, the Lyapunov spectra for the Farey map
and the Gauss map have been investigated in detail in [16]. The results there are parallel
to the outcomes of Theorems 2 and 3. Clearly, the Farey map and the Gauss map are
nonlinear, whereas the systems in this paper are always piecewise linear. However, since
our analysis is based on a large family of different partitions of U , the class of maps which
we consider in this paper allows us to detect a variety of interesting new phenomena. For
instance, as shown in [16], the spectral sets of the Farey map and the Gauss map intersect
at the single point 2 log((

√
5+ 1)/2). The same type of behaviour can also be found in

our piecewise linear setting, as shown in Figure 5.5 for an := ζ(5/4)−1n−5/4, where ζ
denotes the Riemann zeta-function. However, this situation is by no means canonical, as
the harmonic partition αH already shows, where the intersection of the two spectral sets
is equal to the interval [log 2, (log 6)/2] (cf. Figure 5.1). The situation can be even more
dramatic, as shown in Figure 5.6 for the partition α determined by an := 2 · 3−n . For this
partition, the spectral set associated with the α-Farey map is fully contained in the spectral
set of the α-Lüroth map. A similar picture arises when one considers the possibility of the
existence of phase transitions. The results of [16] clearly show that neither the Gauss map
nor the Farey map exhibit the type of phase transition established in this paper. In contrast
to this, Theorems 2 and 3 show that in the piecewise linear scenario the situation is much
more interesting, as the examples in Figures 5.2, 5.3 and 5.4 clearly demonstrate. More
specifically, if limr↘t∞

∑
∞

n=1 ar
n log an/

∑
∞

n=1ar
n =∞, then the dimension function τα is
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real-analytic on (t−,∞). An example of this is provided by the alternating Lüroth system,
where an = (n(n + 1))−1, and hence t∞ = 1/2 and

∑
∞

n=1 at∞
n =∞ (cf. Figure 5.1; see

also Figures 5.2, 5.5 and 5.6 for further examples). Note that the example considered in
Figure 5.4 is particularly interesting since it shows that it is possible that there is no phase
transition, although p(t∞) is finite, that is, for

an := (n(log n)2)−2
/ ∞∑

k=1

(k(log k)2)−2,

we have on the one hand
∑
∞

n=1 at∞
n <∞ with t∞ = 1/2, but on the other hand we have

lim
t↘t∞

∞∑
n=1

at
n log an

/ ∞∑
n=1

at
n =∞.

However, for a partition α for which

t0 := lim
t↘t∞

∞∑
n=1

at
n log an

/ ∞∑
n=1

at
n <∞,

the α-Lüroth map Lα exhibits a phase transition of the first kind at t∞. In this case the
Hausdorff dimension function τα is real-analytic on (t−, t0), whereas for t ∈ [t0,+∞) it is
explicitly given by

τα(t)=
log

∑
∞

n=1 at∞
n

t
+ t∞.

An example demonstrating the latter situation is given in Figure 5.3.

2. Preliminary discussion of Fα and Lα
Throughout this section, we let α denote some arbitrary partition of U of the type specified
at the beginning of the introduction.

2.1. Topological properties of Fα and Lα . Recall from the introduction that the
α-Lüroth map Lα is given by

Lα(x) :=

{
(tn − x)/an if x ∈ An, n ∈ N,
0 if x = 0.

In the same way as the Gauss map gives rise to the continued fraction expansion, the map
Lα gives rise to a series expansion of numbers in the unit interval, which we refer to as
the α-Lüroth expansion. More precisely, let x ∈ U\{0} be given and let the finite or infinite
sequence (`k)k≥1 of positive integers be determined by Lk−1

α (x) ∈ A`k , where the sequence
terminates in k if and only if Lk−1

α (x)= tn , for some n ≥ 2. Then, the α-Lüroth expansion
of x is given as follows, where the sum is supposed to be finite if the sequence is finite:

x =
∞∑

n=1

(−1)n−1
(∏

i<n

a`i

)
t`n = t`1 − a`1 t`2 + a`1a`2 t`3 + · · · .

In this situation we then write x =: [`1, `2, `3, . . .]α . It is easy to see that every
infinite expansion is unique, whereas each x ∈ (0, 1) with a finite α-Lüroth expansion
can be expanded in exactly two ways. Namely, one immediately verifies that x =
[`1, . . . , `k, 1]α = [`1, . . . , `k−1, (`k + 1)]α . Note that the map Lα only provides the

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Aug 2013 IP address: 138.251.65.55

996 M. Kesseböhmer et al

latter expression. By analogy with continued fractions, for which a number is rational if
and only if it has a finite continued fraction expansion, we say that x ∈ U is an α-rational
number when x has a finite α-Lüroth expansion, and say that x is an α-irrational number
otherwise. Of course, the set of α-rationals is a countable set.

If we truncate the α-Lüroth expansion of x after k entries, we obtain the kth convergent
of x , denoted r (α)k (x), which is given by

r (α)k (x) := [`1, . . . , `k]α = t`1 − a`1 t`2 + · · · + (−1)k−1
(k−1∏

i=1

a`i

)
t`k .

Note that if x = [`1, `2, `3, . . .]α , then Lα(x)= [`2, `3, `4, . . .]α . This shows that,
topologically, Lα corresponds to the shift map on the space NN, at least for those points
with an infinite α-Lüroth expansion. The cylinder sets associated with the α-Lüroth
expansion are denoted by

Cα(`1, . . . , `k) := {[x1, x2, . . .]α : xi = `i for i = 1, . . . , k}.

We remark here that these cylinder sets are closed intervals with endpoints given by
[`1, . . . , `k]α and [`1, . . . , `k−1, (`k + 1)]α . Consequently, we have for the Lebesgue
measure of Cα(`1, . . . , `k) that

λ(Cα(`1, . . . , `k))=

k∏
i=1

a`i .

For the first lemma of this section, recall that the jump transformation F∗α : U → U
of Fα is given by F∗α (x)= Fρα(x)α (x), where ρα : U → N is given by ρα(x) := inf{n ≥
0 : Fn

α (x) ∈ A1} + 1. Note that one can immediately verify that ρα(x) is finite for all
x ∈ U\{0}.

LEMMA 2.1. The jump transformation F∗α of the α-Farey map Fα coincides with the
α-Lüroth map Lα .

Proof. First note that if x = [1, `2, `3, . . .]α ∈ A1, for some `2, `3, . . . ∈ N, then ρα(x) is
clearly equal to 1. Thus, F∗α (x)= Fα(x), which is equal to Lα(x) since Lα|A1 = Fα|A1 .

Secondly, for n ≥ 2 we have that x ∈ An if and only if x = [n, `2, `3, . . .]α , for some
`2, `3, . . . ∈ N. We then have that

F∗α (x) = Fn
α ([n, `2, `3, . . .]α)

= Fn−1
α ([n − 1, `2, `3, . . .]α)= · · · = [`2, `3, . . .]α = Lα(x). 2

Let us now describe a Markov partition α∗ and its associated coding for the map Fα .
The partition α∗ is equal to {A, B}, where A := A1 and B := U\A1. Each x ∈ U has an
infinite Markov coding x = 〈x1, x2, . . .〉α ∈ {0, 1}N, which, for each positive integer k, is
given by xk = 1 if and only if Fk−1

α (x) ∈ A. This coding will be referred to as the α-Farey
coding. The associated cylinder sets are denoted by

Ĉα(x1, . . . , xn) := {〈y1, y2, . . .〉α : yk = xk, for k = 1, . . . , n}.

Notice that all of the α-Lüroth cylinder sets are also α-Farey cylinder sets,
whereas the converse of this is not true. More precisely, a given α-Farey
cylinder set Ĉα(0`1−110`2−110`3−1

· · · 0`k−11) coincides with the α-Lüroth cylinder
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set Cα(`1, . . . , `k). Moreover, if the coding of an α-Farey cylinder set ends in a 0, then it
cannot be represented by a single α-Lüroth cylinder set.

In the following, we require the inverse branches Fα,0 and Fα,1 of the map Fα . With
the convention that Fα,0(0)= 0, it is straightforward to calculate that these are given by
Fα,1(x) := 1− a1x for x ∈ U and

Fα,0(x) :=
an+1

an
(x − tn+1)+ tn+2 for x ∈ An, n ∈ N.

In preparation for the next lemma, we now describe the α-Farey decomposition of the
interval U , which is obtained by iterating the maps Fα,0 and Fα,1 on U . The first iteration
gives rise to the partition {Ĉα(0), Ĉα(1)}. Iterating a second time yields the refined
partition {Ĉα(00), Ĉα(01), Ĉα(11), Ĉα(10)}. Continuing the iteration further, we obtain
successively refined partitions of U consisting of 2k α-Farey cylinder sets of the form
Ĉα(x1, . . . , xk) for every k ∈ N. It is clear that exactly half of these are also α-Lüroth
cylinder sets. The endpoints of each of these so-obtained intervals are α-rational numbers,
and every α-rational number is obtained in this way. Finally, note that if x = [`1, `2, . . .]α ,
then

Fα(x) :=

{
[`1 − 1, `2, `3, . . .]α for `1 ≥ 2;

[`2, `3, . . .]α for `1 = 1.

Also observe that if we consider the dyadic partition αD , given by an := 2−n , then the map
FαD arising from this particular partition turns out to coincide with the tent map, given by

FαD (x) :=

{
2x for x ∈ [0, 1/2);

2− 2x for x ∈ [1/2, 1].

Before stating the lemma, we remind the reader that the measure of maximal entropy µα
for the system Fα is the measure that assigns mass 2−n to each nth level α-Farey cylinder
set.

LEMMA 2.2. The dynamical systems (U , Fα) and (U , FαD ) are topologically conjugate
and the conjugating homeomorphism is given, for each x = [`1, `2, . . .]α , by

θα(x) := −2
∞∑

k=1

(−1)k2−
∑k

i=1`i .

Moreover, the map θα is equal to the distribution function of the measure of maximal
entropy µα for the α-Farey map.

Proof. We will first show by induction that the map θα is indeed equal to the distribution
function 1µα of the measure µα . To start, observe that 1µα ([1]α)= 1= θα([1]α) and
notice that for each k ≥ 2 the α-rational number [k]α appears for the first time in the
(k − 1)th level of the α-Farey decomposition, as the right endpoint of the cylinder set
Ĉα(0, . . . , 0), with code consisting of k − 1 zeros. By the definition of the measure of
maximal entropy, we have that 1µα ([k]α)= 2−(k−1)

= θα([k]α).
Now, suppose that 1µα ([`1, `2, . . . , `k]α)= θα([`1, `2, . . . , `k]α) for every k-tuple

of positive integers `1, . . . , `k , and each 1≤ k ≤ n, for some n ∈ N. Further suppose
that n is even. (The case where n is odd proceeds similarly.) We then have that the points
[`1, `2, . . . , `n]α and [`1, `2, . . . , `n, 1]α are, respectively, the left and the right endpoints
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of the (
∑n

i=1 `i )th level α-Farey cylinder set Ĉα(0`1−110`2−11 · · · 0`n−11). Clearly, this
cylinder set has µα-measure equal to 2−

∑n
i=1`i . Similarly, we have that the interval

bounded by [`1, `2, . . . , `n]α and [`1, `2, . . . , `n, 2]α is an α-Farey cylinder set of level
(
∑n

i=1 `i )+ 1 and, as such, has µα-measure equal to 2−
∑n

i=1`i−1. Continuing in this way,
we reach the interval bounded by the points [`1, `2, . . . , `n]α and [`1, `2, . . . , `n, `n+1]α ,

which has µα-measure equal to 2−
∑n+1

i=1 `i+1.
Using this, we are now in a position to finish the proof by induction, as follows.

1µα ([`1, . . . , `n, `n+1]α)

=1µα ([`1, . . . , `n]α)+ µα(([`1 . . . , `n]α, [`1, . . . , `n, `n+1]α))

= θα([`1, . . . , `n]α)+ 2−
∑n+1

i=1 `i+1
= θα([`1, . . . , `n, `n+1]α).

It remains to show that the map θα is the conjugating homeomorphism from Fα to
the tent system. For this, suppose first that x = [`1, `2, . . .]α ∈ U\A1. Then, θα(x) is an
element of [0, 1/2] and we have that

FαD (θα(x)) = 2
(
−2

∞∑
k=1

(−1)k2−
∑k

i=1 `i

)

= −2
( ∞∑

k=1

(−1)k2−(`1−1)−
∑k

i=2 `i

)
= θα([`1 − 1, `2, `3, . . .]α)= θα(Fα(x)).

Now, suppose that x ∈ A1, that is, x = [1, `2, `3, . . .]α . Then, it follows that θα(x) ∈
[1/2, 1], and we have that

FαD (θα(x)) = 2− 2
(

2 · 2−1
− 2

∞∑
k=2

(−1)k2−1−
∑k

i=2 `i

)

= −2
( ∞∑

k=2

(−1)k2
∑k

i=2 `i

)
= θα([`2, `3, . . .]α)= θα(Fα(x)). 2

Our next aim is to determine the Hölder exponent and the sub-Hölder exponent of the
map θα , for an arbitrary partition α. For this, we define κ(n) := −n log 2/(log an) and set

κ+ := inf{κ(n) : n ∈ N} and κ− := sup{κ(n) : n ∈ N}.

Note that for κ ∈ (0,∞), a map S : U → U is called κ-sub-Hölder continuous if there
exists a constant c > 0 such that |S(x)− S(y)| ≥ c|x − y|κ for all x, y ∈ U .

LEMMA 2.3. We have that the map θα is κ+-Hölder continuous and κ−-sub-Hölder
continuous.

Proof. In order to calculate the Hölder exponent of θα , first note that

|θα(Cα(`1, `2, . . . , `k))| = 2−
∑k

j=1 ` j .

This can be seen by simply calculating the image of the endpoints of this cylinder, or by
noting that every α-Lüroth cylinder Cα(`1, `2, . . . , `k) is an nth-level α-Farey cylinder,
where

∑k
j=1 ` j = n. For the same reason, we have that

µα(Cα(`1, `2, . . . , `k))= |θα(Cα(`1, `2, . . . , `k))|,
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where µα again denotes the measure of maximal entropy associated to the map Fα .
Suppose first that κ+ is non-zero. In that case, we have

λ(Cα(`1, `2, . . . , `k)) =

k∏
i=1

a`i =

k∏
i=1

2−`i /κ(`i ) ≥

( k∏
i=1

2−`i

)1/κ+

= (2−
∑k

i=1 `i )1/κ+ = |θα(Cα(`1, `2, . . . , `k))|
1/κ+ ,

or, in other words,

|θα(Cα(`1, `2, . . . , `k))| ≤ λ(Cα(`1, `2, . . . , `k))
κ+ .

Now, let x and y be some arbitrary α-irrational numbers in U . There must be a first time
during the backwards iteration of U under the inverse branches of Fα in which an α-Farey
cylinder set appears between the numbers x and y. Say that this cylinder set appears in
the pth stage of the α-Farey decomposition. If we go on iterating one more time, it is
clear that there are two (p + 1)th-level α-Farey intervals fully contained in the interval
(x, y); moreover, one of these also has to be an α-Lüroth cylinder set. Let this α-Lüroth
cylinder set be denoted by Cα(`1, `2, . . . , `k), where

∑k
j=1 ` j = p + 1. This leads to the

observation that, as Cα(`1, `2, . . . , `k) is contained in (x, y),

|x − y|κ+ > λ(Cα(`1, `2, . . . , `k))
κ+ ≥ |θα(Cα(`1, `2, . . . , `k))| = 2−

∑k
j=1 ` j .

Consider the interval (x, y) again. It is contained inside two neighbouring (p − 1)th-
level α-Farey intervals, and so

|θα(x)− θα(y)|< 2−(p−1)
+ 2−(p−1)

= 2−(p−2)
= 8 · 2−(p+1).

Combining these observations, we obtain that

|θα(x)− θα(y)| ≤ 8|x − y|κ+ .

In case κ+ is equal to zero, we have that there exists m ∈ N with the property that

κ(m)=
m log 2
−log am

<
1
q
,

that is,
am < e−mq log 2.

So, we have that the sequence of partition elements is eventually exponentially decaying,
and hence the Hölder exponent of the map θα is necessarily equal to zero.

The proof of the κ−-sub-Hölder continuity of θα follows by similar means and is
therefore left to the reader. 2

Remark. Note that the thermodynamical significance of the Hölder and sub-Hölder
exponents of θα is that they provide the extreme points of the region (s−, s+) on which
the Hausdorff dimension function σα of Fα is non-zero (see Theorem 3). More precisely,
we have that

κ− =
log 2
s−

and κ+ =
log 2
s+

,

where κ− =∞ if and only if s− = 0.
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2.2. Ergodic theoretic properties of Fα and Lα . Let us begin this subsection by showing
that Lα is an exact transformation and specifying its invariant measure. For this, the
reader might like to recall that a non-singular transformation T of a σ -finite measure space
(U , B, µ) is said to be exact if, for each B ∈

⋂
n∈N T−n(B), we have that either µ(B) or

µ(U\B) vanishes.

LEMMA 2.4. The α-Lüroth map Lα is measure preserving and exact with respect to λ.

Proof. For the proof of Lα-invariance, let Lα,n denote the inverse branch of Lα associated
with the nth atom An of α. These branches are given by Lα,n(x) := −an x + tn for all
n ∈ N and x ∈ [0, 1). Then, a straightforward calculation shows that for each element B of
the Borel σ -algebra B on U ,

λ(L−1
α (B))=

∑
n∈N

λ(Lα,n(B))=
∑
n∈N

anλ(B)= λ(B).

This gives the Lα-invariance of λ.
The proof of exactness is an adaptation of the proof of Kolmogorov’s zero-one law for

the one-sided Bernoulli shift (see [19]). To see this, let B ∈
⋂

n∈N L−n
α (B) be given such

that λ(B) > 0. Then, there exists a sequence of Borel sets (Bn)n∈N such that Bn ∈ B and
B = L−n

α Bn for all n ∈ N. Note that for every finite union C of Lα-cylinder sets we have
that

λ(B ∩ C)= λ(B)λ(C).

Indeed, since λ(B)= λ(Bn) for all n ∈ N, if m is the maximal length of the cylinder sets
in C, then

λ(C ∩ B)= λ(C ∩ L−m
α Bm)= λ(C)λ(Bm)= λ(C)λ(B).

From this we deduce that

λ(B ∩ C)= λ(B)λ(C) for all C ∈ B.

Therefore, by choosing C = U\B, we conclude that

0= λ(B ∩ (U\B))= λ(B)λ(U\B).

This shows that λ(B)= 1, and hence finishes the proof. 2

Since exactness clearly implies ergodicity, the following list of properties of the system
(U , B, Lα, λ) is derived from routine ergodic theoretical arguments, and therefore the
proofs are left to the reader.
For λ-almost every x ∈ U , we have that:
• limn→∞(1/n)#{ j ≤ n : ` j (x)= k} = ak ;
• limn→∞(1/n) log(

∏n
j=1 ` j (x))=

∑
∞

k=1 ak log k;
• limn→∞(1/n)

∑n
j=1 ` j (x)=

∑
∞

k=1 tk ; and

• limn→∞(1/n) log |x − r (α)n (x)| =
∑
∞

k=1 ak log ak .
We now turn our attention to the ergodic theoretical properties of the α-Farey system.

The first property to note is that Fα is a conservative transformation. This can be seen by
observing, for instance, that

⋃
∞

n=0 F−n
α (A1)= U\{0}, and hence Maharam’s recurrence

theorem [1, Theorem 1.1.7] applies, giving that Fα is conservative.
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Recall that a λ-absolutely continuous measure ν on U is called Fα-invariant if ν ◦
F−1
α = ν, or, equivalently, if Fα(1U )= 1U , where Fα : L1(ν)→ L1(ν) denotes the trans-

fer operator associated with the α-Farey system. This is a positive linear operator given by∫
B

Fα( f ) dν =
∫

F−1
α (B)

f dν for all f ∈ L1(ν) and B ∈ B.

Also, note that the Ruelle operator Rα : L1(ν)→ L1(ν) for the α-Farey system is given by

Rα( f )= |F ′α,0| · ( f ◦ Fα,0)+ |F
′

α,1| · ( f ◦ Fα,1) for all f ∈ L1(ν).

With ψ := dν/dλ denoting the density of ν, one immediately verifies that Fα and Rα are
related in the following way:

Fα( f )=
1
ψ
·Rα(ψ · f ) for all f ∈ L1(ν).

So, in order to verify that a particular functionψ is a density which gives rise to an invariant
measure for the map Fα , it is sufficient to show that ψ is an eigenfunction of Rα .

LEMMA 2.5. Up to multiplication by a constant, there exists a unique λ-absolutely
continuous invariant measure να for the system (U , B, Fα). The density ϕα of να is given,
up to multiplication by a constant, by

ϕα :=
dνα
dλ
=

∞∑
n=1

tn
an
· 1An .

Moreover, να is a σ -finite measure, and we have that να is an infinite measure if and only
if α is of infinite type.

Proof. Recall that the inverse branches Fα,1 and Fα,0 were defined in §2.1 above and note
that a straightforward computation shows that for these we have that

ϕα ◦ Fα,1 = t1/a1 · 1U and ϕα ◦ Fα,0 =
∞∑

n=1

tn+1/an+1 · 1An .

Moreover, one immediately verifies that

|F ′α,1| = a1 · 1U and |F ′α,0| =
∞∑

n=1

an+1/an · 1An .

Using these two observations, it follows that

Rα(ϕα) = |F
′

α,0| · (ϕα ◦ Fα,0)+ |F
′

α,1| · (ϕα ◦ Fα,1)

= t1 · 1U +
∞∑

n=1

(
an+1

an

tn+1

an+1

)
· 1An

=

∞∑
n=1

(
tn+1

an
+ 1

)
· 1An =

∞∑
n=1

tn
an
· 1An = ϕα.

This proves all but uniqueness in the first assertion of the lemma.
For the second statement of the lemma, a simple calculation shows that

να(U)= να
( ∞⋃

k=1

Ak

)
=

∞∑
k=1

να(Ak)=

∞∑
k=1

∫
Ak

ϕα dλ=
∞∑

k=1

tk
ak
· ak =

∞∑
k=1

tk .
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Finally, note that the uniqueness of να follows since, as we will see in Lemma 2.6 below,
we have that Fα is ergodic. By combining this with the fact that Fα is conservative, an
application of [1, Theorem 1.5.6] then gives that να is in fact unique. This finishes the
proof of the lemma. 2

LEMMA 2.6. The α-Farey map Fα is exact.

Proof. Let B0 ∈
⋂

n∈N F−n
α B be given such that λ(B0) > 0. Since να and λ are absolutely

continuous with respect to each other, it is sufficient to show the exactness of Fα with
respect to λ. Therefore, the aim is to show that λ(Bc

0)= 0. For this, first note that, since
B0 ∈

⋂
n∈N F−n

α B, there exists a sequence (Bn)n∈N in B such that B0 = F−n
α Bn for all

n ∈ N0. Clearly, we then have that Bk+m = Fk
α Bm , for all k, m ∈ N0. Secondly, recalling

that since Fα is conservative, we have that ρα is finite, λ-almost everywhere, where
ρα(x) := inf{n ≥ 0 : Fn

α (x) ∈ A1} + 1. Also, define ρ(n) :=
∑n−1

k=0(ρα ◦ (L
k
α)). Using the

facts that λ is Lα-invariant and Bernoulli with respect to Lα , we obtain, for λ-almost every
x = 〈x1, x2, . . .〉α = [`1, `2, . . .]α ,

λ(B0|Ĉα(x1, . . . , xρ(n)(x))) =
λ(F−(ρ

(n)(x))
α Bρ(n)(x) ∩ Ĉα(x1, . . . , xρ(n)(x)))

λ(Ĉα(x1, . . . , xρ(n)(x)))

=
λ(L−n

α Bρ(n)(x) ∩ Cα(`1, . . . , `n))

λ(Cα(`1, . . . , `n))

=
λ(L−n

α Bρ(n)(x))λ(Cα(`1, . . . , `n))

λ(Cα(`1, . . . , `n))

= λ(Bρ(n)(x)).

Also, by the Martingale convergence theorem [7], we have for λ-almost every x =
〈x1, x2, . . .〉α that

lim
n→∞

λ(B0|Ĉα(x1, . . . , xρ(n)(x)))= 1B0(x).

Combining these observations, it follows that B0 coincides up to a set of measure zero with
the set �, where � is defined by

� :=
{

x ∈ U : lim
n→∞

λ(Bρ(n)(x)) > 0
}
.

Since, by assumption, λ(B0) > 0, we now have that λ(�) > 0. Hence, to finish the
proof, we are left to show that λ(�)= 1. For this, recall that λ is Lα-invariant and
ergodic. Thus, it is sufficient to show that Lα−1�⊂�mod λ. In other words, in order
to complete the proof, we are left to show that limn→∞ λ(Bρ(n)(Lα(x))) > 0 implies that
limn→∞ λ(Bρ(n)(x)) > 0. Since

Bρ(n+1)(x) = Bρ(x)+ρ(n)(Lα(x)) = Fρ(x)α Bρ(n)(Lα(x)),

the latter assertion would hold if we establish that for each ε > 0 and ` ∈ N there exists
κ > 0 such that for all C ∈ B with λ(C) > ε we have λ(F`αC) > κ . Therefore, assume
that λ(C) > ε, and let α∗` denote the `th refinement of the Markov partition α∗ for the
map Fα . Also, one clearly can remove an open neighbourhood of the boundary points of
the intervals in α∗` to obtain a closed set U ⊂ U such that λ(U ) > 1− ε/2. Since there
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are 2` elements in α∗` , this immediately implies that λ(C ∩ B ∩U ) > ε2−`−1, for some
B ∈ α∗` . By combining the fact that F`α : B→ U is bijective, and the fact that by the choice
of U there exists a constant c > 0 such that (d(λ ◦ F`α)/dλ)(y) > c for all y ∈ B ∩U , it
now follows that λ(F`αC)≥ λ(F`α(C ∩ B ∩U )) > c2−`−1ε. Hence, by setting in the above
κ := c2−`−1ε, the proof follows. 2

We end this section by stating the following applications of some general results from
infinite ergodic theory to the system (U , B, Fα, να). Note that the first, but only the first,
is also valid for α of finite type.
• A consequence of Hopf’s ergodic theorem [13]:

for each non-negative f ∈ L1(λ) with
∫

U f dλ > 0, we have that

lim
n→∞

n−1∑
k=0

f (Fk
α (x))=∞ for λ-almost every x ∈ U .

• A consequence of Krengel’s theorem [20]:
if α is of infinite type, then we have, for each ε > 0,

lim
n→∞

λ

({
x ∈ U :

∣∣∣∣1/n
n−1∑
k=0

f (Fk
α (x))

∣∣∣∣≥ ε})= 0 for all f ∈ L1(λ), f ≥ 0.

• A consequence of Aaronson’s theorem [1, Theorem 2.4.2]:
if α is of infinite type, then we have, for each f ∈ L1(λ) such that f ≥ 0 and for each
sequence(cn)n∈N of positive integers, that either

lim inf
n→∞

∑n−1
j=0 f (F j

α (x))

cn
= 0,

or there exists a subsequence (cnk )k∈N such that

lim
k→∞

∑nk−1
j=0 f (F j

α (x))

cnk

=∞.

• A consequence of Lin’s criterion for exactness [21]:
since Fα is exact, we have that if α is of infinite type, then

lim
n→∞

∫
|F n
α ( f )| dνα = 0 for all f ∈ L1(να) such that

∫
f dνα = 0.

3. Renewal theory
In this section, we study the sequence of the Lebesgue measures of the α-sum-level sets
for a given partition α. Recall from the introduction that the α-sum-level sets are given, for
each n ∈ N0, by

L(α)
n :=

{
x ∈ Cα(`1, `2, . . . , `k) :

k∑
i=1

`i = n, for some k ∈ N
}
,
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where, for later convenience, we have set L(α)
0 := U . The first members of this sequence

are as follows:

U
Cα(1)

Cα(2) ∪ Cα(1, 1)

Cα(3) ∪ Cα(1, 2) ∪ Cα(2, 1) ∪ Cα(1, 1, 1)

Cα(4) ∪ Cα(3, 1) ∪ Cα(2, 2) ∪ Cα(2, 1, 1) ∪ Cα(1, 3) ∪ Cα(1, 2, 1) ∪ Cα(1, 1, 2) ∪ Cα(1, 1, 1, 1).

In order to obtain precise rates for the decay of the Lebesgue measure of the α-sum-
level sets L(α)

n , we employ some arguments from renewal theory. We begin our discussion
with the following crucial observation, which shows that the sequence of the Lebesgue
measures of the α-sum-level sets satisfies a renewal equation.

LEMMA 3.1. (Renewal equation) For each n ∈ N, we have that

λ(L(α)
n )=

n∑
m=1

amλ(L(α)
n−m).

Proof. Since λ(L(α)
0 )= 1 and λ(L(α)

1 )= a1, the assertion clearly holds for n = 1. For
n ≥ 2, the following calculation finishes the proof.

λ(L(α)
n ) = λ(Cα(n))+

n−1∑
m=1

∑
Cα(`1,...,`k ,m)∈L(α)

n
k∈N

λ(Cα(`1, . . . , `k, m))

= λ(Cα(n))+
n−1∑
m=1

am

∑
Cα(`1,...,`k )∈L(α)

n−m
k∈N

λ(Cα(`1, . . . , `k))

= anλ(L(α)
0 )+

n−1∑
m=1

amλ(L(α)
n−m)=

n∑
m=1

amλ(L(α)
n−m). 2

We are now in a position to give the proof of Theorem 1.

Proof of Theorem 1(1). Let us begin by recalling the statement of the standard discrete
renewal theorem by Erdős et al [8]. This theorem considers an infinite probability
vector (vn)n∈N, that is, a sequence of non-negative real numbers for which

∑
∞

k=1 vn = 1.
Associated to this vector, there exists a sequence (wn)n∈N0 such that w0 = 1 and such that
(wn) satisfies the renewal equationwn =

∑n
m=1 vmwn−m for all n ∈ N. A pair ((vn), (wn))

of sequences with these properties will be referred to as a renewal pair. A simple inductive
argument immediately yields that 0≤ wn ≤ 1 for all n ∈ N0. It was shown in [8] that with
these hypotheses one then has that

lim
n→∞

wn =
1∑

∞

m=1 m · vm
,

where the limit is equal to zero if the series in the denominator diverges.
This general form of the discrete renewal theorem can now be applied directly to our

specific situation, namely, the sequence of the Lebesgue measures of the α-sum-level sets.
For this, fix some partition α = {An : n ∈ N}, and set vn := λ(An)= an , for each n ∈ N.
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Notice that this is certainly a probability vector. Then, put wn := λ(L(α)
n ), for each n ∈ N0.

In light of Lemma 3.1 and the observation that w0 = λ(L(α)
0 )= 1, we then have that

these particular sequences (vn) and (wn) indeed form a renewal pair. Consequently, by
also observing that

∑n
k=1 kak ∼

∑n
k=1 tk , an application of the discrete renewal theorem

immediately implies that

lim
n→∞

λ(L(α)
n )=

( ∞∑
k=1

tk

)−1

,

where this limit is equal to zero if
∑
∞

k=1 tk diverges. Note that, by Lemma 2.5, the
divergence of the latter series is equivalent to the statement that α is of infinite type.

For the remaining assertion in (1), let us consider the two generating functions a and `,
which are given by a(s) :=

∑
∞

n=1 ansn and `(s) :=
∑
∞

m=0 λ(L(α)
m )sm . Using Lemma 3.1

and the fact that λ(L(α)
0 )= 1, one immediately verifies that for s ∈ (0, 1) we have that

`(s)− 1= `(s)a(s), and hence `(s)= 1/(1− a(s)). Since a(1)= 1, this gives that
lims↗1 `(s)=∞, which shows that

∑
∞

n=0 λ(L(α)
n ) diverges. This finishes the proof of

Theorem 1(1). 2

Proof of Theorem 1(2)(i), (ii) and Remark 1. The statements concerning partitions α of
finite type follow easily from part (1). Similarly to the proof of part (1), the remainder
of the proof here follows from applications of some general results from renewal theory
to the particular situation of the α-sum-level sets. In order to recall these results, let
((vn)n∈N, (wn)n∈N0) be a given renewal pair, and let the two associated sequences (Vn)n∈N
and (Wn)n∈N be defined by Vn :=

∑
∞

k=n vk and Wn :=
∑n

k=1 wk for all n ∈ N. (Note that∑n
k=1 Vk ∼

∑n
k=1 kvk .) Let us now first recall the following strong renewal theorems

obtained by Erickson, Garsia and Lamperti. The principle assumption in these results is
that

Vn = ψ(n)n
−θ

for all n ∈ N, for some θ ∈ [0, 1] and for some slowly varying function ψ .

The strong renewal results by Garsia/Lamperti [10, Lemma 2.3.1] and Erickson [9,
Theorem 5]. For θ ∈ [0, 1], we have that

Wn ∼ (0(2− θ)0(1+ θ))−1
· n ·

( n∑
k=1

Vk

)−1

.

Also, if θ ∈ (1/2, 1], then

wn ∼ (0(2− θ)0(θ))−1
·

( n∑
k=1

Vk

)−1

.

Finally, for θ ∈ (0, 1/2], we have that the limit in the latter formula does not have to exist
in general. However, in this case we have that [10, Theorem 1.1]

lim inf
n→∞

n · wn · Vn =
sin πθ
π

,

and that if we restrict the index set to the complement of some set of integers of zero
density, we may replace the limes inferior by a limit in this equation.
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The statements in Theorem 1(2)(i), (ii) and Remark 1 now follow from straightforward
applications of these strong renewal results to the setting of the α-sum-level sets, for some
given partition α. For this, we have to put vn := an , Vn := tn and wn := λ(L(α)

n ), and to
recall that the pair ((an)n∈N, (λ(L(α)

n ))n∈N0) satisfies the conditions of a renewal pair. 2

Remark. Note that, by combining the fact that L(α)
n = F−(n−1)

α (L(α)
1 ) and Lin’s criterion

for exactness, as stated at the end of the previous section, one immediately verifies that if
α is of infinite type, then limn→∞ λ(L(α)

n )= 0. Clearly, this gives an alternative proof of
the first part of Theorem 1(1) for the case in which α is of infinite type.

4. Multifractal formalisms for Fα and Lα
For the proofs of Theorems 2 and 3, we employ the following general thermodynamical
result obtained by Jaerisch and Kesseböhmer, slightly adapted to fit our particular situation.

The general thermodynamical results by Jaerisch and Kesseböhmer [14]. Let α be given
as in the introduction and consider the two potential functions ϕ, ψ : U → R given for
x ∈ An , n ∈ N, by ϕ(x) := log an and ψ(x) := zn , for some fixed sequence (zn)n∈N of
negative real numbers. For all s ∈ R, we then have that

dimH

{
x ∈ U : lim

n→∞

(n−1∑
k=0

ψ(Lk
α(x))

)/(n−1∑
k=0

ϕ(Lk
α(x))

)
= s

}
≤max{0,−t∗(−s)}.

Here, the function t : R→ R ∪ {∞} is given by

t (v) := inf
{

u ∈ R :
∞∑

n=1

au
n exp(vzn)≤ 1

}
and t∗ is the Legendre transform of t , that is,

t∗(r) := sup
v∈R

(−t (v)+ vr).

Furthermore, there exist r−, r+ ∈ R such that, for s ∈ (r−, r+), we have

dimH

{
x ∈ U : lim

n→∞

(n−1∑
k=0

ψ(Lk
α(x))

)/(n−1∑
k=0

ϕ(Lk
α(x))

)
= s

}
=−t∗(−s).

In fact, the boundary points r− and r+ are determined explicitly by

r− := inf{−t+(v) : v ∈ Int(dom(t))} and r+ := sup{−t+(v) : v ∈ Int(dom(t))},

where t+ denotes the derivative of t from the right, Int(A) denotes the interior of the set A
and dom(t) := {v ∈ R : t (v) <+∞} refers to the effective domain of t .

Remark 3. Note that for s ∈ R we have{
x ∈ U : lim

n→∞

(n−1∑
k=0

ψ(Lk
α(x))

/ n−1∑
k=0

ϕ(Lk
α(x))

)
= s

}
6= ∅

if and only if inf{zn/log an : n ∈ N} ≤ s ≤ sup{zn/log an : n ∈ N}. By the basic properties
of the Legendre transform, it follows that

r− ≥ inf{zn/log an : n ∈ N} and r+ ≤ sup{zn/log an : n ∈ N}.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Aug 2013 IP address: 138.251.65.55

Strong renewal theorems and Lyapunov spectra 1007

In preparation for the proofs of Theorems 2 and 3, let us also make the following
observation.

LEMMA 4.1. Let α be a partition such that limn→∞ tn/tn+1 = ρ ≥ 1. We then have that
the following hold.
(1) If α is either expanding, or expansive of exponent θ > 0 and eventually decreasing,

we have that

lim
n→∞

log an

n
= lim

n→∞

log tn
n
=−log ρ.

Furthermore, if α is expansive of exponent θ > 0 and eventually decreasing, then we
have that

an ∼ θn−1tn .

(2) If α is expansive of exponent θ = 0 and eventually decreasing, then we have that
t∞ = 1.

(3) If α is expanding, or expansive of exponent θ > 0 and eventually decreasing, then

lim
n→∞

an

an+1
= ρ.

(4) There exists a sequence (εk)k∈N, with limk→∞ εk = 0, such that for all n ∈ N and
x ∈

⋃
k≥n Ak we have that∣∣∣∣1n

n−1∑
k=0

log |F ′α(F
k
α (x))| − log ρ

∣∣∣∣< εn .

Proof. Let us first prove the assertion in (1). Since limn→∞(log tn − log tn+1)= log ρ, we
conclude, by using Cesàro averages, that for ρ ≥ 1 we have that

lim
n→∞

log tn
n
= lim

n→∞

1
n

(
log t1 +

n−1∑
k=1

(log tk+1 − log tk)

)
=−log ρ.

Since tn − tn+1 = an ≤ tn , this in particular also gives the first equality in (1) for ρ > 1.
The second statement in (1) follows from the monotone density theorem [4, Theo-
rem 1.7.2]. Clearly, this in particular also implies that limn→∞(log an)/n = 0 for the case
ρ = 1 and θ > 0. This completes the proof of the statement in (1).

For the proof of the assertion in (2), let us suppose that θ = 0 and define cn := card{k ∈
N : e−n

≤ ak < e−(n−1)
} for each n ∈ N. Since, for u > 0, we have that

∞∑
n=1

cne−n·u
≤

∞∑
m=1

au
m

and
∑
∞

m=1 am = 1, it follows that lim supn→∞(log cn)/n =: γ0 ≤ 1, and also that the
claim in (2) is an immediate consequence of the assertion that γ0 = 1. For the proof of
this assertion, suppose on the contrary that 0≤ γ0 < 1. We then have for each γ ∈ (γ0, 1)
and for all n ∈ N sufficiently large that kn :=

∑n
i=1 ci ≤ eγ n and

tkn =

∞∑
m=kn

am ≤

∞∑
i=n

ci e
−i+1
≤ e(γ−1)n

≤ k1−1/γ
n .

This contradicts the fact that tn is slowly varying (see [4, Proposition 1.3.6(v)], for
example) and hence completes the proof of the statement in (2).
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The proof of (3) for the expansive case is an immediate consequence of (1), whereas
for the expanding case the assertion in (3) is an immediate consequence of the following
observation:

lim
n→∞

an

an+1
= lim

n→∞

tn−1 − tn
tn − tn+1

=
ρ − 1

1− 1/ρ
= ρ.

For the proof of (4), observe that∣∣∣∣∑n−1
k=0 log |F ′α(F

k
α (x))|

n
− log ρ

∣∣∣∣ ≤ sup
k∈N

∣∣∣∣ log ak − log an+k

n
− log ρ

∣∣∣∣
= sup

k∈N

∣∣∣∣ log ak

k
·

k

n
−

log an+k

n + k
·

n + k

n
− log ρ

∣∣∣∣
=: εn .

Since by (1) we have limk→∞(log ak)/k =−log ρ, it follows that limk→∞ εk = 0. 2

We are now in a position to prove Theorem 2.

Proof of Theorem 2. We apply the general result by Jaerisch and Kesseböhmer, as stated
above, to the special situation in which zn := −1, for each n ∈ N. In order to determine
the function t , we consider the function v : (t∞,∞)→ R, which is given by v(u) :=
log

∑
∞

n=1 au
n , where

t∞ := inf
{

r > 0 :
∞∑

k=1

ar
k <∞

}
.

On the one hand, if v(t∞) is infinite, then the free energy function t appearing in the
result of Jaerisch and Kesseböhmer is identically equal to the inverse v−1 of v. On the
other hand, if v(t∞)=: c <∞, then t (s)= v−1(s) for all s ∈ (−∞, c), whereas t (s)= t∞
for all s ∈ [c,+∞). In both cases, one immediately finds, by considering the asymptotic
slopes of t , that r− = 0 and r+ = 1/inf{−log an : n ∈ N}. Hence, using Remark 3 and the
general thermodynamical result stated above, it follows that the boundary points of the
non-trivial part of the Lyapunov spectrum associated with the map Lα are determined by
t− := 1/r+ = inf{−log an : n ∈ N} and t+ := +∞ (where the latter follows since here we
have that r− = 0).

For both of these two cases, this shows that the Hausdorff dimension function associated
with the Lyapunov spectrum of Lα is given, for s ∈ (t−,+∞), by

τα(s) = −t∗(−1/s)= inf
v∈R

(t (v)+ s−1v)= inf
u∈R

(
u + s−1 log

∞∑
n=1

au
n

)
and τα(s) vanishes for s < t−.

For the discussion of the phase transition phenomena for Lα , one immediately verifies
that for the right derivative of the pressure function p of Lα , where the reader might like
to recall that p is given by p(u) := log

∑
∞

n=1 au
n , we have that

p′(u)=

∑
∞

n=1 au
n log an∑
∞

n=1 au
n

.

Clearly, p is real-analytic on (t∞,∞). Hence, we have that Lα exhibits no phase transition
if and only if limu↘t∞ −p′(u)=+∞. We now distinguish the following two cases.
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If α is expanding, then there is no phase transition. This follows since, by Lemma 4.1,
we have that p(u) <∞ for all u > 0. In particular, t∞ = 0.

For θ = 0, we have, by Lemma 4.1(2), that t∞ = 1. This shows that limu↘t∞ p′(u)=∞
if and only if −

∑
∞

n=1an log an =∞.
If α is expansive of exponent θ > 0 such that tn = ψ(n)n−θ , then Lemma 4.1 implies

that there exists ψ0 such that ψ0(n)∼ θψ(n) and an = ψ0(n)n−(1+θ). Consequently, we
have that t∞ = 1/(1+ θ). Hence, we now observe that

lim
u↘t∞

−p′(u)= (1+ θ) lim
u↘t∞

∑
∞

n=1(n
−(1+θ)ψ0(n))u log(n(ψ0(n))−1/(1+θ))∑

∞

n=1(n
−(1+θ)ψ0(n))u

.

We now split the discussion as follows. First, if
∑
∞

n=1 ψ(n)
1/(1+θ)(log n)/n converges,

then, clearly, in the latter expression the numerator and the denominator both converge,
and hence limu↘t∞ −p′(u) is finite, showing that in this case the system exhibits a phase
transition. Secondly, if

∑
∞

n=1 ψ(n)
1/(1+θ)(log n)/n diverges, then we have to consider the

following two subcases. If
∑
∞

n=1 n−1ψ0(n)1/(1+θ) converges, then limu↘t∞ −p′(u)=∞.
On the other hand, if

∑
∞

n=1 n−1ψ0(n)1/(1+θ) diverges, then, for every k ∈ N, we have

(k−(1+θ)ψ0(k))
u
/ ∞∑

n=1

(n−(1+θ)ψ0(n))
u
→ 0 as u→ 1/(1+ θ)

and hence we have that limu↘t∞ −p′(u)=∞. Therefore, in both of these subcases the
system exhibits no phase transition.

Finally, for the interpretation of t∞ in terms of the Hausdorff dimension of the Good-
type set G(α)

∞ , we have shown above that t∞ = 1/(1+ θ) for α expansive of exponent θ > 0
and t∞ = 0 for α expanding. It has been proved in [24] that for α expansive of exponent
θ > 0 we have dimH (G

(α)
∞ )= 1/(1+ θ). It is clear, by considering coverings of G(α)

∞ by
cylinder sets, that in the case of α expanding, we have that dimH (G

(α)
∞ )= 0. This finishes

the proof of Theorem 2. 2

In the proof of Theorem 3, the following proposition will be useful. In this proposition,
we consider the potential function N : U → N ∪ {∞}, which is given by

N (x) :=

{
n for x ∈ An , for n ∈ N;

∞ for x = 0.

PROPOSITION 4.2. Let α be a partition which is either expanding, or expansive of
exponent θ and eventually decreasing. With

5(Lα, x) := lim
n→∞

(n−1∑
k=0

log |L ′α(L
k
α(x))|

)/(n−1∑
k=0

N (Lk
α(x))

)
,

we then have for each s ≥ 0 that the sets

{x ∈ U :5(Lα, x)= s} and {x ∈ U :3(Fα, x)= s}

coincide up to a countable set of points.
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Proof. Set

Sn(x) :=
n−1∑
k=0

log |L ′α(L
k
α(x))|, Tn(x) :=

n−1∑
k=0

log |F ′α(F
k
α (x))|

and

Nn(x) :=
n−1∑
k=0

N (Lk
α(x)).

Since Sn(x)/Nn(x) is a subsequence of Tn(x)/n, it follows for all s ≥ 0 that

{x ∈ U :3(Fα, x)= s} ⊂

{
x ∈ U : lim

n→∞
Sn(x)/Nn(x)= s

}
.

Since the set of preimages of 0 under Fα is at most countable, we can clearly restrict
the discussion to those points x ∈ U for which N (Fk

α (x))=: `k(x) is finite for all k ∈ N.
Now put kn(x) := sup{k ∈ N : Nk(x)≤ n} and mn(x) := n − Nkn(x)(x), and assume
that 5(Lα, x)= s, for some s ≥ 0. Thus, limn→∞ Skn(x)(x)/Nkn(x)(x)= s, and a
straightforward computation gives that

Tn(x)

n
=

Skn(x)(x)

Nkn(x)(x)+ mn(x)
+

Tmn(x)(L
kn(x)
α (x))

Nkn(x)(x)+ mn(x)

=
Nkn(x)(x)

Nkn(x)(x)+ mn(x)
·

Skn(x)(x)

Nkn(x)(x)
+

mn(x)(log ρ ± εmn(x))

Nkn(x)(x)+ mn(x)
,

where (εk)k∈N denotes the sequence which was obtained in Lemma 4.1(3). For the case
s = log ρ, one immediately verifies, using the observation that the latter sum is a convex
combination, that3(Fα, x)= log ρ. Hence, we are left only to consider the case s 6= log ρ.
Given this assumption, observe that

Tn(x)

n
=

1
1+ mn(x)/Nkn(x)(x)

·
Skn(x)(x)

Nkn(x)(x)
+

log ρ ± εmn(x)

1+ Nkn(x)(x)/mn(x)
.

Hence, it remains to show that limn→∞ mn(x)/Nkn(x)(x)= 0. For this, we argue by
way of contradiction, using the inequality mn(x)≤ `kn(x)+1(x), as follows. Put bkn(x) :=

log a`kn (x)(x), and observe that

lim
k→∞

Skn(x)+1(x)

Nkn(x)+1(x)
= lim

k→∞

Skn(x)(x)+ bkn(x)+1

Nkn(x)(x)+ `kn(x)+1(x)

= lim
k→∞

Skn(x)(1+ (bkn(x)+1/Skn(x)(x)))

Nkn(x)(x)(1+ (`kn(x)+1(x)/Nkn(x)(x)))
.

Now suppose, by way of contradiction, that limn→∞ `kn(x)+1(x)/Nkn(x)(x) 6= 0. Since
Skn(x)(x) is strictly increasing, we then have that there exists a strictly increasing sequence
of positive integers (n j ) j∈N such that lim j→∞ bkn j (x)+1(x)=∞. This implies that

lim
j→∞

bkn j (x)+1

`kn j (x)+1(x)
= log ρ.

By combining this with the calculation above, we obtain that

1= lim
j→∞

bkn j (x)+1 Nkn j (x)
(x)

`kn j (x)+1(x)Skn j (x)
(x)
=

log ρ
s
6= 1,

which is a contradiction and hence finishes the proof. 2
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Proof of Theorem 3. Let us begin by showing that−s− and−s+ are the asymptotic slopes
of the α-Farey free energy function v. This follows since, for each ε > 0 and for u > 0,
respectively u < 0, we have

∞∑
n=1

exp
(

nu

(
log an

n
+ s∓ ∓ ε

)){
≤
∑
∞

n=1 exp(∓nuε)−→ 0 for u −→±∞;

≥ exp(±uε)−→+∞ for u −→±∞.

The next step is to examine the possibility of the existence of phase transitions. For this,
we introduce the function Z , given by

Z(u, v) :=
∞∑

n=1

exp
(

n

(
u log an

n
− v

))
.

Let us again consider the expanding and the expansive case separately.
If α is expanding, then we immediately have that Z is real-analytic in both variables u

and v, and also that Z is strictly decreasing in v. Moreover, for each u0 ∈ R fixed, we have
that {Z(u0, v) : v ∈ R} = (0,∞). This implies that for each u ∈ R there exists a unique
f (u) ∈ R such that Z(u, f (u))= 1. An application of the implicit function theorem then
gives that f is real-analytic and coincides with the α-Farey free energy function v. It
follows that in the expanding case the system exhibits no phase transition.

For α expansive, and if u is strictly less than 1, we can argue similarly to the expanding
case, which then gives the existence of a real-analytic function f : (−∞, 1)→ R+ such
that Z(u, f (u))= 1, and such that f (u)= v(u), for all u ∈ (−∞, 1). For u > 1, one then
immediately verifies that

∞∑
n=1

au
n e−wn

{
< 1 for w ≥ 0

=∞ for w < 0.

It follows that v(u)= 0, for u ≥ 1, which then shows that in this case the system
exhibits a phase transition if and only if limu↗1 f ′(u) < 0. In order to investigate the
expansive situation in greater detail, note that, using the implicit function theorem again,
an elementary calculation gives that, for u < 1, we have that

f ′(u)=

∑
∞

n=1 au
n e− f (u)n log an∑

∞

n=1 nau
n e− f (u)n

.

For the case in which α is of infinite type, we have that the denominator in the above
expression tends to infinity, for u tending to 1 from below. Indeed, for each N ∈ N and
u < 1, we have

∞∑
n=1

nau
n e− f (u)n

≥ e− f (u)N
N∑

n=1

nan→

N∑
n=1

nan for u↗ 1.

Using the fact that limn→∞((log an)/n)= 0, it follows that

lim
u↗1

f ′(u)= lim
u↗1

∞∑
n=1

log an

n
·

nau
n e− f (u)n∑

∞

k=1 kau
k e− f (u)k

= 0.

Summarizing these observations, we now have that if α is of infinite type then the system
exhibits no phase transition.
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Hence, it only remains to consider the case in which α is of finite type. Here, the
easiest situation to analyse occurs for θ > 1. Clearly, in this case we have that in the above
expression for f ′ the denominator and the numerator both converge to a finite value not
equal to zero, for u tending to 1 from below. Therefore, in this case the system exhibits a
phase transition.

Finally, it remains to consider the case in which α is of finite type and θ = 1. In fact, the
following argument requires only that

∑
n nan =

∑
n tn <∞, and hence it will also give

an alternative proof for the case θ > 1. For this, let vN : R→ R be given by

N∑
n=1

au
n e−vN (u)n = 1.

It is easy to check that vN is real-analytic and that it converges pointwise to the α-
Farey free energy function v. Also, define δN :=

∑
n>N nan/

∑
n≤N nan and observe that

limN→∞ δN = 0. Using the fact that eax
≥ ax + 1, for all a, x ≥ 0, we then have that∑

n≤N

aneδN ·n/N
≥

∑
n≤N

an +
δN

N

∑
n≤N

nan =
∑
n≤N

an +
1
N

∑
n>N

nan ≥

∞∑
n=1

an = 1.

Combining this with the definition of vN , it follows that vN (1)≥−δN/N , and hence

N∑
n=1

nan ≤
∑
n≤N

nane−vN (1)·n ≤ e−vN (1)·N
∞∑

n=1

nan ≤ eδN

∞∑
n=1

nan .

This gives that

lim
N→∞

v′N (1)= lim
N→∞

∑
n an log ane−vN (1)n∑

n nane−vN (1)n
=

∑
n an log an∑

n nan
< 0.

Since vN ≤ f on (−∞, 1), we have that limu↗1 f ′(u)≤ limN→∞ v
′

N (1). Combining
these observations, it now follows that

∑
n an log an/

∑
nnan is an upper bound for

limu↗1 f ′(u). The fact that this is also a lower bound is an immediate consequence of
the following calculation:

lim
u↗1

∑
∞

n=1 au
n e− f (u)n log an∑

∞

n=1 nau
n e− f (u)n

≥ lim
u↗1

∑
∞

n=1 au
n log an∑

∞

n=1 nane− f (u)n
=

∑
n an log an∑

n nan
.

This shows that in this case the system also exhibits a phase transition.
In order to derive the description of σα in terms of the α-Farey free energy function,

as stated in the theorem, we apply the above-stated general result by Jaerisch and
Kesseböhmer to the special situation in which zn := −n for all n ∈ N. This gives
the Hausdorff dimension function associated with {x ∈ U :5(Lα, x)= s}, which, by
Proposition 4.2, coincides with the Hausdorff dimension function of the Lyapunov
spectrum associated with Fα . Let us now distinguish two cases: the first, in which
the Farey system exhibits no phase transition, and the second, in which it has a phase
transition. In the first case, the boundary points of the spectral set are given by s− = 1/r+
and s+ = 1/r−. This can be shown in a similar fashion to the α-Lüroth case by observing
that t coincides with the inverse v−1 of the α-Farey free energy function v. More precisely,
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for α expanding, this holds on R, whereas if α is expansive, then this is true on [0,∞)
(and in this case t (v)=∞ for all v ∈ (−∞, 0)). Moreover, if α is expansive and exhibits
no phase transition, then we have that s− = 0 and r+ =∞. Therefore, it follows that
σα(s)=−t∗(−1/s) for all s ∈ (s−, s+). This gives the proof of the first part of Theorem 3
for the case in which there is no phase transition.

Finally, if there exists a phase transition then, by the above, we necessarily have that α
is expansive and

r+ =−

(∑
n

nan

)/(∑
n

an log an

)
<∞,

showing that 0= s− < 1/r+. By the general result of Jaerisch and Kesseböhmer, the
dimension formula stated in the theorem then holds for all s ∈ (1/r+, s+). For s ∈
(0, 1/r+], we have that −t∗(−1/s)= 1, which immediately gives the upper bound 1 for
σα(s) for all s ∈ (0, 1/r+]. The fact that 1 is also the lower bound on (0, 1/r+] is an
immediate consequence of [14, Corollary 1.9(3), (Exhaustion principle II)], (see also [14,
Example 1.13]). This finishes the proof of Theorem 3. 2

5. Some examples
As mentioned already in the introduction, if we choose the harmonic partition αH , we
obtain the αH -Farey map FαH , which is given explicitly by

FαH (x)=


2− 2x for x ∈ A1;
n + 1
n − 1

x −
1

n(n − 1)
for x ∈ An , n ≥ 2;

0 for x = 0.

From the map FαH , by the method of Lemma 2.1, we obtain the alternating Lüroth map
LαH . Recall from the introduction that this map is given by

LαH (x)=

{
−n(n + 1)x + (n + 1) for x ∈ An , n ∈ N;

0 for x = 0.

The corresponding αH -Lüroth expansion of some arbitrary x = [`1, `2, . . .]αH ∈ U is
given by

x =
∞∑

n=1

(
(−1)n−1(`n + 1)

n∏
k=1

(`k(`k + 1))−1
)
.

Also, the Lebesgue measure of the cylinder set Cα(`1, . . . , `k) is equal to 1/(`1(`1 + 1)
· · · `k(`k + 1)).

Note that the Hölder exponent of the map θαH is equal to 2 log 2/log 6. Also,
it is immediately clear that the invariant measure ναH associated to FαH is infinite,
and that the density function of ναH with respect to λ is equal to the step function∑
∞

n=1(n + 1)1An .

Remark. Suppose that in the definition of FαH given above we were to choose x 7→ 2x − 1
instead of x 7→ 2− 2x for the right-hand branch of the αH -Farey map, with 1/2 7→ 0.
Then, the jump transformation of this new non-alternating version of FαH coincides with

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Aug 2013 IP address: 138.251.65.55

1014 M. Kesseböhmer et al

FIGURE 5.1. Infinite critical value p(t∞)=∞ and no phase transition for the αH -Farey free energy function
and the αH -Lüroth pressure function. The figure shows the αH -Farey free energy v (solid line), the αH -Lüroth
pressure function p (dashed line) and the associated dimension graphs σαH and ταH of the alternating Lüroth

system. Here, t− = log 2, t∞ = 1/2 and s+ = (log 6)/2. Both FαH and LαH experience no phase transition.

FIGURE 5.2. Phase transition for the α-Farey free energy function, no phase transition for the the α-Lüroth
pressure function and α expansive. The α-Farey free energy v (solid line), the α-Lüroth pressure function p
(dashed line) and the associated dimension graphs for an := ζ(3)−1n−3. Here, Fα has a phase transition, namely,

p is not differentiable at 1, whereas Lα exhibits no phase transition and p(t∞)=∞.

FIGURE 5.3. Finite critical value p(t∞) <∞ with phase transition for the α-Lüroth pressure function and α
expansive. The α-Lüroth pressure function p and the associated dimension graphs for the α-Lüroth system
with an := n−2

· (log(n + 5))−12/C , where C :=
∑

n≥1 n−2
· (log(n + 5))−12. In this case, t∞ = 1/2 and

p(1/2) <∞ and Lα has a phase transition, namely, v is not differentiable at 1/2.
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FIGURE 5.4. Finite critical value p(t∞) <∞ and no phase transition for the α-Lüroth pressure function
and α expansive. The α-Lüroth pressure function p and the associated dimension graphs for the α-Lüroth
system with an := n−2

· (log(n + 5))−4/C , where C :=
∑

n≥1 n−2
· (log(n + 5))−4. In this case, t∞ = 1/2

and p(1/2) <∞, but Lα exhibits no phase transition.

FIGURE 5.5. The Farey spectrum and the Lüroth spectrum intersect at a single point, for α expansive. The α-
Farey free energy v (solid line), the α-Lüroth pressure function p (dashed line) and the associated dimension

graphs for an := ζ(5/4)−1n−5/4. Here, Fα exhibits no phase transition.

FIGURE 5.6. The Farey spectrum is completely contained in the Lüroth spectrum, for α expanding. The α-Farey
free energy v (solid line), the α-Lüroth pressure function p (dashed line) and the associated dimension graphs for
the α-Farey and α-Lüroth systems with an := 2 · 3−n , n ∈ N. The α-Farey system is given in this situation by the

tent map with slopes 3 and −3/2.
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the actual classical Lüroth map L : U → U , which generates the series expansion of real
numbers introduced by Lüroth in [22], and which is given in our terms by

L(x)=


n(n + 1)x − n for x ∈ [1/(n + 1), 1/n), n ≥ 2;

2x − 1 for x ∈ [1/2, 1];

0 for x = 0.

The series expansion in this case is given by

x =
∞∑

n=1

(
`n

n∏
k=1

(`k(`k + 1))−1
)
,

where again all of the `i are natural numbers. Notice that the atoms of the partition behind
the map L are slightly different to the atoms An of αH ; they are right-closed and left-open
intervals, except for the equivalent of A1, which is the closed interval [1/2, 1].

We now consider the αH -sum-level sets. The reader might like to see that the Lebesgue
measures of the first members of the sequence (L(αH )

n ) are as follows:

λ(L(αH )
0 )= 1, λ(L(αH )

1 )= 1
2 , λ(L(αH )

2 )= 5
12 , λ(L(αH )

3 )= 3
8 , λ(L(αH )

4 )= 251
720 .

Since the Lebesgue measure of the sum-level set Ln associated with the map L coincides
with the Lebesgue measure of the sum-level set L(αH )

n , Theorem 1 gives the following
corollaries.

COROLLARY 5.1. For the sum-level sets of the classical and of the alternating Lüroth
map we have limn→∞ λ(L(αH )

n )= limn→∞ λ(Ln)= 0.

COROLLARY 5.2. For the classical and for the alternating Lüroth map, the following
hold, for n tending to infinity.
(1)

∑n
k=1 λ(Ln)=

∑n
k=1 λ(L(αH )

n )∼ n(
∑n

k=1(1/k))−1
∼ n/log n.

(2) λ(Ln)= λ(L(αH )
n )∼ (

∑n
k=1(1/k))−1

∼ 1/log n.

For the outcome of the Lyapunov spectra associated with the harmonic partition, we
refer to Figure 5.1. Also, various different phenomena which arise from particularly chosen
partitions are briefly discussed in Figures 5.2, 5.3, 5.4, 5.5 and 5.6 (see also Remark 2 in
the Introduction).
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[2] J. Aaronson, M. Denker and M. Urbański. Ergodic theory for Markov fibred systems and parabolic
rational maps. Trans. Amer. Math. Soc. 33(2) (1993), 495–548.

[3] J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp. Ergodic properties of generalized Lüroth
series. Acta Arith. LXXIV(4) (1996), 311–327.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Aug 2013 IP address: 138.251.65.55

Strong renewal theorems and Lyapunov spectra 1017

[4] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation (Encyclopedia of Mathematics and its
Applications, 27). Cambridge University Press, Cambridge, 1989.

[5] K. Dajani and C. Kraaikamp. On approximation by Lüroth series. J. Théor. Nombres Bordeaux 8 (1996),
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