
Sequential decision problems,
dependently typed solutions

Nicola Botta1, Cezar Ionescu1, and Edwin Brady2

1 Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473
Potsdam, Germany

{botta,ionescu}@pik-potsdam.de
2 University of St Andrews, KY16 9SX, UK

ecb10@st-andrews.ac.uk

Abstract. We propose a dependently typed formalization for a simple
class of sequential decision problems. For this class of problems, we im-
plement a generic version of Bellman’s backwards induction algorithm
[2] and a machine checkable proof that the proposed implementation is
correct. The formalization is generic. It is presented in Idris, but it can
be easily translated to other dependently-typed programming languages.
We conclude with an informal discussion of the problems we have faced
in extending the formalization to generic monadic sequential decision
problems.

1 Introduction

In this paper we formalize a simple class of sequential decision problems. For
this class, we implement a generic version of Bellman’s backwards induction
algorithm [2] and derive a machine checkable proof that the proposed implemen-
tation is correct.

The approach is similar in spirit to that proposed by de Moor [7], with the
focus on generic programming. Both the formalization of the problem and its
solution are based on an abstract context. In order to solve specific sequen-
tial decision problems, clients must provide problem-specific instances of the
context. There are important differences between our approach and de Moor’s,
however. In [7], Bellman’s principle of optimality is rephrased in terms of three
requirements: a promotability requirement for a feasibility predicate p and two
monotonicity requirements for a list of decision functions fs (in [7], both p and
fs are part of the abstract context). These requirements are expressed as pred-
icates in first-order logic. In our approach, Bellman’s principle of optimality is
stated in the same language used for implementing backwards induction. This
allows us to derive a proof of correctness (of the implementation) which can be
machine checked.

An obvious consequence of our approach is that it requires a programming
language which is expressive enough to implement generic algorithms and to
encode (and prove) properties of such algorithms. Dependently typed languages
such as Idris [6] and Agda [10] or Coq [3] support this by allowing types to be



predicated on values. A program’s type encodes its meaning; allowing types to
be predicated on values means a programmer may give a precise meaning to a
program. Furthermore, generic programming is supported by allowing functions
to compute types directly. We have implemented our formalization in Idris but
a translation to Agda or other fully dependently-typed programming languages
would be straightforward.

Another difference between our approach and the one described in [7] is that
we explicitly introduce a state space in our context and that the set of controls
(decisions) which are available at a given step depends on the actual state at that
step. In contrast, the set of controls in [7] is constant. As it turns out, a state-
dependent notion of feasible controls is essential to generalize the formalization
presented here to the case of time-dependent state spaces and non-deterministic
transition functions. We do not present such a generalization here, but we discuss
the problem of extending our formalization in section 7.1.

1.1 Programming with Dependent Types

We will use the Idris programming language3. Idris is a general purpose lan-
guage with dependent types. Its syntax, and many of its features such as type
classes [12], are influenced by Haskell. Idris supports algebraic data types, such
as natural numbers and polymorphic lists, declared as follows

data Nat = O | S Nat
data List a = Nil | (::) a (List a)

The canonical example of a dependent type is the type of lists indexed by length,
usually called a vector. It is declared as follows, giving explicit types for the type
constructor Vect as well as the constructors Nil and (::)

data Vect : Type → Nat → Type where
Nil : Vect a O
(::) : a → Vect a k → Vect a (S k)

Note that the constructors Nil and (::) have been overloaded for both Vect and
List — overloading is resolved by type. A function over a dependent type encodes
the invariant properties of its indices in its type, for example

(++) : Vect a n → Vect a m → Vect a (n + m)
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

A program with a dependent type can be understood as a proof of the logical
interpretation of that type. In particular, types can be used to represent relations,
such as equality

data (=) : a → b → Type where
refl : x = x

3 idris-lang.org



Types are first class, meaning that they can be computed and manipulated like
any other term. For example this allows us to define type synonyms

IntVect : Int → Type
IntVect n = Vect Int n

We will make extensive use of the following type, so, which requires at type
checking time that a boolean value is provably true

data so : Bool → Type where
oh : so True

The only canonical instance of so x is oh, and this can only be constructed if x is
True. Dependent types allow the value of an input to a function to be mentioned
in the type of the output — that is, a function type is a binder. In this way,
we can use so to guarantee that a required dynamic check has been made, for
example

safe divide : (x : Int)→ (y : Int)→ so (y 6≡ 0)→ Int
safe divide x y oh = x ‘div ‘ y

A full tutorial for Idris is available elsewhere [6].

1.2 Sequential decision problems

In textbooks on sequential decision problems and dynamic programming, the
notions of state and control spaces are usually not formalized.

In Chapter 1 of [4], for instance, the notions of control sequence, policy,
policy sequence, optimal policy sequence, Bellman’s principle of optimality and
backwards induction are discussed in the context of a discrete-time dynamical
system of the form

xk+1 = fk(xk, uk, wk)

where xk, uk and wk represent the state of the system, the selected control and
a random parameter at time k. The types of xk, uk and, a fortiori, the type of
fk, are not explicitly stated. In many examples, the type of xk turns out to be
Rn or Nn. But one can easily imagine sequential decision problems in which the
state of the system is represented by pairs or perhaps by lists of pairs, as for
example in the knapsack problem [7].

What about controls? Is it safe to assume that the type of uk can be fixed,
in specific sequential decision problems, independently of xk? In problems of
resource allocation, one can often take controls to be real numbers on the unit
interval. The interpretation is that uk represents a fraction of the available re-
source that are used for a certain purpose, for instance investment or saving.

In general, however, the controls available in a given state do depend on
that specific state. Of course, one can always embed the set of controls which



are available in a given state in a larger set, thereby recovering the case of a
constant control space. But then fk becomes a partial function and may fail to
produce a new state for some specific state-control pairs.

In the rest of this section we discuss a simple example of a sequential deci-
sion problem. It is an instance of the well known “cylinder” problem originally
proposed by [11] and extensively studied in [5]. We will use this problem to
characterize SDPs and to exemplify and discuss our formalization.

1.3 The “cylinder” problem

Consider the following problem: a decision-maker can be in one of five states:
a, b, c, d or e. In a, the decision maker can choose between two options: move
ahead (option A) or move to the right (option R). In b, c and d he can move
to the left (L), ahead or to the right. In e he can move to the left or go ahead.
Upon selecting an option, the decision maker enters a new state. For instance,
selecting R in b brings him from b to c, see Figure 1, left. Thus, each step is
characterized by a current state, a selected control and a new state. A step also
yields a reward, for instance 3 for the transition from b to c and for option R,
see Figure 1, middle. The challenge for the decision maker is to make a finite
number of steps, say n, by selecting options that maximize the sum of the rewards
collected. An example of a possible trajectory and corresponding rewards for the
first four steps is shown on the right of Figure 1.

a b c d e

0
1
2
3
4
5
6
7

... ...

n

a b c d e

0
1
2
3
4
5
6
7

... ...

n

3
?

a b c d e

0
1
2
3
4
5
6
7

... ...

n

3
5

4
4
?

Fig. 1. The state of the agent is indicated by the bright red square, previous states
are marked with faded color, the numbers in the faded squares represent the rewards
the agent has collected. On the left we have the initial state, b. In the middle, the
trajectory after one step: the agent has gone from b to c, collecting a reward of 3.
On the right, we see the trajectory after 4 steps, the agent is now in state d , the last
decision was to move ahead (A).



The cylinder problem is a very special example of a sequential decision prob-
lem. In this particular problem, the set of possible states — the state space –
is finite and independent of the number of steps. The set of options available
to the decision maker in a given state — the control space — is finite and only
depends on that state and not, for instance, on the number of steps done.

In most SDPs, these conditions are not met. In assembly line scheduling
problems [8], for instance, certain items have to be moved, at each of a fixed
number of steps, to one of a finite number of assembly lines. Each step implies a
transfer cost (if the item is to change assembly line) and a production cost. The
latter depends on the current step and assembly line. The idea is to select moves
that minimize the overall costs of assembling a given item. While in assembly
line problems the state and the control space are finite, the number of assembly
lines available at a given step might depend on the number of steps already done
(assembly lines might go down for maintenance every so many steps).

In optimal investment problems, the state space, the control space or both
might not be finite. The control space space, for instance, might be a real number
on the unit interval representing, in a time-discrete setting, the fraction of the
profit to be consumed at that step. Examples of SDPs are discussed, among
others, in [1, 4, 8].

1.4 Basic assumptions

In this paper, we do not require the state and the control spaces to be finite4,
but we do assume that the state space is independent of the number of steps and
that the options available to the decision maker in a given state only depend on
that state. Moreover, we assume that, at each step, the new state depends on the
current state and on the selected control via a transition function and that the
transition function is known to the decision maker. Similarly, we assume that
the reward collected in a given step depends on the current state, on the selected
control and on the new state through a reward function.

These assumptions can be summarized in the notion of time-independent,
deterministic sequential decision problems. This is the “simple class of sequential
decision problems” considered in this paper.

In contrast, general sequential decision problems are sequential decision prob-
lems in which the state and control spaces might be time-dependent and the
outcome of a step can be a set of new states (non-deterministic sequential de-
cision problems) a probability distribution of new states (stochastic sequential
decision problems) or some other monadic structure of states, see [9].

Time-independent, deterministic sequential decision problems are related to
but different from learning problems: reinforcement learning, supervised learn-
ing, etc. In learning problems, the transition and the reward functions (or their
monadic counterparts) are not known or only partially known to the decision
maker and have to be “learned”.

4 But see section 6.



In section 7.1 we sketch the problems we have encountered in extending our
formalization to time-dependent, monadic sequential decision problems. Such
extension will be discussed in detail in a follow-up paper.

2 Context

We start by formalizing the context for time-independent, deterministic sequen-
tial decision problems. As anticipated in the introduction, we have very little
constraints on the state space: we just require it to be a valid type

X : Type

To formalize the idea that the controls available in a specific state depend only
on that state we introduce a function Y

Y : X → Type

The type Y x represents those controls (options, actions, etc.) which are avail-
able (feasible, admissible, etc.) in x . Of course, there are alternative ways to
express the notion of state-specific admissible controls. For instance, one could
explicitly introduce the set of all possible controls and represent admissibility in
terms of a relation from X to that set.

Next, we formalize the notion of a deterministic transition function: selecting
a control in a state yields a well defined new state

step : (x : X )→ Y x → X

The fourth and last element of our generic context formalizes the notion of a
reward function. As discussed in the introduction, each state transition yields
a reward depending on the state in which the transition occurs, on the control
selected in that state (e.g., via control costs) and on the new state:

reward : (x : X )→ Y x → X → Float

Throughout this paper we take rewards to be Floats but this assumption
can be easily relaxed. Before turning to the next section a remark is in order:
consider the type of step. The type of the first argument, X , is fixed, but the type
of the second argument depends on the value of the first one. Without support
for dependent types we would not be able to express such a type constraint
precisely. In Haskell, for instance we could have written

step :: X → Y ′ → X

But then, step would not have been defined for all y : Y ′ and it would have been
difficult to express (let alone prove) properties of methods that rely on step.



3 Control sequences

We want to formalize the notion of a sequence of controls. For the generic context
introduced in the previous section, the first element of a sequence of controls for
x : X has to be a value of type Y x , say y . The second element has to be a
value of type Y (step x y), say y ′. The third element has to be a value of type
Y (step (step x y) y ′) and so on.

It is clear that we cannot express the type of a control sequence in terms of
lists or vectors of elements of a fixed type: we need dependently typed sequences
of controls. These can be indroduced by the type declaration:

data CtrlSeq : X → Nat → Type where
Nil : CtrlSeq x O
(::) : (y : Y x )→ CtrlSeq (step x y) n → CtrlSeq x (S n)

As we explained in the introduction, the goal of the decision-maker is to maxi-
mize the sum of the rewards collected in a given number of steps. Consequently,
the value of (selecting controls according to) a control sequence for an initial
state x : X and for a number of steps n is:

val : CtrlSeq x n → Float
val Nil = 0
val {x } (y :: ys) = reward x y (step x y) + val ys

The notation {x } in the second clause allows us to bring the implicit argument
x into scope, so that it can be used in the computation of the right-hand side.

In general, different control sequences for the same initial value yield different
sequences of rewards and have different values. We want to formalize the notion
of optimal control sequences. The idea is that a control sequence ys for initial x
and n steps is optimal, if for every control sequence for the same x and n ys ′,
the value of ys ′ is at most equal to the value of ys:

OptCtrlSeq : CtrlSeq x n → Type
OptCtrlSeq {x } {n } ys =

(ys ′ : CtrlSeq x n)→ so (val ys ′ 6 val ys)

Thus, proving that a control sequence ys : CtrlSeq x n is optimal means imple-
menting a function that computes a value of type so (val ys ′ 6 val ys) for every
ys ′ : CtrlSeq x n.

It is easy to prove that the empty control sequence is optimal for every initial
state. All we have to do is to show that, for every initial state x , the value of
an arbitrary control sequence of length 0 is smaller or equal to the value of Nil .
This is certainly the case because, by definition of CtrlSeq , there are no control
sequences of length 0 except for Nil :

nilIsOptCtrlSeq : (x : X )→ OptCtrlSeq {x } Nil
nilIsOptCtrlSeq x ys ′ = reflexive Float lte 0



In proving the property nilIsOptCtrlSeq we have applied reflexive Float lte to 0.
reflexive Float lte is a function of type (x :Float)→ so (x 6 x ). For all (x :Float)
it computes a value of type so (x 6 x ). For understanding nilIsOptCtrlSeq it is
not important to know how reflexive Float lte has been implemented5. But it
is important to notice that, when applied to 0, reflexive Float lte computes a
value of type so (0 6 0). The Idris type checker knows that for all (x : X ) and
ys ′ : CtrlSeq x O , both val ys ′ and val Nil are equal to 0. Thus, the (type) value
of so (val ys ′ 6 val Nil) can be reduced to so (0 6 0) and the type checker
is fully satisfied by reflexive Float lte which, applied to 0, returns a value of
exactly this type.

4 Policy sequences

It is easy to compute sequences of controls if one has a rule for which control to
select in every state. Such rules are called policies:

Policy : Type
Policy = (x : X )→ Y x

Sequences of policies can be represented by plain Idris vectors, as described in
Section 1.1.

PolicySeq : Nat → Type
PolicySeq n = Vect Policy n

Given an initial state and a policy sequence, the computation of the correspond-
ing sequence of controls is straightforward:

ctrls : (x : X )→ PolicySeq n → CtrlSeq x n
ctrls x Nil = Nil
ctrls x (p :: ps) = p x :: ctrls (step x (p x )) ps

The value of a policy sequence in terms of cumulated rewards is computed anal-
ogously to the value of a control sequence defined in section 3:

Val : (x : X )→ PolicySeq n → Float
Val {n = O } x Nil = 0
Val {n = S m } x (p :: ps) = reward x (p x ) x ′ + Val x ′ ps where

x ′ : X
x ′ = step x (p x )

But the notion of optimality for policy sequences is somewhat stronger: we say
that a policy sequence ps is optimal if, for every initial state x , its value is at
least as good as the value of every other policy sequence (of the same length of
ps) for that x . Formally:

5 In fact, for the sake of nilIsOptCtrlSeq , reflexive Float lte might just be a postulate.



OptPolicySeq : (n : Nat)→ PolicySeq n → Type
OptPolicySeq n ps = (x : X )→

(ps ′ : PolicySeq n)→
so (Val x ps ′ 6 Val x ps)

This notion of optimality is relevant because of the following lemma:

OptLemma : (ReflDecEq X )⇒
(n : Nat)→
(ps : PolicySeq n)→
(ops : OptPolicySeq n ps)→
(x : X )→
OptCtrlSeq (ctrls x ps)

Let’s consider OptLemma more closely. The type constraint ReflDecEq X re-
quires equality on X to be decidable and reflexive. This is the first example —
in our formalization — of a type constraint expressed in terms of a type class.

OptLemma states that, for all X for which equality is decidable and reflexive,
for all n : Nat and ps : PolicySeq n, if ps is an optimal policy sequence, then, for
every initial value x , ctrls x ps is an optimal sequence of controls.

The quantification on x in the notion of optimality for policy sequences is
essential: without a notion of optimality “for a given x”, we would not be able
to prove OptLemma.

Proving OptLemma means computing a value of type so (val ys ′ 6 val (ctrls x ps))
given a policy sequence ps, a proof that ps is optimal ops, an arbitrary state x
and an arbitrary control sequence ys ′. The proof is based on the the following
lemma, using propositional equality:

valValLemma : (x : X )→
(ps : PolicySeq n)→
Val x ps = val (ctrls x ps)

valValLemma says that the value of a policy ps (as given by Val) is equal to the
value of the corresponding sequence of controls as given by val . This is not really
surprising: a semi-formal proof of the val -Val equivalence can be easily derived
by induction on n. We have to show

Val x ps = val (ctrls x ps)

The base case (n = O or, equivalently, ps = Nil) is trivial, since

Val x Nil = val (ctrls x Nil)

follows from

Val x Nil
= { def. of Val }

0



= { def. of val }
val Nil

= { def. of ctrls }
val (ctrls x Nil)

In the induction step, we have to show that

Val x ps = val (ctrls x ps)
⇒

Val x (p :: ps) = val (ctrls x (p :: ps))

This can be readily done by applying the same definitions as above and the
induction hypothesis:

Val x (p :: ps)
= { def. of Val with y = p x , x ′ = step x y }

reward x y x ′ + Val x ′ ps
= { induction hypothesis }

reward x y x ′ + val (ctrls x ′ ps)
= { def. of val }

val x (y :: (ctrls x ′ ps))
= { def. of y , x ′, ctrls }

val x (ctrls x (p :: ps))

The Idris-proof for OptLemma (not shown here) is a little bit more technical but
the idea is very simple:

1. construct ps ′ : PolicySeq n such that ctrls x ps ′ = ys ′

2. apply optimality of ps to deduce Val x ps ′ 6 Val x ps
3. apply valValLemma to deduce that val ys ′ 6 val (ctrls x ps)

OptLemma ensures that optimal control sequences can be obtained from optimal
sequences of policies. This is particularly useful because optimal policy sequences
can be easily computed using Bellman’s backwards induction algorithm. Before
turning to the formalization of Bellman’s principle and to a generic implementa-
tion of backwards induction, let us recall a trivial but important result: just as
in the case of empty sequences of controls, empty policy sequences are optimal:

nilIsOptPolicySeq : OptPolicySeq O Nil
nilIsOptPolicySeq x ps ′ = reflexive Float lte 0

5 Bellman’s optimality principle and backwards induction

Bellman’s principle of optimality [2] is based on the notion of optimal extensions
of sequences of policies. Given a policy sequence ps, a policy p is an optimal
extension of ps if the value of p :: ps is at least as good as the value of p′ :: ps
for arbitrary p′. Formally:



OptExt : PolicySeq n → Policy → Type
OptExt ps p = (p′ : Policy)→

(x : X )→
so (Val x (p′ :: ps) 6 Val x (p :: ps))

Bellman’s principle of optimality says that if we are given a policy sequence ps
of length n, a proof of optimality for ps and an optimal extension p of ps then
we can construct an optimal policy sequence of length n + 1 simply by consing
p with ps:

Bellman : (ps : PolicySeq n)→
OptPolicySeq n ps →
(p : Policy)→
OptExt ps p →
OptPolicySeq (S n) (p :: ps)

To prove Bellman, one has to show that, if ps : PolicySeq n is optimal and p is
an optimal extension of ps then p :: ps is optimal, that is

Val x (p′ :: ps ′) 6 Val x (p :: ps)

for arbitrary x : X and (p′ :: ps ′) : PolicySeq (S n). A semi-formal proof is
straightforward:

Val x (p′ :: ps ′)
= { def. of Val with x ′ = step x (p′ x ) }

reward x (p′ x ) x ′ + Val x ′ ps ′

6 { optimality of ps, monotonicity of + }
reward x (p′ x ) x ′ + Val x ′ ps

= { def. of Val }
Val x (p′ :: ps)

6 { p is an optimal extension of ps }
Val x (p :: ps)

We can easily turn the semi-formal proof into a program and ask Idris to type
check Bellman’s principle:

Bellman {n } ps ops p oep = opps where
opps : OptPolicySeq (S n) (p :: ps)
opps x (p′ :: ps ′) = transitive Float lte step2 step3 where

step1 : so (Val (step x (p′ x )) ps ′ 6 Val (step x (p′ x )) ps)
step1 = ops (step x (p′ x )) ps ′

step2 : so (Val x (p′ :: ps ′) 6 Val x (p′ :: ps))
step2 = monotone Float plus lte

(reward x (p′ x ) (step x (p′ x )))
step1

step3 : so (Val x (p′ :: ps) 6 Val x (p :: ps))
step3 = oep p′ x



Let’s assume that we can implement a function optExt : PolicySeq n → Policy
that computes optimal extensions, that is, optExt fulfills

OptExtLemma : (ps : PolicySeq n)→ OptExt ps (optExt ps)

The specification says that for all ps, optExt ps is an optimal extension of ps.
Recall that empty policy sequences are optimal: nilIsOptPolicySeq . Thus, one
can use optExt to compute optimal policy sequences backwards (Bellman, 1957):

backwardsInduction : (n : Nat)→ PolicySeq n
backwardsInduction O = Nil
backwardsInduction (S n) = ((optExt ps) :: ps) where

ps : PolicySeq n
ps = backwardsInduction n

This implementation of backwards induction is not particularly efficient6. But
it can be easily proved to be correct that is, to fulfill the specification:

BackwardsInductionLemma : (n : Nat)→
OptPolicySeq n (backwardsInduction n)

For n = O , BackwardsInductionLemma certainly holds because of empty policy
sequences are optimal:

BackwardsInductionLemma O = nilIsOptPolicySeq

The induction step can be proved using Bellman’s principle of optimality. All
one has to do is to construct the four arguments needed to apply Bellman:

BackwardsInductionLemma (S m) =
Bellman ps ops p oep where

ps : PolicySeq m
ps = backwardsInduction m
ops : OptPolicySeq m ps
ops = BackwardsInductionLemma m
p : Policy
p = optExt ps
oep : OptExt ps p
oep = OptExtLemma ps

Notice the usage of the induction hypothesis BackwardsInductionLemma m in
the construction of ops, the proof that ps is optimal.

6 As it turns out, backwardsInduction executes in exponential time in n. If the state
space X is finite, it is easy to derive an implementation of backwards induction which
executes in linear time in n.



6 Optimal extensions of policy sequences

It is easy to implement a function that computes the optimal extension of a
policy sequence ps if one can find, for every x : X , an optimal control. This is a
y : Y x such that for all y ′ : Y x

reward x y ′ (step x y ′) + Val (step x y ′) ps
6

reward x y (step x y) + Val (step x y) ps

If Y x is finite, it is possible to find an optimal control with a finite number
of comparisons. In general, we can compute an optimal extension of a policy
sequence if we have functions

max : (x : X )→ (Y x → Float)→ Float
argmax : (x : X )→ (Y x → Float)→ Y x

which fulfill the specifications

MaxSpec : Type
MaxSpec = (x : X )→

(f : Y x → Float)→
(y : Y x )→
so (f y 6 max x f )

ArgmaxSpec : Type
ArgmaxSpec = (x : X )→

(f : Y x → Float)→
so (f (argmax x f ) ≡ max x f )

In this case

optExt : PolicySeq n → Policy
optExt ps x = argmax x f where

f : Y x → Float
f y = reward x y x ′ + Val x ′ ps where

x ′ : X
x ′ = step x y

fulfills OptExtLemma. This can be seen easily by equational reasoning. We have
to show that

Val x (p′ :: ps) 6 Val x ((optExt ps) :: ps)

for arbitrary p′ : Policy . We have:

Val x (p′ :: ps)
= { def. of Val with x ′ = step x (p′ x ) }

reward x (p′ x ) x ′ + Val x ′ ps



= { def. of f }
f (p′ x )

6 { MaxSpec }
max x f

= { ArgmaxSpec }
f (argmax x f )

= { def. of optExt }
f ((optExt ps) x )

= { def. of f with x ′ = step x (optExt ps x ) }
reward x (optExt ps x ) x ′ + Val x ′ ps

= { def. of Val }
Val x ((optExt ps) :: ps)

As for the case of Bellman and BackwardsInductionLemma, it is straightfor-
ward to rewrite this proof in Idris and machine check its correctness.

The existence of max and argmax is a condition which is simple to formulate
and sufficient for computing optimal extensions, but it is also stronger than
necessary: it requires computing the maximum of any function of type Y x →
Float , which is in many cases intractable. In the optimal extension algorithm
we are however only interested in maximizing functions having the specific form
determined by reward , Val and step. Weaker conditions can be formulated by
taking this into account and restricting the class of functions for which max and
argmax need to be implemented. For example, if reward and step are linear, so
are Val and f , and we could replace the general optimization required by max
and argmax with the simpler problem of linear optimization.

7 Summary

For time-independent, deterministic sequential decision problems, we have for-
malized the notions of state space, available controls, transition and reward
functions (the context), optimal control and policy sequences and Bellman’s
principle of optimality. Provided we are given a function optExt which fulfills
OptExtLemma, we have derived a generic implementation of backwards induc-
tion and proved that such implementation is correct, that is, that it computes
policy sequences which are optimal. From an optimal policy sequence, an opti-
mal control sequence can be recovered for arbitrary initial states through ctrls.
In the last section we have specified sufficient conditions for optExt to be imple-
mentable, under which we have derived a generic implementation of optExt .

7.1 Outlook

Our final aim is to extend the formalization presented in this article to sequen-
tial decision problems which can be time-dependent and for which step can be
deterministic, non-deterministic, stochastic or, more generally, monadic.

We present such extension in detail in a follow-up paper. Here, we just hint at
the two difficulties that have to be faced in deriving such a generic extension. A



first difficulty is that one has to find a way of extending the formalization to the
case in which the target of step is a generic M -structure on X , for a monad M .
Obviously, a monadic step function naturally induces an M -structure on Float
via the reward function. As it turns out, one can apply the ideas developed in [9]
for monadic dynamical systems to derive a natural and fully generic approach
for iterating monadic step functions and to account for M -structures of rewards.

Another difficulty is that when X , and therefore Y , do depend on the number
of steps, one cannot assume, in general, that admissible controls exist for every
state. To see why this is the case, let us turn back to the cylinder problem and
consider a case in which the state space X is not constant, but depends on the
number of steps t :Nat . For concreteness, consider a case in which all five columns
– a, b, c, d and e – are valid for t < 3 and t > 3 but, at t = 3, only column e is
a valid state, see Figure 2, left.

a b c d e

0
1
2
3
4
5
6
7

... ...

n

a b c d e

0
1
2
3
4
5
6
7

... ...

n

a b c d e

0
1
2
3
4
5
6
7

... ...

n

Fig. 2. Cylinder problem with time-dependent state space. Non-valid columns (t = 3,
black), non-reachable states (middle, light grey) and non-viable states (right, light
grey).

The consequences of a reduced state space at time 3 are twofold. First, certain
states at t > 3 become unreachable. These are the states which are “shadowed”
by the invalid columns at time 3. They are represented in light grey in the middle
of Figure 2.

Second, certain states become non-viable: these are states at t < 3 from
which we can take at most two steps. They are represented, also in light grey,
on the right of Figure 2. Not accounting for unreachable states can be inefficient
because optimal extensions are computed for states which effectively cannot be
realized by any sequence of controls. This is particularly true if the set of options
associated to such unreachable states is big.



Viability, however, has deeper implications. In Figure 2 right, the initial state
a is essentialy different from b, c, d or e: there is simply no trajectory of length
>2 starting in a. Similarly a and b cannot be initial states of trajectories of
length >1 starting at t = 1 and so on.

Thus, extending the generic framework presented in this paper to the time-
dependent case requires, on the one hand, formalizing the notion of viability
generically. This becomes particularly interesting in the general case of monadic
step functions. On the other hand, it requires accounting for viability constraints
both in the domain of policy functions and in their range — the set of controls
that can be selected at a given time. In computing optimal extensions for policy
sequences of length n at a time t , only admissible controls leading to states from
which (at least) n− t further steps can be done are suitable candidates. Controls
leading to “dead-ends” have to be carefully identified and rejected.

Acknowledgments

The work presented in this paper heavily relies on free software, among others
on hugs, GHC, vi, the GCC compiler, Emacs, LATEX and on the FreeBSD and
Debian / GNU Linux operating systems. It is our pleasure to thank all developers
of these excellent products. We also thank the anonymous referees for their
helpful comments.

References

1. A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and sequential
decision making. Technical report, COINS Technical Report No. 89-95, 1989.

2. R. Bellman. Dynamic Programming. Princeton University Press, 1957.
3. Y. Bertot and P Castran. Interactive theorem proving and program development,

Coq’art: the calculus of inductive constructions. Texts in Theoretical Computer
Science. Springer, 2004.

4. P. Bertsekas, D. Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, Mass., 1995.

5. Richard Bird and Oege de Moor. Algebra of Programming. International Series in
Computer Science. Prentice Hall, Hemel Hempstead, 1997.

6. Edwin Brady. Programming in Idris : a tutorial, 2013.
7. O. de Moor. A generic program for sequential decision processes. In PLILPS

’95 Proceedings of the 7th International Symposium on Programming Languages:
Implementations, Logics and Programs, pages 1–23. Springer, 1995.

8. Cormen T. H., Stein C., Rivest R. L., and Leiserson C. E. Introduction to algo-
rithms. McGraw-Hill, second edition, 2001.

9. Cezar Ionescu. Vulnerability Modelling and Monadic Dynamical Systems. PhD
thesis, Freie Universität Berlin, 2009.

10. Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

11. E. M. Reingold, Nievergelt J., and Deo N. Combinatorial Algorithms: Theory and
Practice. Prentice Hall, 1977.

12. Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Theorem Proving
in Higher Order Logics (TPHOLs 2008), pages 278—-293, 2008.


