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Thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

in the School of Mathematics and Statistics

UNIVERSITY OF ST ANDREWS

ST ANDREWS

APRIL 2007

c© Copyright by Tiago André Marques, 2007



Abstract

Distance sampling is one of the most commonly used methods for estimating density

and abundance. Conventional methods are based on the distances of detected animals

from the center of point transects or the center line of line transects. These distances

are used to model a detection function: the probability of detecting an animal, given

its distance from the line or point. The probability of detecting an animal in the

covered area is given by the mean value of the detection function with respect to

the available distances to be detected. Given this probability, a Horvitz-Thompson-

like estimator of abundance for the covered area follows, hence using a model-based

framework. Inferences for the wider survey region are justified using the survey design.

Conventional distance sampling methods are based on a set of assumptions. In

this thesis I present results that extend distance sampling on two fronts.

Firstly, estimators are derived for situations in which there is measurement error in

the distances. These estimators use information about the measurement error in two

ways: (1) a biased estimator based on the contaminated distances is multiplied by an

appropriate correction factor, which is a function of the errors (PDF approach), and

(2) cast into a likelihood framework that allows parameter estimation in the presence

of measurement error (likelihood approach).

Secondly, methods are developed that relax the conventional assumption that the

distribution of animals is independent of distance from the lines or points (usually

guaranteed by appropriate survey design). In particular, the new methods deal with

the case where animal density gradients are caused by the use of non-random sampler

allocation, for example transects placed along linear features such as roads or streams.

This is dealt with separately for line and point transects, and at a later stage an

approach for combining the two is presented.

A considerable number of simulations and example analysis illustrate the perfor-

mance of the proposed methods.
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Notation

The following notation is listed here for an easy reference, being used throughout this

work.

Known constants or data

• N - total number of animals in a survey region (also referred as abundance);

• A - the area of the survey region, which represents the total area we are inter-

ested in drawing inferences about;

• D - the density of animals, given by N
A

;

• a - the area covered by samplers (usually a ¿ A);

• Nc - total number of animals in the covered area;

• n - number of detected animals in the covered area; if multiple independent

samples are used, a subscript is used to distinguish them (e.g. np and ns re-

spectively for data coming from primary and secondary transects and nl and np

for data from lines and points);

• L - total length of transect surveyed;

• k - total number of points surveyed;

• x - perpendicular distance (line transects);

• r - radial distance (point transects);

• v - a generic distance, either radial or perpendicular;
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• w - truncation distance (distances larger than w are not used at the analysis

stage).

Parameters and functions

• g(v) - the detection function, representing the probability of detecting an ani-

mal, given the animal is at distance v from the transect (perpendicular distance

x for lines and radial distance r for points). Unless otherwise stated it is as-

sumed that g(0) = 1;

• g(0) - the detection function evaluated at 0 distance;

• φ1 - parameter vector associated with the detection function;

• f(v) - the probability density function (pdf) of the detected distances;

• f(0) - the pdf of the detected distances, evaluated at distance 0;

• h(0) - the slope of the pdf of the detected distances, evaluated at distance 0;

• Pc - probability of an animal being in the covered area, given it is in the survey

region (usually known by design);

• P - probability of detection (given that the animal is in the covered area);

• Pr(S) - probability of event S;

• π(v) - the pdf of distances v available for detection; note that v can either be a

perpendicular (x) or a radial (r) distance;

• γ - parameter vector associated with a measurement error model;

• D(x) - the density at a distance x from the transect, referred to as absolute

density gradient;

• d(x) - a relative density gradient function, proportional to D(x), but defined as

a being a pdf ;

• α - the proportionality constant that relates the relative and absolute density

gradient, D(x) = αd(x);
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• φ2 - parameter vector associated with the density gradient;

• σ - the scale parameter of a model (either normal, half-normal, gamma or

hazard-rate);

• b - the shape parameter of a model (gamma or hazard rate);

• µ - effective strip (half-)width;

• ρ - effective radius;

• ν - effective area of detection (= πρ2);

• K - correction factor in the PDF approach. Where appropriate, Kl is used for

the case of lines and Kp for the case of points;

• U - a beta or uniform random variable;

• L - represents a likelihood. l represents a log-likelihood;

• E(W ) - the mean value of the random variable W .

General abbreviations

• AIC - Akaike Information Criterion. ∆AIC is the difference between the AIC

of a given model and the lowest AIC in the set of models being compared;

• APTA - the availability proportional to area condition;

• CI - confidence interval;

• CDS - conventional distance sampling;

• CV - coefficient of variation (usually in percentage);

• GOF - goodness-of-fit;

• GPS - global positioning system (always used referring to a particular device);

• HN - half-normal;

• HR - hazard rate;
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• HTL - Horvitz-Thompson-like (estimators);

• MCDS - multiple covariate distance sampling;

• MLE - maximum likelihood estimator;

• MRDS - mark recapture distance sampling;

• PDF - the approach to deal with measurement error using a correction factor;

• pdf - probability density function.

Special cases

An estimator for a given parameter of interest α is represented by α̂.

For the measurement error chapter only, a true distance is X, a contaminated or

observed distance is Y , and the error is R (i.e., Y = XR for a multiplicative error

model).

Other notation, with restricted rather than general use, is not listed here, and

only defined when necessary.
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Chapter 1

Introduction

1.1 Overview

The raising impacts of human activities on natural resources, with corresponding

dramatic losses of biodiversity all over the world, has made clear that is fundamental

to obtain a better understanding of the way that wildlife, habitat and humans interact,

to model and predict distribution and abundance of animal populations and hence to

be able provide sound advice on ways to prevent and mitigate the effects of human

impacts.

With that purpose in mind, arguably the most important question one can ask

about any given population of interest is “How many are there?”. Despite being the

most important question, it is nonetheless a very difficult one, and over the years

an impressive quantity of literature has been devoted to this question. Seber (1986,

1992) and Schwarz and Seber (1999) present comprehensive literature reviews on this

subject.

For most real life surveys, it is not possible to count every animal in the population

of interest. Therefore, to make inferences about population size, one must rely on

the information contained in a sample, in which only a fraction of the population is

observed. Then, using either design or model based approaches, or a combination

1
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of these, one can draw inferences with respect to the entire population of interest.

This inference is usually conditional on a set of assumptions, which need to be clearly

stated and evaluated for the exercise to be valid.

Over the years, a large number of different methods have been developed with

this goal in mind. The choice of an appropriate method in a given situation should

be a function of the species and habitat characteristics, resources available, desired

precision and objectives of the study. Background knowledge on the environment and

the population becomes therefore invaluable in the choice of the method to use.

Distance sampling is one among several other possible alternatives, such as plot

sampling, mark-recapture studies or removal, catch-effort and change-in-ratio ap-

proaches (e.g. Borchers et al., 2002), and arguably it is the most frequently used

when the main goal is abundance or density estimation. It is especially relevant for

animal populations distributed over large areas with low to medium density, and

it has not only been used to estimate density and abundance of species belong-

ing to all major animal groups, but also for many plant populations and fungi, in

all types of habitats and environmental conditions. Hence, although for simplic-

ity I usually refer to animals, distance sampling methods are not in any way re-

stricted to the analysis of animal populations. A large number of examples are cited

throughout this thesis, and an extensive (although not complete) reference list of dis-

tance sampling methods and applications is available online at http://www.creem.st-

and.ac.uk/tiago/webpages/distancesamplingreferences.html.

The fundamental idea behind the methods is that the distances to detected an-

imals can be used to estimate the probability of detecting an animal. The way the

probability of detection is obtained is through the modelling of a detection function,

which represents the probability of detecting an animal, conditional on it being at

a given distance from the transect. The number of animals detected divided by the
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unconditional probability of detecting an animal in the covered area is an estimator

of the number of animals in the covered area.

Compared to other contending methods for animal abundance estimation, distance

sampling is a relatively new technique, with the first ideas appearing around the 1960’s

and the first key reference, Burnham et al. (1980), being less than 30 years old. It is

therefore not surprising that the last few years have witnessed many new developments

in this area, like the use of covariates, in addition to distance, to model the detection

function (e.g. Beavers and Ramsey, 1998; Marques, 2001) or the incorporation of

spatial models in the process (e.g. Hedley, 2000).

In the remaining of this introductory chapter I present an intuitive overview of

distance sampling methods, followed by some insights on the personal motivation

behind this thesis, and finishing with a brief description of the remaining chapters of

this thesis.

1.2 Intuitive principles of distance sampling

If an estimate of abundance is needed, then the methods used must, except for the rare

cases where one can be sure of detecting all animals, account for detectability. Some

authors argue that if focus is on trend, then it might be enough to collect an index of

abundance (e.g. Hutto and Young, 2002, 2003). However, the assumption of constant

detectability, or at least no long-term trend in detection ratios (see Bart et al., 2004),

needed to interpret a relative index as a true index of abundance, is rarely likely to

hold. Most commonly this is at best a leap of faith based on untested assumptions.

Hence the use of index methods, like raw counts, has been criticized in the literature

(e.g. Anderson, 2001, 2003; Pollock et al., 2002; Rosenstock et al., 2002; Thompson,

2002; Ellingson and Lukacs, 2003; Norvell et al., 2003). Even raw counts might

contain useful information, and given a sufficiently large effect is present, a simple
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index might be enough to detect it. However it is also clear that in any such scenario

true abundances should be able to detect even smaller effects, and hence should, in

my opinion, always be recommended. On the other hand, although a comparison

across time or space might be based on an index, sometimes one is required to obtain

absolute estimates. Managing a population of an endangered species or setting quotas

for harvesting usually requires more than an index of abundance. The often expressed

view that methods that estimate detectability rely on assumptions that do not hold

in practice is not constructive, because it fails to recognize that index methods rely

in even further demanding, and often unstated, assumptions.

Distance sampling is one of several ways to account for detectability, and although

the modelling involved might be complicated, the estimators are intuitive in nature.

In this section I describe how these estimators can be derived in an intuitive, non-

mathematical way.

1.2.1 From total counts to distance sampling

Usually there is a clear distinction between the survey region A, the entire area over

which we are interested in making inferences, and the covered area a, the area that we

actually sample, with a < A. Estimation procedures are usually separated into two

steps: (1) estimating abundance in the covered area (Nc) and (2) the scaling up of that

estimate to the wider survey region (N). Under the conventional setting, this second

stage relies on the covered area being a representative sample of the wider survey

region, hence validating the inferences by design. Because we rely on a (detection)

model for the first stage and on the properties of the design for the second, Fewster

and Buckland (2004, p. 286) refer to distance sampling neither as model or design

based, defining it as a composite approach.
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Provided an abundance estimate is available, valid for a given area, a natural esti-

mator of density is obtained by dividing the abundance estimate by the corresponding

area. Hence, in the following I usually refer to abundance estimators, although the

corresponding density estimators follow easily.

Under very restricted circumstances, it might be possible to count all the animals

in a given study area. In such case, there is no sampling involved, and no estimation

takes place. The abundance is by definition the total number of counted animals.

In most situations, it is not possible to cover the entire survey region, and a set

of sampling units covering the fraction a
A

of the survey region are surveyed. The

allocation of these samplers should follow a random design. The reader is referred

to Strindberg et al. (2004) for further details about survey design in the distance

sampling context. Assuming that all animals in the covered area are detected, an

estimator of animal abundance in the covered area is simply the number of detected

animals, n, and hence an estimator of total number of animals in the survey region

is given by

N̂ =
n

Pc

(1.1)

where, given a randomized design, Pc=a/A is the proportion of the survey region

covered, which needs not to be estimated as it is known by design. Note that this

estimator is unbiased only if the randomized design is one with equal coverage prob-

ability.

However, this assumes that all animals in the covered areas are detected. If, as

in most applications, we are likely to miss some animals in the covered area, then an

estimator of animal abundance in the covered area is given by

N̂c =
n

P̂
(1.2)
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where P̂ represents the estimated probability of detecting an animal, given that it is

in the covered area. From this to an estimator of abundance in the survey region the

reasoning is analogous to the certain detection case, and hence

N̂ =
N̂c

Pc

=
n

P̂Pc

. (1.3)

Note that N̂ is an intuitive estimator. Consider the product PPc to represent the

inclusion probability, i.e. the probability of an animal being included in the sample.

Given that we detect 20 animals in an area, and we know that the inclusion probability

of an animal is 0.25, the intuitive estimate of 80 animals for the area follows. This

estimator can be seen as a Horvitz-Thompson-like (HTL) estimator, in the sense

that the inclusion probabilities are not solely given by design but also estimated

based on the data (e.g. Borchers et al., 1998a). Hence, unlike the traditional Horvitz-

Thompson estimator (e.g. Thompson, 1992, p. 49), these abundance estimators are

not necessarily unbiased, since even unbiased estimates of P do not warrant unbiased

abundance estimates, because E[1/P̂ ] is not the same as 1/E(P̂ ). In general, distance

sampling estimators can be shown to be HTL estimators (see Borchers et al., 2002).

Distance sampling gives us a well established framework to estimate the P in

equation 1.2 and hence abundance or density. Note that the innovation with respect

to traditional sampling is the estimation of abundance in the covered area, as the

scaling up to the entire survey region is usually done based on the sampling design

properties, just as in traditional plot sampling.

1.2.2 Estimating probability of detection

The samplers used in most distance sampling applications are strips (line transects)

or circles (point transects). The distances from the lines or points to the detected

animals are used to model a detection function, g(v). This function represents the
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probability of detecting an animal, given that it is at a distance v from the line

(perpendicular distance) or point (radial distance). Note that v represents either a

perpendicular or radial distance; when the distinction is useful, x is used for the former

and r for the latter. A related function is f(v), the pdf of the detected distances,

which as is shown below is directly related to P .

Considering for the moment just line transects, if all the animals up to a trun-

cation distance w were seen, then a histogram of the detected distances should be

approximately uniform (Figure 1.1a), because the area available at a given distance

from the line is constant and independent from the distance itself. However, since

the probability of detection decreases with increasing distance, the detected distances

histogram usually tends to look more like figure 1.1b. Graphically, the area above

the curve, inside the rectangle of figure 1.1(c), corresponds to the probability of not

detecting an animal. Hence, the probability of detecting an animal is the area under

the pdf divided by the area of the rectangle, f(0) × w, but since, by the pdf ’s own

definition, the area under it is 1, P is given by

P =
1

f(0)w
. (1.4)

Define µ as the effective strip (half-)width, in the sense that had all the animals

at distances shorter than µ been seen, we would see (on average) the same number

of animals as were seen in the actual survey. Then areas A and B (see Figure 1.1c)

would be the same if the vertical line that divided them is at µ, which leads to the

result P = µ
w
, since the area to the left of the vertical line is the same as the area

under the function.

In the case where samplers are point transects, a similar argument is valid. If all

the animals up to a truncation distance w were seen, then a histogram of the detected

distances would increase linearly (Figure 1.1d), because the area available increases
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perpendicular distance

f(
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a)
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b)

perpendicular distance

0 µ w

B

A

c)

P=
µ

w

radial distance

f(
r)
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Figure 1.1: Intuitive rationale behind the derivation of probability of detection P
(top row refers to line transects and bottom row to point transects). a) and d)
Distances available for detection; b) and e) Detection function and detected distances;
c) Relation between µ and P ; f) Relation between ρ and P .
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linearly as a function of the distance to the point. However, since the probability of

detection decreases with increasing distance, the detected distances histogram usually

looks more like figure 1.1e. The diagonal line shown is the tangent to the function

at r = 0, with slope h(0). As before, we can think of the animals missed as those

above the pdf . The probability of detecting an animal is then the area under the pdf

divided by the area of the triangle, and hence

P =
1

wwh(0)
2

=
2

w2h(0)
(1.5)

where h(0) represents d f(r)
dr

∣∣∣
r=0

, i.e. the value of the derivative of f(r) evaluated at

distance 0.

Define ρ as the effective radius, in the sense that had all the animals until ρ been

seen, (on average) we would see the same number of animals as were seen in the actual

survey. Then areas A and B (see Figure 1.1f) would be the same if the vertical line

that divided them is at ρ, which (given the fact that the area of a circle with radius

η is πη2) leads to the result P = ρ2

w2 , since the area to the left of the vertical line is

the same as the area under the function.

This shows that, both for points and lines, the probability of detection, and hence

the corresponding abundance estimators involved, can be related to the pdf of de-

tected distances, and hence what is at stake for conventional methods is estimating a

pdf, and evaluate it or its first derivative at distance 0. This means that in this con-

text we can rely on the large statistical toolbox available to estimate pdf ’s to obtain

the desired abundance estimators.

In chapter 2 these estimators are derived in a mathematical way, and other useful

forms for the same estimators are presented.
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1.3 Personal motivation

Any given work is the result of some personal motivation. In my case, a biological

background and a number of suspicions about the proper way to use statistics in

biology led me to the field of ecological statistics.

I believe one of the main tasks for people that work with distance sampling, as

well as with any statistical method with direct application in biology, is not only to

extend existing methods and derive new ones, but to contribute to the spread of ade-

quate use of such methods by the actual practitioners. Teaching in distance sampling

workshops, biologists and ecologists oriented talks, tutorial-like papers as Marques et

al. (in press), my participation in current software Distance project (Thomas et al.,

2005) or maintenance of bibliography lists and tutorial-like material available through

my personal web page are the reflection of this attitude. I further hope that the work

documented in this thesis can to some extent help others to acknowledge that the use

of statistical methods should be done only after their assumptions, and implications

of assumption failure, are fully understood.

The issues addressed in this thesis are the result of interacting with people that

use the methods in practice, and the development of each of the new methods is

driven by the wish that they might become useful to the people that inspired them.

1.4 Thesis outline

As any other method for estimating animal abundance, distance sampling estimators

are derived under a number of assumptions that ensure the methods are asymptoti-

cally unbiased. Under certain circumstances, these assumptions do not hold, and the

conventional methods may become severely biased.
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Conventional distance sampling assumes g(0) = 1, no undetected responsive move-

ment or random movement of animals1 and no measurement error in the distances.

Because a specific form for the distribution of available distances with respect to

samplers is used in the derivation of conventional estimators, we can also view this

known distribution as an assumption. Conventional methods can be extended by (1)

estimating g(0) - hence allowing it to be less than 1, by (2) incorporating a model of

animal movement, by (3) incorporating a model for errors in measured distances or

by (4) incorporating a model for the distribution of animals with respect to distance

from the line or point. The 1st case has been studied extensively (e.g. Borchers et al.,

1998a,b; Laake and Borchers, 2004) and the 2nd is hard to tackle due to the difficulty

in collecting information on the animal’s movement (but see Smith, 1979; Turnock

and Quinn, 1991; Buckland and Turnock, 1992). The 3rd and the 4th cases are the

subject of this thesis.

After this introductory chapter, chapter 2 is dedicated to the theory and assump-

tions of conventional distance sampling, laying down material needed for subsequent

chapters and setting the scene for the reminder of the thesis.

It is followed by a chapter about the effects of measurement error in the detected

distances used for estimating the detection function, and ways to correct for the bias

induced by such errors (Chapter 3). The material in this chapter is largely taken

from Marques (2004) and Borchers et al. (in prep a), with some ideas also taken from

Burnham et al. (2004) and Marques et al. (2006).

Chapter 4 introduces the issues arising due to non random allocation of samplers.

Special emphasis is given to the case where sampling takes place along linear features,

like roads or rivers, a situation discouraged but often used due to logistic constraints

(or just bad practice). With standard plot sampling, the main issue is whether these

1 In practice no responsive movement and slow movement relative to observer speed is usually
enough.
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areas can be a representative sample that allows inference for a wider survey region. I

show that in addition to that, in the case of distance sampling, a further complication

arises due to the potential presence of a density gradient2 with respect to the linear

features involved, and hence to the samplers themselves. Therefore, there is the need

to account for that density gradient at the analysis stage.

Chapter 5 and 6 deal with approaches to correct for the bias induced by the

presence of a density gradient with respect to samplers. In chapter 5 the use of line

transects is considered, while in chapter 6 the focus is on the use of points transects.

In the proposed setting these need to be considered separately because, while the

information collected from point transects can be used to draw inferences about both

the detection and availability (for detection) processes, we need to collect independent

information to do so in the case of line transects.

In chapter 7 the material of chapters 5 and 6 is extended and combined to deal with

particularities of a given data set, showing how once cast in a likelihood framework

the methods can be easily modified to deal with data particularities.

Each chapter with methods development contains its own discussion section, but

a short final chapter serves as wrap up and integrating discussion of the key ideas in

the thesis, pointing to some loose ends and potential directions for further research

in this area.

2 The density gradient is a function which describes density as a function of the distance from
the linear feature. It should not be confounded with the strict mathematical term of gradient (as
a rate or slope), although the function does describe the rate of change in density as a function of
distance from the linear feature, and hence the choice of wording.



Chapter 2

Background information - theory,
practice and assumptions

2.1 Introduction

The first thorough reference to distance sampling, presenting the methods in an in-

tegrated perspective, was the monograph by Burnham et al. (1980). After that, the

book by Buckland et al. (1993a) laid out what is now referred to as conventional

distance sampling (CDS). This 1993 book has been updated, with currently con-

ventional methods covered by Buckland et al. (2001) and more advanced methods by

Buckland et al. (2004). The above references are the key sources for the material in

this chapter.

Most of the statistical research related to distance sampling in the last decade

addresses situations in which conventional methods are not an option, focussing on

assumption violations and ways to deal with them.

In this chapter the general theory of CDS, needed for later chapters, is presented.

I start by presenting the derivation of conventional estimators (section 2.2) and the

available strategies to obtain the respective variances (section 2.3). After some com-

ments about the industry standard distance sampling software Distance (section 2.4)

I present CDS key assumptions, and main developments, dealing with overcoming

13
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their failure, are reviewed (section 2.5). The final section 2.6 describes what as been

called the underlying uniformity assumption of distance sampling (e.g. by Melville

and Welsh, 2001) and its implications for the analysis of distance sampling data.

2.2 Deriving conventional distance sampling esti-

mators

In this section I derive the CDS density estimators (for the covered area), first for

line and then for point transects, finishing with a subsection that shows that results

for points and lines are analogous, the difference being due to the geometry of the

problem.

2.2.1 Line transects

Consider that the covered area is composed of a number of line transects, with total

length L and truncation distance w, conveniently allocated in a larger survey region

according to some random sampling design. Note that usually, for analysis purposes,

distances are folded along the line transect, i.e. distances in (−w, w) are mapped into

(0, w). Note however that exceptions exist under which it is simpler to use the signed

distances (e.g. Mack and Quang, 1998).

The probability that a detected animal is at a perpendicular distance x from the

line is given by

f(x)dx = Pr(animal in x, x + dx|animal detected) (2.1)

=
Pr(animal detected|animal in x, x+ dx)Pr(animal in x, x+ dx)

P
(2.2)



15

=
g(x)2L dx

2Lw

P
(2.3)

where g(x) is the detection function, indexed by an unknown parameter vector φ1,

and P represents the probability of detecting an animal. Therefore,

f(x) =
g(x)

wP
, 0 < x < w (2.4)

and because f(x) is a pdf, integration of this expression leads to

P = µ/w (2.5)

where µ =
∫ w

0
g(x)dx. Using this result in equation 1.2 leads to the following density

estimator for the covered area a

D̂ =
N̂

a
(2.6)

=
n

P̂

a
(2.7)

=

n
µ̂
w

2Lw
(2.8)

=
n

2Lµ̂
. (2.9)

This last equation justifies why µ is referred to as the effective strip (half-)width:

during the survey, you see on average as many animals as you would have seen if all

the animals to a distance µ were seen. This estimator has another useful form. From

equation 2.4 it follows that

f(x) =
g(x)

µ
. (2.10)

Considering distance sampling first assumption, g(0) = 1, leads to f(0) = 1/µ,

and hence another expression for the above estimator is
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D̂ =
nf̂(0)

2L
. (2.11)

Therefore, given an estimate of the pdf of the detected distances, evaluated at 0,

we can get an estimate of density.

2.2.2 Point transects

Assume that the covered area is now composed of k point transects with a radius w,

conveniently allocated in a larger survey region accordingly to some random sampling

design. Consider the probability that an observed animal is at a radial distance r

from the center of a point transect,

f(r)dr = Pr(animal in r, r + dr|animal detected) (2.12)

=
Pr(animal detected|animal in r, r+ dr)Pr(animal in r, r+ dr)

P
(2.13)

=
g(r)2πrdr

πw2

P
(2.14)

where g(r) is the detection function, indexed by an unknown parameter vector φ1.

Therefore,

f(r) =
g(r) 2πr

πw2

P
, 0 < r < w (2.15)

and f(r) being a pdf, integration of both sides of this equation leads to

πw2P =

w∫

0

2πrg(r)dr = ν (2.16)



17

where ν is sometimes referred as the effective area of detection: on average you see as

many animals as you would see if all the animals in the area ν were seen. Analogous

to line transect’s effective strip (half-)width (µ), the effective radius of detection is

ρ =
√

ν
π
. The use of this terminology is due to the fact that, from equations 1.2 and

2.16, a density estimator in the covered area, a = kπw2, is given by

D̂ =
n

kπw2 ν̂
πw2

(2.17)

=
n

kν̂
(2.18)

=
n

kπρ̂2
. (2.19)

Hence an estimator for D can be readily obtained if we can derive an estimator

for ν. Rearranging equations 2.15 and 2.16 leads to

ν =
2πrg(r)

f(r)
(2.20)

or the alternative

2π

ν
=

f(r)

rg(r)
. (2.21)

Using distance sampling first assumption, g(0) = 1, leads to

lim
r→0

f(r)

rg(r)
= f ′(0) = h(0) (2.22)

where h(0) represents d f(r)
dr

∣∣∣
r=0

. The most common form of the estimator for density

is finally obtained by using equation 2.22 in equation 2.18, leading to

D̂ =
nĥ(0)

2πk
. (2.23)
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Therefore, given an estimate of the slope at 0 of the pdf of the detected distances,

we can get an estimate of density.

2.2.3 Bringing points and lines together

From the two previous subsections, it is clear that the derivation of density estimators

for line and point transects follows exactly the same rationale. The only difference

lies in the way g(v) and f(v) relate, since for lines they are proportional, while for

points they are not. The reason for this stems from the geometry of the problem.

In the case of lines, the area available at a given distance from the line is constant,

while for points it increases linearly with distance, which leads to differences in the

pdf ’s of distances available for detection. While for lines the cumulative distribution

function of perpendicular distances, detected or not, is given by

F (x) = Pr(X ≤ x) =
2Lx

2Lw
, 0 ≤ x ≤ w (2.24)

which leads to the pdf

π(x) =
dF (x)

dx
=

1

w
, 0 ≤ x ≤ w (2.25)

for the case of points it is given by

F (r) = Pr(R ≤ r) =
2πr2

2πw2
=

r2

w2
, 0 ≤ r ≤ w (2.26)

which leads to the pdf

π(r) =
dF (r)

dr
=

2r

w2
, 0 ≤ x ≤ w. (2.27)

In both cases, the estimator of abundance is obtained by using an appropriate

estimator for P in expression 1.2. Note that P , being the probability of detecting an
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animal (unconditional on its actual position in the covered area), can be seen as the

mean value of the detection function, where the mean value is evaluated with respect

to the distribution of v, the distances available for detection, irrespective of whether

they are detected or not. So, in general,

P =

∫ w

0

g(v)π(v)dv = E[g(v)]. (2.28)

Substituting π(v) by the appropriate distribution for the case of points and lines

(respectively equations 2.25 and 2.27, which we assume known by design, given a

sufficient number of samplers randomly allocated in the study area) leads to an al-

ternative way to derive the density estimators in equations 2.11 and 2.23. So, for the

case of lines

P =

∫ w

0

g(x)
1

w
dx =

µ

w
(2.29)

while for the case of points

P =

w∫

0

g(r)
2r

w2
dr =

ν

πw2
=

ρ2

w2
(2.30)

therefore leading to the same estimators obtained before.

This is important as it shows that under a given setting, provided we can derive an

estimate of P , we can derive a HTL estimator of abundance of the general form N̂ =

n

P̂
. This will be useful in later chapters in situations were the conventional methods

do not apply, and equations 2.11 and 2.23 are not valid, because the distribution of

distances available for detection cannot be assumed known by design.
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2.3 Variance estimation

An estimator is only useful if one can also assess its precision. For the simpler settings,

distance sampling estimators have analytical variance estimators, and these along

with corresponding confidence intervals can be easily obtained in software Distance

(Thomas et al., 2005). For more complicated scenarios, like the ones presented in

subsequent chapters, the use of resampling strategies might be a more straightforward

approach.

2.3.1 Analytical variance estimators

From equations 2.11 and 2.23 it is clear that the CDS estimator has two random com-

ponents, namely one due to detection function estimation, and one due to encounter

rate (i.e., the expected number of animals per unit effort) estimation.

In the standard analytical variance estimators, these two components are esti-

mated separately, and then combined using the delta method to obtain an approx-

imation for the variance. Using the delta method (e.g. Seber, 1982, p. 7-9), the

variance of T , the quotient of two independent random variables, W and Z, is ap-

proximated by

var(T ) = var

(
W

Z

)
' T 2{CV 2(W ) + CV 2(Z)}. (2.31)

As an example, this expression applied to line transects leads to variance for the

density estimator in equation 2.11 to be estimated by

var(D̂) ' D̂2{ĈV
2
(n) + ĈV

2
(f(0))}. (2.32)

The variance in n is typically estimated using empirical estimators on the counts

from replicate samplers (lines or points), while the f(0) variance is obtained via
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maximum likelihood theory. Details on obtaining these variances can be found in

(Buckland et al., 2001, p. 62-64, 78-80). A recent paper by Fewster et al. (in review)

presents an improvement to the way the encounter rate variance is estimated, useful

in situations in which a density gradient throughout the area is expected.

This variance estimator is easily extended under more complex scenarios when

the estimator includes further random components, e.g. if some multiplier M is used,

such as an independently obtained estimate of g(0), an estimate of mean cluster size,

or any other bias correction factor (see section 3.3 for an example). The variance of

the corresponding estimator (D̂M = D̂M̂) is just given by

var(D̂M) = var(D̂M̂) ' D̂2
M{ĈV

2
(n) + ĈV

2
(f(0)) + ĈV

2
(M)}. (2.33)

2.3.2 Resampling variance estimators

As an alternative to analytical variance estimators, resampling strategies are useful

and are the only option for some of the more complicated methods. Such resampling

strategies will be the recommended way to obtain variance estimates and confidence

intervals for all the methods in this thesis.

Typically the nonparametric bootstrap is the preferred option. The bootstrap

relies on obtaining samples, with replacement, from the set of original sampling units,

and then calculating the statistic of interest (say a density estimate) for each of these

resamples. It can be shown that, under certain mild regularity conditions, (e.g.

Davison and Hinkley, 1997, p. 37-44), the variance properties of such statistic over

a large number of resamples approximates well the variance that would be observed

across a large number of samples from the population of interest, hence providing

reliable variance estimators for the quantity we are interested.

For distance sampling estimators, rather than resampling observations, we usually

resample samplers (either line or point transects), as it is more realistic to expect these
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to be independent sampling units. Hence, a bootstrap procedure for a CDS estimator

consists in repeating B times (where B should be large, say B = 999) the following

algorithm: (1) obtain a resample, with replacement, of independent sampling units,

either lines or points and (2) for said resample, calculate and store the statistic of

interest. The variance of the B estimated values will be a good approximation for

the variance of the estimator used.

A simple method to obtain bootstrap confidence intervals is the percentile method.

Given the B bootstrap estimates of the quantity of interest, the limits of a (1− α)%

confidence interval are given by the α
2

and 1− α
2

percentiles. Note the use of B = 999

is convenient because the corresponding 95% confidence interval limits correspond to

the lowest 25th and largest 975th observations.

Under some settings, a parametric bootstrap might be preferred. However I did

not find the need for such approach in this work (but see e.g. Hedley, 2000, p. 42-47,

for such an example), and hence the reader is referred to e.g. Efron and Tibshirani

(1993) for further details on the subject.

2.4 Using Distance software for analysis

As shown before, P can be related to the pdf of detected distances for both lines

and points. Since there is a large body of theory devoted to the estimation of pdf ’s,

that is the way estimation is carried out for conventional methods. The estimation

procedure in practice is done by using appropriate software to model the detected

distances pdf , even if usually we refer to it as modelling the detection function. The

current version of the only widely used software to analyze distance sampling data is

Distance 5 (Thomas et al. 2005).
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The modelling strategy available in this software is based on the key+series ad-

justments approach suggested by Buckland (1992), where the fit of a key model be-

longing to a set of parametric families is improved using series adjustment terms. In

that sense, it can be seen as a semi-parametric approach. The key functions available

in the software are the hazard-rate, half-normal, uniform and negative exponential,

which for brevity I refer to as HN , HR, UNI and NE throughout this thesis, and the

adjustment terms are the cosine series, simple and hermite polynomials, referred to as

cos, sp and hp. A half normal with 1 and 2 cosine adjustments would be respectively

referred to as HNcos or HNcos2. The reader is referred to Buckland et al. (2001, p.

45-48) for further details about different models and series adjustments.

For a given analysis, a set of plausible candidate models are assumed for the

detection function and the data are used to derive estimates of the model parameter

vector φ1. This is done by numerical maximization of the following likelihood:

L(φ1|v) =
n∏

i=1

f(vi) =
n∏

i=1

g(vi)π(vi)∫ w

0
g(v)π(v) dv

. (2.34)

The choice of w, the truncation distance, is necessary because the integrals in-

volved are evaluated numerically, and hence the above integral’s upper limit needs

to be defined. If the user does not choose a specific distance, the software will use

the maximum observed distance for w. Note that this procedure results in a small

bias, especially for low sample sizes (T. Marques, unpublished data). Nonetheless,

the choice of w has usually little impact in the final estimates.

The software includes a number of goodness-of-fit (GOF ) statistics and model

selection criteria to assist in the modelling exercise, as well as the ability to include

different level stratification and dealing with size bias due to detection probability

being a function of cluster size. Several different ways to estimate variance for these
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estimators are available, both based on empirical and resampling strategies. Ad-

vanced methods available in Distance 5 include Multiple Covariate Distance Sampling

(MCDS, e.g. Marques and Buckland 2004) and Mark-Recapture Distance Sampling

(MRDS, e.g. Laake and Borchers 2004), as well as a design engine that can be used

to investigate the properties of different design strategies or lay down realizations of

a given design (e.g. Strindberg et al. 2004), provided a digital map of the study area

is available. Spatial Modelling methods (e.g. Hedley et al. 1999, Hedley 2000) are

available in a beta version of Distance 6.

Any of the software’s analysis engines1 can be run directly from the Windows

command line or from inside other software, like R (R Development Core Team 2006).

This was helpful at several points during the preparation of this thesis as it allows for

the fast analysis of a large number of data sets, generated under different scenarios,

therefore making it easy to test the methods through simulation exercises.

2.5 Distance sampling assumptions

The validity and reliability of estimates derived from CDS methods requires that 3

key assumptions are respected. Along with these key assumptions there are 2 other,

which are somewhat less important but mentioned here for completeness.

Provided that a sufficient number of samplers are placed over the study area inde-

pendently of animal distribution, following some previously specified random design,

the conventional estimators are asymptotically unbiased given that:

1. Animals on the transect line or at the point center are detected with

probability 1 (g(0) = 1).

This is considered the fundamental assumption of CDS, and its failure will lead

1 There are separate engines for different types of analysis; the reader is referred to the software’s
manual for further details.
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directly to an underestimation of density. If g(0) = g, with g < 1, then density

estimates will be biased down by a factor of g, i.e., E[D̂] = gD.

Note that two different phenomena can lead to g(0) < 1. A detectability or

perception bias occurs when the animals are available to be detected, but the observer

misses them anyway. An availability2 bias occurs when the animals are not available

to detection. If only the latter case is present, then estimates are unbiased for the

portion of animals available for detection.

It is important to realize that there is no information on the distances collected

in conventional methods (either the perpendicular or the radial distances) to allow

for the detection of the failure of this assumption when analyzing the data. There

is however some evidence that g(0) is more likely to be 1 if the detection function

appears to have a shoulder3, while a spiked detection function might be an indication

that g(0) < 1 (Burnham et al., 2004, p. 350); note this is only true for perception

bias.

Availability bias is more difficult to deal than perception bias, essentially because

there are no data you can collect in the distance sampling survey itself that can

provide information on its occurrence. If you never see a fraction of the animals (say,

desert tortoise in their burrows), the only way to correct for such a bias is by using

independent information on the proportion of the population available for detection,

e.g. using radio-telemetry data.

2 Note that throughout the thesis I also use the term availability when referring to the distances
available to be detected, in terms of their distribution with respect to the samplers. However the
purpose of the word should always be clear from the context.

3 It is said that a detection function has a shoulder if detection is certain at the line or point and
remains (at least almost) certain for some non-negligible distance. Note this non-negligible distance
is not precisely defined here, but it is a function of the scale of the distances being measured.
Conversely, a spiked detection function is one for which detection probability shows a steep drop
even for small distances.
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Violation of this assumption appears to be quite widespread. Even in field simu-

lation studies, where one might imagine it should be possible to detect all objects on

the line, g(0) has been found to be less than 1 (e.g. Laake, 1978; Otto and Pollock,

1990; Anderson et al., 2001). Where perception bias is the cause, it may be that al-

ternative field methods can reduce or eliminate the problem. However, in some cases

this will not be possible, and then field and analysis methods must be employed that

enable the estimation of g(0).

Most of the ways to deal with g(0) < 1 involve more than one observer searching for

animals, and using some kind of mark-recapture approach to correct for the fraction

of animals missed on the line by both, hence the general name of mark-recapture

distance sampling (MRDS). The reader is referred to Laake and Borchers (2004,

p. 108-111) for further references on the development of these methods.

2. There is no animal movement.

Although strictly the assumption is that there is no animal movement, or in other

words the survey is considered to be a snapshot, the methods are applicable provided

that there is no undetected movement in response to the observer, and that movement

independent of the observer is slow compared to observer velocity.

Undetected responsive movement can lead to upward or downward bias. If the

animals tend to be detected after movement towards the observer occurs, density is

overestimated. If the undetected movement is away from the observer, then density

is underestimated.

Random movement (with respect to the observer) leads to overestimation of den-

sity, because the distance to the animals tends to be underestimated. This effect

arises from the fact that as an animal moves around, it is more likely to be detected

when close to the observer. A line transect example is useful for illustration: consider
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a situation with an effective strip (half-)width of around 40 m. A fast moving animal

with a hypothetical circular home range with center at 50 m from the transect, with

a radius of 30 m, will most of the times be detected closer to 20 m, and rarely (if

ever) closer to 80 m. So, although the distance we would like to record (on average)

is 50 m, it will most likely be less than that due to the combined effects of movement

and detection processes.

There is no simple way to address the failure of this assumption, and usually one

hopes that the survey procedures are such that it is likely to hold to a reasonable

extent. Buckland and Turnock (1992), based on work by Turnock and Quinn (1991),

developed an alternative approach in the presence of responsive movement, but this

approach requires multiple observers, in which at least some of the animals must

be seen by one of the observation platforms before responsive movement. Palka and

Hammond (2001) extended these methods for situations in which most of the animals

started to move before being detected by any of the platforms.

3. Distance measurements are recorded without errors.

Given that the basic information used to derive the probability of detecting an

animal are distance measurements, it is not surprising that the recordings must be

accurate to derive unbiased estimates.

The effect of measurement error can be thought to be equivalent to that of un-

detected movement. The final position of an animal after movement might be inter-

preted as a distance measured with error, where the error results from the movement

and not from the measuring process itself.

If a systematic error is present in the recording of distances, then underestimation

of distances leads to overestimation of density, and vice versa. The same amount of

error will be more influential in point transects than in line transects (e.g. Buckland
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et al., 2001, p. 265).

Perhaps more surprising is the fact that bias in density/abundance estimates might

arise even if the errors are unbiased. Chen (1998), using an additive model, showed

that unbiased errors lead to underestimation of abundance, while Marques (2004),

using a multiplicative model, showed that unbiased errors lead to overestimation.

Therefore, the effect of errors is dependent on the characteristics of the errors.

Chapter 3 deals exclusively with the failure of this assumption, and presents ways

to deal with that failure.

Although usually thought somewhat less important, two other assumptions can be

considered:

4. Detections of animals are independent events.

Strictly speaking, this is also an assumption as the maximum likelihood methods

used for fitting the detection function are based on an underlying model where the

observations are assumed independent.

However, Buckland et al. (2001, p. 36) point out that the methods are extraordi-

narily robust to the failure of this assumption. Point estimates should be the same

irrespective of whether this assumption holds or not, but variances might be under-

estimated if we wrongly assume independent detections. Nonetheless, considering

robust variance estimators as usually recommended, based on empirical variances of

encounter rate across transects, the practical impact of this assumption failure is

usually minimal (Buckland et al., 2001, p. 36).

If detections are not independent, additional care must be given to the interpreta-

tion of GOF measures, as they will be much more sensitive to this assumption failure

than the density estimates themselves (Buckland et al., 2001, p. 171). Because model
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selection tools also assume independent observations, there might be a tendency to

over fit if observations are not independent.

5. The detection function has a shoulder.

The estimation procedure is unreliable if the detection function has no shoulder.

Since we are primarily interested in estimating the value of the pdf (or its derivative,

in the case of point transects) of observed distances, evaluated at 0, it is important

that this function behaves smoothly near 0, and this is achieved by ensuring a shoulder

on the detection function.

Note that this applies both to the true detection function as well as to the assumed

model for the detection function. One does not expect steep functions at x = 0 to be

likely to arise because the detection process is intuitively smooth near the transect.

Only in extremely closed habitats would one expect to see all objects on the line and

yet miss a large proportion close to the line. For this reason the negative exponential

detection function, available in software Distance for historical reasons, should not

be used in practice. If the best fit to the data results in a spiked detection function,

it is usually a reflection of failures of one or more of the main assumptions of the

methods, rather than a reflection of the true underlying detection process.

Given appropriate field methods, namely adequate search procedures, a shoulder

should be present in the detection function. The wider the shoulder the more reliable

the estimation process will be, and the smaller the influence of choosing different

models in resulting the density estimates.

2.6 The availability proportional to area condition

There has been some confusion regarding the assumptions made about the spatial

distribution of the population of interest. For example Seber (1982) states that the
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population should be distributed randomly in the study area, i.e., according to a Pois-

son process. This is not true for the methods outlined above, as the only requirement

is that the population distribution in the study area is a stochastic process with rate

D, with no need to assume an equality between the rate and variance of the process.

Given such a stochastic process, the random allocation of samplers, independently

of the animal population distribution, ensures that the distances to animals in the

covered area, with respect to samplers, are proportional to the area available for the

animals to be in. Ignoring edge effects, this leads, on average, to a uniform distribution

of distances in the case samplers are lines and a triangular distribution in the case

of points (cf. Figure 1.1). I will refer to this as the availability proportional to area

(APTA) condition.

The APTA condition is only valid on average, and for a given realization of a

sampling design (the actual location of the samplers) deviations from it might be

observed. The larger the number of transects used, the more likely it is that the

condition holds to a reasonable extent. From this it should be clear that a given

realization of the design, coupled with the animals locations, might lead to an estimate

that is far from the true value of the quantity being estimated. This is however true

for all estimators: they can only be considered biased or unbiased on average, and

no statements can be made about the bias from a single realization of the estimation

process.

A good density estimator should be asymptotically unbiased, provided its under-

lying assumptions hold, and that is the case for CDS estimators, provided they are

used under the appropriate settings. Some authors have raised the question of an

unstated uniformity assumption of distance sampling, in the sense that the objects

of interest are uniformly distributed in the two-dimensional space of interest (e.g.

Melville and Welsh, 2001). These authors further noted that such an assumption can
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not be tested based on the conventional data alone (e.g. Welsh, 2002; Melville and

Welsh, 2001) and presented simulations to show how badly things can go when it is

violated. I note that this is not the case, and stems from a confusion between require-

ments on the population of interest and requirements on the survey design, because

the APTA condition holds on average, given adequate survey design. The unifor-

mity is desired for the animals present in the covered area, after transect placement.

No such requirement is made for the animal distribution in the areas not sampled

and, furthermore, provided survey design is adequate, that uniformity is achieved (on

average), especially so once the distances from the sample of transects are pooled to-

gether. Their argument was misleading, based on examples conditioning on extreme

animal configurations, coupled with a design that was clearly not independent of the

animal population itself, and hence was flawed to begin with. For further details see

Fewster et al. (2005).

Thus, the real emphasis should lie on the previous statement that “...a sufficient

number of samplers are placed over the study area independently of animal distribu-

tion, following some previously specified random design...”. This could potentially be

itself seen as an assumption, which provided it holds, leads to the APTA condition.

It is nonetheless important to acknowledge that this is a somewhat vague state-

ment, because what constitutes a sufficient number of samplers is not clearly stated,

and it might be dependent on the animal population. A minimum number of 10-20

is usually suggested (e.g. Buckland et al., 2001, p. 232). Note that, even if only one

single transect is used, on average (over many realizations of the design), the design

should be unbiased. Using more transects just means that we can be more confident

that a single realization is adequate (because in a survey, there is only a realization

of the process), in the sense that the underlying distribution of distances will be close

to what would be expected under APTA.
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Since often sampling is restricted to a small fraction of the entire region of interest,

the above statement ensures not only the APTA condition, but also that inferences

made for the covered area are representative of the wider survey region, as well as

more robust encounter rate variance estimates.

The methods in this thesis are intended to be useful when, due to either inadequate

survey design (e.g. samplers along roads) or assumption violation (e.g. measurement

error), the APTA condition does not hold and in fact a density gradient is observed

with respect to the samplers.

2.6.1 Edge effects

Note that even when a “sufficient” number of randomly located samplers are used,

the APTA condition might not be achieved due to edge effects. This is where some

parts of the transects actually lie outside the study area, and hence even if animals

exist outside the study area they are not considered4.

The consequences of such edge effects are less important than one might expect,

because modelling the joint effect of availability and detectability should still lead to

unbiased density estimation provided models are used that are flexible enough (e.g.

Buckland et al., 2001, p. 216). The estimate of the probability of detecting each of the

detected animals in the covered area will nonetheless be biased. The following line

transect example should clarify these points. As seen in section 2.2.3 (cf. equation

2.28), in the absence of an edge effect, the probability of detecting each of the n

detected animals is given by

P =

∫ w

0

g(x)π(x)dx =

∫ w

0

g(x)
1

w
dx =

µ

w
, (2.35)

4 Note that if animals are available outside the study area, and densities are not expected to
change drastically, we could just include animals detected outside the study area, hence avoiding
the edge effect.
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and hence as usual N = n/P .

Now imagine that an edge effect is present, hence, in the covered area, there

are only N∗ < N animals. Let e(x) represent the proportion of area available with

respect to what would be available in the absence of edge effects. Further let e(0) = 1,

reflecting the fact that the transect lines themselves are, by design, actually inside the

study area. Consider that if there was no edge effect, n animals would be detected.

In the presence of an edge effect, we detect n∗ < n animals, because some are not

there to be detected to begin with.

In this case, the true probability of detecting each of the animals is again given

by 2.28, and hence

PeT =

∫ w

0

g(x)π(x)dx =

∫ w

0

g(x)
e(x)∫ w

0
e(x)dx

dx =

∫ w

0
g(x)e(x)dx

h
. (2.36)

However, since we are not taking account of the edge effects, we estimate that

probability to be

PeE =

∫ w

0
g∗(x)dx

w
=

∫ w

0
g(x)e(x)dx

w
, (2.37)

where g∗(x) represents a compound function of availability and detectability. Ignoring

the edge effect we assume the detected distances shape to be due exclusively to the

detection process, but it actually is also due to an availability process. So, we know

that

n∗

PeT

= N∗ = N

∫ w

0
e(x)dx

w
= N

h

w
. (2.38)

Note h
w

is the fraction of the area that you actually cover, with respect to the total

area if there were no edge effects. This expression can be rearranged, solving for N ,

leading to
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N =
wn∗

PeT h
(2.39)

and hence

N =
n∗

PeE

(2.40)

which shows that abundance is estimated with bias (true abundance in the area

covered is N∗), but density is unbiased. Note that we really want to estimate N

rather than N∗ because the density we are trying to estimate is

D =
N

A
=

N

2Lw
=

N∗

2Lw h
w

=
N∗

2Lh
. (2.41)

This holds as long as the models used are flexible enough so that the compound

function of detectability and availability, and hence PeE, can be estimated with no

(or negligible) bias.

The bias in encounter rate (compared to what would be seen in the absence of an

edge effect) is compensated with the bias in estimating the probability of detection.

The edge effect leads to an underestimation of that probability (we think we miss

more animals away from the line, while in fact they are not there to be seen to begin

with), but to a proportional decrease on the encounter rate compared to the absence

of edge effects, and these two balance each other out.

The key difference between this case and the one where a true density gradient

exists is that in the case of edge effects, the quantity we wish to estimate is the density

at the transects itself, i.e. at x = 0, while if a density gradient is present, the density

on the transect is likely a biased estimate of density on the area surrounding it and

hence of no interest on its own.



Chapter 3

Distance sampling with
measurement error

3.1 Introduction

As pointed out in the previous chapter, a key assumption of distance sampling is the

absence of measurement error1 in the distances used to model the detection function.

Until recently, the effect of measurement error was largely ignored, and field experi-

ments to access the presence and magnitude of measurement errors were rarely carried

out (but see Butterworth et al., 1984; Øien and Schweder, 1992, for exceptions). In

many studies distances are obtained through eyeball estimation (e.g. Kulbicki and

Sarramegna, 1999; Heydon et al., 2000; Baldi et al., 2001; Biswas and Sankar, 2002;

Skaug et al., 2004; B̊ardsen and Fox, 2006), which is prone to several types of mea-

surement errors. On the other hand, some studies do not describe in adequate detail

the methods used for distance measurement, which makes it impossible to determine

to what extent measurements, and hence results, are reliable (e.g. Becker et al., 1997;

Brown and Boyce, 1998; Ashenafi et al., 2005).

Compared with other key assumptions, the effect of violation of the assumption

1 Due to the continuous nature of distances, any recorded distance has a rounding error associated
with. Hence in the following I ignore the errors due to the discrete recording of an otherwise
accurately measured continuous distance.

35
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of no measurement errors has received considerably less attention. The International

Whaling Commission promoted the first attempts to look at these issues, with exper-

iments being carried to access accuracy of distance (and angle) estimates for minke

whale surveys (e.g Butterworth et al., 1984; Thompson and Hiby, 1985) using different

measurement methods. The poor accuracy reported in those trials would represent

potential for problems in the analysis of the data. DeJong and Emlen (1985) present

an early assessment of the effect of measurement error in distance sampling, with field

trials to estimate its characteristics, and simulations to assess their influence in the

estimation of the detection function. Unfortunately, this work was almost completely

ignored by subsequent authors, possibly due to some of the awkward conclusions pre-

sented. Hiby et al. (1989) presented the first attempt to incorporate a measurement

error model in distance sampling methods. They developed a method to account for

error measurement in cue-counting methods using grouped data, by incorporating

a measurement error function, with unbiased multiplicative Gaussian errors, in the

estimation of the detection function. Schweder (1996, 1997) also dealt with measure-

ment errors in radial distances, in relation to cue based methods for estimating minke

whale abundance. The simulated likelihood method of Schweder et al. (1999), consid-

ering hazard models (as described by Skaug and Schweder, 1999), has the flexibility

to remove the bias due to measurement errors (as well as potentially other factors

not included in the likelihood). Chen (1998) described the effect of additive errors

in line transect surveys, and assuming some knowledge about the distribution of the

errors, derived a corrected estimator based on the method of moments. This work

was the first to describe that even unbiased errors might lead to biased estimators of

density. Chen and Cowling (2001) generalized this approach to the case where errors

are present both in distances and other covariates that affect the detection function,

namely cluster size. The model proposed by Chen can be seen as a particular case of
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the model proposed by Alpizar-Jara (1997). This author, using an approach based on

the SIMEX algorithm (Cook and Stefanski, 1994), also presented a way of correcting

density estimates in the presence of errors.

The errors in distance estimation are dependent on the process generating the

detections. Most commonly detections will be made visually or aurally by humans,

with other methods like radar, acoustic or thermal devices still seldom used (although

an increase in the use of such devices is expected in the near future). The magnitude

of the errors could be a function of many factors, such as observer, background noise,

animal density or animal orientation. Alldredge et al. (in press) present an assessment

of the influence of such factors for aural detections in a controlled experiment.

Fortunately, recent years brought the development of new technological solutions,

which have been used to assist in the evaluation of distances in the field. These include

for example laser range finders (e.g. Diefenbach et al., 2003; Hounsome et al., 2005),

precise GPS portable units (e.g. Chen, 1998; Marques et al., 2006) and radar/sonar

technology (e.g. Harmata et al., 1999), as well as new measurement and recording

methods (e.g. Gordon, 2001; Southwell et al., 2002; Diefenbach et al., 2005). It is

therefore plausible to think that the failure of this assumption will become both

less frequent and less influential in the future. Nonetheless, there are still many

situations in which measurement error is bound to occur, as for example for cetacean

surveys, where most accurate methods fail, or bird surveys where most animals are

only heard and not seen, and hence some subjective way to determine those distances

is involved. Therefore it is important to understand the impacts of errors in the

detected distances and how they influence final density and abundance estimates, as

well as to find methods that account for their effect.

In the next section I present the different types of measurement error relevant in

distance sampling. This is followed by an approach to correct the bias induced by
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measurement error, based on a multiplicative error model, in section 3.3. Most of the

material covered in this section comes from Marques (2004), but also from Burnham

et al. (2004), and for consistency with this reference I refer to the methods in this

section as the PDF approach. This is in contrast to the methods of section 3.4,

based on Burnham et al. (2004) and Borchers et al. (in prep a) and referred to as the

likelihood approach, in which a likelihood incorporating an error model along with

the usual detectability model is proposed. Methods in both sections 3.3 and 3.4 are

illustrated by simulation and a real life application example. After a brief section

about the estimation of measurement error model parameters from data (section

3.5), section 3.6 is devoted to 2 special cases of measurement error: (1) heaping, a

special case of measurement error characteristic of distance sampling and (2) errors

exclusively at large distances. This is followed by a final discussion section, where the

methods presented are compared and some general conclusions drawn.

At first sight, the structure of this chapter might look cumbersome. The reason for

this is that I decided to keep the two different approaches to deal with measurement

error separate, to reflect the historical order in which these were developed. First the

PDF approach and only afterwards the likelihood approach. Looking back on it, it

seems unlikely that the PDF approach would have been developed had the likelihood

approach arisen first. Nonetheless, there was a considerable part of this thesis time

put into the development of the PDF approach.

In the following it is assumed that, except for measurement error, the usual dis-

tance sampling assumptions hold. For readability, detectability is considered to be

a function of distance alone, but the methods might be extended to multiple co-

variate distance sampling (see Borchers et al., in prep a, which extend the relevant

formulation to include covariates).
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3.2 Types of distance sampling measurement error

A large body of literature has been devoted to the study of measurement error in

general regression models. Hence, we can place the measurement errors found in dis-

tance sampling in the context of other broader classes of measurement error. Using

the definition of Carroll et al. (1995, p. 16), errors in distance sampling are nondif-

ferential, in the sense that given the true distance, there is no information about the

detection process in the error distances. On the other hand, we usually are interested

in structural models, in the sense that parametric assumptions are made about the

true distances distribution (Carroll et al., 1995, p. 6).

Given a set of true detected distances (Fig. 3.1a), a number of situations can occur.

Usually some measurement error is bound to be present, hence the no measurement

error case (Fig. 3.1b) is unlikely. We can conceptually think of errors has having a

random and a systematic component. In the case of unbiased errors (Fig. 3.1c and

3.1d), only the random component is present, i.e. the mean value of the distance

measured (with error) is the true distance. The observed errors in real data sets

might also result from a combination of random and systematic components (Fig.

3.1e). While under some conditions we might expect an error without systematic

component (Fig. 3.1c and 3.1d), there is no reason to expect a purely systematic

error (Fig. 3.1f), and hence I do not address such scenario in this work; however,

if that was the case, a simple calibration experiment would solve the problem (e.g.

Alpizar-Jara, 1997).

Although conceivably all models are wrong, it is useful to think of errors as be-

ing the result of either an additive or multiplicative model. An additive model for

measurement error can be represented as
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Figure 3.1: Different types of measurement error in distance sampling. a) A set
of detected distances without error. b) to f) True versus measured distances for
different measurement errors: b) No measurement error; c) Random only (additive)
measurement error; d) Random only (multiplicative) measurement error; e) Random
(additive) and systematic measurement error; f) Systematic only measurement error.
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Y = X + R, (3.1)

where X represents the true distance, Y the observed (contaminated) distance and R

is the error, here assumed independent of X. The measured distances in figure 3.1c

were generated using such a model.

Another plausible representation is a multiplicative model,

Y = XR (3.2)

with X and R also independent. The measured distances in figure 3.1d were generated

using such model. For simplicity I assume X, Y ≥ 0, leading also to R ≥ 0. This

is sensible as negative distances are not possible for point transects, and for line

transects one usually folds the process over the line, leading to positive distances

only.

We usually think of error as the difference between a true and contaminated value.

In fact, any error model can also be seen as an additive model. In particular, for the

multiplicative error model above, expression 3.2 can be rewritten as

Y = X + R′ (3.3)

where R′ = X(R− 1), where the error is no longer independent of X. Hence, for the

multiplicative error models used, the term error could also be used for representing

R′.

The method used to measure the distances, and the corresponding associated

errors, will usually be better represented by one of these models. If the measurement

is dependent on the precision inherent to the measuring device, then the resulting

error is likely to be additive in nature. An example of this is described by Chen
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(1998), where a GPS unit is used, and the error is related to the GPS precision and

should therefore be independent of X. If we consider a procedure where the error

is likely to increase at larger distances, as with eyeball estimates, a multiplicative

model might be more adequate. In this thesis the focus is on multiplicative error

models, and I will be referring to these unless stated otherwise. I believe that under

most distance sampling scenarios one would expect that the standard deviation in

measurements increases as the true distance increases.

Throughout this chapter the terms true distance, contaminated distance and error

refer respectively to X, Y and R. For consistency with the notation in Marques

(2004), X is used for distances of both point and line transects. Note that this is in

contrast with the notation used in the other chapters of this thesis.

3.3 Correcting the effect of measurement error -

the PDF approach

In the following I derive a corrected estimator in the presence of measurement error,

by assuming a multiplicative error model as in section 3.2.

The corrected estimator is obtained by multiplying a biased density estimator

and an appropriate correction factor. While the biased density estimator is obtained

as usual, based on the contaminated distances, the correction factor is derived as a

function of the error distribution characteristics.

The methods are presented for the line transect case first, based on Marques

(2004), and then extended to the point transect case, as in Burnham et al. (2004).
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3.3.1 Line transects

3.3.1.1 Deriving corrected estimators

As described in section 2.2, in the case of line transects, we are interested in obtaining

the following density estimator

D̂ =
nf̂X(0)

2L
. (3.4)

If measurement errors are present, yet ignored, the conventional estimator is a

biased estimator of density (D̂y). In practice, we do not observe the X’s, but the Y ’s,

hence we effectively estimate density as

D̂y =
n f̂Y (0)

2L
. (3.5)

The advantage of using a multiplicative error model is that, as I show below,

the values of Y and X pdf ’s, evaluated at distance 0, are proportional, and the

proportionality constant is a function of the error structure. Hence, given knowledge

about the error structure, we can correct an estimate based on the contaminated

distances.

The distribution of the contaminated distances can be expressed by integrating,

with respect to the error, the joint distribution of the contaminated distances and the

errors, as

fY (Y ) =

∫ ∞

0

fR,Y (r, y)dr. (3.6)

This expression can be rearranged, and based on standard random variable trans-

formation, coupled with the independence assumption between X and R, the following

expression follows
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fY (Y ) =

∫ ∞

0

fX(
y

r
)fR(r)

1

r
dr. (3.7)

One is interested in the value of the pdf of detected distances evaluated at 0. For

Y = 0, this expression simplifies to

fY (0) =

∫ ∞

0

fX(0)
1

r
fR(r)dr (3.8)

= fX(0)E(
1

R
) (3.9)

= fX(0)Kl. (3.10)

Therefore, using equation 3.10, together with equations 3.4 and 3.5, a corrected

estimator for density is

D̂c =
nf̂X(0)

2L
=

n f̂Y (0)

2 L Kl

=
D̂y

Kl

. (3.11)

This requires that E(R−1) exists, reflecting restrictions to possible models for

R and values that Kl might take for each assumed distribution of R. Given the

distribution of R is known, Kl can be evaluated.

In practice, the distribution of R is not known and hence needs to be estimated.

Two approaches are possible to estimate Kl: (1) use an assumed distribution to

estimate parameters via maximum likelihood, and then calculate the mean value

involved or (2) consider a nonparametric estimator.

A suitable nonparametric estimator for K−1
l is the harmonic mean of a sample of

R’s (MH(rs)),

K̂−1
l = MH(rs) =

1

S

S∑
s=1

1

rs

(3.12)
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where S is the number of observations for which both true and error distances are

available. The final corrected density estimator can be expressed as

D̂c = D̂yMH(rs). (3.13)

3.3.1.2 Analysis guidelines and variance estimation

The approach presented has the advantage that standard software available for ana-

lyzing distance sampling data can still be used. The usual distances, here assumed

contaminated, are used to calculate an estimate, D̂y, which given the measurement

error, is likely to be biased. Then, provided we have some observations for which we

have both true and contaminated distances, we can estimate Kl, and include it in the

analysis as a multiplier, with the corresponding measure of precision.

If all observations could be collected using a method that is precise enough so that

we can consider them the true distances, i.e., error free, the methods presented here

would not be needed. More frequently, the methods used during the larger part of

the survey need to be fast and cheap, hence sometimes the error associated with them

is considerable. If at least for a representative subset of the data we can use a more

precise, likely more expensive or time consuming method, we can use the information

contained on these pairs of contaminated and true distances to estimate Kl.

Note that these pairs of contaminated/true distances can be a subset of observa-

tions from the survey or observations collected on a separate experiment, although in

the latter case care needs to be taken to ensure that the experiment conditions are

similar to those on the survey.

If a subset of the survey is used, Dy and Kl are not necessarily independent, and

hence that dependence should be incorporated in the analysis. The simplest way to do

this is to use a nonparametric bootstrap where the observations are resampled both
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for the estimation of density and the error correction. Note that in such a setting it

might be easier if the field protocol is such that one collects say the first f distances of

each line both with the “error-free” method and the usual method. Since usually the

bootstrap procedure for density considers the transects rather than observations as

sampling units, this protocol ensures that resampling yields a representative sample to

estimate both quantities we are interested, accounting for possible non-independence

of Dy and Kl.

The analysis is simpler in the case of a separate experiment, because then Dy and

Kl are independent; under this setting, the nonparametric bootstrap is still an option,

but we can also estimate Dy and Kl variances independently and then combine them

using the delta method as

var(D̂c) ' D̂2
c [cv

2(Dy) + cv2(K̂l)]. (3.14)

3.3.1.3 Using models for the error

Given that the estimator of Kl based on the harmonic mean is used, there is no need

to assume a specific distribution for R. However, it is useful to do so to gain insight

on the effect of different error structures on the resulting bias.

In Marques (2004) I considered models with beta and gamma distribution as

plausible candidates for describing measurement error, implementing the use of beta

related variables for R. Assume the following models for the distribution of R

model I: R = 0.5+U

model II: R = 2 U

where U ∼ beta(θ1, θ2) and θ1, θ2 ∈ (0, +∞). Models with either θ1 < 1 or θ2 < 1 are

not useful, since situations in which these error distributions would arise are unlikely.
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Hence I consider only the case where θ1 and θ2 ≥ 1. Under these models, a symmetric

beta (θ1 = θ2) results in unbiased estimation of distances. The contaminated distances

take values between 0.5 and 1.5 (model I) or 0 and 2 times (model II) the original

value.

The resulting errors are therefore dependent on the values of the original observa-

tions, although X and R are independent. The beta family contains a wide choice of

shapes, and depending on parameter values, E(Y ) can be larger, equal or lower than

E(X), therefore allowing simulation of a wide range of different situations.

As shown generally for multiplicative error models in the previous section, even

when the observed distances are unbiased estimators of the true distances, the density

estimator is still biased. This is due to the fact that observations are unbiased if θ1 =

θ2, and the estimator of population density is asymptotically unbiased if Kl=1, but

neither condition implies the other.

Expression 3.9 can be developed for both models. For model I

fY (0) = fX(0)

+∞∫

0

fR(r)

|r| dr = fX(0)

+∞∫

0

fU(r − 0.5)

r
dr (3.15)

= fX(0)

1.5∫

0.5

1

B(θ1, θ2)

(r − 0.5)θ1−1(1.5− r)θ2−1

r
dr (3.16)

and for model II

fY (0) = fX(0)

+∞∫

0

fR(r)

|r| dr = fX(0)

+∞∫

0

1
2
fU(r/2)

r
dr (3.17)

= fX(0)

2∫

0

1

B(θ1, θ2)

1

2

(r/2)θ1−1(1− r/2)θ2−1

r
dr. (3.18)

For model II, substituting t = r/2 and simplifying leads to
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Figure 3.2: Values of the PDF correction Kl, as a function the parameters (θ1, θ2)
of the error model: a) Under model I; b) Under model II. The dashed line indicates
unbiased estimation of distances (θ1 = θ2). Areas above and below the dashed line
correspond respectively to underestimation and overestimation of distances. Kl <
1 corresponds to uncorrected density estimates being underestimated, and Kl > 1
corresponds to uncorrected density estimates being overestimated.

fY (0) = fX(0)
1

2

(θ1 + θ2 − 1)

(θ1 − 1)
. (3.19)

The correction factor Kl can be calculated as a function of the error model pa-

rameters. The corresponding surfaces for models I and II are presented in figure 3.2.

The effect of the error is more pronounced for model II for the same values of the

parameters. In both cases, density estimates are positively biased if the error process

is unbiased (θ1 = θ2). In some cases, E(Y ) > E(X) results in positively biased density

estimates. This reflects the impact of the specific form of error distribution on the

estimation process. It is interesting to note that for some values of the parameters,

Kl = 1, even though E(Y ) > E(X).
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3.3.1.4 A simulation example

The performance of the proposed method was assessed by simulation. A known size

simulated population was surveyed, the true distances to detected animals contam-

inated with errors of known structure, and the expected bias (and corresponding

correction factor) were obtained. Then, using a subset of the data, the correction

was estimated for each data set, and the corrected estimates compared to the ones

ignoring the errors.

A population of 10000 animals was randomly (uniform coordinates in both dimen-

sions) generated on a square with side 1000 meters (D = 100 animals/hectare). The

study area was divided into 25 non-overlapping squares, and in each of these squares

a transect of 200 meters was randomly selected. In each row of squares a transect

was randomly generated for the first square and in the subsequent squares it was

systematically placed with respect to the first one (see Figure 3.3). At the analysis

stage, a truncation distance of 10 meters was used. To avoid edge effects, no transects

were placed at less than 10 meters from the edge of the square. For every animal,

a rejection method was used to decide if it was considered detected or not, based

on a half-normal detection function (σ = 5). This process was repeated 100 times,

resulting in 100 independent data sets. The average number of animals detected in

each realization of the process was 593, standard deviation 20.1. The data generated

were considered to be error free.

I then generated errors with the following distributions: beta(1,1); beta(3,2) and

beta(5,5). The choice for these particular models was arbitrary, but had a rationale.

The beta(1,1) was used as an extreme case, beta(5,5) as estimation of distances is

unbiased, but density estimation is biased, and beta(3,2) as estimation of distances is

biased, but nonetheless estimation of density should be unbiased. For each distance

without error in these data sets, errors were independently generated, and introduced
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Figure 3.3: Schematics of the study area considered in the simulation study to access
the performance of the PDF approach, with an example realization of the transects
and animals. The survey design consisted of random placement of a transect in the
first square of each row followed by systematic placement (with respect to the first
square) of the remaining transects in each row.
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as postulated above (for model I and II), leading to five contaminated sets. (The case

of beta(1,1) for model II was not implemented, since Kl would be infinite.)

To preclude analyst influence, the data sets were analyzed using a conventional

analysis in Distance 4 (Thomas et al., 2002), as follows. The models considered for

the detection function were half-normal+cosine (HNcos), uniform+cosine (UNIcos)

and hazard rate+simple polynomial (HRpol), and the one with lowest AIC selected.

The variance for encounter rate was calculated analytically based on replicate lines.

In the analysis of contaminated data, the largest 5% of distances was truncated, as

otherwise some models required several adjustment terms to provide an adequate fit

of the data.

The analysis of the error free data led to an average estimated density of 98.6

animals per hectare, with a standard error of 0.65. The actual coverage for the 95%

CI was 93%.

For the contaminated data sets, only 23 transects were used to estimate density,

and the remaining 2 were used as a separate experiment, where true and contami-

nated distances were evaluated. This resulted on average in 516.2 (standard deviation

19.4) observations to estimate density and 49.6 (standard deviation 7.1) observations

to estimate Kl. Kl was estimated using the harmonic mean estimator on the sample

of R’s resulting from the 2 transects, as well as based on the true beta model used

to generate the errors, by maximizing the appropriate likelihood and then evaluating

equations 3.16 or 3.19 by substitution of the true parameter values with their cor-

responding maximum likelihood estimates. The variance of Kl estimates, var(Kl),

was obtained by bootstrap (999 resamples). The variance for the corrected estimator,

considering the nonparametric estimator for Kl, was then obtained by combining the

variance of D̂y and K̂l using the delta method, using expression 3.14.

The true, mean estimated and mean observed Kl for each combination of model
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Figure 3.4: Results of the simulation exercise to evaluate the PDF approach to deal
with measurement error. Error-based density estimates (lighter histograms) and the
corrected estimates (darker histograms) using the harmonic mean estimator. a) True
distances; b) Error beta(1,1), model I; c) Error beta(5,5), model I; d) Error beta(5,5),
model II; e) Error beta(3,2), model I; f) Error beta(3,2), model II. Dashed line -
mean value of estimates based on true distances. Dashed-doted line - mean value of
estimates based on error distances. Long dashed line - mean value of estimates based
on error distances, corrected with the PDF approach. True D = 100 animals/ha.
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Table 3.1: Results of the simulation exercise to evaluate the PDF approach to deal
with measurement error. True Kl (TK), mean estimated Kl using the harmonic
mean (EHK) or the true beta model (EBK), and mean observed Kl (OK), under
the combinations of errors and models (I - model I, II - model II) considered. Mean
estimated density (D), density coefficient of variation (DCV ) and coverage of 95%
CI for density (95%CIC), respectively for the corrected and uncorrected estimator.
Mean estimated density based on true distances is 98.6 animals/ha. True density is
100 animals/ha.

TK EHK EBK OK D1 DCV 1 95%CIC1

beta(1,1), I 1.099 1.105 1.104 1.078 96.5/106.4 7.46/5.83 89/81
beta(5,5), I 1.024 1.021 1.021 1.030 99.4/101.5 6.76/6.76 95/94
beta(5,5), II 1.125 1.126 1.125 1.096 96.4/108.0 8.69/6.17 89/78
beta(3,2), I 0.944 0.943 0.943 0.941 98.5/92.8 6.83/6.13 94/75
beta(3,2), II 1.000 1.008 1.007 0.952 94.2/93.9 11.04/6.68 90/75

1 Corrected analysis/uncorrected analysis

and error, along with the corresponding corrected and uncorrected mean density

estimates, are presented in table 3.1. Also shown is the coverage of the 95% confidence

interval, based both on corrected and uncorrected analysis.

The nonparametric estimator for Kl and the parametric beta-based estimator

showed no differences, justifying the nonparametric estimator when the true model is

unknown. There was an increased coverage with the use of the proposed correction

in all cases. Figure 3.4 shows the uncorrected (i.e. error based density estimates) and

the corrected density estimates using the harmonic mean estimator, showing that the

correction reduced the bias in most cases. It can be seen that the results were very

close to the expected ones, validating the predictions of the effects of errors and the

proposed correction. However, in some cases, true Kl and observed Kl were slightly

different. Especially in the case of beta(3,2) for model II, a Kl of 1 was expected but

an average Kl of 0.952 was obtained. These unexpected results will be considered in

the discussion. Note that even in this case coverage was increased, due to an increased

variance related to the estimation of Kl.
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3.3.1.5 A real life application

The PDF approach was applied to a survey of golf tees. Although clearly not a

natural population, the setting used would not be any different than the one used for

a real survey of, say, a plant population, with the advantage that truth was known2.

Golf tee groups (N = 250) were randomly distributed in a study area of 1677.12

m2, resulting in a density of 0.149 tees/m2. Two strata, with different abundances

(N1=130 and N2=120, in areas of respectively 1057.12 and 620 m2), were surveyed

for golf tees by 8 independent observers, which were considered as a single pooled

observer, resulting in 125 sightings. The original tee data set includes group size,

color and visibility, but these were ignored for the purpose of this study. The results

here refer to tee group density, rather than individual tee density, but for simplicity

this exposition refers only to tees and tee density. There were respectively 6 and 5

transects in each stratum, and the width of the transects was 4 m. Further details

on this data set can be found in Borchers et al. (2002). Initial analysis of the data

revealed a serious g(0) problem. As g(0) problems are a side issue for our purposes,

I simply estimated it (and its variance) from the data and used it as a multiplier

(Buckland et al., 2001, p. 57) in Distance 4 (Thomas et al., 2002). To mimic a

real life application in which a separate experiment was conducted for measurement

error assessment, I assumed that one transect in each stratum (with a total of 22

detections) was part of such an experiment, to estimate Kl. Thus, estimated distances

(mean for those observers that saw each tee) and real distances were available for

22 observations. The remaining 9 transects (with 103 detections) were used in the

usual way to derive a density estimate. Using Distance 4, estimates of density were

obtained, both considering true distances and distances with errors (Table 3.2). The

errors led to an overestimation of density of 16.8%. Using the harmonic mean of R,

2 See Acknowledgements section for proper credit on the use of this data set.
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Table 3.2: Analysis of the golf tees data set comparing the performance of the uncor-
rected estimator and the proposed PDF estimator. Results are shown considering
the true distances, distances contaminated with errors (uncorrected estimator) and
distances contaminated with errors with the proposed correction. True density is
0.149 tees/m2.

Analysis D̂ DCV D 95 % CI RMSE
True distances 0.149 0.195 (0.100,0.222) 0.029

Error distances - Dy 0.174 0.195 (0.117,0.260) 0.042
Error distances - Dc 0.155 0.217 (0.100,0.238) 0.039

Kl was estimated as 1.123, and therefore a corrected point estimate of density was,

using expression 3.13, 0.155. A bootstrap variance for Kl (999 bootstrap resamples)

was calculated, and assuming Kl and Dy independent, I used K̂l as a multiplier in

the analysis. As can be seen from table 3.2, the corrected results now lie closer to

the true values; 72% of the error bias in density was removed by using the correction,

and the impact on precision was negligible.

Although the harmonic mean was used to estimate Kl, assuming either a beta or

a gamma model leads to very similar estimates for Kl, respectively 1.115 and 1.117.

Although the CV of the corrected estimator is the larger, having to account for es-

timating an extra parameter, in terms of RMSE we are better off using the correction

than ignoring the effect of the errors.

3.3.2 Point transects

Although appropriate here for completeness, this subsection was developed by David

Borchers, who generalized the line transect PDF approach by Marques (2004) to

point transects. This section borrows on material in Burnham et al. (2004).

In the case of point transects the CDS estimator is
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D̂ =
n ĥX(0)

2πk
. (3.20)

If measurement errors are present, yet ignored, the conventional estimator is a

biased estimator of density (D̂y). In practice, one does not observe the X’s, but the

Y ’s, hence density is effectively estimated as

D̂y =
n ĥY (0)

2πk
. (3.21)

Given equations 3.20 and 3.21, one would like to be able to express hY (0) as a

function of hX(0). Differentiating equation 3.7 leads to

hY (y) =
dfY (Y )

dy
(3.22)

=
d

dy
(

∫ ∞

0

fX(
y

r
)
1

r
fR(r)dr) (3.23)

=

∫ ∞

0

dfX(y
r
)

dy

1

r
fR(r)dr) (3.24)

=

∫ ∞

0

dfX(y
r
)

dy
r

1

r2
fR(r)dr). (3.25)

Therefore, we can express hY (y), evaluated at 0, as

hY (0) = hX(0)

∫ ∞

0

1

r2
fR(r)dr = hX(0)E(

1

R2
) = hX(0)Kp. (3.26)

Analogous to the case of lines, this expression requires that E(R−2) exists. Given

the distribution of R, Kp can be evaluated. Therefore, a corrected estimator for

density is

D̂c =
n f̂Y (0)

2 L Kp

=
D̂y

Kp

. (3.27)
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As before, most commonly the distribution of R is not known and hence needs

to be estimated. The same two approaches are possible to estimate Kp: (1) use

the assumed distribution to estimate parameters via maximum likelihood, and then

calculate the mean value involved or (2) to consider a nonparametric estimator.

A suitable nonparametric estimator for K−1
p is the harmonic mean of a sample of

R2’s (MH(r2
s)),

K̂p
−1

= MH(r2
s) =

1

S

S∑
s=1

1

r2
s

(3.28)

where as before S is the number of observations for which both true and error distances

are available. The final corrected density estimator can be expressed as

D̂c = D̂yMH(r2
s). (3.29)

3.3.3 Consequences of multiplicative errors on bias

By assuming a multiplicative error model we can derive some interesting conclusions

about the effects of the corresponding error measurements.

The first is related to the influence of the error structure on the bias it promotes.

According to Chen (1998) an unbiased error model leads to line transect underesti-

mation of density, a fact then cited by Buckland et al. (2001, p. 264). The results

in this section show that if a multiplicative model is assumed, unlike in the additive

case described by Chen, the effect of unbiased errors, i.e. E(R) = 1, is the opposite.

Note that considering Jensen’s inequality,

E(
1

R
) ≥ 1

E(R)
, (3.30)

where the equality is only achieved if R is a degenerate distribution with a point

mass on 1, which means by definition no measurement error. Therefore, equation 3.9
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shows that, considering a multiplicative model, unbiased errors lead to overestimation

of density, which means that the effect of measurement error is model dependent.

A second conclusion is that, conditional on an unbiased multiplicative measure-

ment error, the same error model will cause greater bias for point transect data than

for line transect data. This is because under such conditions it can be shown that

E( 1
R2 ) > E( 1

R
). In fact, given two random variables W and Z, the Cauchy-Schwartz

inequality states that

[E(WZ)]2 ≤ E(W 2)E(Z2). (3.31)

Hence, considering W = 1/R and Z = 1, leads to

[
E

(
1

R
× 1

)]2

≤ E(
1

R2
)× E(1). (3.32)

On the other hand, as E( 1
R
) ≥ 1 (Jensen’s inequality with E(R) = 1), then

[
E

(
1

R

)]2

> E(
1

R
) (3.33)

and finally, combining the expressions above leads to

E(
1

R2
) ≥

[
E(

1

R
)

]2

≥ E(
1

R
) (3.34)

proving the statement above.

Strictly speaking, the idea that the same amount of error is believed to lead to

larger bias for point transects than for line transects (e.g. Buckland et al., 2001, p. 264-

265) is not valid for all error models. Whilst this might be true for most cases, one

can easily come up with counter examples: consider the bias originated by a gamma

model, with parameters such that the mean value of R is between 0.9 and 1.2 (hence

errors go from underestimation to overestimation of distances, with unbiased errors
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Figure 3.5: Illustrative example showing that the correction needed for lines might
be more severe than the correction needed for points. Expected correction needed,
for lines (solid line) and points (dashed line), as a function of the mean value of
a gamma model for the error. Gamma scale parameter varying from 1

20
to 1

30
, and

shape parameter = 25. Horizontal dotted line represents unbiased density and vertical
dotted line represents unbiased errors.

for E(R) = 1). Whilst for most models considered, the correction is more extreme for

points, for some values of the mean value of R above 1, the correction is further away

from 1 for lines than for points, which means the bias is larger for lines (Figure 3.5).

However, note that for such cases the correction is so close to 1 that for practical

purposes it is like if no correction was needed, and hence this is an academic remark

with likely no impact on real life studies, where measurement error is indeed likely to

be more influential for points rather than lines.
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It seems intuitive that provided the amplitude of the errors is small, their effect

will be negligible. An important question to be solved is whether, in a given setting,

we should worry about the effect of measurement errors or if, regarding the application

at hand, the accuracy and precision are good enough to preclude significant bias.

Assume that the error is unbiased, meaning that although the error process intro-

duces an extra variance component in the estimated distances, there is no consistent

over- or underestimation of distances, which assuming a multiplicative error, implies

that E(R)=1. Considering a specific model for the error, we can make some comments

on the expected bias as a function of the errors magnitude, namely as a function of

its coefficient of variation (CVR). I shall assume that R ∼ gamma(σ, b), with the

following parametrization

fR(r) =
rb−1e−

r
σ

σbΓ(b)
, σ, b > 0, r > 0. (3.35)

Simple algebra leads to the expression for the appropriate corrections for lines as

E(R−1) =
1

σ(b− 1)
(3.36)

and for points as

E(R−2) =
1

σ2(b− 1)(b− 2)
. (3.37)

Note that for the above gamma model parametrization, E(R) = bσ, and var(R) =

bσ2, hence CVR = 1√
b
, and as E(R) = 1, σ = 1

b
. Using these, we can show that the

correction is a function of the CVR, as in the case of line transects

Kl =
1

1− CV 2
R

(3.38)

while for point transects
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Figure 3.6: Illustration of the effect of the precision in distance measurement on the
expected bias in density estimates: expected values of K, for lines (Kl) and points
(Kp) as a function of the CV of the error, assuming an unbiased gamma model for
R.

Kp =
1

(1− CV 2
R)(1− 2CV 2

R)
. (3.39)

Hence we can plot the correction needed for points and lines as a function of the

CV of a gamma model. As the CV of the errors increases, the overestimation of

density increases exponentially (Figure 3.6). Despite this increase, in absolute terms,

for a gamma model with CV of 20% the expected bias is around 4.2% for lines, which

is reassuringly low bias for a fair amount of error, but 13.2% for points, which is

already non-negligible.
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3.4 Incorporating measurement error through a

likelihood approach

The PDF approach to deal with errors is simple to use, and intuitive in the sense

that a biased estimator is obtained and then a separate correction factor implemented,

which allows standard distance sampling software Distance to be used. However, it

is not flexible and seems to have problems under some settings (see section 3.3.1.4).

A more elegant and easily generalizable approach follows: a likelihood is derived

that allows the use of data with measurement error to estimate the parameters of the

detection function without bias. As before, a model for the error is needed. Although

I have been a co-author on both Burnham et al. (2004) and Borchers et al. (in prep

a), from which I borrow some material, the original idea of formalizing and developing

these methods is due to David Borchers. A similar approach was likely used by Hiby

et al. (1989), although neither the actual methods or the way to implement them

were described in that paper.

3.4.1 A likelihood approach to accommodate measurement
error

As was seen before, if the observed data are subject to measurement error but the

error is ignored, the parameter (vector) of the detection function, φ1, will be estimated

with bias, and hence abundance estimation will be biased.

In this section, I derive a likelihood function that integrates a measurement error

model, hence allowing the estimation of φ1 without bias, based on the data with

measurement error.
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3.4.1.1 The proposed likelihood

As in the case of the PDF approach, we will need some information on the measure-

ment error. I assume that a sample of n contaminated distances, y = (y1, y2, ..., yn)

is available, to estimate abundance. Additionally there is also available a sample of

pairs of contaminated and true distances, numbered for convenience from n + 1 to

n + J , (x+, y+) = {(x, y)n+1, (x, y)n+2, ..., (x, y)n+J}. These could be obtained in a

separate experiment.

Assuming a parametric form for Y |X, indexed by a parameter vector γ, we can

use the J pairs of distances to maximize the following likelihood with respect to γ

L(γ|y+, x+) =
J∏

i=1

π(yn+i|xn+i) (3.40)

to obtain an estimate for the error model parameter. Given that, it is possible to use

the n contaminated distances to estimate the detection function parameter vector φ1

accounting for measurement error. Building on the model for Y |X, we can obtain the

joint distribution of (Y,X), as we assume as usual a model for the distribution of X

and f(x, y) = f(x)f(y|x). Therefore we can also get the distribution of Y as

fY (y) =

∫
f(x, y)dx =

∫
f(x)f(y|x)dx. (3.41)

Using equation 2.34, this expression can be further developed, leading to

fY (y) =

∫
g(x)π(x)∫ w

0
g(x)π(x) dx

f(y|x)dx (3.42)

which provides the basis for a likelihood from which estimation of φ1 in the presence of

measurement error is possible, conditional on the previously estimated measurement

error parameter γ, as



64

L(φ1|y, γ) =
n∏

i=1

f(yi) =
n∏

i=1

∫
g(x)π(x)∫ w

0
g(x)π(x) dx

f(yi|x)dx. (3.43)

The implementation of this likelihood is done trough numeric methods. Care must

be taken in the choice of a distance over which the above integral is evaluated. In

practice, a distance is chosen such that it would be unlikely that any true distance

would be larger than said distance.

The estimation could be made simultaneously for (φ1, γ) by maximizing the joint

likelihood

L(φ1, γ|y, y+, x+) = L(φ1|y, γ)L(γ|y+, x+). (3.44)

It can be shown that the conditional estimators are asymptotically normal, but

the maximum likelihood estimator from the joint likelihood is more efficient than

that from the conditional likelihood (P. Jupp, unpublished material). However, in

practice, there seems to be small efficiency gain by using the the joint likelihood since

there is only information about the measurement error model in the pairs of distances

(see also section 3.5.4 for preliminary results on this subject).

Once the estimates for φ1 are obtained the estimation proceeds in the same way

as for conventional methods. The probability of detecting an animal is estimated and

an HTL estimator of density/abundance follows.

3.4.1.2 Variance estimation

I propose that resampling methods are used to obtain variance estimates and confi-

dence intervals for the estimators involved. The simplest approach is to use a non-

parametric bootstrap, as described for the PDF approach.

This resampling strategy means that the variance estimates are not conditional on

the true distances used in the experiment, which could lead to a slight overestimation
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of variance.

As an alternative, a parametric bootstrap strategy could be implemented. For

error models in the exponential family, not only point estimates γ̂ but also a corre-

sponding variance-covariance matrix Σ̂γ can be readily obtained from standard GLM

software. Hence, given that maximum likelihood estimators are asymptotically nor-

mally distributed, for each resample, the likelihood equation 3.43 can be maximized

conditional on a random deviate from a normal distribution with mean γ̂ and variance-

covariance Σ̂γ. Variances and confidence intervals are then obtained in the same way

as for the nonparametric bootstrap.

3.4.2 Assessing the methods by simulation

To assess the performance of the proposed methods a simulation exercise was con-

ducted. Both line and point transects were considered, and estimates derived by the

PDF approach were also included to compare the two methods.

3.4.2.1 Simulation settings

The animals were distributed randomly in a square with side long enough so that the

probability of detection at the edge of the square was low (< 10−4). This procedure

was intended to avoid edge effects, since as stated before these are not a relevant issue

in the context of this thesis.

I considered a half-normal detection function, both with a narrow (σ = 0.125)

and a wider shoulder (σ = 0.25), as well as a hazard-rate (with σ = 0.25, b = 4.3),

with a wider shoulder followed by a steeper slope (Figure 3.7).

Given these detection functions, total population sizes were set to obtain sample

sizes (i.e. mean number of detected animals) that would be considered both “small”

and “large”. Following the general guidelines in Buckland et al. (2001), small sample
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Table 3.3: Error models used in the simulation exercise to assess methods to deal with
measurement error. E[Y |X] and CV [Y |X] represent respectively the mean value and
the coefficient of variation of Y |X. Kl is the true correction factor value for line
transects; Kp is the true correction factor value for point transects. The values of
Kl − 1 and Kp − 1 are the expected percentage biases for line and point transect
estimators which ignore the measurement error.

Model E[Y |X] CV [Y |X] Kl − 1 Kp − 1
CV10 X 10% 1% 3%
CV30 X 30% 10% 34%
CV50 X 50% 33% 167%

0.8CV30 0.8X 30% 37% 109%
1.2CV30 1.2X 30% -8% -7%

size was considered to be n = 60 and n = 80 respectively for line and point transects,

and large sample size n = 300 for both lines and points.

The distribution of Y |X was assumed to be gamma, and 5 different measurement

error scenarios considered, as shown in table 3.3: in addition to 3 levels of unbiased

errors (low, medium and high CV , respectively with CV = 10, 30 and 50%), I con-

sidered a situation with underestimation (E(Y |X) = 0.8X) and with overestimation

(E(Y |X) = 1.2X) of true distances (both of these with CV ’s of 30%). Note that this

last measurement error model, according to the bias predicted by the PDF approach,

should lead to worst bias for lines than for points.

For each combination of sampler, detection function, sample size and measurement

error model, 500 simulated data sets were generated, each consisting of the true (X)

and contaminated (Y ) detected distances. Each data set was analyzed considering

the following approaches:

1. original error free data analyzed with conventional distance sampling, consider-

ing either the true detection function (XTMCDS) or the best model chosen by

minimum AIC (XBMCDS), from a set of plausible models, namely and as for
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the previous PDF approach simulation exercise, HNcos, UNcos and HRpol.

These were intended to act as controls. The true control corresponds to using

the true model, but given in practice the true model is not known, I also used

the best AIC model approach;

2. the same analysis as before but considering the contaminated data, respectively

YTMCDS and YBMCDS. These correspond to the situation where conventional

methods are used ignoring the effects of measurement error;

3. contaminated data analyzed with the proposed likelihood methods, considering

the detection function and error model as known (YTMLIK), using equation

3.43.

Based on the uncorrected estimates for the second approach, the corresponding results

corrected using the PDF method were also calculated (referred respectively to as

YTMPDF and YBMPDF ).

As a way to assess the performance of these different approaches the mean esti-

mated % bias is presented,

100

∑500
k=1

N̂k−N
N

500
(3.45)

where N̂k represents the estimated population size in the kth simulation and N the

true population size.

3.4.2.2 Simulation results

The mean observed bias for the scenarios considered in the simulation exercise are

shown in tables 3.4-3.7. The analysis of these tables allows a number of different

considerations:
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• For unbiased measurement error with small CV (10%), the effect of ignoring

measurement error seems negligible, and trying to correct for it brings no addi-

tional gain;

• As expected, for large unbiased measurement error or biased errors the effect

of ignoring measurement error might be severe, with large bias shown for most

scenarios tested;

• When analyzing data with measurement error, there is a noticeable difference in

considering the true model or the best model when the true detection function

is HN . In fact, although I predict that unbiased multiplicative errors should

lead to overestimation of abundance, the opposite is observed when the true

model is used, in contrast with the expected bias direction observed when the

best model is used. This effect is much less noticeable for the HR. This is the

result of the HN lack of flexibility, less evident in the more flexible 2 parameter

HR, and reflects a shortcoming of the PDF approach further explored later:

the method relies on the models used for the detection function being able to

reflect the expected bias;

• While for large sample size scenarios the control bias is overall low, for small

sample sizes there is evidence for some bias, especially in the case of the HR

model. This is likely related to the choice of truncation distance. For CDS

the usual strategy of no truncation effectively means that the largest distance

is used for truncation, as we need a finite value to implement the numeric

maximization of the likelihood. This procedure can be responsible for a small

bias, as it has as consequence that a data point is necessarily present in the tail

of the distribution (T. Marques, unpublished data);

• The bias for the PDF approach is usually lower when the best model strategy is
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used, rather than the true model. Nonetheless and overall the use of the PDF

approach presents an improvement over simply ignoring measurement error for

line transects, but the remaining bias shown makes it unlikely to be an adequate

approach for point transects;

• There seems to be some consistency on the bias across different sample sizes,

both for line and point transects;

• Considering the PDF approach, we would expect the same bias irrespectively

of the true detection function. Results are consistent across the two different

parameter values for the HN , but nonetheless there are considerable differences

when the HN and HR results are compared;

• The likelihood approach seems to be unbiased for almost all scenarios shown,

hence justifying this approach to integrate measurement error in distance sam-

pling analysis.

Overall, the observed bias seems to be a function of the true detection function,

sample size and measurement error used, coupled with the flexibility of the model

used for the detection function.

3.4.3 A real life application

To illustrate the methods I considered the data from an aerial minke whale survey

(referred to as NASS87), in which cue counting methods were used3. Although for

estimating abundance cue counting methods require additional data, namely cue pro-

duction rate, in terms of detection function/detection probability estimation, there

is no difference between cue counting or point transects, and hence (all other things

being equal) similar bias should be expected due to measurement error in both cases

(see e.g. Buckland et al. 2001, p. 191-197, for further details about cue counting).

3 See Acknowledgements section for proper credit on the use of this data set.
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The number of detected cues during NASS87 was n=148. Borchers et al. (in

review) present a complete analysis of this data set, and the reader is referred to them

for further details on the survey. I focus here on the estimation of the probability of

detection.

This data set was also analyzed by Hiby et al. (1989), who estimated a measure-

ment error CV of 35%. The following analysis, based on the proposed methods, is

conditional on this measurement error CV , which is assumed unbiased and having a

gamma distribution.

The first approach was to analyze the data ignoring measurement error, using

CDS. I used Distance 5 (Thomas et al., 2005), selecting as candidate models for the

detection function the half-normal and hazard-rate key functions, combined respec-

tively with cosine and simple polynomial adjustment terms (YBMCDS). The results

are presented in table 3.8. For the HR model, adjustment terms led to considerably

higher AIC, hence the results are not shown.

The same detection function models were used, now considering the proposed

methods with the measurement error model being gamma and assumed unbiased, i.e.

Y |X ∼ Ga(0.352, 0.35−2). The corresponding results (YBMLIK) are also shown in

table 3.8.

Resampling procedures were used for variance estimation: a nonparametric boot-

strap routine was implemented in R (R Development Core Team, 2006), with the

transects as resampling units (999 resamples), and 95% confidence intervals obtained

by the percentile method (see section 2.3.2).

It is important to note that the AIC can not be used to compare across the

different approaches, because they are conditional on different error models, one cor-

responding to no error, and the other to an error with 35% CV .

Ignoring measurement error, the half-normal with 1 cosine adjustment seems the
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Table 3.8: Estimated detection probabilities (P̂ ) from the NASS87 cue counting
survey data, and corresponding coefficient of variation (ĈV P̂ ) and 95% confidence
intervals (95% CI), ignoring measurement error (YBMCDS) and accounting for it
using the likelihood approach (YBMLIK). ∆AIC values also shown, allowing com-
parison within each estimation method. Detection function models, g(r), are: HN
- half-normal key with no adjustments; HNcos - half-normal key with one cosine
adjustment term; HR - hazard rate key with no adjustments.

Method g(r) P̂ ĈV P̂ 95% CI ∆AIC
HN 0.128 17.3 (0.101;0.196) 26.2

YBMCDS HNcos 0.082 17.7 (0.07;0.133) 0
HR 0.102 24.0 (0.054;0.166) 2.6
HN 0.110 17.8 (0.088;0.171) 0

YBMLIK HNcos 0.096 19.9 (0.077;0.158) 1.3
HR 0.137 22.5 (0.105;0.244) 6.4

best model for the data. However, given that measurement error is accounted for, the

half-normal with no adjustments becomes the best model. This result is interesting

on its own, suggesting that an otherwise (assumed true) simpler detection function

became more complex (more parameters needed to describe it) due to measurement

error. Given a error model with 35% CV , we would expect that if ignored, abundance

was overestimated, hence the probability of detection underestimated. Therefore, the

fact that P̂ decreases when the errors are accounted for, considering the HN alone,

was surprising, although the much larger AIC value associated with the HN model

while not accounting for the errors is a clear indication that such model was not a

good fit to the data to begin with.

A standard kernel smooth of the 999 bootstrap P pseudo-estimates for the best

model, for each of the 2 approaches, illustrates well the effect of ignoring measurement

error (Figure 3.8).

Recall that abundance estimates are proportional to 1/P̂ . Hence, an abundance
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Figure 3.8: Kernel density estimates for the bootstrap pseudo-estimates of P from
the NASS87 cue counting survey data, considering the half-normal+cosine detec-
tion function ignoring measurement error (solid line) and the half-normal detection
function with the 35% CV gamma measurement error incorporated in the likelihood
(dotted line). Vertical lines represent the corresponding P̂ point estimates.

estimate for NASS87b ignoring measurement error would be around 34% higher

(100[1/0.082-1/0.11]/[1/0.11]) than the best estimate accounting for measurement

error.

This clearly reinforces the idea that, despite being frequently ignored, measure-

ment error can have a considerable effect in distance sampling surveys, especially

when point transect or cue counting methods are used.

3.5 Estimating the measurement error model

The most straightforward way to estimate the parameters of a measurement error

model is to use a set of true and contaminated distances. Hopefully these will be

collected during the actual survey, but if a separate experiment is set up with this

objective in mind, the experiment conditions should mimic realistically the survey
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conditions. The danger of introducing bias in the main study due to inadequate error

models estimated from independent data is discussed by Carroll et al. (1995, p. 11-

12). However, one could also consider the estimation of the error measurement based

on duplicate detections, given some additional assumptions on the error.

In this section several ideas relevant for the estimation of the measurement error

from data are presented. After relating the error models involved in the PDF and

likelihood approaches, I elaborate further on the estimation of the measurement error

model using: pairs of true and contaminated distances considering an error model (1)

separately or (2) in simultaneous with the detection function model, and (3) based

on duplicate distances. While (1) and (3) are relevant for the PDF and likelihood

approaches, (2) is only relevant for the latter. As before, the focus is on multiplicative

error models.

3.5.1 Relation between R and Y |X
The PDF approach relies on specification of a model for the error R (and assuming

that R and X are independent), while the likelihood approach relies on specification

of an error model through the conditional distribution of Y given X. However, given

a multiplicative error model (and R and X independent), there is no real difference in

the underlying process, as assuming either one of these implicitly defines the other. By

assuming a model for R, we constrain Y |X to be in the same parametric family. One

can obtain the conditional distribution of Y given X as a function of R distribution

as

FY |X(y|X = x) = FXR|X(y|X = x) = P [XR < y|X = x] = P [R <
y

x
] = FR(

y

x
)

(3.46)

which leads to the corresponding pdf being
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fY |X(y) =
d FY |X(y)

dy
=

d FR(y/x)

dy
=

1

x
fR(

y

x
). (3.47)

Two special cases are presented. If the errors have Gaussian distribution, R ∼
N(µ, σ), then equation 3.47 leads to

fY |X(y) =
1

x

1√
2πσ2

e−
1
2
[
µ−y/x

σ
]2 =

1√
2π(σx)2

e−
1
2
[µx−y

σx
]2 (3.48)

which means Y |X = x ∼ N(µx, σx). It is worth noticing that care must be taken

when using Gaussian errors in this context, as negative distances are likely unless

models are constrained to have small variance. The only reason I presented it here as

a special case is because others have used Gaussian errors in this context (e.g. Chen,

1998).

On the other hand, if the errors are gamma, R ∼ Ga(σ, b), then equation 3.47

leads to

fY |X(y) =
1

x

( y
x
)b−1e−

y/x
σ

Γ(b)σb
=

yb−1e−
y

σx

Γ(b)(σx)b
(3.49)

which shows Y |X = x ∼ Ga(xσ, b).

3.5.2 Error model estimation using pairs of true and con-
taminated distances

Given a sample of (X, Y ) data, we can assume a model for the measurement error R,

obtain a sample of R’s ( Y
X

) and then proceed to maximize a likelihood based on the

assumed model, from which model parameters are estimated. Predefined functions

like fitdistr in software R (MASS library) could be used. For some models, like the

Gaussian, closed form estimators for the parameters of interest are readily available.

On the other hand, and especially if more complex scenarios are involved, for

example if errors are also a function of other covariates, one could estimate the error
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model parameters in a regression context, using standard available software.

If Gaussian or gamma models are used it is also possible to fit them using standard

general linear models, e.g. using functions lm or glm in software R, to estimate the

parameters of the error model, by regressing Y on X with the appropriate link func-

tion and family model, and a zero intercept model. Note that if a more complicated

measurement error structure is assumed, namely with a constant bias ξ independent

of the true distance, say Y = ξ + XR, this framework allows to estimate it by using

a non zero intercept model, but I have not considered that case here.

For the Gaussian error model, the standard lm function with weights= X−2 (given

that the variance is proportional to the square of the true observations) can be used.

If the regression coefficient is significantly different from 1, there is evidence for biased

errors. The residual standard error of the regression is an estimate of the Gaussian

error standard deviation.

For the gamma, the glm function will provide parameter estimates, by using the

gamma family with the identity link. The regression coefficient will be the product of

the shape and scale parameters (recall that in the gamma, the mean value is the prod-

uct of the shape and scale parameters). The shape parameter can be estimated from

the dispersion parameter (scale=1/dispersion) in the glm output. Note, however,

that although the mean value is adequately estimated, the glm function, with family

specified as gamma, uses an approximation which only provides a crude estimate of

the shape parameter, and the gamma.shape (or gamma.dispersion) function in the

MASS library should be used instead for better quality estimates. If the regression

coefficient is not significantly different from 1 the null hypothesis that the gamma

error is unbiased is not rejected.
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3.5.3 Error model estimation using duplicate data

For the case of MRDS (i.e. multiple observers) methods, we usually have a sample of

contaminated distances Y . But for those animals which were duplicates, i.e. detected

from two platforms, we have a sample of duplicate detections, Yj = (Yj1, Yj2), j =

1, 2, ..., J . Intuitively, there seems to be information in these pairs of distances about

the measurement error, which could be used to estimate the measurement error model.

See Burnham et al. (2004, p. 375-376) for details on incorporating a measurement

error model directly in a MRDS analysis.

To make use of the duplicates information (without the true distances), we need

to consider some further simplifying assumptions (note that some of these can be

tested by comparing e.g. number of times distances are larger for one or for the other

platform), namely that:

• the measurement error is common to both platforms;

• the two platforms are unbiased (i.e. E(R) = 1), or at least the same common

bias can be assumed (but then, if that bias is unknown, it is not enough to

know the variance of the measurement error to correct for its effect);

• errors are independent across platforms;

• measurement error is not dependent on a detection being a duplicate or not;

• the animal is detected by both observers at the same true distance.

Given that we assume the errors to be unbiased, we just need to estimate a variance

for R. Two different estimation procedures are possible, as described below:

• Given X, the var(Y ) is X2var(R). Hence, if we calculate the variance within

each pair Yj, those should be an estimate of X2
j var(R). Therefore, the slope of
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the regression line of X2 on var(Yj) is an estimate of the variance of R. Note

that because the true distance X is not known, we need to estimate it by the

mean of the duplicates.

• On the other hand, defining the scaled difference of the jth duplicate distances

to be

Y ds
j =

Yj1 − Yj2

Yj1+Yj2

2

(3.50)

we have that E[Y ds
j ]=0 and var[Y ds

j ] = 2var(R), hence half the estimated vari-

ance of Y ds
j is an estimate of the variance of R.

A simulation example of the use of this second method to estimate the variance of

Gaussian and gamma multiplicative errors is shown in figure 3.9. This plot is merely

for illustration purposes: I considered to have 10000 pairs of duplicate distances for

each CV shown, a clearly artificial example, but which removed most of the Monte

Carlo variation for visual display.

However, as it can be seen in figure 3.9, there is some bias for larger CV ’s, present

for both Gaussian and gamma errors. Nonetheless the bias tends to be small even

for moderate CV ’s. The bias pattern is very similar for the first method (results not

shown).

3.5.4 Using a joint likelihood for detection function and mea-
surement error model estimation

In the simulation and example sections of the likelihood approach, the proposed meth-

ods were used conditional on a given error model, assumed known. In the first case

because the objective was to access the methods performance under a favorable sce-

nario, and in the second case because there was no experimental data to estimate the
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Figure 3.9: Using duplicate distances to estimate the error model: estimated coeffi-
cient of variation (CV ) as a function of true CV of gaussian (left plot) and gamma
(right plot) error models. The estimated CV was obtained using half the variance of
the standardized duplicate differences (see text for further details). The y = x line,
which would indicate no bias in the estimation of the CV , is shown for reference.

error model parameters. Hence, the results were obtained through the maximization

of the likelihood equation 3.43, where γ is assumed known.

Nonetheless, because a known measurement error model is in practice an artificial

scenario, a more interesting case will be the one where the measurement error model

parameters are also estimated from the data.

To assess the performance of the methods under such conditions, some extra

simulations were carried out, considering for illustration one of the survey scenarios

previously used in section 3.4.2: point transects, with E(n)=300 and HN detection

(σ=0.25), unbiased gamma errors with 30% CV . In addition to the (on average) 300

detected distances, a sample of (on average) 32 pairs of true and contaminated dis-

tances, with the same measurement error as in the survey, was used for the estimation

of the measurement error model. As before, 500 data sets were simulated, and the
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Table 3.9: Results of simulation exercise to compare the different approaches to esti-
mate density without assuming the measurement error model parameters as known.
Shown are the mean % bias and corresponding CV of estimates for different esti-
mation strategies: YTMCDS - ignoring the measurement error; YTMLIK - true error
model parameter used; YTMLIK3.40 - error model parameter estimated using equation
3.40; YTMLIK3.44 - joint likelihood equation 3.44 used for simultaneous estimation of
error model and detection function parameters.

YTMCDS YTMLIK YTMLIK3.40 YTMLIK3.44

% bias -8.20 0.099 0.451 0.633
CV 0.094 0.091 0.144 0.144

data analyzed considering the error distances using: (1) true error model; (2) error

model parameter estimated by a conditional likelihood (equation 3.40), then using

equation 3.43, conditional on the estimates obtained for the error model parameter,

to get the detection function parameter and (3) error model parameters estimated by

the joint likelihood (equation 3.44). The observed bias and CV ’s of the 500 estimates

are shown in table 3.9; also shown for comparison is the bias corresponding to the

YTMCDS estimates.

This initial set of simulations suggests that by estimating the model parameters

the bias remains low. Nonetheless, and as one would expect, the variance in density

estimates increases when the estimation of measurement error model is necessary.

Being considerably faster to run, and easier to implement, the conditional likelihood

seems to produce similar results to the joint likelihood. This is likely because the

information from the error model comes from the experiment data (pairs of true and

observed distances), while most of the information about the detection function comes

from the survey data. Hence treating the two sets of information separately seems to

have little impact in the final estimates.
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3.6 Special measurement error cases

Due to their characteristics, two special cases of measurement error deserve a closer

look: (1) heaping, which corresponds to rounding distances to favored values, and (2)

cases in which errors occur mainly at large distances, but smaller distances can be

measured accurately.

3.6.1 Heaping: rounding to favored distances

A chapter addressing measurement error in distance sampling would not be complete

without a reference to heaping, an often reported effect of rounding to somewhat

preferred distances (e.g. Anderson and Pospahala, 1970; Rosenstock et al., 2002). If

the method for obtaining distances does not produce a precise measurement and there

is any subjectivity involved in the process (e.g. visual estimation of distances), it is

inevitable that the histogram of detected distances will show some distances that

occur much more frequently than what would be expected, while some others are

rarely recorded, if at all. An example of data with substantial heaping, collected as

part of a hare point transect survey4, is shown in figure 3.10.

Favored distances are usually multiples of 1, 5, 10 or 100, depending on the scale

of measurements being made. Humans have a preference for round numbers, and

in the absence of any better alternative, those are used. Although very frequent in

real data, heaping has to be strong to have a clear effect on density estimates. Even

the analysis of the raw data, if heaping is not severe, should not be problematic. If

it is thought heaping might have a considerable influence in the results, we can use

judicious grouping of distances so that heaped values are approximately at the center

of the distance intervals (Buckland et al., 2001, p. 109-110).

For illustration of the consequences of heaping, a small simulation example follows.

4 See Acknowledgements section for proper credit on the use of this data set.
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Figure 3.10: A real life point transect data example (hares in Northern Ireland),
showing strong heaping at multiples of 5 and 10 meters.
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Figure 3.11: Histograms of simulated data for testing the effect of analyzing distance
data ignoring heaping. a) Original data; b) Distances recorded as the closest multiple
of 0.5 with respect to original distance; c) Distances recorded as the closest multiple
of 1 with respect to original distance. Note that in b) and c) the first histogram bar
is (roughly) half the height of the second because it corresponds to values heaped at
0, i.e. X < 0.25 for b) and X < 0.5 for c), while all the other bars span values over
0.5 or 1 meter intervals, respectively for b) and c).

Using the same simulations as in section 3.3.1.4 (100 line transect data sets), I have

introduced two levels of heaping in the original data (Figure 3.11). All distances were

recorded as the closest multiple of 0.5 (strong heaping) and closest multiple of 1 (very

strong heaping), and analyzed the data using the automated procedure described

before. A note about figure 3.11b,c: because the first histogram bar corresponds to

true distances < 0.5 m or < 0.25 m, while all the others represent true distances in the

vicinity on either side of the corresponding number, the first bar is only accounting

for half the width of the others, and hence it looks approximately half the height of

the second bar.

The consequences of heaping for either density estimates or associated variance

were negligible (Table 3.10).

Even if heaping does not lead to large changes in density estimates, it can be
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Table 3.10: Results of simulation exercise to assess the effect of heaping in the es-
timation of density. Mean estimated density D̂ and respective CV for the analysis
performed in Distance 4 considering the true distances and distances with strong and
very strong heaping. True density is 100 animals/ha.

Analysis D̂ CV
True distances 99.02 0.0554
Strong heaping 98.92 0.0563

Very strong heaping 99.30 0.0562

responsible for some lack of independence between detections, and so special care

must be given to the interpretation of goodness of fit measures. An example is

presented in Marques et al. (in press).

However, heaping can be considered more like a hint for other problems, rather

than a problem on its own. The presence of heaping usually means that the method

used to measure distances was poor, and in such cases we can only hope that other

errors, both random and systematic, were avoided.

The worst problem occurs when considerable heaping at 0 is present in the data,

leading to a spiked detection function. This could be expected under several scenarios,

like: (1) marine mammal surveys, where animals are detected at large distances from

the observation platform, and rounding angles to 0 leads to heaping of perpendicular

distances at 0; (2) Surveys on paths along which visibility is very good, coupled

with animal movement, like flying birds on road surveys or small mammals along

transects cut in dense forest; (3) incorrect definition of the measurement to be made,

say a cluster recorded at 0 distance if any of the cluster members are on the line,

when the true distance recorded should be the distance to the center of the cluster

and (4) an imprecise definition of the transect. This might preclude appropriate

estimation, usually leading to overestimation of abundance (provided the spike is
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really an artifact). The best way to deal with this problem is to avoid it, since at

(and close to) zero, distances should not be difficult to measure. It is important to

plot your data at an early stage of data collection, to identify potential problems; it

is much simpler to identify and remove heaping at the data collection stage than to

salvage the data analysis.

Smearing was introduced by Butterworth (1982) as an attempt to deal with heap-

ing (not only in sighting distances but also in the recording of angles). The idea is to

replace the preferred distances by plausible distances, derived by sampling from the

vicinity of the original distance in a sensible way. Several options have been proposed

(e.g. Hammond, 1984; Buckland and Anganuzzi, 1988). Ideally, one would want to

sample proportionally to the true detection function, in the vicinity from which the

heaped data was actually coming, leading to the new values being more often larger

than the original heaped values; however, the rounding error tends to increase with

distance, which means that more often a larger value is rounded down than a smaller

value rounded up to a preferred value, and the two tend to cancel out. This led to

Buckland and Anganuzzi (1988) recommendation that a uniform smearing be used,

as it is much simpler and not necessarily worse. The choice of smearing parameters

has been, so far, based on ad hoc methods.

It seems difficult to come up with simple models that represent heaping in an

adequate way. Nonetheless, provided an experiment was designed to assess it, it

seems to be possible to estimate an error model for heaping, namely using intervals

rather than exact distances and estimating the probabilities of a distance being placed

in given intervals, given the original interval the distance was in. Because it is unlikely

for the presence of heaping without more general measurement error issues, it does

not seem satisfactory to pursue methods which deal solely with this issue, rather than

methods which deal with general measurement error issues and to some extent also
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accommodate heaping.

3.6.2 Errors exclusively at large distances

In many practical situations, the accurate measurement of larger distances might be

harder than the measurement of small ones. This occurs for a number of reasons,

including because it is harder and more time consuming to go to the actual detection

location, or by having vegetation or other obstacles between the sighting and the line

or point, or because one is not exactly sure of where the animal is/was when seen,

animals at larger distances are not detected visually, etc.

It seems therefore useful to understand what would happen to distance sampling

estimates if the measurement error was such that it was small/negligible for distances

smaller than x∗, while for distances larger than x∗ it followed some measurement error

model as the ones presented in previous sections.

Hence, under this conceptual setting, the distances with measurement error could

be modelled as

Y =

{
X 0 ≤ x ≤ x∗

(X − x∗)R + x∗ x∗ < x ≤ ∞.

Note this model means that for line transects fX(0) = fY (0) and for point tran-

sects hX(0) = hY (0), hence no bias should arise, provided that the model used for

the detection function is flexible enough to model the composite detection function

(resulting from the true detection function and the measurement error). As x∗ tends

to 0 this model tends to the standard Y = XR formulation. The larger x∗, the

smaller the influence of the errors should be on the estimated density.

However, the situation might not be as clear cut in practice. A simulation exercise

follows, using the same simulation settings as in section 3.4.2, for HN with σ = 0.125
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and E(n) = 300, with unbiased gamma errors generated in the same way as before

(30% CV case), but now using the error model described above. An example of

this measurement error, considering x∗ = 0.05, is shown in figure 3.12a. To assess

the influence of different x∗, I increased x∗ from 0 to around the maximum observed

distance, hence going from the previous scenario of measurement error for all distances

to no measurement error. The best detection function model was chosen accordingly

to minimum AIC, and for each x∗ I performed 1000 simulations. The observed % bias

as a function of x∗ is shown both for point (Figure 3.12c) and line transects (Figure

3.12d), with the corresponding bias considering the true distances used as a control.

Note the bias in the control, caused by truncation issues (T. Marques, unpublished

data).

Note that the values of percentage bias observed here for x∗ = 0 correspond to

those in Tables 3.6 and 3.7 for YBMCDS (respectively 4.85 and 16.66; they are not

exactly the same due to Monte Carlo variation).

For both line and point transects, just as was seen before for the case when all

distances are contaminated, for small x∗, the effect of the random error leads to

abundance overestimation, but there is a point at which the effect changes sign and

we observe a small underestimation of abundance.

This example represents only an illustration, and should not be taken as a general

result. Considering the example on its own, it might seem that we would be better off

if we were able to record all distances with no error up to say 0.06 (bias ≈ 0) rather

than to say 0.12. But this apparent counterintuitive conclusion stems from the fact

that we are looking at one particular combination of simulation settings. Over all

(infinite) possible situations, it seems likely that the larger x∗, the smaller the effect

of the measurement error in distances larger than x∗.
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Figure 3.12: Errors exclusively at large distances. a) An example of errors exclusively
at large distances, considering the minimum true distance at which errors might occur
x∗ = 0.05 and a gamma unbiased model with 30% CV . b) Proportion of detected
distances smaller than x∗, for point (dashed line) and line transects (solid line), as
a function of x∗. Results of the simulation exercise to evaluate the effect of errors
at large distances, considering the same setting as in a). c) Line transects; d) Point
transects. Percentage bias as a function of the value of x∗, with x∗ varying over a
range of values that corresponds to measurement error for all distances to virtually
no measurement error. Black circles represent the mean % bias of the analysis based
on error distances, grey triangles the mean % bias of a control analysis of the data
without error.
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Point transects seem to require a larger x∗ to measurement error having a neg-

ligible impact. Everything else being the same, a given x∗ corresponds to a smaller

proportion of the data being error free for point transects compared with line tran-

sects, due to underlying geometry of points versus lines (cf. figure 3.12b). From the

simulation presented here, it appears that over 75% of the distances need to be error

free so that measurement error is negligible, but nonetheless, and not surprisingly, in

general an increase in x∗ leads to bias reduction.

This all or none measurement error example is clearly an oversimplification of

real life situations, but it helps understanding the consequences of the measurement

error, and how reducing the measurement error, even if only at smaller distances, is

beneficial. Practitioners usually like to adopt standard protocols for data collection,

with the same procedure always used for a given task. Nonetheless, if all distances

can not be measured accurately, but the smaller ones might be, given some (hopefully

not too large) extra amount of work, then this is a better option than to measure

them all imprecisely just to be consistent in the measurement method.

3.7 Discussion

Despite being a potential severe source of bias, both for line transects but especially

for point transect and cue counting methods, measurement error is still treated as a

lesser problem compared to the other key assumptions. Although it stands to reason

that for most survey settings g(0) < 1 or movement might be responsible for the

larger proportion of the potential bias, the results in this chapter clearly demonstrate

that the problem should not be ignored.

The proposed methods to deal with measurement error, the PDF and the like-

lihood approach, represent alternatives to the suggestions of Chen (1998) and Chen

and Cowling (2001) as possible ways of tackling the problem. The main advantage
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of the PDF approach is that it can be implemented in the commonly used software

Distance, using multipliers. However, the poor performance of this method, espe-

cially for point transects, compared to the likelihood approach, does not permit its

recommendation for general use.

The disappointing results for the PDF approach arise due to the combination of

two factors: model mispecification, and models used for the detection function that

are not flexible enough. The simulation exercises consider a true detection function

for data generation; then either that detection function or one chosen by AIC from

a set of functions is used to model the data contaminated with the measurement

error. However one of the consequences of measurement error is that the resulting

distribution of detected distances no longer shares the distribution of the original

detection function, as might be seen from equation 3.7. Using this same equation

one can actually look at the shape of the resulting detection function and pdf in the

presence of measurement error. As an example, I consider the contamination of a half-

normal detection function with a gamma unbiased error with 50% CV (Figure 3.13).

It is clear that the resulting detection functions, given the contaminated errors, are no

longer half-normal, with a shape more closely resembling an exponential distribution.

This in turn means that the models for the detection function can not fit the resulting

shape appropriately, hence the bias, predicted by the PDF approach, does not occur

in practice. Hence, when the correction is applied we tend to over correct and we

get a bias going in the opposite direction (in this case, underestimation due to the

correction versus the expected overestimation ignoring the correction, cf. Tables 3.4-

3.7). If one were to use as candidate models for the contaminated distances something

like the negative exponential, or even a (very flexible) kernel density estimator (as

used by e.g. Mack and Quang, 1998), the PDF approach might be less biased. Note

that this means also that the PFD approach is more sample size dependent, because



95

the more data you have available the more likely you are to select a more flexible

model that will predict the expected bias. This will be the case when using AIC as a

criterion to choose amongst models, as with less data simpler models will be chosen

even if the overall fit might not be great.

The results from the simulation exercise were encouraging with respect to the like-

lihood approach. A key advantage of it relative to the PDF approach is that provided

we can define a Y |X model, we are not restricted to a specific error structure (like

the multiplicative one), and hence this is a much more flexible framework, that can

be integrated with more complex scenarios, like the MRDS methods (see Burnham

et al., 2004, p. 375-376 for details). While far superior, the likelihood approach might

be difficult to implement. The likelihoods involved are not straightforward, very slow

to run compared with conventional methods, and currently available software does

not provide the user with the possibility of including an error model. Multiple covari-

ate likelihoods were not implemented, and although these do not present any major

additional analytic issues, even more numerical problems are likely to occur, as tends

to happen when MCDS methods are used, compared to their CDS counterparts.

A possible much simpler, and preferably exploratory alternative, given that some

information on the error structure can be obtained, is as follows: (1) Use the n con-

taminated error distances to estimate a detection function; then repeat many times:

(2) Simulate n distances from such detection function, and contaminate them with

errors with the assumed error structure; (3) Analyze the true and contaminated dis-

tances, and calculate the difference between the estimated densities. This will allow

a first feeling for the influence of measurement error in the situation at hand. From

these differences, one could calculate a mean correction value and its variance, and

use it as a multiplier on the original analysis. Note that with this procedure, we

implicitly assume the effect of the errors on the estimated detection function based
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Figure 3.13: The effect of a measurement error example (unbiased gamma with 50%
CV ) in the detected distances probability density function (pdf). a) True detection
function; b) Corresponding pdf (solid line) and contaminated distances pdf (dotted
line) for line transects; c) Corresponding pdf (solid line) and contaminated distances
pdf (dotted line) for point transects; d) True (solid line) and contaminated (dotted
line) apparent detection function for point transects.
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on the error distances is the same as the effect of the errors on the true detection

function, which might not be true. A sensitivity analysis, using slightly different de-

tection functions from the one estimated based on the contaminated distances, will

enable one to determine if that is a plausible assumption. A similar procedure is

described in Marques et al. (2006), to assess the potential bias of using an impre-

cise distance measurement method (combining inclinometer and altimeter recordings

to get distance measurements) compared to a more precise one (GPS device with

distance measurements obtained in a geographic information system).

When collecting information about measurement error using an experiment rather

than doing it during the actual survey, extreme care must be taken to ensure that

the error process during the survey can be estimated. As an example, Williams et al.

(2007) report that “...Preliminary evidence suggested that an observer differed in the

ability to judge distance to fixed, continuously-visible cues and ephemeral, cetacean

cues, which calls into the question the common practice of using marker buoys as

cetacean proxies in distance-estimation experiments...”, which clearly shows that this

might be harder to do than one may anticipate.

I hope that this work has helped to raise awareness of the potential impact of

measurement error in the detected distances on distance sampling abundance esti-

mates. Investigators conducting distance sampling studies should always consider

the training of observers at measuring distances (as in e.g. Baldi et al., 2001; Tobias

and Seddon, 2002), which has been shown to reduce error and bias in distance esti-

mates (Alldredge et al., in press). Additionally, I recommend the use of best possible

technology to aid in the process of distance measurement.

Some measurement error is likely to be present even if the best technology at

hand is used. However, under many circumstances, it should be possible to reduce

the error magnitude to such levels that have negligible consequences on the estimates.
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The results presented suggest that unbiased measurement error with CV ’s of around

10% or less should have negligible effect on estimates (certainly so when one considers

all the other possible sources of bias in a real life distance sampling survey). If one

can achieve such a standard then that is undoubtedly the recommended approach.

The take home message is that it is better to avoid errors at the data collection stage

than to rely on analysis methods to cope with measurement errors. The everyday

improvement in technology leads us to believe that the failure of this assumption

might become less frequent in the future.

The option to correct for bias due to measurement error needs to be seen in the

light of the corresponding bias versus variance trade off (e.g. Carroll et al., 1995).

Because we need extra parameters to model measurement error, an increase in the

variance of the estimates when accounting for measurement error is likely. Nonethe-

less, provided additional data is available to estimate the error model, one might

actually obtain better precision once the error model is included in the analysis.

Considering that obtaining the smallest variance possible for density/abundance es-

timates is a primary objective of any survey, the option to avoid additional analysis

methods if modifications to the field procedures are likely to avoid these problems is

further justified.

Measurement error and g(0) < 1 share the fact that people tend to be overly

confident on their capabilities, because there is no obvious way to get feedback on

one’s performance. In face of the results in this chapter, it seems reasonable for any

large survey that uses distance sampling to attempt at least some assessment of the

measurement error involved. Using Mark Twain’s words, “It ain’t what you don’t

know that gets you into trouble. It’s what you know for sure that just ain’t so”.



Chapter 4

Non random allocation of samplers
and density gradients

4.1 Introduction

A key assumption of CDS methods is that the distribution of animals in the covered

area, with respect to distance from the samplers, is known by design. This means

that, once the geometry of the samplers is accounted for, one can interpret the num-

bers of detected animals at different distances from the transect as a result of the

detection function alone, hence allowing the estimation of detection probabilities and

the corresponding distance sampling abundance estimators.

The justification for this known distribution of animals by design rests on the fact

that a sufficient number of samplers are placed over the study area independently of

animal distribution, following some previously specified random design. Hence we can

anticipate problems if we consider either a small number of transects or if transects

are placed in such a way that their locations are not independent of the animals’

locations.

Under given logistical constraints, transect allocation might be far from random.

The use of platforms of opportunity, like fishing or tourist boats which scientists

might use for conducting cetacean line transects (e.g. Marques, 2001), is an example

99
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where that might happen. These vessels travel along given routes because there are

more fish, or more whales, or it is the shortest path between two ports, etc. This fact

alone suggests that inferences from such data, with respect to a wider region, must

be made with extreme caution.

The use of spatial models and multiple covariate distance sampling has been put

forward as a way to circumvent some of the shortcomings of this sort of data (e.g.

Hedley, 2000; Marques, 2001). With a spatial model, we predict abundance surfaces as

a function of spatially explicit covariates, so provided we have good coverage we might

still derive accurate estimates by integrating under the estimated density surface, even

if transect placement was non random. Note however that if spatial coverage is bad,

estimation to a wider region becomes an extrapolation exercise, and again care should

be taken to decide to what extent it is valid.

The methods developed in subsequent chapters are relevant in situations in which

transects are laid along a linear feature, with respect to which animals might present a

density gradient. For convenience I stress the distinction between an absolute density

gradient, D(x), which represents density at a given distance from the linear feature,

and a relative density gradient, which is only proportional to it, d(x). Most commonly

density gradient is used to describe the latter, the shape of the distribution of animals

with respect to the linear feature involved, rather than absolute density, but when it

is not clear from the context which is being referred to, the distinction will be made

explicitly.

Although laying transects along linear features that might have an impact on the

distribution of the population of interest is discouraged, it is nonetheless a situation

that occurs much more frequently than one would hope, and as the subsequent mate-

rial will show, it can have a strong impact in the quality of the estimates. Nonetheless,

many published studies either ignore the potential problem (e.g. Simons et al., 2006),
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briefly mention it (e.g. Ogutu et al., 2006), or acknowledge it properly but do not

present solutions to solve it, considering the advantages to outweigh the disadvan-

tages (e.g. Heydon et al., 2000). Presumably, the problem is even more pervasive in

the grey literature, which reinforces the need to study the problem.

This kind of sampling, referred to as “convenience sampling” by Anderson (2001),

is usually criticized, but under some circumstances might be the only approach possi-

ble to sample a population. Examples include point transects along a road, sampling

along a river, cetacean surveys from shore, bird radar data or krill acoustic surveys.

In each of these, it stands to reason that the underlying distribution of animals with

respect to samplers is not known a priori, because it depends on how the animals

respond respectively to the road, the river, the shore line, their altitude distribution

and depth distribution. Therefore, strictly speaking, CDS methods should not be

used in these cases.

When we rely on sampling to estimate abundance, we usually can think of a two

stage process. In the first stage we estimate abundance in the covered area(s), and in

the second stage we scale that estimate up to the wider survey region. The use of non-

random samplers has a clear impact on the second stage, because if the sampling was

not random there is no justification for scaling up on the basis of design properties:

there is no valid argument to justify that the covered areas are representative of the

wider survey region we are usually interested in making inferences about (e.g. Hiby

and Krishna, 2001). This will be so, irrespective of the method used to sample the

covered area, be it distance sampling, mark recapture, plot sampling, or any other

alternative. As described above for spatial methods, one alternative might be to

choose a model based approach to perform the inferences over the wider region. The

bias related to this second stage is not the key focus of this work, because this problem

is common to all sampling methods, and this thesis is focussed on distance sampling.
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Nonetheless, the use of a spatial model might help in obtaining better estimates for

uncovered areas (see section 4.4).

On the other hand, and more relevant for the methods in this thesis, if we consider

distance sampling, the density gradient with respect to the transects might also be

responsible for bias in the first stage, estimation of abundance in the covered areas.

Note this is in contrast with a situation in which an approach is used that does

not rely on a known distribution of animals with respect to the samplers, like plot

sampling or mark recapture.

Hence, in the case of distance sampling, it is likely that the use of these linear

features for transect placement might promote a density gradient in the available

distances for detection with respect to samplers, which precludes the estimation even

for the covered areas, because the APTA condition does not hold. This is described

in detail in the next section.

4.2 Bias arising due to density gradients

Consider that line transects are placed along a road (i.e., the road is the transect),

and interest lies in 3 different species: the first ignores the road (SpIg), the second

avoids the road (SpAv), and the third is strongly attracted by the road (SpAt). The

use of words like avoidance and attraction solely describe the distribution of animals

with respect to the road, and do not assume any particular animal behaviour towards

the road.

Hypothetical density gradients d(x) for each of the species involved are shown

in figure 4.1 (left column). For simplicity, the detection function is the same for all

species (Figure 4.1, center column). Assume that these density gradients are ignored,

the survey is conducted, and the observed distances are recorded as usual (Figure

4.1, right column). SpIg should be estimated without bias (at least for the vicinity
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of the road), since there is no effect at all from the road in the process, the usual

uniform distribution holds and CDS is adequate. However, given that the detected

distances are interpreted as a function of detectability alone - the distances available

for detection are assumed uniform - SpAt and SpAv estimates will be biased. The

probability of detection of SpAt will be underestimated, as it seems that many animals

away from the line were missed, when in fact they were not there to detect to begin

with. On the other hand, the probability of detection of SpAv might be overestimated,

as it seems that a larger proportion of animals was seen at large distances, when in

fact they were more animals there to begin with. Hence, for the covered area, SpAv

abundance is underestimated and SpAt abundance is overestimated.

It is therefore clear that ignoring the effect of availability of distances could lead

to potential bias, if the APTA condition does not hold. In such cases, alternative

methods that either incorporate the availability process or do not depend on it should

be considered.

Note that, even for truly random transects with respect to the animal distribution,

if a small number of samplers is used, the APTA condition should hold on average

(over many realizations of the design), but a single realization of the survey process

may result in an actual (unobserved) availability process which is far from optimal.

This is important, because for any given survey only a single realization of the design

is usually available, hence one should aim to have a large number of lines.

More formally, what is at stake is that when considering CDS methods, detection

probability is assumed to be given by

P =

∫ w

0

g(v)π(v)dv = E[g(v)] (4.1)

where the detection function parameters are estimated from the conventional likeli-

hood,
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Figure 4.1: Examples of possible density gradients (left column) obtained by placing
transects along a road, considering a common detection function (center column), and
corresponding perceived detection function (right column) by assuming a uniform
distribution of distances available for detection. The first row represents a species
attracted to a road, SpAt, the second a species which ignores the road, SpIg, and the
third a species which avoids the road, SpAv.
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L(φ1|v) =
n∏

i=1

f(vi) =
n∏

i=1

g(vi)π(vi)∫ w

0
g(v)π(v) dv

(4.2)

but further it is assumed that π(v) is known, and equal to 1
w

or 2r
w2 , depending

respectively on considering line or point transects. Given that it is not the case and a

density gradient exists, ignoring it and naively using these expressions leads to biased

estimators. Ways to deal with this problem are the focus of the remainder of this

thesis.

In the presence of a density gradient, two strategies exist to avoid the correspond-

ing bias: (1) consider a method that does not depend on the density gradient or (2)

use a method that, instead of assuming it known, models the density gradient and

incorporates it in the estimation procedure. Of course, to implement these, one needs

some extra data, because the traditional distances alone represent a total confounding

of the availability for detection and detection process.

In the next section, previous work done by others related to the first strategy is

covered. This is followed by a section presenting some ideas useful for the second

strategy, that might be used in conjunction with methods described in subsequent

chapters. In those chapters implementations of methods considering specific survey

settings are presented.

4.3 Using multiple observers to avoid assumptions

on the availability of distances

The first strategy to deal with the presence of a density gradient with respect to the

transects is to use a method that does not depend on it.

As mentioned before, approaches based on combining mark-recapture and distance

sampling data have been put forward to relax the g(0) = 1 assumption, by allowing
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g(0) estimation. Some of the methods used in that context are also relevant here, as

described briefly below.

I borrow heavily here from the material and notation of Laake and Borchers (2004).

I no longer assume detection certain on the line or point, and to distinguish from the

previous context the detection function is defined as p(v) = p(0)g(v), with p(0) ≤ 0,

but with g(0) = 1. Consider Laake and Borchers (2004) equation 6.8 (which assumes

no covariates other than distance, but see their equation 6.16 for those),

Lw =
n∏

i=1

Pr[wi|vi]

p.(vi)
(4.3)

where Pr[wi|vi] is the probability of an individual capture history and p.(vi) = p1(vi)+

p2(vi) − p1(vi)p1|2(vi) is the probability that at least one observer detects animal i,

where pj(vi) is the probability that observer j (j = 1, 2) detects animal i given that

the animal is at distance vi, and pj|3−j(vi) is the conditional probability of observer

j detecting an animal, given that observer 3− j detected it; note that independence

of the 2 observers detections is not assumed. The probability of individual capture

histories wi is given by

Pr[wi = (1, 0)|vi] = p1(vi)[1− p2|1(vi)]

Pr[wi = (0, 1)|vi] = [1− p1|2(vi)]p2(vi)

Pr[wi = (1, 1)|vi] = p1(vi)p2(vi).

This likelihood allows the estimation of the detection function without having to

specify any π(v). The maximization of this likelihood can be done either through

direct numerical maximization or using a standard logistic regression, with an itera-

tive procedure to account for the animals missed by both observers, as proposed by

Buckland et al. (1993b) and described in detail in Burnham et al. (2004, p. 361-363).

Note that, without allowing the direct estimation of π(v), given the estimation of

p.(v) and the observed distances, one can obtain π(v) non-parametrically (see Laake
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and Borchers, 2004, p. 145, for an example). In the following this was not imple-

mented or investigated further, because the focus was intended to be on distance

sampling approaches rather than mark-recapture approaches (with distance as co-

variate). See Fletcher and Hutto (2006) for an example with double counting of birds

from a river by using a canoe as the survey platform. Note that in this example the

inference is restricted to birds along the river (the covered area) and no extrapolation

to wider areas is attempted.

4.4 Incorporating an availability model

4.4.1 Building on MRDS approaches

It is important to make a distinction between capture-recapture methods with dis-

tance as a covariate, and a true MRDS approach. The method described in the

previous section, corresponding to the former approach, uses a mark-recapture like-

lihood (Lw) but not the distance sampling likelihood1 (Lv), not capitalizing on the

knowledge of π(v) (Laake and Borchers, 2004, p. 147).

An appealing idea is to combine the information contained in the mark-recapture

data with the information combined in the distance sampling data. While there

might be disadvantages from using only the Lw likelihood component, given that

the information contained in the Lv component is not used to provide information

about the detection function shape (and hence not being in the realm of what Laake

and Borchers (2004) refer to as true MRDS), combining Lw and Lv comes at a

cost. We need to either (1) assume π(v) as known, and then we can consider point

independence, or (2) we need to assume full independence and a model for π(v) (see

Laake and Borchers, 2004, p. 117-120, for details about full/point independence).

The first case is preferred if the main issue is that animals on the transect are

1 which corresponds to some variant of equation 4.2.
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missed, but the survey design is such that π(v) can be safely assumed as known. Then

one can proceed as usual in a point independence analysis, maximizing separately Lw

and Lv (e.g. Borchers et al., 2006). If one assumes point independence, which is

recommended from the MRDS perspective alone, we can no longer estimate π(v),

without additional info on π(v), because once again we rely on the information about

the shape of the detection function being in Lv only, and hence confounded with π(v).

The second case might be preferred if the main problem is the unknown π(v) due

to design issues. One can assume a model for π(v) and estimate the correspond-

ing parameters by numerical maximization of LwLv, but the price to pay is that

point independence must be abandoned. To the best of my knowledge this has not

been implemented in practice, likely because full independence is not realistic under

most scenarios and, until now, when MRDS methods are used the main concern is

undetected animals on the line rather than unknown density gradients.

Hence in the presence of a density gradient, using only Lw, or LwLv with full in-

dependence, will allow inferences in the covered area without assuming known π(v),

even if it this approach opens the door to the usual problems associated with conven-

tional mark-recapture methods (such as unmodelled heterogeneity). It is nonetheless

worth noting that by combining some of the ideas presented in the remaining chap-

ters with MRDS, one can potentially estimate π(v) with the point independence

assumption, provided some additional information on π(v) is available (see Buckland

et al. (in press) and also the general discussion chapter for possible extensions to

these methods, incorporating estimation of π(v) along with LwLv).
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4.4.2 Considering an explicit density gradient with respect
to the samplers

As described in the previous section, considering LwLv with full independence, is

conceptually different from using Lw alone. Rather than considering methods that

do not assume known π(v), an alternative approach to deal with the presence of a

density gradient is to use a method that explicitly accounts for it. This corresponds

to assuming a model for the density gradient and being able to collect appropriate

data such that the model parameters can be estimated. This will be the focus of

chapters 5, 6 and 7 which build on existing methods to estimate abundance in the

covered areas.

Unlike for conventional methods, it is useful to describe the spatial setting under

which the methods are derived. I assume that transects (either lines or points) are

placed along a linear structure with respect to which the animals present a density

gradient. Hence, after transect placement, one can describe the animal distribution

as a function of the distance to the transects.

Consider a Cartesian coordinate system, where D(x, y) represents density at lo-

cation (x, y). Note that in the following I assume no measurement errors, and in

contrast with the previous chapter y is no longer used to represent an error distance.

I assume without loss of generality that the linear feature runs along the y dimen-

sion, at x = 0. The focus is in the vicinity of the linear feature, defined as a strip

of width 2w centered on it, with mean density D. Further, I conceptually fold the

process along the linear feature. Consider D(x) to be the absolute density gradient,

describing density at a distance x from the linear feature. Note that D(x) ∝ d(x),

where d(x) is the relative density gradient that represents availability for detection as

a function of distance from the line. For identifiability I define d(x) to be a pdf , i.e.
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d(x) =
D(x)

α
=

D(x)
w∫
0

D(x)dx

(4.4)

which means that in the case of line transects d(x) = π(x), but this is not true for

point transects due to the point geometry (see section 6.2.2, equation 6.4, for further

details).

Assume for a moment that we were able to obtain an estimate for the mean density

in the vicinity of the linear feature (i.e., the area within w of the line), D̂, and that as

part of the estimation process we were also able to estimate d(x). Chapters 5 and 6

provide examples for estimation in the covered areas along linear features. Provided

a random selection of units along the linear feature is used, estimates are valid for

the vicinity of the linear feature on the basis of the design.

Considering D(x) to be the rate of a point process on (0, w), it follows that

E(N) =

w∫

0

D(x)dx (4.5)

and hence

E(D) =

w∫
0

D(x)dx

w
(4.6)

which, considering equation 4.4, leads to the following estimator for D(x)

D̂(x) = D̂wd̂(x). (4.7)

The intuitive idea underlying the algebra is that the area under the function D(x),

the animal density as a function of distance x from the transects, is the same as the

area under the constant function of height D, the average density in the vicinity of

the road (see Figure 4.2), and hence is estimable given D̂ and d̂(x).
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Figure 4.2: Schematic representation of the relation between the average density in
the vicinity of the linear feature, D, and the function that describes density at a
distance x from the linear feature, D(x). Note the area under D(x) and under the
line y = D must be equal, allowing the estimation of D(x) from d̂(x) and D̂.
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In contrast with the design-based approach used in conventional methods, this

leads to a model-based scaling up of the density estimate for the wider survey region.

Despite being based on extrapolation of the estimated density gradient beyond the

range of distances in the data, if one can assume that the influence of the linear feature

has disappeared at w, then D̂(w) is a better density estimate, for the wider region

not covered, than D̂. The inspection of the estimated d(x) will allow assessment of

whether or not that is a reasonable assumption.

An estimate for the abundance in the survey region is the sum of the abundances

in the area in the vicinity of the linear feature (Nc, obtained with methods like those

described in chapters 5 and 6) and in the area away from the linear feature (N c̄,

which if the influence of the linear feature has disappeared at w, might be estimated

as described in the previous paragraphs), i.e.

N̂ = N̂c + N̂ c̄ = AcD̂ + Ac̄D̂(w) (4.8)

where Ac represents the covered area and Ac̄ represents the area not covered.

Variance estimates could be obtained using the nonparametric bootstrap. The

sampling units should be lines (e.g. independent stretches of road), even if the

samplers are points along lines, as points along a given line will typically be non

independent.

In the next two chapters, I present two distinct ways to estimate abundance in

the vicinity of linear features. Despite being generally discouraged, this is a relatively

common situation in published distance sampling applications, mostly for logistical

reasons. Numerous examples of such a setting, with transects placed along existing

roads or trails, can be found in the literature (e.g. Borralho et al., 1996; Baldi et al.,

2001; Hiby and Krishna, 2001; Boano and Toffoli, 2002; Ruette et al., 2003; Ward

et al., 2004; Dörgeloh, 2005; B̊ardsen and Fox, 2006). For line transects, placed along
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a linear feature to which the animals respond to, we are dependent on at least some

secondary transects to provide information on the density gradient (Chapter 5). By

contrast, for point transects along such a linear feature, we can use information in

the sighting angles with respect to the linear feature to provide information about

the density gradient (Chapter 6). It is then natural to combine these two approaches,

by having survey points along a linear structure and also some secondary transects

perpendicular to the structure to provide additional information about the density

gradient. This, as well as some other possible extensions, are presented in Chapter 7.



Chapter 5

Line transects with density
gradients

5.1 Introduction

In this chapter I consider the case where a distance sampling line transect survey is

performed along a linear structure with respect to which the animals might present

a density gradient.

Because the information on availability for detection (the density gradient) and

detectability is completely confounded in the conventional perpendicular distances,

and hence the usual uniformity assumed by design is not necessarily reasonable, bias

will arise in the presence of a density gradient. Therefore one must collect addi-

tional independent information about one of these two processes if they are to be

disentangled.

The rationale behind the methods described in this chapter is to have at least

some secondary transects perpendicular to the linear structure, from which one can

directly estimate the density gradient. Usually it will be clear from the context, but if

confusion is possible the transects along the linear feature are referred as the primary

transects.

The layout of this chapter reflects the learning process that I went through during

114
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the PhD, in fact through my research in general. I start by presenting in section

5.2 an initial approach to the problem, dealing with the problem in a more intuitive

way, using material from Marques and Buckland (2005). Then, section 5.3 places the

problem into a wider general framework, in which parametric models are assumed for

the processes involved (detection and availability) and maximum likelihood is used

to estimate model parameters and draw inferences. In section 5.4 a brief discussion

about these methods is presented, opening the door to the subsequent chapter, where

the focus is on a similar survey setting but this time with point transects as samplers.

5.2 A näıve approach to the problem

In this section, nonparametric kernel estimators are used to model the density gra-

dient and the product of the density gradient and detection function. Intuitively, by

dividing these resulting models one should obtain an estimate of the detection func-

tion. Rather than a general approach, this constituted a first attempt to deal with

the problem.

5.2.1 Proposed methods

In the conventional setting, the detected distances are the result of two functions, re-

flecting two independent processes: the detection process and the availability process.

The two processes are separated by assuming uniformity in the availability process.

This implies that the shape of the probability density function pdf of detected dis-

tances is solely a function of the detection process, allowing their separation.

The methods proposed here require the collection of independent data about the

availability process. This information can be obtained by placing some secondary

transects perpendicular to the primary ones. These transects should be at least as

long as the largest distances that are expected to be observed in the primary transects
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(or, if inferences for areas away from the linear feature are important, transects should

extend to the region where the effect of the linear feature has disappeared). Modelling

the distances along the secondary transects allows us to separate the information due

to detection and due to availability on the primary transects, leading to corrected

estimators of abundance.

Recall that, as described in section 4.4, modelling the density gradient not only

allows estimation in the covered area (of size 2wL), but it might also help to obtain

estimates in a wider survey region that we usually are interested in.

5.2.1.1 Estimating the number of animals in the covered area

The distances detected on the primary transects are the combination of the density

gradient, d(x), and the detection function, g(x). Recall that for line transects d(x) =

π(x), and hence in this chapter only π(x) is used. Defining f(x) as the pdf of the

detected distances, it follows that

f(x) =
1

E[g(x)]
π(x)g(x) (5.1)

where 1
E[g(x)]

represents a normalizing constant ensuring that f(x) is a pdf . Rearrang-

ing the previous expression leads to

E[g(x)] =
π(x)g(x)

f(x)
, ∀ x ∈ (0, w) (5.2)

and assuming g(0) = 1 (as in conventional methods), it follows that

E[g(x)] =
π(0)

f(0)
. (5.3)

Once we obtain estimates of π(x) and f(x), we can estimate E[g(x)], and hence

derive an estimator for g(x), as
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ĝ(x) = Ê[g(x)]
f̂(x)

π̂(x)
. (5.4)

On the other hand, the usual estimator for the number of animals in the covered

area is given by

N̂c =
n

P̂
=

n

Ê[g(x)]
= n

f̂(0)

π̂(0)
. (5.5)

The data collected on the primary transects can be used to estimate f(x), while

π(x) can be estimated using the distances, from the linear feature, to animals seen in

the secondary transects. If the influence of the linear feature on density at distance w

from the linear feature has disappeared, estimation for the wider survey region might

be obtained by using equation 4.8.

5.2.1.2 Modelling the pdf ’s

The procedures described require the modelling of f(x) and π(x), both pdf ’s. Result-

ing from the product of availability and detectability, the shape of f(x) is unknown,

and nonparametric approaches are a plausible alternative.

I considered here the use of a Gaussian kernel to model the pdf ’s. Seber (1986)

seems to have been the first to suggest kernels to model the pdf of detection distances,

and they were subsequently used in that context for example by Buckland (1992) and

Chen (1996). Mack and Quang (1998) present a comprehensive treatment of kernel

methods for line and point transects. The key reference for kernels as a general

method for density estimation is still Silverman (1986).

To avoid problems at the boundary x = 0, I used signed distances rather than

positive distances (as in e.g. Mack and Quang, 1998).
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5.2.2 Illustration of the methods by simulation

To evaluate the properties of the proposed methods a simple simulation exercise was

conducted, in which both sampling and modeling were simulated to mimic a real

life survey where transects were laid along a linear feature, and a set of secondary

transects perpendicular to it was available. To illustrate the methods the density

gradient was such that animals tended to be considerably more common near the

linear feature than away from it.

5.2.2.1 Simulation settings

A rectangular survey region with 40 ha (1000 m by 400 m) was considered, longitudi-

nally crossed at the center by a single primary transect (L=1000 m). The truncation

distance w was assumed to be 100 m, i.e., the covered area is half of the total survey

region. A few 100 m perpendicular secondary transects were randomly set, indepen-

dently on both sides of the primary transect, from which a direct sample of π(x) could

be obtained. The total number of animals in the survey region was N = 2000, of

which 1000 were distributed at random according to a constant background density,

and 1000 were distributed randomly as a function of the distance from the transect,

according to a Gaussian distribution, with σ = 20 (Figure 5.1). This ensures that

at w = 100 the density gradient is constant, allowing inferences outside the covered

area as described in the previous section. The detection function was assumed to

be half-normal. I considered two different detection functions, σ = 25 and σ = 45

(Figure 5.1).

Using a rejection method, the sampling process was simulated for the primary

transect, and the detected distances used to estimate f(x). To allow the estimation

of π(x) 200 distances were collected on the secondary transects.

Both pdf ’s were estimated using a Gaussian kernel. The choice of the appropriate
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Figure 5.1: Graphical representation of the density gradient and detection function
considered in simulations. a) Background density component (corresponds to density
away from the linear feature along which the transect was placed); b) Gradient com-
ponent; c) The density gradient resulting from combining a) and b); d) The detection
functions used. The dot-dash line represents the boundary of the covered area.
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bandwidth was outside the scope of this work, so I considered arbitrary values, chosen

to be close to the default values of the density function in R (R Development Core

Team, 2004), when analyzing some trial sets of simulated data.

Estimates of abundance for the covered area and survey region were obtained using

expression 5.5 and 4.8, respectively. For direct comparison, the estimates obtained

using the conventional methods ignoring the gradient, i.e. using directly expression

2.11 based solely on the data from the primary transects, were also calculated. Each

situation was repeated 1000 times.

5.2.2.2 Simulation results

The abundance estimates resulting from the simulation exercise are shown in figure

5.2. When ignoring the gradient we observe an overestimation of density that can

be over 100% of the true value. This overestimation is a function of the slope of

the density gradient, and increasing the slope should lead to even worse results. We

can see that incorporating the availability model in the analysis removes most of

the bias present when it is ignored. The price to pay is a decrease in precision.

The comparison of coefficients of variation (CV ) for the corrected and uncorrected

estimators shows that the bias decrease is accomplished at the expense of at least

2 times higher CV ’s, but considering RMSE as an overall measure of quality, the

proposed methods substantially outperform the conventional approach (Table 5.1).

5.3 A likelihood approach to the problem

The previous approach fails to capitalize directly on the fact that there is a process

common to the data collected in the primary and secondary transects, namely the

density gradient.

As an alternative obvious option (although after the fact, most good options tend
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Figure 5.2: Results from the simulation exercise to evaluate the methods proposed
to account for the density gradient using the information on secondary transects. a)
to d) corresponds to the half-normal detection function with σ=25, while e) to h) to
σ=45. a) and e) Estimated N in the covered area, using the kernel based methods; b)
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Table 5.1: Coefficient of variation (CV ) and root mean square error (RMSE) for
the 1000 estimates obtained by the conventional and proposed methods to deal with
density gradients based on kernels, for both detection functions considered in the
simulation exercise.

σ=25 σ=45
Method Covered Survey Covered Survey

area region area region
CV Conventional 0.0376 0.0376 0.0379 0.0379

Proposed 0.0802 0.1059 0.0770 0.1040
RMSE Conventional 2708.961 6416.485 2818.953 6636.477

Proposed 127.5622 224.7865 134.6694 236.153

to seem obvious!), once this problem is cast into a general likelihood framework it is

straightforward to estimate parameters for both models at once and proceed as usual.

A further advantage of such an approach is that it can be generalized to more

complicated situations, capitalizing on the likelihood framework.

5.3.1 Proposed methods

Note that by specifying E[g(x)], equation 5.1 can be rewritten as

f(x) =
g(x)π(x)∫ w

0
g(x)π(x)dx

. (5.6)

Consider that the detection function and density gradient are indexed respec-

tively by the parameter vectors φ1 and φ2. Because the two functions only appear

as a product, this pdf is not enough to derive a likelihood to estimate parame-

ters from both the detection function and the density gradient, using the distances

xp = (xp,1, xp,2, ..., xp,np) collected along the primary transects. However, the dis-

tances xs = (xs,1, xs,2, ..., xs,ns), collected along the secondary transects, provide a

sample from π(x), which can be used to estimate the density gradient parameter
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using

L(φ2|xs) =
ns∏

j=1

π(xs,j). (5.7)

Assuming that the data collected in the primary and secondary transects are inde-

pendent (which must be enforced by proper design and survey methods), a likelihood

combining the two data sources follows naturally, which will allow the joint estimation

of the parameters of both processes, as

L(φ1, φ2|xp, xs) = L(φ1|φ2, xp)L(φ2|xs) =

np∏
i=1

g(xp,i)π(xp,i)∫ w

0
g(x)π(x)dx

ns∏
j=1

π(xs,j). (5.8)

Given the parameter estimates, the usual estimate for P follows as

P̂ =

∫ w

0

ĝ(x)π̂(x)dx (5.9)

and we can therefore obtain the corresponding estimator for density (see equation 1.2).

As before, given that we estimate the density gradient, we can use it to estimate

density at a given distance from the linear feature, which leads to a model based

abundance estimation for the wider survey region (see section 4.4, equation 4.8).

5.3.2 Illustration of the methods by simulation

5.3.2.1 Simulation settings

To provide a direct comparison with the performance of the initial approach, the same

simulation settings as used in section 5.2.2 were considered.

Note that in the previous simulation section, the way in which animals were dis-

tributed was rather ad hoc, with half the animals being allocated according to a

Poisson process (the background constant density) and half the animals distributed

according to a half-normal density gradient. Because now we need to implement a
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likelihood, it is useful to view the resulting relative density gradient in a parametric

form

d(x|φ2) =
τ + exp(− x2

2σ2 )∫ w

0
τ + exp(− x2

2σ2 )dx
=

τ + exp(− x2

2σ2 )

ν
(5.10)

where φ2 = (τ, σ) and τ is proportional to the background density, and hence ατ
ν

is

the density at distances for which the linear structure no longer has an influence on

density.

5.3.2.2 Simulation results

The coefficient of variation and root mean square error of the estimates, for the

methods proposed in this section, are contrasted in table 5.2 with those obtained

for conventional methods and those proposed in section 5.2 based on kernel density

estimation. Note that differences in the first two lines of this table, with respect to

table 5.1, are only due to Monte Carlo variation.

The proposed methods based on maximum likelihood are slightly less biased and

considerably more precise than those derived by the initial intuitive approach to the

problem.

5.4 Discussion

The methods presented in this chapter represent a first attempt to estimate animal

abundance using line transects in situations where animals present a density gradient

with respect to these. Our results show that modelling the availability to detection

is a possible approach to remove the bias present when such availability is not uni-

form. That modeling exercise can be done provided that some data can be collected

in secondary transects perpendicular to the main ones, independently of the sight-

ing distances obtained in the primary transects. The comparison with conventional
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Table 5.2: Coefficient of variation (CV ) and root mean square error (RMSE) for the
1000 estimates obtained by the conventional and proposed methods to deal with den-
sity gradients, both based on kernels and on maximum likelihood, for both detection
functions considered in the simulation exercise.

σ=25 σ=45
Method Covered Survey Covered Survey

area region area region
Conventional 0.0422 0.0422 0.0404 0.0404

CV Kernel 0.0788 0.1063 0.0816 0.1081
Likelihood 0.0460 0.0808 0.0456 0.0819

Conventional 2827.9 6654.0 2819.4 6637.2
RMSE Kernel 137.8 243.1 140.0 241.3

Likelihood 71.8 163.5 71.5 166.4

methods also shows that considerable bias can occur if an existing density gradient is

ignored. This bias will be a function of the density gradient, and if this is unknown,

even the direction of the bias might be unknown, rendering estimates not only useless

but potentially dangerous if used to support management decisions.

Some questions remain that need to be resolved to implement the initial approach

to the problem. The main question is related to the options taken to estimate the

pdf ’s involved. Silverman (1986) shows that bias in kernel estimators is proportional

to bandwidth. In principle, bandwidth would decrease as sample size increases, and

that is the justification that authors use to claim that estimators are asymptotically

unbiased. As large sample sizes in distance sampling are not common, the issue

might be relevant here. The choice of different bandwidths for estimation of π(x)

and f(x) might be responsible for different bias in estimating π(0) and f(0), and

consequently bias in the abundance estimates. Silverman (1986) also shows that

the bias is proportional to the second derivative of the function being estimated,

which adds extra difficulty in the case of the pdf ’s considered here, given that we
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are estimating their values at 0 distance, likely a function maximum. (Note however

that in situations where density increases with distance from the line the maximum

may be away from zero.) As the second derivative is negative at a maximum, some

underestimation is expected, a fact observed in other work using kernels in a distance

sampling context (e.g. Chen, 1996; Mack and Quang, 1998), but not clearly attributed

to this fact. Note that in this case, we want to estimate κ (see expression 5.5), a

quotient of two estimated quantities, and so the final bias is the result of the relative

bias of its components. While in simulations arbitrary values were used for bandwidth,

producing sensible results, some bias was still present after the correction, and further

investigation is needed to address this cause.

Another question not dealt with explicitly here is the variance of the näıve esti-

mator, fundamental for the application of the methods. The simplest approach is to

use resampling methods, like the nonparametric bootstrap as described in Borchers

et al. (2002), but nonetheless it should be possible to find approximate analytical

expressions for the variance by using standard kernel theory results and the delta

method.

The estimation of the pdf ’s involved might be done using other methods. A pos-

sible alternative is the traditional semi-parametric approach introduced by Buckland

(1992), as implemented in standard distance sampling software Distance, but with-

out the monotonicity constraints. Other options include the use of series expansions,

log-splines or splines.

The main inconvenience of this intuitive approach stems from the fact that the

modeling of f(x) and π(x) is done independently. Because of that, sample pertur-

bations mean that the estimated detection function might not be a monotonically

decreasing function of distance (as one might expect), and probability of detection,

at some distances, can be estimated as being higher than 1, which corresponds to an
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inadmissible estimate (although this is unlikely to happen in practice with reasonable

sample size). This suggests that there might be advantages to finding a more parsi-

monious way to deal with the issues involved, and that is also why some of the issues

have remained unanswered. Although an interesting first approach to the problem, it

seems a priori unlikely that these kernel based methods would perform better than

those based on maximum likelihood.

The initial approach to the problem ignored the use of any type of parametric

form either for the detection function or the density gradient. Because of that, while

the initial results of section 5.2.2 were interesting and showed that the approach was

worth pursuing, the smaller bias was obtained at the cost of a much larger variance,

which is not ideal.

The idea of extending the methods to a likelihood framework followed naturally,

and the results shown indicate that there might be substantial advantages in doing

so. Of course this approach is more appropriate if the investigators have a good idea

of the potential shape of the density gradient. Even if several models could be tested,

based on some model selection criteria, it is a sounder approach to have a priori a

reasonable expectation about the form of the density gradient. When that knowledge

is not available a priori, a possible intermediate approach is to use the data collected in

the secondary transects only, with some nonparametric density estimation technique,

say kernel density estimation, to get a first feel for the shape of the density gradient,

and then choose flexible parametric (or semi-parametric) models that span shapes

similar to those obtained by the nonparametric method.

A further advantage of embedding the methods in a likelihood framework is the

easy generalization of these to more complicated situations. A simple example is the

situation in which the detection function is not constant in the secondary transects,

but it is a function of the distance to the primary transects. This might be the case
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if habitat changes as a function of distance from the linear feature. For the initial

approach one might be forced to use only distances in the shoulder of the detection

function from the secondary units, hence guaranteing that the animals considered

are a representative sample of the density gradient. Cast in a likelihood framework,

one can extend the simple formulation presented here, to include a distance sampling

likelihood (i.e. accounting for a detection function) for the data collected in the

secondary transects. This flexibility and further examples will be illustrated later in

the thesis (see Chapters 7 and 8).

The main disadvantage of the methods presented is that the additional information

must be obtained from secondary transects, when in many cases the rationale for using

a non-random design in the first place is that it is difficult or impossible to travel away

from the linear feature. Therefore it would be a tremendous advantage if one was

able to derive methods which would only rely on the data gathered from the primary

transects, but still cope with density gradients with respect to it. Whilst that is not

simple to do for lines1, I show in the next chapter a method based on point transects

that has in this characteristic its main appeal.

1 It is worth noting that it should be possible to derive such methods for line transects, given
distance from the line and angle with respect to the linear feature at first sighting, together with the
additional assumption that the detection function is independent of angle. The extent to which this
assumption might hold in practice in the case of line transects, due to non uniform search patterns,
might however cast some doubts over such procedure. Nonetheless, as suggested by Hans Skaugh
(pers. communication), appropriate field methods might help insuring such assumption.



Chapter 6

Point transects with density
gradients

6.1 Introduction

The methods in this chapter are intended to be used in situations similar to those

of the previous chapter, i.e. when transects are placed along a linear feature, with

respect to which the animals might respond to. However, this time point rather than

line transects are used as (primary) transects. The original motivation for this work

came from point transects placed along riparian habitats, but the illustrative example

used is from a survey of Northern Ireland hares (Lepus timidus hibernicus) performed

along roads1. The ideas should be relevant under any context where a density gradient

exists with respect to a feature along which point transects are placed.

The rationale behind the methods is to use the angle of sighting with respect to

the linear feature in addition to the usual radial sighting distance, to estimate simul-

taneously the parameters of both the detection function and the density gradient.

This allows for a non uniform distribution of the animals with respect to the linear

feature, unlike conventional methods that (erroneously in this case) assume a uniform

distribution. The methods assume that the detection function is independent of the

1 See Acknowledgements section for proper credit on the use of this data set.

129
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sighting angle with respect to the linear feature.

Hence, unlike the methods presented in the previous chapter, one can obtain the

necessary information to implement these methods without having to spend extra

resources with additional data collection, a considerable advantage if these resources

are scarce.

6.2 Proposed methods

6.2.1 Preliminaries

Consider k point transects laid along the linear feature, with the usual distance sam-

pling assumptions holding (see section 2.5). Assume the detection function is, as usual

for point transects, a function of the radial distance alone, with associated vector of

unknown parameters φ1.

Consider a Cartesian coordinate system, where D(x, y) represents density at lo-

cation (x, y). A linear feature is present at x = 0, and the focus is on a strip of width

2w centered on the linear feature (i.e., truncation distance = w), with mean density

D.

Assume, without loss of generality (for estimation of the parameters of interest,

see below), that point centers are all located at (0,0). After point placement, we

can describe the relative location of animals in space with respect to this point. Let

r =
√

x2 + y2 represent the radial distance to the animals from an observer at a

point center, and θ = arcsin x
r

the sighting angle with respect to the linear feature

(see Figure 6.1a).

To avoid having to account for circle geometry, I start by considering the square of

side 2w centered on the point. The process is conceptually folded into one quadrant

with respect to both axes x = 0 and y = 0. As before, consider D(x) to be the

absolute density gradient, representing density at distance x from the linear feature,
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Figure 6.1: A linear feature along which point transects are placed, with the distances
involved in the definition of the methods shown. a) Points along the linear feature. A
point is blown up showing details of the distances to a given animal, represented as a
circle (x, perpendicular distance with respect to the linear feature; y, distance along
the linear feature; r, radial distance to the animal; θ, sighting angle with respect
to the linear feature); b) Given X = x, r can take values between rmin = x and
rmax = w; c) Given X = x, y is assumed uniform in (0,

√
w2 − x2), for 0 ≤ x ≤ w.
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given by (once folded along the linear feature)

D(x) =

∫ w

−w

D(x, y)dy +

∫ w

−w

D(−x, y)dy, 0 ≤ x ≤ w. (6.1)

For simplicity, I work with the relative density gradient function d(x) = D(x)/α,

such that d(x) is a pdf (this has no implication on the methods because, as it will

become apparent later, there is no information in the likelihood used to allow the

estimation of the proportionality constant). One will need to assume a model for

the relative density gradient, with associated vector of unknown parameters φ2. This

parameter vector will be estimable from the data as described below. For readability,

I often drop the density gradient and detection function parameters (respectively φ2

and φ1) in the notation.

No assumption is made about the animals’ distribution along the linear feature,

but I assume that, after point placement, D(y) is a constant independent of y, i.e.

D(y) =

∫ w

−w

D(x, y)dx +

∫ w

−w

D(x,−y)dx = D, 0 ≤ y ≤ w. (6.2)

The right hand side of the equation holds if the y distribution on (−w, w) is an

odd function. For example, if trend in density in the y direction is assumed linear

over the short distance 2w, then this requirement is met. Random point placement

along the line ensures, by design, that density within the covered squares of side 2w

is representative of the 2w width strip centered on the linear feature.

Although usually the recorded data in the field would be radial distances (r) and

sighting angles (θ), any two of (x, y, r, θ) are sufficient to implement the proposed

methods.
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6.2.2 Bivariate likelihood

As presented earlier, conventional point transect methods involve the maximization

of a likelihood (with respect to φ1 alone) based on the pdf of detected distances in the

circle. A model is assumed for the detection function g(r) and π(r) = 2r
w2 is assumed

known by design. One can generalize this likelihood to a bivariate likelihood, which

assumes that r and θ are independent and the detection does not depend on θ, leading

to

n∏
i=1

π(θi)
g(ri)π(ri)∫

R

g(r)π(r)dr
= LθLr. (6.3)

Since g(r) and π(r) appear as a product, they can not separately be estimated

from Lr, the CDS likelihood. Lθ, not usually considered because there is no direct

interest in π(θ), allows us to test whether π(θ) is uniform, which one would expect

under CDS. Failure of such uniformity could indicate the need for the methods

described in this chapter.

The basis of the methods proposed here is a bivariate pdf which uses the depen-

dence between r and θ, a consequence of the non uniform density gradient, to allow

the joint estimation of the parameters of g(r) and π(r).

Consider π(x, y) to be the joint pdf of animal locations (x, y) (whether detected

or not) in the quarter circle2. Given the definition of the relative density gradient,

the pdf of the perpendicular distances (detected or not) in the quarter circle of radius

w is

2 Keep in mind that this process is considered in a quarter circle, rather than a full circle like
for conventional point transects, due to the conceptual folding in the x and y dimensions. However,
this has no practical impact on the estimation process.
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π(x) =
d(x)ϕ(x)

w∫
0

d(x)ϕ(x)dx

, 0 ≤ x ≤ w (6.4)

where ϕ(x) = b
w

=
√

w2−x2

w
, and b is the half-length of the chord parallel to the transect

at perpendicular distance x from the transect (Figure 6.1b). Note that ϕ(x) accounts

for the circle geometry.

On the other hand, π(y|x) is assumed uniform (by design, see equation 6.2), and

hence

π(y|x) =
1√

w2 − x2
, 0 ≤ y ≤

√
w2 − x2 (6.5)

leading to the joint distribution

π(x, y) = π(y|x)π(x) =
1√

w2 − x2

d(x)ϕ(x)
w∫
0

d(x)ϕ(x)dx

=
d(x)

w∫
0

d(x)ϕ(x)dx

. (6.6)

The field data usually comprise radial distances and angles, hence it is convenient

to represent equation 6.6 in terms of polar coordinates rather than Cartesian coor-

dinates. Therefore, considering the random variable transformation R =
√

X2 + Y 2

and θ = arcsin X√
X2+Y 2 , with inverse X = R sin θ and Y = R cos θ, leads to

π(r, θ) =
rd(r sin θ)∫

θ

d(r sin θ)ϕ(r sin θ)r cos θdθ
. (6.7)

A change in the integration variable on the denominator r sin θ = x (which just

reverses the changes introduced by the above random variable transformation in the

integral) leads to

π(r, θ) =
rd(r sin θ)

w∫
0

d(x)ϕ(x)dx

. (6.8)
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The advantage of this is obvious when we write down the joint pdf of radial

distances and sighting angles (now for the detected animals only) as

f(r, θ) =
π(r, θ)g(r)∫

R

∫
θ

π(r, θ)g(r)dθdr
(6.9)

because it leads to a much simpler expression due to the integral in the denominator

of expression 6.8 canceling out, leading to

f(r, θ) =
r d(x)g(r)

w∫
0

π
2∫
0

r d(r sin θ)g(r)dθdr

. (6.10)

Note that, apart from a constant that is not a function of the parameters, this

turns out to be the same likelihood that one would end up with if starting from π(x, r)

rather than π(r, θ) (see appendix A for further details), hence leading naturally to

the same parameter estimates.

6.2.3 Estimating density in the covered circles

Given the n observed (r, θ) pairs, assuming a parametric form for the density gradient

and the detection function, we can use the joint distribution of θ and r to build a

likelihood that can be maximized to estimate the unknown parameters (φ1 and φ2)

as

L(φ1, φ2|r, θ) =
n∏

i=1

π(ri, θi)g(ri)∫
R

∫
θ

π(r, θ)g(r)dθdr
. (6.11)

As for the conventional case,

P =

w∫

0

g(r)π(r)dr (6.12)
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although now the distribution of r must be obtained through integration of the joint

distribution of (r, θ), with respect to θ,

P̂ =

w∫

0

g(r)π(r)dr (6.13)

=

w∫

0

g(r)

π
2∫

0

π(r, θ)dθdr (6.14)

=

w∫

0

g(r)

π
2∫

0

rd(r sin θ)
w∫
0

d(x)ϕ(x)dx

dθdr (6.15)

=
1

w∫
0

d(x)ϕ(x)dx

w∫

0

π
2∫

0

r g(r)d(r sin θ)dθdr. (6.16)

Given the MLE’s for the parameters of interest, one can replace these in the

previous expression, leading to the following estimator for P :

P̂ =

w∫

0

ĝ(r)π̂(r)dr. (6.17)

A density estimator is then obtained using standard HTL estimators as described

in section 1.2.1 (see equation 1.2). Note, however, that the resulting estimate for D

applies only to the covered circles and yet our interest is in density in the strip of

width 2w centered on the linear feature. I address this issue in the next subsection.

6.2.4 Estimating density in the vicinity of the linear feature

To get a density estimate valid for the vicinity of the linear feature we need to estimate

the probability of an animal being in the circle, given that it is in the square of side

2w that contains it. That probability is given by
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Pc|s =

w∫
0

d(x)
√

w2 − x2dx

w∫
0

d(x)wdx

. (6.18)

Note that for constant d(x), as in CDS, Pc|s = π/4. We can estimate Pc|s using

the estimated density gradient. Hence the density estimate in the 2w width strip

along the linear feature is

D̂ =
n

aP̂ P̂c|s
(6.19)

where a is the area of the k squares containing the covered circles (k4w2). This is a

Horvitz-Thompson-like (HTL) estimator, sensu Borchers et al. (2002, p. 143-144):

the probabilities involved are estimated instead of known by design as in conventional

Horvitz-Thompson estimators.

This density estimator is valid only in the strip of width 2w centered on the linear

feature, and in general it will not be representative of density in the wider survey

region, because the linear feature vicinity is not a random sample representative of

the wider region. If an estimate of abundance in areas away from the linear feature

is required the approach described in section 4.4 might be adopted.

6.2.5 Variance estimation

A straightforward approach for obtaining variance estimates for the proposed esti-

mators is a nonparametric bootstrap, resampling at the point level. Note that this

assumes that the points are independent sampling units, placed randomly along the

linear feature. Details of a general bootstrap procedure readily extendable to this

case can be found in section 2.3.2 (see also Buckland et al., 2001, p. 82-84).
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6.3 A simulation experiment

In this section a simulation exercise to evaluate the performance of the proposed

methods is described.

6.3.1 Simulation settings

Consider a square study area of side 200 m, the center of which is, without loss of

generality, at (0,0). There is a linear feature along the y-axis (x=0). Animals have a

density gradient in the x direction and are uniformly distributed in the y direction.

To test the proposed methods, a design with one single point transect located at the

center of the study area is considered. Regarding the detection and density gradient

function estimation, this is equivalent to many points along a linear feature, which

for analysis purposes are essentially stacked on top of each other (i.e., density at the

single point is the sum of densities at all the points).

A constant population size of N = 1000 animals was simulated. The density

gradient was assumed to be one of four types, determined by two factors (see Figure

6.2a-b): (1) animals either avoid or prefer the linear feature and (2) with either a

hazard-rate (HR) or half-normal (HN) based density gradient. Therefore, for each

animal, the x coordinate was generated from these distributions, while the y coor-

dinate was generated from a uniform on (-100,100). The detection function was as-

sumed half-normal (Figure 6.2c). Given the detected radial distances, r, a truncation

distance of w = min(100,max(r)) was used.

The main simulation scenarios considered are shown in table 6.1, along with the

true P and Pc|s (respectively equations 6.17 and 6.18 evaluated with the true param-

eter values) associated with them. For each scenario, the following procedure was

repeated 100 times: the animals’ positions were generated according to the density
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Figure 6.2: Simulation settings details. a) Example of hazard-rate density gradients,
used in scenarios 3 and 4; b) Example of half-normal density gradients, used in
scenarios 1-2 and 7-8; c) Example of half-normal detection function, used in scenarios
1-6 and 11-12; d) Realization of a population under scenario 2, with the detected
animals shown as *. Linear feature is along x = 0.
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Table 6.1: Simulation scenarios considered, as a function of density gradient d(x)
and detection function g(x) parameters. HN stands for half-normal and HR for
hazard rate, with the respective model parameters in brackets. Atr = T for animals
attracted to linear feature, and Atr = F for animals avoiding it. P is the probability
of detecting an animal, given that it is in the circle. Pc|s is the probability of an
animal being in the circle, given that it is in the square that contains it. E(n) is the
average number of detected animals by simulation. True abundance is N=1000 for
all scenarios.

Scenario d(x) Atr g(x) P Pc|s E(n)
1 HN(60) T HN(60) 0.576 0.861 496
2 HN(60) F HN(60) 0.496 0.716 355
3 HR(60,4.3) T HN(60) 0.586 0.891 522
4 HR(60,4.3) F HN(60) 0.477 0.702 335
5 HN(30) T HN(60) 0.629 0.952 599
6 HN(30) F HN(60) 0.409 0.583 238
7 HN(60) T HN(30) 0.215 0.861 185
8 HN(60) F HN(30) 0.131 0.716 94
9 HN(30) T HN(30) 0.279 0.952 266
10 HN(30) F HN(30) 0.055 0.583 32
11 HN(900) T HN(60) 0.541 0.786 425
12 HN(900) F HN(60) 0.540 0.785 424

gradient, the detection process simulated and the relevant distances to detected an-

imals’ used to estimate abundance (N), either ignoring the density gradient as in

CDS or using the methods outlined above. For illustration purposes, a realization

of a population under scenario 2 is shown (see Table 6.1 for the parameters associ-

ated with each scenario number), together with the point transect position and the

location of detected animals, in figure 6.2d.
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Table 6.2: Results of the simulation exercise to evaluate the proposed methods to
deal with density gradients. Mean estimated abundance (N), associated standard
deviations (sN), intervals spanning 95% of the simulated values (95%ISV ) and mean
observed % bias (%B) for each of the main simulation scenarios, considering the
proposed and conventional methods. True abundance is N=1000.

Proposed Method Conventional Method
Scenario N sN 95%ISV %B N sN 95%ISV %B

1 999 89 981,1016 -0.1 1448 96 1429,1467 44.8
2 1010 141 982,1038 1.1 593 52 583,604 -40.7
3 998 84 981,1015 -0.2 1588 107 1566,1609 58.7
4 1018 161 986,1050 1.8 465 38 457,472 -53.5
5 998 63 986,1010 -0.2 2344 149 2314,2373 134.4
6 987 281 931,1042 -1.3 308 18 304,311 -69.2
7 1016 212 974,1059 1.7 1459 169 1426,1492 45.9
8 1075 457 984,1165 7.5 525 66 512,538 -47.5
9 979 114 956,1002 -2.1 2488 202 2448,2529 148.8
10 1381 1562 1071,1691 38.1 74 20 69,78 -92.7
11 952 96 933,971 -4.8 986 89 968,1003 -1.4
12 1026 86 1009,1043 2.6 995 72 980,1009 -0.5

6.3.2 Simulation results

The performance of conventional and proposed methods under different scenarios can

be compared in table 6.2, which shows the estimated population size and correspond-

ing mean observed % bias.

The improvement over conventional methods is substantial for all scenarios tested,

showing that the proposed methods are a desirable approach. However, the estimator

was still appreciably biased in scenario 10. This results from a combination of the

nature of the estimator involved and small sample size. As pointed out by others (see

e.g. Borchers, 1996; Marques and Buckland, 2003), HTL estimators are positively

biased, and this bias can be considerable if the probabilities in the denominator are

small, as in scenario 10 (cf. Table 6.1). Also, given that all the scenarios were identical
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with respect to true abundance, sample size was proportional to the true probabilities

involved, and hence scenario 10 presented an expected sample size (32) that is smaller

than what one would recommend for analysis of real data sets.

To evaluate this issue further I considered two additional simulation exercises: (1)

24 additional scenarios were run, in which P took values in between those of scenarios

shown in table 6.1 and (2) 30 additional scenarios were run, with the same parameters

as Scenario 10, but increasing true abundance from 1200 to 7000 (corresponding E(n)

from 38 to 224). In figure 6.3a the bias in estimated abundance, considering the

proposed methods, is shown as a function of true P , for all 36 scenarios considered.

It can be seen that values of P of around 15-20% or greater are required for reliable

estimates. Note that the bias of the proposed methods is nonetheless considerably

smaller than that for conventional methods, for all scenarios run. The effect of sample

size on estimation bias is clear in figure 6.3b, where for sample sizes larger than around

150 the bias becomes small.

The density gradient in scenarios 11 and 12 is such that, for all practical purposes,

it could be taken to be uniform. It is reassuring to see that the proposed methods

still work relatively well under the more conventional setting, even if there is not

much information in the data to estimate the density gradient parameter, leading to

large variance in estimates of φ2. However, their use would not be recommended in

such situations because an extra parameter (vector) needs to be estimated leading

to worse precision than for the conventional methods (cf. Table 6.2). Note that the

slight bias present in the simulation exercise for these scenarios is a consequence of

using the true model for estimation. Depending on the density gradient assumed,

when the parameters are estimated, you can only get a non-uniform gradient in

one direction, hence you would underestimate density if you assumed an attraction

gradient with respect to the linear feature, and vice versa. If the gradient direction
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Figure 6.3: Mean observed % bias as a function of a) True P ; b) Sample size. In
a) data represents the 12 scenarios in table 6.1, plus 24 extra scenarios with values
of P spanning values between those. In b) data corresponds to Scenario 10 with N
spanning from 1000 to 7000. The line in both panels is a standard lowess smooth.

was also estimated this would not be the case.

6.4 Applying the methods to a hare survey data

In 2005, a survey of hares was carried out in Northern Ireland3. A total of 5421 point

transects were surveyed, and due to logistic constraints these were placed along roads.

A total of 210 hare clusters were detected, corresponding to 314 detected hares. For

the sake of simplicity, I assume that the interest is in estimating cluster density.

These animals tend to avoid field boundaries, and this was easily seen from in-

spection of the distance data (Figure 6.4a), which shows hares clearly avoiding the

vicinity of roads. The methods proposed in the previous sections were applied to

estimate density within the covered region, and also (using equation 4.7) to estimate

density at w = 150 m from the road. Estimates were compared with those from

CDS.

I considered 4 alternative models: (M1) a conventional analysis, using a HN

detection function (a cosine adjustment term was added for fit improvement, based

3 See Acknowledgements section for proper credit on the use of this data set.
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Figure 6.4: Data and estimated models in the hares example. a) The positions of
the detected hares with respect to the point, considered to be centered at (0,0).
The dashed line represents the road position with respect to the point. Data have
been truncated so that r < 150 m; b) to d) The estimated relative density gradient
(dashed line) and detection function (solid line), considering: b) a half-normal; c) an
hazard-rate; and d) a normal based density gradient.
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on minimum AIC), implemented in Distance 5 (Thomas et al., 2005); for the proposed

methods I used a HN detection function with a density gradient where animals avoid

the road, with avoidance modelled using either (M2) a HN or (M3) a HR, as in the

simulation section. I also considered a model for the density gradient (M4) as

d(x) =
1− β × (f(x, σ))∫ w

0
1− β × (f(x, σ))dx

(6.20)

where f(x, σ) represents the normal density, with mean 0 and standard deviation σ.

Hence model M4 is also based on the normal distribution as M2, but compared with

the previous two, it allows easier parameter interpretation, with α representing density

at distances where the linear feature influence has disappeared (recall αd(x) = D(x)).

This model also allows the relation of the animals towards the linear feature to be

estimated: for attraction, β < 0, while for avoidance β > 0, while β = 0 simplifies to

a uniform.

The results obtained for these models, after numerical maximization of the appro-

priate likelihoods, are shown in table 6.3. Variances were obtained using the standard

empirical variance estimator for the conventional analysis and a bootstrap resampling

procedure, considering points as the resampling units, for the proposed methods.

These results show that the conventional method underestimates abundance con-

siderably, with any of the non uniform density gradient models leading to over

100% larger density estimates than the conventional methods, for the strip of width

2w = 300 m centred on the road. Furthermore, any of these models shows that den-

sity estimates ignoring the density gradient will result in severe underestimation of

density for the wider region. The considerable difference in point estimates obtained

depending on the model used for the density gradient was somewhat disappointing.

The fit of model M4 is preferred by AIC, and ∆AIC = 3.9 for model M3, the second

best model, which shows a strong preference for M4; for comparison, ∆AIC > 80
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Table 6.3: Results of the analysis of the hare data, considering 4 alternative models
(M): (M1) CDS ignoring density gradient; proposed method with animals avoiding
the road according to a (M2) HN gradient, (M3) HR gradient and (M4) a normal
based gradient. AIC: Akaike Information Criterion, with corresponding AIC weights
shown inside brackets; d(x): estimated parameters for the density gradient; g(x):
estimated parameters for the detection function; P̂ : estimated probability of detecting
a hare cluster, given it is in the circle; P̂c|s: estimated probability of a cluster being in

the circle given it is on the square containing it; D̂: estimated cluster density in the
strip of width 2w = 300 m centred on the road; D̂150: estimated cluster density at
150 m from the road. Corresponding 95% confidence intervals for density estimates
are shown inside brackets.

M ∆AIC d(x) g(x) P̂ P̂c|s D̂ D̂150

M1 - - 66.45,-0.11 0.42 - 1.24 1.24
(0.71,2.15) (0.71,2.15)

M2 3.83 54.2 44.8 0.075 0.626 8.673 19.249
(0.126) (4.99,14.41) (10.01,35.02)

M3 7.87 106.3,8.1 51.4 0.166 0.723 3.382 4.437
(0.017) (2.19,7.46) (2.68,12.60)

M4 0 134.2,54.7 47.1 0.106 0.671 5.727 10.074
(0.857) (2.95,13.54) (3.98,40.38)
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Figure 6.5: Observed data used for the chi-squared goodness-of-fit (GOF ) tests for
the hares data. a) Radial distances; b) Sighting angles; c) Two dimensional GOF ,
considering both radial distances and sighting angles. Dashed lines and solid quarter
circles represent the cut points used in the GOF tests.

for models considering the conventional uniform density gradient. Model M3 is not

supported by the data (cf. Table 6.3). M4 is arguably this is the most interesting

of the 3 models considered, suggesting that it is likely that the effect of the road is

almost absent for distances close to w = 150 m. Unfortunately, this model’s 95%

confidence limit is very large, reflecting poor precision.

To try to further discriminate between models, absolute goodness-of-fit (GOF )

was assessed using a standard chi-square test. Due to considerable heaping of radial

distances and especially of sighting angles, interval cut points were chosen by visual

inspection of the data. The GOF tests were carried over the radial distances, the

sighting angles and both dimensions. The data and the corresponding cut points used

are shown in figure 6.5. The observed and expected counts for each model, as well as

other relevant details for the chi-square tests, are shown in tables 6.4-6.6.

The tests based on radial distances or both radial distances and sighting angles

suggested that the models considered were adequate. The poor fit indicated for tests

on the sighting angles alone is most likely due to measurement error in angles. The

severe heaping is evident in figure 6.5, with angles restricted to multiples of 10o
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Table 6.4: Results of the Chi-square goodness-of-fit test with respect to the radial
distances. Obs: Observed counts. Exp: Expected counts, according to respective
model. Chi: Chi-square parcel corresponding to a given interval. Density gradients
are half-normal (M2), hazard-rate (M3) and normal (M4) based. Summary values are
the test statistic (χ2), corresponding degrees of freedom (df) and associated P -value.

Distance M2 M3 M4
Cut points Obs Exp Chi Exp Chi Exp Chi

(0,30) 6 11.21 2.42 8.01 0.51 8.04 0.52
(30,45) 20 19.07 0.04 17.39 0.39 18.38 0.14

(45,67.5) 59 47.20 2.95 52.68 0.76 50.30 1.50
(67.5,85) 37 42.98 0.83 45.30 1.52 45.18 1.48
(85,115) 54 55.33 0.03 52.41 0.05 54.75 0.01
(115,150) 22 22.20 0.00 22.22 0.00 21.35 0.02

χ2 6.29 3.23 3.67
df 3 2 2

P -value 0.099 0.198 0.159

Table 6.5: Results of the Chi-square goodness-of-fit test with respect to the sighting
angles. Obs: Observed counts. Exp: Expected counts, according to respective model.
Chi: Chi-square parcel corresponding to a given interval. Density gradients are half-
normal (M2), hazard-rate (M3) and normal (M4) based. Summary values are the test
statistic (χ2), corresponding degrees of freedom (df) and associated P -value.

Angle M2 M3 M4
Cut points Obs Exp Chi Exp Chi Exp Chi
(0,15) 3 7.12 2.38 6.50 1.88 4.82 0.69
(15,35) 27 21.94 1.17 27.78 0.02 23.25 0.60
(35,55) 43 44.39 0.04 51.59 1.43 48.23 0.57
(55,75) 46 66.51 6.33 62.59 4.40 66.33 6.23
(75,90) 79 58.04 7.57 49.54 17.51 55.36 10.09
χ2 17.49 25.25 18.19
df 2 1 1
P -value < 10−3 < 10−6 < 10−4
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Table 6.6: Results of the Chi-square goodness-of-fit test with respect to the radial
distances and the sighting angles. Obs: Observed counts. Exp: Expected counts,
according to respective model. Chi: Chi-square parcel corresponding to a given
interval. Density gradients are half-normal (M2), hazard-rate (M3) and normal (M4)
based. Summary values are the test statistic (χ2), corresponding degrees of freedom
(df) and associated P -value.

Distance Angle M2 M3 M4
Cut points Cut points Obs Exp Chi Exp Chi Exp Chi
(0,67.5) 15 14.52 0.02 11.68 0.95 10.91 1.54
(67.5,115) (0,35) 13 12.04 0.08 16.97 0.93 13.66 0.03
(115,150) 2 2.50 0.10 5.63 2.34 3.50 0.64
(0,67.5) 25 28.85 0.51 30.13 0.87 29.88 0.80
(67.5,115) (35,65) 33 37.56 0.55 42.91 2.29 40.90 1.52
(115,150) 9 8.98 0.00 9.05 0.00 9.01 0.00
(0,67.5) 45 34.12 3.47 36.27 2.10 35.93 2.29
(67.5,115) (65,90) 45 48.72 0.28 37.82 1.36 45.37 0.00
(115,150) 11 10.71 0.01 7.54 1.59 8.84 0.53
χ2 5.02 12.42 7.35
df 6 5 5
P -value 0.541 0.029 0.196
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with the unique exception of 45o, and some evidence for angles around 65o-75o being

recorded as 80o-90o. Given these results, the most reliable test is likely to be the one

based on radial distances only, for which the GOF test statistic indicates that model

M4 might be adequate, further reinforcing the results based on AIC.

6.5 Discussion

The methods proposed in this chapter are needed when point transects are placed

along a linear feature, such as a road or river, with respect to which the animals of

interest might exhibit a density gradient. This commonly occurs in published studies

(e.g. Ruette et al., 2003), but most often the possible impacts are not assessed directly.

I focused here on the estimation of abundance in the vicinity of the linear feature,

but usually one is interested in making inferences over much wider areas. CDS can

be seen as a two-stage process: (1) estimating the probability of detecting an animal

given it is in the covered area (model-based) and (2) scaling it up for the wider survey

region (usually design-based). Given that under the proposed methods we have a

model D(x) describing density as a function of distance from the linear feature, the

second stage involves model-based inference beyond x = w, although estimation for

uncovered areas along the road, within w of the road, is still design-based.

The methods assume that the detection function is independent of θ. If that is

not the case, the density gradient and detection function are not separately estimable

using the proposed methods. Note that this also poses problems in situations in which

say sectors of the point transects closer to the road are more or less visible than sectors

away from the road, i.e., in which the probability of given sector being visible is a

function of angle (see next chapter for an example and a possible alternative to deal

with such a problem).
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6.5.1 Simulation exercise

The results presented show that when analyzing distance sampling data with con-

ventional methods, ignoring an existing density gradient can lead to substantial bias,

casting doubts over the adequacy of such a procedure.

Based on the simulations, it is apparent that the methods work better in some

cases than others. They should work best in situations in which the true underlying P

is above around 0.15-0.20, due to inherent positive bias of HTL estimators for small

P . (More specifically, the HTL bias is a function of the coefficient of variation in

the P estimate; for small values of P the relative precision is usually poor, justifying

this advice.) Hence, these should work better for animals that tend to have higher

density near the linear structure rather than away from it. If sample size is large, as

in the hare survey example, the bias should also be small.

6.5.2 Applying the methods to the hare data

For the hare survey example, despite previous knowledge about the species and the

data showing clearly that the conventional methods should not be used, the GOF

statistics associated with the conventional analysis were non-significant (at the usual

5% significance level). However, a simple Kolmogorov-Smirnov test of the uniformity

of the sighting angles distribution (expected in the absence of a density gradient)

would allow identification of the non-uniform distribution of animals with respect to

the road (in this case P< 10−4), further justifying the suggestion of Buckland et al.

(2001, p. 275) that sighting angles might have relevant information in point transect

surveys. (Note these might also allow identification of responsive movement in the

absence of a density gradient.) I therefore recommend that as a precursor to applying

CDS approaches, such an inspection of sighting angles is undertaken.
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The hare survey data demonstrate the potential difficulties in applying the meth-

ods proposed here to real data; alternative models of the density gradient lead to

considerable variation in the results. Gathering independent information on d(x) (see

Chapter 7) will help to distinguish candidate models, allowing the use of more reliable

models for the density gradient and making more reliable inference.

Because detection probabilities seem close to 0 at 150 m, an analysis was imple-

mented for different truncation values, from 99 to 147 m, in 3 m intervals (analysis

not shown). As more severe truncation is used, the more similar the estimates from

the different models become. Therefore, and although the distinction amongst the

contending models does not become easier, such distinction becomes less important.

Reducing the truncation distance brings nonetheless other problems, as there is a

loss in precision and it becomes less likely that the density at w can be assumed

representative of the wider survey region. Hence the choice of an appropriate trunca-

tion distance for the proposed methods might be a more influential decision than for

conventional methods, for which the choice of truncation distance is usually straight-

forward.

Given the large differences in estimates considering different models, an approach

that incorporates model uncertainty in the estimates might be used, like a bootstrap

procedure, in which the choice amongst the competing models is done for each boot-

strap resample (e.g. Buckland et al., 1997). This was not implemented here because

the focus was on the new methods to deal with non random samplers.

6.5.3 Implications for line transects

The proposed methods consider points laid along lines, but the same problems ap-

ply if the linear feature itself is used as a line transect, as described in chapter 5.

Hiby and Krishna (2001) showed that, provided animal density is unrelated to paths,
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distance sampling might provide unbiased estimates along curved paths, under mild

assumptions on the path’s curvature. However, if density is markedly different in the

vicinity of the linear feature, then substantial bias in abundance estimates can be

anticipated if line transects are placed along linear features.

The proposed methods are not easily extended to line transects4 where the sighting

angles convey information both on the density gradient and on the search process,

and such information can not easily be disentangled. Hence, methods like those of

chapter 5 must be used instead.

4 But see nonetheless the last sentence of chapter 5



Chapter 7

Extending the methods to more
complex scenarios

7.1 Introduction

In chapter 6 a hare (Lepus timidus hibernicus) data set collected in 2005 in Northern

Ireland was used for illustration of the methods. Following on the output of that work,

a more extensive survey of the same species, this time in the Republic of Ireland, was

carried in 2006, with the objective of providing baseline information on the population

status of this species.

In this chapter I analyze the data resulting from that survey. For the purposes

of this thesis, the main interest is not on the results per se, but to illustrate how the

previous methods can be easily extended to accommodate certain particularities of

a given data set. The advantages of using methods based on maximum likelihood

are again recognized and emphasized: they readily provide a framework for easy

generalization of methods and the combination of multiple sources of data.

In the next section the data set is briefly described. This is then followed by the

analysis of the data, adding increasing complexity. The chapter finishes with a brief

discussion.

154
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7.2 Data description

The motivating data was collected as part of a large survey effort to estimate the

population size of hares in the Republic of Ireland, in the spring of 2006, building on

the experience obtained through the analysis of the hare data from Northern Ireland

in 2004-2005 (part of this analysis is shown in chapter 6).

The data consisted of three separate data (sub-)sets, as described below.

1. The main data set. This comprised 2440 point transects, located on 533 ran-

domly selected squares across Ireland, in which a total of 87 hare clusters were

detected. Due to insurmountable logistic difficulties associated with truly ran-

dom location of points trough the landscape, these points were placed along

roads, which motivated the use of the methods of chapter 6, presented in sec-

tion 7.3.2.

2. A set of repeated points. A random sample of 481 of the 2440 points from the

main data set was repeated by another team of observers. For these points,

the sections of the point for which visibility was not obstructed by any land-

scape feature (walls, dense high vegetation, etc.) were recorded. This was

done by recording for each of eighteen 20o sectors available in a circle (0o-20o,

20o-40o,...,340o-360o, see Figure 7.3b) whether there was an obstruction in that

direction or not. This allowed the evaluation of the effort distribution for each

point. Note that because the methods of chapter 6 use the distribution of sight-

ing angles to disentangle the detection function and the density gradient, one

of the assumptions of such methods is that the sighting effort is independent

of angle – this assumption can be relaxed with this additional data (see section

7.3.3).

3. A secondary transects data set. Based on the results obtained in chapter 6,
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there was the notion that obtaining a direct sample from d(x) could be helpful.

Hence a total of 93 secondary transects, of variable length, perpendicular to

the road, were surveyed, obtaining a direct sample of the density gradient.

Unfortunately sample size was very small, with only 9 hare clusters detected

(see section 7.3.4).

In section 7.3.5, I consider an analysis that combines the information of the 3 data

(sub-)sets in an attempt to provide better density estimates.

7.3 Building complexity in the analysis of the data

In the following sections, the 2006 hare data set is analyzed with increasing degrees

of complexity, motivated by considerations about the data and the best way to use

the information contained on it. For simplicity I deal exclusively with estimation of

the hares density in the vicinity of the road.

7.3.1 Conventional point transect analysis

A näıve analysis of the main data set alone, without the proper knowledge about

the survey design being points along roads, could motivate a conventional analysis of

such data using software Distance. This analysis is presented because it illustrates

well the danger of using software without a profound knowledge of the methods it

implements and the data used.

The model chosen for the detection function by minimum AIC was the half-

normal (with no adjustment terms, see figure 7.1), and the estimated density was

2.07 hares/km2. The most interesting feature of this analysis is that, based on it

alone, there would be no indication that the results were not sensible, with a good fit

of the chosen model to the data (P>0.35 for the standard chi-square, Kolmogorov-

Smirnov and Cramér-von Mises GOF tests).
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Figure 7.1: Republic of Ireland 2006 hare data and estimated detection function
considering conventional distance sampling methods. Note that the bars are rescaled
by dividing the actual count by the interval mid point for visual purposes.

The mean observed cluster size was 1.35, while the size bias regression based

estimate of mean cluster size was 1.25, suggesting a (not surprising) tendency for

larger clusters to be easier to detect. Being a side issue here, the latter value was

used as an estimate of mean cluster size for the subsequent estimates.

7.3.2 Using the methods of chapter 6

Given the knowledge that these animals distribution is clearly influenced by roads,

and given the survey points were placed along roads, the methods of chapter 6 should

be used.

As possible candidates for the density gradient I used the same models as in

section 6.4, namely M2, M3 and M4. The estimated density gradient and detection

functions are presented in figure 7.2. Unfortunately there is not sufficient information

in the data to distinguish clearly between these 3 models, with the ∆AIC being

only 2.84 between the lowest (HN density gradient) and the highest (HR density
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Figure 7.2: Estimated detection function (solid line) and density gradient (dashed
line) for the Republic of Ireland 2006 hare data set, considering the methods pro-
posed in chapter 6, according to, from left to right, models M2 (half normal density
gradient), M3 (hazard rate density gradient) and M4 (normal based density gradient).

gradient) AIC. This is especially worrying because the 3 models considered lead to

very different density estimates. Although all three models indicate consistently that

CDS would underestimate hare density, the corresponding point estimates for hare

density are considerably different, resulting in estimated densities of 6.35 (M2), 18.91

(M3) and 3.63 (M4) hares/km2 for the models considered above.

7.3.3 Unequal effort with respect to angles

In conventional distance point transect sampling, if a given sector of a point is not

available for detections to be made, the analysis is still straightforward. The area

not available for detection is simply subtracted from the total area. For practical

purposes this is done by recording the point’s effort as the proportion of the point

which was available for detection (this was the approach used above in section 7.3.1).

The reason one is allowed such a simple solution to the problem is the fact that

the sighting angle does not contain relevant information about the processes being

modeled (the detection function only).

However, for the methods proposed in chapter 6, the situation is considerably
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more complicated, because the sighting angle contains relevant information about

one of the processes modeled, namely the density gradient. An example illustrates

the problem: if the sectors closer to the road (i.e., close to 0 and 180 degrees, if 0

is straight along the road) were available for detections in only half the points, we

would interpret the observed data as indication that the animals tended to avoid the

road, even if the density gradient was uniform, because there would be considerably

less detections near the road than one would expect under such a density gradient.

A closer look at the main survey data revealed that there were many points for

which the recorded effort was not 1 (Figure 7.3a), i.e., for which some sectors were

not visible (due to walls, fences, dense vegetation, etc) and hence for which no hares

could be detected. Provided that the missing sectors were random with respect to

sighting angles, the methods should work well. However, based on the indication

from the data for the repeated squares, for which there was information not only on

the effort for each point but also for which sectors were visible (Figure 7.3b), we see

that sectors closer to the road were much more likely to be obstructed by visibility

barriers. This meant that the analysis of such data ignoring the unequal availability

of angles would not be adequate.

The original idea underlying the proposed approach is due to David Borchers.

We can condition the inferences on the angles known to be visible from each point

(those at which animal sightings were made). To construct the distribution of sectors

available, given sectors visible, I use the repeated points data, for which the sectors

available to be detected were recorded. Hence an assumption of this approach is that

the effort distribution by sector, for the repeated squares, is representative of the

main survey effort.

Consider the following notation:

• υ(θ) is an indicator variable that takes the value 1 if angle θ is visible from the
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Figure 7.3: Republic of Ireland 2006 hare data set survey effort. a) Number of points
with each level of effort for the main survey data set (effort 1 corresponds to the
entire point being visible, 0 to a point without any sector visible); b) Solid line length
in each sector represents the proportion of points, for the repeated points, for which
each of the eighteen 20o sectors were visible. The thicker dotted line represents the
road and the thinner dotted lines represent the sector’s boundaries.

point and 0 otherwise.

• Θ is the set of angles visible from a point and Θvis is the set of angles known

to be visible from the point, i.e. υ(θ)=1 if θ ∈ Θvis. For survey points angles

exist that, although visible, are not contained in Θvis.

• p(υ(θ)) is the probability of angle θ being visible from the point

• p(υ(θ)|Θvis) is the probability that angle θ is seen from the point, conditional

on the fact that the angles Θvis are visible. This is the fundamental quantity

that will contribute with new information for the likelihood.

• g(r, θ) is the detection function, and as before I assume angular symmetry, i.e.,

g(r, θ) ≡ g(r).

• π(r, θ) is the pdf of animal locations in a point, and π(r, θ|Θvis) is the corre-

sponding pdf , conditional on the angles known to be visible Θvis.
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Assuming that the repeated squares are a representative sample of the main survey

effort, that data can be used to estimate both p(υ(θ)) and p(υ(θ)|Θvis). Because only

points for which at least 1 animal was detected contribute for the likelihood, the main

survey data has the information needed about Θvis for all the relevant points, while

for the repeated squares data Θvis is known for all points. In the case of the main

survey, for point k in which nk detection were made, Θvis is known for up to nk angles

(if all animals are detected at different angles).

The idea is to write down a pdf , which extends equation 6.9, now conditional on

the angles known to be visible at each point. This leads to

f(r, θ|Θvis) =
p(υ(θ)|Θvis)π(r, θ|Θvis)g(r)∫

R

∫
θ

p(υ(θ)|Θvis)π(r, θ|Θvis)g(r)dθdr
. (7.1)

It is assumed that π(r, θ|Θvis) is independent of Θvis, which corresponds to as-

suming that the hare density in a sector is independent of a sector being visible or

not. The extent to which such an assumption might hold is unknown.

Note that while the above formulation assumes θ ∈ (0o, 360o), in the hares case we

have Θvis for each point as the set of 20o sectors that were visible, rather than exact

angles. For that reason, one needs to assume that if a given angle is known to be

seen because an animal was detected at it, the entire 20o sector that contains it was

visible (e.g., if a hare was detected in point k at 5o then Θvis = 0o − 20o). A further

complication related to implementation is due to the fact that methods of chapter 6

assume folding over the two symmetry axis, and after folding the 18 original sectors

map onto 5 sectors only.

Using a likelihood based on the conditional pdf presented in equation 7.1, I esti-

mated the detection and density gradient, now accounting for the unequal effort by

angle. The resulting models are presented in figure 7.4, along with the initial results
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Figure 7.4: Estimated detection function (solid line) and density gradient (dashed
line) for the Republic of Ireland 2006 hare data set, considering the methods pro-
posed in chapter 6, according to, from left to right, models M2 (half normal density
gradient), M3 (hazard rate density gradient) and M4 (normal based density gradient),
accounting for unequal effort by sector (in gray). For comparison the results ignoring
accounting for the unequal effort effect are shown in black.

ignoring the effect of the effort by sector for comparison. As expected, for models M2

and M4 the effect of accounting for sectors near the road being less visible is that the

density gradient presents relatively more animals near the roads than when ignoring

such effect, but the changes are minor. The pattern for M3 is counterintuitive, in the

sense that more animals are estimated to be at large distances; this could be due to

the inability of the model to adequately describe this data.

In terms of density estimates, that corresponds to a very slight increase in abun-

dances when compared to those obtained in section 7.3.2. The estimates are now

respectively 6.37, 23.97 and 3.90 hares/km2, and based on AIC M2 is the best model,

although ∆AIC for models M3 and M4 is less than 2.

7.3.4 Estimating the density gradient using secondary tran-
sects

The data on secondary transects is potentially very useful, because it provides direct

information about the density gradient, rather than relying on more complicated
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methods to estimate it. Hence, we can use the distances from the road, for hares seen

along the secondary transects, and a likelihood as in equation 5.7, to estimate the

parameters of the model assumed for the density gradient. This assumes constant

visibility as you go away from the road

However, there is an additional issue regarding the use of this data set to estimate

the density gradient. A closer look at the length of the secondary transects surveyed

(Figure 7.5) reveals that care needs to be taken in the interpretation of the data, which

is not a random sample from the density gradient: even if the transects were a random

sample (with respect to the along-road dimension), they are clearly not random in

the dimension perpendicular to the road. Larger distances are less represented than

smaller ones because more effort was allocated near the roads than far from the roads

(note all the transects started at the road).

Assume that T secondary lines, perpendicular to the linear feature, were surveyed,

and for line t (t = 1, 2, ..., T ), nt animals were seen (
T∑

t=1

nt = n), at distances xtj from

the road (j = 1, 2, ..., nt), such that all the distances seen in transect t are represented

by xt and all distances are represented by x = (x1, x2, ..., xj). Define the start and

end points of line t to be respectively at xs
t and xe

t . We could use one of the following

two approaches to estimate the density gradient parameters based on this data, which

are just extensions to equation 5.7 to accommodate for unequal line lengths.

The first approach is to define an attenuation function as the proportion of lines

that cover a given distance x from the road, here represented by at(x), which can be

estimated from the data (the start and end points of each line). Then the likelihood

L(φ2|x) =
n∏

i=1

d(xi)at(xi)
max(xe

t )∫
min(xs

t )

d(x)at(x)dx

(7.2)

will allow to estimate the parameters of interest accounting for the unequal line
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Figure 7.5: Length of each of the 93 secondary transects available for the Republic of
Ireland 2006 hare data set. The circles represent distance from the road to the hare
clusters detected, along the corresponding transect. Note that transect number was
assigned starting with transects with animal sightings, hence the otherwise peculiar
pattern, with all the hares detected in the first few transects.
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lengths.

A second alternative approach is to consider that the observed data corresponds

to censored samples of a common density gradient. Hence we can build a likelihood as

the product of the likelihoods associated with each transect (which represent different

censored levels) as

L(φ2|x) =
T∏

t=1

nt∏
j=1

d(xtj)
xe

t∫
xs

t

d(x)dx

. (7.3)

Despite sharing common points, the two approaches could lead to different results.

While for the first approach we assume that all lines could potentially contribute to

the likelihood with distances between the global minimum and maximum distance,

on the second approach we condition on the actual range of distances covered by

each line. Hence, if the density gradient is always the same but animal density may

differ by line, the second approach might be preferred over the first one, because the

inferences are conditional on the range of distances covered by each line.

Figure 7.6a shows the histogram of secondary line lengths and the corresponding

at(x) for the hare data. A half-normal fit to at(x) is also shown (Figure 7.6b).

The density gradient was estimated for the hares data set, using only the data

from the secondary transects (i.e., ignoring the point transect data). A normal model

for the density gradient was considered, as there was not much evidence supporting

the increasing (with distance from the road) density gradient as shown in figures 7.2

and 7.4. The resulting estimated density gradient is shown in figure 7.7, for the two

approaches described above. Note that for the first approach, it is shown the result

of using both the empirical approximation to at(x), based on the data, and a half-

normal approximation to it. The estimated density gradient, ignoring the unequal

line length, is also shown for comparison.
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Figure 7.6: Details about the secondary transects effort allocation. a) Histogram of
line lengths for the secondary transects; b) The effort attenuation function due to the
different line lengths, at(x). The solid line represents a half-normal fit to the data,
which can be seen as a continuous approximation to the underlying discrete data.

As expected, because there is considerably less survey effort away from the road,

including the unequal effort by distance effect in the likelihood leads to a density

gradient with proportionally more animals away from the road, irrespective of the

specific method used to estimate the gradient.

7.3.5 Combining the information from points and lines

The density gradient models used for the points likelihood are constrained to have

their maximum at w (=250 m). Motivated by the clear differences in the estimated

density gradient when considering the information on points or lines separately (cf.

figures 7.2 and 7.4 with figure 7.7), a fourth model was used for the density gradient,

which would allow a mode for the density gradient. The normal model was used.

However, consistent with the previous 3 models considered, the estimated density
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Figure 7.7: Estimated density gradient based on the secondary data alone for the
Republic of Ireland 2006 hare data set, considering a normal model for the density
gradient. The dashed lines results from using the first approach (based on the attenua-
tion function, considering both an empirical approximation to at(x) and a half-normal
approximation). The dotted line results from using the second approach (conditional
on the actual line lengths). For comparison the estimated density gradient ignoring
the unequal line lengths is also shown (solid line).
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Figure 7.8: Estimated detection function (solid line) and density gradient (dashed
line) for the Republic of Ireland 2006 hare data set, using the methods proposed in
chapter 6, considering a normal density gradient.

gradient did not present a mode (Figure 7.8).

Note that on the basis of AIC alone this model is marginally worse than M2, with

∆AIC=1.1, and a corresponding density of 10.31 hares/km2. The likelihood surface

is flat around the maximum in the density gradient parameter dimensions (results

not shown). Note however that density estimates are very insensitive to moderate

changes in parameter estimates because for this particular case different density gra-

dient model parameter values translate into to very similar shapes of density gradient

at distances less than 250 m.

It seems obvious at this point that one could build a likelihood that integrates the

information from points and lines, since there is information about the density gradi-

ent in both. As illustrated before in the example of section 6.4, the information about

the density gradient contained in the points alone does not allow a clear distinction

between different models for the density gradient, and the additional data collected
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in perpendicular lines with respect to the linear feature at hand might contribute to

facilitate such a distinction.

Note that problems can be anticipated for the analysis of the hares data set,

because the estimated density gradient is considerably different when we consider

the information contained in lines and points separately. I use the data here for

illustration purposes, and the reasons for possible inconsistencies are reviewed in the

discussion below.

The combined likelihood is given by the product of two distinct likelihoods, namely

the points (Lp) and the lines (Ll) likelihoods, as

Lpl = LpLl (7.4)

where Lp is as in equation 6.11, or in the specific case of the hares data, the corre-

sponding unequal angle effort likelihood equation 7.1, and Ll is as in equation 5.7, or

in the case of the hares, the corresponding unequal line length equations 7.2 or 7.3.

The estimated detection function and density gradient model, using this likeli-

hood, with a normal model for the density gradient (such that an estimated mode

could be within or beyond 250 m), and considering the unequal line lengths and

unequal angle effort options, is shown in figure 7.9.

When we estimate the density gradient from a joint likelihood, combining in-

formation from the point data and the secondary transect data, the latter largely

determines the model shape (compare Figures 7.2, 7.4 and 7.9). This comes as no

surprise, because the likelihood surface for point data alone is almost flat with respect

to density gradient model parameters. This means that although we have only 9 ob-

servations in the secondary transects, these can change considerably the conclusions

drawn from the data. The hare density estimate, assuming this is the correct model,

is 3.27 hares/km2.



170

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance from the road (m)

d(
x)

g(
x)

0
0.

00
16

0.
00

31
0.

00
47

Figure 7.9: Republic of Ireland 2006 hare data estimated detection function and
density gradient based on a likelihood combining information on points and lines
(equation 7.4), considering a normal density gradient, and using the unequal line
lengths and unequal angle effort options.

7.4 Discussion

Given the results presented, it is hard to put forward a single estimate for the density

of hares in the Republic of Ireland in 2006, even for the covered area, which in this

case corresponds to strips in the vicinity of roads. The task becomes more difficult

when one wants to extrapolate for a wider area, which ideally would correspond to

the entire country. Being side issues with respect to this thesis, multiple sampling

and design issues make such task even harder.

With respect to the material presented in this chapter, the hares data set used

had two shortcomings that might have led to results that are hard to interpret: (1)

the objective of collecting the repeated points data was not to deal with the unequal

effort in the main survey and (2) the secondary transects might have not been a

random sample of possible transects.
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The repeated points were not surveyed by the same teams responsible for the main

survey. Besides that, the objective of these repeated points was not, a priori, to use

the effort data to correct the main survey data for the sectors not visible. Hence there

was no attempt to have clear definitions on what is a visible sector. There are also

peculiarities in the point placement that might have been responsible for differences

in the effort distribution of the main survey and the repeated squares. Therefore,

the small changes in estimated density by incorporating this aspect in the analysis

of the data might have been partly due to the inconsistencies across these two data

sets. Nonetheless, provided one is aware of these methods, the ideal option will be to

record at each point the sectors unavailable for detections to be made. Naturally, if

animal density in a sector is dependent on a sector being visible or not, it becomes

much harder to deal with such issue.

An alternative to condition inferences in the angles known to be visible could be

to condition on the total effort at a point, as there was some evidence that, as one

might expect, the smaller the effort at a point, the more such effort tended to be

concentrated at sectors away from the road (data not shown).

If the information about the density gradient was consistent for secondary tran-

sects and points, we would expect the density gradients estimated to be similar,

independently of the information used, and to achieve more consistent and reliable

results by combining the methods of chapters 5 and 6. However, comparing all the

estimated density gradients using or not the secondary data, we see that accounting

for the secondary data leads to considerable changes, and these directly influence the

estimated densities. The survey design according to which the secondary transects

were selected was not random, and it is likely that this fact impaired the results,

because the sampled secondary transects corresponded to areas which were easier

to survey and hence not really representative of the whole vicinity of the road. An
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additional issue that might be partially responsible for the differences in estimated

density gradient using the points data versus the secondary transects data is that the

censoring in the secondary transects is not independent of the actual density gradi-

ent: given that the secondary transects stop at boundaries and presumably density

is much lower near boundaries, the two are confounded.

Nonetheless, the data set served well for the main purpose of this chapter: illus-

trating how, once cast into a likelihood approach, the methods proposed in earlier

chapters are readily generalized to more complicated scenarios.



Chapter 8

General discussion and potential
new research directions

8.1 Introduction

This thesis deals with two main problems in CDS: (1) measurement error in the

distances used for estimation, and (2) situations under which the usual availability

of distances proportional to area fails. This failure is usually due to a flawed survey

design, with samplers allocated non-independently of animal distribution, but it might

also be the consequence of an inadequately small number of samplers. As shown in this

work, both of these might lead to considerable bias if ignored, and hence methods

to account for them in situations for which they cannot be avoided by adequate

survey design and field methods are essential. The abundance of examples, referenced

throughout this thesis, in which one or both are potential problems, clearly shows

that these are issues worth pursuing further.

Despite being separate issues in practice, the key CDS assumptions (except for

g(0) = 1) result in a common conceptual problem: the disruption of the underlying

distribution of distances available for detection, which is assumed known by design

for CDS estimators. In this sense, in terms of their consequences, measurement

error, non-random samplers, small number of samplers and even animal movement

173
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can be conceptualized as a change in the uniform (for line transects) or triangular

(for point transects) distributions of available distances, which would be expected

by design. Hence, although the causes might be different, the consequences are very

similar. Undetected animal movement might be seen as measurement error, likely

with both a systematic and random component, provided animals do not exit or en-

ter the covered strips during the survey. In the presence of random movement or

attraction, the resulting distances could potentially be modeled using an underesti-

mation error model, while for the avoidance, an overestimation error model may be

adequate. Note, however, if movement is such that animals tend to move in and out

of the covered area, density could be greatly overestimated due to the joint effect

of the net underestimation of distances and an inflated encounter rate. Similarly, if

samplers are laid along a linear feature which the animals avoid, this could be viewed

as undetected avoidance movement or a tendency to overestimate distances, while if

animals prefer areas near the linear feature, this could be viewed as attraction move-

ment or underestimation of distances. Considering these similarities, it seems likely

that methods to deal with measurement error or non uniformity might be also used

to deal with say animal movement, with the key difference that the data needed to

estimate parameters for a movement model might in practice be harder to collect

than the data needed to describe an error model or a density gradient.

In the following, after a section with general comments on the results obtained

regarding measurement error (section 8.2) and density gradients (section 8.3), a few

possible avenues for further research (section 8.4) and some final conclusions (section

8.5) are presented.
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8.2 Measurement error

The effects of measurement error and potential biases in distance sampling estimates

were clearly demonstrated. Whenever the methods used to measure distances are

sensitive to errors, accounting for their effect should be attempted. Investigators ap-

plying distance sampling methods should describe clearly the way in which distances

are obtained – something that is sometimes ignored (e.g. Ashenafi et al., 2005). At

the very least they should discuss the possible impacts of measurement error for their

specific data sets. Training and calibration of observers involved in the survey, as

well as evaluating the quality of distance estimation with field trials, should always

be considered (as in e.g. B̊ardsen and Fox, 2006). The use of better technology should

be attempted whenever possible, but even simple alternatives, like pacing (as in e.g.

Catt et al., 1998), should provide much better data than pure visual “guesstimates”.

Models can only expect to be representations of truth, but never truth itself. This

is particularly true for simple models such as the additive or multiplicative mod-

els used for measurement error. The results in Alldredge et al. (in press) suggest

that using additive or multiplicative measurement error models might be an oversim-

plification, with evidence for measurement errors in real life studies probably being

neither simply additive or multiplicative. Consider, for example, a line transect sur-

vey where, rather than measuring perpendicular distances directly, radial distances

plus sighting angles are recorded. It seems plausible that the measurement error in

the resulting perpendicular distances is neither strictly additive or multiplicative, but

rather the joint effect of the error in the two separate components. Nonetheless, the

use of models is fundamental for the development and testing of new methods, but

not necessarily without problems. As an example, pure additive models are unlikely

to hold in most distance sampling scenarios. Following these, a true positive distance
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could be recorded as (or estimated to be) negative, which is not plausible for points

and would require an animal being recorded on the wrong side of the transect for

lines, although the latter might happen under some settings where the transect line

is not physically marked. This brings additional problems when assessing methods

by simulation: ad-hoc procedures for dealing with distances changing signs might be

needed. This is far from ideal since the smaller distances are the ones more likely to

suffer from this problem, but also those that are more influential for distance sampling

estimators. Further studies where measurement error is assessed under controlled sit-

uations, like Baird and Burkhart (2000), Williams et al. (2007) or Alldredge et al. (in

press), are needed to help clarify which models might be adequate and which should

be avoided when dealing with measurement error.

The use of the likelihood approach to deal with measurement errors seems flexible

enough to allow its integration in more complex scenarios, as is proposed in Burnham

et al. (2004, p. 375-376) to incorporate measurement error with MRDS.

8.3 Density gradients

If a density gradient is known to be present in a given area then the simplest ap-

proach is to avoid the problem by design: place systematically or randomly spaced

line transects perpendicular to the linear feature so that animals are distributed uni-

formly with respect to distance from the transect. An additional advantage of such a

procedure is that the encounter rate variance tends to be smaller, because most lines

will include both high and low density areas, rather than some lines being exclusively

in high density and others exclusively in low density areas (see e.g. Ancrenaz et al.,

2004; Thomas et al., 2007). Some additional examples of survey design consider-

ations to avoid problems with non-random samplers can be found in Marsden and

Pilgrim (2003) and Oppel (2006), namely trying to avoid potential density gradients
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promoted by tracks and rivers.

The problem of density gradients with respect to samplers should be taken seri-

ously by investigators using distance sampling, and the implication of these findings

is that placing points or lines along any linear feature should be considered only as a

last resort.

Because of potential density gradients, non random samplers may lead to severe

bias if the gradient is ignored, or strong assumptions if it is to be accounted for during

estimation. As an example the influence of trails or roads on animals should not be

assessed comparing these linear features as transects versus transects parallel to such

features at a given distance from it (e.g. Kuitunen et al., 1998; Miller et al., 1998).

The potential for confounding in the results is high, as the non-uniform distribution

of animals might promote different bias at different distances from the trail or road.

The approach described here to deal with density gradients should be applicable

even in the absence of a density gradient. However, it would be a poor default ap-

proach, because the requirement to estimate an extra function (the density gradient)

in addition to the detection function leads to increased variance compared with the

conventional estimator. Therefore, it should only be used if there is a priori reason

to expect that density gradients exist.

The use of D̂(w) as an estimate of density in areas not covered, allowing inferences

to extend to a wider survey region than what was covered, is only valid if the under-

lying model is a good representation of reality. This means that at distances greater

than w from the samplers the density should be constant (when averaged across sam-

plers). While this seems unrealistic, it is nevertheless more likely to be correct than

the assumption that average density is equal to the density at zero distance, required

for conventional methods to be valid. A formal test of uniformity of π(x), for x large

but < w, could be a way to assess whether this assumption is likely to be violated.
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But even this test will not deal with the fact that this procedure is based on extrap-

olation of the estimated density gradient beyond the range of distances in the data,

and hence extreme care is needed in the interpretation of these results.

As presented here, the methods assume the estimation of a mean density gradient.

If the density gradient is thought to change considerably across the study area, say

for example if this gradient depends on other covariates, such as ground slope or

habitat, a more complex approach might be useful. An option might be the use of

a parametric model for the density gradient, where the scale parameter could be a

function of such variables. However, this would require strong assumptions about the

density shape and the knowledge of these variables for the entire study area, which

might be difficult to obtain in real life applications.

The non-random allocation of transects is likely to lead to a non-uniform distribu-

tion of animals with respect to samplers. The use of, say, minor roads, is an example

of such a situation, quite common although generally criticized, and can lead to severe

bias. I stress that this work does not try to justify such cases in any way, but does

present options that might reduce bias if such methods are necessary due to practical

considerations. However, it is important to point out that a sample of roads, even

if these are a random sample of all available roads across a study region, is not a

random sample with respect to the available habitat. Any relationship between road

location and factors influencing animal distribution like the fact that roads tend to be

in flatter areas, or along rivers, etc, will certainly introduce a bias extremely difficult

to identify and remove. Tomás et al. (2001) give some good examples of why roads

should be avoided.

Whether sensible estimates can be obtained by distance sampling, using transects

laid along roads, has been addressed by Butler et al. (2005) for wild turkeys. This

work showed that in this case the turkeys’ use of habitat near the roads (< 100 m from
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it) and away from roads (> 100 m from it) is proportional to the amount of available

habitat, at least for some combinations of the factors studied (sex, time of day and

time of year). The study results allowed the authors to define optimal time periods

for survey, in the sense of times when this proportionality held best. This study is

important because it suggests that inferences from roads could not be extrapolated to

the wider region during specific time periods, leading to either considerable under or

overestimation depending on the period considered (see Butler et al. (2005) for further

details). I recommend that similar studies are conducted when the use of roads as

samplers cannot be avoided. However, it is worth noting that such results legitimize

the extrapolation of the obtained estimate to the wider survey region (in the time and

place they are carried out), but only provided the estimate in the covered area itself

is unbiased. It is still possible to imagine that small scale strong reaction to roads

could lead to bias in distance sampling estimates for the covered area (say if animals

tended to have a strong preference for the first few meters around the road), yet the

amount of survey effort needed to detect such a density gradient in a study like Butler

et al. (2005) would likely be prohibitive. Because of this, one should also consider

the extent to which any observed failure to detect a density gradient is caused by

lack of statistical power in the study, rather than lack of a true effect. Reassuringly,

however, it stands to reason that the less likely such an effect is to be detected, the

less likely it is to influence the actual survey results.

Investigators conducting distance sampling studies in which location of samplers

is not random with respect to the animals’ locations should routinely assess whether

substantial bias results; they should not simply assume no bias. I argue that if non-

random samplers are used, this should be clearly stated when reporting results, and

the possible implications for the results, given the characteristics of the study species,

discussed. See Baldi et al. (2001) for such an example.
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8.4 Further generalization of methods

With the exception of the preliminary work presented in chapters 3 (section 3.3) and 5

(section 5.2), the methods presented in this thesis were based on specifying parametric

models and estimating those models parameters based on maximum likelihood. Once

cast in such a framework, the potential for extending and combining methods is

almost unlimited, as illustrated in chapter 7.

There are other natural extensions to these methods. A sensible extension to the

methods presented is to use semi-parametric models both for the density gradient and

the detection function, e.g. using the key+series adjustments approach of Buckland

(1992). Extending this rationale further, it seems possible to consider also nonpara-

metric alternatives, considering for example kernels (e.g. Mack and Quang, 1998) or

splines (e.g. Rendas and Alpizar-Jara, 2005). Another possibility is to consider addi-

tional covariates in models of both the detection function and the density gradient,

e.g., following the work of Marques and Buckland (2003). These should not require

much in terms of methods development, although code implementation issues might

become considerably harder.

An example of potential useful combination of these methods, which would be

very interesting to implement in practice, relates to migration counts of whales (see

Burnham et al., 2004, p. 359-370 for further details about migration counts). The

typical setting consists of having two independent platforms on shore that detect ani-

mals passing by. The observations are matched to identify duplicates. Given that the

distance to shore is used as a covariate, this puts us in the realm of capture recapture

methods (with distance as a covariate), but still not true MRDS because the distri-

bution of animals with respect to shore cannot be assumed uniform. However, one

can extend these methods provided it is possible to use additional survey effort (e.g.,
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an aerial survey platform) to survey transects perpendicular to the coast. This data

would allow π(x) to be estimated directly1. This can then be used to implement a

true MRDS approach, in the sense that π(x) is included in the modelling, but that

π(x) no longer needs to be uniform, as originally suggested by Burnham et al. (2004,

p. 364).

Note also that in the case where secondary transects are used to estimate the den-

sity gradient, I have assumed that the distance from the road to the animals observed

is a random draw from the distribution of the density gradient (even if eventually only

after the unequal effort is accounted for). This means that probability of detection

along the secondary transects must be independent of the distance from the linear

feature. If that is not the case, say because the detection function in the secondary

transects is a function of covariates other than distance, which are correlated with

distance from the linear feature (e.g. in the migration count example, if wind caused

more turbulence as the plane gets further out in the sea, hence decreasing the detec-

tion function at larger distances from the coast), one could either (1) consider only

the animals detected in the shoulder of the secondary transects detection function,

hence avoiding the detection problem or (2) extend the likelihood to account for the

effect of the additional covariates, provided these were recorded for each observation.

It seems possible to consider a full generalization of distance sampling methods,

paraphrasing Barker and White (2004), a “mother-of-all-models”. This would be a

global distance sampling model, potentially addressing most assumption violations,

with g(0) < 1, multiple covariates, measurement error, non-uniform distribution of

animals (and eventually movement and spatial models). This model would ideally

1 Note I use π(x) here, but d(x) would be equivalent in this case, because despite the observations
being made from a point, the observations are treated as line transect data, in the sense that all
the observation are collapsed onto the line perpendicular to the coast passing by the observation
platform, hence becoming perpendicular rather than radial distances.
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be factorized such that each factor would correspond to a different component of the

data. Then, given the situation at hand, one would simplify the model accordingly,

dealing only with the model components that were deemed necessary.

8.5 Concluding remarks

One obvious conclusion is that for most problems, and most certainly for measurement

error and non-uniform transects, it is best to avoid the problems by using adequate

field methods and survey design than to attempt to deal with the problems at the

analysis stage. Hence, the need for adequate pilot surveys is strongly stressed, with

the explicit objective of minimizing assumption violation, allowing fine tuning of both

survey design and field methods.

The development of statistical models is important, but researchers need to focus

also on ways to make their research accessible to practitioners, under the risk of meth-

ods becoming useless in practice. It seems symptomatic that methods to deal with

measurement error, like Chen (1998), Chen and Cowling (2001) or Marques (2004),

have not, to the best of my knowledge, ever been implemented by others. These

references have not been cited unless to strengthen general comments on the need to

address the problem. Practitioner-orientated publications and free software develop-

ment should be a priority for applied statisticians whenever methods are developed

and believed to be of general use.

As it tends to happen with statistical methods applied by a wide range of practi-

tioners, the failure of assumptions of distance sampling methods is sometimes ignored

in practice. The view often seems to be that once the data have been collected, they

should be analyzed and conclusions drawn even if there is good evidence that prob-

lems could arise due to assumption failure. It is usually more difficult to get away with

this negligent approach to assumption failure if (1) the effect of assumption violation
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is well understood from a theoretical point of view, and the resulting bias known,

(2) illustrative real life examples exist showing how poor estimates might be when

assumption failure is ignored, and (3) methods to explicitly account for the failure

of assumptions are available. This thesis is an attempt to provide all three of these

in the case of measurement error and the use of non-random samplers in distance

sampling. In the future it will be harder to claim that the dangers of doing so are

unclear or unstated, or that no methods exist to deal with them.
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Appendix A

Developing the methods of section
6.2 starting from π(x, r)

The methods in section 6.2, dealing with points along linear features to which animals

respond to, were originally developed starting from the distribution of the perpendic-

ular distances (x) and the radial distances (r). This was intuitive in the sense that

we have two processes involved, the detection function, which I assume a function of

r alone, and the density gradient, which I assume a function of x alone.

Here is presented the original derivation under those settings, which was actually

the approach implemented in the R code used. As can be seen below, and not

surprisingly, the end result of implementing one or the other is the same (cf. equations

A.11 and 6.10). Some additional results are shown to be the same under either

approach.

A.1 Deriving the likelihood

We want to obtain π(x, r) = π(r|x)π(x). Note that the π(x) is obtained just as before

(see equation 6.4), hence only the conditional distribution is slightly different. We

can see that, given X = x, the value of r can take as a minimum value x, and as a

maximum value w (Figure 6.1b). And also that given X = x

198
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R|X=x =
√

x2 + U2 (A.1)

where U ∼ Uniform(0,
√

w2 − x2). This uniform arises based on the fact that if

points are randomly placed along the transect, any value for U is equally likely,

where U is a distance measured from the point (x, 0) to the point (x,
√

r2 − x2), in

a coordinate system where the origin (0,0) is at the center of the circle representing

the point transect (Figure 6.1c). Therefore,

FR|X(r) = Pr(R|X ≤ r) = Pr(
√

x2 + U2 ≤ r) = FU(
√

r2 − x2) (A.2)

and hence it follows that

πR|X(r) =
dFR|X(r)

dr
(A.3)

=
dFU(

√
r2 − x2)

dr
(A.4)

= πu(
√

r2 − x2)
d(
√

r2 − x2)

dr
(A.5)

=
r√

w2 − x2
√

r2 − x2
(A.6)

which leads to the joint distribution being

π(x, r) = π(r|x)π(x) =
r√

w2 − x2
√

r2 − x2

d(x)ϕ(x)
w∫
0

d(x)ϕ(x)dx

. (A.7)

Note that as with the approach presented in the thesis main chapter, we can

now build a pdf of detected distances that is used to estimate the parameters of the

processes involved, namely

f(x, r) =
π(x, r)g(r)∫

R

∫
X

π(x, r)g(r)dxdr
. (A.8)

Using the appropriate expressions leads to
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f(x, r) =

r√
w2−x2

√
r2−x2

d(x)ϕ(x)
wR
0

d(x)ϕ(x)dx
g(r)

∫
R

∫
X

r√
w2−x2

√
r2−x2

d(x)ϕ(x)
wR
0

d(x)ϕ(x)dx
g(r)dxdr

(A.9)

and this expression simplifies considerably because the integral in π(x) denominator

is a constant after integration, leading to

f(x, r) =

r√
r2−x2 d(x)g(r)

w∫
0

r∫
0

r√
r2−x2 d(x)g(r)dxdr

. (A.10)

The integral involved in the denominator turned out to be hard to implement. By

transforming x = r sin θ (dx = r cos θ dθ) it simplifies to

f(x, r) =

1q
1−x2

r2

d(x)g(r)

w∫
0

π
2∫
0

r d(r sin θ)g(r)dθdr

. (A.11)

After logs, simplifying and discarding constants not dependent on the parameters

this corresponds to maximizing the following log-likelihood

l(σ1, σ2|x, r) = [n ln

w∫

0

π
2∫

0

r d(r sin θ)g(r)dθdr]−1 +
n∑

i=1

log[d(x)g(r)] (A.12)

which was the actual likelihood implemented. Apart from a constant which is not a

function of the parameters, equation A.11 is the same as equation 6.10, and hence the

same parameter estimates are obtained by considering the likelihood based on either

of these.
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A.2 Distribution of radial distances given the den-

sity gradient is uniform

Under this setting, the distribution of r, the radial distances in a circle of radius w,

is given by

π(r) =

∫

X

πR|X(r)π(x)dx. (A.13)

On the other hand, under the conventional setting, the distribution π(r) is given

by equation 2.27,

π(r) =
2r

w2
. (A.14)

Here I show that, as expected, given π(x) is uniform, A.13 leads to A.14. Starting

from A.13, we have

π(r) =

r∫

0

πR|X(r)π(x) dx (A.15)

=

∫

X

r√
w2 − x2

√
r2 − x2

d(x)ϕ(x)
w∫
0

d(x)ϕ(x) dx

dx (A.16)

which considering an uniform d(x) leads to
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u(r) =

r∫

0

r√
w2 − x2

√
r2 − x2

1
w

√
w2−x2

w
w∫
0

1
w

√
w2−x2

w
dx

dx (A.17)

=

r∫

0

r
√

r2 − x2
w∫
0

√
w2 − x2 dx

dx (A.18)

=
r

w∫
0

√
w2 − x2dx

r∫

0

1√
r2 − x2

dx. (A.19)

Given a constant a,

∫
1√

a2 − x2
dx = sin−1(

x

a
) + C (A.20)

and

∫ √
a2 − x2 dx =

x
√

a2 − x2

2
+

a2

2
sin−1(

x

a
) + C (A.21)

are standard integration results (C is a constant), which applied to the integrals in

equation A.19 lead to

w∫

0

√
w2 − x2 dx =

w2π

2
(A.22)

r∫

0

1√
r2 − x2

dx = π (A.23)

hence

u(r) =
r

w2π
2

π (A.24)

=
2r

w2
(A.25)
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which concludes the demonstration.

A.3 Calculating the probability of detection

As in the conventional methods, the probability of detection is the mean value of the

detection function, with respect to the available distances, given by

P =

w∫

0

g(r)π(r)dr. (A.26)

The only added complication is the way the distribution of available distances is

obtained. Under the methods of chapter 6, the above expression becomes

P =

w∫

0

g(r)

∫

X

π(x, r)dxdr =

w∫

0

g(r)

∫

X

π(r|x)π(x)dxdr. (A.27)

Using the appropriate expressions, this leads to

P =

w∫

0

g(r)

r∫

0

r√
w2 − x2

√
r2 − x2

d(x)ϕ(x)
w∫
0

d(x)ϕ(x)dx

dxdr (A.28)

which simplifies to

P =
w∫
0

g(r)
r∫
0

r√
r2−x2

d(x)
wR
0

d(x)ϕ(x)dx
dxdr (A.29)

=
w∫
0

rg(r)
wR
0

d(x)ϕ(x)dx

r∫
0

d(x)√
r2−x2 dxdr. (A.30)

Using as before the transformation x = r sin θ (dx = r cos θ dθ) this further

simplifies to
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1
w∫
0

d(x)ϕ(x)dx

w∫

0

π
2∫

0

rg(r)d(r sin θ)dθdr. (A.31)

This expression can be evaluated numerically, as an example using the multi-

dimensional integration routine adapt in R. Note that, not surprisingly, this is the

same as equation 6.16.


