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Abstract 

The clean reaction of 5-lithio-6-diisopropylphosphinoacenaphthene (1') with 

dichlorophosphines, RPCl2 (R = Ph, Fc, NMe2, iPr), led to the formation of peri-substituted 

phosphino-phosphonium chloride salts 2-5. The synthetic utility of these salts was 

demonstrated in a range of reactions. Mixed tertiary/secondary bis(phosphines) (6 and 7) 

were prepared by the LiAlH4 reduction of phenyl or ferrocenyl phosphino-phosphoniums (2 

and 3), and the bis(borane) adduct of 6 was prepared by reduction of 2 with BH3·SMe2. 

Reaction of 2 and 3 with a large excess of MeOTf at elevated temperature gave 1,2-

diphosphoniums (11 and 12), which were subjected to reduction and co-ordination to a 

molybdenum(0) centre. 

An investigation into the co-ordination chemistry of 2 revealed three distinct modes of 

reactivity. In the reaction with [(nor)Mo(CO)4] the Mo(0) complex [(2)Mo(CO)4Cl] (18) was 

isolated, in which monodentate co-ordination was observed. [PtCl2(cod)] reacts with the 

chloride and triflate salts of 2 to form [(2Cl)PtCl2] (19) and [((2Cl)PtCl)2][TfO]2 (21) 

respectively, both of which show co-ordination of 2 as a bidentate 

phosphine/chlorophosphine ligand. A palladium(II) dimer (22) in which 2 forms a chelating 

phosphine/phosphide ligand was isolated from the oxidative addition of  2 to a palladium(0) 

complex.  

The geminally bis(peri-substituted) tridentate phosphine (27) was prepared by reaction of 1' 

with half an equivalent of iPrPCl2. 27 has a rather strained geometry, and displays restricted 

dynamics on an NMR timescale, which leads to anisochronicity of all three phosphorus 

nuclei at low temperatures. Strained bis and tris(sulfides) 28 and 29 and the bis(selenide) 30 

have been isolated from the reaction of 27 with sulfur and selenium, respectively. A series of 

co-ordination complexes, [(27)Cu(MeCN)][BF4] (32), [(27)PtCl][Cl] (33), [(27)FeCl2] (34) 

and fac-[(27)Mo(CO)3] (35), with tetrahedral, square planar, trigonal bipyramidal and 
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octahedral geometries, respectively, were synthesised. In all of these complexes the 

tris(phosphine) backbone is distorted, but to a significantly smaller extent that in the 

chalcogenides 28-30.   
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Chapter 1 – Introduction 

1.1. Introduction to peri-Substitution 

peri-Substitution is ‘a double substitution in positions 1 and 8 of the naphthalene ring’.
1
 

Unique restrictions are enforced when two atoms other than hydrogen are placed in the peri-

positions unless there is a formal bond present, as only in naphthalene are the peri-atoms 

accommodated easily and the ring planar. peri-Substitution represents a middle ground 

between ortho-substitution in benzene derivatives and bay-region disubstitution in 

phenanthrene (see Figure 1). 

In ortho-substituted compounds the proximity of the substituents often leads to unusual 

reactivity. In peri-substituted compounds the closer proximity of the substituents results in 

stronger intramolecular interactions and formation of a direct bond is possible, hence there is 

potential for even more divergence from conventional reactivity. Bay-region disubstituted 

phenanthrenes ought to demonstrate even more interesting properties than peri-substituted 

systems. However, the synthesis of such species has proved extremely difficult due to steric 

constraints. For disubstituted compounds of all these types, molecular geometry is 

determined by a competition of attractive covalent and ionic interactions and repulsive steric 

forces.
1
 

 

Figure 1. ortho-Substitution, peri-substitution and bay-region disubstitution.  
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1.2. Phosphorus peri-Substituted Naphthalenes 

1.2.1. peri-Substituted Phosphorus Halides  

Several peri-substituted phosphorus halides have been reported to date. The starting point for 

their synthesis is the reaction of 1-bromonaphthalene with P4S10, which yields NapP2S4, a 

peri-substituted derivative of Lawesson’s reagent (see Scheme 1).
2
 The selenium analogue of 

this compound can be prepared by reaction of NapP2S4 with selenium, or better still by the 

reaction of the oligophosphine (NapP2)n with selenium.
3
 

 

Scheme 1. Synthesis of peri-substituted phosphorus halides.  

Chlorination of NapP2S4 gives NapP2Cl6, which exhibits unusual fluxional behaviour. 
31

P 

NMR spectroscopy revealed that, in solution, a rapid exchange between a phosphonium-

phosphoride and a bis(phosphorane) type structure takes place. Only the phosphonium-
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phosphoride structure was observed in the solid state by X-ray crystallography (see Scheme 

1).
4
  

Reaction of NapP2Cl6 with MeOPCl2 gives the peri-substituted bis(dichlorophosphine), 

Nap(PCl2)2 in a clean reaction.
5
 This compound can also be prepared from Nap(P(NEt2)2)2 

and HCl
 
(see Scheme 1).

6
 Reduction of NapP2Cl6 with magnesium yields (NapP2)n, which 

acts as a precursor to the corresponding bis(dibromophosphine), Nap(PBr2)2.
5
 Interestingly, 

reaction of (NapP2)n with iodine does not lead to bis(diiodophosphine) formation, instead a 

diiododiphosphine (Nap(PI)2) is formed (see Scheme 1).
5 
 

Despite appearing to be potentially useful synthons, little further work has been reported with 

peri-substituted phosphorus halides, perhaps due to the limited yields they are prepared in. 

Nap(PCl2)2 is a slight exception to this, as its oxidation and hydrolysis have been investigated 

quite thoroughly; these reactions, along with its reaction with LiAlH4, are outlined in Scheme 

2. Reaction with oxygen gives a monooxide, only forming bis(dichlorophosphine oxide) in 

low yields even after long reaction times.
7
 Chlorination of the monooxide leads to the 

formation of Nap(POCl2)(PCl4), in which the forced interaction of the oxygen atom leads to 

hyperco-ordination of the phosphorane centre.
8
 Hydrolysis of Nap(PCl2)2 gives a bridged 

bis(phosphate) and a polymeric species, the monomer of which can be obtained by reaction 

with CsOH.
7
 Hydrolysis after oxidation with O2 in dry conditions leads to an oxochloride. 

The primary phosphine, Nap(PH2)2, has been synthesised by reaction of Nap(PCl2)2 with 

LiAlH4. This compound exhibits the least geometrical distortion of all the 1,8-

bis(phosphino)naphthalenes (see section 1.2.2). A P-P bonded diphosphine, Nap(PH)2, has 

been observed in the 
31

P NMR spectrum and MS as a minor decomposition product of 

Nap(PH2)2 (Scheme 2).
9
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Scheme 2. Selected reactions of Nap(PCl2)2.  

The reactivity of NapP2Cl6 has been much less investigated than that of Nap(PCl2)2. 

However, its reaction with MeOH and NEt3 leads to an interesting phosphonate/phosphonite 

species. Further reaction with S or Se results in oxidation of the phosphonite centre (see 
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Scheme 3). Both the monoxide and mixed oxide/chalcogenides in Scheme 3 exhibit very low 

4
JPP coupling constants in the range of 3.7-6.7 Hz, suggesting the attractive interaction 

between the phosphorus centres is very weak.
10

 

 

Scheme 3. Reaction of NapP2Cl6 with MeOH/NEt3, and subsequent oxidation.  

 

1.2.2. 1,8-Bis(phosphino)naphthalenes 

Bis(phosphines) of the type Nap(PR2)2 are by far the most abundant and well-studied class of 

phosphorus peri-substituted compounds due to their ease of preparation and application as 

ligands in co-ordination chemistry. They are conveniently synthesised by the reaction of 1,8-

dilithionaphthalene with two equivalents of a chlorophosphine (see Scheme 4).  

 

 a
11

 b
12

 c
12

 d
12

 e
12

 f
12, 13

 g
12

 h
14

 i
14

 j
14

 

R Me Et iPr Cy tBu Ph Me NMe2 NEt2 NiPr2 

R' Me Et iPr Cy Ph Ph C6F5 NMe2 NEt2 NiPr2 

 

Scheme 4. Reaction of 1,8-dilithionaphthalene with various chlorophosphines. 

It is noteworthy that Nap(PtBuPh)2 is the bulkiest bis(phosphine) of this type reported to 

date,
12

 suggesting the peri-substituted naphthalene environment cannot tolerate a great deal of 

steric crowding. This is not surprising given that a degree of steric strain is present in all peri-
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substituted compounds, even when the individual substituents are not considered bulky. X-

ray crystal structures of these compounds reveal that the phosphino groups generally bend 

away from each other such that each phosphorus atom is out of the plane of the naphthalene 

ring in order to maximise the distance between the phosphine centres. This distortion is 

particularly pronounced in Nap(PtBuPh)2, for example, where the phosphorus atoms are 

displaced out of the plane of the naphthalene by around 0.9 Å on opposite sides of the ring. 

However, in less bulky phosphines such as Nap(PCy2)2, the phosphine centres can be nearly 

co-planar with very little out of plane distortion (~0.1 Å out of plane).
12

  P···P distances in 

the bis(phosphines) shown in Scheme 4 are between 2.9-3.1 Å.
12,13,14 

As all the 

bis(phosphines) reported to date have a symmetric substitution pattern, direct observation of 

through space P···P coupling in solution NMR spectroscopy is not possible. However, MAS 

31
P{

1
H} NMR spectroscopy of Nap(PPh2)2 revealed 

4
JPP coupling of 199 Hz, indicating a 

significant through space interaction.
13

  

As alluded to earlier, the popularity of 1,8-bis(phosphino)naphthalenes partly stems from 

their application as rigid chelating ligands. The calculated bite angle of the most studied of 

these bis(phosphines) by far, Nap(PPh2)2, is 90º.
15

 Reactions of Nap(PPh2)2 with various M 

(II) halides (M = Ni, Pd, Pt) yield the corresponding [Nap(PPh2)2MCl2] complexes, which 

have served as versatile starting materials for further synthesis. For complexes of the metals 

from Groups 6, 7, 8 and 9, reaction of Nap(PPh2)2 with carbonyl complexes (particularly 

rings and clusters) is a common starting point.  A small number of gold complexes have also 

been prepared from 1,8-bis(phosphino)naphthalenes, with K[AuCl4] being used as the 

starting point.
16

 

Other synthetic work typically associated with phosphines has also been carried with 1,8-

bis(phosphino)naphthalenes. They undergo interesting reactivity with borane as the proximity 

of the two lone pairs allows for different bonding modes in the borane adducts formed. 
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Reaction of Nap(PPh2)2 with borane gives either a mono(borane) adduct or a boronium salt 

depending on the reaction solvent (see Scheme 5).
17

 The less hindered Nap(PMe2)2, however, 

forms an equilibrium between a bis(borane) adduct and a boronium salt (see Scheme 5).
 11

 

 

Scheme 5. Reaction of 1,8-bis(phosphino)naphthalenes with borane.  

Oxidation of 1,8-bis(phosphino)naphthalenes with oxygen, sulfur and selenium has also been 

investigated. Reaction with air, H2O2 or H2O2·urea leads to formation of a bis(phosphine 

oxide), whilst the analogous bis(sulfides) can be prepared from the reaction of Nap(PPh2)2 

with sulfur.
18 

However,
 
only a monoselenide has been reported from the reaction of Se and 

Nap(PPh2)2, presumably as the bis(selenide) would possess an excessive degree of steric 

strain. The monochalcogenides displayed in Scheme 6 have reasonably high 
4
JPP coupling 

constants in their 
31

P NMR spectra (43 Hz for Nap(PPh2)(SPPh2), 53 Hz for 

Nap(PPh2)(SePPh2)), suggesting there is a relatively strong interaction between the 

phosphines and phosphine sulfide/selenide centres (see Scheme 6).
18,19
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 a b c d e f g 

R Me Et iPr Cy tBu Ph Me 

R' Me Et iPr Cy Ph Ph C6F5 

 

 

Scheme 6. Oxidation reactions of 1,8-bis(phosphino)naphthalenes.  

The bis(phosphonite), Nap(P(OMe)2)2, has been prepared by reaction of Nap(P(NEt2)2)2 with 

MeOH.
20

 Mono- and bis(sulfides) and selenides, as well as a mixed chalcogenides of 

Nap(P(OMe)2)2, have been synthesised by reaction with the appropriate stoichiometry of 

sulfur or selenium. 
4
JPP coupling constants for the monochalcogenides are very low (3.0 and 

7.3 Hz for the sulfide and selenide, respectively), but interestingly a coupling of 5.8 Hz was 
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observed in the mixed chalcogenide suggesting that, for these particular compounds,  lone 

pair availability is only important to the magnitude of the 
4
JPP coupling  if both are free (see 

Scheme 7).
10

 

 

Scheme 7. Reactions of Nap(P(OMe)2)2 with sulfur and selenium.  
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1.2.3. Other Classes of peri-Substituted Phosphines 

There are three reported examples to date of P-P bonded peri-substituted diphosphines. 

Nap(PI)2
5
 and Nap(PH)2

9
 were discussed previously. Nap(PPh)2 was synthesised by the 

reaction of 1,8-dilithionaphthalene with PhPCl2, a route similar to that used for 1,8-

bis(phosphino)naphthalenes. This reaction does not proceed cleanly but Nap(PPh)2 can be 

isolated by column chromatography (see Scheme 8).
21

  

 

Scheme 8. Synthesis of Nap(PPh)2.
  

Repeating the above reaction with (NiPr2)PCl2 yielded the first peri-bridged phosphine, in 

which the phosphorus atom is part of a strained four membered ring (see Scheme 9). Like the 

reaction in Scheme 8, the desired product does not form cleanly and must be purified by 

column chromatography.
21 

An alternative, cleaner route which allows access to peri-bridged 

phosphines bearing aryl or alkyl groups was later developed; lithium-halogen exchange in a 

chlorophosphine substituted bromoacenaphthene was shown to lead to a ring closing reaction 

(see Scheme 9).
22
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Scheme 9. Synthesis of peri-bridged phosphines.
  

 

1.2.4. peri-Substituted Intramolecular Donor-Acceptor Complexes 

There are a number of examples above of peri-substitution forcing unusual bonding 

interactions and reactivity. The majority of the compounds discussed above were prepared 

from 1,8-dilithionaphthalene, which is prepared from commercially available 1-

bromonaphthalene.
23

 1,8-Dilithionaphthalene can be a difficult starting material to work with 

when trying to introduce different substituents in the peri-positions. Sequential lithiation of 

the peri-positions on naphthalene would allow attachment of different substituents; however, 

this would require use of 1,8-dibromonaphthalene as a starting material. Unfortunately, 

synthesis of 1,8-dibromonaphthalene is quite elaborate and has a poor yield.
24

  

On the other hand, 5,6-dibromoacenaphthene can be prepared in good yields and high purity 

rather easily
25

 and the acenaphthene bridge has no influence on reactivity in the peri-region. 

Sequential lithiation of 5,6-dibromoacenaphthene is therefore a versatile starting point for the 

synthesis of unsymmetrically peri-substituted phosphorus compounds. This approach has 



29 

 

been demonstrated in the synthesis of a phosphonium-phosphoranide, Acenap(iPr2P)(PCl2),  

and a mixed phosphine/phosphonite, Acenap(iPr2P)(P(OPh)2) (see Scheme 10). The 
4
JPP 

coupling constant in Acenap(iPr2P)(P(OPh)2) is 199.5 Hz, suggesting this interaction is 

similar to that observed in 1,8-bis(phosphino)naphthalenes (see section 1.2.2). The 

phosphonium-phosphoranide species represents a very rare example of a dichlorophosphine 

acting as a Lewis acid. The 
1
JPP coupling constant in this compound is 363 Hz, with a P-P 

bond length of 2.26 Å and hence this is clearly a formal single bond. This results in the 

phosphoranide phosphorus having a pseudo-trigonal bipyramidal geometry with the chlorides 

in the axial positions. This is an excellent example of how intramolecular phosphine donation 

can create unusual bonding environments, since phosphine-phosphine adducts are relatively 

rare, and in all cases thermally unstable (for example Et3P·PhPCl2 can be observed at low 

temperature by NMR).
26

 In chlorinated solvents Acenap(iPr2P)(PCl2) undergoes slow 

disproportionation to a diphosphonium, [{Acenap(iPr2PP)}2][Cl]2, and an unknown species, 

but in the solid state no noticeable decomposition is observed.
27

 

 

Scheme 10. Acenap(iPr2P)(Br) as a building block for novel peri-interactions.  



30 

 

The phosphonium-phosphoranide, Acenap(iPr2P)(PCl2), in Scheme 10 has been shown to 

undergo a very unusual reduction with BH3·SMe2, leading to a diborane adduct. This 

compound can be thought of as a diborane adduct of a phosphine-stabilised phosphinidene, a 

view which is supported by the fact that it can be deprotected with an excess of 

dimethylamine to form the phosphine-stabilised phosphinidene. The deprotected species has 

a rather high 
1
JPP coupling of 480 Hz but the P-P bond length, while short at 2.15 Å, suggests 

only partial double bond character. This compound is arguably the first example of a low co-

ordinate phosphorus species stabilised by a peri-interaction, and the fact that it is thermally 

stable shows the potential of peri-substitution as a tool for not only synthesis, but also 

stabilisation, of unusual bonding environments in main group chemistry. The only reaction 

reported with the deprotected phosphinidene to date is that with Pd(PPh3)4, in which it 

undergoes dimerisation to form a tetradentate ligand with a central diphosphene unit (see 

Scheme 11).
28

  

 

Scheme 11. Synthesis and co-ordinative dimerisation of a phosphine stabilised 

phosphinidene. 
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1.3. Phosphorus Cations 

1.3.1. Phosphonium Cations 

Phosphoniums are the most well studied and abundant class of phosphorus cations. They are 

of the general form, R4P
+
, and are normally stable to air and moisture. They can be 

synthesised in a variety of different ways, some of which are displayed in Scheme 12. Tetra-

alkyl phosphoniums are the most common variant, which can be prepared by oxidation of 

trialkylphosphines with alkyl halides (Eq. 1). Homoleptic tetra-aryl phosphonium salts can be 

synthesised by aryl abstraction from phosphoranes (Eq. 2 and 3). Tetraphenyl phosphonium 

has found wide application as a counterion to inorganic and organic anions, as its salts 

crystallise well and their weakly co-ordinating properties have been exploited in the 

stabilisation of reactive species.
29,30,31

 Reaction of amines or alcohols with PCl5 give 

homoleptic amino and alkoxy phosphoniums (Eq. 4 and 5). Routes to heteroleptic 

phosphoniums are also well known; mixed organo-halide phosphonium salts have been 

synthesised both by halogen mediated oxidation of a phosphine and also by halide abstraction 

from phosphorus(V) precursors (Eq. 6 and 7).
32

 Perhaps the most important application of 

phosphonium salts is their use in the Wittig reaction, where triarylalkyl phosphoniums, such 

as [Ph3PMe][I], are used as precursors to phosphonium-ylides (Eq. 8 and 9), the key reagent 

in this reaction.
33
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PR3 + RX → [R4P][X] (R = alkyl, X = I, Br) (Eq. 1) 

PPh5 + BPh3 → [Ph4P][BPh4] (Eq. 2) 

PPh5 + MeBr → [Ph4P][Br] + PhMe (Eq. 3) 

PCl5 + 4 PhNH2 → [(PhNH)4P][Cl] + 4 HCl (Eq. 4) 

 PCl5 + 4 PhOH → [(PhO)4P][Cl] → [(PhO)4P][PCl6] (Eq. 5) 

PPh3 + Br2 → [Ph3PBr][Br] (Eq. 6) 

PhPCl4 + SbCl5 → [PhPCl3][SbCl6] (Eq. 7) 

PPh3 + MeI → [Ph3PMe][I] (Eq. 8)  

[Ph3PMe][I] + B
-
 → Ph3P=CH2 + BH (B = base) (Eq. 9) 

Scheme 12. Preparation of phosphonium salts.
  

Some phosphonium cations have been synthesised from 1,8-bis(phosphino)naphthalenes by 

reaction with triflic acid or alkylating agents (see Scheme 13).
 9,11,34 

In all of these reactions 

bis(phosphoniums) could not be synthesised, even with a large excess of the oxidising 

reagent, presumably because the electrostatic repulsion and/or steric strain between the 

phosphonium centres would be too high. Phosphonium/phosphine species exhibit much lower 

4
JPP coupling than 1,8-bis(phosphino)naphthalenes. For the alkyl phosphoniums in Scheme 

13 these values range from 15-32 Hz, while the protonated species have much higher 

couplings of 107-109 Hz.
9,11,34

 Interestingly, the P···P distances in the Nap(PPh2)2 derived 

phosphoniums in Scheme 13 range from 3.19 to 3.27 Å, with the benzyl substituted 

compound (the bulkiest) having the shortest separation, followed by the protonated species. 

Hence the much stronger coupling in the protonated phosphoniums cannot be ascribed simply 

to the phosphorus atoms being closer together as a result of lower steric hindrance.
34 
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Intramolecular proton exchange was observed in the 
31

P NMR spectrum for 

[Nap(PPh2)(PPh2H)]
+
 but ruled out for [Nap(P2H5)]

+
, given that these compounds have 

4
JPP 

coupling constants within 2 Hz of one another, it would seem that proton exchange does not 

influence the magnitude of the P-P coupling either.
34,9

 

 

Scheme 13. Synthesis of mono-phosphonium cations from 1,8-bis(phosphino)naphthalenes.
  

1.3.2. Phosphenium Cations 

Phosphenium cations are two co-ordinate and of the general form, R2P
+
. The first 

phospheniums were synthesised by the reaction of a fluorophosphine with BF3 or PF5 (see 

Scheme 14).
35

 Not long after, Cowley reported acyclic analogues to be accessible by chloride 

abstraction from diaminochlorophosphines and aminodichlorophosphines, these studies led to 

the first structurally characterised phosphenium salt, [(NiPr2)2P][AlCl4] (see Scheme 14).
36,37
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Scheme 14. Early synthesis of phosphenium cations.
 
 

The synthesis of the ferrocenyl phosphenium aluminium tetrachloride salts, [Fc(NMe2)P]
+
, 

[Fc(Cl)P]
+
 and [Fc2P]

+ 
demonstrated that amino groups are not indispensable in the 

stabilisation of phospheniums and that organic substituents can be incorporated.
38

 However, 

it was not until much later that the first crystal structure of a phosphenium salt containing a P-

C bond ([Mes(NiPr2)P][AlCl4]) was reported.
39

 

All of the phosphenium salts discussed above were prepared by halide abstraction from 

halophosphines. More recent work has shown that a range of aromatic N-heterocyclic 

phospheniums with 6π electrons can be synthesised more simply by the reaction of 

bis(imines) with PI3 (see Scheme 15).
40
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Scheme 15. Lewis acid free synthesis of phosphenium cations.
  

Their low co-ordination number makes phosphenium cations much more reactive and much 

less stable to air and moisture than phosphoniums. They are known to be much more stable 

when stabilised by a donor, an effect that is discussed in detail in Sections 1.3.3 and 1.3.4. 

The reason for this becomes apparent when the electronic structure of phosphenium cations is 

considered. The phosphorus atom possesses a lone pair of electrons and adopts a pseudo-

trigonal planar geometry, with the lone pair and the two substituent atoms in the trigonal 

plane. An empty p orbital is orthogonal to this plane, and π-donation from substituents with 

lone pairs into the empty p orbital is thought to be very important in the stabilisation of 

phospheniums.
36 

This interaction is clearly analogous with the stabilising interaction present 

in singlet NHCs, which is logical as the two species are isolobal. The observation of carbene-

like reactivity is one of the most interesting aspects of the chemistry of phospheniums. Co-

ordination to transition metals is ubiquitous, the most common method of synthesising 

phosphenium complexes is by abstraction of an anionic substituent from a trivalent 

phosphorus ligand pre-co-ordinated to a metal centre. Two examples of this are in shown in 

Scheme 16. The first shows halide abstraction from a co-ordinated chlorophosphine to give a 

phosphenium complex of Fe(CO)5.
41

 The second complex is formed by methoxide 
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abstraction using BF3 to again form a cationic complex in which the metal centre is in the 

zero oxidation state.
42

 

 

Scheme 16.
 
Phosphenium complexes prepared by anion abstraction from precursor 

complexes. 

 

Although the above method is the most common way of preparing phosphenium complexes, 

there are examples of their synthesis from the direct reaction of phosphenium salts and metal 

complexes, some representative examples of which are shown in Scheme 17. Both of these 

complexes were formed by the displacement of a single CO ligand, hence the phospheniums 

behave much as neutral ligands, such as phosphines, in these instances.
43,44

 

 

Scheme 17.
 
Phosphenium complexes prepared by direct reaction of phosphenium salts with 

metal carbonyls. 
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Phospheniums are synergic ligands and their positive charge results in them being rather 

stronger π-acceptors than σ-donors. As a result of this, phosphenium complexes of metals 

from Groups 3 to 5 are not known, while complexes of Group 6 and 8 metals are the most 

common by far.
45

 Later transition metal complexes are also well known, such as those of 

rhodium
46

 and platinum,
47

 which can be prepared by reaction of phospheniums with metal 

phosphine complexes (see Scheme 18). Interestingly, the 
1
JPPt coupling constant in the 

platinum complex in Scheme 18 is over 7300 Hz, which is significantly higher than typical 

values for co-ordinated phosphines (the 
1
JPPt coupling to PPh3 in this complex is less than 

3800 Hz, for example).
47

 A similar trend is observed in the rhodium complex in Scheme 18; 

the 
1
JPRh coupling for the phosphenium phosphorus is over three times the magnitude of that 

of the coupling to PPh3.
46 

 

 

Scheme 18.
 
Late transition metal phosphenium complexes. 

In the vast majority of cases, phosphenium complexes co-ordinate to metal centres in the 

same way as Fischer carbenes. However, there are a small number of examples of more 

exotic bonding modes. One of these is exhibited in the first complex in Scheme 19, which is 

prepared by reaction of an anionic iron(0) complex and a fluorophosphine. In this compound 

the phosphorus centre co-ordinates only by backdonation, with the lone pair not involved in 
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bonding. This is proposed based on the bent co-ordination mode of the ligand shown by X-

ray crystallography, which could be also be justified by describing the complex as an iron(II) 

phosphido complex. However the 
31

P NMR chemical shift (285.9 ppm) is at far too high 

frequency for this to be a phosphido ligand.
48

  The relationship between phosphenium and 

phosphido ligands mirrors that of Fischer and Schrock carbenes, and as oxidative addition of 

phospheniums to form phosphido complexes is not uncommon, there is often ambiguity in 

their assignment.
45 

 A further argument for the assignment of the ligand as ‘backdonation 

only’ is based on its electron configuration; a regular iron(0) phosphenium complex would be 

a 20e compound, an unusual violation of the 18e rule given the ease with which CO ligands 

can dissociate. The complex in the ‘backdonation only’ co-ordination mode, however, has an 

electron count of 18.
48 

 

Scheme 19. Complexes with less common phosphenium bonding modes. 

In a similar reaction to the one described above, Na[Co(CO)4] reacts with the same 

fluorophosphine to form a Co2(CO)5 dimer in which the two phosphenium ligands are 

bridging unsymmetrically. Calculations suggest that σ-donation to the Co(CO)2 fragment is 

much stronger than that to the Co(CO)3 fragment, while the reverse is true of π-
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backdonation.
49

 This is a very rare example of phosphenium bridging, while in contrast 

phosphido ligands co-ordinate in bridged modes preferentially.
45 

Aside from their behaviour as π-acceptor ligands and Lewis acids, the acceptor properties of 

phospheniums have also been exhibited quite extensively through their behaviour as 

dienophiles in cycloaddition reactions,
50,51,52

 in which they are oxidised to phosphonium salts 

via alkene reduction. A representative example of phosphenium cycloaddition is displayed in 

Scheme 20.
 
   

 

Scheme 20. Cycloaddition of phosphenium cations.
  

Triphosphenium cations are another class of two co-ordinate phosphorus cations and, while 

they are much less common than phospheniums, they have proved stable and isolable. 

Triphospheniums are of the general form [R3P-P-PR3]
+
, and the central phosphorus atom is in 

the I oxidation state. The most representative charge distribution is as a 

bis(phosphonium)phosphide, [R3P
+
-P

-
-PR3

+
]
+
. This makes triphospheniums rather 

electronically different to phospheniums, however, they nonetheless have the same overall 

formula of R2P
+
. They were first prepared in a one pot reaction with PCl3, dppe and SnCl2, 

with the oxidation of tin(II) to tin(IV) mediating the two electron reduction of PCl3.
53

 An 

acyclic analogue was later synthesised by the reaction of PCl3, PPh3 and AlCl3. In this 

reaction the reduction is mirrored by oxidation of an additional equivalent of PPh3 (see 
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Scheme 21).
54

 Triphospheniums give two signals in 
31

P NMR spectra, a doublet for the outer 

two phosphorus atoms and a triplet for the central atom.  

 

Scheme 21. Early synthesis of triphosphenium cations.
  

As with N-heterocyclic phosphenium cations, it was much later established that 

triphospheniums could be also synthesised without Lewis acids, in this case from 

bis(phosphines) and PI3, with I2 as a by-product. Selected examples of this reaction are shown 

in Scheme 22.
55,56

 

 

Scheme 22. Lewis acid free synthesis of cyclic triphosphenium cations.
  

Recently an extensive study was carried out into the co-ordination chemistry of 

triphosphenium cations with dimeric platinum(II) phosphine dichloride complexes of the 
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general form [(R3P)PtCl2]2. It was found that these compounds undergo weak monodentate 

co-ordination through the central phosphorus atom, the resulting complexes display low 
1
JPPt 

coupling constants (900 to 1300 Hz).
57

 

1.3.3. Non-Phosphorus Donor Stabilised Phosphorus Cations 

The use of donor ligands allows the stabilisation of highly charged and low valent 

phosphorus cations that would not normally be isolable as a ‘free’ species. DMAP has proved 

particularly successful in this regard, as it is a strong σ-donor and delocalises a positive 

charge very effectively. These properties have allowed the synthesis of a range of compounds 

with exotic electronic structures, both in the III and V oxidation states. DMAP stabilised 

phosphenium salts can be prepared by addition of Me3SiOTf to a solution of a 

chlorophosphine and DMAP, leading to co-ordination to the in situ generated phosphenium at 

the empty p orbital (see Scheme 23). An example of a phosphorus(V) species is the 

phosphine dication depicted in Scheme 23, which was synthesised by the reaction of a 

chlorophosphonium and DMAP with Me3SiOTf, or by methylation of the aforementioned 

DMAP stabilised phosphenium salt.
58

  

 

Scheme 23. Stabilisation of phosphorus cations with DMAP.
 
 

More remarkable is the reaction of DMAP with PCl3, which yields a bis(DMAP) stabilised 

dication which, upon heating, eliminates Cl2 to form a phosphorus(I) cation. The triflate salts 
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of both of these compounds were also reported (see Scheme 24).
59

 Reaction of DMAP with 

MeOPCl2 forms a PO
+ 

cation, which forms by a reaction similar to the dealkylation step of 

the Arbuzov reaction. A methoxy substituted dication is obtained if the above reaction is 

repeated in the presence of Me3SiOTf, and it is the chloride salt of this species that the 

authors suggest as the intermediate in the aforementioned Arbuzov-type reaction. A similar 

reaction mechanism is proposed in the reaction of MeOP(O)Cl2 with Me3SiOTf and DMAP 

(see Scheme 24).
59 

 

 

Scheme 24. Multiply charged, donor stabilised phosphorus cations from the reaction of 

DMAP and phosphorus halides. 
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It can be seen from the above reactions that the combination of a donor and Me3SiOTf is a 

powerful method in the synthesis of phosphorus cations. Donor stabilised cations can also be 

prepared from the reaction of phosphorus halides and trimethylsilyliminium salts, which act 

as both halide abstractors and donor sources. In the case of DBN, this method has been used 

to synthesise a phosphorus trication (see Scheme 25).
60

  

 

 

Scheme 25. Synthesis of a phosphorus trication.  

The ability of NHCs to stabilise low co-ordinate main group compounds has received much 

attention in recent years.
61,62,63,64 

Their stabilising properties have, like DMAP, been 

employed in the synthesis of donor stabilised phosphorus cations. Free carbenes behave 

rather differently to nitrogen based donors when reacted with PCl3; they can either form 

Lewis adducts
65

 or cause a reduction to take place, leading to a phosphorus(I) cation with two 

imidazolium substituents, depending on the carbene in question and the stoichiometry (see  

Scheme 26).
66

 Three equivalents of the carbene are required to form the phosphorus(I) 

cations as an extra equivalent is consumed in the reaction with Cl2, which is a by-product of 

the reduction.
66 
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Scheme 26. Reaction of PCl3 with carbenes. 

Although very interesting main group species can be formed directly from free carbenes, a 

more common approach is to utilise reactive imidazolium species with a labile group on the 

C2 carbon atom. An elegant example of this is the imidazolium-2-carboxylate in Scheme 27, 

which can be prepared in one step from 1-methylimidazole and dimethyl carbonate.
67

 On 

reaction with a chlorophosphine an imidazolium substituted phosphine is formed via CO2 

elimination. These phosphines can, of course, also be considered as carbene stabilised 

phospheniums.
68

 This reaction has also been taken a step further in the synthesis of 

diimidazolium phosphines from PhPCl2 (see Scheme 27).
69

  

 

Scheme 27. An imidazolium-2-carboxylate as a precursor to carbene stabilised phosphorus 

cations. 
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The imidazolium-2-carboxylate acts as a chloride displacing donor source, much as DMAP 

does.
59 

It is noteworthy that in order to obtain X-ray crystal structures of the cations in 

Scheme 27, it was necessary to prepare their PF6 salts as the chlorides could not be 

crystallised.
68,69

 Reactive imidazolium species that abstract chlorides have been prepared 

from the reaction of free carbenes and Me3SiOTf,
70

 these react with phosphorus halides in a 

similar manner as above, only that the triflate salts of the corresponding cations are formed 

(via elimination of Me3SiCl). This type of reagent has been used to synthesise cations of the 

type [(NHC)PCl2][TfO] and [(NHC)2PCl][TfO]2, which have also been further functionalised 

(see Scheme 28).
71

 

 

Scheme 28. An imidazolium-2-trimethylsilane as a precursor to carbene stabilised 

phosphorus cations.
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1.3.4. Phosphino-Phosphonium Salts 

 

Synthesis 

In Sections 1.3.1 and 1.3.2 phosphonium and phosphenium cations were discussed. 

Phosphino-phosphonium salts ([R3P-PR2]
+
) represent a combination of these two functional 

groups. The first synthesis of a phosphino-phosphonium was reported in 1959 by the reaction 

of a diphosphine with an alkyl iodide (Eq. 10):
 72

 

R2P-PR2 + R'I → [R2P-PR2R'][I]               (Eq. 10) 

R = Et, nBu, R' = Me, Et 

Later it was shown that selected phosphino-phosphoniums could also be prepared from 

trialkylphosphines and halophosphines (Eq. 11):
73,26

 

R3P + R'2PX → [R3P-PR'2][X ]               (Eq. 11) 

R = Et, R' = Et, X = Cl, I 

R = Et, R' = nBu, X = Br 

R = Et, R' = Ph, X = Cl  

R = Et, nPr, nBu, nOc, R' = Me, X = Cl 

However, these reactions are very substituent sensitive, as complex side reactions can occur 

and no phosphino-phosphonium formation was observed with a very wide range of other very 

similar reagents.  

Not long after the first phospheniums were reported (see Section 1.3.2), it was discovered 

that they readily react with phosphines.
74,75

 The resulting adducts are phosphino-

phosphoniums, which are considerably more stable than their parent (phosphenium) cations 

due to the occupancy of the p orbital and the delocalisation of the positive charge. This 

reaction was a very important development in the chemistry of phosphino-phosphoniums as it 
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is facile and the range of functional groups that can be employed is vast. The ambiguous 

delocalisation of charge has led to two commonly used resonance forms for these cations; 

phosphine stabilised phospheniums or phosphino-phosphoniums (see Figure 2). The formal 

phosphorus oxidation states in the phosphonium form are IV and II, whilst in the 

phosphenium form both are III. 

 

Figure 2. Resonance forms of phosphino-phosphoniums. 

The first syntheses of phosphino-phosphonium salts from phospheniums and phosphines 

were reported by Parry from the reaction of (NMe2)2PCl and AlCl3, both with and without the 

presence of P(NMe2)3. The results of this are shown in Scheme 29. Reaction of (NMe2)2PCl 

with half an equivalent of AlCl3 gives a chlorophosphino-phosphonium, [(NMe2)2P-

P(NMe2)2Cl][AlCl4], whilst reaction with one equivalent of AlCl3 in the presence of 

P(NMe2)3 gives [(NMe2)2P-P(NMe2)3][AlCl4].
74,75

 

 

Scheme 29. Early synthesis of phosphino-phosphoniums as phosphine-phosphenium adducts. 

The principle of in situ phosphenium formation and subsequent co-ordination of a phosphine 

in Scheme 29 has formed the basis for many further reactions and remains the dominant 

method of phosphino-phosphonium synthesis. All of the species in Figure 3 were prepared 

using this method. The first two cations in Figure 3 are also based on amino substituents, 

which is in keeping with the dominant trend in phosphenium salt substituents. It can be seen 
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that the range of employable functional groups can include fluorides
76

 and cyclic bis(amino) 

groups,
77

 the latter a logical inclusion given their popularity in phosphenium synthesis. The 

first all-carbon derivative, [nBu3P-PFc2][AlCl4], was reported by Cowley
38

 and Burford has 

followed up on this by preparing a large series of these compounds.
78,79,80

 By analogy carbon 

substituted species with chloride on not only the ‘phosphonium’ phosphorus but also the 

‘phosphino’ have also been reported.
78,80,81,82

 It is notable that Burford has used Me3SiOTf or 

GaCl3 as the chloride abstractor in place of AlCl3, which was favoured in earlier reports. The 

reaction of diphosphines with alkylating agents is also a reliable method to phosphino-

phosphoniums,
80

 these reactions will be discussed in relation to 1,2-diphosphonium synthesis 

later. 

 

Figure 3. Phosphino-phosphoniums prepared from phosphenium salts and phosphines. 

Although the reaction described above is the most widespread route to phosphino-

phosphonium salts, there are a small number of alternative methods, which are summarised in 
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Scheme 30. An early report from Schmutzler showed an innovative ring closing reaction in 

which a dimethylurea based bis(chlorophosphine) is reacted with a trimethylsilyl substituted 

amine, which leads to a P-P coupling reaction via chloride dissociation and elimination of 

Me3SiCl.
83

 Russell et al. have demonstrated that P-chlorophospholes can behave much as 

chlorophosphines
74

 do in the reaction shown in Scheme 29; when treated with half an 

equivalent of a chloride abstractor, a product analogous to those of Figure 3 is formed.
 
The 

chlorophosphole can then be displaced by PPh3 (a stronger donor) in a ligand exchange 

reaction.
84

 Stephan has also employed his frustrated Lewis pair
85

 principle to the synthesis of 

phosphino-phosphoniums; the archetypal B(C6F5)3/H2 combination protonates tBu2P-PtBu2 to 

form a phosphino-phosphonium salt with a HB(C6F5)3 counter ion, whilst phenylacetylene 

and B(C6F5)3 forms an ‘alkenyl-phosphino-phosphonium-borate’, in which both the 

diphosphine and B(C6F5)3 functionalise the alkyne, when reacted with Ph2P-PPh2.
86

  

 

Scheme 30. Alternative routes to phosphino-phosphonium salts. 
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 A small number of phosphino-phosphonium salts have also been obtained from 1,8-

bis(diaminophosphino)naphthalenes (Nap(P(NR2)2)2) , as the lability of their P-N bonds have 

provided routes into P-P coupling. These were first obtained by reaction with BX3 (X = Cl or 

F), which gives the corresponding BX4 salt via loss of an amino group (see Scheme 31).
 
The 

reaction of [Nap(Et2N)P-P(NEt2)2][BCl4] with a limited amount of HCl exchanges the 

phosphino amino group for a chloride.
14

 The reaction of Nap[P(NMe2)2]2 with P2I4 was later 

investigated, and it was shown that with variation of stoichiometry and conditions four 

different products could be isolated. Reaction with half an equivalent of P2I4 gave an iodide 

salt analogous to that formed in the BX3 reaction, as well as a dicationic dimer. Reaction with 

one equivalent of P2I4 led to the formation of an iodophosphino-phosphonium and a 1,2-

diphosphonium, albeit in a very low yield.
56

  

 

Scheme 31. Phosphino-phosphonium salts derived from Nap(P(NR2)2)2.  

 



51 

 

Reactivity 

The reaction with HCl shown in Scheme 31 is a relatively rare example of the reactivity of 

phosphino-phosphoniums being explored beyond the synthesis of 1,2-disphosphoniums. 

Another example of this is in Scheme 32. A phosphino-phosphonium has been prepared by 

reaction of a biphenyl backbone tethered bis(dimethylaminophosphine) with HCl. Further 

treatment of this species with HCl causes a similar substituent exchange reaction to the one in 

Scheme 31. This chlorophosphino-phosphonium can then be reduced with magnesium to give 

an λ
3
, λ

5
-diphosphene that is isolobal to phenanthrene.

87
 

 

 

Scheme 32. A λ
3
, λ

5
-diphosphene from the reduction of a biphenyl based phosphino-

phosphonium. 

 

There are also some P-P bond cleaving reactions known for phosphino-phosphoniums, which 

are depicted in Scheme 33. Heating a 1,2-diphosphetene with an alkylchloride substituent to 

60 ºC leads to the formation of either bi- or spirocyclic phosphino-phosphonium chloride 

salts, depending on the length of the alkyl chain. The bicyclic species has been hydrolysed to 

give a seven membered C5P2 ring in which the phosphonium and phosphine functionalities 
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have been converted into a phosphine oxide and a secondary phosphine, respectively.
88

 Alder 

has also reported a series of diphosphacycloalkanes from the reaction of bicyclic phosphino-

phosphoniums with organolithium or Grignard reagents. When considered in the 

phosphenium resonance form (see Figure 2), this can be viewed simply as nucleophilic attack 

of the ‘phosphenium’ phosphorus, forming a phosphine.
89

  

 

Scheme 33. P-P bond cleaving reactions of phosphino-phosphoniums.  

It was stated earlier that phosphino-phosphoniums have two plausible resonance forms (see 

Figure 2). Ligand exchange reactions consistent with the donor stabilised phosphenium form 

have been reported, in which the (phosphine) donor is replaced with a stronger σ-donor. An 

example is given in Eq. 12, in which diphenylchlorophosphine is replaced by 

triphenylphosphine. It has also been demonstrated that an NHC can replace the 

chlorophosphine in an analogous reaction.
78
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[Ph2PCl-PPh2][TfO] + PPh3 → [Ph3P-PPh2][TfO] + Ph2PCl  (Eq. 12) 

Reaction of [Ph3P-PPh2][TfO] with a variety of bis(phosphines) with alkyl chains linking the 

phosphine centres led to a series of dicationic bis(phosphino-phosphoniums) of the type of 

[R2P-PR2-(CH2)n-PR2-PR2][TfO]2 via the same type of ligand exchange as in Eq. 12.
90

 An 

unusual gallium(I) species originally reported by Power
91

 has also displayed the ability to 

displace triphenylphosphine from [Ph3P-PPh2][TfO].
92

  

There is also an example of a phosphino-phosphonium forming a Lewis adduct when Me2PCl 

and GaCl3 are reacted in a 1:1 ratio (see Scheme 34) rather than the 2:1 ratio used to form 

chlorophosphino-phosphoniums (see Figure 3 and Scheme 29). The GaCl3 adduct formed is 

in equilibrium in solution with the chlorophosphino-phosphonium and free GaCl3, the Lewis 

adduct was observed in the X-ray crystal structure.
93

 

 

Scheme 34. A Lewis adduct of a phosphino-phosphonium. 

 

Rings and Chains 

Burford has prepared a range of oligomeric phosphino-phosphonium salts, the simplest of 

these are three atom chains synthesised from diphosphines and phospheniums (Eq. 13). These 

compounds can be considered Lewis adducts of a phosphenium and one of the phosphine 

centres.
94
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R2P-PR2 + [R'2P][TfO] → [R2P-PR2-PR'2][TfO]               (Eq. 13)  

R = Ph, R' = Ph 

R = Me, R' = Ph 

R = Me, R' = Me 

Remarkably, the reaction of Ph2P-PPh2 with [Me2P][TfO] forms [Ph2P-PMe2-PPh2][TfO], 

which must form via P-P bond cleavage and insertion of the PMe2 moiety.
94  

2,3-Diphosphino-1,4-diphosphonium cations can also be prepared by a rather different 

method to that used for three atom chains. Me3SiOTf is added to a solution of PPh3 and a 

dichlorophosphine (RPCl2) to give cations of the form, [Ph3P-(PR)2-PPh3][TfO]2.
95

 In this 

reaction [Ph3P-PR(Cl)][TfO] is formed in situ and the mechanism proposed suggests that this 

reacts with the RPCl2/Me3SiOTf/PPh3 combination to give [R3P-PR-PR(Cl)][TfO] and 

[Ph3PCl][TfO], both of which were observed by 
31

P NMR spectroscopy in a mechanistic 

study. The reaction of [R3P-PR-PR(Cl)][TfO] with the remaining one equivalent of 

Me3SiOTf and PPh3 would then yield the product observed. In order to prepare 2,3-

diphosphino-1,4-diphosphoniums where the phosphino functionalities bear groups other than 

phenyl or methyl, it is necessary to pre-form [Ph3P-PR(Cl)][TfO] prior to reaction with half 

an equivalent of PPh3 and Me3SiOTf. As with simpler phosphino-phosphoniums, an 

alternative donor stabilised phosphenium resonance form can be proposed for 2,3-

diphosphino-1,4-diphosphoniums (in this case a diphosphenium), which is supported by the 

fact that one of these species undergoes a ligand exchange reaction in which both PPh3 

ligands are replaced by PMe3 (see Scheme 35).
96
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Scheme 35. 2,3-Diphosphino-1,4-diphosphoniums.
  

The reaction of phosphino-phosphoniums with bis(phosphines) has also led to some 

interesting P-P coupling reactions. 1,2-Bis(tert-butylphosphino)benzene and [Ph3P-

PPh2][TfO] form a heterocyclic bis(phosphino)phosphonium via the cleavage of both P-H 

bonds. Overall the PPh2
+
 moiety is transferred to the phosphine centres and oxidised. The 

reaction of bis(1,2-diphenylphosphino)benzene and [Ph2PCl-PPh2][GaCl4] leads to an 

unusual P-C bond cleaving reaction to give an acyclic species with non-bonded phosphonium 

and diphosphine moieties. It was proposed that the anticipated ligand exchange reaction takes 

place to eliminate diphenylchlorophosphine and form a phosphino-phosphonium, only for a 
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phenyl ring transfer to take place between the phosphorus centres to form the observed 

species (see Scheme 36).
79

 

 

Scheme 36. Reaction of phosphino-phosphoniums with bis(phosphines).  

Cyclic phosphino-phosphoniums are also known, they can be synthesised from four or five 

membered cyclophosphines by two broad methods (see Scheme 37). The simpler of these is 

alkylation of (RP)n with MeOTf or tBuCl/GaCl3 to give [(RP)nR'][X].
94,97,98,99

 Double 

alkylation of (CyP)4 with two equivalents of MeOTf has also been achieved to give 

[(PCy)4Me2][TfO]2.
99

 This reaction is analogous to the synthesis of phosphino-phosphoniums 

by the alkylation of diphosphines, which was mentioned above.
79 

The second method is the 

insertion of a phosphenium cation into the ring. In the case of five membered 

cyclophosphines the phosphenium replaces a PR unit, while smaller rings undergo expansion 

by one atom. Hence three membered rings expand to four membered and four membered 

rings expand to five, this is consistent with the reduction of ring strain being a driving factor 

in these rather unusual reactions. It is noteworthy that a similar insertion of [PMe2][TfO] was 

also observed in the formation of [Ph2P-PMe2-PPh2][TfO].
94 

One of these cyclic phosphino-

phosphoniums, [(CyP)4Me][TfO], can undergo a reversal of this phosphenium insertion when 

reacted with PMe3, to give a simple phosphino-phosphonium ([Me3P-P(Me)Cy][TfO], a 
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product of the co-ordination of PMe3 to the phosphenium moiety) and (CyP)3. Hence overall 

this is ring closing, phosphenium excluding reaction via a ligand exchange of sorts.
97

 

 

Scheme 37. Four and five membered phosphino-phosphonium rings.  

Six membered, dicationic phosphino-phosphonium rings have also been synthesised by a 

similar process to those described for smaller rings above, albeit with a different Lewis acid 

and cyclophosphine to phosphenium ratio. (PhP)5 is reacted with an excess of in situ 

generated [PR2][GaCl4] to form both a five membered phosphino-phosphonium ring and a 

labile phosphino-phosphonium when heated to around 125 ºC. Further heating leads to an 
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additional phosphenium insertion into the ring to give a dicationic species (see Scheme 

38).
100

  

 

Scheme 38. Synthesis of a six membered, dicationic phosphino-phosphonium ring.  

Many of the reactions used to synthesise the cyclic phosphino-phosphoniums discussed 

above are analogous to reactions used to prepare linear species. This principal has also been 

exploited by Stephan, who has used the B(C6F5)3/phenylacetylene combination utilised in 

reactions with diphosphines (see Scheme 30) to also prepare cyclic phosphino-phosphoniums 

from cyclophosphines.
86 

 

In this section the synthesis of simple phosphino-phosphoniums, as well as oligomeric and 

cyclic derivatives has been discussed. It is noteworthy as an extension of these principles that 

cationic compounds which can be considered as phosphino-phosphonium clusters have also 

been reported. These are formed by phosphenium insertion into the P4 tetrahedron. Krossing 

has reported the reaction in Eq. 14, in which P5Br2
+
 forms as a result of PBr2

+ 
(formed via 

AgBr elimination) insertion into P4.
101

 

[Ag][Al{OC(CF3)3}4] + PBr3 + P4 → [P5Br2][Al{OC(CF3)3}4] + AgBr               (Eq. 14) 
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Weigand has also shown that [PPh2][GaCl4] can insert into P4 to form [P5Ph2][GaCl4] and, by 

variation of the reaction stoichiometry, that multiple insertions can also be achieved to form 

[P6Ph4][GaCl4]2 and [P7Ph6][GaCl4]3, corresponding to the insertion of two and three 

equivalents of the phosphenium salt, respectively.
102

  

1.3.5. 1,2-Dications 

1,2- Dications are ‘compounds with two cationic centres located at two directly connected 

atoms’.
103

 They are of significant academic curiosity due to the presence of a formal bond 

despite strong electrostatic repulsion between the charged atoms. The only known 

phosphorus 1,2-dications are diphosphoniums with the general structure [R3P-PR3]
2+

. The 

formation of a diphosphonium was first reported as early as 1921, when the motif was 

proposed in the thermal decomposition of BrCN in the presence of PPh3. However, this was 

supported only by elemental analysis results (see Scheme 39).
104

 

 

Scheme 39. Thermal decomposition of BrCN with PPh3.
  

The above reaction involves the synthesis of a diphosphonium by oxidation, and this has set 

the trend for all subsequent synthetic routes, as no diphosphoniums have been prepared from 

phosphorus(V) precursors to date. Routes to hexaalkyldiphosphoniums were developed from 

simple phosphorus compounds, for example the reaction of alkyl iodides with P2I4,
105

 or 

alternatively red phosphorus and I2 (see Scheme 40).
106 

It is plausible that both of these 

reactions proceed through the same diphosphine intermediate R2P-PR2, which goes on to 

react with a further two equivalents of alkyl iodide.  
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Scheme 40. Synthesis of hexaalkyldiphosphonium dications from P2I4 or red phosphorus/I2.
  

Diphosphoniums can also be synthesised by oxidation of tertiary phosphines. This has been 

carried out both chemically with I2
106

 or CuPF6
107

 and electrochemically.
108

 The mechanism 

of the electrochemical oxidation was proposed as phosphine attack of a phosphine radical 

cation to give a cationic radical dimer, which undergoes facile oxidation (see Scheme 41).
 
 

 

Scheme 41. Oxidation of tertiary phosphines to 1,2-diphosphoniums.
  

A small range of amino-substituted dications has also been reported (see Scheme 42). Their 

synthesis is analogous with the aryl and alkyl based systems discussed above, as oxidation of 

phosphines is again the main strategy. Electrochemical oxidation of P(NEt2)3 gives the 

corresponding [(Et2N)3P-P(NEt2)3]
2+

 dication.
109

 Oxidation of Nap(P(NEt2)2)2 with P2I4 forms 

a small amount of the corresponding dication in analogy with the above reaction.
56,110

 The 

last of the compounds shown in Scheme 42 was prepared by methylation of a phosphino-

phosphonium,
111

 which is the other major method for synthesis of diphosphoniums, and the 
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most popular current approach. Unlike those discussed above, all of the dications in Scheme 

42  have been structurally characterised.  

 

Scheme 42. Amino-substituted diphosphonium cations.
  

As phosphino-phosphoniums can be prepared by alkylation of diphosphines, it was a logical 

development that 1,2-diphosphoniums could be accessed simply by double alkylation of 

diphosphines. The reaction of diphosphines with triflates represented a breakthrough in the 

clean synthesis of more isolable diphosphoniums. Alkyl derivatives of the species in Scheme 

42 were later reported
112

 and it was demonstrated that other alkyl triflates were also suitable, 

which led to the synthesis of propellane diphosphonium cations. The tricyclic structure of 

these compounds helps stabilise the dication motif, as dications are unstable with respect to 

P-P bond cleavage (see Scheme 43).
89 
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Scheme 43. Synthesis of cyclic hexa-alkyl diphosphoniums.
  

Burford has built on the work above and prepared a large series of 1,2-diphosphoniums, 

which are exhibited in Scheme 44. Reaction of Me2P-PMe2 with MeOTf in CH2Cl2 results in 

only mono-alkylation to give a phosphino-phosphonium of the type discussed in Section 

1.3.4. However, reaction in neat MeOTf was found to form the desired dication almost 

instantaneously.  tert-Butyl groups can also be employed quantitatively in the alkylation of 

Me2P-PMe2 using tBuCl/GaCl3 in benzene.
80 

Dications with asymmetric substitution patterns 

were synthesised from a range of phosphino-phosphoniums and neat MeOTf. As many 

phosphino-phosphoniums can be prepared from simple commercially available reagents (see 

Figure 3), this is a highly versatile method for the synthesis of diphosphoniums (see Scheme 

44).
80
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Scheme 44. Versatile synthetic routes to a variety of hexaalkyl diphosphoniums.
  

The naphthalene backbone has also been employed in the synthesis of diphosphoniums by 

methylation of the diphosphine, Nap(PPh)2, the synthesis of which was shown previously in 

Scheme 8.
21 

Interestingly, the use of Me3OBF4 in this reaction gives only the more hindered 

meso form of the dication, whilst the use of MeOTf results exclusively in the rac form (see 

Scheme 45).
110 

The naphthalene backbone is likely to have a similar stabilising effect to the 

propellane motifs in Scheme 43. 
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Scheme 45. Synthesis of meso and rac forms of 1,2-diphospha-acenaphthene 1,2-dications.  

 

.
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Chapter 2 – Synthesis and Reactivity of peri-Substituted Phosphino-Phosphonium Salts 

2.1. Synthesis of Phosphino-Phosphonium Salts 2-5 

Since the reaction of PCl3 shown in Scheme 10 resulted in the formation of such an unusually 

thermally stable product (Acenap(iPr2P)(PCl2)),
27

 replacing PCl3 with a dichlorophosphine in 

this reaction was investigated in order to establish whether a similar stabilising interaction 

would take place between the phosphine and chlorophosphine centres. However, it was found 

that the product of these reactions undergo ionisation to form phosphino-phosphonium salts, 

which are the subject of this chapter. 

A series of phosphino-phosphoniums 2-5 was synthesised using the bromide 1 as the 

principal starting material. Thus 5-lithio-6-diisopropylphosphinoacenaphthene (1') was 

obtained from 1 by a low temperature lithium-halogen exchange reaction, and was then 

reacted with selected dichlorophosphines RPCl2 (R = Ph, Fc, NMe2, iPr), see Scheme 46. In 

the case of 2-4, one equivalent of the dichlorophosphine was sufficient to achieve the desired 

reactivity. In the case of 5, though, it was necessary to reverse the order of addition and use a 

threefold excess of iPrPCl2, in order to avoid formation of the geminally bis(peri-substituted) 

tridentate phosphine (27) discussed in Chapter 4. The lithiation and P-C coupling reaction 

steps were performed in diethyl ether, which was then replaced with CH2Cl2. For 2, 3 and 5 

efficient removal of the salt by-products was achieved via washing with degassed H2O, 

indicating that they are stable towards hydrolysis. As 4 decomposes on contact with H2O its 

salt by-products were removed by filtration using Celite. Further details of work up 

procedures differed slightly for each of 2-5. 
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Scheme 46. Synthesis of compounds 2-16. 

For the synthesis of 2, nBuLi was added to 1 in diethyl ether at -78 ºC and stirred at that 

temperature. PhPCl2 in diethyl ether was added to the resulting suspension at -78 ºC, 

followed by stirring and slowly warming to room temperature. Volatiles were removed from 

the resulting suspension in vacuo to give a white solid, which was dissolved in CH2Cl2 and 

washed with degassed H2O. After separation of the organic layer, solvent was removed in 

vacuo to give a colourless oil, which was washed with diethyl ether and toluene to give 2 as a 

white powder in 97.5% yield. Purer material was obtained after precipitation from 1,2-

dichloroethane/toluene. The 
31

P{
1
H} NMR spectrum of 2 consists of two doublets at δP -34.5 

and 60.0 ppm, 
1
JPP = 303 Hz,  corresponding to the phosphino and phosphonium moieties, 
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respectively. 2 was further characterised by 
1
H and 

13
C{

1
H} NMR spectroscopy, IR, Raman 

and MS, including exact mass determination (HRMS). 

Crystals of 2 suitable for X-ray crystallography were grown from MeCN. The X-ray crystal 

structure of 2 is shown in Figure 4 and crystallographic data is in Table 1 and Table 3. The 

crystal structure confirms the ionic nature of 2 as a phosphino-phosphonium cation and a 

chloride counteranion. The P-P bond length in 2 is 2.2347(9) Å, typical of a single bond 

(normal range 2.20 ±0.05 Å). The geometry around both phosphorus centres shows a few 

significant deviations from the ideal tetrahedral angle, the most acute angle being C1-P1-P9 

(90.17(8)º) where the geometry is forced by the rigid acenaphthene backbone. The most 

obtuse angle is C19-P9-P1 (122.42(9)º). 2 has a splay angle (see Figure 5 for a definition) of -

8.85(18)º, the negative value of which is typical of compounds with a bond across the peri-

gap. Overall the molecular geometry of 2 is rather relaxed; the acenaphthene ring is planar 

and both phosphorus atoms lie rather close to the mean acenaphthene ring plane (the 

displacements are 0.142 and 0.274 Å for P1 and P9 respectively).  
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Figure 4. Crystal structure of 2 with ellipsoids drawn at 50% probability. Chloride counter 

ion and hydrogen atoms are omitted for clarity. 

 

 

Figure 5. Definition of a splay angle. 

The phosphino-phosphonium 3 was obtained from FcPCl2 via the coupling reaction shown in 

Scheme 46. The only difference in the preparation of 2 and 3 is that 3 was obtained as a solid 

straight from the removal of solvent from the separated organic layer (no washing with 

solvent was required). 3 was isolated as an orange solid in 98.1% yield and analytically pure 

material was obtained by precipitation from 1,2-dichloroethane/toluene. The 
31

P{
1
H} NMR 

spectrum of 3 is very similar to that of 2, exhibiting two doublets at δP -36.2 ppm (FcP) and 
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54.6 ppm (iPr2P), 
1
JPP = 311 Hz. 3 was further characterised by 

1
H and 

13
C{

1
H} NMR 

spectroscopy, IR, Raman and MS, including HRMS and its purity was verified by 

microanalysis. 

Crystals of 3 suitable for X-ray crystallography were grown from MeCN. The X-ray crystal 

structure of 3 is shown in Figure 6 and crystallographic data is in Table 1 and Table 3. 3 co-

crystallises with half a molecule of MeCN but the structure is otherwise largely analogous to 

that of 2, including the angular distortions around the phosphorus centres (see Table 1). The 

P-P bond length in 3 is 2.2483(17) Å. Whilst the splay angle in 3 (-8.70(4)º) is essentially the 

same as in 2, the out of plane displacements are slightly reduced to 0.044 Å (P1) and 0.129 Å 

(P9).  

 

Figure 6. Crystal structure of 3 with ellipsoids drawn at 50% probability. Chloride counter 

ion, co-crystallised molecule of MeCN (hemisolvate) and hydrogen atoms are omitted for 

clarity. 

 

Reaction of 1 with nBuLi followed by addition of (NMe2)PCl2 was performed under the same 

conditions as the above preparations of 2 and 3. As 4 is sensitive to moisture, salts were 
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removed by filtration of a CH2Cl2 solution through a sinter with Celite. Removal of solvent in 

vacuo gave a colourless oil, from which 4 was obtained as a white solid after washing with 

diethyl ether. The 
31

P{
1
H} NMR spectrum of this solid revealed that the desired phosphino-

phosphonium 4 was formed as the major product (AB spin system, δP 36.2 ((NMe2)P) and 

66.2 ppm (iPr2P), 
1
JPP = 412 Hz, ca. 77% of overall integral intensity). However, other 

phosphorus containing products were also formed in significant quantities, which is rather 

contrasting with the near quantitative conversions achieved for 2 and 3. Owing to its distinct 

31
P{

1
H} NMR spectrum (AA'XX' spin system), the previously reported diphosphonium salt 

[Acenap(iPr2PP)]2[Cl]2 (see Scheme 10)
27

 was identified as one of the major by-products 

formed in this reaction. It was found that the ratio of 4 to [Acenap(iPr2PP)]2[Cl]2 does not 

change in solution (CDCl3) or in the absence of solvent even over long periods, indicating 

that [Acenap(iPr2PP)]2[Cl]2 is a side product of the P-C coupling reaction rather than a 

decomposition product of 4. Despite numerous attempts, 4 could not be purified by 

recrystallisation or other methods. These efforts were hindered by the fact that 

[Acenap(iPr2PP)]2[Cl]2 is extremely amenable to crystallisation and has much the same 

solubility as 4. As a result of this, only crystals of [Acenap(iPr2PP)]2[Cl]2 were repeatedly  

obtained when trying to crystallise 4. Hence 4 was characterised by 
31

P NMR spectroscopy 

and mass spectrometry only. Notably the 
1
JPP coupling constant (412 Hz) in 4 is of 

considerably higher magnitude than related couplings observed in 2 (303 Hz) or 3 (311 Hz), 

possibly due to the stronger electron donating nature of the dimethylamino group compared 

with phenyl or ferrocenyl.  

As alluded to above, the synthesis of the phosphino-phosphonium 5 required a modified 

synthetic procedure, in particular reversing the order of addition of reactants resulted in 

improved selectivity of the reaction towards 5. A suspension of 1' was thus warmed to 0 ºC 

and added to a threefold excess of iPrPCl2 in diethyl ether at -78 ºC. A workup procedure 
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similar to that used for 2 gave 5 as a white solid in 94.1% yield. Analytically pure material 

was obtained by recrystallisation from MeCN. The 
31

P{
1
H} NMR spectrum of 5 consisted of 

doublets at δP -22.9 (iPrP) and 60.6 (iPr2P) ppm, 
1
JPP = 306 Hz. Crystals of 5 suitable for X-

ray crystallography were not obtained but it was otherwise fully characterised by 
1
H and 

13
C{

1
H} NMR spectroscopy, Raman, MS and its purity was verified by microanalysis. 

It is interesting to note that chloride dissociation is not observed in the solid state structure of 

the related phosphonium-phosphoranide, Acenap(iPr2P)(PCl2) (see Scheme 10), which has a 

molecular character both in the solid state and in solution.
27

 This contrasts with the ionic 

structures of 2-5, which exist as phosphino-phosphonium cations with chloride counteranions 

in solution (as judged from their 
31

P NMR chemical shifts) and in the solid state (from single 

crystal X-ray diffraction for 2 and 3). Thus the electron donating nature of the aryl, 

dimethylamino and isopropyl substituents in compounds 2-5 would appear to encourage 

chloride dissociation (see Figure 7). In addition to electronic effects, steric reasons may also 

favour dissociation of chloride in 2-5, as the organic substituent or amino group would be 

more difficult to accommodate comfortably in the pseudo-trigonal bipyramidal molecular 

geometry (in 2'-5') than in the pseudo-tetrahedral one seen in the crystal structures of 2 and 3. 

 

Figure 7. Molecular (left) vs. ionic (right) structure of 2-5. 

In order to test the versatility of the reaction discussed above, the reaction of 1' with bulkier 

dichlorophosphines was also attempted. Reaction of 1' with one equivalent of MesPCl2 in 
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diethyl ether at -78 ºC followed by warming to room temperature and stirring gave a yellow 

solution. The 
31

P{
1
H} NMR spectrum of this solution showed only starting materials after 

stirring at room temperature. Diethyl ether was replaced with hexane and the resulting 

solution was heated under reflux for 2 hrs, after which 
31

P{
1
H} NMR spectroscopy again 

indicated the presence of unreacted starting materials. This lack of reactivity is rather 

surprising as, while mesityl is significantly bulkier than the substituents utilised in 2-5, it 

should still be able to be easily accommodated in a phosphino-phosphonium motif. It is 

possible that a precursor molecular compound of the type discussed in Figure 7 (2'-5') is too 

sterically hindered. 

Reaction of 1' with one equivalent of tBuPCl2 in diethyl ether also failed to yield a 

phosphino-phosphonium species, although all tBuPCl2 was consumed. The 
31

P{
1
H} NMR 

spectrum of the reaction mixture revealed a broad singlet at δP -9.5 ppm as the major product 

(~68% by integration), as well as two apparent doublets at 13.7 (J = 9.4 Hz) and 25.0 ppm (d, 

J = 7.0 Hz), which accounted for ~14% of the spectrum each. In addition to these peaks there 

were a number of small singlets. Due to the mixture of products obtained from this reaction, 

the identification of the products of this reaction was not pursued further, nor were further 

attempts made to synthesise bulkier phosphino-phosphoniums than 2-5. 

Another variation on the synthesis of 2-4 that was investigated was the use of half an 

equivalent of the dichlorophosphine, anticipating the formation of a geminally bis(peri-

substituted) species. To this end, slow addition of ½ an equivalent of PhPCl2 to 1' in diethyl 

ether at -78 ºC was carried out. However, only 5-diisopropylphosphinoacenapthene and 2 

were observed in the 
31

P{
1
H} NMR spectrum after extraction with CH2Cl2. The same 

outcome was observed when this reaction was attempted with FcPCl2, hence it would appear 

that, for aryl dichlorophosphines, ionisation is the only observable mode of reactivity.  
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2.2. LiAlH4 Reduction of 2-4 

P-P bond cleaving reactions of phosphino-phosphonium salts have rarely been investigated 

(see Section 1.3.4), possibly because this would lead to a mixture of products in the majority 

of cases, and hence be of little utility. The compounds discussed in Section 2.1 all have both 

phosphorus atoms bound to the same acenaphthene unit, and as such P-P bond cleavage was 

thought to have the potential to lead to the synthesis of a new class of bis(phosphines). 

Therefore the reduction of 2-4 with LiAlH4 was investigated. 

Reduction of 2 with LiAlH4 in thf at 0 ºC was followed by stirring and replacing thf with 

CH2Cl2. After washing the resulting solution with degassed H2O, solvent was removed in 

vacuo to give the bis(phosphine) 6 as a pale yellow oil in 85.3% yield. The 
31

P{
1
H} NMR 

spectrum of 6 displays two doublets  at δP -41.0 (Ph(H)P) and -12.3 ppm (iPr2P), 
4
JPP = 169 

Hz. The 
31

P NMR spectrum (
1
H coupled) exhibits an additional large coupling of the 

secondary phosphine signal (
1
JPH = 202 Hz), whilst the complexity of the iPr2P phosphorus 

signal (caused by 
2
JPH and 

3
JPH couplings) does not allow direct reading of the across peri-gap 

5
JPH coupling. The latter coupling constant was however obtained from the 

1
H NMR 

spectrum, where the hydrogen directly bonded to the phosphorus atom gives a doublet of 

doublets with 
1
JHP = 202 and 

5
JHP = 57.6 Hz, the large magnitude of 

4
JPP and 

5
JHP couplings 

indicating a significant through space component. 6 is extremely soluble in organic solvents 

and evaporation of solvents leads to an oil, which has not proved to be amenable to 

crystallisation. This oil has been used for further characterisation by 
1
H and 

13
C{

1
H} NMR 

spectroscopy and MS including HRMS; it was of sufficient purity for further synthetic use.  

Reduction of 3 with LiAlH4 using the same conditions and work up procedures as above led 

to the clean formation of 7 as an orange solid, which was isolated in 88.6% yield. The 

31
P{

1
H} NMR spectrum of 7 exhibits two doublets at δP -51.9 (Fc(H)P) and -9.3 ppm (iPr2P), 

4
JPP = 199 Hz. The 

31
P NMR (

1
H coupled) spectrum of 7 revealed a 

1
JPH coupling of 237 Hz. 
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The magnitude of the 
1
JHP coupling was confirmed by the 

1
H NMR spectrum, the P-H 

hydrogen atom giving a doublet of doublets with 
1
JHP = 237 and 

5
JHP = 33.2 Hz. 

The across peri-gap 
4
JPP coupling in 6 and 7 is of similar magnitude to that observed in 

Nap(PPh2)2 by MAS solid state NMR spectroscopy (199 Hz).
13 

Acenap(iPr2P)(P(OPh)2) is 

the only literature example of a species with two different non-bonded phosphorus(III) 

moieties at the peri-positions, which allows direct observation of its P∙∙∙P coupling. A 
4
JPP 

coupling with magnitude of 199.5 Hz was observed in this compound, again in good 

agreement with relevant values in 6 and 7.
27 

Crystals of 7 suitable for X-ray crystallography were obtained from a concentrated solution in 

hexane. The X-ray crystal structure of 7 is shown in Figure 8 and crystallographic data is in 

Table 1 and Table 3. The P1···P9 distance in 7 is 3.05 Å, in keeping which values previously 

reported for 1,8-bis(phosphino)naphthalenes which range from 2.9092(7) to 3.070(1) 

Å.
9,12,13,113,114 

Hence it would appear that the small steric bulk of the secondary phosphine 

centre does not lead to a shorter peri-distance. The angles about the phosphine centres in 7 

are all below 109.5º, with C23-P9-C26 the most obtuse at 105.30(19)º (see Table 1). A 

predictable change brought about by the repulsive P∙∙∙P interaction is the increase to a 

positive splay angle of +12.1(4)º, which is accompanied by an increase in out of plane 

displacement for P1 (0.373 Å) and P9 (0.156 Å) compared with relevant values for the 

phosphino-phosphonium 3.  

7 was further characterised by 
1
H and 

13
C{

1
H} NMR spectroscopy, IR, Raman and MS 

including HRMS.  
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Figure 8. Crystal structure of 7 with ellipsoids drawn at 50% probability.  Carbon bound 

hydrogen atoms are omitted for clarity. 

Table 1. Selected bond lengths (Å) and angles (º) for 2, 3·1/2MeCN and 7. 

2 

C19-P9 1.825(3) C1-P1 1.833(3) 

C22-P9 1.829(2) C13-P1 1.831(3) 

C9-P9 1.793(3)   

C19-P9-C22 110.06(12) C9-P9-P1 98.21(8) 

C19-P9-C9 109.88(12) C13-P1-C1 105.45(12) 

C19-P9-P1 122.42(9) C13-P1-P9 101.32(8) 

C22-P9-C9 107.89(11) C1-P1-P9 90.17(8) 

C22-P9-P1 107.16(8)  

 

3·1/2MeCN 

C23-P9 1.822(5) C1-P1 1.842(5) 

C26-P9 1.830(5) C13-P1 1.803(5) 

C9-P9 1.791(5)  

C23-P9-C26 109.37(19) C9-P9-P1 98.96(14) 

C23-P9-C9 112.3(2) C13-P1-C1 100.5(2) 

C23-P9-P1 118.65(15) C13-P1-P9 102.03(15) 

C26-P9-C9 109.2(2) C1-P1-P9 89.23(14) 

C26-P9-P1 107.65(15)  

 

7 

C23-P9 1.880(4) C1-P1 1.856(5) 

C26-P9 1.873(4) C13-P1 1.822(4) 

C9-P9 1.847(5) H1-P1 1.325(19) 

C23-P9-C26 105.30(19) C1-P1-H1 104.7(15) 

C23-P9-C9 102.37(18) C13-P1-C1 101.58(19) 

C26-P9-C9 100.48(18) C13-P1-H1 94.2(11) 
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The reduction of 4 with LiAlH4 was also carried out as, although the dimethylamino group 

was not expected to be retained in the product, it was anticipated that the primary phosphine 

(8) would be formed (see Scheme 47). This compound has been previously synthesised by 

the reaction of Acenap(iPr2P)(PCl2) (see Scheme 10)
27

 with LiAlH4 and has been fully 

characterised.
115

 Hence its synthesis from 4 provides further support for its proposed 

structure, which was assigned based on 
31

P NMR spectroscopy and mass spectrometry only. 

The reduction of 4 using the same conditions as in the synthesis of 6 and 7 was found to 

cleanly form 8 as a dark red oil, as shown by the 
31

P and 
31

P{
1
H} NMR spectra, which 

matched exactly those obtained in the previous synthesis of 8.
115

 

 

Scheme 47. Synthesis of primary phosphine 8 from 4. 

 

2.3. Platinum(II) Chloride Complexes 9 and 10 

Bis(phosphines) 6 and 7 represent the first examples of peri-substituted mixed 

tertiary/secondary phosphines. Due to the ease of their synthesis, they have the potential to 

become a useful new class of P-chiral heteroleptic chelating ligands. As a preliminary study 

into their co-ordination properties, racemic platinum(II) chloride complexes 9 and 10 have 

been prepared and fully characterised. 

Treatment of [PtCl2(cod)] with 6 in CH2Cl2 at room temperature, followed by evaporation of 

volatiles, gives [(6)PtCl2] (9) as a white solid in quantitative yield (see Scheme 46). The 

31
P{

1
H} NMR spectrum of 9 exhibits two doublets at δP -20.9 (Ph(H)P) and 14.8 ppm (iPr2P), 
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2
JPP = 25.4 Hz. Both doublets are accompanied by a set of 

195
Pt satellites (

1
JPPt = 3212 

(Ph(H)P) and 3397 Hz (iPr2P)). In the 
31

P NMR (
1
H coupled) spectrum of 9 an additional 

large splitting from the hydrogen directly bonded to phosphorus atom is observed, with 
1
JPH = 

451 Hz. The 
195

Pt{
1
H} NMR spectrum of 9 was also recorded, revealing the anticipated 

doublet of doublets centred at δPt -4504 ppm, with the 
1
JPtP  coupling constants corresponding 

well with those found in the 
31

P{
1
H} NMR spectrum. The 

1
H NMR spectrum of 9 shows a 

doublet of doublets for the hydrogen bonded directly to the phosphorus atom with 
1
JHP = 451 

Hz and 
3
JHP = 21.0 Hz. Notably, the through space H-P∙∙∙P coupling in 6 (formally 

5
JHP) is of 

larger magnitude (57.6 Hz) than the related H-P-Pt-P coupling (formally 
3
JHP) in 9 (21.0 Hz).  

Crystals of 9 suitable for X-ray crystallography were grown from CH2Cl2 and diethyl ether. 

The crystal structure of 9 is shown in Figure 9 and crystallographic data is in Table 2 and 

Table 3. The geometry about the platinum centre is slightly distorted square planar, in which 

P1 forms slightly more acute angles with the chloride ligands than P9; (P1-Pt1-Cl1 

171.95(5)º vs. P9-Pt1-Cl2 177.55(5)º and P1-Pt1-Cl2 84.64(5)º vs. P9-Pt1-Cl1 92.12(6)º). 

The P1···P9 distance in 9 is 3.28 Å, which is slightly elongated compared to that in the 

related ferrocenyl free ligand 7 (3.05 Å), and also vs. the P∙∙∙P distance in 

[PtCl2{Nap(PPh2)2}] (3.20 Å).
116

 Interestingly, the P1∙∙∙P9 distance in 9 is intermediate 

between that in (acyclic) cis-[PtCl2(PPh3)2] (3.44 Å)
117

 and cis-[PtCl2(Ph2P(CH2)3PPh2)] 

(3.20 Å),
118

 the latter containing a flexible C3-backbone. This indicates that the steric 

properties of the rigid ligand 6 are rather favourable for η
2
-square planar co-ordination. The 

out of plane displacement of the phosphorus atoms in 9 is relatively modest at 0.151 (P1) and 

0.353 Å (P9). Nevertheless, these out of plane displacements result in a slight twist of the 

PtP2Cl2 plane compared to the acenaphthene mean plane (interplanar angle = 20.2º). The 

splay angle for 9 is increased to +20.6(5)º compared to that in the related ferrocenyl free 

ligand 7 (+12.1(4)°). Interestingly, whilst the P1-Pt1 bond distance (2.2006(13) Å) is slightly 



78 

 

shorter than the P9-Pt1 distance (2.2455(15) Å) in 9, this is not mirrored in the expected 
1
JPPt 

trend (shorter bond results in larger J magnitude); instead 
1
JP1-Pt (3212 Hz) has a smaller 

magnitude than 
1
JP9-Pt  (3397 Hz). 

Complex 9 was further characterised by 
1
H and 

13
C{

1
H} NMR spectroscopy, IR, Raman, MS 

and its purity was verified by microanalysis. 

 

Figure 9. Crystal structure of 9 with ellipsoids drawn at 50% probability. Carbon bound 

hydrogen atoms are omitted for clarity. 

 

The platinum complex [(7)PtCl2] (10) was obtained as an orange solid in quantitative yield 

from the room temperature reaction of 7 and [PtCl2(cod)] in CH2Cl2. The 
31

P{
1
H} NMR 

spectrum of 10 is similar to that of 9; it consists of an AB spin system (two doublets) at δP -

17.4 (Fc(H)P) and 14.6 ppm (iPr2P) (
2
JPP = 25.6 Hz) with 

195
Pt satellites, 

1
JPPt = 3159 

(Fc(H)P) and 3456 Hz (iPr2P). The 
31

P NMR spectrum revealed additional splitting of the 

secondary phosphine resonance from the phosphine hydrogen atom with 
1
JPH = 468 Hz.  
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The 
1
H NMR spectrum of 10 is very broad, which made detailed assignment of peaks 

difficult. 10 is poorly soluble in common organic solvents, which prevented its study by 

13
C{

1
H} and 

195
Pt{

1
H} NMR spectroscopy; however it was further characterised by IR, 

Raman, MS including HRMS and its purity was verified by microanalysis. 

Crystals of 10 suitable for X-ray crystallography were obtained from a solution in MeCN. 

The crystal structure is shown in Figure 10 and crystallographic data is in Table 2 and Table 

3. The structure of 10 is in many ways analogous to that of 9. Thus the platinum centre has a 

square planar geometry very slightly distorted towards tetrahedral, and a comparison of the 

bond lengths and angles around the metal centre (see Table 2) shows 9 and 10 have closely 

matching geometries. Comparison of the structures of 10 and the free ligand 7 (see Table 3) 

confirms that co-ordination to a platinum centre results in rather small changes to the ligand 

geometry, suggesting the ligand is well suited to accommodating metal centres in its peri-

gap. The P1···P9 distance in 10 is 3.22 Å (c.f. 3.05 Å in 7) and the splay angle is +16.9(5)º, a 

modest 4.8º increase from that in 7. The phosphorus atoms are displaced from the mean 

acenaphthene plane by 0.551 Å (P1) and 0.316 Å (P9), which represents an increase of less 

than 0.2 Å for both atoms compared with 7. The PtP2Cl2 vs. acenaphthene interplanar angle in 

10 is 24.2º, a 4º increase compared to that in 9. This difference is concomitant with a slight 

increase in out of plane distortion. As observed above for 9, the shorter of the two P-Pt 

distances in 10 corresponds with a smaller magnitude of observed 
1
JPPt coupling (P1-Pt1 

2.1931(15) Å, 
1
JP1Pt1 = 3159 Hz vs. P9-Pt1 2.2426(15) Å, 

1
JP9Pt1 = 3456 Hz). 
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Figure 10. Crystal structure of 10 with ellipsoids drawn at 50% probability. Co-crystallised 

molecule of MeCN and carbon bound hydrogen atoms are omitted for clarity. 

 

2.4. 1,2-Diphosphoniums 11 and 12 

The alkylation reactions of the phosphine centres in 2 and 3 were investigated with a view to 

the formation of 1,2-diphosphoniums. Neither 2 nor 3 react with an excess of MeOTf in 1,2-

dichloroethane at room temperature or when heated under reflux (at 84 °C). However, the 

reaction of 2 or 3 with a large excess of neat MeOTf at 90 ºC did yield the desired 1,2-

diphosphoniums 11 and 12 (see Scheme 46). The extremely forcing conditions resulted in the 

formation of significant amounts of unidentified side products; integration of the 
31

P NMR 

spectra of the mixtures after reaction revealed conversion to 11 was ca. 70%, and that to 12 

was ca. 60%. 

11 was obtained as a pale yellow oil after evaporation of excess MeOTf in vacuo. The 

31
P{

1
H} NMR spectrum of 11 exhibited an AB spin system with δP 31.0 (Ph(Me)P) and 52.8 

ppm (iPr2P), with a low magnitude of 
1
JPP coupling (27.6 Hz), which is consistent with the 

proposed 1,2-diphosphonium structure. Despite many attempts, it has not proved possible to 

further purify or crystallise 11. However, MS data provided evidence for its formation; the 
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adduct of the dication with OH (the partial hydrolysis product) was observed in the ES+ 

spectrum, similar adducts has been identified as the characteristic peak in other 1,2-

diphosphoniums previously.
110

 In addition, products of further transformations of 11 have 

been identified (see below), which unambiguously confirm the 1,2-diphosphonium structure 

of 11.  

The 
31

P{
1
H} NMR spectrum of 12 consists of two doublets at δP 33.2 (Fc(Me)P) and 47.9 

ppm (iPr2P), 
1
JPP = 45.4 Hz. The markedly higher P-P coupling could be attributed to the 

more electron donating nature of the ferrocenyl compared with the phenyl group, a similar 

difference was observed in the 
4
JPP coupling constants in 6 and 7 (see Table 4). The identity 

of 12 was confirmed via identification of the products of its further transformations (see 

below). 

31
P{

1
H} NMR confirmed the formation of 11 and 12 unambiguously due to the low 

1
JPP 

coupling constants of 1,2-diphosphoniums. The vast majority of 1,2-diphosphoniums 

reported in the literature possess C2 symmetry and hence 
1
JPP coupling cannot be read from 

their 
31

P NMR spectra directly. However, a limited number of 1,2-diphosphoniums with 

inequivalent phosphorus centres are known. Burford prepared a series of such 1,2 

diphosphoniums, including Et3P
+
-P

+
Me3, nPr3P

+
-P

+
Me3, iPr3P

+
-P

+
Me3 and Me3P

+
-P

+
tBu2Me, 

in which 
1
JPP coupling constants range from 48.1 to 94.2 Hz (see Scheme 44).

80
 A seminal 

paper from Schmutzler reported a 1,2-diphosphonium with a remarkably large 
1
JPP coupling 

of 219 Hz (see Scheme 42).
111

 However this example is electronically and structurally very 

different to our species 11 and 12.
 
Hence 12 has a magnitude of 

1
JPP coupling constant at the 

low end of the reported range, whilst 11 exhibits the lowest magnitude of 
1
JPP coupling 

reported amongst 1,2-diphosphoniums so far. 
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In order to explore the general synthetic utility of 1,2-diphosphoniums 11 and 12, and also to 

obtain further evidence for their formation, they were subjected to reduction with LiAlH4 and 

subsequent co-ordination to [(nor)Mo(CO)4]. Addition of LiAlH4 to 11 in thf at 0 ºC was 

followed by warming to room temperature and stirring. Thf was replaced with CH2Cl2 and 

the resulting solution was washed with degassed H2O in order to quench excess LiAlH4 and 

remove salts. Following filtration and the removal of volatiles in vacuo, bis(phosphine) 13 

was obtained as a pale yellow oil. The 
31

P{
1
H} NMR spectrum of 13 exhibits two doublets at 

δP -35.4 (Ph(Me)P) and -8.5 ppm (iPr2P), 
4
JPP = 169 Hz. The integration indicated ca. 70% 

purity of the crude product, confirming the transformation from the dication was essentially 

quantitative. Since the oily product 13 did not prove amenable to purification, it was used 

without further detailed characterisation for the next reaction. The reaction of 13 with 

[(nor)Mo(CO)4] in CH2Cl2 gave a brown suspension, from which crude [(13)Mo(CO)4] (15) 

was obtained as a brown oil after filtration and stripping off the solvent. Analytically pure 15 

was obtained by recrystallisation from MeCN in 23.1% yield. The 
31

P{
1
H} NMR spectrum of 

15 consists of two doublets at δP 8.6 (Ph(Me)P) and 42.9 ppm (iPr2P), 
2
JPP = 35.1 Hz.  

Some of the crystals obtained from MeCN were suitable for X-ray crystallography. The X-

ray crystal structure of 15 is shown in Figure 11 and crystallographic data is in Table 2 and 

Table 3. As expected, the bis(phosphine) ligand is co-ordinated to the octahedral 

molybdenum centre in a cis-fashion. The cis-angles around molybdenum are all close to 90°, 

with the across peri-gap P1-Mo1-P9 angle (86.96(4)º) being the most acute. There is a slight 

but significant difference in the P-Mo distances due to different electronics and sterics of the 

two phosphine donors (Mo1-P1 2.4720(12) Å vs. Mo1-P9 2.5300(13) Å). The P1···P9 

distance in 15 is 3.44 Å and the splay angle is +22.8(4)º, both these values indicate a 

significant in-plane distortion of the bis(phosphine) ligand. Also, out of acenaphthene plane 

displacements [P1 0.356 Å, P9 0.444 Å] are slightly more pronounced in 15 than in the 
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related platinum complex 9 (see Table 3). In addition to X-ray crystallography and 
31

P{
1
H} 

NMR spectroscopy, 15 was fully characterised by 
1
H and 

13
C{

1
H} NMR spectroscopy, 

Raman, IR and MS and the purity was verified by microanalysis.  

 

 

Figure 11. Crystal structure of 15 with ellipsoids drawn at 50% probability. Hydrogen atoms 

are omitted for clarity. 

 

Reduction of the (impure) 1,2-diphosphonium 12 with LiAlH4 using the same conditions as 

in the synthesis of 13 gave complete conversion to the respective bis(phosphine) 14, which 

was obtained as an orange oil not amenable to crystallisation (ca. 60% purity as judged by 
31

P 

NMR spectroscopy). The 
31

P{
1
H} NMR spectrum of 14 is consistent with two strongly 

through space coupled phosphine environments; two doublets at δP -47.5 (Fc(Me)P) and -5.2 

ppm (iPr2P), with 
4
JPP = 163 Hz were observed. Like 13, 14 was used for further synthesis 

without purification.  
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Reacting (impure) 14 with [(nor)Mo(CO)4] in CH2Cl2, following filtration and removal of 

volatiles in vacuo gave [(14)Mo(CO)4]  (16) as an orange oil. Recrystallisation from MeCN 

gave analytically pure 16 as small brown crystals in 22.6% yield. The 
31

P{
1
H} NMR 

spectrum of 16 displayed two doublets at δP 4.5 (Fc(Me)P) and 41.6 ppm (iPr2P), 
2
JPP = 30.2 

Hz.  

Crystals of 16 suitable for X-ray work were obtained from MeCN, the crystal structure of 16 

is shown in Figure 12 and crystallographic data is in Table 2 and Table 3. The structure of 16 

in the crystal is largely similar to that of 15, though the bond angles around molybdenum in 

16 are slightly more distorted from ideal octahedral geometry. Thus the cis-angles are in a 

range of 84.1(8)-100.9(6)º (see Table 2). The P1···P9 distance in 16 is 3.40 Å, comparable to 

that in 15, whilst the splay angle is significantly lower at +13.2(17)º. Hence the 

bis(phosphine) ligand bears less in-plane distortion in 16 than in 15; however this is offset by 

increased out of plane distortion in 16; displacements from the acenaphthene plane are 0.555 

Å for P1 and 0.850 Å for P9. The same trend was observed earlier in the structures of 9 and 

10; substituting a phenyl for a ferrocenyl group in these compounds decreases the in-plane 

distortion in favour of the out of plane distortion.  

The only across peri-gap substituted bis(phosphine) molybdenum complex reported to date is 

that of Nap(PPh2)2.
19

 The P∙∙∙P distance in the crystal structure of [Mo(CO)4{Nap(PPh2)2}] is 

3.23 Å, somewhat shorter than those of 15 and 16. However the key structural parameters of 

15 and 16 agree well with those of Mo(CO)4[Nap(PPh2)2]. 

In addition to X-ray crystallography and 
31

P{
1
H} NMR spectroscopy, 16 was fully 

characterised by 
1
H and 

13
C{

1
H} NMR spectroscopy and IR spectroscopy and the purity was 

verified by microanalysis. The full characterisation of both 15 and 16 provides unequivocal 

support for the formation of 1,2-diphosphoniums 11 and 12 as shown in Scheme 46. 
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Figure 12. Crystal structure of 16 with ellipsoids drawn at 50% probability. Hydrogen atoms 

are omitted for clarity. 
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Table 2. Selected bond lengths (Å) and angles (º) for 9, 10·MeCN, 15 and 16. 

9 

P1-Pt1 2.2006(13) Cl1-Pt1 2.3646(12) 

P9-Pt1 2.2455(15) Cl2-Pt1 2.3705(12) 

P1-Pt1-P9 95.19(5) P1-Pt1-Cl2 84.64(5) 

Cl1-Pt1-Cl2 88.19(5) P9-Pt1-Cl1 92.12(6) 

P1-Pt1-Cl1 171.95(5) P9-Pt1-Cl2 177.55(5) 

 

10·MeCN 

P1-Pt1 2.1931(15) Cl1-Pt1 2.3920(13) 

P9-Pt1 2.2426(15) Cl2-Pt1 2.3798(15) 

P1-Pt1-P9 93.25(6) P1-Pt1-Cl1 84.67(5) 

Cl1-Pt1-Cl2 89.28(5) P9-Pt1-Cl2 93.46(6) 

P1-Pt1-Cl2 171.39(6) P9-Pt1-Cl1 172.97(5) 

    

15 
P1-Mo1 2.4720(12) C27-Mo1 2.004(5) 

P9-Mo1 2.5300(13) C28-Mo1 2.033(5) 

C26-Mo1 2.038(5) C29-Mo1 1.992(5) 

P1-Mo1-P9 86.96(4) P1-Mo1-C28 91.69(13) 

P1-Mo1-C29 88.22(14) P9-Mo1-C26 93.05(14) 

P9-Mo1-C27 94.06(14) P9-Mo1-C28 94.03(14) 

C27-Mo1-C29 90.70(19) C27-Mo1-C26 87.61(19) 

P1-Mo1-C27 177.75(14) C27-Mo1-C28 90.23(19) 

P9-Mo1-C29 174.93(14) C29-Mo1-C26 85.41(19) 

C26-Mo1-C28 172.72(19) C29-Mo1-C28 87.67(19) 

P1-Mo1-C26 90.35(14)   

 

16 

P1-Mo1 2.506(5) C32-Mo1 1.99(2) 

P9-Mo1 2.554(6) C33-Mo1 2.03(2) 

C31-Mo1 2.00(3) C34-Mo1 1.96(3) 

P1-Mo1-P9 84.37(17) P1-Mo1-C33 88.2(5) 

P1-Mo1-C34 100.9(6) P9-Mo1-C31 94.1(6) 

P9-Mo1-C32 90.6(7) P9-Mo1-C33 94.1(6) 

C32-Mo1-C34 84.1(8) C32-Mo1-C31 94.1(9) 

P1-Mo1-C32 174.7(7) C32-Mo1-C33 90.5(9) 

P9-Mo1-C34 174.7(6) C34-Mo1-C31 87.0(9) 

C31-Mo1-C33 170.5(8) C34-Mo1-C33 85.3(9) 

P1-Mo1-C31 88.0(6)   
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Table 3. Peri-distances (Å), splay angles (º) and out of plane displacements (Å) for 2, 

3·1/2MeCN, 7, 9, 10·MeCN, 15 and 16. 

 2 

 

3·1/2MeCN 7 9 10·MeCN 15 16 

P1···P9 

 

2.2347(9) 2.2483(17) 3.05 3.28 3.22 3.44 3.40 

P1-C1-C10 

 

116.59(18) 117.3(3) 122.9(4) 124.5(4) 122.8(4) 126.2(3) 122.4(16) 

C1-C10-C9 

 

123.5(2) 123.5(4) 128.4(4) 129.7(5) 127.8(5) 130.5(4) 127.0(17) 

C10-C9-P9 

 

111.06(18) 110.5(3) 120.8(3) 126.4(4) 126.3(4) 126.1(4) 123.8(16) 

Splay angle 

 

-8.85(18) -8.70(4) +12.1(4) +20.6(5) +16.9(5) +22.8(4) +13.2(17) 

Out of plane 

displacement 

(P1) 

0.142 0.044 0.373 0.151 0.551 0.356 0.555 

Out of plane 

displacement 

(P9) 

0.274 0.129 0.156 0.353 0.316 0.444 0.850 

 

Due to the heteroleptic substitution patterns of the peri-substituted species described in this 

chapter, the P-P coupling constants across the peri-gap in a variety of bonding and non-

bonding geometries have been observed. These are collated in Table 4. The most striking is 

the difference in magnitude of 
2
JPP (in 9, 10, 15 and 16) and 

4
JPP coupling constants (in 6, 7, 

13 and 14). The fact that 
4
JPP couplings are of much larger magnitude in spite of a formally 

longer range illustrates the significance of through-space coupling, which operates when lone 

pairs are available on the peri-atoms. A particularly illustrative example of this is seen in 

ligand 7 and its platinum complex 10, which show a drop of coupling constant from (
4
JPP) 

199 Hz to (
2
JPP) 25.6 Hz on co-ordination, whilst the P∙∙∙P distance increases by a mere 5% 

(from 3.05 to 3.22 Å).   
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Table 4. Selected NMR parameters and P∙∙∙P distances for compounds 2-16. 

Compound δPiPr2 

(ppm) 

δP(other) 

(ppm) 

JPP 

type 

JPP value 

(Hz) 

P1∙∙∙P9 

Distance (Å)
a
  

 

2 60.0 -34.5 
1
J 303 2.2347(9) 

3 54.6 -36.2 
1
J 311 2.2483(17) 

4 66.2 36.2 
1
J 412 - 

5 60.6 -22.9 
1
J 306 - 

6 -12.3 -41.0 
4
J 169 - 

7 -9.3 -51.9 
4
J 199  3.05 

9 14.8 -20.9 
2
J 25.4 3.28 

10 14.6 -17.4 
2
J 25.6 3.22 

11 52.8 31.0 
1
J

 
27.6 - 

12 45.9 33.2 
1
J

 
45.3 - 

13 -8.5 -35.4 
4
J 169 - 

14 -5.2 -47.4 
4
J 163 - 

15 42.9 8.6 
2
J 35.1 3.44 

16 41.6 4.5 
2
J 30.2 3.40 

a
 From X-ray diffraction. 
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Chapter 3 – Co-ordination Chemistry of a peri-Substituted Phosphino-Phosphonium 

Salt 

3.1. Introduction to Phosphino-Phosphonium Salt Co-ordination Chemistry 

It would be expected that phosphino-phosphonium salts would demonstrate complex and 

varied co-ordination chemistry due to the ambiguity of the location of their charge. Based on 

the resonance forms in Figure 2, both mono- and bidentate co-ordination modes to metal 

centres could be proposed. There are only a small number of reports on phosphino-

phosphonium co-ordination chemistry, but they demonstrate the varied nature of their 

interaction with transition metal centres very well. 

Schmutzler has reported two complexes formed from a dimethyl urea based phosphino-

phosphonium that displays two distinct co-ordination modes (see Scheme 48). It was shown 

that the reaction of the phosphino-phosphonium with [W(CO)5(thf)] leads to the formation of 

a monodentate complex in which the P-P bond is retained, the ligand behaving as a cationic 

phosphine.
83

 The other complex reported in this study was formed from [(C2H4)Pt(PPh3)2], 

and displays the ligand in a chelating phosphine/phosphenium co-ordination mode in which 

the positive charge is located at the lower co-ordinate phosphorus centre.
119 

Each of the 

complexes in Scheme 48 is arguably consistent with a different phosphino-phosphonium 

resonance form, with monodentate co-ordination appearing to tally with the phosphonium 

form and bidentate co-ordination as a phosphenium complex naturally being in agreement 

with the phosphenium form (see Figure 2). This demonstrates experimentally that both of the 

resonance structures depicted in Figure 2 are justifiable. 
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Scheme 48.
 
Metal complexes of phosphino-phosphoniums with a dimethylurea backbone. 

Thomas has reported an interesting phosphino-phosphonium species with an ortho-phosphine 

substituent. The crystal structure of this compound shows only one of the phosphines to be 

bonded to the phosphenium centre, but 
31

P NMR spectra show only two peaks; a triplet for 

the phosphenium and a doublet for the two phosphine centres, and hence an intramolecular 

ligand exchange is taking place in solution. This compound was synthesised by chloride 

abstraction from the corresponding chlorophosphine (see Scheme 49),
120

 which is an 

intramolecular version of the common halide abstraction/phosphine addition method 

discussed in Section 1.3.4.  

 

Scheme 49. An ortho-phosphine substituted phosphino-phosphonium in which an 

intramolecular ligand exchange takes place. 
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A range of platinum and palladium complexes of the phosphino-phosphonium salt shown in 

Scheme 49 have been prepared, revealing three different co-ordination modes. The first of 

these mirrors the chelating phosphine/phosphenium mode observed by Schmutzler,
119 

which 

was observed when the ligand was reacted with Pt(PPh3)4. This complex was also shown to 

undergo a phosphine exchange with PMe3. The reaction with Pd(PPh3)4 resulted in a different 

co-ordination mode: a dimeric complex in which the phosphenium centre is bridging between 

two palladium(0) centres. On reaction of the dimer with PMe3 a monomeric analogue of the 

aforementioned platinum complex is formed. The final co-ordination mode observed in this 

study was seen in the reaction of the ligand with [PtCl2(cod)], which forms a chelating 

phosphine/chlorophosphine complex formed by chloride migration from the platinum(II) 

centre to the phosphenium phosphorus (see Scheme 50).
120,121

 

 

Scheme 50.
 
Co-ordination chemistry of an ortho-phosphine substituted phosphino-

phosphonium. 
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It has also been shown that phosphine addition to a phosphenium complex can yield a 

phosphino-phosphonium metal complex, this is the same reaction between a phosphenium 

and a phosphine discussed in detail in Section 1.3.4, only that it takes place at a co-ordinated 

phosphorus centre.
122

 

 

Scheme 51. A phosphino-phosphonium complex synthesised from a co-ordinated 

phosphenium. 
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3.2. Co-ordination Chemistry of Phosphino-Phosphonium Salt 2 

Bis(borane) Adduct 17 

The previously discussed phosphino-phosphonium chloride salt 2 was used as the starting 

point for all of the reactions presented in this chapter. Before investigating any co-ordination 

chemistry with 2, the synthesis of its borane adduct was first attempted in order to observe its 

co-ordination behaviour in the presence of a simple p-block Lewis acid. An excess of 

BH3·SMe2 was added to 2 in thf at -78 ºC. After warming to room temperature and stirring, 

volatiles were removed to give the bis(borane) adduct 17 (see Scheme 52) as a yellow oil in 

quantitative yield. The 
31

P{
1
H} NMR spectrum of 17 exhibited broad singlets at δp -6.6 and 

39.4 ppm whilst its 
31

P NMR spectrum consisted of a doublet at -6.6 (
1
JPH = 376.1 Hz) and a 

broad singlet at 39.5 ppm, corresponding to the secondary and tertiary phosphine centres, 

respectively. This is consistent with BH3 mediated reduction of 2 to give the bis(borane) 

adduct of the mixed tertiary/secondary phosphine (6), which is the product of the reduction of 

2 with LiAlH4 (see Section 2.2 and Scheme 46). The 
11

B NMR spectrum of 17 reveals a 

broad resonance centred at δB -39.3 ppm. It was found that complete conversion from 2 to 17 

could not be achieved with less than four equivalents of BH3·SMe2, with smaller amounts 

yielding mixtures of 2 and 17 but no additional products, and hence P-P bond cleavage was 

the sole mode of reactivity observed in this case. 
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Scheme 52. Synthesis of compounds 17-22. 

Crystals of 17 were obtained from MeCN and its structure was determined by X-ray 

crystallography, the results of which are shown in Figure 13 and crystallographic data is in 

Table 5 and Table 7. The structure of 17 shows the phosphorus atoms to be significantly 

bending away from each other, with a P1···P9 distance of 3.61 Å and a large splay angle of 

+24.4(4)º (see Figure 5 for a definition of a splay angle). The extent that the phosphorus 

atoms are displaced out of the plane of the acenaphthene ring is also high at 0.478 Å for P1 

and 0.816 Å for P9. These distortions are a result of minimisation of steric strain. No 
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attractive interaction is possible between the phosphorus centres as both lone pairs are 

occupied by BH3. Hence the substituents are placed as far away from each other as the 

acenaphthene backbone permits. Both phosphorus centres can be described as having 

distorted tetrahedral geometries; the angles around the phosphorus atoms range from 

102.5(13) to 118.88(19)º (see Table 5). In the formation of 17, BH3 is serving as both a 

reducing agent to the phosphonium group and a Lewis acid to the resulting phosphine, which 

is reminiscent of the role NaBH4 plays in the reduction of chiral chlorophosphoniums in a 

recent report by Gilheany.
123

 

 

Figure 13. Crystal structure of 17 with ellipsoids drawn at 50% probability. Co-crystallised 

molecule of MeCN and carbon and boron bound hydrogen atoms omitted for clarity. 

 

As the crystal structure of the bis(phosphine) 6 was not obtained, it cannot be compared to 

that of its bis(borane) adduct 17. However, it can nonetheless be compared to the structure of 

the ferrocenyl bis(phosphine) 7. 17 has a splay angle of over twice that of 7, [+24.4(4)º vs. 

+12.1(4)º] as well as a substantially longer P···P separation [3.61 vs. 3.05 Å], this shows 
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there is a much larger degree of in-plane distortion. The out of plane displacements are also 

far greater in 17 (0.478 Å for P1 and 0.816 Å for P9) than in 7 (0.373 Å for P1 and 0.156 Å 

for P9). The cause of this much higher degree of distortion is twofold; firstly the borane 

moieties add extra steric bulk so larger distortions are necessary to accommodate the 

phosphorus centres. Secondly, the occupancy of both phosphine lone pairs prevents the 

formation of any weak 3 centre 4 electron interactions that can be formed in order to alleviate 

steric strain.  

17 was further characterised by 
1
H and 

13
C{

1
H} NMR spectroscopy, IR, Raman and MS 

(including HRMS). 

Table 5. Selected bond lengths (Å) and angles (º) for 17·MeCN, 18·thf, 19, 21·2CH2Cl2 and 

22·2CH2Cl2. 

17·MeCN 

C1-P1 1.807(4) C9-P9 1.834(5) 

C13-P1 1.818(4) C19-P9 1.837(4) 

B1-P1 1.925(5) C22-P9 1.862(3) 

H1-P1 1.202(17) B9-P9 1.944(5) 

C1-P1-C13 106.72(18) C9-P9-C19 106.41(18) 

C1-P1-B1 116.48(19) C9-P9-C22 104.55(17) 

C1-P1-H1 108.9(14) C9-P9-B9 112.55(19) 

C13-P1-B1 112.44(16) C19-P9-B9 107.52(18) 

B1-P1-H1 108.8(15) C22-P9-B9 118.88(19) 

C13-P1-H1 102.5(13) C19-P9-C22 106.15(15) 

    

18·thf 

C1-P1 1.835(7) Mo1-Cl1 2.6013(19) 

C13-P1 1.837(5) Mo1-C25 2.061(6) 

P1-Mo1 2.5283(16) Mo1-C26 1.964(6) 

C9-P9 1.792(7) Mo1-C27 2.015(6) 

C19-P9 1.817(6) Mo1-C28 1.947(8) 

C22-P9 1.826(6)  

P1-Mo1-Cl1 84.57(6) C26-Mo1-C27 84.5(3) 

P1-Mo1-C25 100.12(17) C26-Mo1-C28 86.7(3) 

P1-Mo1-C26 174.81(19) C27-Mo1-C28 89.1(3) 

P1-Mo1-C27 90.56(17) Cl1-Mo1-C25 91.8(3) 

P1-Mo1-C28 91.55(17) Cl1-Mo1-C26 97.1(3) 

C25-Mo1-C26 84.8(3) Cl1-Mo1-C27 90.5(3) 

C25-Mo1-C27 169.2(3) Cl1-Mo1-C28 176.09(17) 

C25-Mo1-C28 89.4(3)  
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Table 5 continued 

19 

C1-P1 1.799(13) C9-P9 1.828(11) 

C13-P1 1.812(11) C19-P9 1.839(14) 

Cl3-P1 2.050(4) C22-P9 1.836(14) 

Pt1-P1 2.186(3) Pt1-P9 2.241(4) 

Pt1-Cl1 2.372(4) Pt1-Cl2 2.352(3) 

P1-Pt1-Cl1 87.59(11) P9-Pt1-Cl1 170.33(11) 

P1-Pt1-Cl2 170.33(10) P9-Pt1-Cl2 90.96(11) 

P1-Pt1-P9 94.63(11) Cl1-Pt1-Cl2 88.21(11) 

 

21·2CH2Cl2 

C1-P1 1.759(7) C9-P9 1.806(8) 

C13-P1 1.800(12) C19-P9 1.836(11) 

Cl2-P1 1.995(5) C22-P9 1.828(12) 

Pt1-P1 2.186(3) Pt1-P9 2.236(3) 

Pt1-Cl1 2.405(3) Pt1- Cl1
i
 2.380(3) 

P1-Pt1-Cl1 89.92(9) P9-Pt1-Cl1 173.84(9) 

P1-Pt1-Cl1
i
 170.96(10) P9-Pt1-Cl1

i 
93.99(9) 

Cl1-P-Cl1
i
 82.03(9) P1-Pt1-P9 94.36(9) 

Pt1-Cl1-Pt1
i
 97.97(11)  

 

 

22·2CH2Cl2 

C1-P1 1.822(6) C9-P9 1.820(6) 

C13-P1 1.821(8) C19-P9 1.854(7) 

Pd1-P1 2.2406(17) C22-P9 1.841(8) 

Pd1
i
-P1 2.3504(18) Pd1-P9 2.3077(18) 

Pd1-Cl1 2.3908(16)  

P1-Pd1-Cl1 173.35(7) P9-Pd1-P1 92.76(6) 

P1-Pd1
i
-Cl1

i 
96.50(6) P9-Pd1-Cl1 92.77(6) 

P1-Pd
i
-P9

i 
167.10(6) Pd1-P1-Pd1

i 
102.52(7) 

P1-Pd1-P1
i 

77.48(6) 
 

 

 

Molybdenum Complex 18 

As an entry into the co-ordination chemistry of 2, its reaction with 1.1 equivalents of 

[(nor)Mo(CO)4] in CH2Cl2 was carried out at room temperature, resulting in a brown 

suspension. Filtration gave an orange solution from which the volatiles were removed and the 

resulting orange oil was extracted with MeCN. Removal of MeCN gave [(2)Mo(CO)4Cl] (18) 

as a yellow solid in 74.9% yield. The 
31

P{
1
H} NMR spectrum of 18 revealed doublets (

1
JPP = 

250.4 Hz) at δp 36.0 (PhP) and 52.4 (iPr2P) ppm. For comparison the 
31

P{
1
H} spectrum of 2 

consists of doublets (
1
JPP = 303 Hz) at δP -34.5 and 60.0 ppm, and hence the PhP peak has 



98 

 

moved dramatically downfield on co-ordination to the molybdenum centre whilst the 

phosphonium peak is moved upfield by less than 8 ppm. The magnitude of 
1
JPP coupling is 

lower in 18 than in 2, but still consistent with a formal P-P bond. Crystals suitable for X-ray 

crystallography were grown from thf, the crystal structure of 18 confirms monodentate co-

ordination of 2 through P1, as well as co-ordination of the chloride counter ion cis to the 

phosphorus centre (see Figure 14 for the crystal structure of 18 and Table 5 and Table 7 for 

crystallographic data). This is the same type of reactivity as observed by Schmutzler in the 

W(CO)5 complex in Scheme 48 (top),
83 

in which the P-P bond remains intact and the 

phosphino-phosphonium behaves like a cationic phosphine. The co-ordination of the chloride 

in 18 makes 2 an unusual example of an ion pair in which both components can behave as a 

ligand, making 2 an ion-separated bidentate ligand of sorts. The molybdenum centre in 18 

adopts a distorted octahedral geometry, with cis angles ranging from 84.5(3) to 97.1(3)º and 

trans from 169.2(3) to 176.09(17)º (Table 5). The biggest deviations from the ideal angles in 

both cases are from C-Mo-C angles. The P-Mo bond length is 2.5283(16) Å, which is only 

slightly longer than in [Mo(CO)5PPh3] (2.506(1) Å).
124

 The P-P bond length is 2.271(3) Å, 

only 0.04 Å longer than in 2, which is consistent with the smaller magnitude of 
1
JPP coupling 

but not enough of a difference to explain a decrease of over 50 Hz. As expected, 18 has a 

small negative splay angle of -8.50(6)º. 18 exhibits little out of plane bending for P1 (0.056 

Å) and a modest distortion for P9 (0.305 Å) [c.f. -8.85(18)º, P1 0.142 Å, P9 0.274 in 2].  

The IR CO stretching frequencies of 18 give some indication of the electronic properties of 

monodentate co-ordinated 2, as the related stretching frequencies have been reported for 

[Mo(CO)5Cl][NEt4],
125

 [(PhO)3PMo(CO)4Cl][NEt4] and [Ph3PMo(CO)4Cl][NEt4].
126

 These 

values are compared in Table 6. The large decrease in wavenumber compared with 

[Mo(CO)5Cl][NEt4] shows that 2 is, as expected, a much stronger donor than CO. However, 

the fact that the PPh3 and P(OPh)3 complexes have lower CO stretching frequencies than 18 
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[1822-2003 and 1833-2005 cm
-1

 vs 1833-2019 cm
-1

] shows that 2 is a weaker donor than 

both of these ligands. It is notable that the reported stretching frequencies for 

[(PhO)3PMo(CO)4Cl][NEt4] and [Ph3PMo(CO)4Cl][NEt4] are rather similar (the largest 

ΔυCO is 11 cm
-1

) compared with the differences in frequencies observed for their Ni(CO)3 

complexes (υCO 2085 and 2012 cm
-1

 for Ni(CO)3P(OPh)3 and 2069 and 1990 cm
-1

 for 

Ni(CO)3PPh3).
127

 This suggests that the stretching frequencies of the [Mo(CO)5Cl]
-
 anion are 

less sensitive to ligand changes than Ni(CO)3, which makes the differences in CO stretching 

frequency observed between the complex of 2 and PPh3/P(OPh)3 quite large, leading to the 

conclusion that 2 is a much weaker donor than these ligands. 

Table 6. CO stretching frequencies (cm
-1

) for Mo(CO)4Cl complexes. 

 υCO (cm
-1

) 

[Mo(CO)5Cl][NEt4] 2064 1913 - 1871 

[Ph3PMo(CO)4Cl][NEt4] 2003 1890 1875 1822 

[(PhO)3PMo(CO)4Cl][NEt4] 2005 1890 1880 1833 

[(2)Mo(CO)4Cl] (18) 2019 1912 1893 1832 

 

18 was further characterised by Raman, 
1
H and 

13
C{

1
H} NMR spectroscopy and its purity 

was established by elemental analysis. 
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Figure 14. Crystal structure of 18 with ellipsoids drawn at 50% probability. Co-crystallised 

molecule of thf and hydrogen atoms omitted for clarity. iPr groups are shown in wireframe 

for clarity. 

 

Platinum Complexes 19 and 21 

2 was reacted with [PtCl2(cod)] in CH2Cl2 at room temperature to give a pale yellow solution. 

The removal of volatiles gave the chlorophosphine platinum(II) dichloride complex 19 as a 

pale yellow solid in quantitative yield. The 
31

P{
1
H} NMR spectrum of 19 exhibits two 

doublets (
2
JPP = 26.4 Hz) flanked by platinum satellites at δP 12.8 (

1
JPPt = 3201 Hz) and 41.9 

ppm (
1
JPPt = 3836 Hz), representing the tertiary and chlorophosphine centres, respectively. 

The 
195

Pt{
1
H} NMR spectrum consists of a doublet of doublets at δPt = -4326 ppm, with the 

1
JPPt coupling constants corresponding well to those observed in the 

31
P{

1
H} NMR spectrum. 

The comparable coupling constants and chemical shifts for 19 and the related platinum 

complex 9 (see Section 2.3) show them to have very similar 
31

P NMR spectra. It is notable 

that the chlorophosphine centre demonstrates a significantly higher magnitude of 
1
JPPt 
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coupling (3836 Hz) than the secondary phosphine centre in 9 (3212 Hz) or the tertiary 

phosphines in 9 and 19 (3397 and 3201 Hz, respectively). 

Given that the chloride counterion has never been observed to attack the phosphino-

phosphonium moiety of 2, it is reasonable to propose that the formation of 19 may proceed 

with bidentate co-ordination of 2 to the platinum centre prior to chloride attack of the 

‘phosphenium’ phosphorus, which would be extremely Lewis acidic (see Scheme 53). This 

reaction is analogous with that observed in the platinum(II) chloride complex in Scheme 

50.
120 

It is noteworthy that the formation of 19 is more easily explained when thinking of 2 as 

a phosphine-stabilised phosphenium, as chloride attack of P1 is readily explained and no 

change in oxidation state takes place at either phosphorus. 

Crystals of 19 suitable for X-ray crystallography were grown from CH2Cl2/diethyl ether. The 

crystal structure of 19 is depicted in Figure 15 and crystallographic data is in Table 5 and 

Table 7. The structure of 19 shows the geometry to be square planar slightly distorted 

towards tetrahedral, with the cis angles ranging from 87.59(11) to 94.63(11)º and the trans 

angles both 170.33(11)º (see Table 5). The P1···P9 distance is 3.26 Å and, as is typical for a 

bridged peri-substituted compound, a positive splay angle of +18.5(11)º is observed. Both 

phosphorus atoms are bending out of plane on opposite sides of the acenaphthene ring quite 

significantly [P1 0.586 Å, P9 0.367 Å]. 
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Figure 15. Crystal structure of 19 with ellipsoids drawn at 50% probability. Hydrogen atoms 

omitted for clarity. 

 

When the structure of 19 is compared with that of 9, it can be seen that their splay angles and 

peri-distances are very similar [19: +18.5(11)º, 3.26 Å; 9: 20.6(5)º, 3.28 Å]. Although this 

demonstrates that 19 has (very slightly) less in-plane distortion, it has significantly higher out 

of plane displacement at the chlorophosphine centre (P1 0.586 Å) from the acenaphthene 

mean plane than is observed in the secondary phosphine centre in 9 (P1 0.151 Å). This is 

perhaps to be expected given the relative sizes of chlorine and hydrogen. The out of plane 

distortions at the diisopropyl phosphine groups are similar for 19 and 9 at 0.367 and 0.353 Å, 

respectively. 19 was further characterised by IR, Raman, MS, 
1
H and 

13
C{

1
H} NMR 

spectroscopy and its purity was verified by elemental analysis.  

The attack of the chloride ion at P1 in the formation of 19 led us to investigate this reaction 

with an inert counterion (triflate) in place of chloride. To perform the anion exchange, 2 was 

reacted with 1.1 equivalents Me3SiOTf in CH2Cl2 at -78 ºC. After warming to room 
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temperature and stirring, volatiles were removed and the resulting colourless oil was dried in 

vacuo to give the triflate salt of 2 (20). The 
31

P{
1
H} NMR spectrum of 20 is unchanged from 

the chloride salt 2, and it was dissolved in CH2Cl2 and used without further purification. The 

solution of 20 was added to [PtCl2(cod)] at room temperature to give a pale yellow solution, 

which was layered with hexane to give 21 as a white precipitate in 94.8% yield as well as 

crystals suitable for X-ray crystallography. 

Once precipitated, 21 has very poor solubility in organic solvents, which hindered its study 

by NMR spectroscopy. Nonetheless doublets (
2
JPP = 28.0 Hz) at δP 11.3 (

1
JPPt = 3409 Hz) and 

38.5 ppm (
1
JPPt = 3582 Hz) could be identified in the 

31
P{

1
H} NMR spectrum of 21, and 

hence it is very similar to that of 19 apart from the 
1
JPPt coupling constants, which are higher 

for P9 and lower for P1. The 
1
H NMR spectrum of 19 is too broad to interpret and 

13
C{

1
H} 

and 
195

Pt{
1
H} NMR spectra could not be obtained due to its poor solubility. However, in 

addition to X-ray crystallography (see below) 21 was also characterised by IR spectroscopy, 

HRMS and elemental analysis. 

The crystal structure of 21 is shown in Figure 16 and crystallographic data is in Table 5 and 

Table 7. 21 is shown to be a dicationic dimer of 19 (-Cl
-
) with two bridging chlorides and two 

triflate counter ions. The formation of 21 can be tentatively explained in a similar manner to 

19; 2 undergoes bidentate co-ordination to PtCl2, followed by migration of a chloride ligand 

from the platinum centre to P1. This would give a cationic, three co-ordinate platinum(II) 

complex that 21 can be considered the dimer of (see Scheme 53). Dimerisation is strongly 

favoured in order to satisfy the strong electronic preference of platinum(II) to be square 

planar.  

The crystal structure of 21 has, as expected, very similar bond lengths and angles to 19 (see 

Table 5). Hence the geometry around the platinum centre shows only relatively small 
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deviations from the ideal angles [cis 82.03(9)-94.36(9)º, trans 170.96(10) and 173.84(9)º]. 

The P1···P9 distance is 3.24 Å, very similar to that of 19 and 9, while the splay angle is 

+19.9(7)º. The biggest difference between the comparable parameters in the structures of 19 

and 21 is in the out of plane bending, which is lower for both P1 (0.272 Å) and P9 (0.214 Å) 

in 21 and as such it is distorted out of plane to a similar degree to 9, only more evenly. 

The phosphorus atoms of each half of the dimer in 21 bend out of plane on opposite sides of 

the acenaphthene rings, the result of which is that the two acenaphthene rings are not in the 

same plane but staggered, resulting in the mean planes of the two rings being 1.04 Å apart.  

 

Figure 16. Crystal structure of 21 with ellipsoids drawn at 50% probability. Triflate counter 

ions, co-crystallised molecules of CH2Cl2 and hydrogen atoms omitted for clarity. iPr groups 

are shown in wireframe for clarity. 
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Scheme 53. Formation of 19 and 21. 

Palladium Complex 22 

So far in this chapter two modes of phosphino-phosphonium co-ordination have been 

observed; monodentate co-ordination in 18 and P-P bond cleavage via formation of a 

bidentate phosphine/chlorophosphine ligand (in 19 and 21).  

In the reaction of 2 with half an equivalent of [Pd2(dba)3] a distinct third co-ordination mode 

was observed. 2 was added to [Pd2(dba)3] at -78 ºC in CH2Cl2. After warming to room 

temperature and stirring to give a dark orange/brown solution, the volume of the solvent was 

reduced to half and the palladium dimer 22 was precipitated as a bright yellow solid in 18.7% 

yield upon cooling. The 
31

P{
1
H} NMR spectrum of 22 revealed an AA'XX' spin system 

(A/A' = iPr2P, X/X' = PhP), with multiplets at δP -176.6 and 14.7 ppm. This NMR data is 

consistent with 2 behaving as a chelating phosphine/phosphide ligand. 22 exhibits large 

phosphine-phosphide coupling, as well as small phosphide-phosphide and phosphine-

phosphine couplings (trans-
2
JAX = 322.0 Hz, cis-

2
JAX = 140.0 Hz, 

2
JXX' = 4.6 Hz, 

4
JAA' = 2.2 

Hz). See Figure 17 for a diagram of these couplings. The relative magnitudes of the 

phosphine-phosphide couplings in 22 is rather interesting; the trans-
2
JPP couplings (322.0 Hz) 

are of similar magnitude to the equivalent phosphine-phosphine coupling observed in other 
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compounds, for example that of 33 (326.4 Hz, see Chapter 4). However, the 
2
JPP coupling 

between cis phosphines in 33 is only 22.0 Hz, which is ordinary for cis-
2
JPP coupling between 

co-ordinated phosphine centres (see Table 4). The magnitude of cis phosphine-phosphide 

coupling in 22 is therefore very high at 140.0 Hz, comparable to 
4
J coupling between two 

phosphine centres interacting across the peri-positions.  

 

Figure 17. P-P couplings in 22. 

Crystals of 22 suitable for X-ray crystallography were grown from CH2Cl2/diethyl ether. The 

crystal structure of 22 is shown in Figure 18 and crystallographic data is in Table 5 and Table 

7. The structure of 22 is shown to be a palladium dimer with the co-ordination sphere of each 

metal centre comprised of a phosphine (P9), a chloride and two bridging phosphido ligands 

(P1/P1
i
). This confirms that the reaction of 2 and [Pd2(dba)3] proceeds with oxidation from 

palladium(0) to palladium(II) alongside the reduction of P1 to phosphorus(I). This oxidative 

addition is strikingly different from the other reactions reported in this chapter and it is 

presumed that the unusual reduction that has taken place is a result of the oxidation of 

palladium(0) being a strong driving force. A bridging co-ordination mode has been shown to 

be strongly favoured by phosphido ligands
45 

and hence the formation of a dimeric complex is 

largely to be expected once P1 has been reduced. The conversion from phosphenium to 
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phosphide observed in the formation of 22 is a demonstration of the isolobal relationship 

these species share with nitrosyl ligands; linear NO
+
 complexes can be reduced to bent NO

- 

complexes via oxidation of the co-ordinated metal centre.
128

 The same reduction can take 

place from phosphenium to phosphide ligands.  

The palladium centre in 22 is shown to be distorted square planar with bond angles in the 

range of 77.48(6)-173.35(7)º. The Pd-P bond lengths for the phosphido centres are 

2.2406(17) and 2.3504(18) Å, which is consistent with previously reported bond lengths in 

compounds with a similar structure.
129,130 

The structural parameters regarding the peri-region 

in 22 are in fact quite similar to those of 19 and 21; the P1···P9 distance is 3.29 Å and the out 

of plane distortions are 0.345 and 0.766 Å for P1 and P9, respectively, which leads to a splay 

angle of +15.5(5)º (see Table 7). 22 was also characterised by 
1
H and 

13
C{

1
H} NMR 

spectroscopy, MS and elemental analysis. 

 

Figure 18. Crystal structure of 22 with ellipsoids drawn at 50% probability. Co-crystallised 

molecules of CH2Cl2 and hydrogen atoms omitted for clarity. iPr groups are shown in 

wireframe for clarity. 
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It is noteworthy that an alternative view of the oxidation states in 22 could be argued; it could 

be considered as two palladium(0) centres with bridging phosphenium ligands and trans co-

ordinated chloride counter ions. However, the very low 
31

P NMR shift strongly indicates a 

phosphido species and the tendency of the chloride counter ion to directly attack at such 

phosphenium centres has been documented in the formation of 19 and 21. In addition, 

bridged phosphenium ligands are also very rare.  

Table 7. peri-Distances (Å), splay angles (º) and out of plane displacement (Å) for 

17·MeCN, 18·thf, 19, 21·2CH2Cl2 and 22·2CH2Cl2. 

 17·MeCN 18·thf 19 21·2CH2Cl2 22·2CH2Cl2 

 

P1···P9 3.61 2.271(3) 3.26 3.24 3.29 

 

P1 C1 C10 

 

128.2(3) 115.1(6) 122.9(10) 123.3(7) 123.1(5) 

C1 C10 C9 130.6(4) 124.4(6) 130.1(11) 131.2(7) 129.6(5) 

 

C10 C9 P9 

 

125.6(3) 112.0(4) 125.5(8) 125.4(7) 122.8(5) 

Splay angle +24.4(4) -8.50(6) +18.5(11) +19.9(7) +15.5(5) 

 

Out of plane 

displacement 

(P1) 

 

0.478 0.056 0.586 0.272 0.345 

 

 

Out of plane 

displacement 

(P9) 

0.816 0.305 0.367 0.214 0.766 
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Chapter 4 – Synthesis and Reactivity of a Geminally Bis(peri-substituted) Tridentate 

Phosphine 

4.1. Introduction to Tridentate Phosphines 

Chelating ligands have been used extensively in co-ordination chemistry due to the enhanced 

control of steric and electronic properties, stereochemistry and co-ordination number that 

they give compared to monodentate ligands. The combination of the co-ordination properties 

of phosphines and benefits of chelation make tridentate phosphines excellent ligands. 

Compared with bidentate phosphines, relatively few tridentate phosphines have been reported 

in the literature, which is surprising considering the advantages bidentate phosphines have 

over monodentate species in many important homogenous catalytic processes. Of the 

tridentate phosphines reported to date, the triphos ligands (A and B)
131

 are by far the most 

studied; there are over 300 papers published on various aspects of reactivity of A and over 

370 on B. B has provided the basic structure for a number of variations, differing in both the 

phosphine substituents (C, D,
132

 E
133

 and F
134

) and the bridging chain length (G, H,
132

 I
135

) 

(see Figure 19). A C-chiral derivative of these ligands (J) has also been reported from a 

modified synthetic method starting from an enantiomerically pure alkyl bromide.
136

 A similar 

strategy was employed in the synthesis of another C-chiral ligand, known as Pigiphos (K),
137

 

based on a bis(ferrocenyl) phosphine backbone. Functionalisation of both cyclopentadienide 

rings of ferrocene has been used to synthesise a hexakis(phosphine) ligand that forms 

binuclear complexes in which it behaves as a tridentate ligand to two metal centres 

simultaneously (L).
138

  

Ortho-substituted phenyl groups are also a popular structural motif in tridentate phosphines 

as their rigidity helps to pre-organise the donor atoms into a configuration that favours 

chelation of a metal, an important factor in the design of pincer ligands. This has been 
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demonstrated in ligands M,
139

 N,
140

 O
141

 and P.
139 

A similar motif (based on an indole 

heterocycle) was utilised in a construction of ligand Q.
142

  

 

Figure 19. Tridentate phosphines.  

Of the ligands in Figure 19, B, K and M-Q have been shown to be pincer ligands. By 

contrast, in A the phosphine centres are in an arrangement such that only fac isomers can 

form. A boron analogue of this backbone has been reported in which a borate is utilised in 

place of the quaternary carbon (R
143

 and S
144

). These ligands are anionic analogues of triphos 
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A. A similar arrangement of three phosphine centres is achieved in 1,3,5-tris(phosphino) 

substituted cyclohexanes, which act as tridentate phosphines when in the chair conformation 

(T,
145

 X,
146

 V
147

). 

1,8-Bis(phosphino)naphthalenes, which were discussed in Section 1.2.2, are well studied as 

rigid small bite angle ligands.
16 

In this chapter the synthesis, chalcogenides and co-ordination 

chemistry of the first tridentate ligand based on a geminally bis(peri-substituted) naphthalene 

framework will be discussed. 
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4.2. Attempted Synthesis of Geminally Bis(peri-substituted) Compounds from 5,6-

Dibromoacenaphthene (23) 

When considering routes to geminally bis(peri-substituted) compounds, the simplest and 

most logical seemed to be via the monolithiation of 23 and subsequent reaction with half an 

equivalent of a dichlorophosphine (see Scheme 54). The resulting compound could then be 

further lithiated and functionalised. The attempted synthesis of 25 and 26 is described below. 

 

Scheme 54. Attempted synthesis of 25 and 26. 

Lithiation of 23 in thf with nBuLi at -78 ºC was followed by the addition of half an 

equivalent of PhPCl2 in thf at -78 ºC. After warming to room temperature and stirring a 

yellow solution with a white precipitate was formed. The 
31

P{
1
H} NMR spectrum of the 

solution exhibited singlets at δP -19.8, -14.6 and 81.4 ppm, which is consistent with the 

formation of a chlorophosphine and two different tertiary phosphines, one of which could be 

25. Mixtures of tertiary phosphines could potentially form as a result of lithium halogen 

exchange reactions between 5-lithio-6-bromoacenaphthene (24) and 25. This reaction could 

not be improved despite many modifications (see below). 

As the above reaction proved unsuitable for the clean synthesis of the anticipated tertiary 

phosphine, the synthesis of 26 was attempted, as it would serve a similar purpose to 25. 

Dropwise addition of PCl3 to 24 in thf at -78 ºC was followed by warming to room 
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temperature and stirring to give an orange solution with a white precipitate. The 
31

P{
1
H} 

NMR spectrum of the solution showed the major product to be a singlet at δP 79.2 ppm, 

which is likely to be 26. However, this peak only accounts for ~63% of the integral intensity 

in the reaction mixture, with additional small singlets observed at δP -32.0, 4.9, 74.2 and 98.8 

ppm.  

Many modifications were tested with both of the attempted syntheses of 25 and 26. These 

included slower PhPCl2 or PCl3 addition, using diethyl ether in place of thf, longer reaction 

times and reversing the order of addition. In the case of 25, heating the reaction to 80 ºC in 

toluene was also attempted, but yielded no change to the product ratios. Using lower 

proportions of PCl3 was attempted in the preparation of 26. All of these measures gave the 

same or worse ratios of product to impurities than the conditions described above. 

These reactions were not pursued further and the synthesis of geminally bis(peri-substituted) 

compounds directly from 23 was not deemed particularly promising. 
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4.3. Synthesis of Geminally Bis(peri-substituted) Tridentate Phosphine 27 

In Chapter 2 the synthesis of phosphino-phosphonium chloride salts 2-4 by reaction of 1' 

with one equivalent of a dichlorophosphine was discussed (see Scheme 46). It was also 

discussed that in order to prepare the isopropyl phosphino-phosphonium chloride salt 5, it 

was necessary to use an excess of iPrPCl2 and reverse the order of addition in order to 

eliminate side reactions. One of these side reactions is the formation of the tridentate 

phosphine 27, the optimised synthesis and reactivity of which is the subject of this chapter.   

Addition of nBuLi to 1 in diethyl ether at -78 ºC was followed by stirring then slow addition 

of iPrPCl2 in diethyl ether, also at -78 ºC. After warming to room temperature and stirring the 

resulting yellow suspension was filtered through a sinter with Celite. Removal of volatiles 

gave an orange oil that was stirred with MeCN to give an orange solution with a yellow 

precipitate, which was isolated by filtration to give 27 in 68.0% yield. An optimisation of 

reaction conditions showed that the yield of 27 was maximised by slow addition of iPrPCl2 

and maintaining low temperature for an extended period after the addition. 27 is air stable as 

a solid or in solution in organic solvents. 
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Scheme 55. Synthesis of compounds 27-35. 

  The
 31

P{
1
H} NMR spectrum of 27 in toluene-d8 (202.4 MHz, 298 K) shows two broad 

resonances between 2 and -18 ppm which implies restricted dynamics of the molecule in 

solution (see Figure 20, spectrum a). The expected AB2 pattern (δA = -1.8, δB = -8.1 ppm; JAB 

= 140 Hz) was revealed when the sample was heated to 353 K (Figure 20, spectrum b). The 

observed magnitude of 
4
JPP coupling in 27 is smaller, but comparable with those observed in 

bis(phosphines) 13 and 14 (169 and 163 Hz, respectively) and Nap(PPh2)2 (199 Hz by MAS 
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solid state NMR spectroscopy).
13

 Two ABC patterns in a 58:42 ratio become apparent in the 

31
P{

1
H} NMR spectrum of 27 at 223 K, suggesting that two rotamers are present in solution 

(Figure 20, spectrum c). This was confirmed by the 
31

P{
1
H} EXSY spectrum, which showed 

that both ABC spin systems are exchanging. The coupling pattern for the two ABC spin 

systems was simulated (Figure 20, spectrum d), the resulting values are as follows (B denotes 

the inner phosphorus atom): δB1 = -1.52, δA1 = -4.53, δC1 = -15.59 , δB2 = -10.88, δA2 = -11.87, 

δC2 = -17.14 ppm, JA1-B1 = 93.9, JB1-C1 = 142.3, JA1-C1 = 0, JA2-B2 = 139.7, JB2- C2 = 137.6, JA2-

C2 = 7.3 Hz.  

 

Figure 20. Variable temperature 
31

P NMR spectra of 27 in toluene-d8 at 202.4 MHz. a) Broad 

resonances at 298 K. b) AB2 pattern at 353 K. c) Two ABC patterns in ratio 58:42 at 223 K 

due to two rotamers. d) Simulated 
31

P coupling pattern with assignments. 
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Detailed lineshape analysis which would yield thermodynamic parameters of hindered 

rotation processes in solution of 27 was not possible due to the complexity of the spin system. 

However, it was possible to observe two coalescence conditions; both for the interchange 

between the A1B1C1 and A2B2C2 spin systems observed in the slow motion regime. Thus 

the C1-C2 pair of resonances coalesce at 259.5 K, which corresponds to a barrier of 11.7 kcal 

mol
-1

, whilst the A1-A2 pair of resonances coalesce at 269.4 K with a barrier of 11.4 kcal 

mol
-1

 (see Table 8 and Figure 21). 
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Table 8. Coalescence condition and corresponding thermodynamic parameters for exchange 

of C1-C2 and A1-A2 resonances. 

 T / K   / Hz kc / Hz G
≠
 / kcal mol

-1
 

C1-C2 259.5 313.2 695.6 11.7 

A1-A2 269.4 1485 3300 11.4 

 

 

Figure 21. 
31

P{
1
H} NMR spectra of ligand 27 in toluene-d8 recorded at 202.4 MHz at 259.5 

K (a), 269.4 K (b) and 223.0 K (c). Spectrum (a) shows coalescence of C1-C2 resonances, 

spectrum (b) shows coalescence of A1-A2 resonances. 
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Calculations at the B3LYP level indicate that restricted rotation around the P1-C13 bond (see 

Figure 22 for numbering of atoms) may correspond with slow interchange between the 

A1B1C1 and A2B2C2 spin systems observed in the 
31

P NMR spectra at low temperature. 

Two local minima (corresponding to the two possible conformers) were localised on the 

potential surface, differing by 0.4 kcal mol
-1

 (B3LYP level, -0.6 kcal mol
-1

 at B3LYP-D3 

level), with a transition barrier of ca. 12 kcal mol
-1

. The position of the inner iPr group with 

respect to the outer phosphorus atoms (P2 and P3) is rather different in the two optimised 

structures of the rotamers, which corresponds well with the observed anisochronicity of P2 

and P3 (in 
31

P NMR spectra) in the two low temperature ABC spin systems.  

In addition to the exchange of the two ABC spin systems observed at low temperature, an 

additional process takes place which exchanges resonances A and C. This eventually results 

in an AB2 pattern, which is observed at 353 K (at 202.4 MHz, see Figure 20, spectrum b). It 

was not possible to obtain the thermodynamic parameters of this process as the faster 

exchange of the two ABC spin systems masks this slower process. It can be speculated that 

the slower exchange process involves rotation around the inner P-CAcenap bonds (P1-C1 and 

P1-C22).  

Interestingly, the related peri-substituted bis(phosphines) Nap(PiPr2)2 and Nap(PCy2)2 exhibit 

sharp singlets in their 
31

P{
1
H} NMR spectra.

12
 This suggests that the rotation around the aryl 

P-C bonds is relatively unhindered in these compounds, which contrasts sharply with 

situation in the geminally bis(peri-substituted) ligand 27.   

Crystals of 27 suitable for X-ray crystallography were grown from MeCN. The crystal 

structure of 27 is shown in Figure 22 and crystallographic data is in Table 9. The molecule of 

27 crystallises in a conformation which brings the three phosphorus atoms into proximity to 

form a relatively compact triangular P3 cluster. The P∙∙∙P distances across the peri-positions 



120 

 

are very similar; 3.17 Å (P1∙∙∙P2) and 3.15 Å (P1∙∙∙P3). These are only slightly longer than 

the respective P∙∙∙P values observed in Nap(PiPr2)2 (2.944(1) and 2.927(1) Å for the two 

molecules in the unit cell).
12 

The angle between the two acenaphthene mean planes in 1 is 

62.0°, which results in the relatively short distance between the two outer phosphorus atoms 

(P2∙∙∙P3) of 4.42 Å. Both acenaphthene rings show a similar extent of out of plane twist with 

the inner P1 atom being 0.23 Å out of the P2 bearing ring mean plane and 0.14 Å out of the 

P3 bearing ring mean plane. Atoms P2 and P3 are displaced 0.47 and 0.28 Å out of their 

respective acenaphthene rings. The in-plane distortion of the peri-regions in 27 is also 

comparable to that observed in related 1,8-bis(phosphino)naphthalenes, the splay angles in 27 

being +15.1(4) and +12.6(4)° (9.8 and 10.2° in the two molecules in the unit cell of 

Nap(PiPr2)2).
12

 The bond angles around the phosphorus atoms in 27 are only slightly more 

acute vs. the ideal tetrahedral angle, with C22-P1-C13 being the most acute at 98.1(3)° and 

C1-P1-C13 (105.1(2)º) being the most obtuse. 

 

Figure 22. Crystal structure of 27 with ellipsoids drawn at 50% probability. Co-crystallised 

molecule of MeCN and hydrogen atoms are omitted for clarity. iPr groups are shown as 

wireframe for clarity. 
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4.4. Reaction of 27 with Sulfur, Selenium and Iodine 

Reactivity towards chalcogens provides information on the extent of the steric crowding in 

1,8-bis(phosphino)naphthalenes.
10,18,19 

In order to establish how the extra crowding 

concomitant with geminal bis(peri-substitution) affects the sterics of the phosphorus centres 

in 27, a series of reactions with elemental sulfur and selenium were performed. 27 was heated 

with 3.2 equivalents of sulfur under reflux in toluene to give an orange solution, and this was 

followed by evaporation of volatiles. The resulting orange oil had a complex 
31

P{
1
H} NMR 

spectrum, indicating that a mixture of products forms. Extraction of the orange oil with 

hexane and subsequent crystallisation from diethyl ether/acetone gave two distinct types of 

crystals, which were shown to be the bis(sulfide) 28 and tris(sulfide) 29. The crystals were 

large enough and formed in sufficiently high quantities to allow for mechanical separation 

and full characterisation by single crystal X-ray diffraction, 
1
H, 

31
P{

1
H} and 

31
P NMR 

spectroscopy, MS and elemental analysis. Both 28 and 29 have poor solubility in organic 

solvents, which prevented acquisition of their 
13

C{
1
H} NMR spectra. All signals in the 

31
P{

1
H} NMR spectra of 28 and 29 are broadened at 25 °C, the halfwidth of the peaks is 70-

220 Hz for 28 and 15-25 Hz for 29 (both at 121.5 MHz). Thus 28 displayed three broad 

singlets at δP 13.3, 73.6 and 84.8 ppm, whilst 29 exhibited broad singlets at δP 65.7, 68.3 and 

84.2 ppm. No fine structure of the peaks (potentially stemming from through-space coupling 

between the 
31

P nuclei) was observable, presumably due to the broadening. Whilst in the 

spectrum of 28 it is possible to assign the peak at δP 13.3 to the inner phosphorus atom due to 

its distinct chemical shift, the similarity in the chemical shifts of phosphorus atoms in 29 does 

not allow similar assignment there with any certainty. The signals in 
1
H NMR spectra of both 

28 and 29 were also broadened, which hindered their complete assignment. The
 31

P{
1
H} 

NMR spectrum of the crude reaction mixture showed 28 and 29 were the major components, 

other phosphorus containing products were present in smaller amounts. Interestingly, the 
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same distribution of products was observed by 
31

P{
1
H} NMR spectroscopy when NEt3 was 

added to the reaction mixture, or when larger excesses of S8 and/or longer reaction times were 

used, indicating that the same equilibrium ratio of bis(sulfide) 28 and tris(sulfide) 29 becomes 

established in all cases. Both 28 and 29 are air stable in the solid state or when dissolved in 

organic solvents, but both compounds decompose in chlorinated solvents slowly as indicated 

by the slow darkening of their solutions over several days. 

The crystal structures of 28 and 29 are shown in Figure 23 and Figure 25 and their 

crystallographic data is in Table 9. The molecule of 28 is significantly more strained than that 

of 27 due to the increase of steric bulk on thionation of the two outer phosphorus atoms. 

Whilst the overall geometry of the molecule remains similar to that of 27 (the angle between 

mean planes of the acenaphthene rings being almost the same at 61.7º), profound changes are 

seen in all other metric parameters of 28. The P∙∙∙P distances are all increased to 3.61 Å 

(P1∙∙∙P2), 3.89 Å (P1∙∙∙P3) and 6.15 Å (P2∙∙∙P3). The out of plane distortions are also 

increased; P1 is displaced 0.80 and 0.49 Å out of the plane of the two acenaphthene rings, 

while P2 and P3 are displaced by 0.42 and 0.83 Å from their respective acenaphthene mean 

planes. In the same vein, the splay angles are more obtuse in 28 [+23.9(5) and +30.8(6)°] 

than those in 27. 
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Figure 23. Crystal structure of 28 with ellipsoids drawn at 50% probability. Hydrogen atoms 

are omitted and iPr groups are shown as wireframe for clarity. 

 

Differing conformations of the iPr2P(S) groups with respect to the inner P atom (P1) are 

observed in the structure of 28. Whilst sulfur atom S3 points approximately towards the peri-

gap (the C31-C30-P3-S3 dihedral angle is 22.9(6)°), the other sulfur atom S2 points away 

from its peri-gap (the C10-C9-P2-S2 dihedral angle is 154.8(5)°). This results in an 

approximately linear arrangement of the P1, P2 and S2 atoms, with the P1∙∙∙P2-S2 angle 

being 174.5°. This may indicate an onset of 3c-4e bonding, with the electron density from the 

P1 phosphine centre being donated to the antibonding σ* orbital of the (polarised) P-S bond 

(see Figure 24). To assess this, Wiberg bond indices (WBIs) were computed at the B3LYP/6-

31+G* level of density functional theory.
148

 Indeed, a small but noticeable WBI of 0.03 is 

computed between the (inner) P1 and (outer) P2 atom in 28 (optimised distance 3.70 Å, 
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experimental 3.61 Å). In contrast, negligible WBIs (below 0.01) were computed between P1 

and P3, and also between all phosphorus atoms in the tris(sulfide) 29. Such a notion is 

corroborated in 28 by the observed slight shortening of P1∙∙∙P2 distance vs. P1∙∙∙P3 (3.61 vs. 

3.89 Å) and also by slight elongation of the P2-S2 bond distance vs. P3-S3 [1.970(3) vs. 

1.945(3) Å], indicative of a weak donor-acceptor interaction from the lone pair on P into the 

σ*P2=S2 antibonding orbital.  

 

Figure 24. Orbitals involved in weak P1∙∙∙P2=S2 3c-4e bonding in 28. Note the P1∙∙∙P2=S2 

angle is 174.5°. 

 

As expected, 29 continues the trend of increasing crowding with further thionation. Whilst 

the angle between the two acenaphthene mean planes is reduced to 52.7°, the P∙∙∙P distances 

are elongated to 3.91 Å (P1∙∙∙P2), 4.07 Å (P1∙∙∙P3) and 6.19 Å (P2∙∙∙P3). Notably, the P1∙∙∙P3 

distance is the longest P∙∙∙P peri-distance reported, the previous record being held by the 

bis(selenide) Nap(P(OiPr2)2Se)2 with a P∙∙∙P distance of 3.92 Å.
110

 The out of plane 

distortions (see Figure 26) are also more pronounced with the (inner) P1 atom being 

displaced 1.04 and 1.14 Å from the two acenaphthene mean planes, whilst the P2 and P3 

atoms are displaced 1.15 and 1.20 Å from their respective acenaphthene mean planes. The 

twisting of the actual acenaphthene rings is also very distinct, with atoms C22 and C30 being 
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placed 0.22 and 0.20 Å above and below the mean acenaphthene plane. Interestingly, splay 

angles [+21.6(8) and +23.4(7)°] show that in-plane distortions in 29 are significant, but 

slightly smaller than in bis(sulfide) 28. 

 

Figure 25. Crystal structure of 29 with ellipsoids drawn at 50% probability. Co-crystallised 

molecule of acetone and hydrogen atoms are omitted for clarity, iPr groups are shown as 

wireframe for clarity. 
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Figure 26. Selected fragment of a molecule of 29 (in the crystal) illustrating the extent of out 

of plane distortions in the peri-region and at the acenaphthene ring. The dihedral angle P1-

C22∙∙∙C30-P3 is 60.1°. Ellipsoids are drawn at 50% probability. 

 

Refluxing 27 with 3.2 equivalents of grey selenium in toluene, like the reaction with sulfur, 

gave a complex 
31

P{
1
H} NMR spectrum. Recrystallisation of the crude product from hexane, 

afforded bis(selenide) 30 as yellow needle shaped crystals in 21.5% yield. The X-ray crystal 

structure of 30 is shown in Figure 27 and crystallographic data is in Table 9. The overall 

geometry of 30 is rather similar to that of bis(sulfide) 28. The angle between the 

acenaphthene mean planes is 56.1°, and the peri-distances are 3.81 Å (P1···P2), 3.69 Å 

(P1···P3) and 6.06 Å (P2···P3). The splay angles in 30 [+19.5(4)º and +23.7(4)º)] are slightly 

smaller than those observed in the bis(sulfide) 28, indicating smaller in-plane distortions in 

30 compared to 28. On the other hand, out of plane distortions are distinctly higher for 30 

compared to 28, with P1 being displaced 0.93 and 1.26 Å from the two acenaphthene mean 

planes and P2 and P3 being displaced by 0.98 and 0.58 Å from their respective planes.  

The most contrasting feature of the structure of 30 with regards to 28 is the conformation of 

the two iPr2P(E) (E = S, Se) groups with respect to their respective peri-gaps. Thus both 
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selenium atoms in the structure of 30 are pointing away from the peri-gap [C10-C9-P2-Se2 

148.1(3)º, C31-C30-P3-Se3 151.1(3)º], whilst in the structure of 28 one of the sulfur atoms 

points away and one towards the peri-gap [C10-C9-P2-S2 154.8(5)°, C31-C30-P3-S3 

22.9(6)°]. Optimised gas phase structures of the two conformers (B3LYP level) differ in 

energy only a little. The conformation with both chalcogen atoms in the structure pointing 

away from the peri-gap was found to be more stable in both cases, by 0.9 kcal mol
-1

 and 2.4 

kcal mol
-1

 for bis(sulfide) 28 and bis(selenide) 30, respectively. In the X-ray structure of 30 

both P1∙∙∙P2-Se2 and P1∙∙∙P3-Se3 motifs adopt almost linear arrangements (175.7º and 

176.4º, respectively). Such a geometry allows for 3c-4e bonding with the electron density 

from the P1 phosphine centre being donated to the antibonding σ* orbital of the P=Se bonds. 

However calculations reveal negligible WBIs (< 0.01) for these particular interactions. 

The 
31

P{
1
H} spectrum of 30 consists of broad singlets (halfwidth 105-200 Hz at 121.5 MHz) 

at δP 14.6 (inner P atom), 78.8 and 86.0 ppm (outer P atoms). Signals in the 
1
H NMR 

spectrum were also broadened. As with 28, poor solubility of 30 in organic solvents 

prevented characterisation by 
13

C{
1
H} and 

77
Se{

1
H} NMR spectroscopy. 30 was further 

characterised by MS and microanalysis.  
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Figure 27. Crystal structure of 30 with ellipsoids drawn at 50% probability. Hydrogen atoms 

are omitted for clarity, iPr groups are shown as wireframe for clarity. 

  



129 

 

Table 9. Selected bond lengths (Å) and angles (º) for 27·MeCN, 28, 29·(CH3)2CO and 30. 

 

 

27·MeCN 28 29·(CH3)2CO 30 

C1-P1 1.856(6) 1.856(6) 1.830(8) 1.848(5) 

C22-P1 1.851(5) 1.856(7) 1.852(8) 1.854(5) 

C9-P2 1.836(5) 1.846(6) 1.834(11) 1.850(5) 

C30-P3 1.850(5) 1.843(7) 1.849(9) 1.857(5) 

P1∙∙∙P2 3.17 3.61 3.91 3.81 

P1∙∙∙P3 3.15 3.89 4.07 3.69 

P2∙∙∙P3 4.42 6.15 6.19 6.06 

P1-S1 - - 1.966(3) - 

P2-S/Se2 - 1.970(3)  1.957(3) 2.1251(12) 

P3-S/Se3 - 1.945(3)  1.972(4) 2.1249(14) 

 

C1-P1-C22 100.94(19) 104.0(3) 106.9(4) 103.67(19) 

 

P1-C1-C10 125.5(4) 122.2(5) 124.0(6) 121.0(3) 

C1-C10-C9 128.7(4) 132.2(5) 131.4(8) 131.9(4) 

C10-C9-P2 120.9(4) 129.5(5) 126.2(6) 126.6(4) 

 

Splay angle 

(ring bearing 

P2) 

 

+15.1(4) +23.9(5) +21.6(8) +19.5(4) 

P1-C22-C31 123.6(3) 127.2(5) 124.8(6) 122.5(3) 

C22-C31-C30 128.5(4) 132.1(6) 131.2(7) 131.5(4) 

C31-C30-P3 123.6(4) 131.5(6) 127.4(7) 129.7(3) 

 

Splay angle 

(ring bearing 

P3)
 
 

+12.6(4) +30.8(6) +23.4(7) +23.7(4) 

 

Given that clean formation of triphosphenium cations is observed in the reaction of 

bis(phosphines) and PI3 (see Scheme 22),
55,56

 the reaction of PI3 with 27 seemed worthy of 

investigation due to the potential to form phosphorus(I) cations. Addition of a CH2Cl2 

solution of 27 to PI3 in CH2Cl2 at room temperature gave a red suspension from which 

solvent was removed in vacuo after stirring. The resulting red solid was dissolved in MeCN 
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in order to obtain a 
31

P{
1
H} NMR spectrum, which revealed a complex series of peaks both 

broad and sharp, ranging from δP -11.9 to 71.7 ppm. No unreacted PI3 remained in the 

mixture, however, nor were there any low field peaks which are typical of the two co-

ordinate phosphorus in a triphosphenium salt. Nonetheless, a speculative attempt at 

crystallisation from MeCN gave black rod-shaped crystals of 31[I3]2. The structural data for 

this compound is rather poor, but adequate to demonstrate connectivity and hence show 31 to 

be an oxygen bridged dication of 27 (see Scheme 55 and Figure 28). The 
31

P{
1
H} NMR 

spectrum of the aforementioned crystals revealed a triplet corresponding to the central 

phosphorus atom at δP -40.1 and a doublet at 87.3 ppm representing the outer two 

phosphoniums. 
2
JPP coupling of 33.0 Hz is observed for both peaks. Neither of these peaks 

were observed in the spectrum of the initial reaction mixture and it would appear that the 

formation of 31 is likely to be a result of reaction of 27 with iodine (present in solutions of 

PI3 due to its equilibrium with P2I4) and subsequent hydrolysis. In order to test this theory, six 

equivalents of I2 were added to 27 in degassed (but not dry) thf at 0 ºC. After warming to 

room temperature and stirring, a dark orange suspension formed from which solvent was 

removed in vacuo to give a black oil, which was dried in vacuo. Integration of the 
31

P{
1
H} 

NMR spectrum of this oil revealed 31 to be approximately 40% of the reaction mixture, the 

other major peaks of which were a singlet at δP 84.0 ppm and doublets (J = 44.0 Hz) at 49.1 

and 100.7 ppm. Conversions of 27 were found to be considerably lower when this reaction 

was carried out in anhydrous thf. Although 40% is a low conversion, 31[I3]2 crystallises 

extremely well and thus could be obtained in pure, crystalline form in yields of 31.4% from 

concentrated solutions in MeCN at 2 ºC. 31 was further characterised by 
1
H NMR 

spectroscopy, MS, IR and Raman spectroscopy and elemental analysis. Colourless crystals of 

the diiodide salt of 31 were also obtained by layering CH2Cl2 solutions of 31 with diethyl 

ether, the structure of 31[I]2 showed no significant differences to the di(triiodide) salt. 
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However, the structural data for 31[I]2 was of considerably better quality than that of 31[I3]2 

and hence it is this data that is discussed below (see Figure 28, Figure 29 and Table 10). 

 

Figure 28. Crystal structure of 31[I]2 with ellipsoids drawn at 50% probability. Iodide 

counter ions, co-crystallised molecules of MeCN and hydrogen atoms are omitted for clarity. 

 

The crystal structure of 31[I]2 reveals the two cationic centres (P2 and P3) to be tetrahedral as 

expected, with the bond angles around the phosphorus atoms ranging from 105.1(2) to 

114.0(2)º. The central phosphorus atom is slightly more distorted from its ideal (trigonal 

pyramidal) geometry; the axial angle (O1-P1-O2) is 178.59(17)º, but the equatorial angles 

range from 113.0(3) to 130.8(2)º. It is interesting to note a large deviation in the P-O bond 

lengths in 31[I]2 in spite of the fact they are all formally single bonds; bonds to the outer 

phosphorus atoms are considerably shorter (P2-O1 1.553(4) Å, P3-O2 1.543(4) Å) than those 

around the central phosphorus (P1-O1 1.798(4) Å, P1-O2 1.818(4) Å). For comparison, the 

P=O bond length in Ph3PO is 1.479(2) Å
149

 and P-O bonds in phosphoranes typically range 
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from 1.591(5)-1.74(4) Å,
150,151,152

 The difference between the P2/P3-O and P1-O bond 

lengths is presumably a result of the distortions of the peri-regions rather than a genuine 

difference in bond order. The structure of 31[I]2 shows the outer phosphorus atoms to be 

distorted much further out of the plane of their respective acenaphthene rings (P2 0.682 Å, P3 

0.651 Å) than the inner phosphorus (P1 is 0.211 Å and 0.214 Å out of the planes of its two 

rings). The angle between the two acenaphthene planes is 82.8º. The out of plane bending for 

P2 and P3 suggests that both peri-regions have rather similar distortions in 31[I]2, and 

examining the other parameters supports this strongly; the splay angles (+12.5(4) and 

+13.2(4)º) and peri-distances (P1···P2 3.11 Å, P1···P3 3.13 Å) are very similar for the two 

peri-regions. It was discussed above that thionating or selenating 27 has the effect of 

increasing all of the P···P distances, whereas in the formation of 31[I]2 the peri-distances are 

slightly reduced but the P2···P3 distance (5.90 Å) is lengthened considerably.  

 

Figure 29. Alternative view of crystal structure of 31[I]2 with ellipsoids drawn at 50% 

probability. Iodide counter ions, co-crystallised molecules of MeCN and hydrogen atoms are 

omitted for clarity, iPr groups are shown as wireframe for clarity. 
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Table 10. Selected bond lengths (Å) and angles (º) for 31[I]2·2MeCN. 

 31[I]2·2MeCN 

C1-P1 1.844(5) 

C22-P1 1.843(5) 

C9-P2 1.767(5) 

C30-P3 1.767(5) 

P1∙∙∙P2 3.11 

P1∙∙∙P3 3.13 

P2∙∙∙P3 5.90 

P1-O1 1.798(4) 

P1-O2 1.818(4) 

P2-O1 1.553(4) 

P3-O2 1.543(4) 

C1-P1-C22 130.8(2) 

P1-C1-C10 125.7(4) 

C1-C10-C9 128.9(4) 

C10-C9-P2 117.9(4) 

Splay angle 

(ring bearing 

P2) 

+12.5(4) 

P1-C22-C31 125.7(4) 

C22-C31-C30 129.9(4) 

C31-C30-P3 117.6(4) 

Splay angle 

(ring bearing 

P3)
 
 

+13.2(4) 
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4.5. Co-ordination Chemistry of 27  

The molecular structure of 27 indicates that the three phosphorus atoms are in an arrangement 

suitable for co-operative co-ordination to a single transition metal centre, forming a well-

defined co-ordination pocket. In order to explore this, complexes of tetrahedral, square 

planar, trigonal bipyramidal and octahedral geometries have been isolated with 27 acting as a 

tridentate ligand in each case. These are discussed below. 

Copper Complex 32 

The reaction of 27 with [Cu(MeCN)4][BF4] in thf at room temperature led to the formation of 

the complex [(27)Cu(MeCN)][BF4] (32) in quantitative yield after evaporation of volatiles. It 

was obtained in the form of an air/moisture sensitive pale yellow powder and was purified by 

recrystallisation from thf. The 
31

P{
1
H} NMR spectrum of 32 exhibits two broad signals at δP 

-18.7 (broad triplet, inner P) and 6.1 ppm (broad singlet, 2× outer P). Broadening of the 

signals (the halfwidth of both signals is ~170-180 Hz at 162.0 MHz) precludes detailed 

analysis; however an approximate value of 
2
JPP = 50-60 Hz was read from the spectrum. An 

interesting feature is that on co-ordination of 27 to the copper(I) centre the chemical shift of 

the inner P atom is lowered compared with that in the free ligand (δP -1.8 ppm), which is the 

opposite direction normally observed on metal co-ordination. For example, co-ordination of 

triphos (A) (see Figure 19)
131

 to [Cu(MeCN)4][PF6] to form [(triphos)Cu(MeCN)][PF6] 

results in a shift from δP -27.3 ppm in the free ligand to δP -20.6 ppm in the complex.
153

 

The crystal structure of 32 is shown in Figure 30 and crystallographic data is in Table 11 and 

Table 12. 32 crystallises as a separated cation with a BF4
-
 counteranion, together with half of 

a solvated molecule of thf. The copper centre is tetrahedrally co-ordinated with the three 

phosphine groups of 27 adopting a tripodal geometry and an N-co-ordinated acetonitrile 

completing the co-ordination. The across peri-gap angles on copper are the most acute [P1-

Cu1-P3 99.90(9)°, P1-Cu1-P2 100.24(9)°], whilst the angle P2-Cu1-P3 is the most obtuse at 
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126.33(10)°. The P-Cu bond lengths in 32 [2.231(3)-2.254(3) Å] are similar to those in the 

related complex [(triphos)Cu(MeCN)][PF6] [2.2540(18)-2.2742(17) Å],
153

 while the slight 

elongation of the Cu-N bond in 27 (2.057(8) Å) vs. that in the mentioned triphos complex 

(1.939(5) Å) indicates bonding of MeCN may be slightly more labile in 32. Co-ordination of 

27 to copper(I) results in overall levelling of the P∙∙∙P distances within the ligand. Thus the 

peri-P∙∙∙P distances (P1∙∙∙P2 and P1∙∙∙P3) are both slightly elongated at 3.43 Å, whilst the 

P2∙∙∙P3 separation decreases considerably to 4.01 Å. This is accompanied by a small increase 

in out of plane distortion of the ligand in 32 compared with that observed in the free ligand 

27, with P1 being displaced 0.65 and 0.66 Å out of the mean acenaphthene planes, and P2 

and P3 being displaced 0.77 and 0.68 Å out of their respective mean planes. The splay angles 

also increase slightly to +16.0(8) and +18.3(8)º. 

 

Figure 30. Crystal structure of the cation of 32 with ellipsoids drawn at 50% probability. BF4 

counter ion, co-crystallised molecule of thf (hemisolvate) and hydrogen atoms are omitted for 

clarity, iPr groups are shown as wireframe for clarity. 
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Platinum Complex 33 

The reaction of 27 with [PtCl2(cod)] in CH2Cl2 gave another ionic complex, [(27)PtCl][Cl] 

(33), which was isolated as a white air stable solid in quantitative yield. The 
31

P{
1
H} and 

195
Pt{

1
H} NMR spectra of 33 display a complex splitting pattern, which was simulated as an 

ABCX (A, B, C = 
31

P, X = 
195

Pt) spin system. The 
31

P{
1
H} NMR spectrum consists of three 

sets of multiplets (δA = 27.5, δB = -6.3 and δC = 12.7 ppm (see Figure 31)), whilst a complex 

multiplet is observed in the 
195

Pt{
1
H} NMR spectrum (δX = -4656 ppm (see Figure 32)). The 

trans-
2
JPP coupling (JAC = 326.4 Hz) has significantly larger magnitude than the cis-

2
JPP 

coupling (JAB = JBC = 22.0 Hz), and the magnitude of the 
1
JPPt coupling from the inner 

phosphorus atom (
1
JBX = 3048 Hz) is significantly higher than those from the outer atoms 

(
1
JAX = 2230 Hz, 

1
JCX = 2270 Hz). Hence the complexity of this spectrum is largely down to 

the unexpected anisochronicity of the outer phosphorus atoms (A and C), resulting in large 

trans-
2
JPP coupling and a complex splitting pattern.  
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Figure 31. Experimental (bottom) and simulated (top and middle) 
31

P{
1
H} NMR spectra of 

33 (CDCl3, 162.0 MHz). Middle spectrum simulates signals of an isotopomer with NMR 

active 
195

Pt nuclei (satellite spectrum), top spectrum is from an isotopomer with NMR 

inactive Pt nuclei. 

 

Figure 32. 
195

Pt{
1
H} NMR spectra of 33 (CD2Cl2, 58.1 MHz), experimental (bottom) and 

simulated (top). 
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The crystal structure of 33 is shown in Figure 33 and Figure 34 and crystallographic data is in 

Table 11 and Table 12. Compound 33 crystallises as an ion-separated complex cation with a 

chloride counter ion and a co-crystallised molecule of CH2Cl2. The platinum atom adopts a 

square planar geometry with slight distortion towards tetrahedral. Thus the angles around the 

central atom are P1-Pt1-Cl1 170.98(5)º and P2-Pt1-P3 173.45(5)º. Of the cis bond angles 

about the Pt centre, P1-Pt1-P2 is the most obtuse (95.78(5)º) and Cl1-Pt1-P2 is the most acute 

at 86.21(5)º. The P-Pt bond lengths are similar to those reported in the triphos B analogue 

[(triphos)PtCl][Cl]
154

 (see Figure 19 for the structure of this ligand).
131

 The inner phosphorus 

atom in 33 displays a shorter bond to Pt than the outer atoms [P1-Pt1 2.2146(14), P2-Pt1 

2.3097(15), P3-Pt1 2.3364(15) Å], which is in keeping with their respective 
1
JPPt coupling 

constants. Notably, due to the more flexible and less crowded ligand, the triphos B complex, 

[(triphos)PtCl][Cl], does not exhibit a significant difference in P-Pt bond length for the outer 

phosphorus atoms and these atoms are isochronous in 
31

P NMR spectra.  

The geometries of the two acenaphthene rings in 33 are rather different. The acenaphthene 

ring bearing the P2 atom is almost co-planar with the central PtP3Cl moiety. The out of plane 

distortions of this ring are very moderate; the displacements from the mean acenaphthene 

plane are 0.36 Å (P1) and 0.22 Å (P2). On the other hand, a significant in-plane strain is 

present, with a splay angle of +21.2(4)º. In contrast, the acenaphthene ring bearing the P3 

atom shows extensive out of plane distortion, with atoms P1 and P3 being displaced by 0.64 

and 1.04 Å from the acenaphthene plane. The splay angle for this ring (+6.3(5)º) shows little 

in-plane distortion is present. Interestingly, the very different types of distortions result in 

comparable across peri-gap distances of P1∙∙∙P2 3.36 Å and P1∙∙∙P3 3.22 Å. The P2∙∙∙P3 

distance is 4.64 Å and the angle between the two acenaphthene rings is 46.9°. Hence 

differing distortions within the peri-regions of the two acenaphthene units result in variance 

of the P2-Pt1 and P3-Pt1 bond lengths. These differences are likely to be preserved in the 
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solution, giving a possible explanation for observed anisochronicity of atoms P2 and P3 in 

the 
31

P{
1
H} and 

195
Pt{

1
H} NMR spectra of 33. The side-on view of the crystal structure of 33 

(see Figure 34) clearly shows the very different environments of the two outer phosphorus 

atoms. By contrast, atoms P2 and P3 are isochronous in the 
31

P{
1
H} NMR spectrum of 

copper complex 32, in which their respective out of plane distortions are nearly identical.  

 

Figure 33. Crystal structure of the cation of 33 with ellipsoids drawn at 50% probability. 

Chloride counter ion, co-crystallised molecule of CH2Cl2 and hydrogen atoms are omitted for 

clarity. 
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Figure 34. Alternative view of the cation of 33 illustrating differing distortions of the two 

acenaphthene units. Ellipsoids are drawn at 50% probability. Chloride counter ion, co-

crystallised molecule of CH2Cl2 and hydrogen atoms omitted for clarity, iPr groups are 

shown as wireframe for clarity. 

 

Iron Complex 34 

Reaction of 27 with FeCl2·4H2O in thf at room temperature gave a bright red solution from 

which [(27)FeCl2] (34) was isolated as an air stable red solid. 34 does not show any signals in 

NMR spectra,
155

 but was fully characterised by X-ray diffraction, IR and MS and its purity 

was established by elemental analysis.  

Crystals of 34 were grown from thf/diethyl ether. The crystal structure of 34 is shown in 

Figure 35 and crystallographic data is in Table 11 and Table 12; the complex co-crystallises 

with a molecule of thf. The central iron(II) atom adopts a distorted trigonal bipyramidal 

geometry with P1 and the two chloride ligands occupying the equatorial part of the molecule. 

The corresponding (equatorial) angles are [P1-Fe1-Cl1 108.05(5)º, P1-Fe1-Cl2 130.82(5)º 

and Cl1-Fe1-Cl2 121.02(5)º]. Atoms P2 and P3 adopt the axial positions, with P2-Fe1-P3 

being 163.44(4)°. All three Fe-P bond lengths differ slightly from each other; the equatorial 
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P1-Fe1 is the shortest at 2.4240(12) Å and the two axial bonds are elongated to 2.6539(13) 

(P2-Fe1) and 2.5453(13) Å (P3-Fe1).  

The P···P distances across the peri-gap [P1···P2 3.36 Å, P1···P3 3.41 Å] are almost identical 

and are (like in 32 and 33) only slightly elongated with respect to the free ligand 27. The 

distortions of the two acenaphthene rings are remarkably similar to those found in the square 

planar complex 33. The acenaphthene moiety bearing the P2 atom shows significant out of 

plane distortion; atoms P2 and P1 are displaced 1.05 and 0.69 Å from the acenaphthene mean 

plane. The in-plane distortion of the same ring is, however, less pronounced; the 

corresponding splay angle is +11.0(4)°. In contrast, the acenaphthene moiety bearing the P3 

atom shows little out of plane distortion (atoms P3 and P1 are displaced 0.29 and 0.37 Å from 

their acenaphthene mean plane), whilst the splay angle of +22.1(4)° indicates very large in-

plane distortion of the ring. The P2∙∙∙P3 distance in 34 is 5.15 Å and the angle between the 

two acenaphthene rings is 46.8°. It can be concluded that the structural changes adopted by 

the ligand to form square planar and trigonal bipyramidal complexes (33 and 34, 

respectively) are very similar. 

Complex 34 represents the first structurally characterised trigonal bipyramidal iron complex 

with three phosphorus and two halide ligands, although structural data of a number of 

octahedral complexes with four phosphorus and two halide ligands have been reported, the 

latter generally contain a pair of bidentate phosphine ligands. Where tridentate phosphines 

are present in these complexes they have been shown to co-ordinate κ
2 

(with one phosphine 

centre per ligand not co-ordinated) in order to accommodate two ligands in the complex.
156
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Figure 35. Crystal structure of 34 with ellipsoids drawn at 50% probability. Co-crystallised 

molecule of thf and hydrogen atoms are omitted for clarity, iPr groups are shown as 

wireframe for clarity. 

 

Molybdenum Complex 35 

The molybdenum complex [(27)Mo(CO)3] (35) was obtained from the reaction of 27 with 

[Mo(CO)3(MeCN)3] in CH2Cl2. The overnight room temperature reaction resulted in a dark 

brown suspension. Filtration and removal of volatiles in vacuo gave a cream coloured solid, 

the 
31

P{
1
H} NMR spectrum of which was broad and complex, however, it indicated that the 

desired complex 35 was present as the major component in this mixture. The crude product 

was purified to a reasonable level by dissolving it in a small amount of CH2Cl2, followed by 

cooling, which led to precipitation of impurities. These were removed by filtration, and the 

purified product 35 was subjected to further NMR spectroscopy investigations. The major 

peaks in the 
31

P{
1
H} NMR spectrum of 35 are a triplet at δP 32.0 and a doublet at δP 35.0 

ppm, 
2
JPP ≈ 31 Hz (top spectrum in Figure 36). The 

31
P{

1
H} NMR spectrum of the same 

sample at 185 K (bottom spectrum in Figure 36) displayed four broad multiplets at δP 27.6-

29.1, 30.9-31.5, 32.5-33.2 and 33.3-34.4 ppm of an approximate integral ratio of 2:1:1:2. The 
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31
P{

1
H} EXSY spectrum at 185 K showed that all four of these multiplets are exchanging, 

which is consistent with two different isomers of 35 being present in the solution. Given that 

even at 185 K the spectrum was very broad, we have been unable to deduce further structural 

or thermodynamic information from it.  

 

Figure 36. 
31

P{
1
H} NMR spectra of 35 (CD2Cl2, 202.4 MHz) at 298 K (top) and 185 K 

(bottom). 

 

Notably, a facile room temperature transformation between fac- and mer-isomers was 

observed previously in molybdenum tricarbonyl complexes in solution.
157

 Since such an 

exchange would be consistent with our observations from NMR spectroscopy, a 

computational investigation has been carried out in this respect. The computations indicated 

that fac- and mer-isomers of 35 are relatively close in energy. A representative mer-isomer 

was located (B3LYP/6-31+G* level) and was discovered to be ca. 4 kcal mol
-1

 less stable 

than the fac-isomer. Indeed, the more stable fac-isomer of 35 was found in the solid state by 

X–ray diffraction, see below. As part of the calculations performed the energetics of the 
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displacement of one of the outer phosphine donor atoms of the chelating ligand with a 

molecule of acetonitrile was investigated. This was believed to be plausible due to the strain 

in the co-ordinated tridentate ligand observed in the solid state structure of 35 (see below), 

and the fact that acetonitrile (from the starting material) may have been available. However, 

this process was found to be endothermic by at least 15 kcal mol
-1

 and further disfavoured by 

entropy, and can therefore be safely excluded. 

Crystallisation from MeCN yielded complex fac-35 as brown crystals in a 17.5% yield. The 

crystalline material was used for further characterisation by IR and Raman spectroscopy and 

the purity was verified by microanalysis. Some of the crystals were of sufficient quality for 

X-ray diffraction work. The structure of fac-35 is shown in Figure 37 and crystallographic 

data is in Table 11 and Table 12. The complex co-crystallises with a molecule of MeCN. The 

geometry around the molybdenum atom is distorted octahedral, with facial co-ordination of 

the ligand. The trans angles around the metal are P1-Mo1-C40 176.50(14)º, P2-Mo1-C42 

169.50(13)º and P3-Mo1-C41 163.66(16)°. The P-Mo-P angles made by 27 are predictably 

much smaller across the peri-gap [P1-Mo1-P2 82.50(5)º, P1-Mo1-P3 82.16(5)º] than the P2-

Mo1-P3 angle (104.49(5)º), this same trend was observed in the structure of 32. All three C-

Mo bond lengths in 35 are essentially equal [1.960(7)-1.972(6) Å] and are comparable with 

those in a related Mo complex [{HO-CH2CH2-O-CH2C(CH2PPh2)3}Mo(CO)3] (a variant of 

the triphos A ligand, see Figure 19).
158

 The P2-Mo1 bond length of 2.5289(17) Å is also 

comparable to those reported in the aforementioned flexible ligand complex [2.5242(9)-

2.5302(8) Å], however the other P-Mo bond lengths deviate from this slightly in both 

directions [P1-Mo1 2.4855(15), P3-Mo1 2.5633(16) Å]. The tris(phosphine) ligand 

distortions in fac-35 are essentially limited to those in-plane, with P1 0.33 and 0.16 Å out of 

the P2 and P3 bearing planes, respectively and P2 and P3 0.25 and 0.32 Å out of their 

respective planes. This results in large positive splay angles of +19.6(5) and +21.4(5)°. The 
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facial co-ordination of the tris(phosphine) ligand results in an increase of the angle between 

the two acenaphthene mean planes  to 87.2°. The peri-distances are slightly increased in fac-

35 [P1···P2 3.31, P1···P3 3.32 Å] compared with the free ligand 27, whilst the P2···P3 

separation in fac-35 decreases significantly to 4.03 Å. 

 

Figure 37. Crystal structure of fac-35 with ellipsoids drawn at 50% probability. Co-

crystallised molecule of MeCN and hydrogen atoms are omitted for clarity, iPr groups are 

shown as wireframe for clarity. 
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Table 11. Selected bond lengths (Å) and angles (º) for 32·1/2thf, 33·CH2Cl2, 34·thf and fac-

35·MeCN. 

 

32·1/2thf    

P1-Cu1 2.231(3) P2-Cu1 2.241(3) 

P3-Cu1 2.254(3) N1-Cu1 2.057(8) 

P1-Cu1-P2 100.24(9) P1-Cu1-P3 99.90(9) 

P2-Cu1-P3 126.33(10) P1-Cu1-N1 114.3(3) 

P2-Cu1-N1 113.2(2) P3-Cu1-N1 102.5(3) 

    

33·CH2Cl2    

P1-Pt1 2.2146(14) P3-Pt1 2.3364(15) 

P2-Pt1 2.3097(15) Cl1-Pt1 2.3550(17) 

P1-Pt1-P2 95.78(5) Cl1-Pt1-P1 170.98(5) 

P1-Pt1-P3 90.07(5) Cl1-Pt1-P2 86.21(5) 

P2-Pt1-P3 173.43(5) Cl1-Pt1-P3 88.48(6) 

    

34∙thf    

P1-Fe1 2.4240(12) Fe1-Cl1 2.2737(14) 

P2-Fe1 2.6539(13) Fe1-Cl2 2.3130(17) 

P3-Fe1 2.5453(13)   

P1-Fe1-P2 82.79(4) P1-Fe1-P3 86.64(4) 

P1-Fe1-Cl1 108.05(5) P1-Fe1-Cl2 130.82(5) 

Cl1-Fe1-Cl2 121.02(5) P2-Fe1-P3 163.44(4) 

P2-Fe1-Cl1 95.36(5) P3-Fe1-Cl1 100.03(5) 

P2-Fe1-Cl2 89.31(5) P3-Fe1-Cl2 87.99(5) 

    

fac-35·MeCN    

P1-Mo1 2.4855(15) P2-Mo1 2.5289(17) 

P3-Mo1 2.5633(16) C40-Mo1 1.960(6) 

C41-Mo1 1.956(5) C42-Mo1 1.972(6) 

P1-Mo1-P2 82.50(5) P1-Mo1-P3 82.16(5) 

P2-Mo1-P3 104.49(5) P1-Mo1-C40 176.50(14) 

P1-Mo1-C41 100.23(15) P1-Mo1-C42 91.08(15) 

P2-Mo1-C40 96.57(15) P2-Mo1-C41 91.84(16) 

P2-Mo1-C42 169.50(13) P3-Mo1-C40 94.83(15) 

P3-Mo1-C41 163.66(16) P3-Mo1-C42 82.73(14) 

C40-Mo1-C41 83.2(2) C40-Mo1-C42 90.3(2) 

C41-Mo1-C42 81.1(2)   
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Table 12. Selected non-bonded distances (Å), angles (°) and displacements (Å) associated 

with the tris(phosphine) ligands within complexes 32·1/2thf, 33·CH2Cl2, 34·thf and fac-

35·MeCN. Relevant data for free ligand (27∙MeCN) are included for ease of comparison. 

 

 32·1/2thf 33·CH2Cl2 34∙thf fac-35·MeCN 27∙MeCN 

 

P1∙∙∙P2 3.43 3.36 3.36 3.31 3.17 

P1∙∙∙P3 3.43 3.22 3.41 3.32 3.15 

P2∙∙∙P3 4.01 4.64 5.15 4.03 4.42 

Interplanar angle
a
 66.9 46.9 46.8 87.2 62.0 

Splay angles 

Ring bearing P2 +16.0(8) +21.2(4) +11.0(4) +19.6(5) +15.1(4) 

Ring bearing P3 +18.3(8) +6.3(5) +22.1(4) +21.4(5) +12.6(4) 

Out of plane displacements 

P1 (from plane bearing P2) 0.65 0.36 0.69 0.33 0.23 

P2 0.77 0.22 1.05 0.25 0.47 

P1 (from plane bearing P3) 0.66 0.64 0.37 0.16 0.14 

P3 0.68 1.04 0.29 0.32 0.28 

a
Angle between the plane of the two acenaphthene rings. 
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Chapter 5 - Experimental 

General Details 

All experiments were carried out in standard Schlenk glassware, with the exception of the 

syntheses of 28-30. All sinter filtrations were performed using a porosity 3 sinter. Solvents 

were dried on an MBraun solvent purification system and stored over molecular sieves prior 

to use. 5,6-Dibromoacenaphthene,
25

 5-bromo-6-diisopropylphosphinoacenaphthene (1),
27

 

(NMe2)PCl2,
159

 MesPCl2,
160

 [PtCl2(cod)]
161

 and [Mo(CO)3(MeCN)3]
162

 were prepared 

according to literature procedures. Where possible, new compounds were fully characterised 

by 
31

P, 
31

P{
1
H}, 

1
H and 

13
C{

1
H} NMR spectroscopy, including measurement of 

1
H{

31
P}, H-

H DQF COSY, H-P HMQC, H-C HSQC and H-C HMBC experiments. NMR measurements 

were performed at 25 ºC unless otherwise indicated; TMS was used as an internal standard in 

1
H and 

13
C experiments and 85% H3PO4 was used as an external standard in 

31
P spectra. 

Aqueous Na2PtCl6 was used as an external standard in 
195

Pt NMR spectra and BF3·OEt2 was 

used as an external standard in 
11

B spectra. All chemical shifts are reported in ppm. NMR 

spectroscopy numbering schemes for the compounds discussed in Chapters 2, 3 and 4 are 

depicted in Figure 38, Figure 39 and Figure 40, respectively. NMR spectra of 22 and 33 were 

simulated using MestreNova.
163

 The variable temperature NMR spectra of 27 were recorded 

and simulated by Dr Tomas Lebl (including the observation of coalescence conditions and 

calculation of thermodynamic barriers) using the DAISY module in TopSpin 3.1.
164

 All DFT 

calculations were carried out by Professor Michael Buehl and details of these calculations can 

be found on the attached CD. Correct isotopic patterns were found in MS spectra for all 

assigned peaks. 
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X-ray Crystallography 

Data for compounds 2, 3, 7, 9, 10, 16, 17, 18, 19 and 27 was collected at -180(1) °C by using 

a Rigaku MM007 high brilliance RA generator and Mercury CCD system using ω and φ 

scans. Data for compounds 15, 21, 22, 30, 31[I3]2, 31[I]2, 32, 33, 34, 35 were collected at 

−180(1) °C by using a Rigaku MM007 high brilliance RA generator with a Saturn 70 CCD 

area detector using ω scans. Data for 28 and 29 was collected at -148(1) °C on the St 

Andrews Robotic Diffractometer, a Rigaku ACTOR-SM with a Saturn 724 CCD area 

detector using ω steps accumulating area detector images spanning at least a hemisphere of 

reciprocal space. All instruments use MoKα radiation (λ = 0.71075 Å). Intensities were 

corrected for Lorentz-polarisation and for absorption. The structures were solved by direct 

methods. Refinements were done by full-matrix least squares based on F
2
 using 

SHELXTL.
165

 CIFs and tables of refinements and selected crystallographic data can be found 

on the attached CD. 
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Synthetic Procedures 

 

 

Figure 38. NMR numbering scheme for compounds 2-16. 

 

[Acenap(iPr2P)(PPh)][Cl] (2) 

nBuLi (2.3 mL of 2.5 M solution in hexanes, 5.73 mmol) was added dropwise to 1 (2.00 g, 

5.73 mmol) in diethyl ether (80 mL) at -78 ºC. The mixture was stirred at -78 ºC for 2 hrs. 

PhPCl2 (0.78 mL, 5.73 mmol) in diethyl ether (9 mL) was added dropwise at -78 ºC. The 

resulting white suspension was stirred at -78 ºC for 2 hrs before warming to room 

temperature slowly and stirring for 16 hrs. Solvent was removed in vacuo to give a white 

solid, which was dissolved in CH2Cl2 (30 mL) and washed with degassed H2O (4 mL) and 

the organic layer was separated. Solvent was removed in vacuo to give a colourless oil, which 

was washed with diethyl ether (30 mL), then toluene (10 mL) to give 2 as a white powder 

which was dried in vacuo (2.31 g, 97.5% yield). Pure material was obtained by slow addition 

of toluene to a concentrated solution of 2 in 1,2-dichloroethane to give a white precipitate, 

which was collected by filtration and dried in vacuo. Colourless cube shaped crystals suitable 

for X-ray crystallography were grown from MeCN at 2 ºC.  

1
H NMR (300.1 MHz, CD3CN): δ 0.83-1.38 (m, 12H, 4 × iPr CH3), 2.91-3.06 (m, 1H, iPr 

CH), 3.26-3.41 (m, 1H, iPr CH), 3.62 (s, 4H, 2 × CH2), 7.32-7.46 (br m, 4H, o/m Ph CH), 

7.49-7.57 (m, 1H, p-Ph CH), 7.67-7.74 (m, 1H, H7), 7.74-7.80 (m, 1H, H3), 8.07 (t, 1H,  J = 

7.4 Hz, H8), 8.31 (t, 1H, J = 7.3 Hz, H2).  
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13
C{

1
H} NMR (67.9 MHz, CD3CN): δ 16.7-17.4 (m, 4 × iPr CH3), 25.1-28.8 (m, 2 × iPr CH), 

31.6 (s, CH2), 32.3 (s, CH2), 112.8 (dd, 
1
JCP = 49.8 Hz, 

2
JCP = 5.2 Hz, Ph q-C), 123.2-123.6 

(m, C3/C7), 125.4-125.9 (m, C5), 126.6 (dd, 
2
JCP = 26.0 Hz, 

2
JCP = 6.6 Hz, C10), 129.5 (d, 

1
JCP = 47.1 Hz, C1), 130.6-130.9 (m, o-Ph CH), 132.7-132.9 (m, o-Ph CH), 135.1 (d, 

2
JCP = 

4.6 Hz, C8), 135.4 (d,
 2

JCP = 4.6 Hz, C2), 135.8 (d, 
2
JCP = 8.4 Hz, m-Ph CH), 136.2 (d, 

2
JCP = 

8.6 Hz, m-Ph CH), 136.9 (s, p-Ph CH), 139.7-142.0 (m, C9), 151.1 (s, C4 or C6), 156.1 (s, 

C4 or C6).  

31
P{

1
H} NMR (109.4 MHz, CD3CN): δ -34.5 (d, PhP), 60.0 (d, iPr2P), 

1
JPP = 303 Hz.  

Raman (glass capillary, cm
-1

): ν 3057 (s), 2930 (br, υC-H), 1607 (s), 1582 (s), 1444 (s), 1416 

(s), 1386 (s), 996 (s), 595 (m), 407 (m), 260 (m).  

IR (KBr disc, cm
-1

): ν 1609 (m), 1458 (m), 1437 (m), 1397 (m), 1259 (m), 1148 (m), 1084 

(m), 1038 (m), 857 (m), 750 (m), 699 (m).  

MS (ES+): 377 (cation), 409 (cation + MeOH); HRMS for C24H27P2
+
 calculated: 377.1588; 

found: 377.1596.  

M.p. 95-98 ºC. 

[Acenap(iPr2P)(PFc)][Cl] (3) 

nBuLi (3.4 mL of 2.5M solution in hexanes, 8.58 mmol) was added dropwise to 1 (3.00 g, 

8.58 mmol) in diethyl ether (60 mL) at -78 ºC. The mixture was stirred at -78 ºC for 2 hrs. A 

suspension of FcPCl2 (2.46 g, 8.58 mmol) in diethyl ether (40 mL) was added dropwise at -78 

ºC. The resulting pale orange suspension was stirred at -78 ºC for 2 hrs before warming to 

room temperature slowly and stirring for 16 hrs. Solvent was removed in vacuo to give an 

orange solid, which was dissolved in CH2Cl2 (50 mL) and washed with degassed H2O (10 

mL). The organic layer was separated and solvent was removed in vacuo to give 3 as an 
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orange solid (4.38 g, 98.1% yield). Analytically pure material was obtained by slow addition 

of toluene to a concentrated solution of 3 in 1,2-dichloroethane to give an orange precipitate, 

which was collected by filtration and dried in vacuo. Orange needle shaped crystals of 3 

suitable for X-ray crystallography were grown from MeCN at 2 ºC.  

E. A. (%) Calculated for C28H31ClFeP2: C 64.57, H 6.00; found: C 64.40, H 5.89.  

1
H NMR (300.1 MHz, CD3CN): δ 1.00-1.19 (m, 12H, 4 × iPr CH3), 2.86-3.00 (m, 1H, iPr 

CH), 3.05-3.13 (m, 1H, iPr CH), 3.19-3.22 (m, 1H, PCp CH), 3.62 (s, 4H, 2 × CH2), 4.36-

4.39 (m, 1H, PCp CH), 4.44 (s, 5H, Cp CH), 4.70-4.73 (m, 1H, PCp CH), 4.81-4.85 (m, 1H, 

PCp CH), 7.69-7.75 (m, 1H, H7), 7.76-7.81 (m, 1H, H3), 8.16 (t, 1H, J = 8.1 Hz, H8), 8.28 (t, 

1H, J = 6.5 Hz, H2).  

13
C{

1
H} NMR (67.9 MHz, CD3CN): δ 16.5-17.6 (m, 4 × iPr CH3), 24.4-25.6 (m, 2 × iPr CH), 

31.6 (s, CH2), 32.2 (s, CH2), 66.5 (d, 
1
JCP = 19.5 Hz, Cp q-C), 70.8 (s, 5 × Cp CH), 71.8 (d, 

3
JCP = 5.1 Hz, PCp CH), 73.0 (s, PCp CH), 74.9 (d, 

2
JCP = 7.8 Hz, PCp CH), 76.0 (d, 

2
JCP = 

35.3 Hz, PCp CH), 113.0 (d, 
1
JCP = 57.1 Hz, PCp CH, C9), 123.0 (s, C3 or C7), 123.1 (s, C3 

or C7), 126.1-126.6 (m, C10), 129.5 (d, JCP = 47.4 Hz, C1), 135.7 (dd, 
2
JCP = 24.9 Hz, 

3
JCP  = 

8.2 Hz, C8), 136.6 (s, C2), 139.7 (d, 
3
JCP = 11.9 Hz, C5), 150.9 (s, C4 or C6), 155.9 (s, C4 or 

C6).  

31
P{

1
H} NMR (109.4 MHz, CD3CN): δ -36.2 (d, FcP), 54.6 (d, iPr2P), 

1
JPP = 311 Hz.  

Raman (glass capillary, cm
-1

): ν 3103 (br), 2930 (br, υC-H), 1608 (s), 1444 (s), 1417 (s), 

1384 (s), 1158 (m), 1108 (vs), 596 (m), 430 (m), 338 (m), 311 (m), 255 (m).  

IR (KBr disc, cm
-1

): ν 2966 (m), 2862 (m, υC-H), 1641 (s, br), 1607 (m), 1458 (m), 1384 (m), 

1263 (m), 1193 (m), 1157 (m), 1105 (m), 1023 (br, m), 824 (m), 612 (v br), 487 (m).  

MS (ES+): 485 (cation); HRMS for C28H31FeP2
+
 calculated: 485.1250; found: 485.1245.  
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M.p. 110-114 ºC. 

[Acenap(iPr2P)(P(NMe2)][Cl] (4) 

nBuLi (0.35 mL of 2.5 M solution in hexanes, 0.86 mmol) was added dropwise to 1 (0.30 g, 

0.86 mmol) in diethyl ether (8 mL) at -78 ºC. The mixture was stirred at -78 ºC for 2 hrs. 

(NMe2)PCl2 (0.1 mL, 0.86 mmol) in diethyl ether (3 mL) was added dropwise at -78 ºC. The 

resulting white suspension was stirred at -78 ºC for 2 hrs before warming to room 

temperature slowly and stirring for 16 hrs. Solvent was removed in vacuo to give a colourless 

oil, which was washed with diethyl ether (10 mL) then dissolved in CH2Cl2 (10 mL) and 

filtered through a sinter using filtration aid (Celite). The celite/sinter was washed with 

CH2Cl2 (5 mL). Solvent was removed in vacuo to give 4 as a colourless oil, which was 

washed with diethyl ether (5 mL) to give a white solid. Purity established by integration from 

31
P NMR was ca. 77 %.  

31
P{

1
H} NMR (121.5MHz, CDCl3): δ 36.2 (d, (Me2N)P), 66.2 (d, iPr2P), 

1
JPP = 412 Hz.  

MS (ES+): 344 (cation), 376 (M + 2O). MS (APCI+): 300 ((cation – NMe2)2
2+

), 301 (cation - 

NMe2 + H).  

[Acenap(iPr2P)(PiPr)][Cl] (5) 

nBuLi (0.35 mL of 2.5 M solution in hexanes, 0.86 mmol) was added to 1 (0.30 g, 0.86 

mmol) in diethyl ether (10 mL) at -78 ºC. The mixture was stirred at -78 ºC for 2 hrs. The 

resulting suspension was warmed to 0 ºC and added to iPrPCl2 (0.32 mL, 2.58 mmol) in 

diethyl ether (3 mL) at -78 ºC over a few minutes. The mixture was warmed to room 

temperature and stirred for 16 hrs. Volatiles were removed in vacuo and the resulting pale 

yellow oil was dissolved in CH2Cl2 (5 mL) and washed with degassed H2O (1 mL) and the 

organic layer was separated. Volatiles were removed in vacuo to give a pale yellow oil, 
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which was washed with hexane (5 mL) to give 5 as a white solid (0.307 g, 94.1% yield). 

Analytically pure material was obtained by recrystallisation from MeCN at 2 ºC.  

E. A (%) Calculated for C21H29ClP2: C 66.58, H 7.72; found: C 66.69, H 7.82.  

1
H NMR (300.1 MHz, CD3CN): δ 1.02 (dd, 3H, 

3
JHP = 18.7 Hz, 

3
JHH = 9.0 Hz, iPr CH3), 

1.21-1.39 (m, 12H, iPr CH3), 1.60 (dd, 3H, 
3
JHP = 18.1 Hz, 

3
JHH = 9.0 Hz, iPr CH3), 2.62-2.77 

(m, 1H, iPr2P iPr CH), 3.15-3.29 (m, 1H, iPrP iPr CH), 3.32-3.39 (m, 1H, iPr2P iPr CH), 

3.48-3.59 (m, 4H, 2 × CH2), 7.53-7.61 (m, 1H, H3), 7.67-7.74 (m, 1H, H7), 7.90-7.96 (m, 

1H, H2), 8.24-8.31 (m, 1H, H8).  

13
C{

1
H} NMR (75.5 MHz, CD3CN): δ 16.7-17.0 (m, iPr CH3), 18.0 (d, 

2
JCP = 4.0 Hz, iPr 

CH3), 18.30 (d, 
2
JCP = 2.7 Hz, iPr CH3), 20.5-20.9 (m, iPr CH3), 22.2-22.5 (m, iPr CH3), 22.7 

(d, 
2
JCP = 5.0 Hz, iPr CH3), 24.3-24.5 (m, iPr2P iPr CH), 24.7-24.8 (m, iPrP iPr CH), 25.0-

25.2 (m, iPr2P iPr CH), 31.4 (s, CH2), 32.1 (s, CH2), 122.7-123.0 (m, C3 and C7), 134.8-

135.3 (m, C2), 135.8-136.0 (m, C8), 150.1 (s, C4 or C6), 156.0 (s, C4 or C6) .  

31
P{

1
H} NMR (109.4 MHz, CD3CN): δ -22.9 (d, 

i
PrP), 60.6 (d, 

i
Pr2P). 

1
JPP = 306 Hz.  

31
P NMR (109.4 MHz, CD3CN): δ -23.0 (br d, 

i
PrP), 60.5 (br d, 

i
Pr2P). 

1
JPP = 306 Hz.  

Raman (glass capillary, cm
-1

): ν 3059 (m), 2933 (br s, υC-H), 1604 (m), 1569 (m), 1447 (m), 

1417 (m), 1332 (s), 1168 (m), 945 (m), 821 (m), 721 (m), 646 (m), 585 (m), 265 (m).  

MS (ES+): 383 (cation + OH + Na
+
), 743 ((cation + OH)2 + Na

+
).  

M.p. 174-178 ºC. 

Reaction of 1' with MesPCl2 

nBuLi (0.23 mL of 2.5 M solution in hexanes, 0.57 mmol) was added dropwise to 1 (0.20 g, 

0.57 mmol) in diethyl ether (7 mL) at -78 ºC. The solution was stirred at -78 ºC for 2 hrs. 
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MesPCl2 (0.13 g, 0.57 mmol) in hexane (1.76 mL) was added dropwise at -78 ºC. The 

resulting yellow suspension was warmed to room temperature slowly and stirred for 2 hrs at 

room temperature. Solvent was removed in vacuo and hexane (10 mL) was added. The 

resulting yellow solution was heated under reflux for 2 hrs. Aliquots of the solution were 

taken after stirring at room temperature for 2 hrs and after heating for 2 hrs and showed no 

significant change: 

31
P{

1
H} NMR (109.4 MHz, unlocked): δ -2.9 (s, 1'), 168.5 (MesPCl2) 

Reaction of 1' with tBuPCl2  

nBuLi (0.35 mL of 2.5 M solution in hexanes, 0.86 mmol) was added dropwise to 1 (0.30 g, 

0.86 mmol) in diethyl ether (15 mL) at -78 ºC. The solution was stirred at -78 ºC for 2 hrs. 

t
BuPCl2 (0.14 g, 0.86 mmol) in diethyl ether (5 mL) was added dropwise at -78 ºC. The 

resulting red solution was warmed to room temperature slowly and stirred for 16 hrs, after 

which time a red precipitate appeared. Solvent was removed in vacuo to give a red solid, 

which was dissolved in 1,2-dichloroethane (15 mL).  

31
P{

1
H} NMR (109.4 MHz, unlocked): δ -9.5 (br s), 13.7 (d, J = 9.4 Hz), 25.0 (d, J = 7.0 Hz) 

Reaction of 1' with ½ eq. PhPCl2 

nBuLi (0.35 mL of 2.5 M solution in hexanes, 0.86 mmol) was added dropwise to 1 (0.30 g, 

0.86 mmol) in diethyl ether (12 mL) at -78 ºC. The solution was stirred at -78 ºC for 2 hrs. 

PhPCl2 (0.06 mL, 0.86 mmol) in diethyl ether (3 mL) was added over 1 hr at -78 ºC. The 

resulting white suspension was stirred at -78 ºC for 2 hrs before warming to room 

temperature slowly and stirring for 16 hrs. Solvent was removed in vacuo to give a white 

solid, which was dissolved in CH2Cl2 (5 mL).  
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31
P{

1
H} NMR (109.4 MHz, unlocked) of the resulting solution exhibited only 5-

diisopropylphosphinoacenapthene and 2. 

Acenap(iPr2P)(PPhH) (6) 

LiAlH4 (0.33 mL of 2.4 M solution in thf, 0.80 mmol) was added to 2 (0.30 g, 0.73 mmol) in 

thf (25 mL) at 0 ºC over a few minutes. The resulting mixture was allowed to warm to room 

temperature and was stirred for 2 hrs. Volatiles were removed in vacuo and CH2Cl2 (10 mL) 

was added. The resulting solution was washed with degassed H2O (2 mL) and the organic 

layer was separated. Evaporation of volatiles in vacuo gave 6 as a yellow oil (0.236 g, 85.3 % 

yield).  

1
H NMR (300.1 MHz, CDCl3): δ 0.36 (dd, J = 11.1 Hz, J = 7.0 Hz, 3H, iPr CH3), 0.89-1.00 

(m, 6H, 2× iPr CH3), 1.03-1.12 (m, 3H, iPr CH3), 1.98-2.13 (m, 2H, 2× iPr CH), 3.33 (s, 4H, 

2 × CH2), 5.65 (dd, 
1
JHP = 202 Hz,

 5
JHP = 57.6 Hz), 7.12-7.20 (m, 4H, Ar CH), 7.25-7.35 (m, 

3H, Ar CH), 7.59 (dd, J = 3.1 Hz, J = 7.1 Hz, 1H, Ar CH), 7.67-7.72 (m, 1H, Ar CH).  

13
C{

1
H} NMR (75.5 MHz, CDCl3): δ 19.7-20.5 (m, 4 × iPr CH3), 25.2-25.6 (m, 2 × iPr CH), 

27.0 (s), 27.2 (s), 30.3 (s, CH2), 30.5 (s, CH2), 31.1 (d, JCP = 4.5 Hz), 119.6 (s, 3 or 7), 119.9 

(s, C3 or C7), 127.7 (s, Ph CH), 128.2 (d, 
2
JCP = 7.0 Hz, o-Ph CH), 134.0-134.4 (m, C2 or 

C8), 134.7 (s, C2 or C8), 140.4 (s, Ph CH), 148.7 (d, 
1
JCP  = 11.0 Hz, q-C).  

31
P{

1
H} NMR (121.5 MHz, CDCl3): δ -41.0 (d, Ph(H)P), -12.3 (d, iPr2P), 

4
JPP = 169 Hz.  

31
P NMR (121.5 MHz, CDCl3): δ -41.0 (dd, 

4
JPP = 169 Hz, 

1
JPH = 202 Hz, Ph(H)P), -12.3 (m 

(≈d), 
4
JPP = 169 Hz, iPr2P).  

MS (ES+): 377 (M - H). HRMS for C24H27P2
+
 calculated: 377.1588; found: 377.1576. 
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Acenap(iPr2P)(PFcH) (7) 

LiAlH4 (3.85 mL of 2.4 M solution, 9.23 mmol) was added to 3 (3.46 g, 7.10 mmol) in thf 

(100 mL) at 0 ºC over a few minutes. The resulting suspension was allowed to warm up to 

room temperature and stirred for 2 hrs. Solvent was removed in vacuo and CH2Cl2 (100 mL) 

was added. The solution was washed with degassed H2O (20 mL) after slow addition at 0 ºC 

and the organic layer was separated. Removal of volatiles in vacuo gave 7 as an orange solid 

(3.06 g, 88.6% yield) of sufficient purity for further synthesis. Yellow needle shaped crystals 

suitable for X-ray crystallography were obtained from concentrated solutions in hexane at 2 

ºC.  

1
H NMR (300.1 MHz, CDCl3): δ 0.88 (dd, 3H, 7.0 Hz, iPr CH3), 1.08 (dd, 3H, J = 5.8 Hz, J 

= 6.9 Hz, iPr CH3), 1.21 (m, 6H, 2× iPr CH3), 2.24 (m, 2H, 2× iPr CH), 3.28-3.40 (m, 4H, 2 × 

CH2), 4.16-4.18 (m, 1H, PCp CH), 4.25 (s, 5H, Cp CH), 4.27-4.33 (m, 2H, PCp CH), 4.60-

4.63 (m, 1H, PCp CH), 5.65 (dd, 
1
JHP = 237 Hz, 

5
JHP = 33.2 Hz, 1H, PH), 7.13 (d, 1H, J = 

7.15 Hz, H7), 7.30 (d, 1H, J = 7.2 Hz, H3), 7.54 (t, 1H, J = 6.6 Hz, H8), 7.68 (dd, 1H, J = 3.2 

Hz, J = 4.0 Hz, H2).  

13
C{

1
H} NMR (75.5 MHz, CDCl3): δ 19.9-20.5 (m, iPr CH3), 20.7 (d, 

2
JCP = 12.2 Hz, iPr 

CH3), 26.1-26.6 (m, iPr CH), 30.1 (s, CH2), 30.5 (s, CH2), 69.5 (s, 5 × Cp CH), 70.5 (d, 
2
JCP 

= 7.0 Hz, PCp CH), 70.7 (s, PCp CH), 75.0 (d, 
2
JCP = 7.9 Hz, PCp CH), 75.5 (d, 

3
JCP = 4.8 

Hz, PCp CH), 119.3 (s, C7), 119.6 (s, C3), 134.5 (s, C8), 137.0 (s, C2), 147.4 (s, C4 or C6), 

148.6 (s, C4 or C6).  

31
P{

1
H} NMR (109.4 MHz, CDCl3): δ -51.9 (d, Fc(H)P), -9.3 (d, iPr2P), 

4
JPP = 199 Hz.  

31
P NMR (109.4 MHz, CDCl3): δ -51.9 (dd, 

4
JPP = 199 Hz, 

1
JPH = 237 Hz, Fc(H)P), -9.4 (m 

(≈d), 
4
JPP = 199 Hz, iPr2P). 
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Raman (capillary tube, cm
-1

): ν 3110 (m), 2935 (br s, υC-H), 2318 (m, υP-H), 1609 (m), 1566 

(m), 1418 (m), 1325 (s), 1165 (m), 1108 (s), 585 (m), 315 (m).  

IR (KBr disc, cm
-1

): ν 3038 (m), 2928 (m), 2840 (m, υC-H), 2374 (m, υP-H), 1606 (m), 1459 

(m), 1383 (m), 1263 (m), 1216 (m), 1156 (m), 1105 (m), 1032 (s), 822 (m), 486 (s). MS 

(ES+): 485 (M–H).  

MS (APCI+): 271.1610 (C12H9PiPr2 + H), 287.1559 (C12H9P(=O)iPr2 + H), 443.0771 (M - 

iPr), 487.1394 (M + H). HRMS for C28H33FeP2
+
 calculated: 487.1401; found: 487.1394. 

 M.p. 133-138 ºC. 

Reduction of 4 with LiAlH4 (8) 

LiAlH4 (1.1 mL of 2.4 M solution in thf, 2.58 mmol) was added to 4 (0.327 g, 0.86 mmol) in 

thf (5 mL) at 0 ºC over a few minutes. The resulting dark pink solution turned to dark red 

once allowed to warm to room temperature and was stirred for 2 hrs. Volatiles were removed 

in vacuo and CH2Cl2 (7 mL) was added. The solution was washed with degassed H2O (2 mL) 

then filtered with a canula/filter paper. The organic layer was separated and volatiles were 

evaporated in vacuo to give 8 as a dark red oil.  

31
P{

1
H} NMR (121.5MHz, CDCl3): δ -100.8 (d, H2P), -10.8 (d, iPr2P). 

4
JPP = 205.5 Hz. 

31
P NMR (121.5MHz, CDCl3): δ -100.7 (m(≈q), 

1
JPH = 208.2 Hz, 

4
JPP = 205.8 Hz, H2P), -

10.8 (m (≈d), 
4
JPP = 205.8 Hz, iPr2P).  

[(6)PtCl2] (9) 

6 (0.18 g, 0.44 mmol) in CH2Cl2 (5 mL) was added to [PtCl2(cod)] (0.16 g, 0.44 mmol) in 

CH2Cl2 (15 mL) at room temperature. After stirring for 2 hrs volatiles were removed in vacuo 
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to give 9 as a white solid in quantitative yield (0.284 g). Colourless air stable oblong crystals 

suitable for X-ray crystallography were grown from CH2Cl2 and diethyl ether at 2 ºC.  

E. A. (%) Calculated for C24H28Cl2P2Pt: C 44.75, H 4.38; found C 44.64, H 4.26.  

1
H NMR (400.1 MHz, CD2Cl2): δ 0.58 (dd, 3H, J = 8.4 Hz, J  = 7.0 Hz, iPr CH3), 0.78 (dd, 

3H, J = 8.5 Hz, J = 7.0 Hz, iPr CH3), 1.11-1.17 (m, 3H, iPr CH3), 1.48 (dd, 3H, J = 9.0 Hz, J 

= 7.0 Hz, iPr CH3), 2.77-2.88 (m, 1H, iPr CH), 3.47-3.63 (m, 4H, 2 × CH2), 3.71-3.81 (m, 

1H, iPr CH), 6.53 (m (≈dt), 1H, 
1
JHP = 451 Hz, 

3
JHP = 21.0 Hz, PH), 7.17-7.26 (m, 4H, Ph 

CH), 7.29-7.35 (m, 1H,  H3 or H7), 7.52-7.57 (m, 2H,  H3 or H7 and Ph CH), 7.90-7.95 (m, 

1H, H8), 8.02 (dd, 1H, J = 8.0 Hz, J = 7.1 Hz, H2).  

13
C{

1
H} NMR (75.5 MHz, CD2Cl2): δ 17.2 (d, 

3
JCP = 6.0 Hz, iPr CH3), 19.3-19.8 (m, 3 × iPr 

CH3), 27.0 (d, 
1
JCP = 34.7 Hz, iPr CH), 28.8 (d, 

1
JCP = 36.3 Hz, iPr CH), 31.2 (s, CH2), 31.5 

(s, CH2), 120.3 (d, 
3
JCP = 9.0 Hz, C3 or C7), 121.3 (d, 

3
JCP = 11.0 Hz, C3 or C7), 129.3 (s, Ph 

CH) 129.4 (s, Ph CH), 132.0 (d, JCP = 2.9 Hz, Ph p-CH), 133.2 (s, Ph CH), 133.3 (s, Ph CH) 

135.1 (d, JCP = 3.2 Hz, C8), 139.0 (d, 
2
JCP = 6.4 Hz, C2) 154.0 (s, C4 or C6), 154.8 (s, C4 or 

C6).  

31
P{

1
H} NMR (162.0 MHz, CD2Cl2): δ -20.9 (d with satellites, 

2
JPP = 25.4 Hz, 

1
JPPt = 3212 

Hz, Ph(H)P), 14.8 (d with satellites, 
2
JPP = 25.4 Hz, 

1
JPPt = 3397 Hz, iPr2P).  

31
P NMR (162.0 MHz, CD2Cl2): δ -20.9 (m with satellites, 

1
JPH = 451 Hz, 

1
JPPt = 3212 Hz, 

Ph(H)P), 14.8 (m with satellites, 
1
JPPt = 3397 Hz, iPr2P). 

195
Pt{

1
H} NMR (58.1 MHz, CD2Cl2): δ -4504 (dd, 

1
JPtP = 3403 Hz, 

1
JPtP = 3220 Hz).  

Raman (glass capillary, cm
-1

): ν 3063 (s), 2957 (m), 2917 (vs, υC-H), 2386 (m, υP-H), 1601 

(m), 1588 (m), 1571 (m), 1443 (s), 1421 (m), 1343 (s), 1001 (m), 307 (m).  
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IR (KBr disc, cm
-1

): ν 2963 (m), 2926 (m, υC-H), 1596 (m), 1438 (m), 1261 (s), 1096 (s), 

1024 (s), 802 (s).  

MS (ES+): 608 (M - Cl), 572 (M - HCl - Cl), correct isotopic patterns were observed for 

these peaks.  

M.p. 134-138 ºC.  

[(7)PtCl2] (10) 

7 (0.30 g, 0.62 mmol) in CH2Cl2 (13 mL) was added to [PtCl2(cod)] (0.23 g, 0.62 mmol) in 

CH2Cl2 (2 mL) at room temperature. After stirring for 16 hrs the volatiles were removed in 

vacuo to give 10 as an orange solid in quantitative yield (0.466 g). Orange, oblong crystals 

suitable for X-ray crystallography were grown from MeCN at 2 ºC.  

E. A. (%) Calculated for C28H32Cl2FeP2Pt: C 44.70, H 4.29; found C 44.85, H 4.36.  

1
H NMR (270.2 MHz, CD2Cl2): δ 0.60-0.81 (br m, 3H, iPr CH3), 1.03-1.55 (br m, 9H, iPr 

CH3), 1.63-1.85 (br m, 1H, iPr CH), 3.48-3.61 (br m, 4H, 2 × CH2), 3.63-3.74 (br m, 1H, iPr 

CH), 3.92-5.14 (br m, 9H, FcH), 6.97 (m (≈d), 1H, PH), 7.24-7.69 (br m, 3H, Ar CH), 7.81-

8.26 (br m, 1H, Ar CH).  

31
P{

1
H} NMR (121.5 MHz, CD2Cl2):  δ -17.4 (d with satellites, 

2
JPP = 25.6 Hz, 

1
JPPt = 3159 

Hz, Fc(H)P), 14.6 (d with satellites, 
2
JPP = 25.6 Hz, 

1
JPPt = 3456 Hz, iPr2P).  

31
P NMR (121.5 MHz, CD2Cl2): δ -17.4 (m (≈d), 

1
JPH = 468 Hz, 

1
JPPt = 3159 Hz, Fc(H)P), 

14.7 (m, 
1
JPPt = 3456 Hz, iPr2P).  

Raman (glass capillary, cm
-1

): ν 3102 (m), 2926 (s), 1603 (m), 1571 (m), 1541 (m), 1442 (m), 

1416 (m), 1337 (m), 1153 (m), 1109 (s), 887 (m), 828 (m), 730 (m), 587 (m), 446 (m), 324 

(s), 239 (m).  
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IR (KBr disc, cm
-1

): ν 2962 (m), 2926 (m), 2374 (m, υP-H), 1602 (s), 1459 (br, m), 1258 (m), 

1034 (br, s), 538 (br, s).  

MS (ES+): 680 (M - HCl - Cl). HRMS for C28H31FeP2Pt
+
 calculated: 680.0898; found: 

680.0893.  

M.p. 185-190 ºC. 

[Acenap(iPr2P)(PPhMe)][TfO]2 (11) 

MeOTf (2.0 mL, 17.67 mmol) and 2 (0.20 g, 0.48 mmol) were heated at 90 ºC for 4 hrs. 

Volatiles (including excess MeOTf) were removed in vacuo at 50 °C to give 11 as a pale 

yellow oil (70 % purity by 
31

P NMR).  

31
P{

1
H} NMR (121.5 MHz, CD3CN):  δ 31.0 (d, Ph(Me)P), 52.8 (d, iPr2P), 

1
JPP = 27.6 Hz.  

31
P NMR (121.5 MHz, CD3CN): δ 31.0 (br m, Ph(Me)P), 52.8 (br m, iPr2P).  

MS (ES+): 409 (dication + O + H, hydrolysis product), MS (ES-): 149 (TfO
-
), 299 

([(TfO)2H]
-
), 321 ([(TfO)2Na]

-
). 

[Acenap(iPr2P)(PFcMe)][TfO]2 (12) 

MeOTf (2.0 mL, 17.67 mmol) and 3 (0.20 g, 0.38 mmol) were heated at 90 ºC for 4 hrs. On 

heating an orange precipitate forms and the colour of the solution darkened. Volatiles were 

removed in vacuo at 50 °C to give 12 as a dark brown/orange oil (60 % purity by 
31

P NMR). 

 
31

P{
1
H} NMR (121.5 MHz, CD3CN):  δ 33.2 (d, Fc(Me)P), 45.9 (d, iPr2P), 

1
JPP = 45.3 Hz.  

31
P NMR (121.5 MHz, CD3CN): δ 33.2 (br m Fc(Me)P), 45.9 (br m, iPr2P). 
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Acenap(iPr2P)(PPhMe) (13) 

LiAlH4 solution (0.80 mL of 2.4 M solution in thf, 1.92 mmol) diluted with thf (5 mL) was 

added dropwise to 11 (obtained in the above procedure, approximately 0.45 mmol) at 0 ºC. 

The resulting mixture was stirred at 0 ºC for 10 min, then warmed to room temperature and 

stirred for a further 30 min to give a pale yellow solution. Volatiles were removed in vacuo 

and CH2Cl2 (5 mL) was added. The resulting solution was washed with degassed H2O (2 

mL), separated and filtered through a sinter using filtration aid (Celite), which was then 

washed with CH2Cl2 (2 × 5 mL). Volatiles were removed in vacuo to give 13 as a yellow oil. 

31
P NMR spectra indicated complete conversion of 10 to 12, hence the resulting oil was of 

approximately 70% purity.  

31
P{

1
H} NMR (121.5 MHz, CDCl3):  δ -35.4 (d, Ph(Me)P), -8.5 (d, iPr2P), 

4
JPP = 169 Hz.  

31
P NMR (121.5 MHz, CDCl3): δ -35.4 (br m (≈d), Ph(Me)P), -8.5 (br m (≈d), iPr2P), 

4
JPP = 

169 Hz. 

Acenap(iPr2P)(PFcMe) (14) 

LiAlH4 solution (0.70 mL of 2.4 M solution in thf, 1.65 mmol) was diluted with thf (5 mL) 

and added dropwise to 12 (obtained in the above procedure, approximately 0.38 mmol) at 0 

ºC. The resulting mixture was stirred at 0 ºC for 10 min, then warmed to room temperature 

and stirred for a further 30 min to give an orange solution. Volatiles were removed in vacuo 

and CH2Cl2 (5 mL) was added. The resulting solution was washed with degassed H2O (1 

mL), separated and filtered through a sinter using filtration aid (Celite), which was then 

washed with CH2Cl2 (2 × 5 mL). Volatiles were removed in vacuo to give 14 as an orange 

oil. NMR spectra indicated complete conversion of 12 to 14, hence the resulting oil was of 

approximately 60% purity.  

31
P{

1
H} NMR (121.5 MHz, CDCl3):  δ -47.4 (d, Fc(Me)P), -5.2 (d, iPr2P), 

4
JPP = 163 Hz.  
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31
P NMR (121.5 MHz, CDCl3): δ –47.4 (br m (≈d), Fc(Me)P), -5.1 (br m (≈d), iPr2P), 

4
JPP = 

162.1 Hz. 

[(13)Mo(CO)4] (15) 

13 (obtained in the above procedure, approximately 0.45 mmol) in CH2Cl2 (10 mL) was 

added to [(nor)Mo(CO)4] (0.13 g, 0.44 mmol) in CH2Cl2 (1 mL) at room temperature. The 

resulting brown suspension was stirred for 16 hours, then filtered through a sinter using 

filtration aid (Celite), which was subsequently washed with CH2Cl2 (2 × 5 mL). Volatiles 

were removed from the resulting brown solution in vacuo to give crude 15 as a brown oil. 

Crude material was recrystallised from MeCN at 2 °C to give air stable, analytically pure 15 

as light brown crystals (61 mg, 23.1% yield). Some of the cube shaped crystals were suitable 

for X-ray crystallography.  

E. A. (%) Calculated for C29H30MoO4P2: C 58.01, H 5.04; found: C 57.94, H 5.08.  

1
H NMR (300.1 MHz, CDCl3): δ 0.80-1.01 (m, 6H, 2× iPr CH3), 1.04-1.18 (m, 6H, 2× iPr 

CH3), 2.15 (d, 3H, 
2
JHP = 4.7 Hz, P-Me), 2.40-2.54 (m, 1H, iPr CH), 3.41 (s, 4H, 2× CH2), 

7.22-7.32 (m, 6H, C7 and Ph CH), 7.37 (d, 1H, J = 7.3 Hz, H3), 7.64-7.72 (m, 1H, H2), 7.78 

(t, 1H, J = 7.5 Hz, H8).  

13
C{

1
H} NMR (75.5 MHz, CDCl3): δ 18.6-19.2 (m, 4 × iPr CH3), 24.8 (dd, 

1
JCP = 24.1 Hz, 

3
JCP = 3.2 Hz, P-CH3), 29.3 (dd, 

1
JCP = 16.1 Hz, 

3
JCP = 3.3 Hz, 2 × iPr CH), 30.2 (s, CH2), 

30.4 (s, CH2), 119.2 (d, 
3
JCP = 5.2 Hz, C7), 119.7 (d, 

3
JCP = 6.0 Hz, C3), 123.8 (dd, 

3
JCP = 

21.7 Hz, 
3
JCP = 5.2 Hz, C5), 124.9 (dd, 

2
JCP = 30.0 Hz, 

2
JCP = 3.0 Hz, C10), 128.4 (d, JCP = 

9.0 Hz, o- or m-Ph CH), 128.8 (s, p-Ph CH), 130.5 (d, JCP = 11.2 Hz, o- or m-Ph CH), 133.5 

(s, C8), 136.4 (s, C2), 140.9-141.2 (m, C1), 143.1 (d, 
1
JCP = 32.7 Hz, Ph i-C), 150.6 (s, C6), 

151.9 (s, C4).  
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31
P{

1
H} NMR (121.5 MHz, CDCl3): δ 8.6 (d, Ph(Me)P), 42.9 (d, iPr2P), 

2
JPP = 35.1 Hz. 

31
P 

NMR (121.5 MHz, CDCl3): δ 8.6 (br m, Ph(Me)P), 42.9 (br m, iPr2P).  

Raman (glass capillary, cm
-1

): ν 3068 (m), 2925 (s, υC-H), 2010 (m), 1909 (s, υC-O), 1878 

(s, υC-O), 1608 (m), 1591 (m), 1566 (m), 1445 (m), 1417 (m), 1322 (m), 1001 (m), 585 (m), 

455 (s), 417 (m).  

IR (KBr disc, cm
-1

): ν 2931 (m, υC-H), 2013 (m), 1897 (vs, υC-O), 1603 (m), 1439 (m), 1260 

(m), 1136 (s), 1033 (s), 958 (m), 747 (m), 696 (m).  

MS (CI+): 602 (M
+
), 573 (M

+
 - CO), 547 (M

+
 - 2CO), 518 (M

+
 - 3CO), 271 

(C12H9PiPr2+H
+
), 349 (C12H8PiPrPPhMe, base peak), 393 (C12H8PiPr2PMePh+H

+
).  

M.p. 135-139 ºC. 

[(14)Mo(CO)4] (16) 

14 (obtained in the above procedure, approximately 0.38 mmol) in CH2Cl2 (10 mL) was 

added to [(nor)Mo(CO)4] (0.11 g, 0.35 mmol) in CH2Cl2 (2 mL) at room temperature. The 

resulting dark brown suspension was stirred for 16 hours; then filtered through a sinter using 

filtration aid (Celite), which was subsequently washed with CH2Cl2 (2 × 5 mL). Volatiles 

were removed from the resulting orange solution in vacuo to give crude 16 as an orange oil. 

Crude material was recrystallised from MeCN at 2 °C to give air stable, analytically pure 16 

as dark brown crystals (57 mg, 22.6% yield). Some of the rod shaped crystals were suitable 

for X-ray crystallography.  

E. A. (%) Calculated for C33H34FeMoO4P2: C 55.95, H 4.84; found: C 55.74, H 4.71.  

1
H NMR (400.1 MHz, CDCl3): δ 0.55-0.62 (m, 3H, iPr CH3), 0.74 (dd, 3H, J = 6.1 Hz, J = 

6.8 Hz, iPr CH3), 1.32 (dd, 3H, J = 8.0 Hz, J = 7.0 Hz, iPr CH3), 1.39 (dd, 3H, J = 10.0 Hz, J 
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= 6.8 Hz, iPr CH3), 1.81 (d, 3H, 
2
JHP = 5.5 Hz, P-Me), 2.16-2.24 (m, 1H, iPr CH), 2.75-2.86 

(m, 1H, iPr CH), 3.37-3.44 (m, 4H, CH2), 3.94-3.96 (m, 1H, PCp CH), 4.34 (s, 5H, Cp CH), 

4.43-4.46 (m, 1H, PCp CH), 4.59-4.61 (m, 1H, PCp CH), 4.71-4.73 (m, 1H, PCp CH), 7.14 

(d, 1H, 
3
JHH = 7.2 Hz, H3), 7.21-7.25 (m, 1H, H2), 7.36 (d, 

3
JHH = 7.2 Hz, 1H, H7), 7.81 (t, J 

= 7.2 Hz, 1H, H8).  

13
C{

1
H} NMR (67.9 MHz, CDCl3): δ 17.9 (s, 2 × iPr CH3), 19.2-19.6 (m, 2 × iPrCH3), 21.5 

(d, 
1
JCP = 25.7 Hz, P-CH3), 28.2 (d, 

1
JCP = 25.7 Hz, iPr CH), 30.1 (s, CH2), 30.4 (s, CH2), 

35.1 (d, 
1
JCP = 18.5 Hz, iPr CH), 69.7 (s, 5 × Cp CH), 70.3 (s, PCp CH), 70.8 (s, PCp CH), 

70.9 (s, PCp CH), 71.6 (d, 
2
JCP = 9.3 Hz, PCp CH), 119.0 (d, 

3
JCP = 4.9 Hz, C3), 119.1 (d, 

3
JCP = 6.5 Hz, C7), 132.3 (s, C2), 132.5 (s, C8), 149.2 (s, C4 or C6), 150.6 (C4 or C6).  

31
P{

1
H} NMR (162.0 MHz, CDCl3): δ 4.5 (d, Fc(Me)P), 41.6 (d, iPr2P), 

2
JPP = 30.2 Hz.  

31
P NMR (162.0 MHz, CDCl3): δ 4.5 (br m, Fc(Me)P), 41.6 (br m, iPr 2P).  

IR (KBr disc, cm
-1

): ν 2963 (s), 2857 (m, υC-H), 2009 (m), 1894 (s, υC-O), 1719 (m), 1600 

(m), 1414 (m), 1262 (vs), 1099 (vs), 801 (vs), 391 (m). 

 

Figure 39. NMR numbering scheme for compounds 17-22. 

 

Acenap(iPr2PBH3)(PPhHBH3) (17) 

BH3·SMe2 (0.2 mL, 94%, 1.98 mmol) was added to 2 (0.20 g, 0.484 mmol) in thf (5 mL) at -

78 ºC. The resulting solution was allowed to warm to room temperature and stirred for 2 hrs. 

Volatiles were removed in vacuo to give 17 as a yellow oil in quantitative yield (0.196 g). 
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Yellow cube shaped crystals suitable for X-ray crystallography were grown from MeCN at -5 

ºC. 

1
H NMR (400.1 MHz, CDCl3): δ 0.94 (dd, 3H, 

3
JHP = 16.0 Hz, 

3
JHH = 6.9 Hz, iPr CH3), 1.10 

(dd, 3H, 
3
JHP = 16.0 Hz, 

3
JHH = 7.2 Hz, iPr CH3), 1.33-1.43 (m, 6H, 2 × iPr CH3), 2.90-3.05 

(m, 2H, 2 × iPr CH), 3.44 (br s, 4H, 2 × CH2), 7.31-7.48 (m, 7H, H3 + H7 + 5 × Ph CH), 7.99 

(dd, 1H, 
3
JHP = 16.0 Hz, 

3
JHH = 7.5 Hz, H2), 8.28 (dd, 1H, 

3
JHP = 16.0 Hz, 

3
JHH = 7.4 Hz, 

H8). 

13
C{

1
H} NMR (75.5 MHz, CDCl3): δ 17.8 (s, iPr CH3), 18.4 (s, iPr CH3), 18.6 (s, iPr CH3), 

19.5 (s, iPr CH3), 24.4 (d, 
1
JCP = 30.1 Hz, iPr CH), 25.5 (d, 

1
JCP = 29.3 Hz, iPr CH), 30.2 (s, 

CH2), 30.5 (s, CH2), 120.2 (d, 
3
JCP = 11.6 Hz, C3 or C7), 120.7 (d, 

3
JCP = 14.3 Hz, C3 or C7), 

129.3 (d, 
3
JCP = 10.2 Hz, m-Ph), 131.7 (d, 

4
JCP = 2.2 Hz, p-Ph), 133.2 (d, 

2
JCP = 9.1 Hz, o-Ph), 

139.2 (d, 
2
JCP = 16.6 Hz, C2), 142.1 (d, 

2
JCP = 11.3 Hz, C8), 152.9 (C4 or C6), 153.5 (C4 or 

C6). 

31
P{

1
H} NMR (162.0 MHz, CDCl3): δ -6.6 (br s, PhP(H)), 39.4 (br s, iPr2P). 

31
P NMR (162.0 MHz, CDCl3): δ -6.6 (d, 

1
JPP = 376.1 Hz, PhP(H)), 39.5 (br s, iPr2P). 

11
B NMR (128.4MHz, CDCl3): δ -39.3 (br s, 2 × BH3). 

Raman (glass capillary, cm
-1

): ν 3063 (m), 2935 (s, υC-H), 2352 (m, υP-H), 1567 (m), 1446 

(m), 1318 (s), 1001 (m). 

I. R (KBr disc, cm
-1

): ν 2968 (m), 2931 (m, υC-H), 2389 (s, υP-H), 1603 (m), 1440 (br), 1060 

(m). 

MS (ES+):  377 (M - H
-
 - 2 BH3), 391 (M - H - BH3), 407 (M - H- BH3 + O), 421 (M - BH3 + 

H
+
), 753. HRMS for C24H30BP2 calculated: 391.1907; found: 391.1907. 
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M.p. 69-72 ºC. 

[(2)Mo(CO)4Cl] (18) 

2 (0.20 g, 0.484 mmol) in CH2Cl2 (8 mL) was added to [(nor)Mo(CO)4] (0.16 g, 0.532 mmol) 

in CH2Cl2 (2 mL) at room temperature and stirred for 16 hrs. The resulting brown suspension 

was filtered to remove solids to give a dark orange solution, from which volatiles were 

removed in vacuo. The resulting orange oil was extracted with MeCN (2 mL) and volatiles 

were removed in vacuo to give 18 as a yellow solid (0.225 g, 74.9% yield). Small orange 

crystals suitable for X-ray crystallography were grown from thf at 2 ºC. 

E. A (%) Calculated for C28H27ClMoO4P2: C 54.17, H 4.38; found: C 54.10, H 4.47. 

1
H NMR (300.1 MHz, CD2Cl2): δ 0.67-0.94 (m, 6H, 2 × iPr CH3), 1.37-1.61 (m, 2 × 6H, iPr 

CH3), 2.48-2.65 (m, 1H, iPr CH), 3.66 (s, 4H, 2 × CH2), 3.82-3.97 (m, 1H, iPr CH), 7.26-7.48 

(m, 5H, 5 × Ph CH), 7.65-7.73 (m, 1H, H7), 7.75-7.82 (m, 1H, H3), 7.86 (t, 1H, 
3
J = 7.6 Hz, 

H8), 8.4-8.5 (m, 1H, H2). 

13
C{

1
H} NMR (67.9 MHz, CD2Cl2): δ 16.8 (s, iPr CH3), 17.4 (d, 

2
JCP = 6.1 Hz, iPr CH3), 18.2 

(s, iPr CH3), 19.3 (s, iPr CH3), 25.0 (d, 
1
JCP = 24.7 Hz, iPr CH), 26.2-26.9 (m, iPr CH), 31.8 

(s, CH2), 32.4 (s, CH2), 122.7 (d, 
3
JCP = 9.3 Hz, C7), 123.6 (d, 

3
JCP = 10.1 Hz, C3), 129.8 (d, 

2
JCP = 9.3 Hz, o-Ph), 132.4 (s, C8), 134.5 (s, m or p-Ph), 134.7 (s, m or p-Ph), 135.1 (s, C2), 

137.1-137.7 (m, C10), 151.7 (s, 4 or 6), 155.5 (s, 4 or 6). 

31
P{

1
H} NMR (121.5 MHz, CD2Cl2): δ 36.0 (d, PhP), 52.4 (d, iPr2P). 

1
JPP = 250.4 Hz. 

31
P NMR (121.5 MHz, CD2Cl2): δ 35.9 (d, PhP), 52.3 (br d, iPr2P). 

1
JPP = 250.3 Hz. 
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Raman (glass capillary, cm
-1

): ν 3055 (m), 2940 (m), 2860 (m, υC-H), 2021 (m), 1914 (s, υC-

O), 1827 (s, υC-O), 1611 (m), 1443 (m), 1420 (m), 1387 (m), 1000 (m), 499 (m), 483 (m), 

422 (s), 394 (vs), 338 (s), 259 (m).    

I. R (KBr disc, cm
-1

): ν 3051 (m), 2984 (m), 2935 (m), 2857 (m, υC-H), 2019 (vs, υC-O), 

1912 (vs, br), 1893 (vs, υC-O), 1833 (vs, υC-O), 1609 (m), 1438 (m), 1385 (m), 1037 (m), 

847 (m), 748 (m), 627 (m), 423 (m).  

D.p 186-190 ºC. 

[(2Cl)PtCl2] (19) 

2 (0.20 g, 0.484 mmol) in CH2Cl2 (5 mL) was added to [PtCl2(cod)] (0.16 g, 0.428 mmol) in 

CH2Cl2 (1 mL) at room temperature and stirred for 5 hrs to give a pale yellow solution. 

Volatiles were removed in vacuo to give 19 as a pale yellow solid in quantitative yield (0.329 

g). Recrystallised material and colourless oblong shaped crystals suitable for X-ray 

crystallography were grown from CH2Cl2/diethy ether at 5 ºC. 

E. A (%) Calculated for C24H27Cl3P2Pt: C 42.46, H 4.01; found: C 42.51, H 4.12. 

1
H NMR (300.1 MHz, CDCl3): δ 1.08-1.44 (m, 12H, 4 × iPr CH3), 3.35-3.63 (m, 6H, 2 ×CH2 

and 2 × iPr CH), 7.36-7.46 (m, 4H, m-Ph, p-Ph and H3), 7.60 (d, 1H, 
3
JHH = 7.3 Hz, H7), 

7.66-7.76 (m, 2H, 2 × o-Ph), 7.85 (dd, 1H, 
3
JHP = 15.0 Hz, 

3
JHH = 7.5 Hz, H2), 8.07-8.16 (m, 

1H, H8). 

13
C{

1
H} NMR (75.5 MHz, CDCl3): δ 18.7 (d, 

2
JCP = 2.7 Hz, 

3
JCPt = 10.3 Hz,  iPr CH3), 19.3 

(s, 
3
JCPt = 11.2 Hz, iPr CH3), 19.7 (d, 

2
JCP = 3.0 Hz, 2 × iPr CH3), 29.0 (d, 

1
JCP = 35.6 Hz, iPr 

CH), 30.0 (d, 
1
JCP = 36.2 Hz, iPr CH), 30.6 (s, CH2), 30.8 (s, CH2), 109.5-110.5 (m, C1), 

115.8-116.9 (m, C9), 120.1 (d, 
3
JHH = 9.0 Hz, H7), 120.8 (d, 

3
JHH = 11.0 Hz, H3), 128.5 (d, 

2
JCP = 13.6 Hz, o-Ph), 131.7 (s, m-Ph), 131.9 (s, p-Ph), 133.6 (s, C5 or C10), 134.5 (s, C5 or 
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C10), 135.6 (d, 
2
JCP = 3.3 Hz, 

3
JCPt = 22.6 Hz, C8), 139.4 (d, 

2
JCP = 7.1 Hz, 

3
JCPt = 17.5 Hz, 

C2), 153.4 (s, C4 or C6), 155.5 (s, C4 or C6). 

31
P{

1
H} NMR (121.5 MHz, CDCl3): δ 12.8 (d, 

1
JPPt = 3201 Hz, iPr2P), 41.9 (d, 

1
JPPt = 3836 

Hz, PhP(Cl)). 
2
JPP = 26.4 Hz. 

31
P NMR (121.5 MHz, CDCl3): δ 12.8 (br s, 

1
JPPt = 3201 Hz, iPr2P), 41.9 (m, 

1
JPPt = 3201 Hz, 

PhP(Cl)). 

195
Pt{

1
H} NMR (58.1 MHz, CDCl3): δ -4326 (dd, 

1
JPtP = 3835 Hz, 

1
JPtP = 3200 Hz). 

Raman (glass capillary, cm
-1

): ν 3062 (m), 2931 (m, υC-H), 1602 (m), 1570 (m), 1439 (m), 

1418 (m), 1340 (m), 1000 (m), 826 (m), 521 (m), 313 (m). 

I. R (KBr disc, cm
-1

): ν 2961 (m), 2923 (m, υC-H), 1600 (s), 1439 (m), 1332 (m), 1260 (m), 

1100 (m), 1045 (m), 823 (m), 597 (m), 523 (m). 

MS (ES+): 697 (M - Cl + MeO + Na), 639 (M - 2Cl + MeO), 559, 517, 409, 339. 

M.p. 151-154 ºC. 

[((2Cl)PtCl)2][TfO]2 (21) 

Me3SiOTf (0.1 mL, 0.553 mmol) was added to 2 (0.20 g, 0.484 mmol) in CH2Cl2 (5 mL) at -

78 ºC and the resulting solution was allowed to warm to room temperature and stirred for 2 

hrs. Volatiles were removed in vacuo and the resulting colourless oil (20) was dried in vacuo 

for 1 hr. 
31

P NMR is unchanged from the Cl
-
 salt: 

31
P NMR (109.4 MHz, CD3CN): δ -34.5 (d, 

1
JPP = 303.2 Hz), 60.0 (d, 

1
JPP = 303.2 Hz). 

The oil was dissolved in CH2Cl2 (5 mL) and added dropwise to [PtCl2(cod)] (0.16 g, 0.428 

mmol) in CH2Cl2 (1 mL) at room temperature and stirred for 16 hrs to give a pale yellow 

solution. The solution was layered with hexane (7 mL) which precipitated 21 as a white solid 
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(0.363 g, 94.8% yield) and colourless oblong shaped crystals suitable for X-ray 

crystallography. The white solid was isolated by filtration. Analytically pure material was 

obtained by washing the solid with CH2Cl2 (1 mL). 

E. A (%) Calculated for C50H54Cl4F6O6P4Pt2S2: C 37.89, H 3.43; found: C 37.76, H 3.52. 

31
P{

1
H} NMR (162.0 MHz, CD2Cl2): δ 11.3 (d, 

1
JPPt = 3409 Hz, iPr2P), 38.5 (d, 

1
JPPt = 3582 

Hz, PhP(Cl)). 
2
JPP = 28.0 Hz. 

I. R (KBr disc, cm
-1

): ν 2998(m), 2994 (m, υC-H), 1522 (m), 1491 (m), 1487 (m), 1451 (vs, 

br), 1033 (s, br), 1099 (vs), 971 (m), 965 (m), 527 (s), 520 (m), 504 (m). 

MS (ES+): 683 (cation + MeCN), 665, 642 (cation), 624, 588. HRMS for C48H54Cl4P4Pt2
2+

 

calculated: 642.0613; found: 642.0616. 

M.p. 99-103 ºC. 

[{(Acenap(iPr2P)(PPh))PdCl}2] (22) 

2 (0.20 g, 0.484 mmol) in CH2Cl2 (5 mL) was added to [Pd2(dba)3] (0.25 g, 0.242 mmol) in 

CH2Cl2 (1 mL) at -78 ºC. The resulting suspension was allowed to warm to room temperature 

and stirred for 16 hrs to give a dark orange/brown solution. 
31

P NMR of this solution revealed 

22 to be approximately 44% of the reaction mixture. Half of the solvent was removed in 

vacuo and a 22 was precipitated as a bright yellow solid (47 mg, 18.7%) at 2 ºC. Crystals 

suitable for X-ray crystallography were obtained from CH2Cl2/diethyl ether. 

E. A (%) Calculated for C48H54Cl2P4Pd2: C 55.51, H 5.24; found: C 55.48, H 5.28. 

1
H NMR (300.1 MHz, CDCl3): δ 0.49-0.70 (m, 12H, 4 × iPr CH3), 0.80-0.90 (m, 6H, 2 × iPr 

CH3), 1.43-1.53 (m, 6H, 2 × iPr CH3), 2.44-2.61 (br m, 2H, 2 × iPr CH), 3.06-3.18 (m, 2H, 2 

× iPr CH), 3.49-3.54 (br m, 8H, 4 × CH2), 6.95-7.01 (m, 6H, Ar CH), 7.20-7.26 (m, 3H, 3 × 
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Ar CH), 7.38 (d, 3H, J = 7.5 Hz, 3 × Ar CH), 7.60-7.69 (m, 12H, 4 × Ar CH + 8 × dba CH),  

9.61 (dd, 2H, 
3
JHP = 8.4 Hz, 

3
JHH = 7.3 Hz, 2 × o-Ph CH) 

13
C{

1
H} NMR (67.9 MHz, CDCl3): δ 15.4-16.1 (m, 3 × iPr CH3), 19.6-20.3 (m, 5 × iPr CH3), 

30.2-31.0 (m, 3 × CH2), 31.3 (s, CH2), 119.4 (s, C2 or C8), 120.3 (s, C2 or C8), 127.5-128.4 

(m, 10 × Ph CH), 132.9 (s, C3 or C7), 133.8 (s, C3 or C7), 138.7 (s, q-C), 151.2 (s, 4 or 6), 

156.9 (s, 4 or 6) 

31
P{

1
H} NMR (121.5 MHz, CDCl3): AA'XX' spin system (A/A' = iPr2P, X/X' = PhP) δ 14.7 

(m, A/A'), -176.6 (m, X/X'). trans-
2
JAX = 322.0 Hz, cis-

2
JAX = 140.0 Hz, 

2
JXX' = 4.6 Hz, 

4
JAA' 

= 2.2 Hz) 

MS (ES+): 1019 (M - Cl + O), 789, 659, 447, 399, 334, 318, 220, 210. 

D.p. 225-229 ºC 

Reaction of 24 with ½ eq. PhPCl2 

nBuLi (3.22 mmol, 1.29 mL of 2.5 M solution in hexanes) was added dropwise to a solution 

of 23 (1.00 g, 3.22 mmol) in thf (20 mL) at -78 ºC. The resulting suspension was stirred at -

78 ºC for 2 hrs. Dropwise addition of PhPCl2 (0.22 mL, 1.61 mmol) in thf (10 mL) at -78 ºC 

was followed by warming to room temperature and stirring for 16 hrs to give a yellow 

solution with a white precipitate. 

31
P{

1
H} NMR (109.4 MHz, unlocked): δ -19.8 (s), -14.6 (s), 81.4 (s). 

Reaction of 24 with ½ eq. PCl3  

nBuLi (3.22 mmol, 1.29 mL of 2.5 M solution in hexanes) was added dropwise to a solution 

of 23 (1.00 g, 3.22 mmol) in thf (25 mL) at -78 ºC. The resulting suspension was stirred at -

78 ºC for 2 hrs. PCl3 (0.14 ml, 1.61 mmol) in thf (5 mL) was added dropwise at -78 ºC and 
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the resulting orange mixture was allowed to warm to room temperature and stirred for 16 hrs 

to give an orange solution with a white precipitate.  

31
P{

1
H} NMR (109.4 MHz, unlocked): δ -32.9 (s), 4.9 (s), 74.2 (s), 79.2 (s, 26), 98.8 (s). 

 

Figure 40. NMR numbering scheme for compounds 27-35. 

 

{Acenap(iPr2P)}2PiPr (27) 

nBuLi (2.3 mL of 2.5 M solution in hexanes, 5.73 mmol) was added dropwise to the solution 

of 1 (2.00 g, 5.73 mmol) in diethyl ether (80 mL) at -78 ºC. The mixture was stirred at -78 ºC 

for 2 hours, and then iPrPCl2 (0.42 g, 0.37 mL, 2.87 mmol) in diethyl ether (20 mL) was 

added dropwise over 1 hr at -78 ºC. The resulting yellow suspension was stirred at -78 ºC for 

2 hrs before warming to room temperature and stirring for 16 hrs. The suspension was filtered 

through a sinter using filtration aid (Celite). The solids on the sinter were washed with diethyl 

ether (40 mL). The volatiles were removed from the filtrate in vacuo to give an orange oil 

which was stirred with MeCN (20 mL) for 10 mins to give a yellow solid suspended in a dark 

orange solution, the solution containing mainly unreacted starting material. The solid was 

isolated by filtration and dried in vacuo to give 27 as a yellow powder (1.2 g, 68.0% yield), 

this material was of sufficient purity for further syntheses. Analytically pure material was 

obtained by recrystallisation from diethyl ether. Large yellow oblong crystals suitable for X-

ray diffraction work were grown from MeCN at 2 ºC.  

E. A. (%) Calculated for C39H51P3: C 76.45, H 8.39; found: C 76.33, H 8.27.  
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1
H NMR (400.1 MHz, CDCl3): δ 0.57-1.58 (complex br m, 10× iPr CH3, 30H), 1.79-2.32 (br 

m, 5× iPr CH, 5H), 3.23-3.37 (m, 2 × CH2, 4H), 6.91-7.56 (complex br m, 8× Ar CH, 8H). 

Higher temperature 
1
H NMR spectra in toluene-d8 displayed additional complexity.  

13
C{

1
H} NMR (67.9 MHz, C6D6): δ 16.9-24.9 (complex br m, iPr CH3), 25.0-26.8 (br m, iPr 

CH), 30.3 (s, CH2), 30.7 (s, CH2), 31.3-32.1 (br m, iPr CH), 119.3 (s, C3 or C7), 119.5 (s, C3 

or C7), 134.8-136.6 (br s, C2 or C8), 135.2 (s, C2 or C8), 147.2 (s, C4 or C6), 148.8 (s, C4 or 

C6).   

31
P{

1
H} NMR (202.4 MHz, toluene-d8, 298  K): two broad resonances between 2 and -18 

ppm.  

31
P{

1
H} NMR (202.4 MHz, toluene-d8, 353  K) AB2 system, δA = -1.8, δB = -8.1 ppm; JAB = 

140 Hz.  

31
P{

1
H} NMR (202.4 MHz, toluene-d8, 223  K): Two ABC patterns in a ratio 58:42, (B 

denotes inner phosphorus atom) δB1 = -1.52, δA1 = -4.53, δC1 = -15.59 , δB2 = -10.88, δA2 = -

11.87, δC2 = -17.14 ppm, JA1-B1 = 93.9, JB1-C1 = 142.3, JA1-C1 = 0, JA2-B2 = 139.7, JB2- C2 = 

137.6, JA2-C2 = 7.3 Hz).  

Raman (glass capillary, cm
-1

): ν 3066 (m, υAr-H), 2945 (br m), 2921 (br, s), 2903 (br, m), 

2867 (s, υC-H), 1608 (s), 1565 (s), 1444 (s), 1415 (s), 1315 (br, s), 881 (m), 820 (m), 713 

(m), 655 (m), 585 (m), 571 (m), 555 (m).  

IR (KBr disc, cm
-1

): ν 2944 (s), 2863 (s, υC-H), 1605 (s), 1458 (s), 1380 (m), 1360 (m), 1318 

(m), 1256 (m), 1151 (m), 1097 (m), 1032 (s), 878 (m), 839 (s), 819 (s), 651 (m).  

MS (CI+): 613 (M + H
+
), 569 (M

+ 
+ C3H7), 343 (C21H29P2), 287 (C18H24OP), 271 (C18H24P), 

135.  
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M. p. 181-185 ºC. 

Reaction of 27 with S8, sulfides 28 and 29 

Powdered sulfur (33 mg, 0.13 mmol) and 27 (0.20 g, 0.33 mmol) in toluene (20 mL) were 

heated under reflux for 3 hrs to give an orange solution. Solvent was removed in vacuo to 

give an orange oil, which was extracted with hexane (20 mL) and the solvent was removed in 

vacuo. The resulting oil was redissolved in diethyl ether/acetone and the solution was left to 

crystallise by slow evaporation in air. This gave crystals of two distinct types; large cube-like 

orange crystals and small yellow flakes. X-ray crystallography showed the orange crystals to 

be the bis(sulfide) 28 and the yellow crystals to be the tris(sulfide) 29. Manual separation of 

these crystals allowed the isolation of 28 (52 mg, 22.6 %) and 29 (41 mg, 17.8 %) for full 

characterisation. 

Bis(sulfide) 28 

E. A. (%) Calculated for C39H51P3S2: C 69.20, H 7.59; found: C 69.13, H 7.60.  

1
H NMR (300.1 MHz, CDCl3): δ -0.30-1.95 (complex br m, 10× iPr CH3, 30H), 2.41-5.05 

(complex br m, 4× CH2 and 5× iPr CH, 13H), 6.85-7.90 (complex br m, 8× Ar CH, 8H).  

31
P{

1
H} NMR (121.5 MHz, CDCl3): δ 13.3 (br s, PiPr), 73.6 (br s, PiPr2), 85.0 (br s, PiPr2).  

31
P NMR (121.5 MHz, CDCl3): δ 13.2 (br s, PiPr), 73.6 (br s, PiPr2), 84.8 (br s, PiPr2).  

MS (ES+): 699 (M + Na
+
), 375. 

Tris(sulfide) 29 

E. A. (%) Calculated for C39H51P3S3: C 66.07, H 7.25; found: C 65.95, H 7.33.  
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1
H NMR (300.1 MHz, CDCl3): δ -0.32-1.97 (complex br m, 10× iPr CH3, 30H), 2.34 (br s, 

iPr CH, 1H), 2.51-2.85 (complex br m, 4× CH2 and 1× iPr CH, 9H), 3.52-3.80 (br s, iPr CH, 

1H), 5.04-5.40 (br s, iPr CH, 2H), 6.50-7.76 (complex br m, 8× Ar CH, 8H). 

31
P{

1
H} NMR (121.5 MHz, C6D6): δ 65.7 (br s), 68.3 (br s), 84.2 (br s).  

31
P NMR (121.5 MHz, C6D6): δ 65.7 (br s), 68.3 (br s), 84.2 (br s).  

Reaction of 27 with Se, bis(selenide) (30) 

Powdered grey selenium (82 mg, 1.06 mmol) and 27 (0.20 g, 0.33 mmol) in toluene (20 mL) 

were heated under reflux for 3 hrs to give a dark green suspension. Solvent was removed in 

vacuo to give a green/grey oil, which was extracted with hexane (20 mL). The resulting 

yellow solution was concentrated and left to stand at room temperature, which led to 

deposition of large yellow clusters of needle shaped crystals of 30. These were isolated by 

filtration and dried in vacuo (54 mg, 21.5% yield).  

E. A. (%) Calculated for C39H51P3Se2: C 60.78, H 6.67; found: C 60.88, H 6.76.  

1
H NMR (300.1 MHz, CDCl3): δ -1.05-1.46 (complex br m, 10× iPr CH3, 30H), 1.48-1.92 

(complex br m, 4 5× iPr CH, 5H), 3.31-3.49 (br m, 2 × CH2, 8H), 7.19-7.42 (br m, 8× Ar CH, 

8H).  

31
P{

1
H} NMR (121.5 MHz, CDCl3): δ 14.6 (br s, PiPr), 78.8 (br s, PiPr2), 86.0 (br s, PiPr2).  

31
P NMR (121.5 MHz, CDCl3): δ 14.4 (br s, PiPr), 78.2 (br s, PiPr2), 86.2 (br s, PiPr2).  

MS (ES+): 811 (M + O + Na), 795 (M + Na), 747, 729 (M – C3H7), 576, 569 (M - 2Se-

C3H7), 423, 381, 343. 
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Reaction of 27 with PI3 

27 (0.10 g, 0.163 mmol) in CH2Cl2 (4 mL) was added to PI3 (67 mg, 0.163 mmol) at room 

temperature to give a red suspension, which was stirred for 4 hrs. Solvent was removed in 

vacuo to give a red solid, which was dissolved in 3 mL MeCN for 
31

P{
1
H} NMR and 

crystallisation, which was achieved at 2 ºC. 

Reaction of 27 with I2/H2O (31) 

I2 (0.50 g, 0.196 mmol) was added to 27 (0.20 g, 0.326 mmol) in degassed thf (10 mL) at 0 

ºC and allowed to warm to room temperature, leading to a dark orange suspension. Solvent 

was removed in vacuo to give a black oil, which was dried in vacuo and dissolved in MeCN 

(5 mL). 31 was isolated from the resulting dark orange solutions at 2 ºC as large black rod-

shaped crystals (0.144 g, 31.4%). 

E. A. (%) Calculated for C39H51I6O2P3: C 33.31, H 3.66; found: C 33.37, H 3.58 

1
H NMR (300.1 MHz, CDCl3): δ 0.35-0.93 (br m, 15 H, iPr CH3), 1.33-1.89 (br m, 15 H, iPr 

CH3), 2.73-2.95 (br m, 1H, central iPr CH), 3.53-3.91 (br m, 8H, CH2 + outer iPr CH), 7.65 

(d, 1H, 
3
JHH = 6.8 Hz, H3 or H7), 7.95 (dd, 1H, 

3
JHP = 13.4 Hz, 

3
JHH = 7.3 Hz, H2 or H8), 

8.35-8.44 (br m, 1H, H3 or H7), 9.22 (dd, 1H, 
3
JHP = 18.7 Hz, 

3
JHH = 6.7 Hz, H2 or H8) 

31
P{

1
H} NMR (121.5 MHz, CDCl3): δ -40.1 (t, 

2
JPP = 33.0 Hz, iPrP), 87.3 (d, 

2
JPP = 33.0 Hz, 

iPr2P). 

Raman (glass capillary, cm
-1

): ν 2912 (vs, υC-H), 1601 (m), 1567 (m), 1433 (s), 1319 (m), 

572 (m), 176 (s). 

IR (KBr disc, cm
-1

): ν 2964 (m, υC-H), 1595 (s), 1453 (m), 1048 (υP-O), 855 (m), 826 (m), 

630 (m), 581 (m). 



177 

 

MS (ES+): 301, 322 (m/z), 643, 661, 683. 

M. p. 120-123 ºC. 

[(27)Cu(MeCN)][BF4] (32) 

A solution of 27 (0.25 g, 0.41 mmol) in thf (10 mL) was added to a solution of 

[Cu(MeCN)4][BF4] (0.13 g, 0.41 mmol) in thf (5 mL) at room temperature, giving a yellow 

suspension. After stirring for 16 hrs the volatiles were removed in vacuo to give 32 as a pale 

yellow powder (0.33 g, quantitative yield). Analytically pure material was obtained by 

recrystallisation from thf. Colourless rod-shaped crystals suitable for X-ray crystallography 

were grown from thf at 2 ºC.  

E. A. (%) Calculated for C41H54BCuF4NP3: C 61.24, H 6.77, N 1.74; found: C 61.13, H 6.66, 

N 1.86.  

1
H NMR (400.1 MHz, CD3CN): δ 0.56 (dd, 6H, 

3
JHP = 16.7 Hz, 

3
JHH = 6.9 Hz, iPr CH3), 0.83 

(dd, 6H, 
3
JHP = 12.0 Hz, 

3
JHH = 6.8 Hz, iPr CH3), 0.94 (dd, 6H, 

3
JHP = 16.0 Hz, 

3
JHH = 6.8 Hz, 

iPr CH3), 1.10-1.17 (m, 12H, iPr CH3), 2.21-2.33 (m, 1H, inner iPr CH), 2.35-2.47 (m, 2H, 

outer iPr CH), 2.56-2.70 (m, 2H, outer iPr CH), 3.29-3.40 (m, 8H, CH2), 7.33 (d, 2H, 
3
JHH = 

7.3 Hz, H3), 7.43 (d, 2H, 
3
JHH = 7.2 Hz, H7), 7.52 (t, 2H, 

3
JHP = 

3
JHH = 7.5 Hz, H2), 7.81 (t, 

2H, 
3
JHP = 

3
JHH = 7.1 Hz, H8).  

13
C{

1
H} NMR (75.5 MHz, CD3CN): δ 17.5 (s, iPr CH3), 18.2 (s, iPr CH3), 19.8 (m, iPr CH3), 

20.1 (d, 
2
JCP = 11.5 Hz, iPr CH3), 20.5 (m, iPr CH3), 24.8-25.3 (m, outer iPr CH), 30.4 (s, 

CH2), 30.6 (s, CH2), 33.1-33.4 (m, central iPr CH), 120.0 (s, C7), 120.2 (d, 
3
JCP = 4.1 Hz, 

C3), 120.4-120.8 (m, C10), 123.6 (d, 
1
JCP = 14.0 Hz, C9), 136.0 (s, C8), 136.6 (s, C2), 140.0-

140.5 (m, C1), 141.4-141.6 (m, C5), 151.6 (s, C4 or C6), 152.4 (s, C4 or C6).  
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31
P{

1
H} NMR (162.0 MHz, CD3CN): δ -18.7 (br t, iPrP), 6.1 (br s, 2× iPr2P), 

2
JPP = 50-60 

Hz.  

31
P NMR (162.0 MHz, CD3CN): δ -18.7 (br m, iPrP), 6.1 (br m, 2× iPr2P).  

Raman (glass capillary, cm
-1

): ν 3074 (m), 2930 (s), 2732 (m), 1984 (m), 1857 (br, m), 1732 

(br, m), 1609 (m), 1562 (m), 1504 (br, m), 1444 (m), 1414 (m), 1313 (s), 1124 (br, s), 817 

(m), 586 (m).  

MS (ES+): 675 (cation
 
+

 
MeCN).  

M. p. 158-161 ºC. 

[(27)PtCl][Cl] (33) 

A solution of 27 (0.12 g, 0.20 mmol) in CH2Cl2 (8 mL) was added to a suspension of 

[PtCl2(cod)] (73 mg, 0.20 mmol) in CH2Cl2 (2 mL) to give a yellow solution, which was 

stirred for 16 hrs at room temperature. Evaporation of volatiles in vacuo yielded 33 as a white 

powder (0.18 g, quantitative yield). Recrystallisation from CH2Cl2/hexane yielded 

analytically pure material as well as colourless needle crystals suitable for X-ray 

crystallography.  

E. A. (%) Calculated for C39H51Cl2P3Pt: C 53.31, H 5.85; found: C 53.24, H 5.79.  

1
H NMR (400.1 MHz, CDCl3): δ 0.10-0.28 (m, 6H, iPr CH3), 0.58-0.81 (m, 6H, iPr CH3), 

0.96-1.06 (m, 3H, iPr CH3), 1.10-1.19 (m, 3H, iPr CH3), 1.40-1.54 (m, 9H, iPr CH3), 1.58-

1.67 (m, 3H, iPr CH3), 2.97-3.10 (br s, 1H, iPr CH), 3.30-3.40 (m, 3H, iPr CH), 3.41-3.58 (br 

m, 8H, CH2), 3.88-4.04 (br s, 1H, iPr CH), 7.33-7.43 (m, 2H, Ar CH), 7.44-7.54 (m, 2H, Ar 

CH), 7.61 (d, 2H, J  = 7.3 Hz, Ar CH), 7.87-7.95 (m, 1H, Ar CH), 8.11-8.20 (m, 1H, ArCH).  
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13
C{

1
H} NMR (75.5 MHz, CDCl3): δ 15.6-16.0 (m, PiPr CH3), 16.9-17.4 (m, PiPr CH3), 

18.3-19.2 (m, PiPr2 CH3), 19.5-20.6 (m, PiPr2 CH3), 24.7 (d, 
1
JCP = 26.7 Hz, iPr CH), 26.9 (d, 

1
JCP = 30.4 Hz, iPr CH), 28.1 (d, 

1
JCP = 31.4 Hz, iPr CH), 30.4 (s, CH2), 30.6 (s, CH2), 31.0 

(s, CH2), 31.2 (s, CH2), 34.5-35.3 (m, iPr CH), 118.7-119.2 (m, C3 or C7), 119.9-120.7 (m, 

C3 or C7), 135.0 (s, C2 or C8),  135.4 (s, C2 or C8), 137.1 (s, C2 or C8), 138.6 (s, C2 or C8), 

152.4 (s, C4 or C6), 153.2 (s, C4 or C6), 154.1 (s, C4 or C6), 155.6 (s, C4 or C6).  

31
P{

1
H} NMR (162.0 MHz, CDCl3): ABC spin system (A, B, C = 

31
P), with 

195
Pt satellites 

forming an ABCX spin system subspectrum (A, B, C = 
31

P, X = 
195

Pt), δPA = 27.5 (
2
JAB = 

22.0 Hz, 
2
JAC = 326.4 Hz, 

1
JAX = 2230.0 Hz, outer P), δPB = -6.3 (

2
JBC = 22.0 Hz, 

1
JBX = 

3048.0 Hz, inner P), δPC = 12.7 (
1
JCX = 2270.0 Hz, outer P).  

195
Pt{

1
H} NMR (58.1 MHz, CD2Cl2): δ -4656 (m, X part of an ABCX spin system, A, B, C = 

31
P, X = 

195
Pt, see 

31
P{

1
H} NMR.  

IR (KBr disc, cm
-1

): ν 2961 (s), 2926 (s), 2869 (s, υC-H), 1595 (m), 1460 (m), 1261 (s), 1095 

(s), 1037 (s), 804 (s).  

MS (ES+): 843 (cation).  

M. p. 158-163 ºC.  

[(27)FeCl2] (34) 

A solution of 27 (0.20 g, 0.33 mmol) in thf (8 mL) was added to a suspension of FeCl2·4H2O 

(64 mg, 0.33 mmol) in thf (1 mL) at room temperature, giving a dark red solution almost 

instantaneously. After stirring for 3.5 hrs the volatiles were removed in vacuo to give 34 as a 

red powder (0.22 g, 92.0% yield). Red oblong crystals suitable for X-ray crystallography 

work were grown from thf and diethyl ether at room temperature.  
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E. A. (%) Calculated for C39H51Cl2FeP3: C 63.34, H 6.95; found: C 63.31, H 7.03.  

IR (KBr disc, cm
-1

): ν 2959 (s), 2927 (s), 2869 (m, υC-H), 1597 (m), 1461 (m), 1260 (s), 

1098 (br, s), 1028 (br, s), 845 (m), 804 (s).  

MS (MALDI-TOF+): 751, 738 (M+), 719, 703 (M – Cl
-
), 667 (27 + 2O + Na

+
), 645 (27 + 2O 

+ H
+
), 629 (27 + O + H

+
), 601 (27 - iPr + 2O), 585 (27 - iPr + O), 375, 359, 343.  

M. p. 181-185 ºC. 

[(27)Mo(CO)3] (35)  

Mo(CO)6 (86 mg, 0.33 mmol) was refluxed in MeCN (20 mL) for 6 hrs to give a yellow 

solution of [Mo(CO)3(MeCN)3].
162

 The volatiles were removed in vacuo and CH2Cl2 (2 mL) 

was added, followed by a solution of 27 (0.20 g, 0.33 mmol) in CH2Cl2 (6 mL). The initially 

orange suspension turned dark brown and was stirred for 16 hrs, then filtered. The volatiles 

were removed from the filtrate in vacuo to give crude 35 as a cream solid. Recrystallisation 

from MeCN gave fac-35 in the form of cube shaped brown crystals (48 mg, 17.5% yield).  

E. A. (%) Calculated for C44H54MoNO3P3 (MeCN solvate): C 63.38, H 6.53, N 1.68; found: 

C 62.75, H 6.53, N 1.60.  

1
H NMR (499.9 MHz, CD2Cl2): δ 0.51-1.63 (complex br m, 10× iPr CH3, 30H), 1.68-1.87 (br 

m, 2× iPr CH, 2H), 2.66-2.94 (br m, 2× iPr CH, 3H), 3.32-3.47 (complex br m, 4× CH2, 8H), 

7.17-7.87 (complex br m, 8× Ar CH, 8H).  

31
P{

1
H} NMR (202.4 MHz, CD2Cl2, 298 K): δ 32.0 (broad t), 35.0 (broad d), 

4
JPP ≈ 31 Hz).  

31
P{

1
H} NMR (202.4 MHz, CD2Cl2, 185 K): δ 27.6-29.1 (br m), 30.9-31.5 (br m), 32.5-33.2 

(br m), 33.3-34.4 (br m).  
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Raman (glass capillary, cm
-1

): ν 3071 (m), 2925 (s, υC-H), 1811 (br, υC-O), 1610 (m), 1563 

(m), 1443 (m), 1415 (m), 1314 (s), 584 (m).  

IR (KBr disc, cm
-1

): ν 2905 (s, br), 2874 (m, υC-H) 1937 (s, υC-O), 1842 (s, υC-O), 1632 

(m), 1453 (br, m), 1316 (m), 1037 (m), 853 (m), 832 (m), 632 (m). 
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Conclusions 

Phosphino-phosphoniums 2-5, which adopt ionic structures, are synthesised in high yields by 

P-C coupling of dichlorophosphines (RPCl2) with 5-lithio-6-

diisopropylphosphinoacenaphthene (1'). It is likely that the synthetic method used for 2-5 can 

be extended towards other derivatives by varying the substituents on 1, potentially affording a 

wide range of phosphino-phosphoniums. The use of phosphino-phosphoniums 2 and 3 as 

convenient synthons has been demonstrated to make mixed tertiary/secondary 

bis(phosphines) 6 and 7, and the reduction of 4 by the same method has provided a new route 

into the primary phosphine 8. The bis(borane) adduct of 6 (17) was prepared in one step from 

2 using BH3·SMe2. 1,2-Diphosphoniums 11 and 12 were prepared by reaction of 2 and 3 with 

MeOTf, although they were formed with only 60-70% conversion. 11 and 12 were reduced to 

their respective bis(phosphines) 13 and 14, which were isolated and fully characterised as 

their molybdenum(0) complexes 15 and 16. The described transformations demonstrate the 

synthetic utility of the phosphino-phosphoniums towards a library of species. Although we 

have not attempted separation of enantiomers of any of the reported compounds, they possess 

one stereogenic phosphorus centre each and as such this may be of future interest. The 

synthesis of peri-substituted phosphino-phosphoniums by methylation of the diphosphine 

Nap(PhP)2
21

 has previously been reported.
110

 However, synthesis of diphosphines such as 

Nap(PhP)2 is non-trivial and great difficulties extending it towards other derivatives have 

been encountered. The routes to phosphino-phosphoniums presented here are both more 

convenient and much more amenable to extending towards a range of derivatives with 

varying electronic and steric properties. 

The co-ordination chemistry of phosphino-phosphonium 2 was also explored, the result of 

which was the observation of three basic modes of co-ordination. Monodentate co-ordination, 

and hence P-P bond retention, was only seen in the molybdenum(0) complex 18. Bidentate 
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phosphine/chlorophosphine ligands were formed in the reactions of both chloride and triflate 

salts of 2 with [PtCl2(cod)], wherein monomeric (19) and dimeric (21) complexes were 

isolated. Oxidative addition of 2 was exhibited in the reaction with a palladium(0) source to 

give a phosphine/phosphide co-ordination mode in the palladium(II) dimer 22. The formation 

of complexes 19, 21 and 22 are more readily explained when considering 2 to be a phosphine 

stabilised phosphenium, which lends weight to the validity of this resonance form. As 18 is 

more consistent with the simpler ‘phosphonium’ resonance form, it can be concluded that 

both forms can be equally valid when describing phosphino-phosphonium salt reactivity. 

Tridentate phosphine 27 is the first geminally bis(peri-substituted) tridentate ligand.  Despite 

the rigid nature of the geminal bis(acenaphthene) backbone, 27 accommodates a surprisingly 

wide range of bonding geometries in both chalcogenides and transition metal complexes. 

This is possible via large distortions of the peri-regions. The independent nature of in-plane 

and out of plane distortions is the major contributing factor to this unexpected flexibility. 

Overall, formation of chalcogenides (28-30) results in much more open structures than in 

formation of the transition metal complexes (32-35). Thus while the peri-distance in the 

chalcogenides range from 3.61 to 4.07 Å, in the transition metal complexes a range of 3.31-

3.43 Å is observed. On the same note, the P2∙∙∙P3 distances range from 6.06 to 6.19 Å in the 

chalcogenides 28-30, whilst they are between 4.01 and 5.15 Å in the series 32-35. 

The structure of iron complex 34, and even more so the structure of platinum complex 33, are 

remarkable by the differing nature of distortions within their two acenaphthene units; while 

one of them shows large in-plane distortions and small out of plane distortions, the other one 

has the opposite characteristics. The rigidity of the ligand results in all three M-P bonds in 

each complex 32-35 being at least slightly unequal in the crystal, this is in contrast to 

complexes of the much more flexible triphos family of ligands. 
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