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Abstract

We prove explicit bounds on the numbers of elements needed to generate various
types of finite permutation groups and finite completely reducible matrix groups, and
present examples to show that they are sharp in all cases. The bounds are linear in
the degree of the permutation or matrix group in general, and logarithmic when the
group is primitive. They can be combined with results of Lubotzky to produce explicit
bounds on the number of random elements required to generate these groups with a
specified probability. These results have important applications to computational
group theory. Our proofs are inductive and largely theoretical, but we use computer
calculations to establish the bounds in a number of specific small cases.

MSC Classification: 20B05, 20H20, 20P05.

1 Introduction and Main Theorems

For a group G, we denote by d(G) the minimal size of a generating set for G. In this paper
we prove various bounds on d(G), when G is either a permutation group on n <∞ points,
or a finite subgroup of GLn(F ) for n <∞ and an arbitrary field F . Using these, we derive
bounds on the number of random elements needed to generate G with failure probability
less than ε, for any given ε ∈ (0, 1). All of our results make use of the classification of
finite simple groups. All logarithms will be to the base 2 unless otherwise indicated.

We start with our main result for permutation groups. By a result of P. M. Neumann,
published in [5, Theorem 4.1], the smallest possible upper bound for arbitrary subgroups
H of Sn is d(H) ≤ n/2, except when n = 3 and H ∼= S3. In Section 6, we improve on this
for subnormal subgroups of primitive groups, as follows.

Theorem 1.1 Let H be a subnormal subgroup of a primitive permutation group G of
degree n. Then d(H) ≤ log n unless n = 3 and H ∼= S3.

This bound is sharp, since elementary abelian 2-groups acting regularly are normal
subgroups of primitive groups. For primitive subgroups H of Sn, it is proved in [21] that
d(H) = O(log n/

√
log logn), but no attempt is made to estimate the constant.

Turning now to finite completely reducible matrix groups G of dimension n, it is proved
in [16] that the smallest possible upper bound is d(G) ≤ 3n/2. We improve this result
under various extra hypotheses on the field F .
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For an arbitrary field F , a subgroup G of GLn(F ) is homogeneous if its associated
FG-module is completely reducible with all of its constituents isomorphic. The group G
is quasiprimitive if all of its normal subgroups are homogeneous, and weakly quasiprim-
itive if all of its characteristic subgroups are homogeneous. Primitive linear groups are
quasiprimitive, because otherwise the homogeneous components of some normal subgroup
of G would form an imprimitive direct sum decomposition.

For n even, let Bn ≤ GLn(2) be the group of shape 3n/2 :2 in which the involutions
are self-centralising, such that Bn ≤ GL2(2)n/2, and Bn acts completely reducibly on a
direct sum of 2-dimensional submodules. Our main result for matrix groups is as follows.

Theorem 1.2 1. Let G ≤ GLn(F ) be finite, and suppose that either G is completely
reducible, or CharF = p and Op(G) = 1. If F does not contain a primitive fourth
root of unity then d(G) ≤ n. Furthermore, if |F | = 2 and n > 3 then d(G) ≤ n/2,
unless G = Bn, as defined above, when d(G) = n/2 + 1.

2. Let H be a subnormal subgroup of a finite weakly quasiprimitive subgroup G of
GLn(F ), and let Z = Z(GLn(F )). Then d(HZ/Z) ≤ 2 log n. Furthermore, if
|F | = 2, then d(H) ≤ 2 when n ≤ 5 or n = 7, and d(H) ≤ 3 when n ≤ 17.

We now observe that, apart possibly from the d(H) ≤ 3 bounds for n ≤ 17 when
|F | = 2, the bounds in Theorem 1.2 are best possible. First note that if q ≡ 3 mod 4 and
G ≤ GLn(q) is a direct sum of n/2 copies of Q8 ≤ GL2(q), then d(G) = n, so the first
bound is best possible. If G ≤ GLn(2) is a direct sum of n/2 copies of GL2(2) ∼= S3 for
n > 2, then d(G) = n/2, so the general bound in Part 1 for |F | = 2 is also best possible.

Better asymptotic bounds than those in Part 1 are known for irreducible subgroups G
of GLn(q): it is proved in [21] that d(G) = O(n log q/

√
log n), but no attempt is made to

estimate the constant.
An extraspecial subgroup G = 21+2m ≤ GL2m(q) for odd q is weakly quasiprimitive

(and is also a normal subgroup of a primitive group) with d(GZ/Z) = 2m, so the bound
in Part 2 is also best possible. This example is not quasiprimitive (and hence is not
primitive), and in Section 5 we prove the following, better bound for quasiprimitive groups.

Theorem 1.3 Let G ≤ GLn(F ) be finite and quasiprimitive. Then

d(G) ≤ 1 + d(2 log3 2) log ne.

For k ≥ 1, we construct primitive groups G ≤ GL3k(F ) with d(G) = 2k+ 1 over fields
F that contain a primitive 12th root of unity, as tensor products of k copies of 31+2.Q8

in dimension 3, and a cyclic group of order 4 in dimension 1. So this result is also best
possible for primitive groups. It is an improvement of [22, Theorem B], which states that
if G ≤ GLn(F ) is finite and quasiprimitive then d(G) ≤ c log n, with c about 6.

We move on now to random generation. Our study was motivated by the need for
explicit upper bounds on the number of random elements that we need to choose from a
permutation or matrix group G in order to ensure that we generate G with high proba-
bility. Such bounds have immediate applications to computational group theory, and in
particular to the computation of composition trees for matrix groups over finite fields and
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large base permutation groups, as described in [18] and [25]. Note that it is reasonable to
assume, in such circumstances, that we know whether G is a completely reducible matrix
group, or is a subnormal subgroup of a primitive permutation or matrix group.

For ε ∈ (0, 1), we write dε(G) for the number of independent uniformly-distributed
random elements of G required to generate G with failure probability at most ε. Results
proved in [8] and [20] show that dε(G) is not much larger than d(G). More precisely, the
proof of Proposition 1.2 of [20] shows that, if t ∈ R is such that ζ(t) ≤ 1 + ε, where ζ(t)
is the Riemann Zeta function, then

dε(G) ≤ d(G) + 2 log log |G|+ t+ 2.

Elementary estimates show that 1 + 2−t < ζ(t) < 1 + 1/(2t−1− 1) for t > 1, so t increases
logarithmically with 1/ε. The following corollary of Neumann’s result, Theorems 1.1, 1.2
and the above equation is immediate.

Corollary 1.4 Let ε ∈ (0, 1) be given, and let t be such that ζ(t) ≤ 1 + ε.

1. Let G ≤ Sn be arbitrary, with n ≥ 4. Then:

(a) dε(G) < n/2 + 2(log n+ log log n) + t+ 2;
(b) if G is a subnormal subgroup of a primitive group, then dε(G) < 3 log n +

2 log log n+ t+ 2.

2. Let G ≤ GLn(q) be completely reducible. Then:

(a) dε(G) < 3n/2 + 4 log n+ 2 log log q + t+ 2;
(b) if q 6≡ 1 mod 4 then dε(G) < n+ 4 log n+ 2 log log q + t+ 2;
(c) if q = 2 and n ≥ 4 then dε(G) < n/2 + 4 log n+ t+ 2;
(d) if G is a subnormal subgroup of a weakly quasiprimitive group then dε(G) <

6 log n+ 2 log log q + t+ 3.

The correctness of Part 2(c) for Bn follows from log log |Bn|+ 1 < 4 log n.
Notation In general we will use the ATLAS [6] notation for group names. However, we
will write Cn for a cyclic group of order n when this improves readability, and we will
write Sym(n) or Alt(n) in place of Sn and An if the group is acting on n points.
Layout of paper and background material In Section 2 we collect a variety of pre-
liminary results, then in Section 3 we prove minimal generation results for some specific
families of groups, which will be used in later sections. In Section 4 we prove Theorem 1.2,
and in Section 5 we prove Theorem 1.3. Finally in Section 6 we prove Theorem 1.1.

For some arguments, we shall need to know which almost simple groups have projective
representations of small degrees. For projective representations of simple groups S, this
information can be gleaned from [19] for representations of groups of Lie type in their
own characteristic(s), and from [12] for all other cases. We can then use [6, 14] to find
the stabilisers of these representations in Aut(S), which enables us to find the required
projective representations of almost simple groups. We shall generally omit the details of
such calculations and simply list the almost simple groups that can occur. In several of
our proofs, we used computer calculations for small cases. We did these in MAGMA [4],
and our code is available on request.
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2 Preliminary results

Our first result is [5, Theorem 4.1] and is actually due to Peter Neumann. The second
is [5, Lemma 4.2] and, according to Neumann, is due to Wielandt and others.

Proposition 2.1 Let G ≤ Sn. Then d(G) ≤ n/2, except that d(G) = 2 when n = 3 and
G ∼= S3. If G is transitive and n ≥ 5, then either d(G) < n/2, or n = 8 and G ∼= D8 ◦D8.

Lemma 2.2 Let p be a prime and let the p-group P be a transitive subgroup of Sym(pm)
with m ≥ 1. Then d(P ) ≤ 1 + (pm−1 − 1)/(p− 1) (≤ pm−1).

Proposition 2.3 ([16]) Let G be a finite and completely reducible subgroup of GLn(F ).
Then d(G) ≤ 3n/2.

We now collect some easy facts about minimal generation for future use.

Lemma 2.4 Let G and K be finitely generated, with G = 〈g1, . . . , gs〉 and K = 〈k1, . . . , kt〉.
If K 6= 1 and there exist a, b ∈ G such that 〈a, [a, b]〉 = G, then d(G ×K) ≤ t + 1. If G
and K have no common nontrivial homomorphic images then d(G×K) ≤ max{s, t}.

Proof: For the first claim, G × K = 〈a, bk1, k2, . . . , kt〉. For the second, assume that
s ≥ t. The only subdirect product of G × K is the direct product, so G × K =
〈g1k1, . . . , gtkt, gt+1 . . . , gs〉. 2

Lemma 2.5 Let G be a finite group with a normal elementary abelian subgroup N such
that the conjugation action of G/N on N is faithful and irreducible. Then d(G) ≤
max(2, d(G/N)).

Proof: Let G/N = 〈g1N, . . . , gkN〉 with k = d(G/N). If k ≤ 1 then d(G) ≤ 2, so
assume that k > 1. Let C be the set of complements of N in G. If the result is false,
then 〈g1n1, . . . , gknk〉 ∈ C for every choice of n1, . . . , nk ∈ N . Since these complements are
all distinct, |C| ≥ |N |k. But there are |H1(G/N,N)| conjugacy classes of complements
and each such class contains exactly |N | complements, so |C| ≤ |H1(G/N,N)||N |. By [3,
Theorem A], |H1(G/N,N)| < |N |, which is a contradiction when k ≥ 2. 2

Let G be a finite group, and let P ∈ Sylp(G). We define dp(G) := d(P ).

Lemma 2.6 (Lemma 2.1(b) and Corollary 2.2 (b) of [11]) Let p be a prime and
let S be a normal p-subgroup of the finite group G. Then d(G) ≤ max{d(G/S), dp(G)+1}.
Furthermore, if no G-composition factor of S is a nontrivial one-dimensional G-module
(which is always the case when p = 2), then d(G) ≤ max{d(G/S), dp(G)}.

A group X is almost simple if Y ≤ X ≤ Aut(Y ) for some nonabelian simple group Y .

Lemma 2.7 Let X be a finite almost simple group with socle Y . Then d(X) ≤ 3, and if
d(X/Y ) ≤ 2 then d(X) = 2. If X has a projective representation of degree less than 12,
then d(X) ≤ 2. If G is quasisimple with G/Z(G) ∼= Y then d(G) = d(Y ).
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Proof: The first part is proved in [7]. By [7, Corollary to Theorem 1], the only almost
simple groups that are not 2-generated are extensions of Ld(q) with d ≥ 4 and of O+

d (q)
with d ≥ 6 that (in both cases) contain diagonal, graph and field automorphisms. The
smallest degree of a representation of such a group is 12. The final claim is clear, since
any generating set for Y must lift to a generating set for G. 2

Lemma 2.8 If S is a finite nonabelian simple group then d(S2) = 2. Furthermore,
d(L3(2)3) = d(SL2(7)3) = 2.

Proof: Let S = 〈x, y〉, where |y| 6= |xy|. It follows from [24] that such a generating set
exists for G 6= U3(3), and by direct computation otherwise. Then 〈(x, x), (y, xy)〉 = S2.

For L3(2) with |x| = 2, |y| = 3 and |xy| = 7, it is straightforward to check that
〈(x, y, xy), (y, x, x)〉 ∼= L3(2)3, and similarly for SL2(7). 2

Lemma 2.9 ([26, Lemma 2]) The direct product of r nonabelian finite simple or qua-
sisimple groups can be generated by 2 + dlog60 re elements.

Lemma 2.10 Let G be a finite subgroup of PGL2(F ) for some field F , such that the
inverse image of G in GL2(F ) is completely reducible. Then either G is cyclic or dihedral,
or G is isomorphic to A4, S4, L2(q) or PGL2(q) for some prime power q ≥ 4.

Proof: Since any finite completely reducible subgroup of PGL2(F ) is isomorphic to a
completely reducible subgroup of PGL2(q) for some finite q, the result follows from the
classification of subgroups of PGL2(q) [13, Satz II.8.27]. 2

Corollary 2.11 Let G be a finite completely reducible subgroup of GL2(F ) where F does
not contain a primitive fourth root of 1. Then d(G) ≤ 2.

Proof: This follows easily from Lemma 2.4 and the fact that G is a direct product
of a double cover of one of the groups listed in Lemma 2.10 (or of the group itself if
char(F ) = 2) with a cyclic subgroup of odd order. 2

The following can be checked by direct computation.

Lemma 2.12 Let G be an irreducible subgroup of GLn(2), with n ≤ 3. If d(G) > n/2
then (n,G) is one of the following: (2, S3), (3, 7:3), (3,L3(2)).

Lemma 2.13 Let G ≤ GLn(F ) be finite, irreducible and weakly quasiprimitive, with an
abelian characteristic subgroup not contained in Z(GLn(F )). Then G has a characteristic
subgroup K such that K ∼= K1 ≤ GLn/f (F1), for some divisor f of n and some extension
F1 of F . All characteristic abelian subgroups of K1 are contained in Z(GLn/f (F1)), and
K1 is weakly quasiprimitive. Furthermore, G/K is abelian of order at most f , and embeds
naturally in Gal(F1 | F ).
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Proof: All assertions are from the second paragraph of the proof of [22, Lemma 3.1].
Here K = CG(A), where A is an abelian characteristic subgroup of G that is maximal,
subject to not being contained in Z(GLn(F )). 2

We finish this section with several results on the generalised Fitting subgroup of a
matrix group. The claims in Lemma 2.14 can all be found in [2, Chapter 11]; the set of
primes ri and the collection of normal subgroups Ti are possibly empty.

Lemma 2.14 Let L be the generalised Fitting subgroup of a finite group G. Then L is
a central product of Z(G), the noncentral subgroups Ori(G) for distinct primes ri, and
a collection of normal subgroups Ti of G. Each Ti is a central product of ti copies of a
quasisimple group Si, and G permutes these copies transitively. Also, CG(L) = Z(L).

The following is immediate from [10, Chapter 3, Theorems 7.1 and 7.2].

Lemma 2.15 Let G ≤ GLn(F ) be finite, and let L, ri and Ti be as in Lemma 2.14.
Assume that F is a splitting field for each central factor of L, and let C be a constituent
of the natural L-module. Then C is a tensor product of a one-dimensional Z(G)-module,
irreducible modules Mri for each Ori(G), and irreducible modules MTi for each Ti.

The next result is largely taken from [22, Lemma 1.7], with additional claims from,
for example, [10, Chapter 5, Theorem 5.5].

Lemma 2.16 Let G be finite with cyclic center Z, and assume that all abelian charac-
teristic subgroups of G are contained in Z. Each noncentral Or(G) is the central product
of Or(G) ∩ Z and an extraspecial r-group E, of order r1+2m say. If r is odd then E
has exponent r. Any nontrivial absolutely irreducible E-module has dimension rm, and
G/CG(Or(G)) ≤ r2m.Sp2m(r). The action of G/EZ on EZ/Z is completely reducible.

The next result follows from [1, (3.17)] and [10, Chapter 3, Theorems 7.1 and 7.2].

Lemma 2.17 Let G ≤ GLn(F ) be finite, and let L, Ti, ti, Si and Mi be as in Lem-
mas 2.14 and 2.15. Assume that F is a splitting field for all central factors of L, and
that L acts homogeneously. Then MTi is a tensor product of ti copies of some faithful
irreducible FSi-module MSi. Also, G/CG(Ti) ≤ A o Sym(ti), where A is the subgroup of
Aut(Si/Z(Si)) that stabilises the module MSi.

3 Minimal generation of certain families of groups

In this section we will prove bounds on the sizes of generating sets of several families of
groups, for use in the proofs of the main theorems.

The following results will be used frequently. In particular, the proposition enables us
to handle the case of imprimitive groups with blocks of size 1 in the proof of Theorem 1.2.
In the next three proofs we denote the cyclic group of order n by Cn, for clarity.

Lemma 3.1 Let p be a prime, let P ≤ Sym(pm) be a transitive p-group with m ≥ 1, let
R be the ring of integers modulo pk for some k ≥ 1, let M be the permutation module of
P over R, and let N be a submodule of M . Then N is generated as an RP -module by at
most 2pm−1 elements, and by at most pm−1 elements if k = 1.
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Proof: We prove this first in the case m = 1, so P ∼= Cp. Let W := Cpk o Cp, let B be
the base group of W , and let A be a complement of B in W . Then we can identify M
with B and N with a subgroup C of B with C � W . Let X := CA ≤ W . Now W has
a faithful irreducible complex monomial representation ρ of degree p. If C ≤ Z(W ) then
C is cyclic and the result holds, so suppose not. Then X is nonabelian, so the restriction
of ρ to X must remain irreducible. We can now apply [17, Lemma 5] to conclude that
dX(C) ≤ 2 and dX(C) ≤ 1 when k = 1, where dX(C) := d(C/C ∩ Φ(X)). Hence we
can generate X with two (or one when k = 1) elements of C together with an element of
A, from which it follows that C is generated as a normal subgroup of X by at most two
elements in general, or one element when k = 1, which implies the result.

In the general case, let g be an element of order p in P that acts fixed-point-freely.
As an R〈g〉-module, M has a descending chain M = M0 > M1 > · · · > Mpm−1 = 0 of
submodules, corresponding to the orbits of g. Let Ni = Mi ∩N for 0 ≤ i ≤ pm−1. Then
it follows from the case P ∼= Cp that each Ni−1/Ni is generated by at most two elements
as an R〈g〉-module (or at most one when k = 1), from which the result follows. 2

Proposition 3.2 Let t be a positive integer not divisible by 4, and let G ≤ Ct oSym(n) for
some n ≥ 1. Then d(G) ≤ n. Furthermore, if t = 2 and d(G) = n, then G is a 2-group.

Proof: Let ρ be the natural map from G to Sym(n) and let B := ker(ρ). The case
n = 1 is easy, so assume inductively that n > 1. If Im(ρ) is intransitive with an orbit
of length m < n, then G has a homomorphism to Ct o Sym(m) with kernel contained in
Ct o Sym(n − m) so the result follows by induction. Hence we may assume that Im(ρ)
is transitive. Let Z be the diagonal subgroup of the base group of Ct o Sym(n) and let
Y := B ∩ Z; so Y ≤ Z(G).

If G is a p-group for some prime p, then n = pm and, since 4 does not divide t, it
follows from Lemma 3.1 that G ∩ B is generated as a normal subgroup of G by at most
pm−1(p− 1) elements. Hence, from Lemma 2.2, d(G) ≤ pm−1(p− 1) + pm−1 = pm. This
completes the proof for all p-groups, including intransitive ones.

In the general case, let P ∈ Sylp(G) for a prime p dividing |G|, so that d(P ) ≤ n. We
claim that d(PZ/Z) < n when p is odd. This is clear if p does not divide t, so assume
that it does. We use essentially the trick from [16, Section 2]. First embed Ct o Sym(n),
and hence also G, in the natural way into Cpt oSym(n), and let Zp be a Sylow p-subgroup
of the diagonal subgroup of the base group (that is, the centre) of Cpt o Sym(n). Then
d(PZp) ≤ n, by the previous paragraph applied to PZp. But PZp contains elements of
Zp that do not lie in the Frattini subgroup of PZp, and hence d(PZp/Zp) < d(PZp) and,
since PZp/Zp ∼= P/(P ∩ Zp) = P/(P ∩ Z) ∼= PZ/Z, we get d(PZ/Z) < n as claimed.

Now, d(G/B) ≤ n by Proposition 2.1. We apply Lemma 2.6, once for each prime
dividing |B|, to show that d(G/Y ) ≤ n. For odd primes we do this using d(PZ/Z) < n
for P ∈ Sylp(G). If p = 2 then d(PZ/Z) ≤ n, but the stronger conclusion of Lemma 2.6
holds. Now, since Y ≤ Z(G), no G-composition factor of Y is a nontrivial G-module, and
hence Lemma 2.6 applied to primes dividing |Y | implies that d(G) ≤ n as required.

Suppose now that t = 2 and d(G) = n, and regard G as a subgroup of Sym(2n). If G
is intransitive, then its intersection with the base group of the wreath product is trivial,
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so G ∼= ρ(G), and then d(G) ≤ n/2 < n (or d(G) = 2 < 3), a contradiction. Thus G is a
transitive subgroup of Sym(2n), and it follows from Proposition 2.1 that either 2n ≤ 4 or
G = D8 ◦D8 ≤ C2 o Sym(4), and in either case G is a 2-group. 2

Note that C4 o Sym(2) has subgroups G with d(G) = 3, so the assumption on t in the
above proposition is necessary.

Lemma 3.3 Let G ≤ X := St3 for some t ≥ 1. Then d(G) ≤ t, except that d(G) = t+ 1
when |G| = 2× 3t and Z(G) = 1.

Proof: The proof is by induction on t, and the case t = 1 is clear, so suppose that t > 1.
Let K be the kernel of the projection of G onto the first t− 1 direct factors of X. By

the inductive hypothesis d(G/K) ≤ t−1, except that d(G/K) = t when |G/K| = 2×3t−1

and Z(G/K) = 1. The result is immediate if |K| = 1 so assume that |K| = 2, 3 or 6.
Suppose first that |G/K| = 2× 3t−1 and Z(G/K) = 1. Then G/K = 〈x1K, . . . , xtK〉,

where |xiK| = 3 for i < t and |xtK| = 2. We explain how to choose x1 and xt to get
G = 〈x1, . . . , xt〉. If |K| = 2 then choose x1 of order 6. If |K| = 6 then choose both x1

and xt of order 6. If |K| = 3 and xt centralises K then choose xt of order 6. If |K| = 3
and xt inverts K, then |G| = 2× 3t, Z(G) = 1 and d(G) = t+ 1.

Otherwise d(G/K) ≤ t − 1 and the result is clear except when |K| = 6. In that case
choose the inverse image in G of one of the generators of G/K to project onto a 3-element
in K and then take an involution in K as the extra generator, to get d(G) ≤ t. 2

Lemma 3.4 Let X = X1 × · · · × Xt = St4 for some t ≥ 1 and suppose that G ≤ X,
O2(X) ≤ G, and a Sylow 3-subgroup of G projects onto Sylow 3-subgroups of at least t−1
of the direct factors of X. Then d(G) ≤ t+ 1.

Proof: The proof is by induction on t, and the case t = 1 is easy, so assume that t > 1.
We may assume that P ∈ Syl3(G) projects onto Xt. Let K = G ∩Xt be the kernel of

the projection of G onto X1 × · · · ×Xt−1. Then by the inductive hypothesis, there exist
x1, . . . , xt ∈ G with G/K = 〈x1K, . . . , xtK〉. Since K�G and P projects onto Xt, |K| 6= 8,
and hence |K| ∈ {4, 12, 24}, since O2(X) ≤ G. If |K| = 4 then G = 〈x1, . . . , xt+1〉,
where xt+1 ∈ K and |xt+1| = 2, again because P projects onto Xt. Otherwise, by
interchanging x1 and x2 or by replacing x1 by x1x2, we can assume that x1 induces an
even permutation on Xt. Then, by multiplying x1 by a suitable element of K, we may
assume that the projection x′1 of x1 onto Xt has order 3. We now choose xt+1 ∈ K such
that K = 〈xt+1, [x′1, xt+1]〉, to give G = 〈x1, . . . , xt+1〉. 2

The remaining lemmas in this section will be used to prove Theorem 1.3.

Lemma 3.5 Let G = L2(q) with q ≥ 5 odd, and let f be whichever of (q ± 1)/2 is odd.
Let C be a G-conjugacy class of elements of order f .

1. For all x ∈ C there exists y ∈ C with 〈x, y〉 = G.

2. For t ≥ 2 when q > 5, and t > 2 when q = 5, Gt can be generated by t elements
whose projections onto all direct factors of Gt lie in C.
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Proof: For q ≤ 11, we verify Part 1, and Part 2 for t = 2 (or t = 3 when q = 5),
using MAGMA, so assume for now that q ≥ 13. Suppose first that f = (q − 1)/2, so
|C| = q(q + 1), and each of the q(q + 1)/2 subgroups H of G of order f contain precisely
two, inverse, elements of C. Let x ∈ C. Then |〈x,H〉| = q(q − 1)/2 for 2(q − 1) of these
subgroups H. Using [13, Satz II.8.27] and the fact that q ≥ 13, we see that, if H is any
subgroup of order f such that x 6∈ H and |〈x,H〉| 6= q(q − 1)/2 , then 〈x,H〉 = G. So
there are q2 − 3q + 2 elements y ∈ C with 〈x, y〉 = G, which proves Part 1.

Let y1 6= y2 be such elements, and let Xy1,y2 := 〈(x, x), (y1, y2)〉 ≤ G2. Either Xy1,y2 =
G2, or it is a diagonal subgroup of G2, and the latter occurs when there exists φ ∈ Aut(G)
with φ(x) = x, φ(y1) = y2. There are precisely 2f = |CPΓL2(q)(x)| elements φ ∈ Aut(G)
with φ(x) = x. Since q2 − 3q + 2 > 2f , for all y1 there exists y2 with Xy1,y2 = G2.

Using similar arguments for f = (q+ 1)/2 with q ≥ 13, we can prove Part 1, and Part
2 with t = 2. This completes the proof of Part 2 for t = 2, and for t = 3 when q = 5.

We prove the rest of Part 2 by induction. Let X := Gt+1 = Gt ×G, choose t suitable
generators for Gt, and let them project onto some fixed x ∈ C in the final direct factor of
X. Adjoin an additional generator that is equal to one of the existing generators of Gt

and projects onto y ∈ C in the final direct factor, where G = 〈x, y〉. Then the subgroup
of X generated by these t+ 1 elements projects onto and has nontrivial intersection with
the final factor so, by simplicity of G, it contains this factor and hence equals X. 2

Lemma 3.6 Let q ≥ 4, let t > 1, and let S := L2(q)t � G ≤ PGL2(q) o Sym(t). Then
d(G) ≤ b(2 log3 2)tc.

Proof: Let Q = G/S. We first deal with q even. If t = 2 or 3 and Q is trivial then the
result follows from Lemmas 2.8 and 2.9. If t = 2 and Q ∼= S2 then choose one generator of
G outside of S that squares into an element of order q−1 of both factors of S, and a second
generator that projects onto suitable elements of order (q+ 1) in each factor. If t = 3 and
Q ∼= S3 then let a, b be involutions generating Q. Then G is generated by their pre-images
a, b where a2 = (a1, a2, a3) and b2 = (b1, b2, b3), with |a1| = |a2| = q−1, |b2| = |b3| = q+1,
a3 = b1 = 1. If t > 3 or t = 3 and Q is cyclic then, by Theorem 1.1, d(Q) ≤ t/2. By
Lemma 2.9, d(S) ≤ 2 + dlog60(t)e, so d(G) ≤ t/2 + 2 + dlog60 te < (2 log3 2)t.

Now assume that q is odd, let f = (q ± 1)/2 with f odd, and let C be an L2(q)-
conjugacy class of elements of order f . By Lemma 3.2, d(Q) ≤ t, and d(Q) ≤ t− 1 unless
Q is a 2-group.

Each element of L2(q) of order f is centralised by an involution in PGL2(q) \ L2(q).
Let X be the set of elements of S for which the projections onto all direct factors of S
lie in C. Then the centraliser CG(x) of any x ∈ X supplements S in G. Hence, if g ∈ Q
has order a power of 2, then some inverse image of g in G powers into x. The result
now follows from Lemma 3.5 when Q is a 2-group (and hence when d(Q) = t), except for
(t, q) = (2, 5) which we check in MAGMA.

So we may assume that d(Q) ≤ t − 1. Then, using Lemma 2.9, we may generate G
by choosing t − 1 generators for Q together with 2 + dlog60 te generators for S. This is
fewer than (2 log3 2)t provided that t ≥ 8. Furthermore, it follows from [23, Corollary to
Theorem 4 and table in Section 14] that if q ≥ 4 then d(S) = 2 for all t ≤ 19 (note that
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d(A20
5 ) = 3), and the result now follows except when t = 3, d(Q) = 2 and 3 divides |Q|

(so that Q is transitive on the factors). In that case, we can choose one of the generators
of Q to have 2-power order, then choose an inverse image that powers into an element of
X . We choose the preimage of the second generator of Q arbitrarily. Finally, we choose
one further generator from one of the L2(q) factors. 2

Lemma 3.7 Let S be a finite nonabelian simple group, and suppose that T ≤ Aut(S) has
socle S and a faithful projective representation of degree s. Let G ≤ T o Sym(t) for some
t ≥ 1 where St ≤ G. Then d(G) ≤ b(2 log3 s) tc, except that d(G) = 2 when (s, t) = (2, 1).

Proof: Let K be the intersection of G with the base group of the wreath product.
By Proposition 2.1, d(G/K) ≤ t/2, except when t = 3 and G/K ∼= S3. By Lemma 2.7,
d(K) ≤ 3t, so d(G) ≤ 7t/2 (or 11 when t = 3), which is at most b(2 log3 s) tc when s ≥ 8.

By Lemma 2.7, if s ≤ 7 then d(G) ≤ 5t/2 (or 8 when t = 3 and G/K ∼= S3). This is at
most b(2 log3 s) tc when s ≥ 5, and also when s = 4 except in the case t = 3, G/K ∼= S3.
If t = 1 then the result is clear, so assume that t > 1.

If s = 2 then the result follows from Lemma 3.6. If s = 3, then |T/S| ≤ 3 by [12, 19].
By Lemmas 2.9 and 2.8, d(St) ≤ 2 + dlog60 te or 2 when t = 2, and by Proposition 3.2
d(G/St) ≤ t, so the result follows.

Suppose finally that s = 4, t = 3 and G/K ∼= S3. Then |T/S| = 1, 2 or 4, by [12, 19].
It can be shown using Lemma 2.6 and Lemma 3.1 with p = 2 that d(G/S3) ≤ 5. Since
G/K acts transitively on the factors of K, we generate G by adjoining two generators of
one factor, to give d(G) ≤ 7. 2

4 The proof of Theorem 1.2

The proof of both parts together is by induction on n. For fixed n, we may also assume
that the result is true for all finite fields Fq with q < |F | and, for a given n and F , for
all groups of order less than |G|. To ground the induction, note that if n = 1, then G is
cyclic and is trivial when |F | = 2: so both Part 1 and Part 2 are true.

4.1 The proof of Part 2 of Theorem 1.2

We begin with a lemma which is also used in the proof of Theorem 1.1.

Proposition 4.1 Let the finite group G have a normal elementary abelian subgroup N
with |N | = pm, where CG(N) = N and the induced conjugation action of G/N on N is
completely reducible. Let H be a subnormal subgroup of G. Assume that Theorem 1.2
holds for F = Fp and dimensions n ≤ m. Then:

(i) if p = 2 then d(H) ≤ m;

(ii) if p ≡ 3 mod 4 then d(H) ≤ 3m/2 if m > 1, and d(H) ≤ 2 if m = 1;

(iii) if p ≡ 1 mod 4 then d(H) ≤ 2m.
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Proof: We regard N as a faithful completely reducible FpG/N -module. Suppose that
H is actually normal in G. Then H ∩N is an FpG/N -submodule of N and hence has a
complement C ≤ N with C �G. Thus [H,C] ≤ H ∩ C = 1, and so CG(N) = N implies
that CH(H∩N) = H∩N . Also H/(H∩N) ∼= HN/N�G/N and so by Clifford’s theorem
H and H ∩ N satisfy the same hypotheses as G and N with a possibly smaller value of
m. So it suffices to prove the result for H = G.

Let M ∼= pl be the sum of the one-dimensional submodules of N .
Suppose that p = 2. By complete reducibility, M = Z(G) and G/N acts faithfully on

N/M . Since d(M) = l, it suffices to prove the result for G/M ; so assume that M = 1. So
all FpG/N -constituents of N have dimension at least 2. By Theorem 1.2, if m > 3 and
G/N 6= Bm, then d(G/N) ≤ m/2 and, by choosing one generator from each constituent
of N , we get d(G) ≤ m. If m ≤ 3 and d(G/N) > m/2, then G/N is listed in Lemma 2.12,
and the result can be checked by direct computation. If m > 3 and G/N = Bm then N is
a direct sum of m/2 constituents of dimension 2. We multiply one of the generators of G
modulo N of order 3 by an element of order 2 that it centralises in N to get d(G) ≤ m.

Now suppose that p ≡ 3 mod 4, let L be an FpG/N -complement of M in N , and
let K = CG(L). Then K/N acts faithfully on N/L ∼= M , and so K/N ≤ (p − 1)l. By
Lemma 2.6, d(K/L) ≤ l+1. Also, G/K acts faithfully and completely reducibly on L and
so d(G/K) ≤ m− l by Theorem 1.2. Hence, by taking d(G/K) generators for G modulo
K, together with the l + 1 generators for K/L, and one element from each irreducible
constituent of L, we get d(G) ≤ l + 1 + 3(m − l)/2. This is at most 3m/2 except when
l ≤ 1. If l = 0 then d(G) ≤ 3m/2. If l = 1, then either K/L is cyclic and the result
follows, or K/L is isomorphic to a 2-generator subgroup of p.(p − 1). In this case we
multiply a generator of K modulo L of order dividing p− 1 by a generator of one of the
constituents of L to reduce the number of generators and get d(G) ≤ 3m/2.

The proof when p ≡ 1 mod 4 is similar but easier, using Proposition 2.3. 2

Lemma 4.2 Let H be a subnormal subgroup of a weakly quasiprimitive group G ≤
GLn(2). If n ≤ 5 or n = 7 then d(H) ≤ 2, and if n ≤ 17 then d(H) ≤ 3.

Proof: Since G is homogeneous, without loss of generality G is irreducible. We use the
MAGMA database of irreducible subgroups of GLn(2) to verify that d(H) ≤ 2 when
n ≤ 5 or n = 7. It remains to prove that d(H) ≤ 3 when 6 ≤ n ≤ 17 and n 6= 7.

By Lemma 2.13, we may consider G as a subgroup of GLm(2e).e with n = me ≤ 17,
where R := G ∩ GLm(2e) is irreducible, weakly quasiprimitive and has no nonscalar
characteristic abelian subgroups. If m = 1, then d(H) ≤ 2, so assume that m > 1. Let
K = R ∩ Z(GLm(2e)), so K is cyclic of order dividing 2e − 1. By Lemmas 2.14 and 2.16
the generalised Fitting subgroup L of R is a central product of K, extraspecial groups,
and quasisimple groups. These central factors may not act absolutely irreducibly, but L is
homogeneous by weak quasiprimitivity, and m is a multiple of the product of the degrees
of the associated absolutely irreducible representations of the factors.

Using [12, 19], we list the almost simple groups that can arise as sections of R/K in
terms of the degree d of their absolutely irreducible projective representations in char-
acteristic 2. Such representations with d > 8 can only be involved if n = m = d and
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G ≤ GLn(2) is almost simple, in which case d(H) ≤ 3 by Lemma 2.7. So we may assume
that d ≤ 8. The table below contains the isomorphism types of X/Z(X) for conjugacy
class representatives of the subgroups X ≤ GLd(2f ) with d ≤ 8 and df ≤ 17, where X
is the largest subgroup of GLd(2f ) containing and normalising X∞ such that X/Z(X) is
almost simple, and X∞ is absolutely irreducible.

d X/Z(X) d X/Z(X)
2 L2(2f ) (2 ≤ f ≤ 8) 6 L6(2), S6(2), S7,S8,U4(2).2,
3 L3(2f ) (f = 1, 3, 5), PGL3(4), U3(3).2 ≤ L6(2), PGL6(4), S6(4),

A6 ≤ L3(4), PGL3(16), U6(2).3,A7, M22,U4(3).2,L4(4).2,
U3(4) ≤ L3(16) U4(4).2, G2(4), J2, L2(13) ≤ PGL6(4)

4 L4(2f ), S4(2f ) (f ≤ 4), 7 L7(2f ) (f ≤ 2), U7(2) ≤ L7(4)
S5,A7 ≤ L4(2), U4(2) ≤ L4(4), 8 L8(2f ), S8(2f ) (f ≤ 2),
Sz(8) ≤ L4(8), U4(4) ≤ L4(16) O+

8 (2).2, O−8 (2).2,L2(17),A9, S9,
5 L5(2f ) (f ≤ 3), S10,L2(7).2,S6(2) ≤ PGL8(2),

U5(2), L2(11) ≤ L5(4) U8(2),O+
8 (4).2,O−8 (4).2,A6.22,

S6(4),U3(4).2,L3(4).3.2 ≤ PGL8(4)

All of these groups are 2-generated by Lemma 2.7. If L/K is simple, then R/K is one
of the groups above, and we can check directly that d(R) ≤ 2. So d(G) ≤ 3 and d(H) ≤ 3.

Suppose next that L/K is a direct product of simple groups. Since the representations
of the groups L2(2f ) with d = 2 have degree at least 4 over F2, a representation over F2

of a central product of L2(2f ) with another group in the list with absolute dimension d
has degree at least 4d. Clearly, a representation of a central product of two groups with
absolute dimension d, d1 ≥ 3 has dimension at least 3d. Hence, since n ≤ 17, the examples
with d ≥ 6 cannot arise in such a product. Furthermore, R/K is either a subdirect product
of two of the groups listed above with d ≤ 5, or else R/K ≤ A5 o Sym(b) ≤ PGL2b(4)
(with b ∈ {2, 3}), L2(8) o Sym(2) ≤ L4(8), R/K ≤ L2(16) o Sym(2) ≤ PGL4(16), R/K ≤
L3(2) oSym(2) ≤ PGL9(2), or R/K ≤ S oSym(2) ≤ PGL16(2) with S one of the subgroups
of PGL4(2) on the list. In each of these cases, d(R/K) ≤ 2. If R/K has no nontrivial cyclic
quotient of odd order then d(G) ≤ 3. The only other possibility is A5 oAlt(3) ≤ PGL4(8)
with R = (A5 oAlt(3))× 3. We check directly that d(R) ≤ 2, so d(G) ≤ 3 and d(H) ≤ 3.

Suppose finally that a factor D of L is an extraspecial p-group. Then D is homogenous,
and gcd(m, 2e − 1) ≡ 0 mod p. Hence p = 3 and e = 2 or 4, so n = 6 or 12.

If n = 6, then G ≤ 31+2.Q8.S3 ≤ GL3(4).2. We calculate in MAGMA that all
subnormal subgroups H of irreducible weakly quasiprimitive groups G satisfy d(H) ≤ 3.

If n = 12, then there are two possibilities. The first is G ≤ GL6(4).2 and L ∼= 31+2 ×
L2(4). Then G is contained in the subdirect product of index 2 in 31+2.Q8.S3 × L2(4).2,
and so H is either isomorphic to one of the groups with n = 6 or is the subdirect product
of one of these groups with L2(4).2 ∼= S5. In either case, d(H) ≤ 3. The second possibility
is G ≤ GL3(16).4 and 31+2 �G. We check in MAGMA that all subnormal subgroups of
all weakly quasiprimitive subgroups of GL3(16).4 are 3-generated. 2

Proof of Theorem 1.2, Part 2: Let H ≤ GLn(F ) be a subnormal subgroup of a
weakly quasiprimitive group G. Let Z be the centre of GLn(F ): the scalar matrices. We
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shall prove by induction on n that d(HZ/Z) ≤ 2 log n. The sharper results for n ≤ 17
when |F | = 2 follow from Lemma 4.2.

Since G is homogeneous, we may assume that G is irreducible. If G has an abelian
nonscalar characteristic subgroup, then let K, K1 and f be as in Lemma 2.13. Notice
that K1 satisfies the inductive hypothesis, and that d(HK/K) ≤ log f . By the inductive
hypothesis, H ∩K1 modulo its scalar subgroup requires at most 2 log(n/f) generators, so
d(H) ≤ 1 + 2 log(n/f) + log f ≤ 2 log n as required.

So we may assume that all abelian characteristic subgroups of G are contained in
Z. In particular, Z(G) = G ∩ Z. Let L be the generalised Fitting subgroup of G, and
let ri, Ti, ti, and Si be as given in Lemma 2.14. Since L is characteristic in G, it is
homogeneous, and therefore acts faithfully on each of its constituents. We now extend
the field F to make it a splitting field for all subgroups of L. After doing this, G might
not remain weakly quasiprimitive, but we shall make no further use of this property of
G. In particular, L may no longer be homogeneous, but its irreducible constituents all
have the same dimension m and are algebraic conjugates of one another, so L still acts
faithfully on them. We shall actually prove that d(HZ/Z) ≤ 2 logm, so we may assume
that L is irreducible and hence n = m. Let Mri and MTi be as in Lemma 2.15. Then n
is at least the product of the dimensions of the Mri and the MTi .

Our strategy is as follows. We prove that all subnormal subgroups Ai of G/CG(Ori(G))
satisfy d(Ai) ≤ 2 log(deg(Mri)), and that all subnormal subgroups Ai of G/CG(Ti) satisfy
d(Ai) ≤ 2 log(deg(MTi)). Since CG(L) = G∩Z, the sum of these d(Ai) is an upper bound
for d(HZ/Z). Since log xy = log x+ log y, this will complete the proof.

We first consider G/CG(Or(G)) for r prime, with Or(G) = (Or(G) ∩ Z) ◦ E for some
extraspecial r-group E, by Lemma 2.16. By Lemma 2.16, G/CG(Or(G)) is a subgroup of
an extension of an elementary abelian group N of order r2m by Sp2m(r), for some m. Also,
the action of GZ/EZ on EZ/Z is completely reducible. Now, 2m ≤ rm = deg(Mr) ≤ n,
and 2m < n unless r = 2 and m ≤ 2. If r = 2 then |F | > 2, so we may assume by the
inductive hypothesis (see the beginning of this section) that Part 1 is true for dimensions
up to 2m and for the field Fr. Let H be a subnormal subgroup of G/CG(Or(G)). Then
Proposition 4.1 yields d(H) ≤ 2m when r = 2, d(H) ≤ 3m when r = 3, and d(H) ≤ 4m
for all r ≥ 5, which gives d(H) ≤ 2 log(deg(Mr)) in all cases.

Now consider G := G/CG(T ) for T a central product of t copies of a quasisimple group
S, and for a faithful irreducible FT -module MT , and let H be a subnormal subgroup of
G. By Lemma 2.17 dimMT = st with s being the dimension of the faithful irreducible
FS-module MS , and G has a normal subgroup K1 with St ≤ K1 ≤ Aut(S)t and G/K1 ≤
Sym(t). Since Soc(G) = S

t has trivial centraliser in G, it follows that Soc(H) = S
u for

some u ≤ t, and H has a subnormal subgroup K such that Su ≤ K ≤ Aut(S)u and
H/K ≤ Sym(u). By Proposition 2.1, d(H/K) ≤ t/2, except when t = 3 and H/K ∼= S3.

If s = 2 then |Aut(S)/S| ≤ 2 by Lemma 2.10. So H/Soc(H) ≤ 2 o Sym(t) ≤ S2t,
and d(H/Soc(H)) ≤ t by Lemma 2.1. The result now follows by Lemma 2.7 if t =
1, by Lemma 2.8 if t = 2, and by Lemma 2.9 for t ≥ 3. If s = 3 then the second
part of Lemma 2.7 gives d(K) ≤ 2t, so d(H) ≤ 5t/2 (or 8 when t = 3), which is less
than 2 log(dimMT ). In general, d(K) ≤ 3t by Lemma 2.7, and hence d(H) ≤ 7t/2 =
7 logs(dimMT )/2 (or 11 when t = 3), which is less than 2 log(dimMT ) for s > 3. 2
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4.2 The proof of Part 1 of Theorem 1.2

We begin with a sequence of lemmas concerning imprimitive matrix groups G ≤
GLf (F ) o Sym(n/f) < GLn(F ) for small values of f . Note that the case f = 1 has
already been dealt with in Proposition 3.2. In each case, let B be a minimal-dimensional
block of imprimitivity for G, with dimB = f , b = n/f , let H = GBB, so that H is primi-
tive, let K be the kernel of the action of G on the block system, and let Z = Z(GLf (F )).
We shall use the fact that G embeds into H o G, where G is the induced permutation
action of G on the block system. This follows, for example, from [13, p. 413, Hauptsatz
1.4]. In the following proofs we sometimes write Ck for the cyclic group of order k.

Lemma 4.3 Let G ≤ GLn(F ) be finite, irreducible, and imprimitive with minimal blocks
of dimension 2, and assume that F does not contain a primitive fourth root of unity. Then
d(G) ≤ n, and if |F | = 2 then d(G) ≤ n/2.

Proof: Fix an imprimitive action of G on b = n/2 blocks. First assume that |F | = 2,
so that G ≤ S3 o Sym(b). Let P ∈ Syl3(G). Then G has a permutation representation
of degree 3b, and so by applying Lemma 2.2 to the nontrivial orbits of P on the block
system, we get d3(G) ≤ b, and d3(G) < b unless P ≤ K. Let S = P ∩ K. Then
S � G and G/S ≤ C2 o (G/K), so d(G/S) ≤ n/2 by Proposition 2.1. Now Lemma 2.6
gives d(G) ≤ n/2 unless P ≤ K and d(P ) = b. In that case, we can generate G with
generators of G modulo P together with a single generator of P , so we get the result
unless d(G/S) = n/2. But by Proposition 2.1, this can happen only if n ≤ 4 (in which
case n = 4 and G/S ∼= D8, assuming n > 2), or n = 8 and G/S ∼= D8 ◦D8. In either case,
the generators of G modulo S have nontrivial centralisers in P , so we can multiply one of
them by an element that it centralises in P to reduce the number of generators to n/2.

Suppose now that F has no primitive fourth root of unity. The possibilities for H/Z
are listed in Lemma 2.10. Suppose first that H is not soluble. Then H has a subgroup
H1 of index at most 2, where H1

∼= S × Z ′ with S = SL2(q) for some q ≥ 4, and Z ′ is
a subgroup of Z of odd order and index at most 2 in Z. So K has a normal subgroup
N isomorphic to Sc × Y for some c ≤ b and Y ≤ Zb, and G/N ≤ C2 o Sym(b) ≤ S2b.
Thus d(G/N) ≤ b by Proposition 2.1. It follows from Lemma 2.8 (c = 2) and Lemma 2.9
(c > 2) that d(SL2(q)c) ≤ c ≤ b. Since d(Y ) ≤ b, and Y and SL2(q)c have no common
nontrivial quotients, Lemma 2.4 implies that d(N) ≤ b, and hence d(G) ≤ 2b = n.

When H is soluble, our strategy will be to prove that d(P ) < n or d(P ) ≤ n for all
Sylow p-subgroups P of G, and then to use Lemma 2.6 (once for each prime power layer
of K) to extend d(G/K) < n to d(G) ≤ n.

If H/Z is cyclic or dihedral (including C2
2 ) then, since H is primitive, H is semilin-

ear, and either cyclic, or of shape Ct.C2 for some t. If p 6= 2 then d(P ) ≤ b < n by
Proposition 3.2, so by Lemma 2.6 it suffices to show that d(P ) ≤ n for P ∈ Syl2(G).
A Sylow 2-subgroup of H has a normal cyclic subgroup of index at most 2, so P has a
normal subgroup Q which is abelian of rank at most b, and P/Q ≤ C2 o Sym(b) ≤ S2b. So
d(Q) ≤ n/2 and d(P/Q) ≤ n/2 by Proposition 2.1, and hence d(P ) ≤ n.

When H/Z ∼= A4 or S4, a Sylow 2-subgroup of H is semidihedral of order 16 or quater-
nion of order 8 or 16, and therefore has structure Ct.C2, as in the previous paragraph.
Therefore d(P ) ≤ n for p = 2, and d(P ) < n for all primes p 6= 2 except possibly p = 3
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when 3 divides |Z|. So let p = 3, so that P ≤ (C3 × C3k) o Sym(b) for some k, and let
Q = P ∩ K. If the projection of P onto Sym(b) is transitive, then two applications of
Lemma 3.1 (one with N = P ∩Cb3 and one with N = P ∩Cb

3k) show that Q can be gener-
ated as a P -module by at most b/3 + 2b/3 = b elements. More generally, if the projection
of P onto Sym(b) has nontrivial orbits of total length c > 1, then by considering the image
and kernel of this projection, we can show that Q can be generated as a P -module by at
most c + 2(b− c) elements. Since P/Q ≤ Sc, Proposition 2.1 (and the fact that P 6∼= S3)
gives d(P ) ≤ 3c/2 + 2(b− c) < 2b = n, and the result follows as before using Lemma 2.6.

It remains to deal with the case when P projects trivially onto Sym(b), and d(P ) = n.
We now regard G as an abstract subgroup of X := (Z ◦ S4) o Sym(b). We use the same
trick as in the proof of Proposition 3.2. The centre of X is the diagonal subgroup of the
subgroup Zb of its base group. We embed X in a group X ′ with |X ′ : X| = 3, where X ′ is
the central product of X and a cyclic group of order 3|Z|. Let Z3 be a Sylow 3-subgroup
of Z(X ′). Then PZ3 ≤ (C3 × C3k+1)b so d(PZ3) = n. But Z3 contains elements outside
of the Frattini subgroup of PZ3, so d(PZ3/Z3) < n. Hence d(P/(P ∩ Z(G))) < n, and
Lemma 2.6 implies that d(G/Z(G)) ≤ n. Then, applying Lemma 2.6 again to the primes
dividing |Z(G)| gives d(G) ≤ n. 2

Recall H, B, K and Z, from the beginning of this subsection.

Lemma 4.4 Let G ≤ GLn(F ) be finite, irreducible, and either imprimitive with minimal
blocks of dimension 3, or primitive with n = 3. Assume that F does not contain a primitive
fourth root of unity. Then d(G) ≤ n. In addition, if n > 3 and |F | = 2 then d(G) ≤ n/2.

Proof: Let b = n/3 be the number of blocks. We first prove the stronger result for
|F | = 2, so n > 3 implies that b > 1. Then H ≤ 7:3 or H = L3(2). If b = 2 then the result
can easily be checked computationally. If b ≥ 3 then the result follows from Lemma 2.9
or 2.8 for H = L3(2) and from Lemma 2.6 for H ≤ 7:3.

Assume from now on that F contains no primitive fourth roots of unity. By checking
the lists [12, 19] of almost simple groups that can arise, we can show that d(S) ≤ 2 for all
subnormal subgroups S of H when H/Z is almost simple, and the same applies when H
is semilinear. In those cases we get d(G) ≤ n immediately.

Thus we assume that H is primitive, not semilinear, and not almost simple, so that
H/Z ≤ 32.SL2(3) by Lemmas 2.14 and 2.16. Regard G as a subgroup of X := (Z ◦
(31+2.SL2(3))) o Sym(b), and let N be the intersection of G with the subgroup (Z ◦ 31+2)b

of the base group of the wreath product. Then G/N ≤ SL2(3) o Sym(b), and since all
subgroups of SL2(3) are 2-generated, d(G/N) ≤ 2b+ (b− 1) < n.

We want to use Lemma 2.6 to show that d(G) ≤ n. Let p be a prime and P ∈ Sylp(G).
If p > 3, then d(P ) < n. Suppose that p = 2. Since F contains no primitive fourth
roots of unity, a Sylow 2-subgroup of H is a subgroup of Q8 × 2, and so P satisfies
d(P ) ≤ d(P ∩ (Q8 o Sym(b))) + d(Cb2). As in the arguments for H/Z ∼= A4 in the proof of
Lemma 4.3 we get d(P ∩ (Q8 o Sym(b))) ≤ 2b, so d(P ) ≤ 3b = n.

It remains to deal with P ∈ Syl3(G). A Sylow 3-subgroup Q of H is a central product
of L and C3k for some k, where L has the structure 31+2 or 31+2.3. Now all subgroups
of Q/C3k are 2-generated, and hence all subgroups of Q are 3-generated. Let ρ be the
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projection of G onto Sym(b); so K = ker(ρ). Then P embeds into Q o ρ(P ), where Q
has a normal series of length 4 with cyclic factors, at least 3 of which are of order 3. If
ρ(P ) has an orbit O of length 3m for some m ≥ 1 then it follows from Lemma 3.1 that
we can generate the restriction of P ∩ K to O, as a normal subgroup of P by at most
5 · 3m−1 elements, and hence generate the restriction of P to O by at most 2 · 3m elements
by Lemma 2.2. On the other hand, a projection of P ∩K onto a factor of the base group
that is fixed by ρ(P ) could require up to 3 generators. Arguing in this way, we find that
d(P ) < n except possibly when P has trivial image in Sym(b), so that P ≤ K. In this
instance, P ≤ (L ◦C3k)b, and we proceed exactly as in the final paragraph of the proof of
Lemma 4.3 to deduce that d(G) ≤ n. 2

Recall H, B, K and Z, from the beginning of this subsection.

Lemma 4.5 Let G ≤ GLn(F ) be finite, irreducible, and either imprimitive with minimal
blocks of dimension 4, or primitive in dimension 4. Assume that F does not contain a
primitive fourth root of unity, and that Part 1 of Theorem 1.2 holds in dimension less
than n. Then d(G) ≤ n. In addition, if |F | = 2 then d(G) ≤ n/2.

Proof: We first prove the stronger result when |F | = 2. We can show (by using the
database of irreducible groups in MAGMA, for example) that either (i) H is a primitive
subgroup of 15:4; or (ii) H = (3 × L2(4)) or (3 × L2(4)).2; or (iii) S � H ≤ S.2 with
S simple. Case (i) is straightforward, using up to three applications of Lemma 2.6. In
Case (ii), there is a normal subgroup N of G contained in K with N ∼= 3c1 × L2(4)c2 for
c1, c2 ≤ b, and G/N ≤ 2 o Sym(b). The case b = 1 is easy, and for b > 1 Lemmas 2.9
and 2.4 give d(N) ≤ b, and Proposition 2.1 gives d(G/N) ≤ b, so d(G) ≤ 2b as required.
The proof for Case (iii) is similar.

We assume from now on that F contains no primitive fourth root of 1. The lists [12, 19]
of almost simple groups that can arise show that d(S/Z) ≤ 2 for all subnormal subgroups
S of H when H/Z is almost simple. So, if H/Z is almost simple, then d(S) ≤ 3, and
d(G) ≤ n. So assume that H/Z is not almost simple.

Suppose first that H is semilinear of degree f . If f = 4 then H is metacyclic, which
we can handle easily, so assume that H ≤ GL2(E).2 for some field E with |E : F | = 2.
Let H1 = H ∩ GL2(E) and Z1 = H1 ∩ Z(GL2(E)). Since we are assuming that H/Z is
not almost simple, H1/Z1 is cyclic, dihedral, or isomorphic to A4 or S4 by Lemma 2.10.
We reduce as in Lemma 4.3 to showing that d(P ) ≤ n for P ∈ Syl2(G). Let Q ∈ Syl2(H).
Then Q (and hence also all subnormal subgroups of Q) has a normal series of length at
most 4, with all factors cyclic, and at most two factors having order greater than 2. Using
similar arguments as in the previous lemmas, for a nontrivial orbit of P on the blocks, we
apply Lemma 3.1 up to four times to the cyclic sections of H, where k = 1 in Lemma 3.1
for the cyclic sections of order 2. This gives d(P ) ≤ 7n/8 for the induced action of P of
P on the subspace of dimension n corresponding to this nontrivial orbit. On the other
hand, a subnormal subgroup of P acting trivially on a block requires at most 4 generators
for its action on this block, so we get d(P ) ≤ n as required.

So we may assume that H is not semilinear, so that in particular H has no nonscalar
abelian characteristic subgroups. Now Lemma 2.16 applies to H: let L be the generalised
Fitting subgroup of H ≤ GL4(F ). We have already considered quasisimple L.
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If L is an extraspecial p-group then p = 2 and H/Z ≤ 24.S for some S ≤ GO±4 (2), since
F contains no primitive fourth root of 1. All Sylow subgroups of GO±4 (2) are 2-generated,
so we reduce to showing that d(P ) ≤ n for P ∈ Syl2(G). The Sylow 2-subgroups of
GO+

4 (2) and GO−4 (2) are both isomorphic to D8, and Q ∈ Syl2(H) is a subgroup of a
group of shape 21+4.D8. The action of D8 ≤ GO±4 (2) on 24 stabilises a one-dimensional
submodule, and henceQ has a nonscalar abelian normal subgroup. Since 21+4 is absolutely
irreducible and not semilinear, so is Q, and so the action of Q is imprimitive. Since Q
is imprimitive, P is not primitive, so P is either imprimitive with block size 1 or 2 or
reducible. Furthermore, if P is reducible then P is completely reducible, since charF 6= 2.
If P is imprimitive with block size 1 then the result follows from Proposition 3.2, and if P
is imprimitive with block size 2 then the result follows from Lemma 4.3. If P is reducible
then, since we are assuming that Part 1 of Theorem 1.2 holds in dimensions less than n,
we can apply it to the action of P on an irreducible constituent and to the kernel of this
action on the remaining consitutents to get d(P ) ≤ n as required.

Otherwise L is a tensor product of two two-dimensional groups, which are both prim-
itive and not semilinear. Thus H is a subgroup of H1 ⊗ H2 or H1 o Sym(2), where
H1, H2 ≤ GL2(F ). Consulting Lemma 2.10, either L2(q) ≤ Hi/(Hi ∩ Z) ≤ PGL2(q)
for some q, or A4 ≤ Hi/(Hi∩Z) ≤ S4. If Hi/(Hi∩Z) ≤ S4 for i = 1, 2, then H/Z ≤ 24.S,
which we dealt with in the preceding paragraph, and otherwise it is routine to show that
all subnormal subgroups of H are 3-generated. 2

Proof of Theorem 1.2, Part 1: If CharF = p and Op(G) = 1, then G embeds into the
direct sum of its actions on its irreducible constituents, and its image under this embedding
is completely reducible. So we may assume that G is completely reducible and by Clifford’s
theorem we immediately reduce to the case when G is irreducible, except when |F | = 2
and G has irreducible constituents of dimensions 2 or 3. In these exceptional cases G is a
subdirect product of H ×K, where H ≤ GLt(2) with t = 2 or 3, and K ≤ GLn−t(2). By
Lemma 2.12, we reduce to H ∼= S3 with t = 2, or H ∼= 7:3 or L3(2) with t = 3. In each of
these cases, by Lemma 2.4, if G = H ×K, then d(G) ≤ d(K) + 1. Furthermore, if G is a
proper subdirect product of H ×K, then either G ∼= K or the kernel of the projection of
G onto K is cyclic, so again d(G) ≤ d(K) + 1.

Suppose first that H ∼= S3. If d(K) ≤ b(n−2)/2c then d(G) ≤ b(n−2)/2c+1 = bn/2c,
and the result follows, so assume that K ∈ {Bn−2, 7:3,L3(2)}. In each case, if G is equal
to the full direct product, then in fact d(G) = d(K) = bn/2c. Thus we assume that G is
a proper subdirect product, so K ∼= Bn−2. If G ∼= K then d(G) = d(K). Otherwise, the
kernel of the projection of G onto K has order 3, so G ∼= 3n/2 :2 = Bn and d(G) = n/2+1.

Otherwise H ≤ GL3(2), and d(K) ≤ b(n − 1)/2c, with strict inequality unless K ∈
{Bn−3, 7:3,L3(2)}. Furthermore, d(G) ≤ d(K) + 1, with d(G) = d(K) if K = Bn−3 by
Lemma 2.4. Therefore d(G) ≤ n/2, as required.

Thus we may now assume that G is irreducible. If G is imprimitive, then we choose a
block system preserved by G such that the dimension f of the blocks is minimal, and let
b > 1 be the number of blocks. Let B be a block, let H = GBB, and let K be the kernel of
the action of G on the block system. If H is reducible then so is G, contrary to assumption.
The minimality of f implies that H is primitive and hence weakly quasiprimitive. If G is
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primitive then let H = K = G, b = 1, n = f .
Suppose that f = 1. If |F | = 2, then H is trivial and G is reducible, a contradiction.

Otherwise, H is cyclic. If F contains no fourth root of 1, then t := |H| is not divisible by
4, and the result follows from Proposition 3.2. So we assume from now on that f > 1.

The action of K on each individual block is isomorphic to a normal subgroup of H,
and so K has a descending normal series of length b in which the factors are isomorphic
to subnormal subgroups of H.

Since H is weakly quasiprimitive, each of the b factors Ki of the descending normal
series of K satisfies d(Ki) ≤ 2 log f + 1 and d(Ki) ≤ 2 log f if |F | = 2, by Theorem 1.2 (2).

Hence, by Proposition 2.1, d(G) ≤ n(2 log f + 3/2)/f and d(G) ≤ n(2 log f + 1/2)/f
if |F | = 2, except that we need to add 1/2 to these estimates when b = 3 and G/K ∼= S3.
The bound for |F | = 2 is at most n/2 for f ≥ 18 and the general bound is less than n for
f ≥ 8, including when b = 3 in both cases.

We deal first with the smaller values of f when |F | = 2. If f = 2, 3 or 4, then the
result follows from Lemma 4.3, Lemma 4.4, or Lemma 4.5. The only primitive subgroups
of GL5(2) are of shape 31, 31 : 5, or L5(2), and we easily get d(K) ≤ 5 and hence
d(G) ≤ 7 < n/2 when f = 5, b = 3 and G/K ∼= S3. If f ≥ 7, or f = 5 and G/K 6∼= S3

then we get the result from the second statement of Part 2.
Suppose, therefore, that f = 6. If all subnormal subgroups of H are 2-generated, then

we get d(G) ≤ n/2 immediately. We can check in MAGMA that if L is a subnormal
subgroup of a primitive subgroup of GL6(2) then d(L) ≤ 3, and that all candidates for
H with subnormal subgroups that are not 2-generated are subgroups of 31+2.GL2(3) ∼=
31+2.Q8.D6 that contain 31+2. It is easily checked that all subgroups of GL2(3) are 2-
generated so, by applying Lemma 2.6 with S = O3(K), it is sufficient to check that
P ∈ Syl3(G) satisfies d(P ) < n/2. If |H| is not divisible by 81, then since all subgroups
of 31+2 are 2-generated, d(P ∩K) ≤ 2b = n/3. Lemma 2.2 gives that d(PK/K) ≤ b/3 <
b/2 = n/12, and hence d(P ) < n/2 as required. If, on the other hand, |H| is divisible
by 81, then H ∼= 31+2.SL2(3) or H ∼= 31+2.GL2(3). These groups do have 3-generated
3-subgroups, but none of these is the Sylow 3-subgroup of a subnormal subgroup of H.
Hence again d(P ∩K) ≤ n/3 and the result follows.

We now deal with the cases where F does not contain a primitive fourth root of 1 and
2 ≤ f ≤ 7. The case f = 2 is covered by Corollary 2.11 and Lemma 4.3. The cases f = 3
and f = 4 follow from Lemmas 4.4 and 4.5, respectively, so assume that f ∈ {5, 6, 7}. The
fact that all almost simple groups are 3-generated settles the cases when H/Z is almost
simple. The semilinear case is straightforward when f = 5 or 7, and it can be verified
that all subgroups of 52 :SL2(5) and 72 :SL2(7) are 3-generated, so in the normaliser of
extraspecial group cases H is 4-generated and d(G) ≤ n.

So suppose f = 6. The semilinear cases with field extensions of degree 6 and 3 are easy.
For an extension field E of F , completely reducible subgroups of GL3(E) are 4-generated
by Proposition 2.3, and hence subgroups of GL3(E).2 are 5-generated, which deals with
the final semilinear case. The remaining possibility is that H is a central product of
primitive subgroups of GL2(F ) and GL3(F ). Since (from the case f = 2 and 3) these are
2- and 3-generated respectively, the result follows in this case too. 2
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5 The proof of Theorem 1.3

Before proceeding to this proof we need a few more lemmas.

Lemma 5.1 Let G ≤ Sp2m(q) be completely reducible, let N be the natural G-module,
and let M = CN (G). Then M is nondegenerate under the symplectic form.

Proof: Let x ∈ M . Then G stabilises both 〈x〉 and 〈x〉⊥, so stabilises N/(〈x〉⊥) = 〈y〉.
Since G is completely reducible, 〈y〉 is a G-submodule. If g ∈ G and yg = λy then
(x, y) = (xg, yg) = λ(x, y), so λ = 1 and y ∈M . Thus M is nondegenerate. 2

Lemma 5.2 Let N be the natural module for a completely reducible subgroup G of Sp2m(q)
and let M be an irreducible submodule of N . Then either
(i) N = M⊕L with G/CG(M) naturally isomorphic to a subgroup of Sp(M) and G/CG(L)
naturally isomorphic to a subgroup of Sp(L); or
(ii) there is an irreducible submodule M ′ of N with N = M ⊕M ′⊕L, CG(M) = CG(M ′),
G/CG(M) ≤ GL(M) and G/CG(L) ≤ Sp(L).

Proof: Since M is an irreducible G-module, the restriction to M of the symplectic form
preserved by G is either nondegenerate or totally singular.

If M is nondegenerate, then N = M ⊕ L, where L = M⊥ is also nondegenerate, and
G ≤ H := Sp(M)× Sp(L) ≤ Sp2m(q). Hence CH(M) = Sp(L) and CH(L) = Sp(M).

If M is totally singular, then by [15, Lemma 4.1.12] there exist spaces M ′ and L such
that M ′ is totally singular, M ⊕M ′ is nondegenerate, and (M ⊕M ′)⊥ = L. Thus L is
nondegenerate Also by [15, Lemma 4.1.12], G ≤ H := GL(M)×Sp(L) ≤ Sp2m(q). Hence,
CH(M) = CH(M ′) = Sp(L) and CH(L) = GL(M). 2

Lemma 5.3 Let N be the natural module for a subgroup G of Sp2m(2) with m > 1, and
suppose that M := CN (G) has dimension at most 2. Then N can be generated as a
G-module by at most m elements.

Proof: The assumption dimM ≤ 2 implies that Soc(N) has at most two one-dimensional
constituents. Since G preserves a symplectic form, N is self-dual, and so Soc(N) ∼=
N/Rad(N), and N/Rad(N) has at most two one-dimensional constituents. The number
of generators of N as a G-module is equal to the number of generators of N/Rad(N),
which is at most the number of its irreducible constituents. But if N/Rad(N) has a one-
dimensional and also a higher dimensional constituent, then we can replace the generators
from these two constituents by their sum, and the result now follows since m > 1. 2

The estimates related to O2(G) in Theorem 1.3 will be derived from the following.

Lemma 5.4 Let X be of shape N.H ≤ 22m.Sp2m(2), with N �X elementary abelian of
order 22m and H a completely reducible subgroup of Sp2m(2), and assume that |Z(X)| ≤ 4.
Then d(X) ≤ d(2 log3 2)me.
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Proof: The assumptions imply that Z(X) ≤ N . The proof is by induction on m. If
m = 1 then X ≤ Sym(4) and d(X) = 2 = d(2 log3 2)me. So assume that m > 1.

Let M be a minimal normal subgroup of X with M ≤ N and |M | maximal. Now
m > 1 and |Z(X)| ≤ 4, so dimM > 1. Let K = CH(M). Then by Lemma 5.2 either
(i) N = M × L with dimM = 2k, L � X, H/K ≤ Sp2k(2); or (ii) N = M ×M ′ × L
with M ′, L�X, dimM = dimM ′ = k, K = CH(M ′), and H/K ≤ GLk(2). In both cases
dimL = 2(m − k), and if k < m then K acts faithfully and completely reducibly as a
subgroup of Sp2(m−k)(2) on L.

Suppose first that dimM > 2. Then, since M is an irreducible module for H/K and
all irreducible subgroups of GL3(2) are 2-generated, Theorem 1.2 Part 1 gives d(H/K) ≤
k in Case (i) and d(H/K) ≤ dk/2e in Case (ii). In Case (i), Lemma 2.5 then gives
d(M.(H/K)) ≤ k, whereas in Case (ii) it gives d(M.(H/K)) ≤ dk/2e and so d((M ×
M ′).(H/K)) ≤ dk/2e+1 ≤ k. The result now follows if k = m. If k < m then we can write
L = L1×L2×L3 with each Li�H, where L1×L2 and L2 are generated by the 1-dimensional
constituents of L under the actions of K and H respectively. By Lemma 5.1, L2 and
L1×L2 are both non-degenerate under the symplectic form preserved by H and hence so
are L1 and L⊥1 = L2 × L3. Thus, if |L1| = 22t, then L2L3.K ≤ 22(m−k−t).Sp2(m−k−t)(2),
and L2L3.K satisfies the hypotheses of the lemma. Hence, by the inductive hypothesis,
d(L2L3.K) ≤ d(2 log3 2) (m − k − t)e. Since L1 can be generated as an H-module by at
most t elements, d(X) ≤ k + d(L2L3.K) + t, as required.

So we have reduced to the case where the irreducible H-constituents of N have di-
mension at most 2, and there are at most two of dimension 1. But then X satisfies the
hypotheses of Lemma 3.4, and the result follows. 2

The estimates for Op(G) for p odd in Theorem 1.3 will be derived from the following.

Lemma 5.5 Let X be of shape N.H ≤ p2m.Sp2m(p), with p an odd prime, N � X ele-
mentary abelian of order p2m, and H a completely reducible subgroup of Sp2m(p). Then
d(X) ≤ b(2 log3 p)mc, except that d(X) ≤ b(2 log3 p)mc + 1 when |H| = 2 and either:
p = 3 and Z(X) = 1; or p = 5 and m = 1.

Proof: The proof is by induction on m. Suppose first that all irreducible H-submodules
of N have dimension 1. Then H ≤ (p − 1)2m, so d(H) ≤ 2m and dp(X) = 2m. Now
Lemma 2.6 gives d(X) ≤ 2m + 1 ≤ b(2 log3 p)mc + 1, and d(X) ≤ b(2 log3 p)mc except
when p = 3 or when p = 5 and m = 1. When p = 3 the result follows from Lemma 3.3,
and it is easily checked when p = 5 and m = 1.

Otherwise, let M be a minimal normal subgroup of X with M ≤ N and |M | maximal.
Then dimM > 1, since at least one irreducible H-submodule of N has dimension greater
than 1. Let K = CH(M). Then by Lemma 5.2 either (i) N = M × L with dimM = 2k,
L�X, H/K ≤ Sp2k(p); or (ii) N = M ×M ′ × L with M ′, L�X, dimM = dimM ′ = k,
K = CH(M ′), and H/K ≤ GLk(p). In both cases dimL = 2(m − k), and if k < m then
K acts faithfully and completely reducibly as a subgroup of Sp2(m−k)(p) on L.

Suppose that p ≡ 3 mod 4. In Case (i), Theorem 1.2.1 gives d(H/K) ≤ 2k, and then
Lemma 2.5 gives d(M.(H/K)) ≤ 2k, and in Case (ii), Theorem 1.2.1 gives d(H/K) ≤ k,
and Lemma 2.5 gives d((M ×M ′).(H/K)) ≤ k + 1. The result now follows by applying
the inductive hypothesis to L.K except in Case (i) when p = 3, d(L.K) = 2(m − k) + 1
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and |K| = 2, when we get d(X) ≤ 2m + 1. In that situation, we can choose 2k of the
generators to be inverse images in X of generators of M.(H/K), a further 2(m − k) to
generate L and one, xK say, of order 2 that maps onto a generator of K. Note that K
is central in H and CX(xK) is a complement of L in X. We choose the inverse image
x of one of the generators of M.(H/K) to be the product of an element in CX(K) with
an element y of order 3 in L. Then [x, xK ] = y−1, and so one of our generators in L is
redundant, and d(X) ≤ 2m as required.

Suppose then that p ≡ 1 mod 4. In Case (ii), we get d(H/K) ≤ 3k/2 from Proposi-
tion 2.3 and then, by Lemma 2.5, d((M×M ′).(H/K)) ≤ 3k/2+1 ≤ 2k. The result follows
immediately if k = m, and by applying the inductive hypothesis to d(L.K) otherwise.

In Case (i), if k < m then we get the result by applying the inductive hypothesis to
d(M.(H/K)) and d(L.K), and dealing with the case when p = 5 and m − k = 1 in a
similar way to the exceptional case for p = 3: note that if k = 1 and p = 5 then the
irreducibility of M implies that we are not in the exceptional case.

Suppose finally that we are in Case (i) and L is trivial; that is, H acts irreducibly on
N . By Lemma 2.5, d(X) ≤ d(H), so it is enough to prove that d(H) ≤ b(2 log3 p)mc. If
the action of H on N is primitive then put B = N , K = S = H and f = 2m. Otherwise,
let B < N , with dimB = f , be a minimal block of imprimitivity under the action of H,
let S be the stabiliser in H of B, and let K be the stabiliser of the block system. So S acts
irreducibly and primitively on B, and B must either be totally singular or non-degenerate
under the symplectic form preserved by H. If B is totally singular, then all subspaces
of N preserved by K are totally singular, and Lemma 5.2 together with Proposition 2.3
give d(K) ≤ 3m/2. Now Proposition 2.1 applied to H/K ≤ S2m/f gives d(H/K) ≤ m, so
d(H) ≤ 5m/2 ≤ b(2 log3 p)mc, as required.

If B is non-degenerate, then SB is symplectic and primitive with KB � SB. So we
can apply Part 2 of Theorem 1.2 to the action of K on the blocks of imprimitivity and
conclude that d(K) ≤ (2 log f +1)2m/f . Then applying Proposition 2.1 to H/K ≤ S2m/f

gives d(H) ≤ (2 log f + 3/2)2m/f (but replace the 3/2 by 5/3 when 2m/f = 3). This
proves the result except when f = 2 and p = 5. But all subgroups of Sp2(5) = SL2(5) are
2-generated, so we get d(K) ≤ 2m in that case, and the result follows. 2

For a normal subgroup N of G, we define dG(N) to be the smallest k such that there
exist k elements of N with the property that they, together with any set of elements of G
that generate G modulo N , generate G. (This is not a standard definition, and is not the
same usage as in [17], as used in the proof of Lemma 3.1.) Then d(G) ≤ d(G/N)+dG(N).
If K �N �G with K �G, then we write dG(N/K) for dG/K(N/K).

Proof of Theorem 1.3: The proof has the same general structure as that of Part 2 of
Theorem 1.2. But since we are proving a tighter bound, we have to work harder.

We may assume that G is irreducible. If G has a noncentral abelian characteristic
subgroup then we define K and f as in Lemma 2.13, and otherwise we put G = K and
f = 1. Then n = fn′ for some n′, where K ≤ GLn′(F ′), Z(K) is cyclic, and F ′ is a degree
f extension of F . So

d(G) ≤ d(G/K) + 1 + dG(K/Z(K)) ≤ log f + 1 + dG(K/Z(K)).
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Let L be the generalised Fitting subgroup of K, and let ri, Ti and Si be as in Lemma 2.14.
It suffices to prove that dG(K/Z(K)) ≤ d(2 log3 2) log n′e, which we shall do, as in Theo-
rem 1.2, by estimating the contributions to dG(K/Z(K)) coming from the central factors
Ori(K) and Ti of L.

More precisely, let the central factors of L be L1, . . . , Lk, where the factors Ori(K) in
order of increasing ri come first, and let M0 = 1 and Mi = L1 · · ·Li for 1 ≤ i ≤ k. We
derive upper bounds for dG(CK(Mi−1)/CK(Mi)) for 1 ≤ i ≤ k and sum them to get an
upper bound for dG(K/Z(K)).

In the estimates for these individual contributions, we call examples in which the floor
of the expression involved in the upper bound is exceeded by 1 adverse ceiling examples.
If we combine two adverse ceiling examples coming from different components of L, then
we need to reduce the size of their combined set of generators by 1 in order to avoid
exceeding the bound for dG(K). We shall complete the proof by considering such cases.
O2(K) Suppose that A := O2(K) is nonscalar. Then by Lemmas 2.14 and 2.16 A is
the central product of an extraspecial group E of order 22m+1 for some m > 0, and
the cyclic group Z(A). So N := A/Z(A) is elementary abelian of order 22m, and the
conjugation action of G on N preserves a symplectic form, in which the restriction to K
acts completely reducibly. We need to prove that dG(K/CK(A)) ≤ d(2 log3 2)me.

Let M ′ and M be the fixed subspaces of the actions of G and K on N ; so M ′ ≤M ≤ N .
We claim that |M ′| ≤ 4. To see this, let I be the inverse image of M ′ in A. If |M ′| > 4
then d(I) ≥ 3, so by [10, Chapter 5, Theorem 4.10] I has a noncyclic abelian subgroup
S. We may assume that Z(A) < S, then [S,G] ≤ Z(A) implies S � G. But a faithful
representation of a noncyclic abelian group cannot be homogeneous, so this contradicts
the quasiprimitivity of G and proves the claim.

Since the action of K on N is completely reducible, by Lemma 5.1 M is nondegen-
erate under the symplectic form preserved by G, and its complement M⊥ in N is also
nondegenerate. Now the induced conjugation action of G on M has fixed space M ′ of
dimension at most 2 and hence, by Lemma 5.3, if dimM > 2 then M is generated by at
most (dimM)/2 elements as a G-module.

Now ACK(A)/CK(A) is isomorphic to N as a G-module under the conjugation action,
and K/CK(A) ∼= N.H, where H is a completely reducible subgroup of Sp2m(2), with
fixed subspace G-isomorphic to M . If dimM > 2, then dG(K/CK(A)) ≤ (dimM)/2 +
d(M⊥.H). Hence the required bound dG(K/CK(A)) ≤ d(2 log3 2)me follows by applying
Lemma 5.4 to N.H if dimM ≤ 2, and to M⊥.H if dimM > 2.
Op(K) for odd p Recall from Lemma 2.14 that, for odd primes p, B := Op(K) is a
central product of its intersection with Z(K) and an extraspecial group of exponent p.
Since G is quasiprimitive, it has no noncyclic normal abelian subgroups, and it follows
that BZ(K)/Z(K) has no nontrivial cyclic subgroups that are normal in G/Z(K).

Lemma 5.5 provides the estimates required for proof of Theorem 1.3 except when
|H| = 2 and either p = 3 and Z(X) = 1, or p = 5 and m = 1, when we need to reduce
the number of generators by 1.

In the proof of Theorem 1.3, if we apply Lemma 5.5 for p = 3 then, as explained earlier,
we actually apply it with X = K/CK(B) if O2(K) is scalar or, if O2(K) is nonscalar, with
X = CK(O2(K))CK(B)/CK(B). In the case when d(X) = d(N.H) = b(2 log3 p)mc+ 1,
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the 2m + 1 generators of X consist of 2m generators of N and one of H. The fact
that B/Z(K) has no nontrivial cyclic subgroups that are normal in G/Z(K) means that
under the action of G we may reduce the number of generators that lie in N and hence
dG(X) ≤ b(2 log3 p)mc, which is what we need for the proof of Theorem 1.3. We handle
the exceptional case when p = 5 similarly.
Insoluble factors of L Next consider G = G/CG(T ), with T a central product of t copies
of a quasisimple group S. By Lemma 2.17, G ≤ A o Sym(t), where A is the subgroup of
Aut(S) that stabilises the module MS . The bound that we require for d(G/CG(T )) then
follows from Lemma 3.7.
Adverse ceiling combinations In Lemma 3.7 the only adverse ceiling examples are of
dimension 2. We verify that, for any prime powers q1, q2, any subgroup of PGL2(q1) ×
PGL2(q2) that contains L2(q1) × L2(q2) is 2-generated, which deals with the case when
two such instances arise in G.

The other possibility is that there is one such instance of L2(q) or PGL2(q) in dimension
2, together with dG(K/CK(O2(K))) > b(2 log3 2)mc, where |O2(K)/Z(O2(K))| = 22m.
In that case, we choose an inverse image of one of our generators of K/CG(O2(K)) such
that either it or its square projects onto an element of order (q − 1)/2 in L2(q), and then
we need just one additional generator from L2(q) or PGL2(q). 2

6 The proof of Theorem 1.1

For this proof we assume that the reader is familiar with the O’Nan–Scott Theorem (see,
for example, [9, Theorem 4.1A]).

Proof of Theorem 1.1: If G is of affine type, then this is Proposition 4.1.
If G is almost simple then n ≥ 5. From Lemma 2.7, we get d(G) ≤ 3 in general, and

the classification of primitive groups of small degree [9, Appendix B] yields d(G) = 2 for
n < 8. The same clearly applies to any subnormal subgroup H of G, so the result follows.

Otherwise, for some e > 1, there exists a nonabelian simple group S with Se ≤ G ≤
Aut(S) oSym(e) (up to isomorphism). Let N = G∩Aut(S)e. Then G/N is isomorphic to
a subgroup of Se and by Proposition 2.1 d(G/N) ≤ e/2 unless e = 3 and G/N ∼= S3. So
by Lemma 2.7, d(G) ≤ 7e/2, unless e = 3 when d(G) ≤ 11, and the same applies to any
subnormal subgroup H of G.

If G is of diagonal type or twisted wreath product type, then n = |S|e−1 or |S|e,
respectively, and hence log n ≥ (e − 1) log |S|. The smallest values of |S| are 60 and
168. Therefore d(H) ≤ log n, except possibly when |S| = 60 and e = 2, but in that case
d(Aut(S)) = 2, so d(H) ≤ 5.

If G is of product action type then e = e1e2 with e2 > 1, and n = fe2 for some
f . Furthermore, there exists a primitive group K of degree f , with socle Se1 , such that
G ≤ K o Sym(e2) with the product action. The group K is of diagonal type if e1 > 1 and
is almost simple if e1 = 1.

If K is of diagonal type then f = |S|e1−1 so log n = (e1 − 1)e2 log |S|. This is larger
than 7e/2 except when |S| = 60 and e1 = 2, but in that case d(H) ≤ 5e/2.
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If K is almost simple, then n = fe and f ≥ 5. If f > 12 then log n ≥ 7e/2 (or 11
when e = 3). From the lists of primitive groups of small degree in [9, Appendix B], we
find that all almost simple groups with primitive permutation representations of degree at
most 12 have outer automorphism groups with at most two generators, so if f ≤ 12 then
d(H) ≤ 5e/2 (or 8 when e = 3), and the result follows except when f = 5, or f = 6 and
e = 3. If f = 5 or 6, then G/Soc(G) ≤ 2 oSym(e), so d(G/Soc(G)) ≤ e by Proposition 2.1,
whereas d(Soc(G)) ≤ 2 + dlog60 ee by Lemma 2.9. So d(G) ≤ 2 + e + dlog60 ee, and
the same bound holds for d(H). The result follows except when e = 2 and f = 5, but
d(A2

5) = 2, so we are done. 2
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