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ABSTRACT!

The creation of biodiversity involves the evolution of new species. Recent trends in the study 

of speciation have increased the emphasis on the role of ecology in adaptation and the 

evolution of reproductive isolation. This includes examining the relative contributions of 

different types of selection, the role of gene flow and the genomic changes that occur during 

ecological speciation. The search for speciation genes continues, however our growing 

knowledge of how the genome translates into phenotypes means we should now consider a 

broader molecular basis of speciation, which includes genetic, transcriptomic and potentially 

epigenetic variation that contribute to phenotypic variation. This thesis addresses the 

molecular basis of speciation by using three different complementary methods to examine the 

early stages of ecological speciation and the evolution of premating reproductive isolation 

between two incipient species of the cactophilic fly, Drosophila mojavensis. First, the genetic 

basis was examined through the sequencing of two candidate genes underlying reproductive 

isolation (Chapter 2). Second, the historical biogeography of population divergence was 

uncovered using multiple sequenced loci (Chapter 3). Lastly, gene expression across the 

whole transcriptome associated with phenotypic plasticity and mating success was assessed 

(Chapter 4). Further, the role of epigenetic imprinting in the population divergence of a 

freshwater fish, Girardinichthys multiradiatus, was examined through sequencing of a well 

known gene involved in sexual conflict (Chapter 5). These studies find that uncovering the 

genetic variation underlying speciation is difficult, especially when there is extensive 

phenotypic plasticity. Further, gene expression plasticity may play an important role in the 

evolution of premating isolation, and this includes a role for epigenetic mechanisms of gene 

expression. Additionally, it is important to assess the demographic scenario of population 

divergence to put into context the ecological and functional data on divergent groups. 

Through these studies this thesis examines the genetic, expression and epigenetic variation 

associated with on-going population divergence, and emphasises the need to consider the 

potential role of the full range of gene expression changes during ecological speciation. 
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Speciation proceeds with the evolution of reproductive barriers between divergent 

populations (Noor & Feder 2006; Wu & Ting 2004). Although many advances in 

speciation research have been made in the last one hundred and fifty years, many of 

the key questions asked by Charles Darwin about the origin of species, “that mystery 

of mysteries” (Darwin 1859), still remain unanswered (Butlin et al. 2012; Mank 

2009). Diverging populations accumulate genetic changes that, over time, might lead 

to genetic incompatibilities and changes in reproductive characters, resulting in a 

reduction in gene flow and reproductive isolation. Exactly how these isolating factors 

accumulate or how reproductive isolating mechanisms evolve remains unclear, and 

this is currently one of the key unanswered questions in speciation research today. 

Another key question that has received much attention is whether species arise as a 

consequence of natural selection or through genetic drift (and chance events e.g. 

mutation, chromosomal inversions; Dobzhansky 1937; Muller 1939). However, there 

is now growing evidence to suggest that many species have evolved through some 

form of selective process (Schluter 2009 and examples therein). It is worth noting, 

however, that genetic drift is likely to have played a role in speciation to some degree, 

and it is more pertinent to assess the relative roles of drift and selection in population 

divergence. 

The definition or delimitation of a species has been a controversial topic in 

speciation research for many years, and remains so today. Upwards of 22 species 

concepts have been defined over the years, with most being developed in the last few 

decades (Mayden 1997). Each new definition has been coined, it would seem, to 

address problems or circularities in previous definitions (Mallet 1995). However, no 

single definition encompasses every aspect of a biological species and thus each tends 

to focus on slightly different biological properties (De Queiroz 2005). For example 



! '!

the genetic species concept is useful when comparing genetic distinctiveness to 

identify putative species, and is defined as a group of genetically compatible 

interbreeding natural populations that is genetically isolated from other such groups 

(Dobzhansky 1950; Simpson 1943; definition from Baker & Bradley 2006). This 

definition is useful for identifying genetic groups, however genetic distinctiveness in 

this case is used to infer reproductive isolation rather than directly assessing their 

cause and effect relationship (Ferguson 2002). Similarly, the BSC emphasises 

reproductive isolation, the ecological species concept focuses on ecological niches 

and so on. The differing species concepts and criteria for species delimitation have 

been reviewed and revised many times (e.g. De Queiroz 2005, 2007, 2011; Mallet 

2001; Wiens 2007) and it seems that a researcher must chose and adhere to one 

particular definition that is applicable to the question they address. Reproductive 

isolation is the key identification for a ‘good species’ under the BSC, which is often 

seen as the gold standard to which putative (sexually reproducing) species must be 

compared. The BSC is defined as groups of actually or potentially interbreeding 

natural populations that are reproductively isolated from other such groups. However, 

the BSC has been criticised primarily for not including well differentiated and 

generally accepted ‘good species’ than can in fact interbreed (Hausdorf 2011).  

To understand the process of speciation we must examine groups of 

individuals along a continuum of divergence and the existence of organisms at 

various stages of this continuum is a principle reason for the lack of a single coherent 

species concept (De Queiroz 2005; Hausdorf 2011; Mallet 2001). The question then 

becomes when do we consider diverging populations to be species? As such I take the 

BSC as the broad standard for defining species, acknowledging that reproductive 

isolation can be imperfect even between ‘good species’ (Coyne & Orr 1998; Harrison 
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1998; Rundle & Schluter 2004; Schluter 2001), yet I do not adhere to any one 

definition or attempt to explain any observed divergence under any specific definition. 

I take a hierarchical approach when describing groups of individuals in which sub-

populations, populations and species may be a progression of differentiation with a 

corresponding decrease in levels of gene flow and quantitative increase of 

reproductive isolation in nature (Schluter et al, 2001; Coyne and Orr, 1998; Harrison, 

1998). 

 

Reproductive isolation 

Reproductive isolation has been studied for a number of years, yet there are still many 

unanswered questions as to how it evolves. For example, what kinds of traits cause 

reproductive isolation and what forms of selection act on them (Boughman et al. 

2005)? How often is reproductive isolation a by-product of adaptation versus direct 

selection for isolation (Rundle & Schluter 2004)? Sexual selection on reproductive 

traits may help drive divergence; if so, can it act alone or only in conjunction with 

other sources of disruptive selection as some theoretical models seem to suggest 

(Kirkpatrick & Ravigne 2002; Lande 1981; M'Gonigle et al. 2012; Ritchie 2007). 

Further, we know that isolation has a genetic basis but at what level of genome-wide 

reproductive isolation do we define populations as species (Wu 2001)? 

Reproductive isolation occurs through genetic changes within populations that 

create isolating barriers and restrict gene flow (Coyne & Orr 1989). It is difficult to 

define exactly when two groups can be considered reproductively isolated. If hybrids 

can arise between two populations, gene flow may still occur meaning the groups are 

effectively still one gene pool (Wu & Ting 2004). Thus, it is difficult to say exactly 

how much of a genome must be reproductively isolated before we define divergent 
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groups as species. This continuum of genetic differences can underlie different modes 

of reproductive barrier and, at the most extreme (i.e. a ‘good’ species), the whole 

genome of a species could be considered a single coadapted unit, incompatible with 

any other species (Wu 2001). Reproductive barriers to gene flow can be classified as 

premating; postmating, prezygotic; or postzygotic (Coyne & Orr 2004). Premating 

barriers include features that might prevent mating between species through 

behavioural, ecological or mechanical methods. Examples include mate recognition 

and preference systems, temporal differences in reproduction and incompatibilities in 

reproductive structures. Postmating, prezygotic isolating barriers can include 

copulatory isolation or gametic isolation, in which sperm is restricted when entering 

the egg due to incompatible surface proteins. Postzygotic isolating barriers include 

fitness reduction of hybrids or hybrid inviability and sterility. Often multiple modes of 

reproductive isolation can exist between species, leading to problems in knowing 

which one caused the initial speciation event. 

Coyne and Orr (1989) found that prezygotic isolation in sympatric populations 

of Drosophila species evolved at a faster rate than postzygotic isolation, however in 

allopatry these rates were about equal. This was thought to be due to reinforcement 

where, in sympatric populations, the presence of hybrids creates a selective pressure 

for assortative mating through natural selection against hybrids (Servedio 2001). 

Sexual isolation between populations, defined as premating isolation caused by 

courtship traits and associated preferences (Ritchie 2007), is thought to represent a 

first step in the gradual evolution of reproductive isolation (Mackay et al. 2005) and is 

also thought to be a common cause of reproductive isolation in animal species. For 

example, in birds speciation often begins with behavioural premating isolating 

barriers, with postmating barriers arising later (Grant & Grant 1997). Thus it is 
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possible that premating isolation evolves early and fairly rapidly between diverging 

populations. 

 Although recognised as an important barrier in maintaining genetic and 

phenotypic differences between species, the evolutionary origins of sexual isolation 

remain unclear (Boake et al. 1997; Ting et al. 2001). Reinforcement is often cited as a 

cause, yet when presented with a case of sexual isolation it is very difficult to 

determine if the cause was reinforcement or ecological adaptation and indirect 

selection for reproductive traits (Servedio & Noor 2003). Even when considering 

reinforcement, direct selection on female preferences might be the primary driving 

force of isolation, rather than the more traditional definition of selection against 

hybrids (Servedio 2004). Behavioural isolation (or species recognition) is often 

considered as part of a continuum of mate choice, and studies have shown that 

isolation can evolve through sexual selection for mate recognition characters within 

groups (Lande & Kirkpatric 1988; Turner & Burrows 1995). There are several 

theories of sexual selection (including the “Good-genes” hypothesis, the “sexy-son” 

hypothesis and antagonistic sexual selection; Weatherhead & Robertson 1979; Zahavi 

1975) and these models are thought to be a continuum of a single process (Kokko et 

al. 2002). However, Paterson (1985; 1993) recognized that sexual selection and 

species recognition might be different systems, coining the term “specific-mate 

recognition system”. For example, a novel trait in Drosophila heteroneura was shown 

to be involved in sexual selection but not in the discrimination of a closely related 

species, Drosophila silvestris (Carson et al. 1989). Although the relationship between 

intraspecific mate recognition systems and species recognition systems is still under 

some debate it is possible the same processes create both; with continued divergence 

comes species recognition. However, separating those traits involved in species 



! "+!

recognition from those purely under sexual selection may be difficult as, in the case of 

many Drosophila species, courtship involves several different cues. Here I focus on 

premating, behavioural isolation as an important early stage of the evolution of 

reproductive isolation in incipient (newly emerging) species, occasionally touching on 

postmating barriers when relevant. 

 

The changing face of speciation research 

Evidence shows that speciation might occur under many different conditions 

depending on the mode of speciation, the balance of interacting evolutionary forces, 

the strength of these forces, and the initial conditions (Gavrilets 2003). For example 

disruptive selection might come from environmental selection and sexual selection 

acting in unison (Noor 1997; Ritchie 2007). Alternatively, sexual selection is 

considered a potent process alone (Ritchie 2007; West-Eberhard 1983), and recent 

work shows that strong sexual selection might be a primary driver of speciation 

(Higashi et al. 1999; M'Gonigle et al. 2012). Speciation is thus complex and models 

of speciation seek to identify the important processes and their dynamics, in order to 

provide a testable framework (Gavrilets 2003). 

In recent years there has been shift in speciation research away from 

traditional geographic models towards assessing the forms of selection on adaptive 

and reproductive traits and their relationship with gene flow. Traditional geographic 

models go as far back as Mayr (1942) who thought that extrinsic geographical barriers 

to gene flow were important factors in speciation. These models include allopatric 

speciation where speciation occurs in geographic isolation, i.e. without gene flow; 

sympatric speciation where populations are panmictic or overlap in their geography; 

and parapatric speciation, an intermediate of the previous two in which geographic 
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separation occurs but is imperfect, allowing some level of gene flow. However, recent 

models show that although geographic barriers are unquestionably important during 

speciation, divergence can occur in sympatry or allopatry highlighting that geography 

may tells us little about the process of speciation itself (Gavrilets 2003; Van Doorn 

2004). The shifting view of speciation has occurred through a dissection of the 

speciation process into interacting component parts that include; modes of selection 

(e.g. environmental and/or sexual, disruptive), demographic or intrinsic biological 

aspects (population size, mutation, recombination and gene flow) and the 

genetic/genomic basis of speciation (e.g. genetic architecture of adaptive traits, gene 

expression variation, the role of chromosomal inversions, neutral versus selected 

genomic regions and ‘islands’/’continents’ of genetic divergence). Thus to understand 

how speciation proceeds we must identify general rules and patterns for the dynamics 

of population divergence (Gavrilets 2003).  

One example of the shifting emphasis in speciation research is an increasing 

interest in sympatric speciation. Sympatric speciation has remained a controversial 

subject for many years (Mank 2009) due to the role of gene flow; how can species 

differ whilst gene flow and recombination continue to homogenise the genome, 

preventing divergence? However, theoretical work has demonstrated that speciation 

with gene flow is more likely to occur with strong disruptive selection (whether this is 

ecological, sexual or a combination), a form of isolating mechanism causing 

assortative mating, strong association between genes influencing fitness and genes 

causing non-random mating, high genetic variation and minimal constraint on being 

choosy in mating decisions (Fitzpatrick et al. 2009; Gavrilets 2003; Gavrilets & 

Hayashi 2005; Kirkpatrick & Ravigne 2002). Whether speciation with gene flow 

occurs regularly in nature remains to be seen, with some arguing that the conditions 
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needed are too specific (Gavrilets 2005) and others that it might occur easily (Doebeli 

et al. 2005).  

 

Ecological speciation 

The shifting views on speciation in the last 12 years have included a renewed interest 

in the role of ecology with a focus on ecological speciation. It is within this ecological 

framework that this thesis examines population divergence. Ecological speciation 

occurs through the adaptation of populations to different environments, with 

reproductive isolation evolving directly or indirectly through increasing 

incompatibility of genetic regions (Nosil et al. 2009b; Rundle & Nosil 2005; Schluter 

2000, 2001). Exactly how ecological speciation differs from other modes of 

speciation is subtle, mainly because speciation in most cases will involve an 

organism’s ecology (Sobel et al. 2010). For example mutation order speciation 

involves environmental selection, but the source of variation occurs through differing 

mutations that arise across different populations that are experiencing the same 

ecological pressures (Schluter 2009). Conversely, ecological speciation occurs 

through divergent selection regimes across different ecological settings. The 

environment (broader sense ecology) includes the natural environment or niche, as 

well as interactions with other individuals, e.g. frequency-dependent interactions 

through competition and predation. Ecological speciation arises through the selective 

power of the environment but does not include selective pressures derived from the 

interactions between the sexes, or sexual selection (although it does include those 

cases where sexual selection and ecological selection are linked e.g. when ecological 

selection drives divergence in reproductive characters/preferences; Boughman 2002; 

Rundle & Schluter 2004; Schluter 2000). It also does not include cases where 
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speciation occurs through genetic drift, although it is thought that speciation under 

genetic drift is less likely to occur (Coyne & Orr 2004; Turelli et al. 2001). 

Additionally, ecological speciation can occur regardless of geographical situation, and 

includes cases of both the incidental evolution of reproductive isolation and direct 

selection for reproductive isolation. Although the ecological environment does not 

depend strictly on geographic distance, allopatry and sympatry are included in this 

new emphasis, and are thought of in terms of gene flow and thus as a more continuous 

parameter. 

 Indirect ecological speciation involves the evolution of reproductive isolation 

as a by-product of environmental adaptation (Rundle & Schluter 2004). This process 

may occur with gene flow, and involves divergent selection between environments 

that leads to phenotypic changes, some of which might be involved in reproduction. If 

adaptive changes in behaviour, morphology or physiology also cause assortative 

mating as a by-product (so-called ‘magic’ traits; Servedio et al. 2011), this might lead 

to reproductive isolation. Sexual selection might strengthen this isolation, if changes 

due to adaptation occur for sexually selected traits (i.e. shifts in male reproductive 

traits and female preferences). Direct selection for reproductive isolation during 

ecological speciation involves the reduced fitness (viability/fertility) of offspring 

produced from heterospecific matings, or reinforcement (Dobzhansky 1940). This can 

occur in the presence of gene flow, where offspring have reduced fitness in either 

environment leading to selection for discrimination of heterospecifics (evolution of 

mating preferences to recognise locally adapted conspecifics) and premating isolation. 

It can also occur upon secondary contact of previously allopatric species, where 

ecological incompatibilities may have already arisen. It should be noted that fitness 

costs to mating heterospecifically during reinforcement may actually be borne by the 
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mating individual, for example through courtship costs or predation risks, rather than 

just the hybrid offspring (Rundle & Schluter 2004; Servedio 2004). 

The genetic basis of ecological speciation is increasingly being addressed at 

the genomic level, with models such as divergence hitchhiking, which lead to 

genomic ‘islands’ and ‘continents’ of divergence, coming to the fore (Feder & Nosil 

2010). These models come from the idea that genomic divergence during speciation is 

heterogeneous, with some regions being genetically divergent and some being 

homogenised by gene flow or genetic drift (Smadja et al. 2008; Turner et al. 2005; 

Via & West 2008). Speciation is likely to start as a slow process with restricted gene 

flow at only a few key loci (or genomic islands) involved in local adaptation, sexual 

conflict, mate choice or other selective processes (Butlin 2010). These divergent loci 

then slowly spread across the genome, due to genetic linkage and reducing gene flow 

and interpopulation recombination, until each genome is a single coadapted unit, or 

genomic continent (Charlesworth et al. 1997; Feder & Nosil 2010). This genic view 

of speciation has been discussed previously (Noor & Feder 2006; Via 2001; Wu 

2001), and has been suggested as a potential mechanism for sympatric speciation. 

However, theoretical models show that the spread of divergent genomic regions 

requires specific conditions, such as small effective population sizes, low gene flow 

and strong selection on multiple loci (Feder & Nosil 2010). Chromosomal inversions 

(where incompatible loci have accumulated) would aid in the spread of islands (Noor 

et al. 2001), and sexual selection and pleiotropy may provide the strength of selection 

needed for spreading to occur (Feder & Nosil 2010; Wolf et al. 2010). However, the 

process of divergence hitchhiking remains poorly understood and empirical evidence 

for the process itself is lacking (Berlocher & Feder 2002; Via 2001). 
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There are now an increasing number of studies that identify ‘outlier’ loci, 

which are assumed to be a result of divergent selection (see Nosil et al. 2009a for 

some examples). The idea of population genomics (Lewontin & Krakauer 1973; 

Luikart et al. 2003), measured through such genomic scans, is to quantify genetic 

divergence using a common measure such as FST (Hudson et al. 1992; Wright 1949) 

and identify genetic regions that are selectively neutral, as well as those that are 

divergent due to the action of selection. Several statistical methods can be used to 

determine whether a locus behaves as an outlier, including FST tests against a neutral 

expectation derived from either the genome-wide empirical distribution (Akey et al. 

2002) or neutral coalescent simulations, which might use parameters estimated from 

the data (Stinchcombe & Hoekstra 2008). This is a potentially powerful system 

because, for two diverging populations, demographic properties can be assessed using 

methods that assume neutrality, such as population size and gene flow, but divergent 

regions can also be assessed in terms of their selective role in adaptation and 

reproductive isolation. New methods for analysis of high throughput data can identify 

and partition these different data types (e.g. Jones et al. 2012) and such technologies 

now permit identification of complete sets of adaptive loci through statistical 

associations between genetic variation and phenotypes (e.g. traditional QTL studies 

and GWAS studies). However, there are several problems in identifying outlier loci, 

linked to the limitations of the method (Butlin 2010). Not only do you need full 

genome techniques for the method to capture all the potential loci under selection, but 

you also need the full genome of the organism, with good coverage for reliable 

sequence verification, to map significant loci to functional genomic regions (i.e. 

adaptive genes). Such methods also require a representative sample of the populations 

you are comparing. Further, methods for detecting divergence such as FST can be 
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sensitive to demographic factors such as bottlenecks, potentially obscuring the 

neutral-selective division of loci. However, decreasing expense of high-throughput 

sequencing and improvement in both neutral models and methods for detecting 

selection will aid in the characterisation of divergent loci. 

 

Speciation genes 

To understand how speciation occurs it is necessary to investigate how it proceeds 

from the earliest stage of reproductive isolation, and identify the phenotypes involved. 

Investigating the genetic architecture of these phenotypes will uncover key genes 

involved in reproductive isolation, or ‘speciation’ genes (Noor 2003). Much work has 

focussed on postzygotic speciation genes because effects such as hybrid male sterility 

are often the first obvious signs of speciation (Orr et al. 2004; Sun et al. 2002). As 

such speciation genes could be defined as loci for which the allelic form of one 

population is not compatible with the genome of another (Noor 2003; Ritchie & Noor 

2004; Sun et al. 2002). However, a broader definition of speciation genes is any gene 

that contributes to reproductive isolation between populations, including both 

postzygotic and premating phenotypes, regardless of whether it caused the initial 

isolation or not (Nosil & Schluter 2011; Wu & Ting 2004). 

The genetic architecture of traits underlying reproductive isolation is still 

largely unknown (Mackay et al. 2005). In fact there is little recent literature with a 

broad and general treatment of the genetic mechanisms underlying premating 

isolation in particular (Etges & Tripodi 2008; Ritchie & Phillips 1998). Yet 

characterising the genetic sources of important phenotypic variance could provide 

valuable and unique insights into the processes driving divergence. One reason for 

this paucity of knowledge is the complexity of the genetic architecture of speciation, 
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which calls into question the simplistic idea of a speciation gene (Takahashi & Ting 

2004). Most behavioural traits are polygenic, with many different factors influencing 

the final phenotype. The genetic architecture of a quantitative trait includes: the 

number of loci and alleles, the genomic distribution of loci, the magnitude of effects 

of alleles, the directionality of alleles, allelic relationships (dominance and epistasis), 

pleiotropy and the ploidy and mode of inheritance (Shaw & Parsons 2002). Two 

extreme types of architecture have been identified that illustrate the range of genetic 

basis in which phenotypes may lie. Type I is a model of many genes with small, 

additive effects; type II involves major or modifier genes, of strong effect, underlying 

the phenotype in question (Gleason & Ritchie 2004; Templeton 1981). These types 

are at extremes and the importance of each is still under debate. 

The search for speciation genes should be more accurately described as the 

search for the molecular basis of speciation (Wolf et al. 2010). This concept includes 

our expanding knowledge of the molecular basis of phenotypes, and is an integrative 

examination (often called systems genetics) of not only the genetic architecture, but 

also how these genes are regulated and coexpressed as gene networks to form the 

phenotypes involved in reproductive isolation (Mackay et al. 2009; Springer et al. 

2011). This includes mechanisms of expression regulation as well as regulatory loci 

(whether in cis or trans to the gene it regulates), both DNA and RNA based. Many 

identified causative SNPs now being discovered substantial distances from known 

gene encoding regions and presumed to be transcription factor binding sites or other 

cis regulatory features (Frazer et al. 2009). However, identifying the effect of a 

causative SNP on a phenotype in a non-coding region is challenging without more 

knowledge on the functional mechanics of such regions. For example many new types 
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of non-coding short and long RNAs have recently been identified that have complex 

roles in gene expression (Mercer et al. 2009). 

Further knowledge is also required on the types and functions of genes that 

underlie reproductive isolation. Although several examples of speciation genes have 

been uncovered (see Coyne & Orr 2004 for some examples; Orr et al. 2004; 

Rieseberg & Blackman 2010; Rundle & Nosil 2005; Swanson & Vacquier 2002) 

there are still surprisingly few, particularly for premating phenotypes. Functions of 

these loci range from broad roles such as nucleoporin genes or transcription factors, to 

more specific proteins such as YUP in monkeyflowers, which influences flower 

colour and pollinator isolation (Nosil & Schluter 2011). The function of speciation 

genes is often likely to depend on the particular species under study, and the search 

for speciation genes (as for genes underlying adaptive phenotypes or causing disease) 

is challenging. Often several lines of study will be needed simply to identify a 

candidate gene, with further work necessary to confirm the involvement of that locus. 

The strongest of such confirmations includes experimental manipulation of a 

candidate gene through transgenics or gene knockouts, coupled with expression and 

phenotype analyses (Nosil & Schluter 2011). 

An important step towards understanding speciation is to identify the 

processes that cause the genetic divergence. However, determining the processes 

involved, for example detecting signals of selection or drift, still present problems. 

Examples of these issues include how to detect selection in non-coding, regulatory 

DNA and how to detect selection at a genome-wide level (Nielsen 2005; Sabeti et al. 

2007). Such methodological challenges are currently being addressed using new 

techniques such as genome-wide association studies and genome-wide scans to 

identify large numbers of loci associated with phenotypic differences and genetic 
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divergence (McCarthy et al. 2008; Oleksyk et al. 2010). Further, expression QTL and 

quantitative trait transcripts (eQTLs and QTTs) analyses can be used to detect 

genomic regions through correlating gene expression to phenotypes, similar to the 

traditional genetic-based QTL analyses (Mackay et al. 2009). With an increasing 

number of genomic technologies and genomes becoming available, the intersection of 

multiple data types is now possible, but this also presents new challenges in terms of 

large-scale data analysis, statistical intersection of different data types and 

interpretation of results. 

Determining the molecular basis of reproductive isolation in incipient species 

is the first step to understanding how speciation occurs, and the mechanisms that 

underlie it. However, other than the knowledge that phenotypes causing isolation are 

commonly polygenic, there is still a lack of data and general rules concerning the 

underlying genetics of behavioural isolation (Arbuthnott 2009). Due to this polygenic 

control, many forces may influence courtship behaviours. The environment in which 

an organism lives will create selection pressure as well as influence how genes are 

expressed. Polygenic courtship traits often demonstrate phenotypic plasticity that may 

affect mate choice and sexual selection across environments, and little is known of the 

role of plasticity generally in speciation (Butlin et al. 2012). Plasticity may drive or 

inhibit population divergence, and if plasticity and genotype-by-environment 

interactions play a role in the speciation process, this may also obscure the discovery 

of speciation genes. 
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Box 1.1: Overview of terms and concepts associated with phenotypic plasticity  

Phenotypic plasticity (Schlichting & Smith 2002) 
Any change in an organism’s phenotype in response to an environmental signal. 

Genotype-by-environment interactions (Pigliucci 2001) 
Genetic variation in phenotypic plasticity that leads to non-parallel or overlapping reaction 
norms between genotypes. 

Phenotypic accommodation (West-Eberhard 2005b) 
The adjustment, without genetic change, of aspects of a phenotype following a novel input 
during development. 

Genetic accommodation (Baldwin 1896, 1902; West-Eberhard 2005a) 
Heritable variation in plastic response that can selected upon once the phenotype is induced. 
Selection may change the mean of the trait but not the level of plasticity, or act to change the 
plasticity of that trait as well. 

Genetic assimilation (Pigliucci et al. 2006; Waddington 1942) 
A novel or adaptive phenotype is induced and fixed through selection whereby the induced 
phenotype no longer requires the input, reducing the plasticity of, or canalizing, the trait. 

Genetic compensation (Grether 2005) 
When a plastic response is maladaptive, selection acts in a direction opposite to the response 
so that genetic change can compensate. 

Phenotypic modulation (Smith-Gill 1983) 
Non-specific phenotypic variation results from environmental influences on rates or degrees 
of the developmental program.  

Developmental conversion (Smith-Gill 1983) 
Organisms use specific environmental cues to activate alternative genetic programs 
controlling development. 

Allelic sensitivity (Schlichting & Pigliucci 1995) 
The product of different alleles might be ‘sensitive’ to environmental changes in a different 
but consistent fashion.  

Regulatory plasticity (Schlichting & Pigliucci 1995) 
Differential response in regulation of a pathway of gene expression through specific 
regulatory genes. 

Canalization 
A developmental phenomenon in which a trait is robust to changing environmental 
conditions. 

Broad dimensional aspects of phenotypic plasticity 
> Phenotypic category of response: Physiological/Behavioural/Morphological. 

> Hierarchical level of response: Gene expression/Cellular/Tissue/Phenotype. 

> Source of plastic response: Mutational change/Internal environment/External environment. 

> Temporal dimensions: Window of developmental opportunity/Timing and rate of plastic 
response/spatiotemporal environmental heterogeneity. 

> Adaptive versus non-adaptive response 
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Phenotypic plasticity and genotype-by-environment interactions 

Phenotypic plasticity provides a way for a single genotype to produce different 

phenotypes across different environments. Phenotypic plasticity has previously been 

viewed as an obstacle to population divergence, yet recent evidence suggests it could 

have an important role in ecological speciation (Butlin et al. 2012; Pfennig et al. 

2010). In a review of phenotypic plasticity in plants, Bradshaw (1965) set out several 

outstanding questions on plasticity; What is the mechanistic basis of continuous and 

discreet plasticity? How are the plastic responses of different traits related? What is 

the genetic control (or molecular architecture) of plasticity and can it be selected? 

How much genetic variability for plasticity exists in natural populations? Schlichting 

(1986) noted that though we have gained some understanding of plasticity, these 

essential questions remain unanswered. 

The investigation of plasticity from different viewpoints has led to a set of 

overlapping definitions of related processes (Box 1.1). These have been classed in 

terms of development (e.g. phenotypic modulation and developmental conversion) 

and genetic (e.g. allelic sensitivity and regulatory plasticity) processes. However, 

these terms are inextricably linked as for example, allelic sensitivity is likely to result 

in phenotypic modulation throughout development (see Pigliucci 2001 for a thorough 

dissection). Pinning down a single definition of phenotypic plasticity is a challenge 

due to the differing interpretations of what a plastic trait is. A useful, if broad, 

definition was proposed by Schlicting and Smith (2002) that ‘phenotypic plasticity is 

any change in an organism’s characteristics in response to an environmental signal’. 

As Schlicting and Smith (2002) state, this definition encompasses all hierarchical 

levels of an organismal plastic response (from gene expression, gene networks or a 

cellular response all the way up to the phenotype, see Box 1.1) as well as not 
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assuming any particular phenotypic category of response (behavioural, physiological 

or morphological) or environmental input (internal, external or new mutation in 

different genetic backgrounds).  

Phenotypic plasticity is often measured using reaction norms, which chart trait 

changes across continuous or discrete environments (Fig. 1.1). Individual reaction 

norms represent a single genotype, with multiple genotypes each having reaction 

norms at a population level, representing population genetic variation for a particular 

phenotype (Fig. 1.1a). If these reaction norms are parallel then the level of plasticity 

across environments is equivalent for all genotypes and thus there is no genetic 

variation for a plastic response (Fig. 1.1b). However, if the reaction norms of two 

genotypes are not parallel this represents genetic variation for plasticity, or a 

genotype-by-environment interaction (GEI, Fig. 1.1c). An extreme case of GEI is 

when two reaction norms cross, often called ecological crossover (Fig. 1.1d, 

Greenfield & Rodriguez 2004). 
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Fig. 1.1 Example of reaction norms of two genotypes within a population. (a) two genotypes, 

demonstrating genetic variation for a trait but no plasticity or genetic variation for plasticity. 

(b) Both genotypes are plastic, but there is no genetic variation for plasticity. (c) Both 

genotypes are plastic to differing degrees (non-parallel lines) thus demonstrating genetic 

variation for plasticity or GEI. (d) Crossing reaction norms indicate GEI often termed 

ecological crossover. 

 

Many of the terms listed in Box 1.1 attempt to define the evolutionary importance of 

plasticity. Selection can act on the mean of a population trait distribution, as well as 

on the variance of distributions across environments. Assuming there is genetic 

variation for plasticity, environmental heterogeneity and that the plasticity of a 

particular trait increases the fitness of an organism, there will selection for plastic 

genotypes (Schlichting & Pigliucci 1995). Selection can lead to a change in the 
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population mean of a trait in an environment, but involve little change in the level of 

genetic variation for plasticity itself, or it can influence both (genetic accommodation; 

Box 1.1). Figure 1.2 summarizes some potential effects of selection on mean and 

variance of trait values after a phenotype is induced. Thus, selection can act to shape 

reaction norms, selecting for optimal plastic genotypes in a population and potentially 

eroding genetic variation for plasticity. However, selection may act to reduce the 

plasticity of a trait, leading to the assimilation of a previously plastic response 

genetically (genetic assimilation; Box 1.1; Fig. 1.3). Genetic assimilation leads to 

canalization, where the expression of a trait remains stable regardless of 

environmental and genetic change, and results in the fixation of a phenotype even 

when the environmental input is removed (Crispo 2007). Plasticity and GEIs are 

important in the production of many phenotypic characters and are potentially 

important during ecological speciation where populations experience different 

environments. 
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Fig. 1.2 Potential scenarios for plastic phenotypic response across environments, which may 

have been produced through selection and can be shaped by selection. (a) An increase in the 

mean and variance of a trait across environments. (b) A decrease in the variance of the trait 

across environments, mean unchanged. (c) An increase in the variance of the trait across 

environments, mean unchanged. Modified from Fordyce (2006). 

 

 

Tr
ai

t d
ev

el
op

m
en

t 

Environment 

Shift in mean and variance of a phenotype across 
environments, potentially shaped by selection 

(a) 

(b) 

(c) 

Trait distribution 



! #'!

 

 

 

 

 

Fig. 1.3 Effect of selection on plasticity within a population. Each reaction norm represents 

the average plasticity of a population of genotypes. The up arrow demonstrates selection for 

less plastic genotypes, decreasing a population’s phenotypic plasticity (genetic assimilation). 

The down arrow represents the maintenance of phenotypic plasticity. Both trait means move 

away from the ancestral trait mean. 
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Plasticity and ecological speciation 

Phenotypic plasticity plays an important role in ecological speciation because it 

allows organisms to respond adaptively to environmental variability, aiding 

ecological selection in driving rapid population divergence. However, phenotypic 

plasticity has previously been seen as an alternative to ecological adaptation (the first 

step in ecological speciation) rather than facilitating it (Wright 1931), though this 

view was not held by some early proponents of plasticity (e.g. Waddington 1953). 

Plasticity allows an adaptive response to new environments, allowing the colonization 

of even very divergent environments. Evidence shows that plasticity can aid in 

persistence of species in new environments, or contribute to reproductive isolation 

and genetic divergence between environments (Price et al. 2003; Thibert-Plante & 

Hendry 2011; West-Eberhard 1989; West-Eberhard 2003; West-Eberhard 2005a; 

Wund et al. 2008). Phenotypic plasticity has been reviewed extensively (see 

Fitzpatrick 2012; Pfennig et al. 2010 for recent reviews), and a number of theoretical 

models have examined plasticity across both spatially and temporally varying 

environments (see Thibert-Plante & Hendry 2011 for a succinct summary). 

 Phenotypic plasticity is likely influence ecological speciation through its two 

main components: ecological adaptation and reproductive isolation. Plasticity can 

occur for ecological or reproductive traits, however the evolutionary result (genetic 

divergence between environments, continuation in an environment, or extinction) is 

complex and will depend on several linked aspects of the developmental response. 

First, the extent to which any response (phenotype) is optimal (adaptive) for the 

environment in which it occurs (including suboptimal and nonadaptive responses) 

dictates levels of divergent selection. This optimality may depend on the second 

aspect, the constraint (costs and limitations) of a response, which is linked to how 
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different a newly colonized environment is, and the presence of plasticity in 

functionally important traits. Finally, the evolution of plasticity is dependent on the 

spatial/temporal aspects, including environmental heterogeneity (or gene flow) and 

developmental sensitivity (time during development in which a plastic response can 

occur). Adaptive phenotypic plasticity has received more attention in the past and thus 

each of these aspects have been more thoroughly studied in an adaptive rather than 

nonadaptive context. 

Phenotypic plasticity might often be adaptive, i.e. one that increases an 

organisms fitness in a given environment (DeWitt & Scheiner 2004; Thibert-Plante & 

Hendry 2011). If a plastic response is near optimal in a new environment this will 

lead to persistence and little or no divergent selection (DeWitt & Scheiner 2004). 

However, suboptimal plasticity in one environment means that divergent selection 

may occur across environments (Thibert-Plante & Hendry 2011). A plastic response 

might be suboptimal for a number of reasons including certain constraints, costs and 

limitations, to the developmental response. The costs of plasticity are the fitness 

deficits associated with plastic genotypes relative to fixed genotypes producing the 

same mean phenotype in the focal environment, whereas limitations are the functional 

constraints of a plastic response to an environment, producing a less optimal or non-

adaptive response (DeWitt 1998; DeWitt et al. 1998). These costs and limits will 

influence the evolution of plasticity and if adaptive plasticity is less than optimal, 

divergent selection can potentially exist. 

Important to the adaptive role of phenotypic plasticity is the spatiotemporal 

heterogeneity of the environment, which is crucial to whether populations maintain 

genetic variation for plasticity or if this variation is eroded. Environmental variation 

may be temporal, or gene flow between environments. Such variation is called the 
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‘grain size’ of an environment, and is a measure of environmental change within the 

lifetime of an individual (Levins 1968). In coarse-grained environments individuals 

experience a single environment whereas in fine-grained environments they 

experience a succession of different environments (Gillespie 1974). Fine-grained 

environments impose stronger selection for an adaptive plastic response (Baythavong 

2011; Hollander 2008; Lande 2009), depleting genetic variation for plasticity. With 

decreasing environmental heterogeneity the strength of selection for a particular 

plastic response decreases, the extreme of this being a stable environment, where 

populations adapt to stable or prevalent conditions often reducing plasticity due to its 

increased cost. Developmental sensitivity is key to the evolution of plasticity and 

interacts with environmental grain size. For example, fine-grained environmental 

change after the period of sensitivity has little effect, and the environment is then 

effectively coarse-grained.  

A recent study by Thibert-Plante and Hendry (2011) used individual-based 

simulations to explore the different aspects of phenotypic plasticity that influence the 

evolution of reproductive barriers during ecological speciation. They showed that 

adaptive plasticity evolves readily in the presence of dispersal between populations in 

different environments, and encourages the colonization of highly divergent novel 

environments. Thus without plasticity new environments may never be colonized, 

once they are and populations can persist, they may be under divergent selection 

(potentially on separate traits to those allowing the initial persistence). Plasticity 

might also be important in the evolution of reproductive isolation if plastic 

phenotypes are involved in reproductive success (e.g. a courtship trait/preference or 

pleiotropic links between ecological and reproductive characters), or if natural 

selection acts against hybrids and migrants with reduced fitness.  
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A strong link to fitness can be seen when reaction norms cross (ecological 

crossover; Fig. 1.1d) and fitness rankings of genotypes across environments become 

reversed. If the traits involved are female preference and/or male traits under sexual 

selection, this might lead to population divergence and reproductive isolation 

(depending on levels of gene flow and in which environment plasticity occurs; 

Greenfield & Rodriguez 2004). If environmental change is frequent, covariation 

between male trait and female preference might decrease if costs of plasticity are high 

(i.e. male signals are unreliable), yet this is balanced by increased genetic variation 

due to high gene flow, which would increase the benefits to a female of being more 

selective during mate choice. However, if environmental change becomes rare (gene 

flow reduces), there might be a build up of differences between populations in male 

signals and female preferences, causing divergence and reproductive isolation 

(Greenfield & Rodriguez 2004). Alternatively, reproductive isolation might evolve 

through selection against hybrids from different environments. For example 

polyphenism is the production of divergent, environmentally triggered resource-

related phenotypes and can lead to spatially segregated morphs or ecotypes that 

display low levels of reproductive isolation (Pfennig et al. 2010). Once these ecotypes 

emerge, hybrids with reduced fitness will be selected against, favouring the evolution 

of reproductive isolation (Rundle & Nosil 2005). 

Thibert-Plante and Hendry (2011) also demonstrated that natural selection 

against migrants might actually be more important in the formation of reproductive 

barriers during ecological speciation than sexual selection against migrants, and 

selection against hybrids (i.e. selection against migrant offspring). This is because 

natural selection often acts earlier than sexual selection, following the dispersal of 

migrants to a new environment, and before migrants produce offspring (Hendry 2004; 
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Thibert-Plante & Hendry 2011). They showed that reproductive isolation was weaker 

when plasticity is expressed after dispersal as migrants are better suited to the 

environment in which they developed. Conversely, reproductive barriers were 

stronger (or unaffected) when plasticity is expressed after dispersal and selection can 

act. These results highlight the importance of the timing of dispersal in relation to the 

developmental timing of a plastic response (developmental sensitivity). Dispersal 

after a plastic response will lead to selection against sub-optimal migrants in the new 

environment and thus is a reproductive barrier. For example, change in the timing and 

rate of phenotypic development (heterochrony) can be induced by the environment 

and might be particularly important for the production of ecotypes (Parsons et al. 

2011). It should be noted that such plasticity causes only weak reproductive barriers, 

yet these barriers occur before genetic divergence due to selection against phenotypes 

induced in the alternative environment. Thibert-Plante and Hendry (2011) note that 

this inverts the causal pathway to reproductive isolation, which is commonly thought 

to begin with a certain level of adaptive genetic divergence. This might be very 

important at the initial stages of ecological speciation by reducing gene flow and 

allowing adaptive divergence. 

The environment plays a joint role in shaping phenotypes in that it acts to 

induce phenotypic variation through plasticity (developmental) as well as to shape 

phenotypes through selection during adaptation (transgenerational). The interaction 

between environmental plasticity and environmental selection can lead to change in 

levels of adaptive plasticity, which can influence adaptation and speciation. Non-

adaptive plastic responses can also play a role in evolutionary change if non-adaptive 

plasticity in a new environment creates an increase in trait variance, releasing cryptic 



! $#!

variation upon which selection can act (Ghalambor et al. 2007; Le Rouzic & Carlborg 

2008).  

Adaptation to different environments might occur through an invasion of a 

novel environment with continued gene flow. Alternatively gene flow might be 

reduced due to either intrinsic or extrinsic factors, strengthening divergent selection 

across environments. Thibert-Plante and Hendry (2011) demonstrated that phenotypic 

plasticity allows for the colonization of even divergent environments. Once 

colonization has occurred, plasticity can enhance or reduce reproductive isolation, 

depending crucially on the timing of a plastic response compared to dispersal time 

during development. This has implications for the types of plastic traits that contribute 

to reproductive isolation as those that do are likely to be responsive to the 

environment early in development, before dispersal. The colonization of new 

environments allows for further phenotypic change, which may or may not involve 

plasticity, but certainly would not have occurred without it (Fitzpatrick 2012). 

Phenotypes derived from a plastic response can be shaped by genetic accommodation 

and assimilation (Lande 2009), potentially fixing divergent phenotypes across 

environments. Therefore it is clear that phenotypic plasticity plays a role in 

encouraging the colonization of new environments, can buffer species existence, and 

can play a role in the evolution of reproductive isolation. 

 

The molecular basis of phenotypic plasticity 

Understanding the molecular basis of phenotypic plasticity will aid in our 

understanding of the genetic basis of adaptation and speciation. Genetic variation for 

plasticity has been demonstrated in several studies and is thought to be widespread in 

nature (Levine et al. 2011; Pigliucci 2001). Yet little is known about where this 
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variation lies (e.g. genomic locations of regulatory regions) or the functions of genes 

such variation influences. The latter is addressed in Chapter 4 where I examine the 

functions of genes that show plastic expression variation according to ecological 

environment. An adaptive plastic response is likely to involve molecular pathways 

and loci that have evolved to allow a plastic change in accordance to an 

environmental input. Such ‘plasticity genes’ as proposed in Schlicting and Pigliucci 

(1993) can be defined as ‘regulatory loci that directly respond to a specific 

environmental stimulus by triggering a specific series of morphogenic changes’ 

(Pigllucci 1996). This definition refers to but, as noted by Pigliucci (2001), is not 

limited to genes regulating morphology, and behavioral and physiological changes 

should also be included. Aubin-Horth & Renn (2009) note that ‘phenotypic plasticity 

can be defined as a re-programming of the genome in response to the environment’ 

referring to mechanisms of gene expression regulation. However, it should be noted 

that not all regulatory genes (and not all plastic gene expression) necessarily 

contribute to an adaptive plastic response (Pigliucci, 2001).  

The molecular basis of plasticity is likely to be complex due to the multiple 

mechanisms controlling gene expression. For example Levine et al. (2011) discovered 

plasticity in gene expression in a genotype-by-environment interaction across tropical 

and temperate D. melanogaster populations, according to temperature. They linked 

expression variation to chromatin based regulatory control, which coincided with a 

genetic signature of strong selection in chromatin remodeling factors in the temperate 

population. Thus chromatin-based control of gene expression was shown to be 

involved in adaptive evolution and may be a common mechanism underlying 

plasticity. Genetic variation in ‘plasticity genes’ may consist of variation in a diverse 

set of regulatory features. For example transcription factor binding sites changes 
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influence gene expression and rapidly evolve, and promoter region changes have been 

linked to chromatin-based regulation of gene expression (Tirosh et al. 2008). The 

recent discovery that epigenetic modifications to DNA, RNA and proteins influences 

gene expression suggests that epigenetic mechanisms might also play a role in 

plasticity and the production of quantitative trait variation (Johannes et al. 2009; 

Johnson & Tricker 2010; Richards 2009), and I provide further evidence for this in 

Chapter 4. 

The combining of ecology, evolution, development and molecular and genetic 

viewpoints (recently described as integrative biology) might help to uncover the 

molecular mechanisms underlying plasticity (Aubin-Horth & Renn 2009). The 

increasing use of modern molecular techniques such as microarrays, high throughput 

(next generation) sequencing and ChiP-seq allows the examination of not only gene 

expression, but mechanisms that increase protein diversity such as alternative splicing 

and controls of gene expression such as non-coding RNAs (ncRNAs), DNA 

methylation, chromatin remodeling and other protein modifications. Using these 

techniques we can now examine the genome, proteome and methylome at high 

resolution and potentially move towards a greater understanding of how the 

expression of genomes works. Because we can probe at the single cell level we can 

compare cell types and tissue types and build an understanding of how gene 

expression varies over time and space. This increasing use of technology can thus 

allow us to start to tease apart the various ways in which phenotypic plasticity is 

viewed (Cossins et al. 2006). 
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Drosophila courtship behaviour and incipient species 

Drosophila melanogaster has been a model organism in evolutionary studies for 

many years along with many other Drosophila species. For example, Morgan and 

Bridges (1916) used D. melanogaster to investigate heredity and Dobzhansky (1948) 

studied D. pseudoobscura and D. persimilis to investigate aspects of speciation and 

selection. Their ease of handling in the laboratory and short generation time makes 

them ideal for studying evolution and speciation, at least from a genetic perspective. 

However, little is known about their ecology, making them less ideal for the study of 

ecological speciation. Much is known about the genetics of D. melanogaster and the 

full genome was published in 2000 (Adams et al. 2000), and since then 11 other 

Drosophila species have had their full genomes sequenced (Drosophila 12 Genomes 

Consortium 2007). 

In Drosophila courtship behaviour is usually initiated by males and involves 

visual, acoustic, olfactory, gustatory and tactile cues for female evaluation of potential 

mates (Greenspan & Ferveur 2000). There is great variation in courtship behaviour 

between species and the following represent the major steps common to most species. 

Males begin by orienting towards a female, slightly raising their bodies. They then tap 

their foreleg against the female, possibly transferring contact epicuticular 

hydrocarbons in the process. Next, males move their wings at different angles, 

vibrating them to produce a species-specific courtship song. After singing, the male 

may circle the female and vibrate his forelegs against the abdomen of the female, 

extend his proboscis and lick the female genitalia, finally mounting her (Hall 1994). 

The exact content and order of these courtship signals may depend on the species, for 

example Hawaiian species of Drosophila have modified labellar tools which grasp 

female genitalia (Spieth 1974) and signals may vary between species in importance 
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for mate recognition (Ferveur 2005). Sex and reproductive related genes are thought 

to evolve rapidly, making premating courtship signals ideal candidate phenotypes for 

investigating the initial stages of reproductive isolation (Gleason & Ritchie 1998; 

Templeton 1981).  

Much has been learnt from investigating incipient species. For example 

Dobzhansky and Pavlovsky (1967) investigated incipient species within D. 

paulistorum in which there are at least five distinct species, several being 

reproductively isolated with varying strengths of sexual isolation. From this species 

complex Dobzhansky and Pavlovsky (1966) found a strain of D. paulistorum that had 

evolved in the laboratory over a number of years to become a separate species. Other 

examples of closely related species aiding speciation research include D. 

pseudoobscura and D. persimilis. Dobzhansky (1936) examined races of D. 

pseudoobscura to localize sterility factors in hybrids and demonstrated regions of 

chromosomes that were responsible for sterility, or postzygotic isolation. Machado et 

al. (2002) analysed the divergence of D. pseudoobscura from its close relatives D. 

pseudoobscura bogotana and D. persimilis, finding evidence for speciation with gene 

flow, with loci associated with reproductive isolation showing little or no gene flow. 

One interesting example of incipient speciation comes from D. melanogaster. 

The Zimbabwe D. melanogaster population demonstrates unidirectional sexual 

isolation from the more globally distributed cosmopolitan race. Zimbabwe females 

prefer males from Zimbabwe whereas cosmopolitan D. melanogaster females have 

only a weak preference for their own males (Wu et al. 1995). There is a lack of 

postmating isolation between the two populations, however they are divergent in 

premating behaviour, and these populations are considered incipient species 

(Hollocher et al. 1997a; Hollocher et al. 1997b). Further divergent populations of 
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Drosophila melanogaster have been described from West Africa, the Caribbean and 

the United States (US). The US population demonstrates partial sexual isolation from 

Caribbean populations and the African races (Yukilevich & True 2008). Evidence 

suggests a role for pheromone variation in the sexual isolation of these populations, 

and studies have identified a gene involved in courtship pheromone production called 

desaturase-2 (desat2), which is responsible for differences in epicuticular 

hydrocarbon (used as contact courtship pheromones in Drosophila) composition in 

flies (Coyne et al. 1999; Dallerac et al. 2000; Takahashi et al. 2001). It has been 

shown that Caribbean populations are divergent from US populations in desat2 allele 

frequencies, male morphology and courtship behaviour. However, the role of desat2 

in premating isolation has been disputed (Coyne & Elwyn 2006; Grillet et al. 2012), 

highlighting the challenges associated with determining the genetic basis of complex 

traits. 

Incipient, or newly forming, species provide a useful tool for investigating the 

initial stages of ecological speciation. Studying sexual isolation between incipient 

species (when no other form of reproductive isolation is present) is informative 

because such isolation is likely to be causative. Thus it is important to examine 

incipient species to identify key genetic changes, before further genetic differences 

accumulate after speciation has occurred (Wu et al. 1995). Such investigation is aided 

by knowledge on the ecology, and well-characterised behavioural phenotypes to 

elucidate the genetic architecture of behavioural traits (Hollocher et al. 1997a). 

Incipient species also provide an important tool because in many cases, 

methodologies were only possible by analysing back-crosses of closely related 

species, often only possible in laboratory conditions.  
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Drosophila mojavensis 

Drosophila mojavensis presents a useful system for examining the underlying 

mechanisms of incipient ecological speciation because it has a well-characterized 

ecology. D. mojavensis is found in northwest Mexico and the southwestern United 

States (Fig. 1.4). The species is cactophilic and exists as four allopatric populations 

each living primarily on the necrotic tissue of a different host cactus species. D. 

mojavensis has been extensively studied and the phylogeny and ecology of the species 

is relatively well known (Etges & Ahrens 2001). Drosophila arizonae is the closest 

relative to D. mojavensis and they are thought to have diverged around 2.4 (±0.7) 

Mya following the formation of the Baja peninsula (Matzkin 2004; Matzkin & Eanes 

2003), allowing each species to evolve in isolation. The four D. mojavensis 

populations consist of the Baja peninsula group that live and breed primarily on pitaya 

agria cactus (Stenocereus gummosus), the Mainland population that exist on organ 

pipe cactus (Stenocereus thurberi), the Mojave Desert population on barrel cactus 

(Ferrocactus cylindraceous) and the Santa Catalina Island population on prickly pear 

cactus including Opuntia demissa and O. littoralis (Fig. 1.4). 

Evidence suggests that the Baja population is ancestral, yet the 

phylogeographic pattern within D. mojavensis remains unresolved, and is addressed 

in chapter 3 of this thesis. Inversion polymorphism and genetic variation at two 

nuclear loci indicated that the Baja population was ancestral (Johnson 1980; Matzkin 

2004; Matzkin & Eanes 2003), however this has been recently challenged based on 

mitochondrial data (Reed et al. 2007) and the order and timing of population 

divergence is unknown. However, microsatellite genotyping indicated that these 

populations are distinct from one another, with little contemporary gene flow between 

them (Ross & Markow 2006) and the prevailing view based on ecology and genetic 
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information is that the Baja group is ancestral with a more recent colonization of 

mainland Mexico (Etges et al. 1999).  

The colonization of mainland Mexico led to a host shift from their preferred 

ancestral host plant, agria, to organ pipe cactus (Etges & Ahrens 2001). Several 

species of cacti exist on the peninsula, yet they are rarely utilised by the Baja flies, 

which prefer the agria cacti as hosts. Agria cactus only exists in one small patch on 

the Sonoran coast (near Punta Onah, Sonora), thus it seems a shift to predominant 

(but not exclusive) use of organ pipe cactus has aided in the range expansion of D. 

mojavensis (Etges 1992). This host shift has caused changes in a suite of life history 

and reproductive traits in the Mainland population (Etges & Heed 1987). These 

changes include population differences in mating behaviour leading to sexual 

isolation from the Baja population, and the two populations are considered incipient 

species (Markow 1991; Pfeiler et al. 2009; Zouros & d’Entremont 1974).  
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Fig. 1.4. Map of Drosophila mojavensis species range throughout the southwestern US and 

northwestern Mexico. Dark lines indicate the approximate border of the Sonoran and Mojave 

Deserts and dashed lines show the range of each allopatric population, with population name 

indicated in italics. Below are examples of the primary host cactus species for the Baja (agria 

cactus) and Mainland (organ pipe cactus) populations, on which the majority of this thesis 

focuses. 

 

Recent publications have defined all four populations of D. mojavensis as subspecies 

(Pfeiler et al. 2009), however the definition of subspecies may not be a useful 

category in evolutionary biology due to difficulties in narrowing down an exact 
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definition (Wilson & Brown Jr 1953). Species definitions are contentious enough 

already and thus here I consistently refer to the different groups of D. mojavensis as 

populations originating from a particular geographic location e.g. ‘Baja California 

peninsula population’, or for brevity ‘Baja population’. The main focus of this thesis 

is on the Baja and Mainland populations, which were used to investigate speciation at 

the incipient stages.  

Unidirectional premating isolation exists between the Mainland and Baja 

populations of D. mojavensis, in which Mainland females discriminate against Baja 

males, and Baja females do not discriminate between males of either population 

(Markow 1991; Stennett & Etges 1997). Etges (Etges 1992) put forward three 

hypotheses concerning the mechanism for the evolution of this reproductive isolation: 

1) Reproductive character displacement due to sympatry of the Mainland population 

with D. arizonae; 2) use of different host plants for feeding and oviposition causing a 

physiological shift in some traits; 3) changes in premating behaviour due to 

pleiotropic links to an adaptive fitness component associated with host plant change. 

There is some evidence for reinforcement between the Mainland population of D. 

mojavensis and D. arizonae in sympatry (Jennings & Etges 2010; Massie & Markow 

2005; Wasserman & Koepfer 1977; Zouros & d'Entremont 1980), which might have 

led to reproductive character displacement in the D. mojavensis Mainland population, 

causing Mainland females to become more discriminate during mate choice with the 

Baja population. However, it is difficult to distinguish reinforcement between D. 

mojavensis and D. arizonae from indirect selection for reproductive characters 

(through ecological adaptation) in the Mainland population, both of which might have 

led to the evolution of premating isolation between the Mainland and Baja groups 

(Servedio & Noor 2003). Further, premating isolation between the Mainland and Baja 
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is influenced by the rearing host cactus species, suggesting a role for ecological 

adaptation and phenotypic plasticity (Brazner & Etges 1993; Etges et al. 2007; Etges 

et al. 2009). Thus, the evolution of sexual isolation between the Baja and Mainland D. 

mojavensis populations might have involved a combination of ecological adaptation 

to different host plants, phenotypic plasticity and reproductive character displacement 

between D mojavensis and D. arizonae. 

 D. mojavensis is considered oligophagic, typically using one host within a 

geographic region, yet the agria and organ pipe host plants present quite different 

ecological settings. Although belonging to the same genus, agria and organ pipe cacti 

differ in a number of ecological traits. Agria cacti have numerous, thinner stems than 

organ pipe cacti and grow in thick, low-standing patches, reproducing through 

vegetative growth (Fig. 1.4). Organ pipe cacti, however, are taller with larger stems 

and reproduce through fruiting and animal dispersion of seeds, growing more widely-

spaced as individual plants (Fig. 1.4; Etges et al. 1999). Although stem size of agria 

cactus is smaller, the density of stems and the density of rots (necrotic tissue) is 

greater than that of organ pipe (Heed & Mangan 1986). Thus agria cacti represent a 

more continuous and ubiquitous resource, whereas organ pipe cactus rots last longer 

when they occur, due to larger diameter of their stems, but occur less frequently 

(Etges et al. 1999). Because the flies live on the necrotic tissue the chemical ecology 

of the rotting material is also important. Differences between agria and organ pipe are 

seen in their chemical make-up that might influence the energy level, metabolism and 

relative proportions of precursor fatty acids utilised by the fly (Fogleman & Danielson 

2001). 

Several life history and reproductive traits are population-specific and also 

demonstrate considerable cactus dependent phenotypic plasticity. Flies from the Baja 
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population express shorter egg to adult development times, higher viabilities, smaller 

thorax sizes, lower lifetime fecundities and slower rates of sexual maturation in the 

laboratory than Mainland flies, regardless of host cactus (Etges 1990; Etges & Heed 

1987; Etges 1993; Etges & Klassen 1989). However, when populations are raised on 

each cactus, there is cactus-dependent expression of life history traits, with organ pipe 

generally causing longer development times, lower viabilities and smaller thorax sizes 

(Etges & Heed 1987), with rearing on opposing cacti causing strong genotype-by-

environment interactions (Etges et al. 2010). Reproductive traits also demonstrate 

considerable geographic and host-specific variation, most notably for courtship song 

and contact pheromones (Etges & Ahrens 2001; Etges et al. 2007; Etges et al. 2009; 

Etges et al. 2006; Stennett & Etges 1997). Both these traits are thought to mediate the 

unidirectional sexual isolation between Baja and Mainland populations (Etges 2002), 

and the level of assortative mating is subject to genotype-by-environment interactions, 

depending on the rearing cactus species and the population of origin (Brazner & Etges 

1993; Etges 1992, 1998). 

Epicuticular hydrocarbons (CHCs) are long chain fatty acids, which in 

Drosophila act as non-volatile contact pheromones for mate recognition (Ferveur et 

al., 1997, Stennett and Etges, 1997, Ritchie and Noor, 2004). CHCs and courtship 

songs are important signals that can influence mating success in Drosophila, and each 

consist of different constituent components that can vary to produce species-specific 

behaviour. A set of ‘diagnostic’ CHC components, three alkadienes; 8,24-

tritricontadiene, 9,25-pentatricontadiene and 9,27-heptatricontadiene (numbers 

indicate the position of double bonds in number of carbons from the carboxyl end of 

the hydrocarbon chain), have been discovered that vary between the Baja and 

Mainland populations. These components have been seen to influence the mating 
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success of males and to be sexually dimorphic, with sex specific differences 

depending on the population of origin (Etges & Ahrens 2001; Etges & Tripodi 2008; 

Markow & Toolson 1990; Stennett & Etges 1997). Etges et al. (2007) isolated QTLs 

for courtship song and premating reproductive isolation between flies from the Baja 

and Mainland populations on agria and organ pipe hosts. They showed that males had 

a higher mating success with Mainland females when they produced songs with 

shorter long-interpulse intervals, burst durations, and interburst intervals. Male mating 

success was influenced by a single QTL located on chromosome 2 near two 

desaturase genes, desat1 and desat2, and there were extensive GEIs for courtship 

song. In a further study, Etges et al. (2009) isolated a number of QTLs influencing 

mating success and CHC composition, again finding extensive GEIs. However the 

three previously identified alkadiene CHC components seen in previous studies were 

not associated with mating success in this study.  

Etges et al. (2009) discovered that mating success between Baja and Mainland 

populations was associated with just one genetic marker. This marker was situated 

near two desaturase genes, desat1 and desat2, which are thought to be involved in 

CHC production (Wicker-Thomas & Chertemps 2010) and might underlie 

reproductive isolation between closely related Drosophila populations, although this 

has been disputed (Coyne & Elwyn 2006; Dallerac et al. 2000; Grillet et al. 2012; 

Ritchie & Noor 2004; Takahashi et al. 2001). Desaturase genes play a key role in 

pheromone synthesis. Thus, although the genetic basis of pheromone production and 

mating success is likely to be complex, the desaturase genes are good candidates for 

speciation genes in D. mojavensis, and are examined in Chapter 2 of this thesis. 
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The aim of this thesis is to examine the molecular basis of incipient speciation and 

population divergence. This wass primarily carried-out by examining incipient 

species of D. mojavensis populations, but I also examined the potential for epigenetic 

imprinting to contribute to divergence in populations of a freshwater fish, 

Girardinichthys multiradiatus. In the second chapter I examine genetic variation 

between populations of D. mojavensis in two candidate genes, previously identified 

through QTL mapping to reproductive traits and male mating success (Etges et al. 

2007; Etges et al. 2009). These were the desat1 and desat2 genes that have been 

implicated in reproductive isolation in other Drosophila species. In Chapter 3 I 

perform a phylogeographic analysis of the D. mojavensis populations in order to 

ascertain the order of population divergence, timing of these splits and the levels of 

gene flow and migration that occurred during the process, thus characterizing the 

demographic context of this incipient speciation. In Chapter 4 I performed whole-

transcriptome sequencing to examine cactus specific gene expression plasticity, and 

gene expression associated with mating success. This study identified genes (and their 

functions) that are expressed according to cactus specific mating success, which are 

potential candidates for speciation genes. Lastly, Chapter 5 examined the role of 

epigenetic imprinting in population divergence potentially due to sexual conflict in a 

species of freshwater fish. Through these studies I uncover genetic, expression and 

epigenetic variation involved in the divergence of closely related populations. 
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CHAPTER 2:!

SEQUENCING OF TWO CANDIDATE GENES THAT 

POTENTIALLY UNDERLIE PHEROMONE VARIATION AND 

MATING SUCCESS BETWEEN DIVERGENT DROSOPHILA 

MOJAVENSIS POPULATIONS!
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ABSTRACT!

Key to understanding the genetic basis of ecological speciation is discovering the 

genetic architecture of traits involved in adaptation and reproductive isolation. The 

search for speciation genes has been on-going for a number of years, but is fraught 

with difficulties involved with the analysis of complex traits that commonly are 

controlled by multiple loci. The desaturase-1 (desat1) and desaturase-2 (desat2) 

genes have previously been implicated in behavioural isolation between populations 

of Drosophila melanogaster. These desaturase genes are involved in the creation of 

double bonds during courtship pheromone synthesis and are good candidate genes for 

important pheromonal differences. This chapter examines these two candidate genes, 

which have also been previously implicated through QTL mapping to influence 

mating success in the cactophilic Drosophila mojavensis. Desat1 and desat2 were 

sequenced in the Baja and Mainland populations of D. mojavensis to examine 

population specific genetic variation. Sequencing encompassed the majority of introns 

and exons as well as a portion of the desat2 promoter. Very little genetic variation 

was seen for both gene regions and no population-specific single nucleotide 

polymorphisms (SNPs) were fixed between the two populations. However, additional 

sequencing of the Santa Catalina Island population uncovered one nonsynonymous 

SNP between this population and the other two. Overall, results suggest that desat1 

and desat2 are under purifying selection in both populations. A survey of methylation 

patterns in the desat2 promoter was also carried out. DNA methylation is not thought 

to occur in Drosophila species, however low levels of DNA methylation were 

discovered at several different types of nucleotide motifs. These results highlight the 

difficulties of identifying key genetic changes underlying ecological isolation. 

!
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INTRODUCTION!

An important step towards an integrated understanding of adaptation and speciation is 

to elucidate the molecular architecture of adaptive traits and reproductive isolation 

(Feder & Mitchell-Olds 2003). There are several complementary methods by which 

speciation genes and the mechanisms of their expression can be identified. Broadly, 

these can be split into candidate gene methods versus whole 

genome/transcriptome/proteome approaches, and include the examination of genomic 

variation (e.g. QTL studies, GWASs and genome scans), expressional and 

transcriptomic variation (microarrays, RNA-Seq) and proteomic variation (including 

protein-protein and DNA-protein interactions, e.g. ChIPseq). The candidate gene 

approach often follows a QTL or whole genome approach, yet narrowing down 

causative loci can be very challenging. However, the increasing utility and decreasing 

costs of new technologies such as high-throughput sequencing and microarrays now 

allow multiple lines of complementary evidence, increasing the confidence in the 

identification of a candidate gene. This is important because narrowing down a 

candidate locus and especially causative mutations is difficult, as is confirming the 

fitness effects of variation at such loci (Rockman 2012; Stinchcombe & Hoekstra 

2008). Further, the molecular basis of adaptive evolution, which includes mRNA and 

protein expression, needs to be examined to gain a full understanding of the 

mechanisms by which phenotypes are expressed (Biron et al. 2006; Oleksiak et al. 

2002). To begin to answer many of the key questions in adaptation and speciation we 

need to move towards a broader knowledge of the genetic basis underlying adaptive 

evolution, which includes identifying candidate genes and molecular mechanisms 

across a broad range of species and ecological settings. 
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 Drosophila mojavensis is a cactophilic species with a well-studied ecology, 

that exists as four allopatric populations distributed across northwestern Mexico and 

the southwest United States, each living predominantly on a different cactus host 

(Fellows & Heed 1972; Ruiz et al. 1990) (Fig. 2.1). The Baja California population 

lives and breeds on pitaya agria cactus (Stenocereus gummosus), which is endemic to 

the Baja California peninsula whereas the Mainland population, distributed across the 

Sonoran desert and southern Arizona (Fig. 2.1), uses organ pipe cactus (Stenocereus 

thurberi) as its host. Studies have shown low but significant levels of behavioural 

isolation between these two populations, dependent on the rearing host cactus species 

(Brazner & Etges 1993; Etges 1992; Stennett & Etges 1997). The rearing of flies on 

different host cacti has been shown to influence multiple reproductive and life history 

traits, which demonstrate extensive levels of phenotypic plasticity and genotype-by-

environment interactions across populations (Etges et al. 2007; Etges et al. 2010; 

Etges et al. 2009). Previous work to characterise putative candidate genes involved in 

ecological adaptation in D. mojavensis includes the alcohol dehydrogenase (Adh) 

genes, identified for their role in metabolism and detoxification linked to living on 

necrotic cactus tissue. The Adh genes are duplicate gene copies thought to play a role 

in adaptation to alcoholic environments (Mercot et al. 1994). In D. mojavensis these 

genes are expressed according to developmental stage, with Adh-1 expressed in 

embryos and larvae, and Adh-2 expressed in adults (Batterham et al. 1983). Signals of 

natural selection have been demonstrated in the coding sequence of Adh-1, between D. 

mojavensis and sister species D. arizonae (Matzkin & Eanes 2003) as well as between 

the Baja and Mainland populations of D. mojavensis (Matzkin 2004). Although the 

exact causative mutation, and thus the functional consequence of the amino acid 

substitution to protein function could not be ascertained, this is an example of 
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successful characterisation of a candidate gene underlying adaptation. However, a 

gene underlying the reproductive isolation between D. mojavensis populations has yet 

to be characterised. 

 Several recent studies have implicated candidate genes that function in the 

production of courtship pheromones to be involved in adaptation and speciation in D. 

mojavensis (Etges et al. 2007; Etges et al. 2010; Etges et al. 2009). Epicuticular 

hydrocarbons (CHCs) are long chain fatty acids that, in Drosophila species, act as 

non-volatile contact pheromones to elicit excitement in a potential sex partner 

(Ferveur et al. 1997; Ritchie & Noor 2004). CHC profiles are made up of blends of 

fatty acid components, which vary in composition across Drosophila species. Gas 

chromatography is used to examine CHC profiles and individual components are 

identified as peaks at an equivalent chain length of a previously identified molecular 

structure. For example, a chain length of 34.59 is known to be 8,24-tricontadiene, 

with the numbers indicating the position of the double bonds, counted from the 

carboxyl carbon. Adult D. mojavensis CHCs vary in chain lengths ranging from C29 to 

C39 as isomers such as alkanes, 2-methylalkanes, alkenes, methyl-branched alkenes 

and alkadienes, with the largest fraction of adult CHCs composed of C35 alkadienes 

(Etges & Jackson 2001; Toolson et al. 1990). The pattern of CHC expression across 

populations of D. mojavensis is complicated, showing sexual dimorphism and 

substrate specific differences (Stennett & Etges 1997). It is thought that D. mojavensis 

ultilise a suite of contact pheromones compared to the relatively simple differences 

seen in D. melanogaster, with 11 out of 20 CHC components being sexually 

dimorphic within D. mojavensis (Stennett & Etges 1997). The three principle 

alkadienes: 8,24-tricontadiene (chain length C32.63), 9,25-pentatricontadiene (C34.59) 

and 9,27- heptatricontadiene (C36.5) have been specifically implicated in mate 
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recognition between the Mainland and Baja populations. These three alkadienes have 

been shown to influence mating success, suggesting a role for CHCs in the 

behavioural isolation between the Baja and Mainland populations (Etges & Ahrens 

2001). 

Recent quantitative trait loci (QTL) analyses identified a potential role for two 

desaturase genes, desat1 and desat2, in the evolution of sexual isolation and life 

history traits between the Baja and Mainland groups (Etges et al. 2007; Etges et al. 

2010; Etges et al. 2009). These studies examined CHC, courtship song and life 

history trait variation in Baja and mainland crosses, along with courtship trials to 

determine the mating success of F2 males with mainland females. Although several 

regions of the genome influenced these phenotypes, only one marker (Dmoj2_1603a) 

was associated with mainland specific variation in CHCs and courtship song. This 

marker was also associated with male mating success, where mainland alleles 

significantly increased success with mainland females. The location of this marker 

was near two "9 desaturase genes: desat1 and desat2. DESAT1 is involved in the first 

desaturation of fatty acids using palmitate as its substrate, creating double bonds at 

the #7 position of hydrocarbon chains (Gleason et al. 2005). DESAT2 uses myristate 

as its substrate creating double bonds at the #5 position (Dallerac et al. 2000; Fang et 

al. 2002). Desat2 has been previously linked to sexual isolation in D. melanogaster 

where a 16bp deletion in the promoter region correlated with reproductive isolation 

between incipient groups (Dallerac et al. 2000; Takahashi et al. 2001). Desat1 has 

been shown to play a role in pheromone production and perception in Drosophila 

(Bousquet et al. 2012; Bousquet & Ferveur 2012). However, the role of desaturase 

genes in the adaptation and sexual isolation of D. melanogaster populations has been 

disputed. Work replicating previous experiments failed to find allelic variation in 
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desat2 linked to climatic adaptation, and found inconsistent observations between 

wild-type populations and transgenic lines when examining sexual isolation (Coyne & 

Elwyn 2006). Further, the expression of desat1 and desat2 was not correlated to 

mating patterns between African and cosmopolitan strains that demonstrated sexual 

isolation and pheromonal variation (Grillet et al. 2012). Thus, the role of desat1 and 

desat2 is Drosophila sexual isolation is far from clear. However, their role in 

pheromone production still makes them viable candidates for speciation genes 

underlying the incipient speciation of the Baja and Mainland D. mojavensis 

populations. 

In order to identify population-specific genetic variation in the desaturase loci, 

desat1 and desat2 were sequenced across the Baja and Mainland populations. The 

main aims of this study were to 1) Look for signatures of natural selection in the 

coding regions, 2) Identify any fixed population-specific mutations that might explain 

CHC variation 3) Identify the locations of such mutations (coding or non-coding) to 

infer the targets of selection in these genes. Through these tests the potential targets of 

selection can be identified allowing inference of the evolutionary processes that 

govern their evolution in D. mojavensis populations. An additional aim of this study 

was to assess if DNA methylation occurs in candidate speciation genes in D. 

mojavensis. The promoter region of desat2 has been previously implicated in 

influencing pheromone expression and sexual isolation in Drosophila (Dallerac et al. 

2000; Takahashi et al. 2001), thus the promoter region of desat2, rather than desat1, 

was examined for DNA methylation. The presence of DNA methylation in 

Drosophila has been a controversial subject, yet studies have shown that DNA 

methylation occurs in the D. melanogaster genome at very low levels (Lyko et al. 

2000). However, there is little evidence of its functionality. First, I confirmed the 
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presence of DNA methylation in the desat2 promoter region. Second, due to the 

evidence that epigenetic marks can be environmentally induced (Richards 2006; 

Richards 2008), I looked for environmental variation in methylation across flies 

raised on organ pipe cactus and normal lab food. Lab food was used because it is 

known to have very strong effects on pheromone production compared to cactus 

substrates (Stennett & Etges 1997). Given the potential role of regulatory features in 

desat2 expression in D. melanogaster, any consistent pattern of DNA methylation in 

promoter regions of this candidate gene may indicate its function in gene expression 

regulation. 
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Fig. 2.1 Map of the sample site locations used in this study. Sample sites are black dots with 

full name and abbreviation. Dashed lines represent population boundaries with population 

name in italics. Solid black lines denote the approximate boundaries of the Mojave and 

Sonoran deserts. In total 38 sequences were obtained from the Baja population and 103 from 

the Mainland population. 

 

 

METHODS 

Sampling and DNA extraction 

Individuals were sampled from laboratory strains derived from field populations 

collected in 2008 and 2009. The sampling scheme encompassed two sub-populations 

from the Baja peninsula (Punta Prieta and San Quentin), and four from the Mainland 
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population (Punta Onah, Organ Pipe National Monument, Las Bocas and Puerto 

Choyuda; Fig. 2.1). Each sample was sequenced for desat1 and desat2 gene regions 

(see Fig. 2.2), which included introns, exons and ~500bp of the upstream promoter 

region of desat2. Additionally, several Santa Catalina Island individuals were 

sequenced for the desat2 promoter as initial comparisons demonstrated interesting 

patterns of genetic variation in this region. 

DNA was extracted from flies using a basic salt extraction protocol. Lysis 

‘Squishing’ buffer was prepared with 0.5ml of 1M TrisHCL pH 8.2, 0.2ml of 0.5M 

EDTA, 0.25ml of 5M NaCl and 49.05ml water, for a 50ml total. A volume of 10$L of 

proteinase K [20mg/ml] was added to 990$L of squishing buffer. Each fly was put 

into a 1.5ml eppendorph tube and placed in the freezer for 5 minutes. 50$L of buffer 

was then added to the tube and the tissue was homogenized. Tubes were then 

incubated at 43°C overnight, boiled for two minutes to denature the proteinase K, and 

stored at -20°C. 

 

DNA sequencing 

Extracted DNA was amplified by PCR using primers designed in Primer3 (Rozen & 

Skaletsky 2000). Three overlapping primer sets were designed for each gene, to 

ensure the whole gene region was covered (Table 2.1). Sequencing was carried out 

using the forward primer for each set except desat2 primer set 3, which was also 

sequenced with the reverse primer in order to obtain the full genomic sequence. The 

last desat1 primer set was not sequenced for the reverse primer and thus some of exon 

4 was not obtained. In total this produced four alignments encompassing desat2 and 

three covering the majority of desat1 (Fig. 2.2). PCR was carried out with the 

following protocol, per reaction; 5 $L of 10! ammonia buffer, 1 $L of 10mM dNTPs, 
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1 $L of 50mM MgCl2, 1.2 $L of each primer at 30 pM/$L, 0.3 $L of 5U Taq, 9.9 $L 

of Q-Solution (Bioline), 29.5 $L of water and 1 $L of DNA for a 50 $L reaction 

volume. Thermoprofiles were; 94°C for 3 minutes followed by 30 cycles of 94°C for 

30 seconds, primer specific TA °C (Table 2.1) and 72°C for 30 seconds. Final 

extension was at 72°C for 5 minutes. PCR products were then purified using the MSB 

Spin PCRapace clean up kit (Thistle Scientific). PCR fragments were sequenced on 

an ABI 3730 sequencer after a BigDye reaction. 

Table 2.1. Primer details for all seven alignments produced (see Fig. 2.2 for positions). All 

primer sets were sequenced using the forward primer, and desat2 primer set 3 was also 

sequenced with the reverse primer in order to obtain the last exon. 

Primer set Primer sequence (5' to 3') TA (°C) 

DS1PS1 F: TGAAGCGTGTCAAGTTCAGC 
 R: GCATTGTTTGGGCATGCTA 59 

DS1PS2 F: CATATCATATAGTCCAATAGATCAGACACG 
 R: GCCAGAGACAACATAAAGAGCG 57 

DS1PS3 F: GAGTATATGCGAAACAAAGCTGAAGATG 
 R: ATTCTGGCGACCGTGCGAG 51 

DS2PS1 F: TTTGCTCGGTTTAACTTGCAT 
 R: ATTGTTTGCCATTTGGCTTG 60 

DS2PS2 F: ATACCGCATACCAAATTTCAAAGATCTACA 
 R: CCTTGTCTAGACTTGCATAATTACTGAGA 55 

DS2PS3 F: CTCCATCCGTCCTTGATTTCATCAACT 
  R: CTACTCTAGAAAATACAACCCGCTAAGCAT 55 

 

DS, desaturase gene; PS, primer set; TA (°C), annealing temperature in degrees centigrade. 

 

Bisulfite sequencing of the desat2 promoter 

A common method for examining methylation patterns in DNA sequences is to 

chemically treat genomic DNA, converting cytosines (C) to thymines (T), followed 

by cloning and sequencing (Jiang et al. 2010). This initial step is useful for verifying 

the presence of DNA methylation. This protocol was first carried out on one 

individual to establish the presence of patterns of DNA methylation, and was 
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followed by direct sequencing of PCR products for several individuals from the 

Mainland population.  

Bisulfite sequencing involves the deamination of C to T using a buffered 

solution of sodium bisulfite. Methylated Cs are protected from this reaction by the 

methyl group and thus appear in the sequence as a C. It has been demonstrated that 

some species do not adhere strictly to the CpG rule of DNA methylation but also 

demonstrate methylation at CpA and CpT positions (Kunert et al. 2003). Therefore 

primers for methylation sequencing were designed using Methprimer and based on 

CpG islands, however these primers were picked to also target potential CpA islands 

(see Supplementary Material for details). The desat2 promoter was examined due to 

its putative functional role in pheromone expression in D. melanogaster (Dallerac et 

al. 2000; Takahashi et al. 2001). Primers were designed in the promoter region of 

desat2, amplifying 445bp fragments spanning a region of 600bp-450bp upstream of 

the translation initiation site (TIS), coincident with CpA and CpG islands discovered 

in this region by performing CpA and CpG island searches (Fig. S2.2). CpA/CpG 

island discovery was performed using a modified Perl program script from the online 

software CpGcluster (http://bioinfo2.ugr.es/CpGcluster/), using default settings. One 

individual from the Mainland population (PC sample site; Fig. 2.1) was used for this 

initial survey. 

DNA was extracted using a Qiagen tissue lysis buffer and treated with a 

buffered solution of sodium bisulfite with a Qiagen EpiTect Plus DNA Bisulfite kit, 

and incubated for five hours. PCR was carried out using the bisulfite sequencing 

primers described above, with hot-start Taq and Qiagen Q-solution for increased 

specificity of primer annealing. The PCR mix was; 20$L of Qiagen PCR mix (an 

optimized solution of dNTPs, ammonia buffer and MgCl2), 0.4$L each of forward 
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and reverse primer, 0.6$L of DNA, 15.6$L of water and 5$L of Q-solution for a total 

of 42$L. The thermocycling profile consisted of an activation step of 15 minutes at 

95°C, followed by 40 cycles of 94°C for 30 seconds, 57.5°C for 90 seconds and 72°C 

for 90 seconds, with final elongation at 70°C for 6 minutes. The PCR product was 

then checked on a 2% agarose gel to ensure a single fragment had been amplified 

before being purified using a MSB Spin PCRapace kit (Thistle Scientific). A TOPO 

TA cloning kit (Invitrogen) was used to clone the PCR product and nine colonies 

were picked for purification and sequencing. Bisulfite sequencing was also carried out 

directly from the PCR product (i.e. without cloning) on three male and three female 

flies from the Mainland (OPNM) population, raised on both organ pipe cactus and 

laboratory food (see Methods in Chapter 4) in order to examine potential methylation 

variation. 

 

Sequence editing and Analysis 

Raw chromats were edited by hand in Geneious (Drummond et al. 2011) and aligned 

using MAFFT (Katoh et al. 2002). Indels were encountered in some of the sequences 

covering non-coding regions, which caused the entire sequence to appear to be 

heterozygous at most positions. Sequence traces showed little background noise and 

thus heterozygous positions were called in Geneious using the IUPAC ambiguity code. 

These superimposed sequences were then separated using Indelligent (Dmitriev & 

Rakitov 2008), which splits the two sequences and identifies the indel position. For 

these indel-split sequences, one was chosen at random for analysis. Sequences with 

heterozygous SNPs were phased using PHASE v2.1.1 (Stephens & Scheet 2005; 

Stephens et al. 2001) with input files prepared using SeqPHASE (Flot 2010). Once 

phased, one of the two reconstructed haplotypes was chosen at random for inclusion 
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in downstream analyses. The assembly plugin in Geneious was used to assess the 

coverage across both genes. For this, sequences were treated as if they were long 

reads and assembled against the desaturase genes from the sequenced genome of D. 

mojavensis. 

 Genetic diversity and divergence tests were carried out in DNAsp v5.10.01 

(Librado & Rozas 2009). Per site pairwise nucleotide diversity (!S), and Tajimas’s D 

(1989) were calculated for each of the seven alignments (Nei 1987). DNA divergence 

by population in DNAsp was used to identify single nucleotide polymorphisms 

(SNPs), their position (coding or non-coding) and to examine population specific 

genetic variation. TFSEARCH v1.3 (Akiyama 1995) was used for transcription factor 

binding site searches associated with certain SNPs and one indel sequence (see 

Results). TFSEARCH uses the Transfac database (Heinemeyer et al. 1998) to search 

for transcription factor binding site matches to a given input sequence and gives each 

match a score. Each transcription factor binding site search was carried out using the 

arthropod specific database and 10bp were taken up and downstream of the focal SNP 

for examination, using a threshold score of 85%. Due to a population specific SNP in 

the translation initiation site of desat2 (see Results), TIS Miner (Liu & Wong 2003) 

was used to confirm the position of the TIS in the desat2 gene. TIS miner identifies 

potential translation initiation sites and compares them to a training data set, 

producing a similarity score to the training set consensus sequence. 

 Bisulfite sequenced clones were trimmed to remove vector sequence, aligned 

in Geneious and checked for accuracy by eye. The number of different methylated 

motifs were quantified to 1) determine if methylation occurs in the desat2 gene 

promoter and 2) which motifs are methylated. 
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Fig. 2.2 Primer positions for sequencing of (a) desat1 and (b) desat2. Exons are indicated in grey bars along with positions and directions of each primer pair 

from Table 2.1. 

A 

B 
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RESULTS!

Genetic variation in the desaturase genes 

In total 146 sequences (including five Santa Catalina Island samples) were obtained 

with an average length of 479bp (Table 2.2). Sequences covered the majority of gene 

regions for both desat1 and desat2, with only exon 4 of desat1 not surveyed (Fig. 

S2.1). At least five individuals were sampled from the Baja population per alignment, 

and always more than 10 for the Mainland population. Although sample sizes were 

fairly low (in order to survey across the genes), sampling several sub-populations 

should provide enough evidence of population-specific variation. 

 

Table 2.2. Summary of sequence alignments across desat1 and desat2 for Baja and Mainland 

populations. 

Gene region Length N Total polymorphic sites Informative sites !S D 
DS1PS1 632 22 5 1 0.00145 -1.3869 
DS1PS2 503 22 11 4 0.00362 -1.3803 
DS1PS3 582 19 4 2 0.00192 -1.1691 
DS2PS1 339 21 32 11 0.01699 -1.3796 
DS2PS2 408 15 8 5 0.00496 -0.6891 
DS2PS3_F 392 24 8 6 0.00413 -0.7828 
DS2PS3_R 500 18 9 5 0.00563 0.2714 
Total 3356 141 77 34   
Mean 479 20 11 5   

 
DS, desaturase gene followed by number; PS, primer set followed by number; _F indicates 
sequenced with the forward primer; _R, indicates sequenced with the reverse primer; N, 
sample size; Informative (segregating) sites are positions with a minimum of two nucleotides 
that appear at least twice; !S, per site nucleotide diversity (Nei, 1987); D, Tajima's D statistic 
(1989). 

 

Nucleotide diversity across the desaturase genes was generally low, as was the 

average number of informative positions (i.e. positions with at least two SNPs that are 

present at least twice) across all alignments (Table 2.2). The nucleotide diversity 

across the desaturase genes was compared to the same diversity measure across 25 

independent loci from the D. mojavensis genome. These loci represented a genome-
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wide sample covering coding and noncoding regions and all chromosomes. Although 

a number of other factors may influence genetic diversity (for example recombination 

rate variation, proximity to transposable elements and inversions polymorphism 

amongst others), this sampling gave an approximate genome-wide average diversity 

for comparison across populations. Nucleotide diversity in the desaturase genes 

(median = 0.00413) was significantly lower than the average of the 25 loci (median = 

0.0104, see Chapter 3 and Machado et al. 2007 for all loci used; Wilcoxon rank sum 

test, p-value <0.01). Tajimas’s D (1989) tests for the influence of population history 

and natural selection on nucleotide diversity in sequence data, and significant 

deviations are taken as evidence for a lack of neutrality. The majority of alignments 

showed negative values for this neutrality test, none of which were significant, with 

desat1 showing particularly strong negative values (Table 2.2). This may indicate the 

presence of purifying selection, however, small numbers of sampled alleles and a 

strong population structure can often reduce the power of neutrality tests (Nielsen 

2001; Simonsen et al. 1995). The majority of polymorphic positions discovered were 

singleton SNPs, with none of the variable positions demonstrating fixed differences 

between populations. Several positions were fixed in one population and not the other, 

however these sites were all located in non-coding or synonymous genetic regions (i.e. 

non-coding or third codon coding sites). Thus no tests for selection could be 

undertaken due to the complete lack of non-synonymous mutations. Although no two 

SNPs were fixed between populations, 11 positions across all alignments were fixed 

for one allele in one population and at a high frequency for the alternative allele 

(defined as >50% of occurrences of the alternative SNP in the polymorphic 

population). These positions might potentially represent on-going fixation of 

alternative SNPs between populations. 
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These segregating sites were predominantly located in intron and third codon 

exon positions, indicating that any on-going fixation in one population is likely due to 

genetic drift and represents the independent evolutionary history of these populations. 

However, the desat2 promoter region might be under divergent selection if SNPs lie 

in transcription-factor binding sites. To test this, five polymorphic positions 

discovered in the desat2 promoter, with one allele fixed in one of the two populations 

and >50% alternative SNPs in the other, were examined for known transcription 

factor binding sites in arthropods using TFSEARCH. This search demonstrated no 

correspondence of any of the five positions to known transcription factor binding sites. 

Given their position in non-coding DNA, along with no detectable functional 

significance, it seems likely that these sites are evolving through genetic drift. No 

fixed differences were discovered between the Baja and Mainland population, 

however three fixed differences were seen between the Santa Catalina Island 

population and other two populations. 

 

Table 2.3. Frequencies of polymorphic SNP positions between the Baja and Mainland 
populations.  
 
Type of variation DS1PS1 DS1PS2 DS1PS3 DS2PS1 DS2PS2 DS2PS3_F DS2PS3_R 
Poly. in Baja, 
mono. in Mainland 1 3 1 9 4 2 2 

Poly. in Mainland, 
mono. in Baja 3 8 1 18 2 6 5 

Fixed between 
populations 0 0 0 0 0 0 0 

Shared between 
populations 1 0 2 5 2 0 2 

 
Poly., polymorphic; mono., monomorphic; DS, desaturase gene; PS, primer set; _F indicates 
sequenced with the forward primer; _R, indicates sequenced with the reverse primer. 

 

Fixed population differences were discovered between the Santa Catalina population 

and the other populations in the desat2 promoter region, a first codon position in exon 
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1 and a third codon position in exon 1. The first codon position SNP caused a 

nonsynonymous change in the first amino acid of the protein in the Mainland and 

Baja populations, changing the methionine to a leucine (Fig. 2.3). Because methionine 

is always the first amino acid in any polypeptide, this mutation might mean either a 

population specific translation initiation site for DESAT2, or that the official genome 

release is incorrectly annotated and the true TIS is at another position. The latter 

explanation would lead to a nonsynonymous mutation in the first exon of desat2 

between the Santa Catalina Island and Baja/Mainland sequences. Thus a TIS search 

was carried out to identify the most likely TIS in both the Santa Catalina Island 

consensus sequence, and the Baja/Mainland consensus sequence. This search was 

carried out on each sequence from 137bp upstream of the previously annotated TIS. 

TIS miner identified four potential TISs in the Santa Catalina Island consensus 

sequence, two of which had in-frame stop codons in the 100bp downstream of the TIS, 

suggesting that these TISs did not produce functional proteins. The remaining two 

positions included the officially annotated TIS and a new TIS located 36bp upstream 

of the original. This new TIS had a higher score to the consensus TIS than the official 

annotation (0.179 compared to 0.002 respectively; Table S2.1), suggesting it was a 

more likely TIS. A search of the Baja/Mainland consensus sequence confirmed this 

new upstream TIS, thus for all populations the most likely true TIS lies 36bp 

upstream of the originally annotated protein (Table S2.1). The ATG > CTG mutation 

is therefore a fixed, nonsynonymous mutation between the Santa Catalina Island and 

other two populations. This mutation changes the methionine in the Santa Catalina 

Island population into a leucine in the Baja and Mainland groups (Fig. 2.3). 

Although some sequences demonstrated indels, the majority of these were 

single or dinucleotide indels that occurred at low frequency, and showed no 
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population patterns in presence or absence. However, one indel located in the 

promoter region of desat2 was present in all Baja and Mainland samples and absent in 

all Santa Catalina Island individuals (Fig. 2.4). This indel was 35bp long and a 

transcription factor binding site search discovered a binding site for chorion factor 2 

(Cf2), which is always absent in the Santa Catalina population. Cf2 functions in the 

regulation of muscle-related gene expression (Garcia-Zaragoza, et al, 2008), 

specifically in the control of indirect flight muscle development (Gajewski and 

Schultz, 2010). 



! "#!

 

Fig. 2.3 Exon 1 coding sequence of desat2, showing the position of the officially annotated translation initiation site (TIS) and the TIS discovered with TIS 

miner, 36bp upstream. Identification of this new TIS uncovered a population specific SNP causing a change in the protein sequence of DESAT2.
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Fig. 2.4 Desat2 assembly showing coverage of the gene region, and population specific indel with predicted chorion factor 2 (CF2-II) binding site and 

absence of this site in the Santa Catalina Island population. 
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DNA methylation variation in desat2 

DNA methylation was discovered in the promoter region of desat2 at very low levels, 

with little indication of functional patterns. Because the whole body of one individual 

was surveyed, the cloned sequences represent the population of different cell types 

within this individual. Functional methylation is expected to appear as positions that 

are consistently methylated across all sequences. However, although there were 

clusters of methylated positions across sequences, no single nucleotide site was 

consistently methylated, indicating a random pattern of DNA methylation. The most 

frequently methylated motif was CpT followed by CpA and CpG, and CpC positions 

demonstrated no methylation (Table S2.2). Direct sequencing of PCR products was 

unsuccessful, except for three females raised on organ pipe cactus. These sequence 

traces had minor levels of background noise but were clean enough to identify the 

presence of methylation. Direct sequences demonstrated methylation at all nucleotide 

positions discovered in the sequenced clones, as well lower levels of methylation at 

other positions, most noticeably at CpA motifs. 

 

DISCUSSION!

Sequencing of two desaturase genes was carried out to examine population specific 

patterns of genetic variation across the introns and exons of desat1 and desat2, and 

the promoter region of desat2, for the Baja California and Mainland populations of D. 

mojavensis. Desat1 and desat2 have been implicated in mating success and CHC 

expression divergence between the Baja and Mainland populations of D. mojavensis 

(Etges et al. 2009). However, little genetic variation was detected in both gene regions. 

Although a number of polymorphic positions were discovered, these were all located 

in intron and third codon position sites and thus are unlikely to have functional 
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consequences. None of the mutations discovered caused a nonsynonymous change in 

either amino acid sequence of the desaturase proteins, and thus no tests for patterns of 

selection could be undertaken. The lack of genetic variation in general, and complete 

lack of nonsynonymous mutations suggests that divergent natural selection is not 

acting on these genes between the Baja California and Mainland populations. 

 Previous QTL analyses and studies from other species suggested the 

desaturase genes were potential candidate loci, however the results presented here 

demonstrate that a direct role is perhaps unlikely. The QTL analyses of Etges et al 

(2007; 2009 & 2010) found that marker Dmoj2_1603a was consistently associated 

with CHC, courtship song and mating success variation. This marker was located near 

the desat1 and desat2 genes, and thus these genes were identified as likely candidate 

speciation genes. However, due to the high level of recombination in D. mojavensis it 

was not possible for these three studies to precisely identify genomic regions 

associated with phenotypic variation, and candidate genes were instead identified 

through their genetic association with particular genomic markers. Therefore, 

although the desaturase genes were good potential candidates, other regions in genetic 

linkage with marker Dmoj2_1603a might underlie the sexual isolation between D. 

mojavensis populations. These regions could include other cis or trans regulatory 

elements, such as enhancers, that might act to regulate the expression of desat1 or 

desat2. Alternatively, they might be entirely different gene encoding regions, located 

near the desaturase loci and marker Dmoj2_1603a. 

 A high level of phenotypic divergence between genetically similar species 

suggests the importance of selection on gene expression variation, and genetic 

variation in transcription factor binding sites is a contributor to expression variation 

(King & Wilson 1975; Oleksiak et al. 2002). Although higher levels of genetic 
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variation were discovered in the desat2 promoter region, none of the polymorphic 

positions were associated with known functional motifs. Thus it seems unlikely that 

divergent selection has acted on regulatory regions in this gene. Recent studies have 

shown that the D. melanogaster desat1 promoter region contains at least five 

regulatory elements, producing five transcripts, which regulate gene expression in 

neural and non-neural tissues to coordinate the production and detection of courtship 

pheromones (Bousquet & Ferveur 2012; Bousquet et al. 2012). The promoter region 

of desat1 was not surveyed here and thus variation in regulatory elements influencing 

desat1 expression in D. mojavensis might exist, however recent evidence disputes the 

role of both desaturase genes in the sexual isolation of D. melanogaster populations 

(Grillet et al. 2012). The majority of polymorphic sites across both genes were located 

in non-coding and synonymous positions. Further, the lack of genetic variation over 

3Kb of both gene regions along with a negative Tajima’s D across most of these 

genes suggests the influence of purifying selection. A significantly lower level of 

nucleotide diversity was seen across the desaturase genes when compared to multiple 

independent loci indicating the action of background selection, which depletes genetic 

variation linked to deleterious mutations under purifying selection. Although it should 

be noted that this test was not corrected for a number of additional influences on 

nucleotide diversity such as physical location in the genome, recombination rate 

variation and inversion polymorphisms. Further, a selective sweep would also account 

for this reduction in nucleotide variation across the genes and further tests are 

necessary to distinguish this from background selection. Regardless, it is likely that a 

balance of purifying selection, and genetic drift are the primary forces governing the 

evolution of the desaturase genes in the Baja and Mainland populations of D. 

mojavensis. 
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 Several fixed differences were discovered between the Santa Catalina Island 

and other two populations, including one nonsynonymous mutation in exon 1 and a 

large indel in the promoter region. The Santa Catalina population lives on an island 

off the west of California and uses opuntia cactus, Opuntia demissa, as a host plant 

(Ruiz et al. 1990). The four populations of D. mojavensis differ little in their 

morphology, and external characteristics do not differentiate the Santa Catalina group 

from the other three, the only exception to this being the shape of the aedeagus, which 

is population specific (Pfeiler et al. 2009). The Santa Catalina Island population does 

not demonstrate any significant premating reproductive isolation from any other D. 

mojavensis population (Markow 1991) or postzygotic isolation, although the latter has 

not been thoroughly examined (Mettler 1963; Reed & Markow 2004; Ruiz et al. 

1990). Population genetic and phylogenetic analyses demonstrate that Santa Catalina 

is a panmictic population with strong differentiation from the other populations, 

showing little signal of gene flow between them (Machado et al. 2007; Reed et al. 

2007; Ross & Markow 2006). Therefore it is interesting that desat2 demonstrates 

strong population-specific signals of potentially functional variation, however the 

influence of this variation on CHC expression remains unclear, and CHCs in this 

population have not been characterised. A prospective transcription factor binding site 

was discovered in a 35bp indel that functions in flight muscle development. The flight 

muscles are known to provide power for courtship song production in Drosophila 

(Ewing 1979), potentially linking desat2 to courtship song production. Given the 

small size of Santa Catalina Island there is the potential for increased genetic drift. 

Thus it remains to be seen how significant these observed functional population 

differences are, and what influence, if any, they have on the resulting phenotypes. 
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 Very little epigenetic variation was seen in the desat2 promoter region, 

suggesting low levels of DNA methylation in D. mojavensis. There has been some 

controversy in the last two decades concerning the extent of DNA methylation that 

occurs in the Drosophila genome. Early work found no evidence for DNA 

methylation in Drosophila genes (Rae & Steele 1979), however genome-wide DNA 

methylation was later discovered at very low levels in adults and slightly higher levels 

in embryos (Lyko et al. 2000). There is some evidence of a functional DNA 

methylation system in Drosophila (Lyko et al. 1999) yet the two main DNA 

methylation genes (Dnmt1 and Dnmt3) are absent in the Drosophila genome (Krauss 

& Reuter 2011), suggesting a limited presence and functional importance for DNA 

methylation. However, Dnmt2 is present and has been shown to be involved in the 

methylation of tRNAs (Schaefer et al. 2010) suggesting that it does have a functional 

role in epigenetic modifications, yet RNA interference of Dnmt2 expression had no 

effect on fly development even though it resulted in a loss of DNA methylation 

(Kunert et al. 2003). Here, DNA methylation was discovered at low levels in different 

frequencies for each dinucleotide motif. Surprisingly, CpG motifs were very lightly 

methylated compared to CpT, which was the most frequently methylated dinucleotide. 

Both CpA and CpT motifs were methylated and studies have linked CpA/CpT 

methylation to the action of Dnmt2 (Kunert et al. 2003). Direct sequencing of PCR 

products was attempted for several samples, however the majority of these failed to 

amplify. This is most likely due to the presence of methylation in the primer 

sequences preventing the attachment of primers, but indicates that DNA methylation 

patterns may vary across individuals and rearing environment. However, without 

further examination through cloning it is difficult to assess whether this methylation is 

random, non-random or simply a failure in the PCR protocol. Thus DNA methylation 
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does occur in D. mojavensis and this is likely due to the action of Dnmt2, however the 

functional significance of this methylation remains unresolved. 

 The results presented here demonstrate that the desaturase genes do not show 

fixed, population-specific genetic variation and that the variation present is likely to 

be to evolving through neutral processes. This study highlights the inherent problems 

in identifying candidate genes and narrowing down causative candidate mutations. 

Given the increasing number of techniques available for genome level studies it 

would seem prudent to use multiple and independent lines of investigation for the 

identification of candidate speciation genes. Only once a specific gene has been 

identified in more than one separate study can you have confidence that it worthy of 

further investigation. For example, QTL studies might improve resolution by 

narrowing down on a candidate genomic region, using an increased sample size and 

density of genetic markers. Alternatively, a QTL or genome-wide association study 

might complement a gene expression study in order to identify causative regulatory 

SNPs underlying a phenotype (Jones et al. 2012). Such intersection of different data 

types is likely to be an important future aspect of the on-going efforts to characterise 

the molecular basis of adaptation and speciation. 
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ABSTRACT!

The cactophilic fly Drosophila mojavensis exhibits considerable intraspecific genetic 

structure across allopatric geographic regions and shows associations with different 

host cactus species across its range. The divergence between these populations has 

been studied for more than 60 years, yet their exact historical relationships have not 

been resolved. We analysed sequence data from 15 intronic X-linked loci across 

populations from Baja California, mainland Sonora-Arizona and Mojave Desert 

regions under an isolation-with-migration model to assess multiple scenarios of 

divergence. We also compared the results with a pre-existing sequence dataset of 8 

autosomal loci. We derived a population tree with Baja California placed at its base 

and link their isolation to Pleistocene climatic oscillations. Our estimates suggest the 

Baja California population diverged from an ancestral Mojave/Mainland group 

around 230-270 Kya, while the split between the Mojave Desert and Mainland 

populations occurred one glacial cycle later, 117-135 Kya years ago. Although we 

found these three populations to be effectively allopatric, model ranking could not 

rule out the possibility of a low-level of gene flow between two of them. Finally, the 

Mojave Desert population showed a small effective population size, consistent with a 

historical population bottleneck. We show that model-based inference from multiple 

loci can provide accurate information on the historical relationships of closely related 

groups allowing us to set into historical context a classic system of incipient 

ecological speciation. 

!

!

!

!
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INTRODUCTION!

The role of adaptation and ecological specialisation in speciation has enjoyed a recent 

resurgence of interest (Rundle & Nosil 2005; Schluter 2001). Although natural 

selection has always been seen as key to the biology of speciation (Sobel et al. 2010) 

recent studies and models make more explicit links between ecological adaptation and 

reproductive isolation. For example, if ecological selection either directly or indirectly 

influences traits involved in assortative mating, natural and sexual selection may act 

in partnership to drive rapid speciation (Funk et al. 2006; Maan & Seehausen 2011; 

Van Doorn et al. 2009; Weissing et al. 2011). Drosophila is often seen as a key 

system for understanding the evolution of reproductive incompatibilities, but few 

species have been studied in the context of ecological speciation (Mallet 2006). Some 

species are ecological specialists, including some mycophagous Drosophila (Jaenike 

1990), numerous Hawaiian drosophilids (Kambysellis et al. 1995; Magnacca et al. 

2008), and the island endemic D. sechellia that is uniquely adapted to volatile toxic 

components of Morinda citrifolia fruit (Farine et al. 1996; R'kha et al. 1991). The 

adaptation of some Drosophila species to live and breed on different species of 

fermenting cactus provides a potential example of ecological speciation as adaptation 

to different species of cactus can influence reproductive isolation (Etges et al. 2010). 

However the relative contribution of host plant specialization and population history 

to the population divergence of cactophilic species is not yet clear (Machado et al. 

2007). Here we investigate the history of three populations of a well-studied 

cactophilic fly Drosophila mojavensis using molecular data. 

D. mojavensis is a cactophilic member of the repleta group, within the 

Drosophila subgenus. This species is distributed throughout the Sonoran and Mojave 

Deserts and adjacent arid lands in Baja California, southern California, north-western 
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Mexico and Arizona, USA where it lives in a number of host cacti (Fellows and Heed 

1972; Ruiz et al. 1990) (Fig. 3.1).  

 

Fig. 3.1 Map of the Southwestern USA and Northwestern Mexico with approximate 

boundaries of the Sonoran and Mojave Deserts (black lines). Sample site location names and 

abbreviations are shown; darkened circles indicate sites described in this study, and darkened 

squares sites from Machado et al. (2007). Dashed lines denote the ranges of the populations 

used in this study; the Baja California, Mojave Desert and Mainland populations. Santa 

Catalina Island is indicated, but not included in this study. The inset map shows the ranges of 

the four major host cacti used by D. mojavensis; Ferocactus cylindraceous in the Mojave 

Desert, Stenocereus gummosus in Baja California, the islands on the Gulf of California, and a 

small patch in coastal Sonora, and S. thurberi in southern Baja California, and mainland 

Mexico and Arizona. 
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Populations of D. mojavensis are considered oligophagic, typically only using one 

host cactus species in different parts of the species range, with occasional use of other 

host species. The Baja California population uses agria cactus, Stenocereus gummosus, 

while D. mojavensis in north-western Mexico (principally in Sonora and Sinaloa) and 

Southern Arizona use organ pipe cactus S. thurberi, although they sometimes share 

sina cactus, S. alamosensis, with sister species D. arizonae in Sonora and Sinaloa. In 

southern California the Mojave Desert population uses barrel cactus Ferocactus 

cylindraceous and on Santa Catalina Island near Los Angeles, California flies use 

prickly pear cactus species including Opuntia demissa and O. littoralis. D. mojavensis 

exhibits more population structure than D. arizonae, which has a far wider 

distribution ranging from Arizona and New Mexico, USA to Chiapas in southern 

Mexico (Heed 1978; Ruiz & Heed 1988; Wasserman 1992) and is associated with 

different host cacti. Significant levels of sexual isolation have been reported between 

mainland Mexico and Baja California populations of D. mojavensis which has lead to 

them being described as incipient species (Etges et al. 2007; Etges et al. 2010; Etges 

et al. 2009; Etges et al. 2008; Markow 1991; Pfeiler et al. 2009; Zouros & 

d'Entremont 1980). However, detailed studies have demonstrated this isolation to be 

influenced by the species of cactus on which flies develop (Brazner & Etges 1993; 

Etges 1992; Stennett & Etges 1997). Common garden experiments have shown that 

rearing Baja or mainland Mexico flies reciprocally on organ pipe and agria cactus 

influences not only survival and life history but also courtship behaviours and 

assortative mating. Further, there are extensive genotype-by-environment interactions 

for Quantitative Trait Loci (QTLs) influencing life history and behavioural traits 

(Etges et al. 2007; Etges et al. 2009). Thus the D. mojavensis system shows 
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significant evidence of ecological specialization, influencing a range of traits 

associated with adaptation and differentiation. 

Although significant genetic structure is known within D. mojavensis 

(Machado et al. 2007; Ross & Markow 2006), the order of population divergence 

remains unresolved, and the geographic region from which the species is thought to 

have originated has been disputed. Phylogenetic analysis of second chromosome gene 

arrangements provided strong evidence that the Baja California peninsula is the centre 

of genetic diversity because of a rare ancestral chromosome in central Baja 

Californian flies (Johnson 1980; Wasserman 1992). Sequence variation in ADH 

enzyme loci, as well as glucose-6-phosphate dehydrogenase (G6pd) also support a 

Baja California origination of D. mojavensis (Matzkin 2004; Matzkin & Eanes 2003). 

In contrast Reed et al. (2007) suggested the Mainland region to be the centre of 

diversity, concluding a later colonization of the Mojave Desert and Baja California 

regions. Machado et al. (2007) demonstrated that the Santa Catalina Island and 

Mojave Desert populations group together on a separate lineage to the Baja and 

Mainland populations. Ross and Markow (2006) also concluded that the Baja and 

Mainland populations were more closely related to one another than the other two 

groups. The only attempt at dating population differentiation came from Reed et al. 

(2007) using mitochondrial DNA, estimating population differentiation to have 

occurred around 270-690 Kya. Thus, after more than 60 years of study, the order and 

timing of population divergence of this classic system have yet to be resolved. The 

identification of the ‘ancestral’ group is necessarily based on analysis of 

contemporary populations. Hereafter, when we refer to the ‘ancestral’ population (or 

populations) we explicitly mean an inferred ancestral group from contemporary 

population genetic data. 
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It is unknown to what extent the differentiation of populations in these regions 

has been influenced by gene flow rather than shared ancestral polymorphism. QTL 

analysis of Baja California and Mainland populations revealed high levels of shared 

polymorphisms, genotype-by-environment interactions and transgressive genetic 

variation, perhaps suggesting that gene flow between regions is on-going (Etges et al. 

2007; Etges et al. 2009). Distinguishing isolation from migration is a key challenge in 

population genetic inference (Hey & Nielsen 2004). Traditional analyses of the 

relationships between populations often involve allelic markers or mtDNA sequences 

and have limited power to distinguish between shared ancestral polymorphism and 

gene flow (Zhang & Hewitt 2003). In contrast, joint analysis of sequence data from 

multiple nuclear loci in a model-based coalescent framework allows for accurate 

quantification of recent population histories (Garrick et al. 2010; Hey 2005). Such a 

framework also has the advantage of not relying on large numbers of individuals, but 

rather increases its power by sampling across many loci (Hey & Nielsen 2004; Lohse 

et al. 2010; Wang & Hey 2010). 

Here we use multiple intronic loci to infer the order in which the three main 

populations in the D. mojavensis species range (i.e. Baja California, Mojave Desert, 

and Mainland) diverged, and estimate the demographic parameters associated with 

their history. We used likelihood-based model selection for each pairwise comparison 

of populations to infer the most likely scenario of divergence and obtained estimates 

of demographic parameters based on these models. These parameters were then used 

to inform a full, three-population model. Further, to assess these results, we ran 

analogous analyses on an independent, autosomal dataset from Machado et al (2007), 

comprised of 7 Kb of sequence over 8 loci each including both coding and non-coding 

regions. We show that the use of multiple loci in a model-based coalescent framework 
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can distinguish isolation from migration, be informative of demographic parameters 

and provide information on the evolutionary relationships of recently diverged 

populations. 

 

METHODS!

Primer design and sequencing 

Individuals were sampled from across the three major geographic regions (Fig. 3.1). 

DNA was extracted from whole flies using cell lysis solution (0.1M EDTA, 0.2M Tris 

and 1% SDS) and incubated with Proteinase K and RNase A. Fifteen primer sets were 

designed to amplify intronic regions of the X-chromosome (Supplementary Table 

S3.4). Loci were spread evenly across the chromosome with an average of 1.5Mb 

between them. Large (700-900bp) introns were randomly sampled from coding genes. 

Extracted DNA was amplified by PCR, and cleaned with a Qiagen MinElute PCR 

Purification Kit. Sequences were obtained from males only to allow for direct 

sequencing without cloning or computational phasing. Sequencing was carried out on 

an ABI 3730 instrument following a BigDye reaction (sequences available in 

GenBank under accession numbers JQ405359-JQ405528). Sequence length varied 

from 500-600bp (after the trimming described below). In total, twelve individuals 

were sequenced for fifteen loci (Baja N=4, Mainland N=3 and Mojave N=5). 

Sequences were aligned using MAFFT (Katoh et al. 2002) and all indels were 

excluded from further analyses. Each chromatogram and alignment was checked by 

eye for accuracy and low quality sequences were re-sequenced. 

We also reanalysed data from Machado et al. (2007) obtained from Genbank, 

which included 8 coding and non-coding nuclear loci from chromosomes 2, 3, 4 and 5 

for 15 individuals from the three populations (see Fig. 3.1 and Table 3.1). After 
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testing for recombination and trimming alignments into non-recombining blocks, 

these autosomal sequences were an average of 860bp in length. Two X loci in the 

original dataset of 10 loci were excluded from our analyses. 

 

Table 3.1 Sample sites, including the location under which each population was grouped for 

analyses, the number of individuals sampled from each population and the source of each 

sample. Collection year is given in brackets for samples sequenced in this analysis (See 

Machado et al. 2007 for more details). 

 
m , denotes data taken from Machado et al. (2007). 

 

Testing assumptions of the isolation-with-migration model 

The isolation-with-migration (IM) model is a non-equilibrium description of 

population relationships that allows populations to be related by divergence from a 

common ancestral population and through migration after divergence (Hey & Nielsen 

2004). For two populations the model includes six parameters; the divergence time t, 

two migration rates between descendent populations M in either direction and the 

effective population sizes Ne of the ancestral and both descendent populations. IMa2 

parameters are scaled relative to !, the geometric mean of the (per generation) 

Population Sample site Number Individuals Source

Baja California San Quintin (SQ) 2 Lab (2008)
Punta Prieta (PP) 1 Lab (2008)
South Bahiá Conceptión (SBC) 1 Lab (1996)
Vizcaino (VZ)m 2 Lab
La Paz (MJBC)m 1 Lab

Mainland Punta Onah (PO) 1 Wild (2009)
Puerto Choyuda (PC) 1 Wild (2009)
Las Bocas (LB) 1 Wild (2009)
Santa Rosa Mountains (SARO)m 1 Lab
Magdalena de Kino (NS)m 3 Lab
Desemboque (DE)m 1 Lab
Guaymas/San Carlos (MJ/SC)m 3 Lab

Mojave Desert Lake Mead (LM) 1 Lab (2010)
Providence Mountains (PM) 1 Lab (1996)
Chocolate Mountains (CM) 3 Lab (1988)
Whitmore Canyon (WC)m 2 Lab
Anza-Borrego Desert (ANZA)m 2 Lab
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mutation rate across loci. Migration is measured as m = M/ !, scaled effective 

population sizes are defined as ! = 4Ne ! and divergence time as T = t/u g, where M is 

the rate of migration per generation, t and T denote population divergence measured 

in numbers of generations and years respectively and g is the generation time (in 

years). The model makes the standard population genetic assumptions of random 

mating within populations, large effective size and selective neutrality. We used IMa2 

(Hey 2010; Hey & Nielsen 2004) to estimate parameters under this model. IMa2 uses 

Markov Chain Monte Carlo sampling (MCMC) in a Bayesian framework to estimate 

parameters under the IM model and makes the additional assumptions of no 

recombination within, but free recombination between loci, and no other groups 

connected to the study populations via gene flow. All assumptions are reasonable in 

our study. First, there is little evidence of population sub-structure within each of the 

three D. mojavensis populations, except perhaps for Baja California (Etges et al. 

1999; Ross & Markow 2006). Second, given the physical distance between loci, 

ignoring physical linkage between them is justified. Finally, we tested for 

recombination within loci using Recombitest (Piganeau et al. 2004). Two loci (3 and 

6) showed evidence of recombination based on two different measures of linkage 

disequilibrium (r2 and |D’|) correlated with distance between sites, so both were 

trimmed to the largest block compatible with the assumption of no-recombination 

(Piganeau & Eyre-Walker 2004). We used DNAsp version 5.10.01 (Librado & Rozas 

2009) to estimate genetic diversity and appropriate nucleotide substitution models 

were identified for each locus using jmodeltest (Posada 2008). The HKY model 

provided the best fit for all X-chromosome loci and several of the Machado et al. 

(2007) loci. Since IMa2 only supports the infinite sites and HKY models for DNA 
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sequence data, we chose the more complex HKY model as being more appropriate for 

both datasets. 

 

Coalescent analyses using IMa2 

Given the large number of possible parameter combinations and the need to specify 

the order of divergence in a three-population model (unknown in D. mojavensis), we 

first ran separate IMa2 analyses for all three pairwise comparisons of D. mojavensis 

populations followed by three-population models using the inferred topology and 

reduced (most likely) parameter set. While an exhaustive comparison of all possible 

models is feasible for two-population IM scenarios, for three or more populations the 

sheer number of models makes this approach impractical. Consider the full three-

population IM model, which has 8 migration and 5 effective population size 

parameters. There are 28 ways to simplify this model by setting one (or more) 

migration rates to zero and 24 ways to set one (or more) pairs of migration rates to be 

symmetrical. Likewise there are 24 model simplifications that involve setting one (or 

more) population sizes to be equal to ancestral population sizes. Thus, there are at 

least (16 + 256) ! 16 = 4352 nested models for a fixed population tree topology. Note 

that this excludes model simplifications that involve both symmetric migration rates 

between some pairs of populations and zero gene flow between others, so the number 

of all possible models is substantially larger. In other words to explore the full space 

of three-population IM scenarios, one would need to compare over 13,000 models, 

which is not feasible. Instead we adopted a bottom-up strategy, which consisted of 

comparing nested models for each of the three pairwise comparisons of populations 

and using these to specify a three-population model. Our rationale was that if gene 

flow has been limited the omitted population would not contribute to the analysis and 
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thus the divergence estimates obtained in these pairwise runs would be informative 

about the order of divergence. Conversely, if population relationships were dominated 

by gene flow, this should be detectable as high migration rate estimates.  

Mutation rates can be specified in IMa2 to convert scaled (in units of Ne 

generations) parameters into absolute values. For D. melanogaster a direct, lab-based 

estimate of the genome-wide mutation rate is available (Keightley et al. 2009) which 

avoids potentially unreliable indirect rate calibrations (Pulquerio & Nichols 2007). 

Keightley et al. (2009) measured the mutation rate of three mutation accumulation 

lines over an average of 262 generations and determined a single nucleotide mutation 

rate of 3.5 ! 10-9 per site per generation. We used this direct mutation rate measure 

and also incorporated the 95% CI of this estimate (2.96 ! 10-9, 4 ! 10-9) into our 

analyses. Although we used a genome-wide estimate applied to introns, little is known 

about intron function and evolution. Thus we believe a direct mutation rate to be 

broadly appropriate. We multiplied the direct mutation rate by the length of each 

alignment (assuming there was no constraint on intron divergence) to convert to per 

locus mutation rates. In the Machado et al. (2007) dataset, non-synonymous sites 

were excluded from this calibration. The inheritance scalar for the X chromosome 

data was set to 0.75. We assumed 6 generations per year for D. mojavensis consistent 

with lab generation times, our knowledge of the seasonal phenology of breeding site 

availability (Etges, pers. observation) and previous estimates (Matzkin & Eanes 2003).  

We performed extensive runs for all 3 pairwise comparisons to optimise the 

MCMC settings and identify appropriate prior bounds. We used a geometric heating 

scheme with 40 chains (a = 0.975, b = 0.7) and upper prior bounds for parameters 

were: t = 15, Ne = 37.5 and m = 0.7. For each pairwise comparison, we initially ran 

IMa2 for the full model using the above settings, a burn-in of 10,000 generations and 
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sampling 100,000 genealogies. Separate analyses were performed for the X and the 

Machado et al. (2007) datasets. To test for convergence, all runs were repeated with a 

different random number seed.  

We used genealogies sampled in the initial MCMC runs to estimate the joint 

likelihoods of all simpler models nested within the full, six-parameter model (using 

the L-mode in IMa2). There are 25 ways of simplifying the full model (Table 3.4), 

either by setting migration parameters to zero or by combining parameters. For each 

nested model we compared the joint log likelihood (LogL) to that of the full model to 

find the best model(s) given the data. We adopted the method of Carstens et al. (2009) 

and ranked models using Akaike Information Criterion (AIC) scores (Akaike 1973), 

defined as AIC = 2k – LogL. This penalises the joint log likelihood (LogL) of each 

model by its complexity, where k is the number of model parameters. Although we 

were interested in identifying the best model, ranking a set of likely models allowed 

us to move beyond accept/reject hypothesis testing and investigate the relationships 

between the three D. mojavensis populations in more detail (Carstens et al. 2009). 

Following Carstens et al. (2009) we also calculated two related information 

theoretical statistics to facilitate model comparisons: Akaike weights ("i) i.e. the 

normalized relative likelihoods of the model, and the evidence ratio (Emin/I = "min/ "i), 

which compares each model to the best model and provides an objective measure of 

model support. We considered an evidence ratio of <10 to be moderate support for a 

model relative to the top model (Anderson & Burnham 2002). 

Having identified a set of plausible models, we ran a second IMa2 analysis for 

each pairwise comparison under the best-supported simplified IM model to obtain 

final parameter estimates. Finally, we ran a three-population model given the most 

likely population tree topology as identified from the divergence times in the 
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simplified pairwise runs, MCMC and prior settings were set as described above for 

the two-populations models. Model selection results from the pairwise comparisons 

were used to simplify the three-population model, by removing unsupported 

migration parameters. 

To independently examine the tree topology we also analysed our data in 

*BEAST (Drummond & Rambaut 2007), which does not require a pre-defined tree 

topology but is limited to strict divergence models. Priors of the *BEAST analysis 

were set to be identical to those used in the IMa analyses whenever possible. We 

assumed a HKY nucleotide substitution model and a fixed per site mutation rate 

across loci as derived by Keightley et al. (2009). We ran six replicate *BEAST runs 

each with 10 million generations and a burn-in of 1 million, sampling 10,000 

population trees per run. The posterior samples of trees from the six replicates were 

combined to produce a maximum clade credibility tree (assuming a strict molecular 

clock), including divergence times and clade support values. Trees were visualised in 

FigTree v1.3.1 (Rambaut 2010). 

 

RESULTS!

A total of 9Kb from fifteen X chromosome loci was sequenced from 12 individuals 

across three geographically isolated populations of D. mojavensis; Baja California, 

Mojave Desert and Mainland (Table 3.1). A population on Santa Catalina Island (Fig. 

3.1) was not included. The total number of polymorphic sites (285) and mean per site 

nucleotide diversity for all loci (0.014) indicated high overall genetic variation, 

comparable to that seen in African Drosophila melanogaster (#=0.0114; Ometto et al. 

2005; Table 3.2). The Mojave Desert population (Supplementary Table S3.1) had a 

lower diversity ("=0.0022) than the Baja California and Mainland populations 
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("=0.017 and "=0.019 respectively) in agreement with previous studies (Ross & 

Markow 2006). Diversity in the Machado et al. (2007) dataset ("=0.0079) was almost 

half that seen in the X data (Supplementary Table S3.1). 

 

Table 3.2 Summary statistics of each locus sampled in the X chromosome dataset 

 

L, length of locus alignment; S, number of polymorphic sites; HD, haplotype diversity; #S, 

per site nucleotide diversity (Nei, 1987); #, from Watterson (1975). 

 

IMa2 and pairwise model selection 

ESS values, visual examination of parameter trend plots and near identical results of 

replicate MCMC runs indicated good mixing and convergence of the Markov chains. 

In all three pairwise comparisons the best-supported model (with the lowest AIC 

score) contained no migration (Table 3.3, see Table 3.4 for model descriptions). 

However, several models with low rates of migration in each comparison were found 

to be moderately supported (below the evidence ratio cut off of 10), but with little 

information on the direction of the migration. Although a strict divergence model 

(Model 5) had the highest support for the Mojave/Baja comparison (Table 3.3c), its 

Locus Gene identifier L S HD !S !
1 GI16459     835 15 0.848 0.0161 0.0171
2 GI11083    652 7 0.833 0.0044 0.0054
3 GI11153     584 31 0.945 0.0481 0.0516
4 GI21637    652 19 0.848 0.0172 0.0184
5 GI21676     676 20 0.818 0.0114 0.0153
6 GI21740    674 13 0.891 0.0094 0.0104
7 GI21817     556 19 0.933 0.0243 0.0261
8 GI15371    587 25 0.844 0.0064 0.0080
9 GI15520    665 7 0.891 0.0119 0.0157
10 GI15595    358 11 0.956 0.0118 0.0133
11 GI15666    642 16 0.917 0.0166 0.0176
12 GI15707     524 10 0.618 0.0067 0.0115
13 GI15862     644 10 0.909 0.0115 0.0146
14 GI15934   472 48 0.867 0.0072 0.0092
15 GI15975   640 34 0.867 0.0126 0.0136

Total 9161 285
Mean 610.7 19
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evidence ratio was almost identical to that of the next model (Model 2), which 

included a low rate of symmetric migration (1.06:1 odds in favour of the simple 

divergence model). Thus, although our estimates of gene flow were very low we 

could not rule out migration between Mojave and Baja and therefore considered both 

Model 2 and Model 5 for final parameter estimates for the Mojave/Baja comparison, 

and zero migration (Model 5) for the remaining two comparisons. 

Table 3.3 Summary of model selection results for the three X chromosome comparisons. 

Shown are models with moderate support (Emin/i < 10) for (a) Baja vs Mainland, (b) Mainland 

vs Mojave and (c) Mojave vs Baja 

 

Model number, see Table 3.4; K, number of model parameters; m, migration '>', direction of 

migration backwards in time; [], number within brackets fixed; $i, difference in AIC; "i, 

Aikaike weights; Emin/I, Evidence ratio. 

(a) #0, Mainland effective population size, #1, Baja Ne; #2, ancestral Ne  

(b) #0, Mojave effective population size, #1, Mainland Ne; #2, ancestral Ne 

(c) #0, Mojave effective population size, #1, Baja Ne; #2, ancestral Ne 

(a) Model number log(P) K !0 !1 !2 m0>1 m1>0 AIC !i "i Emin/i

15 -3.684 2 6.738 37.5 [6.7379] [0.00000] [0.00000] 20328.938 0.000 0.266219 1.000
14 -3.322 3 5.610 37.5 [5.6104] 0.162 [0.00000] 20330.214 1.276 0.140656 1.893
5 -3.487 3 7.861 37.5 6.010 [0.00000] [0.00000] 20330.544 1.606 0.119262 2.232
12 -3.495 3 6.283 37.5 [6.2833] 0.032 [0.0319] 20330.560 1.622 0.118311 2.250
13 -3.552 3 6.474 37.5 [6.4739] [0.00000] 0.043 20330.674 1.736 0.111756 2.382
4 -3.276 4 6.267 37.5 5.338 0.134 [0.00000] 20332.122 3.184 0.054180 4.914
3 -3.304 4 7.717 37.5 5.274 [0.00000] 0.066 20332.178 3.240 0.052684 5.053
2 -3.313 4 7.242 37.5 5.257 0.035 [0.0347] 20332.196 3.258 0.052212 5.099
11 -3.322 4 5.610 37.5 [5.6104] 0.162 0.000 20332.214 3.276 0.051745 5.145

(b) Model Number log(P) K !0 !1 !2 m0>1 m1>0 AIC !i "i Emin/i

20 -0.848 2 0.716 10.650 [10.6501] [0.00000] [0.00000] 20839.778 0.000 0.308610 1.000
5 -0.742 3 0.722 8.299 11.158 [0.00000] [0.00000] 20841.566 1.787 0.126264 2.444
18 -0.780 3 0.727 10.680 [10.6798] [0.00000] 0.024 20841.643 1.864 0.121508 2.540
17 -0.814 3 0.704 10.675 [10.6753] 0.016 [0.0163] 20841.710 1.931 0.117505 2.626
19 -0.848 3 0.716 10.650 [10.6501] 0.000 [0.00000] 20841.778 2.000 0.113531 2.718
3 -0.631 4 0.736 8.024 11.352 [0.00000] 0.031 20843.344 3.566 0.051888 5.948
2 -0.687 4 0.709 8.192 11.285 0.020 [0.0195] 20843.456 3.678 0.049062 6.290
4 -0.742 4 0.722 8.299 11.158 0.000 [0.00000] 20843.566 3.787 0.046450 6.644
16 -0.780 4 0.727 10.680 [10.6798] 0.000 0.024 20843.643 3.864 0.044700 6.904

(c) Model Number log(P) K !0 !1 !2 m0>1 m1>0 AIC !i "i Emin/i

5 -0.829 3 0.821 37.5 7.455 [0.00000] [0.00000] 20004.872 0.000 0.277306 1.000
2 0.110 4 0.709 37.5 5.855 0.051 [0.051] 20004.994 0.122 0.260896 1.063
4 -0.466 4 0.704 37.5 6.447 0.063 [0.00000] 20006.146 1.274 0.146690 1.890
3 -0.533 4 0.862 37.5 7.137 [0.00000] 0.038 20006.281 1.409 0.137115 2.022
1 0.138 5 0.696 37.5 5.833 0.064 0.043 20006.938 2.066 0.098694 2.810
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Table 3.4 Model selection (L mode) model descriptions for all 25 possible nested models 

within the full two-population IM model. 

 

For each pairwise comparison we carried out likelihood ratio tests to test each model 

against the full model (Model 1; Tables S3.6-3.8). Significance at p = 0.05 was 

assessed both with and without Bonferroni correction. Using an evidence ratio cut-off 

of 10 for ranked models generally included comparisons that were non-significant at 

5% (i.e. the models cannot be rejected). Applying a correction for multiple testing 

reduced the number of models that could be rejected (Tables S3.6-3.8). 

 

 

 

Model number Model Description
1 FULL
2 m all equal
3 m 0>1 is zero
4 m 1>0 is zero
5 m = zero
6 !0=!1

7 !0=!1, m all equal
8 !0=!1, m 0>1 is zero
9 !0=!1, m 1>0 is zero

10 !0=!1, m = zero
11 !0=!2

12 !0=!2, m all equal
13 !0=!2, m 0>1 is zero
14 !0=!2, m 1>0 is zero
15 !0=!2, m = zero
16 !1=!2

17 !1=!2, m all equal
18 !1=!2, m 0>1 is zero
19 !1=!2, m 1>0 is zero
20 !1=!2, m = zero
21 ! all equal
22 ! all equal, m all equal
23 ! all equal, m 0>1 is zero
24 ! all equal, m 1>0 is zero
25 ! all equal, m = zero
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Simplified model results 

Our parameter estimates from the top selected models (Table 3.3) suggest that 

divergence of D. mojavensis populations occurred several hundred thousand years ago, 

with very little subsequent gene flow. Divergence of the Mojave and Mainland 

populations (117 Kya) postdates divergence between both Mojave/Baja (177 Kya no 

migration, 226 Kya with equal migration) and Mainland/Baja (254 Kya) (Table 3.5a). 

Although 95% highest posterior density (HDP) intervals of all three divergence time 

estimates overlap, the similar divergence time estimates for the Mojave/Baja (when 

migration was in the model) and the Mainland/Baja splits suggest that the most recent 

common ancestor of all three populations divided into a Baja population and a 

Mojave/Mainland ancestral population first, with the divergence of the 

Mojave/Mainland ancestor into contemporary Mojave and Mainland populations 

coming later (Table 3.5a and Fig. 3.2). 
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Table 3.5 Posterior high points and 95% HPD (in brackets) of model parameters estimated under the most parsimonious models for (a) two-population 

models for both the X chromosome and Machado et al. (2007) datasets, where ‘Mojave/Baja (migration)’ is the comparison under Model 2 of equal migration 

and (b) three-population models. 

 
Divergence time0, Mojave/Mainland divergence time; Divergence time1, Baja divergence time from Mojave/Mainland ancestor; Ancestral Ne0, size of 

Mojave/Mainland ancestor; Ancestral Ne1, ancestor of all; m, migration '>' indicates direction backwards in time; * Indicates a parameter that was not 

estimated. Divergence times are in years and effective population sizes in numbers of individuals.

(a) X chromosome Machado et al.
Parameter Baja vs. Mainland Mojave vs. Mainland Mojave vs. Baja Mojave vs. Baja (migration) Baja vs. Mainland Mojave vs. Mainland Mojave vs. Baja

Divergence time (95% HPD) 254K (171-336K) 117K (57-203K) 177K (102-259K) 226K (108-383K) 182K (108-267K) 230K (130-363K) 284K (134-420K)

Mainland Ne (95% HDP) 1.65M (817K-4M) 1.7M (1.5M-3.7M) - - 2.7M (1.6-2.4M) 2.1M (1.3-3.6M) -

Baja Ne (95% HPD) * - * * * - 1.9 M (843K-5.7M)

Mojave Ne (95% HPD) - 149K (68-278K) 181K (93-318K) 149K (68-278) - 330K (156-662K) 406K (191-822K)
Ancestral Ne (95%HPD) 1.2M (615K-2.1M) 2.3M (1.5-3.6M) 1.5M (801K-2.5M) 1.2M (431K-2.3M) 1.1M (551K-2M) 1.1M (461K-2.1M) 1.1M (281K-2.1M)

(b) Parameter No migration Equal migration
Divergence time0 (95% HPD) 123K (59-211K) 135K (63-231K)
Divergence time1 (95% HPD) 229K (117-290K) 270K (195-383K)
Mainland Ne (95% HDP) 1.25M (487K-5.3M) 1.34M (519K-5.8M)
Baja Ne (95% HPD) * *
Mojave Ne (95% HPD) 149K (68-285K) 109K (44-237K)
Ancestral Ne0 (95%HPD) 1.85M (648K-7.4M) 978K (221K-6.3M)
Ancestral Ne1 (95%HPD) 800K (487K-1.3M) 624K (262K-1.1M)
mMojave>Baja - 0.08
mBaja>Mojave - 0.00
mAncest>Baja - 0.00
mBaja>Ancest - 0.7
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Fig. 3.2 Posterior distributions of divergence time estimates (in years) for each pairwise 

comparison for the X chromosome dataset. Each line is the posterior distribution for the 

divergence time parameter under the most parsimonious model (top models in Tables 3.3), for 

a particular pairwise comparison. The bold distribution is the Mojave Desert/Baja California 

comparison under Model 2 (equal migration), all others are models without migration. 

 

Consistent with previous studies the effective population size (Ne) of the Mojave 

Desert was considerably smaller than that of the Mainland population (Table 3.5a). Ne 

estimates for each of the three populations did not differ between different pairwise 

comparisons (Fig. 3.3a and Table 3.5a). Similarly, the ancestral Ne of Baja/Mainland 

was almost identical to that of the Mojave/Baja ancestor (Table 3.5a) regardless of 

whether migration was included in the model (Fig. 3.3b). This close agreement of 
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ancestral Ne estimates for both comparisons involving the Baja population is further 

indication of the basal position of this group in the population history. 

 

Fig. 3.3 Posterior distributions of effective population size estimates (in number of 

individuals) for the X chromosome dataset. (a) Contemporary population sizes comprised of 

two estimates for each population from pairwise comparisons. Baja effective population size 

(not shown) could not be estimated (see Discussion). (b) Ancestral population sizes for each 

pairwise comparison, including that of the Model 2 (equal migration) in bold. 

 

0 2000000 4000000 6000000 8000000

0.
0

0.
5

1.
0

1.
5

2.
0

Effective population size (Individuals)

M
ar

gi
na

l p
os

te
rio

r p
ro

ba
bi

lit
y

Mojave populations
Mainland populations

0 2000000 4000000 6000000 8000000

0.
00

0.
05

0.
10

0.
15

0.
20

Ancestral effective population size (Individuals)

M
ar

gi
na

l p
os

te
rio

r p
ro

ba
bi

lit
y

Mainland vs Baja
Mainland vs Mojave
Mojave vs Baja
Mojave vs Baja (migration)

(a)!

(b)!



! "#%!

Independent of the pairwise comparison or dataset (X-linked or Machado et al. 2007) 

used, the Baja Ne consistently failed to converge in all MCMC runs. We explored this 

issue by changing the prior for this parameter. However, even at unrealistically high 

prior bounds posteriors did not converge and we interpret this as a genuine lack of 

information about this parameter in the data resulting either from a large population 

size or population sub-structure. Importantly, our explorative runs with varying prior 

bounds demonstrated that our inability to estimate the Baja Ne did not affect the 

inference of other model parameters. 

 

Three-population models 

The pairwise comparisons in IMa2 suggested a tree topology (Baja, (Mainland, 

Mojave)) with little gene flow between each population. Using this topology in IMa2, 

we performed two three-population runs based on the two best models in the 

Baja/Mojave comparisons; one without migration and one with symmetric migration 

between the Baja California population and both the Mojave and the ancestor of the 

Mojave and Mainland populations. With this three-population model migration before 

and after the Mojave/Mainland split was modelled by separate migration rate 

parameters providing additional information about the timing of gene flow. 

Parameter estimates were almost identical to those of the pairwise 

comparisons with the addition of migration terms having minor effects on divergence 

times and Ne estimates. The divergence estimate of the Baja California population 

from all others was 229 Kya and the Mojave/Mainland split was estimated at 123 Kya 

(Table 3.5b). Similarly, estimates of Ne were consistent with the pairwise results 

(Table 3.5b) and ancestral Ne was most sensitive to the inclusion of migration, with 

lower estimates when migration was included. As before the Baja Ne did not converge. 
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Estimates of migration were low, with the majority occurring early from the ancestor 

of Mojave/Mainland to Baja California and very little thereafter (Table 3.5b). 

The *BEAST results confirmed the topology and the divergence times 

estimated by IMa under models without migration (median posterior of 211 Kya and 

116 Kya for the two splitting times respectively; Fig. S3.3 and Table 3.5). 

 

Machado et al. (2007) dataset 

Model ranking revealed a lack of resolution in the Machado et al. (2007) dataset. 

Both the Baja/Mojave and Baja/Mainland analyses yielded similar evidence ratios for 

a large number of models with little support for any particular model (Supplementary 

Tables S3 and S4) and L-mode runs failed for the Mojave/Mainland comparison. 

However, despite this, the autosomal data were compatible with the inferences from 

the X data in three key aspects. Firstly, divergence times estimated in all three 

comparisons broadly agreed (Table 3.5) with the X chromosome results, although 

posterior distributions had much wider 95% HPD intervals (Fig. S3.1). Secondly, 

there was little evidence for migration in any comparison and the final simplified 

model runs were all performed without migration terms. Finally, the Mojave Desert 

Ne obtained from the Machado et al. (2007) data was greatly reduced, although much 

less so than in the X chromosome data, a pattern not seen for the other two 

populations (Table 3.5 and Discussion). 

 

DISCUSSION!

We analysed sequence data from multiple X chromosome and autosomal loci in a 

model-based framework to resolve the history of three well-studied, divergent 

populations of D. mojavensis. In particular we inferred both the order of their 
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divergence and tested for historical gene flow. The X chromosome data suggested that 

Baja split from an ancestral Mojave/Mainland group 230-270 Kya. The Mojave 

Desert and Mainland populations diverged more recently, 117-135 Kya, with little 

subsequent gene flow. Using a three-population model we demonstrated that the weak 

migration signal detected in the pairwise comparisons was historical, occurring 

mostly from the common ancestor of the Mojave/Mainland populations to the Baja 

California population, with a nearly zero rate of migration after the Mojave/Mainland 

divergence. 

 A number of studies have examined the phylogeography of D. mojavensis 

using various molecular markers and both population genetic summary statistics and 

phylogeographic tree based methods (Machado et al. 2007; Matzkin 2004; Matzkin & 

Eanes 2003; Reed et al. 2007; Ross & Markow 2006; Ruiz et al. 1990; Zouros 1973). 

Contrary to Ross and Markow (2006) we found the Mojave Desert population to be 

more closely related to the Mainland but uphold their conclusion that a bottleneck 

occurred during the history of the Mojave population. While our study found the split 

between the Baja and Mainland populations to predate that of the Mojave/Mainland, 

an earlier study based entirely on mtDNA (Reed et al. 2007) inferred the opposite 

order of divergence. Our divergence time estimates coincide with the lower end of the 

mtDNA estimates, yet the order of divergence differs. This conflicting result 

illustrates the well-known limitations of single locus data in general, and mtDNA in 

particular, to resolve recent histories (Ballard & Whitlock 2004) and highlights the 

superiority of joint inference from multiple loci.  

Our estimates of divergence time for the three D. mojavensis populations 

coincide with two interglacial periods, suggesting their history is intimately linked to 

Pleistocene climatic oscillations. Global temperature oscillations occurred from the 



! "#(!

Mid-Pleistocene (900 Kya) onwards, with a periodicity of 100,000 years (Kraaijeveld 

& Nieboer 2000) and had substantial effects on species formation. In northern 

hemisphere temperate regions there is a well-characterised pattern of subspecific 

divergence relating to Pleistocene climate change; however, subtropical regions have 

been less intensively studied (Hewitt 2011). Climatic as well as vicariant events have 

influenced the distribution of a range of North American desert species. For example 

two closely related species pairs of cactophilic Drosophila, D. aldrichi/D. wheeleri 

and D. longicornis/D. mainlandi, each show vicariant species distributions caused by 

the formation of the Sonoran and Mojave Deserts and are separated by the Gulf of 

California (Beckenbach et al. 2008). Some mammal species in these regions have 

been affected by vicariant events including the formation and movement of the Baja 

peninsula and the late Pleiocene-Pleistocene uplift of the Mojave Desert region (Bell 

et al. 2010; Riddle et al. 2000). Plant species in these regions, including cacti, and 

insect species have been influenced by both vicariant events and climatic factors 

(Nason et al. 2002; Noonan 1988; Pfeiler & Markow 2011; Thorne 1986). The 

phylogeographic history of D. mojavensis we uncover here is compatible with a 

previously suggested scenario in which the colonization of mainland Mexico occurred 

from the Baja peninsula, where D. mojavensis originated (Ruiz et al 1990; Etges 

1999; Matzkin 2004). The isolation of the Baja California population from the 

ancestor of the Mojave Desert and Mainland populations then followed, 

approximately 230-270 Kya. This divergence estimate coincides with the global sea 

level rise of nearly 100m that occurred during the Holstein interglacial (230-215 Kya), 

which would have separated the Baja peninsula from mainland Mexico (Siddall et al. 

2007). 



! "#)!

We estimate that the Mojave and Mainland populations subsequently 

subdivided 123-135 Kya during the Eemian interglacial (135-115,000 Kya), after (or 

during) which the effective size of the Mojave population was reduced by almost an 

order of magnitude. Previous studies have also inferred a historical bottleneck for the 

Mojave population (Machado et al. 2007; Ross & Markow 2006). Since IMa2 does 

not explicitly model population bottlenecks, it remains unclear whether this occurred 

during the divergence from the Mainland population (i.e. through a founder event) or 

afterwards. The Mojave Desert region is notable for its lack of endemic species with 

the boundaries of the region defined more by climatic variables rather than 

geographic features (Axelrod 1983). It is possible that rapid range contractions 

occurred during the warmer Eemian period led to fragmentation and isolation of the 

Mojave from the Sonoran population, with a shift to using discontinuous patches of 

barrel cacti, F. cylindraceous, as host plants in this region. Currently, there is some 

overlap in the distribution of host cacti in these regions, mostly isolated populations 

of F. cylindraceous in southwestern Arizona near populations of organ pipe cacti, S. 

thurberi (Turner et al. 1995). However, D. mojavensis populations have not been 

found from east of the Colorado River in southwestern Arizona to the northern range 

limit of organ pipe cacti in southern Arizona, a gap of ca 200 km (Heed and Etges, 

unpubl. data). Further, all California and northwestern Arizona populations of D. 

mojavensis are fixed for the second chromosome gene arrangement ST while those in 

southern Arizona and northwestern Mexico are fixed for LP (2q5), except in one small 

coastal region in Sonora (Ruiz et al. 1990), suggesting no current gene flow between 

these regions. Our inference of a relatively recent Mainland/Mojave split (123-135 

Kya) suggests that there may have been a larger contiguous population in southern 
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California and Arizona that evolved into discontinuous, differentiated populations that 

are now fixed for alternate gene arrangements and use different host cacti. 

The effective size of the Baja California population appears to be too large to 

estimate and our analyses consistently failed to produce convergent posteriors for this 

parameter. Although we cannot say for certain what caused this, it is likely that one or 

more of the assumptions underlying the IM model was violated. In particular, there is 

evidence of substructure within regions (Ross & Markow 2006) and AMOVA 

(Excoffier et al. 1992) analyses of population subdivision in Baja California based on 

inversion karyotype frequencies revealed significant differences among populations 

grouped by different phytogeographical provinces (Etges et al. 1999). While such 

ecologically driven population structuring may reflect recent/historical conditions, 

vicariant events have also been implicated in peninsular phylogeographic patterns in 

several species (Leaché et al. 2007). Population structure within the Baja population 

might be one explanation for an inflated Ne. To test for this, we partitioned the four 

sampled Baja individuals into northern and southern samples because the Baja 

peninsula has been geographically divided north to south in the past (Leaché et al. 

2007). However, including only Northern or Southern Baja into the *BEAST analysis 

did not change the tree topology or the divergence time estimates. Thus if sub-

structure does exist, more intensive within population sampling would be required to 

reveal it. Alternatively, population size may simply be extremely large. D. mojavensis 

uses its preferred host plant, pitaya agria, almost exclusively on the Baja peninsula. 

This cactus is known to produce considerably higher densities of breeding sites, “rots”, 

than other host cactus species. In field surveys agria rot densities were ca 40 times 

higher than those of organ pipe rots (Heed & Mangan 1986), consistent with our 

estimates of effective population size. 
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Our results, alongside previous work on the ecological (e.g. Newby and Etges 

1998) and genetic (Ruiz et al 1990; Etges 1999; Matzkin 2004) relationships of these 

populations, suggest that the differentiation of the Baja and Mainland involved a host 

shift due to the colonization of mainland Mexico over the Gulf of California. Taken 

together, this evidence points towards the Baja California peninsula as being the 

geographic centre of diversity for this species. Indeed, D. mojavensis is likely to have 

arisen here by allopatric divergence after the ancestor of D. mojavensis/D. arizonae 

became separated following the formation of the sea of Cortez, 3-5 Mya (Nason et al. 

2002; Matzkin 2004). Thus the colonization of the mainland Sonora-Arizona region 

from the Baja peninsula, during a period of low sea level, would have involved a shift 

to organ pipe cactus from their preferred agria host. Later, the Baja peninsula and 

mainland Sonora-Arizona geographic regions were once again isolated when sea 

levels rose, preventing population gene flow and allowing for divergent selection on 

life history and reproductive traits on the different cactus hosts (Etges et al. 2010; 

Etges & Heed 1987; Etges et al. 1999). Divergence of Baja and Mainland populations 

in allozyme, inversion and microsatellite frequencies as well as morphology, 

behaviour, physiology, life history, and host plant use has led some workers to term 

these geographically isolated groups incipient species, subspecies (Mettler 1963; 

Pfeiler et al. 2009), and races/subraces (Zouros 1973). Further, QTLs for adult 

epicuticular hydrocarbons (CHCs) which function as contact pheromones in D. 

mojavensis, courtship song and development time are statistically associated with 

mating success and show genotype-by-environment interactions with host cactus 

species (Etges et al. 2007; Etges et al. 2009). Given the timing of subdivision and 

lack of gene flow we have discovered, it seems that strong host plant associated 

ecological selection has driven the divergence of life history traits (Etges 1990). 
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Genetic correlation between egg to adult development time and premating isolation 

(Etges 1998) and between development time and CHC variation (Etges et al. 2010) 

suggest that adaptation to alternate hosts has caused shifts in different components of 

male-female courtship signals. Thus, divergent populations of D. mojavensis are an 

important example of how allopatric divergence and ecological selection can 

indirectly cause divergence in reproductive traits, ultimately leading to reproductive 

isolation (Funk et al. 2006).  

 

Conclusions 

Although results obtained from independent analyses on X chromosome and 

autosomal data were compatible with one another, the X-chromosome data was 

clearly more informative (Table S3.2). Most likely this was a result of reduced 

selective constraint on introns (compared to exons) and faster evolution of the X 

(Schaffner 2004), allowing for greater power to distinguish between models and 

estimate historical parameters. The estimate of the Mojave Desert Ne obtained from 

autosomal loci was around twice that of the X chromosome dataset (Table 3.5). Note 

that we accounted for the difference in Ne between X chromosomes and autosomes 

(see Methods) and that all other Ne estimates were similar between the two datasets. 

Such patterns have been observed in the out-of-Africa scenario for both human 

(Keinan et al. 2008) and D. melanogaster (Kauer et al. 2002) populations, where 

European populations harbour larger than expected diversity reductions on the X 

chromosome compared to African populations. While Pool and Nielsen (2007) 

showed that this could be caused purely by population history (e.g. bottlenecks), other 

demographic and selective causes cannot be ruled out. Although there is evidence for 

sex-biased dispersal in some Drosophila species (e.g. Begon 1976; Fontdevila and 

Carson 1978; Powell et al. 1976), D. mojavensis has not been shown to exhibit this 
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(Markow and Castrezana 2000). As such we do not expect sex-biased dispersal to 

have influenced our results. 

Although molecular clock calibrations are notoriously prone to errors and 

uncertainties, they are rarely based on direct measurements of mutation rates nor do 

they incorporate the uncertainty associated into these estimates as we have done here 

(Pulquerio & Nichols 2007). While this increases our confidence in the datings 

obtained in this study, possible uncertainties about generation times and the effect of 

purifying selection remain. Selective constraint on the evolution of introns is 

dependent on intron size, with long GC-rich introns potentially having a functional 

role in gene expression (Haddrill et al. 2005). Understanding and incorporating the 

evolutionary constraints acting on different regions of the genome will much improve 

phylogeographic inference. While our sampling scheme did resolve the ancestral 

relationships of the three populations, interesting details of their history, in particular 

structure within Baja and the bottleneck of the Mojave population, remain to be 

investigated. However, a more intense sampling scheme, with more individuals, 

would be required to address these questions. 

Inferring the history of closely related populations that may have expanded, 

contracted, fragmented, or been connected by past migration is fraught with 

difficulties (Hey & Machado 2003). It has become clear that model-based approaches 

are required to extract historical signal from DNA sequence data (e.g. Rymer et al. 

2010). Choosing between the large number of possible models becomes a 

considerable task for any such analysis when examining more than two populations. 

We show that a strategy of using model selection on pairwise comparisons to inform a 

simplified IM model for multiple populations makes this feasible. For 

phylogeographic histories shaped by Pleistocene climatic events, models of cyclical 
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rather than continuous gene flow may be more biologically realistic. The recent flood 

of ‘next-generation’ sequence data providing entire genomes for analysis (e.g. 

Forister et al. 2010) and increasingly powerful inference methods (e.g. Gutenkunst et 

al. 2010; Lohse et al. 2011) will make it possible to further resolve such complex 

histories. 
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CHAPTER 4: !

TRANSCRIPTOME-WIDE EXPRESSION VARIATION 

ASSOCIATED WITH ENVIRONMENTAL PLASTICITY AND 

MATING SUCCESS IN CACTOPHILIC DROSOPHILA 

MOJAVENSIS!
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ABSTRACT!

Ecological speciation occurs with the adaptation of populations to different 

environments and concurrent evolution of reproductive isolation. Phenotypic 

plasticity might influence both ecological adaptation and reproductive traits. We 

examined environment-specific gene expression and male mating success in 

cactophilic Drosophila mojavensis using transcriptome sequencing. This species 

exhibits cactus-dependent mating success across different species of host plants, with 

genotype-by-environment interactions for numerous traits. We cultured flies from egg 

to eclosion on two natural cactus hosts and surveyed gene expression in adult males 

that were either successful or unsuccessful in achieving copulation in courtship trials. 

We identified gene expression differences that included functions involved with 

metabolism, most likely related to chemical differences between host cactus species. 

Several epigenetic-related functions were identified that might play a role in 

modulating gene expression in adults due to host cactus effects on larvae, and mating 

success. Cactus-dependent mating success involved expression differences of genes 

implicated in translation, transcription and nervous system development. This 

suggests a role of neurological function genes in the mating success of D. mojavensis 

males. Together, these results suggest that the influence of environmental variation on 

mating success via regulation of gene expression might be an important aspect of 

ecological speciation. !

!

!

!

!

!



! "%(!

INTRODUCTION 

Environmentally induced phenotypic variation is an under-studied aspect of 

speciation, particularly its role in the evolution of reproductive isolation (Butlin et al. 

2012). However, phenotypic plasticity provides a way for the same genotype to 

produce different traits according to environmental context and thus may be an 

important process facilitating ecological adaptation and speciation (Thibert-Plante & 

Hendry 2011). Assessment of the role of phenotypic plasticity in ecological 

adaptation is difficult due to a poor understanding of the developmental processes 

producing plastic traits and how these link to environmental adaptation (Ghalambor et 

al. 2007; Scoville & Pfrender 2010). If an organism possesses the developmental 

flexibility necessary for a plastic response then ecological adaptation may result in 

particularly rapid divergence due to ecological selection on relevant traits (Schluter 

2001; Rundle & Nosil 2005). When such traits diverge, speciation may follow if 

reproductive isolation evolves as a direct or indirect consequence (Funk et al. 2006). 

Speciation may be more likely when ecological and sexual selection interact 

(Ritchie 2007; Van Doorn et al. 2009; Sobel et al. 2010; Maan & Seehausen 2011), if 

traits that influence mating success are under divergent ecological selection. 

Determining how intimate any such associations are (for example, if this involves 

pleiotropy or covariance between traits) is central to understanding debates about the 

likelihood of so-called ‘magic trait’ speciation (Servedio et al. 2011) or how extensive 

traits with multiple effects are (Smadja & Butlin 2011). Plasticity of ecological and 

reproductive traits may be important for adaptation and speciation if selection in an 

environment facilitates genetic population divergence, perhaps via genetic 

accommodation (West-Eberhard 2005a; West-Eberhard 2005b), or adaptive plasticity 

could simply allow persistence for long enough to allow genetic adaptation (Crispo 
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2008). There are multiple ways in which plasticity could either accelerate or inhibit 

speciation (Pfennig et al. 2010) but most current methodologies to detect genes 

involved in ecological adaptation ignore expression variation (Pavey et al. 2010). 

Drosophila species are commonly utilized for both gene expression and 

plasticity studies (Levine et al. 2011). The cactophilic species, Drosophila mojavensis, 

is an excellent candidate for such studies due to the use of different host cacti during 

development, and has been used as a model system for divergence during speciation. 

This species is endemic to northwestern Mexico and the southwestern United States 

and its range is comprised of four allopatric regions with little evidence of 

contemporary gene flow between them (Ross & Markow 2006; Machado et al. 2007; 

Reed et al. 2007). Populations of D. mojavensis that occupy Baja California and the 

mainland Mexico-Arizona regions are of particular interest as they demonstrate a 

significant level of environmentally influenced premating sexual isolation between 

them, mediated by divergent epicuticular hydrocarbon (CHC) profiles, which act as 

contact pheromones, and courtship songs (Etges et al. 2007; Etges et al. 2009). This 

premating isolation is seen only between the Baja and mainland populations, with 

little evidence of postzygotic isolation between any population pair (Ruiz et al. 1990). 

The Baja California peninsula is thought to be where D. mojavensis originated, based 

on genetic and ecological evidence (Ruiz et al. 1990; Wasserman 1992; Matzkin & 

Eanes 2003; Matzkin 2004), with all populations diverging from an ancestral group 

around 230-270,000 years ago (Smith et al. 2012). Colonization of the mainland 

Mexico involved a host plant shift from the favored pitaya agria cactus, Stenocereus 

gummosus, to organ pipe cactus, S. thurberi, that is distributed in the southern half of 

Baja California, mainland Sonora and Sinaloa and southern Arizona (Heed 1982; 

Etges et al. 1999). A suite of phenotypic changes in life history and reproductive traits 
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accompanied this host shift and many of these phenotypes demonstrate plasticity 

when flies are raised on differing cactus hosts (Etges et al. 2007; Etges et al. 2009; 

Etges et al. 2010). Therefore D. mojavensis has undergone ecological selection with 

concurrent divergent selection of reproductive traits, and shows plastic expression of 

many key traits across cactus hosts. 

Plasticity due to gene expression variation is potentially an important 

component of adaptation to a varying environment and can act alongside gene-

environment interactions in determining levels of adaptation during ecological 

specialisation. A series of Quantitative Trait Locus (QTL) studies revealed the genetic 

architecture of life history traits involved in host plant adaptation and sexual isolation 

in D. mojavensis (Etges et al. 2007; Etges et al. 2009; Etges et al. 2010). F2 males 

from crosses between Baja and mainland populations were reared on either agria or 

organ pipe cactus and QTLs identified for mating success, courtship songs, cuticular 

hydrocarbons and egg to adult development time. All traits showed evidence of 

genotype-by-environment interactions (GxEs) influencing their expression. Hence 

this system displays extensive genetic variability influencing viability and mating 

success. The extent of variation in gene expression due to rearing cactus (or other 

environmental variation) in D. mojavensis is only beginning to be studied. Microarray 

analyses revealed approximately 1500-3000 genes with cactus-specific expression in 

third instar larvae in Baja and Mainland populations reared on agria vs. organ pipe 

cacti (Matzkin et al. 2006; Matzkin 2012), thousands of genes in adults under 

dessication stress (Rajpurohit et al. 2013, in press) and thousands of genes assayed 

across the entire life cycle (Etges WJ, unpubl. data). Many of these genes were 

involved in metabolism and detoxification pathways as would be predicted due to 
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host plant chemical differences (Fogleman and Danielson 2001), as well as fatty acid 

biosynthesis and olfaction (Matzkin et al. 2006; Matzkin 2012). 

Here we describe an RNA sequencing study of gene expression variation 

associated with different cactus substrates in adult D. mojavensis that explicitly 

examines the link between ecological variation and courtship behaviour. We 

examined gene expression in adult males from a mainland population reared from egg 

to eclosion on either organ pipe or agria cactus, after identifying the first males to 

succeed in mating trials with mainland females. Our aim was to 1) enumerate and 

identify genes or functional gene networks that showed plastic expression responses 

to host cactus, 2) identify expression variation associated with rapid mating success, 

and 3) examine the interaction between cactus and mating success variation. The 

latter is particularly important for identifying genes and functional pathways involved 

in cactus-dependent mating success; for example pleiotropic linkage between cactus 

adaptation and mating behavior would predict that the same genes are involved in 

both traits. Note that we reared flies to fermenting cactus from egg to eclosion and 

surveyed expression differences in adults; here we use the term ‘epigenetics’ to 

include induced gene expression changes during development (e.g. Chittka et al. 

2012) and when used does not imply that we have identified trans-generational effects. 

 

METHODS!

Fly maintenance  

All experiments were performed with a population of D. mojavensis from Organ Pipe 

National Monument (OPNM), Arizona, collected in 2002 by T. Markow. This 

multifemale stock was reared en mass on banana food in 8 dr shell vials at ambient 

temperature.  Although this population was known to be homokaryotypic for gene 
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arrangements on the second and third chromosomes (Etges et al. 1999), we made 

multiple pair-mated lines and cytologically verified that no inversions were 

segregating. We then sib-mated these lines for five generations and one inbred line 

was selected for the mating trials described below. Flies from this inbred line were 

derived from an isofemale line established in 2004. This is the same line used in the 

QTL crosses analyzed recently (Etges et al. 2007; Etges et al. 2009; Etges et al. 2010). 

We chose to analyze the mainland line because this derived population has 

successfully performed a host shift, and females from the mainland are more 

discriminating in mate choice (Markow 1991; Etges 1992). Flies were reared on 

banana food at moderate larval densities in half-pint bottles in an incubator at 27 °C 

during the day and 17 °C at night on a 14-h light:10-h dark cycle. Emerging adults 

were aged until sexually mature (10-12 days) then placed into oviposition chambers 

(~400 adults per chamber), allowed to mate and then oviposit for 10 h each day. Eggs 

were washed in deionized water, 70% ethanol and again in sterile deionized water. 

Groups of 200 eggs were transferred to a 1 cm2 piece of sterilized filter paper and then 

placed on fermenting cactus tissue, either agria, S. gummosus, or organ pipe cactus, S. 

thurberi, in an incubator programmed as above. Experimental flies were reared on 

each cactus species from egg to eclosion, and thereafter on banana food until sexual 

maturity.  

Fermenting cactus cultures were set up in half pint bottles with 75 g of 

aquarium gravel covered with a 5.5-cm diameter piece of filter paper. Bottles were 

autoclaved, 60 g of either agria or organ pipe tissues were added then autoclaved 

again for 8 min at low pressure (Etges 1998). After cooling to room temperature, each 

culture was inoculated with 0.5 mL of a pectolytic bacterium, Erwinia cacticida 

(Alcorn et al. 1991) and 1.0 mL of a mixture of seven yeast species common in 
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natural agria and organ pipe rots (Starmer 1982): Dipodascus starmeri, Candida 

sonorensis, C. valida, Starmera amethionina, Pichia cactophila, P. mexicana, and 

Sporopachydermia cereana. Inoculation was performed to ensure that 

microorganisms found in nature, rather than those present in the laboratory 

environment, populated the necrotic tissue, and differential growth of the inoculants 

will generate variation between cactus types. Eggs were then added and, once eclosed, 

adults from four replicate cactus bottles were separated by gender and kept on banana 

food in vials in the incubator until sexually mature at 10-12 days. 

 

Mate choice experiments 

We identified males who were successful in mating trials to assess the influence of 

preadult cactus rearing on the mating behaviour of male flies. Males used in the mate 

trials were reared on agria or organ pipe cactus, whereas all females were reared only 

on organ pipe cactus, in order to identify the effects of rearing substrates on male 

mating success. Organ pipe cactus reared females are more discriminating in mate 

choice trials than agria cactus-reared females (Etges 1992). A total of 4 treatments 

(two rearing cacti and two mating statuses) were performed, with four replicates per 

treatment.  

Mate choice trials were carried out using a multiple-choice design (Etges 

1992; Etges & Ahrens 2001). Twenty female and male virgin adults 12 to 16 days old 

were used in each trial. A 50 mL Erlenmeyer flask was used as a mating chamber and 

changed after each trial. Each trial lasted until half of the pairs copulated or for a 

maximum of half an hour. All trials were performed at room temperature (18 - 20° C) 

in the morning (10:00 AM to 12:00 PM; lights on at 6AM) over no more than a two-

hour time period. We define the first mating males as ‘successful’ and the non-mating 
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as non-successful, so our measure of mating success potentially includes measures of 

male mating speed and vigour as well as female discrimination. However, previous 

studies suggest that male mating success is due overwhelmingly to female choice and 

not male-male interaction or unwillingness to mate (Havens et al. 2011). In mating 

trials with cactus-reared adults, usually almost all flies mate by the end of the trials. 

Copulating pairs were observed for at least 10 seconds to avoid any pseudo-

copulating pairs (Markow et al. 1983), then flash frozen in liquid nitrogen and stored 

in RNAlater at -20 o C prior to RNA extraction. After half of the flies had mated, the 

remaining unmated flies were also flash frozen. Males from two mate choice trials, i.e. 

20 male whole bodies, were pooled together per sample. 

 

RNA sequencing and analysis 

RNA was extracted from each pooled sample using a Qiagen RNeasy Mini Kit 

(Qiagen, Valencia, California USA), and the high quality of the RNA was confirmed 

using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, California). 

Library preparation was carried out at the Centre for Genomic Research, University of 

Liverpool and included poly(A) tail selection using the Dynabeads mRNA 

purification kit (Invitrogen, Paisley, UK ). 100ng of the resulting mRNA was used as 

input for library production using the SOLiD Total RNA-Seq kit (Life Technologies, 

Paisley, UK). Sequencing was performed on a SOLiD 4 sequencer (Life 

Technologies), generating reads of 50bp length. The sequence data has been deposited 

in the European Nucleotide Archive (ENA) at the European Bioinformatics Institute 

(EBI, accession ERP002218). 

 Reads were filtered for quality and mapped on to the D. mojavensis genome 

(Clark et al. 2007) using the Tuxedo suite (Bowtie/Tophat v1.4.0), with only uniquely 
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mapped reads retained for analysis. HTSeq (Anders 2010) was used to quantify read 

counts for two different types of feature; genes and exons. This enabled a quantitative 

examination of expression levels at the level of whole genes as well single exons 

within a gene. 

 Raw count data were normalized across sequenced libraries and a generalized 

linear model was fitted with a negative binomial distribution using the EdgeR 

package in R (Robinson et al. 2010). The full model was Y =g-1(AX)+εwhere Y is a 

vector of normalized count numbers for one gene, g-1(.) is the inverse link function, A 

is the model matrix and X incorporates the model parameters. X includes an intercept 

and effects of factors; cactus (organ pipe or agria), mating success (success or fail) 

and an interaction effect, whilst " represents the random noise of sampling a negative 

binomial population. A likelihood ratio test was used to compare a full model to 

models with each term removed, to test for significance of each treatment effect. Gene 

specific p-values were corrected for multiple testing using the False Discovery Rate 

(FDR) approach of Storey & Tibshirani (2003) with significance taken at 10%. A 

heatmap was constructed for significantly differentially expressed (DE) genes overall 

and clusters of co-regulated genes were obtained using the k-means clustering 

(Hartigan & Wong 1979) from the R package. 

 Analysis at the level of exons can identify those genes where alternative exon 

expression arising from alternative transcript initiation, alternative splicing or 

alternative polyadenylation occurs due to treatment (Griffith et al. 2010). For this we 

used a modified version of the function spliceVariants from the EdgeR package. This 

fits a negative binomial generalized linear model for each gene, given the counts for 

the exons within that gene. The same approach was adopted as for the gene-level 

testing except that term X (see previous paragraph) now includes terms reflecting the 
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difference among the exons, treatment effects and interaction of exon and treatment. 

Thus the model becomes E(Z)=g-1(B#)+ε, where " is random noise, Z is a vector of 

normalized count numbers for all exons within one gene, g-1(.) is the same as stated 

before, B is the model matrix, # is the vector of model parameters which includes the 

intercept and terms reflecting the difference among the exons, treatment effects and 

interaction of exon and treatment. Because exon expression is modeled according to 

the other exons within the same gene, significance represents independent responses 

of exons by treatment, or alternative expression (AE). That is, the test reveals genes 

for which there is an exon-specific signature across treatments or interactions between 

exons and treatments. Significant AE was taken for each gene at 10% FDR. 

 

Functional enrichment 

Functional enrichment or over-representation analysis aims to detect common 

functions within the DE or AE gene sets. For categorizing genes we used Gene 

Ontology (GO) annotations from the D. mojavensis entries in QuickGO (Binns et al. 

2009), as well using corresponding GO terms for orthologous genes in D. 

melanogaster FlyBase entries (vFB2012_01, D. melanogaster release 5.43) taken 

from the ortholog conversion tool (McQuilton et al. 2012).  

Two test methods were employed, and each were undertaken separately for 

both DE and AE genes across the three contrasts (cactus, mating success and their 

interaction) using FDR < 10%. First, we developed a ‘rank mean test’ written in R 

(marrayRankTest, available from Y. Fang), which ranks genes by p-value and takes 

the mean of the rank for members of gene sets (i.e. biological-process GO categories, 

downloaded from QuickGO; Binns et al. 2009) as the test statistic for enrichment. 

This method employs a corrected normal distribution that more accurately estimates 
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p-values for enrichment with small gene sets, which can occur with poorly annotated 

genomes. 

Second, D. melanogaster orthologs of the responding DE and AE genes (FDR 

< 10%) were analysed in DAVID v6.7 (Database for Annotation, Visualization and 

Integrated Discovery v6.7; Dennis et al. 2003; Huang et al. 2009). DAVID uses 

Fisher’s exact test to identify significantly enriched GO categories. A ‘Fuzzy’ 

clustering algorithm then groups annotation terms into functional clusters of genes. 

Clusters are considered significant with an Enrichment Score (the geometric mean of 

annotation p-values) >1.3 (Dennis et al. 2003; Huang et al. 2009). 

Several small, non-coding RNAs (ncRNAs) were identified as significantly 

DE. For each, the orthologous ncRNA in D. melanogaster was found through a 

BLASTn search on the NCBI website, using the nucleotide database (Altschul et al. 

1997). Hits were called as being significantly orthologous when the E-value was 

<10e-6, and GO annotations for each ncRNA were obtained from FlyBase.  

 

RESULTS!

The experimental design consisted of a pooled sample of 20 males for each of the 2 

factors (mating success) and 2 treatment (rearing cactus diet) groups. Four biological 

replicates were produced independently from rearing to mating success producing 16 

RNA samples each of which was subjected to RNA-Seq. Fragment data was analysed 

by ANOVA for differential gene expression (DE) and alternative expression (AE), 

each generating three contrasts between rearing cacti, differential mating success and 

their interaction. The number of reads obtained per sample was typically 45 million 

reads of 50bp length. Of these, approximately 30% mapped uniquely to the reference 

genome, producing a final average of 15.3 million reads per biological replicate. The 
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number of DE genes was relatively small with 111 showing main effects of cactus, 19 

associated with mating success and 147 due to their interaction (Table 4.1), all from 

212 unique gene models. Fewer genes were generated by the AE analysis, with 64 

and 48 for cactus and interaction effects, respectively. However in contrast to DE 

genes, there was a greater involvement of alternative expression in male mating 

success (28; Table 4.1).  

 

Table 4.1 Number of genes with significant cactus, mating success and interaction effects. 

The number of differentially expressed (DE) and alternatively expressed (AE) genes in D. 

mojavensis are presented, along with the number of genes that had confirmed D. 

melanogaster orthologs and the total number of unique genes across all effects. 

 

 

Differential expression 

Fig. 4.1 indicates the fold-change responses of all DE genes as a heatmap across the 

three ANOVA contrasts. K means clustering generated 8 clusters; clusters 3-8 were 

up-regulated by the organ pipe relative to agria diets, and clusters 5, 6, 3 and 8 were 

up-regulated and 1, 2 and 7 were down-regulated by successful relative to 

unsuccessful mating. Full details of all DE and AE genes and all functional 

enrichment results are given in supplementary Tables S4.1-S4.6, and GO term 

annotations for genes within each heatmap cluster in Table S4.7.!

Functional enrichment of cactus-specific DE genes showed functions for 

several processes linked to metabolism (Fig. 4.2). These included glycerol ether 

metabolic processes, the tricarboxylic acid (TCA) cycle and cell redox homeostasis. 

Annotations for protein modification were also significant, specifically protein 

Test Cactus Mating Success Interaction Total unique gene models
DE D. mojavensis 111 19 147 212
DE D. melanogaster 71 11 92 144
AE D. mojavensis 64 28 48 115
AE D. melanogaster 51 24 38 100
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ubiquitination and ubiquitin mediated protein catabolism. Other significant 

annotations included immune response, methylation, tRNA processing and calcium-

based signaling. Genes showing expression differences by male mating success were 

enriched for two terms; translation and glycerol ether metabolic process (Fig. 4.2). 

The interaction of cactus and mating success produced only one significant annotation, 

for translation (Fig. 4.2), despite having the greatest number of significantly DE genes.  

 

 

Fig. 4.1. Heat map displaying all differentially expressed genes across the 3 contrasts 

indicated. The colour key representing the log2 fold change values for each gene in each 

contrast is shown to the left, and the grouping of genes into 8 clusters indicated in the main 

panel. S and F denote successfully and unsuccessfully mated male treatments respectively, 

OP is the organ pipe cactus host treatment and AG is the agria cactus treatment. 
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Functional enrichment of DE genes using D. melanogaster orthologs produced 

several significant terms for cactus and the interaction effects, though there was no 

main effect for mating success. Cactus effects produced a single cluster, containing 

several different terms involved in immune response (Fig. 4.2). Several terms were 

individually significant across cacti, though not as a cluster. These included four 

genes for olfactory behaviour, chemosensory behaviour and cognition (Fig. 4.2; 

Obp99A, Or83A, Gr94A and drk). Two functional clusters were enriched in the 

interaction between rearing cactus and mating success. The first included terms for 

ribosome, ribonucleoprotein complex and translation. The second had an enrichment 

score <1.3, but included significant single annotations for protein targeting to 

mitochondria.  

Several ncRNAs were differentially expressed due to both cactus and 

interaction effects (Table 4.2). These were small nuclear RNAs (snRNAs) and small 

nucleolar RNAs (snoRNAs). snoRNAs are often located in the introns of genes, 

particularly those associated with ribosome structure, and are excised from introns by 

the spliceosome. Alternatively they are transcribed as polycistronic transcripts by 

RNA poymerase II and processed into multiple RNAs (Terns & Terns 2002). The 

majority of snoRNAs in Table 4.2 originated from the introns of protein coding genes. 

Transcription of these genes by RNA polymerase II means that both snRNAs and 

snoRNAs would have survived size selection from the RNA extraction protocol and 

poly(A) tail selection, and thus were accurately quantified. These ncRNAs do not 

have detailed functional annotations and thus were not part of the enrichment analyses. 

However, of the DE protein-coding genes 14 were identified as known constituents of 

ribonucleoprotein complexes. Most of these were ribosomal but one, U2af38, forms 
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part of the spliceosome, attaching to the 3’ splice site during alternative splicing. Both 

this and another significantly expressed gene, LSm-4, have roles in alternative splicing. 

Consistent up-regulation of gene expression in one treatment group over 

another is often associated with an increased functional importance. The majority of 

significantly DE genes were up-regulated on organ pipe cactus, the host used in 

nature in this population, as were genes involved in methylation (Fig. 4.3). The 

methylation GO term (GO:0032259) involves the attachment of a methyl group to a 

molecule and is not limited to DNA methylation but includes RNA and protein 

methylation. Interestingly, the most consistently up-regulated genes in successfully 

mated males were involved in methylation, the other DE categories surprisingly being 

down-regulated in successful males. Most glycerol ether metabolism and translation 

genes were also up-regulated. 

 

Table 4.2 Significantly differentially expressed non-coding RNA products, their orthologs in 

D. melanogaster and their corresponding gene ontology functional annotations. 

 

D. mojavensis ID D. melanogaster ID GO term annotations
Dmoj\snoRNA:GI25318 Dmel\snoRNA:Psi18S-110 nuclear gene
Dmoj\snoRNA:GI25328 Dmel\snoRNA:Psi28S-2566 nuclear gene; nucleolus
Dmoj\snoRNA:GI25330 Dmel\snoRNA:Psi28S-3327b nuclear gene
Dmoj\snoRNA:GI25333 Dmel\snoRNA:Me28S-G980 nuclear gene
Dmoj\snoRNA:GI25343 Dmel\snoRNA:Psi18S-841d nuclear gene
Dmoj\snoRNA:GI25349 Dmel\snoRNA:Psi18S-841a nuclear gene; nucleolus
Dmoj\snoRNA:GI25354 Dmel\snoRNA:Me28S-C3420a nuclear gene
Dmoj\snoRNA:GI25358 Dmel\snoRNA:Me28S-G2703a nuclear gene
Dmoj\snoRNA:GI25368 No orthologous hits -
Dmoj\snoRNA:GI25378 No orthologous hits -
Dmoj\snoRNA:GI25382 Dmel\snoRNA:Me18S-C1096 nuclear gene
Dmoj\snoRNA:GI25384 Dmel\snoRNA:Psi28S-2442b nuclear gene
Dmoj\snoRNA:GI25385 No orthologous hits -
Dmoj\snoRNA:GI25391 No orthologous hits -
Dmoj\snoRNA:GI25394 Dmel\snoRNA:Psi18S-1377d nuclear gene
Dmoj\snoRNA:GI25402 Dmel\snoRNA:Psi28S-3305b nuclear gene
Dmoj\snoRNA:GI25408 No orthologous hits -
Dmoj\snoRNA:GI25409 Dmel\snoRNA:Psi28S-1060 nuclear gene
Dmoj\snoRNA:GI25413 Dmel\snoRNA:Psi28S-1135a nuclear gene
Dmoj\snoRNA:GI25418 Dmel\snoRNA:Psi28S-1135f nuclear gene
Dmoj\snoRNA:GI25426 Dmel\snoRNA:U14:30Eb nucleolus; rRNA modification guide activity 
Dmoj\snoRNA:GI25427 Dmel\snoRNA:Me18S-A1576 nuclear gene; nucleolus 
Dmoj\snoRNA:GI25433 No orthologous hits -
Dmoj\snoRNA:GI25436 No orthologous hits -
Dmoj\snRNA:U2:2 Dmel\snRNA:U2:34ABa U2 snRNP; nuclear mRNA splicing, via spliceosome
Dmoj\snRNA:U4:2 Dmel\snRNA:U4:25F U4 snRNP; nuclear mRNA splicing, via spliceosome 
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Fig. 4.2 Summary of functional enrichment results for differentially expressed genes. Gene Ontology (GO) terms are grouped by experimental effect; cactus in large 
solid round box, mating success in large dashed round box, and their interaction. All GO terms are one per line with the number of associated genes indicated. 
Overlapping and root GO terms were removed for brevity. Rank mean test results are presented as un-boxed, bold GO terms along with significance for each term 
(**; FDR <0.05 and *; FDR <0.1). DAVID enrichment clusters are shown inside fine dashed boxes; bold and fine dashed boxed terms denoted significant DAVID 
clusters with an enrichment score of >1.3, fine dashed boxes represent clusters with enrichment score <1.3, yet containing individually significant terms. Significance 
for each term from DAVID is indicated (**; p<0.05 and *; p<0.1). The solid table presents interesting significant genes (D. melanogaster orthologs), and 
corresponding biological GO terms (**; FDR<0.05 and *; FDR<0.1). 
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Microtubule-based movement**! 46!
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Ubiquitin-dependent protein catabolic process**! 55!
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Fig. 4.3 Proportion of genes upregulated on organ pipe cactus (a) and according to mating 

success (b). Genes are presented by several categories including all significantly differentially 

expressed genes, non-orthologous genes (i.e. no identified orthologs in D. melanogaster), and 

three different functional categories of genes that were significantly enriched in the rank 

mean tests. 

 

Alternative expression 

Fewer AE genes were detected than DE genes, except in the case of mating success 

(Table 4.1). Surprisingly, the interaction effect showed only one significant 

annotation; however, more functions were identified using the most significant D. 

melanogaster orthologs in DAVID. 

Rank mean test enrichment suggested functions for cellular signaling and ion 

transport genes differed across cactus hosts (Fig. 4.4). Annotations included signal 

transduction and G-protein coupled receptor-signaling pathways that function in the 

cellular response to extra-cellular signals. The end point of cellular signaling 

pathways is often the regulation of transcription, and this term was also significantly 

enriched due to cactus effects. Ion transport and sodium ion transport were seen, 
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along with calcium ion transport via voltage-gated channels. These terms are often 

associated with synaptic transmission. Histone deacetylation genes were also AE 

across cacti, indicating a potential epigenetic response to cactus. 

Functional annotations for both transcription, ion transport and chitin 

metabolic process were seen in the mating success contrasts, along with multicellular 

organismal development (Fig. 4.4). Lastly, the interaction effect contained only one 

significant functional annotation, for the regulation of calcium ion transport via 

voltage-gated channels. 

DAVID analysis of AE orthologs revealed a similar set of functional 

annotations to the rank mean test, with the exception of mating success which showed 

no significantly enriched GO terms (Fig. 4.4). Cactus-specific genes were enriched 

for one cluster that included terms for transmission of nerve impulses and synaptic 

transmission. Other individually significant terms were seen, including alternative 

splicing. The interaction of cactus and mating success contained two significantly 

enriched clusters of AE genes. The first included several terms for neuron related 

development and axonogenesis, consistent with the results of the rank mean test. The 

second included terms for the regulation of transcription and chromatin modification 

and regulation. Interestingly, the slowpoke (slo) gene was AE in both the main cactus 

and interaction effects. This gene encodes an ion channel protein with biological 

functions in song production and structure and male courtship behaviour, and is 

necessary for ethanol tolerance (Cowmeadow et al. 2005). It has also been shown to 

influence male courtship song in D. melanogaster (Peixoto & Hall 1998). 
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Fig. 4.4 Summary of functional enrichment results for alternatively expressed genes. Figure details are the same as in Fig. 4.2 above. 
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DISCUSSION!

Ecological speciation involves the adaptation of populations to new environments and 

concurrent evolution of reproductive isolation (Nosil 2012). Functional genetic links 

between genes involved in ecological adaptation and sexual behaviour have rarely 

been examined. It is likely that environmental plasticity is common in ecological 

adaptation and thus traits potentially influencing both adaptation and isolation may 

often be influenced by coordinated changes in gene expression and plasticity (Thibert-

Plante & Hendry, 2011). However, incorporating the analyses of such genes into 

studies of speciation is in its infancy. Here, using high-throughput sequencing 

transcriptome sequencing, we distinguished the gene expression changes due to both 

host plant variation and mating success in cactophilic D. mojavensis, and identified 

the functions of genes involved in cactus-dependent mating success. 

The D. mojavensis genome is poorly annotated with only 32% of all genes 

having at least one biological GO annotation, most of which are non-specific (root) 

terms, and approximately 32% of D. mojavensis genes have no known orthologs in D. 

melanogaster (Tweedie et al. 2009). In comparison, 72% of D. melanogaster genes 

have been annotated, 67% of which are specific (non-root) annotations (Tweedie et al. 

2009). Here, approximately two thirds of the significant genes across effects had no 

functional information (biological process GO terms) and one third of these genes had 

no discovered orthologs in the D. melanogaster genome. Functional enrichment 

analyses of poorly annotated genomes is thus challenging, especially when the 

number of significantly differentially expressed genes is small. Consequently a 

combined approach was taken using two different enrichment methods, to identify 

functional information. We uncovered clusters of co-regulated gene sets (Fig. 4.1), 
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and using functional enrichment tests with D. mojavensis annotated genes and D. 

melanogaster orthologs produced comparable results on the functions of these genes. 

 

Functional analyses 

Cactus-specific differential gene expression showed significant enrichment for GO 

terms that were also detected in two microarray studies examining cactus-specific 

gene expression during larval development in D. mojavensis (Matzkin et al. 2006; 

Matzkin 2012). These included functions in immune response, metabolism, signal 

transduction and the nervous system. Previous work has also shown that the 

transcriptomic response to cacti in larvae, and to desiccation, involve key metabolic 

pathways, including the TCA cycle (Matzkin & Markow 2009). Here, DE genes were 

seen that function in chemical metabolism, including glycerol ether metabolism, 

which aids in the assimilation of volatile alcohols. D. mojavensis is able to metabolise 

ethanol vapour, with consequent effects on life history traits such as longevity, life 

time fecundity and metabolic rates (Starmer et al. 1977; Etges & Klassen 1989). 

Cactus-specific effects also included genes involved in the TCA cycle and cell redox 

homeostasis. Cellular oxidative stress is known to accelerate cellular damage and 

shorten lifespan in Drosophila (Ruan et al. 2002), and is often linked to changes in 

metabolism. We studied sexually mature flies and found that the preadult rearing 

environment therefore has a carry-over effect onto adult gene expression functioning 

in chemical metabolism. The chemical environment of columnar cacti is well 

documented. Alkaloids, medium chain fatty acids, sterol diols and triterpene 

glycosides have all been shown to be largely species-specific for Sonoran Desert cacti, 

and are causal factors in explaining patterns of host plant use in cactophilic 

Drosophila (Fogleman & Danielson 2001). D. mojavensis is oligophagous due to its 
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ability to metabolise medium chain fatty acids, sterol diols and high levels of 

triterpene glycosides found in organ pipe and agria cacti (Fogleman & Danielson 

2001). Organ pipe and agria differ in their triterpene glycoside content with agria 

containing higher levels than organ pipe cactus, however it is not known if these 

compounds are differentially metabolised in Baja California vs mainland populations 

of D. mojavensis. 

The fermenting cactus environment also caused differential expression of 

genes that function in protein modification, specifically protein ubiquitination in 

protein catabolism. Ubiquitination of proteins marks them for degradation by 

proteasomes and regulates protein levels for a host of critical cellular functions, 

including gene expression regulation (Pickart 2001; Shilatifard 2006). Ubiquitination 

also plays a role in stress and immune system responses and the latter term was 

significantly enriched under the rank mean test (Fig. 4.2).  

Ecological links to speciation would predict a connection between adaptation 

to cactus and mating success, but relatively few enriched functional groups were 

found to differ between males who were successful and unsuccessful in mating, either 

directly or in interaction with cactus, regardless of the number of DE genes. Only one 

broad term, translation, was strongly enriched for the interaction effect using the rank 

mean test. Functional clustering of these genes showing interaction effects produced 

terms for ribosome function, ribonucleoprotein complex and translation. These genes 

also included several ncRNAs and splicing factors. Such ncRNAs are involved in the 

production of mature messenger RNA, RNA modifications and translation. They also 

included snRNAs, which are the backbone of the spliceosome, and snoRNAs, which 

modify snRNAs, rRNA and mRNA (Kiss 2002). Further, it has been shown that 

snRNAs and snoRNAs can function in pre-mRNA processing through involvement in 
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splice site selection (Kishore & Stamm 2006; Matera et al. 2007; Khanna & Stamm 

2010). Two splicing factors were significantly DE, orthologous to U2af38 and LSm-4 

in D. melanogaster, which regulate alternative splicing (Park et al. 2004; Tritschler et 

al. 2007). U2af38 is a core splicing component that forms part of the spliceosome, 

attaching to the 3’ splice site during alternative splicing and Sm-like proteins such as 

LSm-4 associate with small RNA components of the spliceosome, influencing the 

alternative expression of genes (Will & Lührmann 2011). 

Alternatively expressed genes had roles in cellular signaling, neurological 

development, gene expression regulation and organismal development. Cactus-

specific functional enrichment implicated a role for intracellular signaling in response 

to extracellular cues. G-protein coupled receptor signaling pathways are a large family 

of cell surface molecules that act as receptors for a range of stimuli, including 

neurotransmitters, hormones, growth factors, odorant molecules and light (Marinissen 

& Gutkind 2001). Other enriched functions among AE cactus related genes included 

terms for the transmission of nerve impulses. These included calcium and sodium ion 

transport through voltage-gated channels, and synaptic transmission itself. Thus, 

rearing flies on differing hosts until eclosion had lasting effects on the expression of 

genes involved in extracellular signaling and transmission of nerve impulses and 

possibly adult behaviour. 

 

Links to behavioural phenotypes 

A potential link between larval cactus effects and adult behavioural phenotypes was 

discovered through the DE and AE of behaviour related genes. Several chemosensory 

behaviour genes were differentially expressed across host plants, most likely relating 

to chemical differences between cacti. Such behaviour includes sensing of volatile 
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chemicals for host plant detection (Fogleman & Danielson 2001), and evidence 

suggests that gustatory receptor genes, such as Gr94A, have neuronal links to the 

reproductive organs in Drosophila (Park & Kwon 2011). The AE of nervous system 

related genes suggests that alternative exon use might be particularly important for 

behavioural plasticity. However, 10 significantly DE genes in the interaction effect 

were also annotated with neurogenesis/nervous system development functions. The 

expression of chemosensory and impulse transmission genes indicates cactus-specific 

differences in sensing and parsing of cues from the external chemical environment. 

This, in turn, has a potential influence on adult male mating success, through cactus-

specific expression of nervous system development genes. The peripheral and central 

nervous systems both play a major role in Drosophila mating behaviour (Villella & 

Hall 2008). Mutations in Drosophila ion channel genes are known to influence 

behaviour, such as learning and olfaction, as well as courtship song production 

(Peixoto & Hall 1998; Gleason 2005). Ion channel genes are therefore good 

candidates for controlling mating behavior (Kyriacou 2002) and demonstrate complex 

expressional regulation through alternative splicing (Smith et al. 1996). Expression 

variation in ion channel and nervous system development genes such as slo, which we 

found to be significantly AE, may have an influence on courtship behaviour in flies. 

Further evidence of a role for slowpoke in D. mojavensis evolution comes from a QTL 

study in which slo was identified as a potential candidate gene underlying courtship 

song production (Etges et al. 2007). Thus the expression of chemosensory and 

nervous system related genes across cacti and mating success treatments provide a 

potential link between cactus hosts and adult courtship behaviour, through nervous 

system development. 
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QTL studies have shown strong GxE effects between host cactus and traits 

involved in mating behavior in D. mojavensis, through differences in epicuticular 

hydrocarbons (used as contact pheromones) and courtship song production (Etges et 

al. 2007; Etges et al. 2009; Etges et al. 2010). Surprisingly few genes directly related 

to CHC production were seen here, although genes involved in metabolism, seen in 

both cactus and mating effects, might also play a role. Genes such as the !9 

desaturases are thought to be important in pheromone production (Keays et al. 2011), 

were implicated in D. mojavensis QTL studies and may influence reproductive 

isolation between D. melanogaster populations (Dallerac et al. 2000; Takahashi et al. 

2001). However, no desaturase genes were significantly differentially or alternatively 

expressed in these analyses perhaps suggesting that any GxE effects of these genes do 

not involve an expression response. This suggests there may be a greater role for 

plasticity of neurological function, potentially involving courtship song, and 

chemosensory behaviours in D. mojavensis. 

 

Gene expression changes over the life cycle 

We examined the effect of larval environmental manipulation on adult gene 

expression (rather than cross-generational effects) and found significant functional 

enrichment of several different types of epigenetic modifications. Because flies were 

raised on cactus hosts only during egg to eclosion, cactus specific gene expression 

patterns may have been laid down during this period, and propagated through to 

adulthood. Several processes that can play such a role were identified. Cactus-specific 

expression included genes functioning in methylation (e.g. ortholog of pr-set7 D. 

melanogaster gene), protein ubiquitination and histone modification (e.g. orthologs of 

Snp and CG31703). The significant methylation GO term broadly includes any 
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attachment of a methyl group to protein, DNA or RNA. Interestingly a higher 

proportion of methylation related genes were upregulated in successfully mated males 

and most other DE genes were downregulated (Fig. 4.3). Increased methylation is 

thought to repress gene expression (Wolffe & Matzke 1999), meaning that mating 

success might be particularly influenced by methylation-based control of gene 

regulation.  

Epigenetic modifications of RNA and proteins rather than DNA might be 

particularly important in Drosophila as this group does not have the full complement 

of DNA methyltransferases commonly found in other organisms, having only retained 

one methytransferase, orthologous to the human Dnmt2 gene (Lyko & Maleszka 

2011). Dnmt2 is only thought to function in the methylation of tRNA (although this 

has been disputed; Goll et al. 2006; Krauss & Reuter 2011), meaning that the 

methylation GO term seen in this study will mainly involve RNA and proteins. tRNA 

processing was a significantly enriched term in the rank mean test of DE genes, and a 

tRNA methyltransferase, Nsun2, was significantly AE. Nsun2 functions in 

spermatogenesis in Drosophila (Gerbasi et al. 2011) and splicing mutations within it 

can cause short-term memory loss, demonstrating the importance of correct splicing 

for function of this gene (Abbasi-Moheb et al. 2012). Alternative splicing has also 

been suggested as an important mechanism underlying phenotypic plasticity (Marden 

2008) and histone modifications and chromatin remodeling are known to play a role 

in alternative splicing (Luco et al. 2010; Luco et al. 2011). Chromatin remodeling 

genes are important for temperature related plasticity in D. melanogaster (Levine et al. 

2011) and chromatin assembly genes were differentially expressed in cactus-specific 

larval plasticity in D. mojavensis (Matzkin et al, 2006). 
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Evidence for a suite of epigenetic processes associated with host plant 

plasticity suggest that Drosophila employ gene regulatory mechanisms other than 

DNA methylation, and that these mechanisms might play a role in ecological 

adaptation. There has been some controversy surrounding the role of epigenetic 

mechanisms in Drosophila species, specifically whether DNA methylation routinely 

occurs in the Drosophila genome. Recent studies suggest that methylation does occur 

(Krauss & Reuter 2011), yet experimental evidence indicates this is at low levels 

genome-wide, and the functional significance remains unclear (Lyko et al. 2000). Our 

results suggest a potential role for RNA and protein methylation that links larval 

cactus plasticity with adult phenotypes. Recent evidence suggests an important role of 

chromatin modification in gene expression plasticity in Drosophila (Levine et al. 

2011). Therefore, species lacking the core Dnmt genes, the ‘Dnmt2 only’ species 

(Krauss & Reuter 2011), might regulate their genome through mechanisms other than, 

or in addition to, DNA methylation. This might include RNA and histone protein 

modifications, and involve snRNAs and snoRNAs.  

Potential links between ecological adaptation and reproductive success have 

rarely been addressed at a transcriptomic level. Agria cactus causes decreased mate 

discrimination and higher mating success, particularly for Baja California males, in 

multiple choice studies (Etges 1992). QTLs for mating success and the phenotypes 

involved often show genotype-by-environment interactions (Etges et al. 2007; Etges 

et al. 2009). Few DE or AE genes were seen to be present in both the cactus and 

mating success main effects, indicating little evidence for a shared genetic basis, or 

pleiotropy. However, models of ecological speciation include other modes of linking 

ecological adaptation and reproductive isolation, such as physical linkage (Rundle & 

Schluter 2004). Here we found that larval host cactus influenced adult male mating 
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success by modulating the expression of genes involved in translation, transcription 

and nervous system development. Gustatory receptor genes such as Gr94A and 

nervous system genes such as slo have been linked to reproduction and courtship 

behaviour in Drosophila (Peixoto & Hall 1998; Park & Kwon 2011). The expression 

of such genes here suggests that the genetic basis of mating success in D. mojavensis 

is likely to involve nervous system development genes that link the cactus 

environment to reproductive behaviour. Mainland populations diverged from an 

ancestral Baja California population around 230-270,000 years ago (Smith et al. 

2012). This suggests that the adaptation of D. mojavensis to organ pipe cactus and the 

concurrent evolution of reproductive isolation has been fairly rapid, and that plasticity 

in gene expression may have played an important role in this. Examining the 

molecular architecture that underlies plasticity of gene expression is therefore an 

important step towards understanding the role of gene expression in ecological 

speciation (Pavey et al. 2010). 
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EVIDENCE FOR EPIGENETIC IMPRINTING IN THE INSULIN-
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ABSTRACT!

The relative contribution of natural and sexual selection to speciation is still under 

debate. Sexual conflict might be play a role in divergence as it can drive the 

antagonistic coevolution of traits between the sexes. One outcome of sexual conflict is 

parent-of-origin effects that can occur through gene expression regulation, controlled 

through genomic imprinting by DNA methylation. Genomic imprinting in the Insulin-

like Growth Factor II (Igf2) gene has been linked to sexual conflict in mammals, 

where allele-specific imprints regulate gene expression leading to changes in 

developmental growth. Recent studies in a freshwater Goodeid fish, Girardinichthys 

multiradiatus, show that offspring body size is dependent on the population-of-origin 

of each parent. Using sequence information from a recent study of Igf2, this chapter 

looked for evidence of genomic imprinting between populations of G. multiradiatus. 

The majority of the Igf2 sequence was obtained in G. multiradiatus, in order to 

identify potential regulatory features and design primers to examine DNA methylation 

patterns across the gene. Sequence information from intron 1 and intron 3 was 

obtained, along with some exonic sequence. Intron 2 did not amplify. Highly 

conserved 200bp regions were discovered in both sequenced introns, associated with a 

methylated CpG island in intron 3. This potential regulatory feature might represent a 

mechanism of genomic imprinting common to all fish. Little evidence for allele-

specific methylation was seen, except for one CpG position located immediately 

upstream from the putative regulatory region. A protocol for direct sequencing of 

bisulfite converted PCR products was also developed, that allows for the sequencing 

of multiple samples in order to examine DNA methylation patterns on a population 

scale and statistically examine methylation variation between treatment groups. 

!
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INTRODUCTION 

Speciation proceeds with the divergence of populations and the evolution of 

reproductive isolation (Coyne & Orr 2004). Both natural and sexual selection are 

thought to play a role in speciation, yet the relative contribution of each is still unclear. 

Although conceptually it is easy to see how selection on reproductive traits might 

cause reproductive isolation, studies suggest that sexual selection alone may not be 

enough to produce a stable divergence of populations (Maan & Seehausen 2011). 

However, recent theoretical work does suggest that even a very weak source of 

divergent or disruptive selection, due to environmental heterogeneity, might assist 

sexual selection in driving divergence (M’Gonigle et al, 2012). Further, natural and 

sexual selection acting in concert are likely to be a strong driver of speciation, even in 

the presence of extensive gene flow (Van Doorn et al. 2009). The potential link 

between ecology and reproductive isolation in driving speciation has been supported 

empirically (Funk et al. 2006), and thus sexual selection is likely to play an integral 

role in the creation of biodiversity. 

 Some evidence for a role of sexual conflict in assortative mating has been seen, 

in the absence of environmental selection (Martin & Hosken 2003). Sexual conflict 

involves the sexually antagonistic coevolution of traits between sexes. This differs 

from traditional sexual selection, which involves convergent interests or the 

exploitation of one sex, with sexual conflict being driven by divergent evolutionary 

interests and the avoidance of costs imposed by the opposite sex (Chapman et al. 

2003). Conflicts can arise between males and females when each sex attempts to 

maximize their fitness in incompatible ways, often leading to interlocus and/or 

intralocus conflict. Interlocus conflict occurs when a trait evolves to enhance the 

fitness of one sex, with a cost to the other. This may drive evolution in the opposite 



! "&&!

sex of ‘defensive’ traits, creating an arms race of coevolving traits and genetic loci 

(Chapman et al. 2003). Intralocus conflicts arise from divergent selection pressures 

between sexes on a shared trait controlled by one locus (Bonduriansky & Chenoweth 

2009). Conflicts between males and females can occur for many different types of 

trait and the possible outcomes of sexual conflicts can be diverse (see Gavrilets & 

Hayashi 2005). These outcomes can include sexual dimorphism or exaggerated 

reproductive traits, however antagonistic conflicts may have an upper threshold 

beyond which there is evolution towards resolution, or a mitigation of antagonistic 

effects (Chapman 2006). Theoretical models examining the role of sexual conflict in 

speciation demonstrate the potential for the rapidly coevolving male and female traits 

to lead to the evolution of reproductive isolation, and thus speciation, in both allopatry 

and sympatry (Gavrilets & Hayashi 2005; Gavrilets & Waxman 2002; Parker & 

Partridge 1998). However, although sexual conflict may result in genetic 

diversification it may not necessarily lead to reproductive isolation, and conflict may 

actually inhibit the process of speciation (Kirkpatrick & Nuismer 2004; Ritchie 2007). 

One interesting example of the potential results of sexual conflict comes from the 

Goodinae group of viviparous fish where males exploit females for mating using 

bright yellow tail markings, which female fish mistake for prey (Macías Garcia & 

Ramirez 2005). Females pay a cost in foraging as well as in suboptimal mating by 

reacting to this cue. However, in some species this conflict has lead to females 

evolving separate sexual and feeding responses, with the male cue evolving into an 

honest signal. 

One potential outcome of sexual conflict is the evolution of parent-of-origin 

effects, which occur through imprinting and for which there are well characterised 

mechanisms in mammals (Murphy & Jirtle 2003). Conflicts can arise between males 



! "&'!

and females over the level of parental investment (Chapman et al. 2003). For example, 

females might provision their offspring in a manner that maximizes their own fitness. 

Males might then respond to such maternal effects through imprinting of alleles at 

particular loci that manipulate offspring fitness towards their own optimum. 

Imprinting is the differential expression of alleles depending on the parent from which 

it originated (Brandvain et al. 2011; Haig 2000; Haig & Westoby 1989). Evidence 

suggests that a large number of loci are differentially expressed due to imprinting 

(Brandvain et al. 2011), with approximately 800 genes in mice demonstrating parent-

of-origin expression differences in the brain alone (Gregg et al. 2010a; Gregg et al. 

2010b). Imprinting is phylogenetically wide spread, occurring in insects, mammals, 

fish and plants (Bartolomei & Tilghman 1997; Garnier et al. 2008; Lloyd et al. 1999; 

Martin & Mcgowan 1995). The molecular control of genomic imprinting must 

necessarily be dynamic because imprinting of genes can be erased and reestablished 

in the gametes each generation (Bartolomei & Tilghman 1997). Epigenetic marks 

provide just such a dynamic control of gene expression, encompassing a range of 

protein, DNA and RNA modifications (Berger et al. 2009; Bird 2007; Johannes et al. 

2008). DNA methylation is the most frequently studied epigenetic mark, and is 

thought to play a key role in the regulation of imprinted genes in mammals (Feil & 

Berger 2007; Morison et al. 2005). 

Imprinting during gametogenesis often leads to silencing of the imprinted 

allele in offspring, and DNA methylation is a key part of this process. DNA 

methylation is the addition of a methyl group to cytosine residues and normally 

occurs at CpG (CG dinucleotide on the same strand, with a phosphodiester bond 

between them, ‘p’) positions in mammals, but occurs at other sequence motifs in other 

organisms (Goll & Bestor 2005; Richards 2008). Methylated cytosines are found in 
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promoter regions, influencing enhancer/promoter interactions as well as within genes 

themselves (both introns and exons), often interacting with histones to form 

heterochromatin and regulate gene expression (Cedar & Bergman 2009; Ohlsson et al. 

2001). CpG islands are DNA sequence regions with a high-density of CpG motifs, 

that are often differentially methylated to function in the regulation of gene expression. 

CpG islands were first discovered more than 25 years ago (Bird et al. 1985; 

Tykocinski & Max 1984) and since then it has been shown that 70% of human genes 

are linked to promoter CpG islands, and that the majority of independent CpG 

dinucleotides across the human genome are methylated, whereas those associated 

with CpG islands are frequently not (Weber et al. 2007). CpG islands found in the 

promoter region of genes have been linked to gene expression regulation and can be 

differentially methylated, or imprinted (Illingworth et al. 2010). Such imprinted genes 

frequently cluster together in genomic regions, or domains, and are controlled by 

differentially methylated regions (DMRs), or imprinting control regions (ICRs), 

which can differ in methylation status and be stably methylated over multiple 

generations (Becker et al. 2011; Choufani et al. 2011). Variably methylated regions 

(VMRs) also occur that might be a source of variation for the production of DMRs 

(Feinberg & Irizarry 2010). The effect of methylation on gene expression depends on 

many aspects, such as the default state of the DMR, the genomic location of the gene 

and interactions with other epigenetic mechanisms such as histones and small RNAs. 

 The Insulin-like Growth Factor II (Igf2) was one of the first genes to be 

identified as imprinted in mammmals (Barlow et al. 1991; Dechiara et al. 1991). 

IGF2 is a growth factor that acts through signaling pathways to regulate growth, 

development and metabolism, causing increased zygotic growth when overexpressed 

(Vrana 2007; Wood et al. 2005). Studies in mice show that the deactivation of Igf2 
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through mutation creates mutants with 60% of normal body weight for paternally 

transmitted alleles, and phenotypically normal offspring for mutant maternal alleles 

(DeChiara 1990; 1991). In nature, allele-specific patterns in body size are seen in 

heterospecific crosses of deer mice, Peromyscus maniculatus and it’s sister species P. 

polionotus, linked to differential imprinting of several genes (Vrana 2007). In 

mammals, IGF2 expression is limited after birth, however in fish expression 

continues throughout development (O'Neill et al. 2007). Igf2 has several different 

promoters, depending on the presence of imprinting (Lawton et al. 2008), and 

expresses several different transcripts across development and tissue types (Dechiara 

et al. 1990). The expression of IGF2 is also regulated by the mannose-6-

phosphate/IGF2 receptor (Igf2R), which suppresses offspring growth by 

encapsulating IGF2 and transporting it to lysozymes for degradation (Wang et al. 

1994). Thus IGF2 is important for the regulation of developmental growth, and the 

reciprocal imprinting of both Igf2 and Igf2R play a crucial role in this regulation 

(Killian et al. 2001). 

The epigenetic regulation of IGF2 expression has been most intensively 

studied in mice, where the mechanism has been thoroughly characterised. The Igf2 

domain includes a primary DMR and two secondary DMRs that regulate the 

expression of IGF2 along with a long non-coding RNA called H19. Igf2 is located 

upstream of H19 separated by ~100 Kb (Murrell et al. 2004) with the primary DMR 

located between them, close to the H19 promoter. The primary and secondary DMRs 

interact to produce parent specific ‘switches’ that regulate gene expression (Murrell et 

al. 2004). The primary DMR binds the CTCF transcription factor, an enhancer that is 

blocked when the primary DMR is methylated (Bell & Felsenfeld 2000). Methylation 

of the primary DMR for paternally transmitted alleles, prevents CTCF attachment and 
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H19 transcription, and allows Igf2 access to enhancer elements located downstream of 

H19. The primary DMR interacts with a secondary DMR located in exon 6 of Igf2. 

This interaction allows for the expression of Igf2, with H19 being silenced. The 

maternal allele, however, is unmethylated at the primary DMR and thus bound by 

CTCF. The primary DMR interacts with another secondary DMR located upstream of 

the Igf2 promoter region, creating an inactive chromatin domain in which Igf2 is 

located. Thus, H19 is expressed while Igf2 is silenced in the maternal allele (Murrell 

et al. 2004). 

Imprinting has received less attention in fish than mammals. However, recent 

work provides evidence for selection on Igf2 coincident with the evolution of the 

placenta in matrotrophic fish (O'Neill et al. 2007). This study suggested a role for 

sexual conflict in driving Igf2 evolution in fish, with expression potentially regulated 

by genomic imprinting, similar to that in mammals. However, O’Neill et al (2007) did 

not consider duplicate copies of Igf2 genes that were retained following genome 

duplication events (Taylor et al. 2003). These are two copies of Igf2 (Igf2a and Igf2b; 

Sang et al. 2008; Zou et al. 2009), which may have subsequently evolved differing 

functions. This, along with the fact Igf2 is expressed throughout fish development 

means that sexual conflict in fish may have led to different mechanisms of Igf2 

expression than in mammals.  

The freshwater Goodeid fish are a diverse group of species that demonstrate 

variable levels of sexual dimorphism (see Appendix I; Macías Garcia et al. 2012). 

This group is thought to have radiated rapidly, around 15 million years ago (Doadrio 

& Dominguez 2004; Webb et al. 2004) and evidence suggests that sexual selection 

has lead to sexual dimorphism influencing levels of gene flow across species (Ritchie 

et al. 2007; Ritchie et al. 2005). Girardinichthys multiradiatus, or the Amarillo fish, 
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is the most sexually dimorphic of the Goodeid fish, indicating that sexual selection 

might be important in this species. G. multiradiatus demonstrates genetic divergence 

between populations as well as interpopulation variation in sexual dimorphism and 

male display traits (colourful and enlarged median fins; Macías Garcia et al. 2012). 

Population level crosses between the most geographically divergent populations 

demonstrate significantly larger offspring size (body weight, width and length) for 

interpopulation crosses than intrapopulation crosses, with interpopulation size 

depending on the population-of-origin of each sex (Salvidar et al, unpub. results). 

This suggests that these divergent populations may have evolved differently in 

response to selection on parental investment in offspring size. This result is not likely 

to be simply due to hybrid vigour, as this would likely result in an equal size of both 

interpopulation crosses. Thus, there is the potential for a role of population-specific 

expression of the Igf2 gene, regulated by genomic imprinting, in the evolution of G. 

multiradiatus populations. 

The aim of this study was to examine the Igf2 domain in the G. multiradiatus 

system for evidence of population specific patterns of DNA methylation, linked to 

sexual conflict. To do so required genetic sequence information from the Igf2 gene. 

Therefore, the first aim was to obtain the sequence of the Igf2 copy analysed by 

O’Neill et al. (2007) (that only included the mRNA sequence), including exons and 

introns, using primers designed from a closely related species, Ilydon furcidens 

amacae (identified as I. amecae in O’Neill et al. 2007, however this is not officially a 

species but a subspecies; Kingston 1979). The mechanism of Igf2 expression is 

unknown in fish. An orthologous non-coding RNA to the H19 gene has not been 

annotated in the fish genomes for which the full sequence information is available 

(Ensembl Zebrafish: http://www.ensembl.org, search for annotated H19 gene, 
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database accessed 21/5/12; Flicek et al. 2011), and a BLASTn search of the H19 

sequence from Mus musculus against the Danio rerio genome did not produce any 

significantly similar sequences (mouse H19 sequence obtained from the NCBI 

database: http://www.ncbi.nlm.nih.gov, and a BLASTn search performed against 

taxid: 7955; Altschul et al. 1997). Thus a second aim was to examine sequences for 

evidence of regulatory features, particularly DMRs (i.e. CpG islands). The final aim 

was to survey CpG islands for methylation and produce a protocol allowing a 

quantitative assessment of methylation variation between experimental groups, such 

as population-of-origin, sex, generation or gamete/soma tissues. The long-term goal is 

to obtain the entire Igf2 region, for both duplicate copies, in order to examine allele-

specific expression across divergent populations. 

 

METHODS!

Design of EPIC primers 

To obtain the sequence of Igf2 in G. multiradiatus, Exon Priming Intron Crossing 

(EPIC) primers (Palumbi & Baker 1994) were designed using a closely related species, 

Ilydon furcidens amecae. The mRNA sequence of the I. f. amacae Igf2 gene was 

obtained from O’Neill (2007), and is most likely to be Igf2b (see Results). 

Amplification of the Igf2 gene was attempted with primers designed using the zebra 

fish genome, however PCR fragments did not amplify, most likely due to the level of 

sequence divergence between species. Therefore, primers were designed with the I. f. 

amacae Igf2b mRNA sequence, using Primer3+ (Rozen & Skaletsky 2000). The Igf2b 

mRNA is comprised of four exons. Three sets of primers were designed with one 

primer in each exon flanking the target intron, thus amplifying each intron as well as 
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some exon sequence (Table 5.1; Fig. 5.1). Unfortunately all intron 2 amplifications 

failed (see Results). 

 

Table 5.1 EPIC primers for amplification of introns of Igf2, including both sets of intron 2 

primers that failed to amplify.  

Target region Primer 
position 

Primer sequence TA 

Intron 1 Exon 1 
Exon 2 

F: GATCCGGACACCACTCACTT 
R: CTCCCCCACACAACGTCTCT 58°C 

Intron 2 Exon 2 
Exon 3 

F: GATGCGCTGCAGTTTGTCT 
R: GGGTTTGGCACAGTATTGCT - 

Intron 2 (re-designed) Exon 2  
Exon 3 

F: CTCACGCTCTACGTTGTGGA 
R: GACACGTCCCTCTCGGACT - 

Intron 3 Exon 3 
Exon 4 

F: AGCTGTGACCTCAACCTGCT 
R: CTTCTTCTGCCACGTTTCGT 58°C 

 

TA, annealing temperature; -, denotes failed amplification of target sequence. 

 

DNA extraction and amplification of target sequence 

DNA was extracted from one G. multiradiatus individual from one population (San 

Juanico, central Mexico) using cell lysis solution (0.1M EDTA, 0.2M Tris pH 8.5 and 

1% Tris). 600"l of cell lysis solution was chilled on ice in a 1.5 ml tube. A fin clip 

(2x3 mm in size) was homogenized and incubated overnight with 3 "l of Proteinase K. 

After incubation 3 "l of RNaseA was added to the solution and the sample incubated 

for one hour. Proteins were precipitated with potassium acetate and DNA with 100% 

isopropanol. DNA was washed with 70% ethanol and eluted in 20 "l of PCR grade 

water. 

 PCR for each primer set was carried out in 50 "l reactions; 5 "L of 10! 

ammonia buffer, 1 "L of 10mM dNTPs, 1 "L of 50mM MgCl2, 1.2 "L of each primer 

at 30 pM/"L, 0.3 "L of 5U Taq, 9.9 "L of Q-Solution (Bioline), 29.5 "L of water and 

1 "L of extracted DNA. The thermoprofile for PCR was; 94°C for 3 minutes followed 
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by 30 cycles of 94°C for 30 seconds, primer specific TA °C and 72°C for 30 seconds. 

Final extension was at 72°C for 5 minutes. PCR products were then cleaned up using 

the MSB Spin PCRapace clean up kit (Thistle Scientific) and then sequenced 

following a BigDye reaction on an ABI 3730 sequencer. Both forward and reverse 

strands were sequenced. 

 

Analysis of sequences and bisulfite primer design 

Raw DNA sequences were edited and checked by hand using Geneious (Drummond 

et al. 2011), and the edited forward and reverse sequences for each primer set were 

aligned using MAFFT (Katoh et al. 2002). A BLASTn search (Altschul et al. 1997) 

of the NCBI database (http://www.ncbi.nlm.nih.gov) was performed on each region to 

confirm the sequence identity. TFSEARCH v1.3 (Akiyama 1995) was used to search 

for potential transcription factor binding sites in conserved intron regions (see 

Results). TFSEARCH uses the TRANSFAC database (Heinemeyer et al. 1998) to 

search for putative transcription factor binding sites, producing a similarity score to 

database entries (similarity score threshold for positive match = 85%). Because 

TFSEARCH is subject to false positives (unverified matches) a phylogenetic 

footprinting analysis was performed in ConSite (Sandelin et al. 2004), using 

orthologous sequences identified in several species by the BLAST search. 

Phylogenetic footprinting identifies conserved transcription factor binding sites 

between species pairs that are likely to be functionally important. Phylogenetic 

footprinting was performed on conserved regions of intron 1 and intron 3 of G. 

multiradiatus by a pairwise comparison to two and three orthologous sequences 

respectively (see Fig. 5.2), comparing the binding sites discovered with TFSEARCH, 
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and using a conservation cut-off of 80%, window size of 50bp and transcription factor 

score threshold of 80%. 

 Because genomic imprinting is associated with DNA methylation, a CpG 

island search was performed using MethPrimer (Li & Dahiya 2002). MethPrimer 

identifies CpG islands in a given input sequence and designs bisulfite sequencing 

primers flanking these islands. Islands are commonly defined as 100-200bp windows 

that have a GC content over a certain level (commonly >50%) and a large 

observed/expected CpG ratio (Fang et al. 2012). The observed/expected ratio 

(Obs/Exp) is calculated by, 

 

! 

Obs /Exp =
Number of CGs

(Number of Cs " Number of Gs)
" Sequence length  

 

Settings for the CpG island search were; island size = 100bp, GC% > 0.4 and O/E > 

0.6 for intron 1 sequence, and island size = 100bp, GC% > 0.3 and O/E > 0.6 for 

intron 3, the latter settings were relaxed as no CpG islands were discovered at the 

default CG% of 0.4. The primers used to amplify CpG island regions are presented in 

Fig. 5.2. Two primer sets were designed, amplifying ~500bp of CpG islands located 

in intron 1 and intron 3 of Igf2 (see Results and Fig. 5.1 for positions). 

 

Bisulfite treatment and sequencing 

The Qiagen Epitect Bisulfite conversion kit was used to perform bisulfite sequencing, 

in order to identify methylated nucleotides in the introns of Igf2. Briefly, sodium 

bisulfite was added to genomic DNA and incubated in a buffered solution. Sodium 

bisulfite deaminates cytosines into uracil (seen as a T upon sequencing), however 

methylated cytosines are protected from deamination by their methyl group 



! "'&!

(remaining a C in the sequence). Recent studies have demonstrated the presence of 5-

hydroxymethylcytosine, thought to be an intermediate during the de-methylation of 

DNA due to its association with CpG islands (Booth et al. 2012; Branco et al. 2012). 

Bisulfite sequencing does not distinguish between methylation and 

hydroxymethylation, however if hydroxymethylation is an intermediate between 

cytosine and 5-methylcytosine, it is likely to be a functionally important epigenetic 

mark. Bisulfite sequencing primers were then used to amplify converted DNA for 

sequencing. Bisulfite sequencing primers were designed to include non-CpG 

cytosines, which are expected to be unmethylated and are converted to T by sodium 

bisulfite, thus ensuring that amplified sequence is only from converted DNA. PCR 

fragments were designed to be <500bp because sodium bisulfite treatment causes 

fragmentation of genomic DNA. 

 Tissue was obtained from one G. multiradiatus female (somatic tissue) and her 

offspring (a developing zygote) and genomic DNA was extracted. The zygote came 

from an intrapopulation cross from the San Matias el Grande (SMG; see Appendix I) 

population. Although more extensive interpopulation crosses were planned, 

unfortunately most of the females did not produce offspring. PCR of bisulfite 

converted DNA was carried out for mid-intron regions of introns 1 and 3, in which 

CpG islands were detected (see Results), for both the embryo and somatic tissue of 

the female. 

 Unspecific priming and background noise during PCR can yield unreliable 

sequence traces that do not allow for analysis of directly sequenced PCR products 

(Jiang et al. 2010). Such background noise means that direct sequencing of bisulfite 

converted PCR product is rarely performed (Myohanen et al. 1994; Paul & Clark 

1996). Instead, methylation is commonly identified through the cloning of PCR 
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products. However, this relies on the probability of selecting a representative sample 

of clones from the sequence population of PCR products, and thus a large number of 

clones need to be sequenced (>10 clones per sample; Jiang et al. 2010). Direct 

sequencing of PCR products is more quantitative because sequences represent the 

overall pool of products. Although some novel methods have recently been developed 

(e.g. Lewin et al. 2004), a quick, easy and inexpensive protocol such as that carried 

out by Jiang (2010) is more desirable for large-scale surveys of methylation. 

Therefore, an optimised PCR protocol was performed, analogous to the method in 

Jiang et al. (2010), with cloning used to confirm the methylation status of each region 

and direct sequencing performed for a pilot study (see below). A hot-start Taq was 

used to reduce unspecific priming along with Q-solution, a PCR additive that helps to 

reduce non-specific amplification of DNA. Each PCR contained 15 "L PCR mix 

(Qiagen), 0.4 "L of forward and reverse primer, 13.2 "L of PCR grade water, 5 "L of 

Q-solution and 1 "L of bisulfite converted DNA to make a 35 "L reaction. PCR 

reactions were checked on agarose gel to confirm correct amplification of fragment 

lengths, and each product was cloned using a TOPO TA cloning kit (Invitrogen). Ten 

colonies from each of the four PCR reactions were picked for purification and 

sequencing. From these clones the methylation status of nucleotide positions were 

established and were compared to the results of directly sequenced PCR products. 

 A pilot study was carried out using direct sequencing to examine methylation 

variation across multiple samples. The main aim of this pilot was to establish the level 

of technical variation caused by direct sequencing and compare this measure to the 

cloned sequences. One male and one female from two divergent populations, 

Zempoala (Z) and San Matías el Grande (SMG) (see Appendix I, Fig. 2 for locations), 

were surveyed for intron 3, which demonstrated a high level of DNA methylation. 
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The Zempoala and San Matías Grande populations are geographically separated and 

demonstrate significant differences in offspring size in crosses, depending on the 

population-of-origin of the each parent (see Introduction). Technical replication 

enabled an assessment of the repeatability of the direct bisulfite sequencing protocol. 

Three replicate muscle tissue samples from each individual were processed 

independently, from the DNA extraction step through to sequencing. Sequencing was 

carried out directly from PCR products, quantified using the relative peak heights of 

Cs and Ts at each position. Percentage methylation was calculated as the peak height 

of C divided by the heights of (C+T). Peak heights were measured using the 4peaks 

software (Griekspoor & Groothuis 2006). 

 The population genetic variation in genomic (i.e. non-converted) sequences of 

intron 3 was also surveyed in both populations, to associate any genetic variation with 

epigenetic variation in the sequenced region. Chromatograms were examined and 

edited by hand using Geneious (Drummond et al. 2011) and aligned using MAFFT 

(Katoh et al. 2002). 

 

 

Fig. 5.1 Summary of sequenced regions of the Igf2 gene in G. multiradiatus using EPIC and 

bisulfite sequencing primers. Small black arrows denote EPIC primer positions. Exons are 

blue boxes and introns dashed hats. The purple oval represents intron 2, which is of unknown 

size due to failed amplification. Dashed arrows show successfully sequenced regions and red 

arrows bisulfite sequenced regions. 

 

 

Intron 1! Intron 2! Intron 3!
Sequenced!

BS sequenced!
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RESULTS!

EPIC primers were successful in sequencing introns 1 and 3, and also captured 37bp 

of exon 2 and 52bp of exon 3 in each sequence respectively. Intron 2 failed to amplify, 

producing a high molecular weight band when ran on a gel. Primers were re-designed 

in different regions of exon 2 and exon 3 in an attempt to obtain intron 2, however 

these also failed to amplify. 

 Intron 1 of the Igf2 gene was 923bp in length and intron 3 1272bp long. 

Pairwise identity of aligned protein sequences of IGF2 demonstrated a 58.2% and 

70.7% identity of Igf2a and Igf2b respectively, compared to the Igf2 copy in I. 

amacae. This suggests that the version of Igf2 examined in O’Neill et al (2007), and 

thus the copy amplified here was most likely Igf2b. BLAST searches of each intron 

sequence revealed highly conserved regions in the center of each intron (Fig. 5.2). 

Intron 1 showed significant hits to intron sequences in the Igf2 gene in two different 

species of cichlid fish. This conserved region was 236bp in length with 81% identity 

to intron regions in these species (Fig. 5.2). Intron 3 showed a conserved region 

206bp in length with significant matches to three species of fish; cichlid, seabass and 

largemouth bass, with >83% identity to each (Fig. 5.2). None of these BLAST hits 

indicated which copy of Igf2 the sequences originated from. However, these results 

are suggestive of functional conservation of mid-intron sequence motifs, which might 

play a role in gene expression regulation or alternative splicing. 

A transcription factor binding site search was carried out using TFSEARCH. 

In total, 24 and 18 binding sites were discovered in the conserved regions of intron 1 

and intron 3 respectively. The functions of these transcription factors are broad, but 

generally they are involved in development, cellular growth and differentiation, 

particularly haematopoietic development. Four specific transcription factor binding 
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sites were present in both of the intron conserved regions, as well as identified as 

phylogenetically conserved between all species comparisons using ConSite. These 

were the binding sites for GATA-1, MZF1, SRY and USF (Table 5.2). 

 

 

Fig. 5.2 BLASTn results for (a) intron 1 and (b) intron 3 of Igf2b in G. multiradiatus (see 

Methods for details). Positions of significant matches are shown on the chart above with the 

corresponding species in order in the table below. The small region near the beginning of 

intron 3 corresponds to exon 3 of I. f. amecae from which primers were designed. 

 

CpG island searches were carried out using MethPrimer to identify potentially 

methylated regions within each intron. MethPrimer identified three and two CpG 

islands located within each intron and intron/exon boundaries in introns 1 and 3 

respectively (Fig. 5.3). Interestingly, putative CpG islands were discovered directly 

upstream of each mid-intron conserved region, indicating a potential region of 

methylation coincident with conserved sequence regions. This might indicate 

Significant BLAST matches! Coverage! E value! Max ident!
Oreochromis niloticus Igf2 gene, complete cds! 27%! 4e-42! 81%!
Tilapia mossambica Igf2 gene! 27%! 6e-41! 81%!

Significant BLAST matches! Coverage! E value! Max ident!
Oreochromis niloticus Igf2 gene, complete cds! 17%! 2e-56! 86%!
Lates calcarifer Igf2 gene, complete cds! 19%! 1e-49! 83%!
Micropterus salmoides Igf2 gene, complete cds! 17%! 1e-48! 84%!
Ilyodon amecae Igf2 gene, complete cds! 4%! 4e-14! 96%!

A!

B!
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functional sequences with a potential role in gene expression, similar to the DMRs 

seen in mammalian Igf2 genes. 

 

 

Table 5.2 ConSite, phylogenetic footprinting results for conserved regions of (a) intron 1 and 

(b) intron 3, demonstrating conserved transcription factor binding sites between G. 

multiradiatus and each species shown. Each species in the analysis was identified through the 

BLAST search of the NCBI database. Numbers in brackets are the number of occurrences of 

that transcription factor binding site within each conserved intron region. See Supplementary 

Table S5.1 for a summary of the function of each transcription factor. 

 

MethPrimer was used to design primers to amplify bisulfite converted DNA from the 

CpG islands upstream of the conserved intron regions (Fig. 5.3). Cloned sequences of 

Intron 1 demonstrated no DNA methylation in the predicted CpG island, however 

methylation was confirmed within intron 3, with methylation occurring at every CpG 

position within the predicted CpG island (Fig. 5.4). Seven methylated CpG 

dinucleotides were discovered through cloning and sequencing of the intron 3 PCR 

product. Variation in the level of methylation was seen between CpG positions, 

ranging from complete methylation (100%), to 60% at position ‘259bp’ (Fig. 5.4). 

This position demonstrated a pattern of methylation expected if only one allele was 

methylated and thus is a possible candidate for allele-specific methylation. These 

A
O. niloticus T. mossambica
GATA-1 (1) GATA-1 (2)
GATA-2 (1) GATA-2 (2)
GATA-3 (1) GATA-3 (2)
MZF1 (2) MZF1 (2)
SRY (1) SRY (1)
USF (2) USF (1)

B
O. niloticus L. calcarifer M. salmoides
GATA-1 (1) - -
Nkx (2) Nkx (1) Nkx (2)
MZF1 (3) MZF1 (2) MZF2 (2)
SRY (2) SRY (1) SRY (1)
USF (2) USF (2) USF (2)
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sequences were obtained from one female from the SMG population and her offspring, 

and little difference in methylation was seen between them. Direct sequencing of PCR 

product was undertaken to examine methylation in a more quantitative manner. 

 

 

Fig. 5.3 CpG island search results and design of bisulfite sequencing primers using 

MethPrimer (Li & Dahiya 2002), for the entirety of (a) intron 1 and (b) intron 3 sequences. 

Graphs show the intron regions in which primers were designed. Blue shading indicates CpG 

islands, red ticks indicate CpG positions and the selected primers are shown below each graph 

as red boxes. Below each chart are tables summarizing the CpG island details and the 

parameters for the selected bisulfite primers. Primers for the 3’ CpG islands of intron 1 and 5’ 

CpG island of intron 3 were designed, however this study focuses on the CpG islands 

coincident with the conserved mid-intron regions. 
 

Direct sequencing of PCR products produced clean sequence traces with little 

technical variation. Figure 5.5 presents the results of the direct sequencing of an SMG 

Size (start-end)!

Island 1! 118bp (223-340)!

Island 2! 111bp (558-668)!

Island 3! 129bp (776-904)!

Primer! Size! Tm (°C)! GC%! Num. ‘C’s! Sequence!

F1! 25! 55! 44! 4! AGAATGTATAAATTGTAAAGGGAGA!

R1! 20! 57! 55! 4! CCACCCCAAAAAATTACAAA!

Product size: 281bp, CpGs in product: 15!

A!

Size (start-end)!

Island 1! 121bp (54-174)!

Island 2! 102bp (452-553)!

Product size: 418bp , CpGs in product: 6!

Primer! Size! Tm (°C)! GC%! Num. ‘C’s! Sequence!

F1! 27! 60! 44! 4! TGTTGATTATGGTGGAAAATATTAGTG!

R1! 25! 59! 52! 4! CAATACAACCTACAACCATCAACTT!

B!
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female compared to the cloned sequences (Fig. 5.5a) and levels of methylation 

between directly sequenced samples, including the level of technical error around the 

mean (Fig. 5.5b). The direct sequencing results closely resembled those of the cloned 

PCR products (Fig. 5.5a). Raw chromatograms from directly sequenced samples were 

of high quality and background noise was minimal, allowing for accurate 

quantification of peak heights at CpG positions. Two positions were not included in 

the direct sequencing results (the first and last CpGs in the cloned sequences) due to 

trimming of low quality sequence near the primer sites. Low levels of technical 

variation were seen between directly sequenced technical replicates (Fig. 5.5b), 

suggesting that direct sequencing can be used to quantify methylation between 

experimental treatments. Interestingly these results indicate potential population 

specific levels of methylation at several positions, however this patterns needs to be 

verified with increased biological replication. 

 

 

Fig. 5.4 Multiple alignment of bisulfite treated and cloned DNA from intron 3 of Igf2b, 

showing each methylated CpG position (white space within alignment indicates intervening 

sequence between CpG positions). The first ten rows are clones from offspring tissue and the 

second ten sequences from the mother, an SMG female. The last row is unconverted 

(genomic) DNA. Each methylated CpG is indicated with an arrow. 

Offspring clones!

SMG female clones!

Unconverted DNA!

Methylated position 1!
Methylated position 

‘7bp’!

Methylated position 
‘45bp’!

Methylated position 
‘130bp’!

Methylated position 
‘187bp’!

Last methylated 
position!

Methylated position 
‘259bp’!
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Fig. 5.5 Comparison of direct sequencing (raw traces are presented with percentage 

methylation below each position) and cloning methods (columns demonstrate the number of 

methylated clones for each position, with percentage methylation below each one) for CpG 

detection (a), and examination of technical variation associated with direct sequencing for 

methylation quantification (b). Bar plots show the mean and standard error of percentage 

methylation for three technical replicates per sample. Only the 5 methylated CpGs captured 

by direct sequencing are shown. 

 

Direct sequencing uncovered one position that appeared to be a differentially 

methylated between populations. This position was methylated in the Zempoala 

population (occurring just upstream of position ‘130bp’) but not in the SMG group, 

due to a single nucleotide polymorphism (SNP) that changed the CpG to a CpA. To 

examine this on a genetic level, several individuals from each population were 

sequenced for intron 3 and aligned with the bisulfite-converted sequences (Fig. 5.6). 

This survey uncovered genetic variation at the polymorphic position in both 

populations for the G nucleotide, which allows CpG methylation, with this nucleotide 
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being at a low frequency. Thus the seemingly population-specific methylation seen in 

the bisulfite-converted sequences was in fact due to sampling bias. The level of 

genetic variation between genomic sequences was low and associated with CpG 

positions. Only four sites were variable in the 750bp region, with two of these 

associated with a CpG motif. Interestingly, both these sites were associated with the 

CpG motif through SNPs at the G positions, rather than the cytosine. One of these 

CpGs was the position reported above, and the other was the first CpG position in the 

CpG island, also a G/A polymorphism, which showed a higher frequency of G 

nucleotides than A in both populations. This indicates that there is genetic variation 

for CpG dinucleotides that allow for the creation of methylation marks. Further, there 

is genetic variation for these two methylated positions in both populations that seems 

to be maintained at similar frequencies in each. Figure 5.7 summarizes the results 

found in intron 3 of Igf2b of G. multiradiatus. 
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Fig. 5.6 Alignment of bisulfite treated (a) and unconverted genomic DNA (b) for San Matías Grande 

(SMG) and Zempoala populations, showing that both genetic and epigenetic variation occur within 

populations. Low frequency SNPs occur in both populations, with CpG dinucleotides being methylated 

and CpAs being unmethylated. 

 

 

 

Fig. 5.7 Summary of results for intron 3 of the Igf2b gene in G. multiradiatus. Each green bar 

represents a methylated CpG dinucleotide, the red bar is the mid-intron conserved region and 

blue bar the predicted CpG island. 
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DISCUSSION 

Sexual conflict is an antagonistic evolutionary process thought to result in parent-of-

origin effects that are often controlled through genomic imprinting (Murphy & Jirtle 

2003). Differentially methylated regions control the expression of the Igf2 gene in 

mammals, and strong signals of selection have recently been detected in Igf2 in teleost 

fish, most likely driven by sexual conflict (O'Neill et al. 2007). Epigenetic variation is 

associated with imprinting and is also known to be an important regulator of gene 

expression. Here, sequences were obtained from Igf2b in G. multiradiatus, and DNA 

methylation was discovered in intron 3 that resembled DMRs previously discovered 

in mammals. Coincident with these methylation patterns were structurally conserved 

sequence regions, indicating potential gene regulatory motifs. Methylation patterns 

varied between samples, with very little technical variation, allowing for the future 

examination of quantitative differences in methylation by direct sequencing of PCR 

products. 

 

Sequencing of the Igf2b gene 

The first aim of this study was to obtain sequence information for the Igf2b gene in 

the Amarillo fish, G. multiradiatus. The use of EPIC primers allowed successful 

amplification of two out of three introns and some of the flanking exons. However, 

because intron 2 did not successfully amplify it was not possible to design primers 

and sequence back across the exons, to obtain full exon sequences. The failure of 

intron 2 to amplify might have been due to sequence divergence in the primer 

attachment sites. However, sequence divergence of Igf2b between I. amacae, in which 

primers were designed, and G. multiradiatus for the partial exon sequences obtained 

was low. It is possible that the 3’ end of exon 2 and the 5’ of exon 3, which were not 
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obtained, may demonstrate higher levels of divergence. However, it is more likely 

that intron 2 is simply very large and thus difficult to obtain with conventional PCR. 

Even after accounting for a large fragment size (by increasing cycling times) this 

region did not amplify. The second intron of Igf2b in D. rerio is 1,881bp long, 

indicating that the G. multiradiatus Igf2b second intron might also be large. Although 

conventional Taq polymerase can process fragments of up to 5Kb the efficiency of the 

reaction tends to reduce with longer fragments, and thus intron 2 might be obtained if 

a polymerase appropriate for longer fragment lengths is used. 

 

Intronic DNA methylation 

Evidence of DNA methylation in intron 3 of Igf2b in G. multiradiatus suggests the 

potential for epigenetic regulation of this gene, analogous to the mechanisms known 

in mammals. The lack of an annotated H19 in fish species for which full genomes are 

available and the conservation of H19 across all mammals (Smits et al. 2008; Stadler 

2010) suggests that the mechanism of expression of Igf2b in fish might differ from 

that in mammals. Methylation patterns within introns have previously been associated 

with the regulation of alternative splicing, through interactions with histones (Cedar 

& Bergman 2009). Intronic splicing regulatory elements (ISREs) can influence the 

inclusion or exclusion of exons, and are crucial for context dependent alternative 

splicing (Yeo et al. 2007). Thus the patterns of DNA methylation seen here, 

associated with potential regulatory elements, might be involved in alternative 

splicing regulation. Although there is evidence for methylation control at exonic 

splicing enhancers, there is little data on the association of methylation patterns with 

ISREs. 
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 Several transcription factor binding sites were discovered in the conserved 

mid-intron region of intron 1 and intron 3, that were conserved between several fish 

species. These binding sites were associated with several ubiquitously expressed 

transcription factors that function in cellular growth and differentiation, playing 

multiple regulatory roles during development. For example, SRY (Sex Determining 

Region Y) is a conserved transcription factor found on the Y chromosome in 

mammals that is responsible for sex determination, through initiating the formation of 

testes in males (Jazin & Cahill 2010). GATA-1, MZF1, SRY and USF binding sites 

are commonly found in the promoter regions of genes (Coulibaly et al. 2006; Yan et 

al. 2005), and have also been shown to reside in the introns of several genes, 

including FBN1 in primates (Jackson-Hayes et al. 2003; Singh et al. 2008). Most 

transcription factor binding sites associated with influencing gene expression tend to 

occur in the first or second intron of genes (Rose, 2008), thus it is interesting that 

intron 3 of Igf2b has a putative regulatory region that is associated with a methylated 

CpG island.  

USF is a transcription factor that commonly regulates gene expression through 

promoter binding, and there is evidence that USF is prevented from attaching to 

binding sites when DNA methylation is present (Hou et al, 2012; Huji et al, 2006). 

Further, transcription factors such as GATA-1 play a direct role in histone 

modifications and chromatin regulation, leading to gene expression repression or 

activation (Letting et al. 2003). Therefore, it is possible that the conserved region 

within intron 3 (and potentially intron 1) is a regulatory feature that interacts with 

DNA methylation to influence the expression of Igf2b (Tate & Bird 1993). The 

evolution of large introns that harbour regulatory elements might be common in fish, 

with a recent study demonstrating a greater number of large introns (500-2000bp) in 
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D. rerio than other teleost fish, caused by an ancient intron size expansion (Moss et 

al., 2011). 

Another potential (or parallel) role for the methylated conserved region in 

intron 3 might be as a DMR influencing parent-specific expression of Igf2b. DMRs in 

mice are located within the Igf2 gene and are important for imprinting controlled gene 

expression (Murrell et al. 2004). Thus the methylation in intron 3 detected here, 

coincident with a conserved sequence element, might be a DMR involved in 

expression regulation of Igf2b in fish. The sequenced copy of Igf2 demonstrated 

similarity to copy b and this duplicate gene is thought to have a more limited 

expression pattern than Igf2a. IGF2b expression has been detected during 

embryogenesis in zebra fish but adult expression seems limited to the liver tissues, 

although both copies of Igf2 show biological effects when injected into zebrafish 

embryos (Zou et al. 2009). The retention of duplicate copies of Igf2 suggests 

functionality of each gene, and thus it will be necessary to investigate both Igf2 copies 

in future studies. This will include obtaining the full Igf2 domain of each copy, 

bisulfite sequencing of each to identify DNA methylation patterns, uncovering other 

putative DMRs, and quantification of their expression levels. 

The direct sequencing protocol showed comparable results to cloned 

sequences, with little technical variation, allowing a quantitative examination of 

methylation patterns. Technical variation can occur due to incomplete bisulfite 

conversion or artifacts introduced during the amplification of target fragments, and 

often the use of fragmented DNA due to bisulfite conversion necessitates a second 

round of PCR using nested primers. Methylation was discovered spanning the CpG 

island directly upstream from the conserved sequence region in intron 3, through 

cloning of PCR products. Direct sequencing confirmed these results, providing a 
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quicker and cheaper method than cloning for examining methylation patterns to base-

pair resolution. The optimized protocol for direct sequencing of bisulfite converted 

PCR products demonstrated here allows large numbers of samples to be processed. 

Further, the use of well-designed primers and a hot-start Taq meant that only one 

round of PCR was necessary to obtain PCR product for sequencing. Therefore this 

protocol is repeatable and accurate for methylation quantification and a full study with 

multiple treatment groups is likely to produce biologically meaningful data that can be 

analysed statistically. 

Interestingly, position ‘259bp’ was located immediately upstream of the 

conserved region of intron 3, indicating a role for this region in imprinted regulation 

of gene expression. Position ‘259bp’ is potentially differentially imprinted in male 

and female gametes and thus may be a result of sexual conflict. The location of this 

methylation suggests it might be involved in regulating the conserved sequence region 

directly downstream of the CpG island. However, further work is needed to 

characterize this region and ascertain what proteins are binding to the sequence in 

order to infer its function, and to discover how it interacts with the CpG island. 

Phenotypic variation in body size across G. multiradiatus populations is suggestive of 

population-specific mode of IGF2 regulation. If patterns of methylation across the 

entire Igf2b domain could be obtained for both the Zempoala and San Matías Grande 

populations, this might uncover the population specific regulation of Igf2b. 

 

Imprinting in the Igf2 gene 

Future work on the Igf2 domain in G. multiradiatus should include (i) the full 

characterization of imprinting regulated gene expression and (ii) experiments to 

examine sexual conflict between populations. Characterizing the mode of Igf2 
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expression would provide details that might generalize to other teleost fish and 

uncover the differing roles of each Igf2 duplicate. Here, short lengths of exon 

sequence were obtained. These sequences can now be used to design primers in order 

to amplify the full mRNA transcript of Igf2b using Rapid Amplification of cDNA 

Ends (RACE) PCR. This will provide exon sequence information that will allow for 

the addressing of the two main questions above. Sequences can be used to design 

degenerate primers in order to obtain Igf2a from G. multiradiatus. Using sequence 

information from both copies of Igf2, primers for quantitative PCR and methylation 

variation can be designed, to full characterise the mechanism of expression of each 

duplicated gene. 

One key prediction for imprinting in sexual conflict is that offspring 

demonstrate methylation patterns according to the population of origin of each sex 

(assuming population-specific patterns of imprinting). Another key prediction for 

epigenetic mediated sexual conflict is the differential methylation of conflict genes 

between gametes (see Introduction). Thus to examine methylation patterns in relation 

to sexual conflict it is necessary to examine methylation patterns in parental gametes 

and zygotic offspring (Igf2 is most highly expressed during zygote development, 

influencing adult body size). Thus future work should examine both intra- and 

interpopulation crosses of the SMG and Z populations, tracking parental (gametic) 

patterns into the offspring in order to observe the population specific effects in 

interpopulation crosses. All of the four possible population crosses should be 

performed (within and between SMG and Z), along with replicate families of each 

cross for biological replication. Using direct sequencing, multiple replicates of 

bisulfite treated samples can be cheaply and quickly obtained. Thus, methylation and 

gene expression patterns of both copies of the Igf2 gene could be examined in parental 
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gametes and their offspring, for each of the four possible mating combinations, and 

correlated with phenotypic data on body size. Biological replicates would allow for 

the statistical analysis of the expression data, methylation patterns and phenotypic 

data. Thus multiple types of complementary data can be jointly analysed, to uncover 

the role of sexual conflict in the divergence of G. multiradiatus populations. 

Investigating patterns of methylation within and between populations will help 

to uncover mechanisms of gene expression, but might also aid in the investigation of 

population epigenetic variation (Richards 2008). Here, the discovery of genetic 

variation for CpG dinucleotides indicates that genetic variation and epigenetic 

variation might interact. Thus, selection may act on genetic and epigenetic variation in 

populations as has been recently suggested (Feinberg & Irizarry 2010). This has 

consequences for the evolution of non-coding DNA, and several recent studies have 

shown that some introns demonstrate signals of natural selection, particularly 

purifying selection, in splice sites and regulatory motifs (Andolfatto 2005; Farlow et 

al. 2012; Gazave et al. 2007; Zhu et al. 2009). The study of epigenetics in evolution is 

still in the early stages, however an increasing number of studies are now examining 

epigenetic variation in order to elucidate its role in evolutionary processes. 
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In this thesis I examined the genetic, transcriptomic and epigenetic variation between 

divergent populations, in the context of ecological speciation. Ecological speciation 

occurs through the adaptation of populations to different environments and the 

consequent evolution of reproductive isolation. Recent shifts in speciation research 

emphasise the role of ecological speciation and include new ideas on the genetic basis 

of speciation, such as divergence hitchhiking (Feder & Nosil 2010). Evidence now 

suggests that the targets of selection may encompass genetic variation in non-coding 

DNA (Jones et al. 2012) and that phenotypic plasticity could play an important role in 

adaptation and speciation (Thibert-Plante & Hendry 2011). This shift in thinking does 

not replace the traditional geographical based models of speciation; rather they 

represent a change in emphasis on the evolutionary processes that create species. 

D. mojavensis is a useful species with which to examine ecological speciation, 

due to its strong ecological links to its host plant. Two populations of D. mojavensis 

display premating reproductive isolation between them that is influenced by the host 

cactus they utilise, and these species are thought to be incipient species (Brazner & 

Etges 1993; Etges 1992; Markow 1991; Pfeiler et al. 2009). In Chapter 2 I examined 

two genes that had been previously identified as candidate genes underlying this 

sexual isolation, finding no evidence for functional genetic divergence between the 

Baja and Mainland populations. In Chapter 3 I characterised the scenario of D. 

mojavensis population differentiation, inferring both the order of population 

divergence and timing of these splits in order to place into historical context the 

ecological and functional genetic data that exists for this species. Chapter 4 examined 

gene expression differences associated with host plant plasticity, which might be an 

important aspect of ecological speciation, and linked this plasticity to mating success. 

The final chapter of my thesis examined divergent populations of G. multiradiatus for 
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evidence of genomic imprinting in the Igf2 gene associated with sexual conflict, 

finding little evidence of population-specific patterns, but discovering the presence of 

DNA methylation, as well as highly conserved non-coding regions that might be 

linked to gene expression regulation. 

 

The phylogeographic context of incipient ecological speciation 

Inferring the demographic context of a speciation event is important to understanding 

the evolutionary processes underlying that event. D. mojavensis is well-studied in its 

ecology and the system is now recognised for its potential in investigating ecological 

speciation. As such the functional genetics and genomics of the Baja and Mainland 

divergence are receiving increasing attention (e.g. Matzkin 2012; Matzkin & Markow 

2009; Matzkin et al. 2006). However, to understand the functional genetic divergence 

and to put into context the ecological data gathered over the years, it is important to 

have some idea of the order of population divergence, how long ago these populations 

diverged and the levels of gene flow between them. Knowing the geographic region in 

which D. mojavensis originated tells us which population we might expect to discover 

standing genetic variation that could be important to the evolution of derived 

populations. Further, knowledge on the timing of population divergence provides an 

idea of the length of time it took to reach the level of reproductive isolation observed. 

Lastly, levels of gene flow can help to infer whether the populations diverged under 

heavy levels of migration, or whether geographic separation allowed them to evolve 

in isolation. Thus phylogeographic analyses provide the historical and geographical 

context for the interpretation of the evolutionary and ecological divergence of 

incipient species. 
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 In Chapter 3 of this thesis I examined the phylogeography of the Baja, 

Mainland and Mojave populations, inferring the order of population divergence and 

finding little gene flow accompanying the divergence of all three populations. Using 

multiple, independent X-linked loci from introns in a model-based framework, I 

inferred several demographic parameters using an isolation-with-migration model. 

The strength of this analysis was the use of multiple independent loci, which represent 

separate sources of information about the species tree (Garrick et al. 2010; Hey 2005), 

and a framework that allowed the examination of many possible different models. 

This framework consisted of pairwise comparisons of the Baja, Mainland and Mojave 

populations in order to infer the order of population divergence, allowing a subset of 

three-population models to be examined for the most likely scenario of divergence. 

The ranking of models showed that those with very little gene flow between all 

populations were most likely, although a low level of gene flow between the ancestral 

Mainland/Mojave population and the Baja population could not be ruled out. The 

most likely model demonstrated that the Baja and ancestral Mainland/Mojave 

population diverged around 230-270 Kya, with this ancestral group later splitting into 

the contemporary Mainland and Mojave populations 117-135 Kya. 

 These two divergence estimates coincided with two interglacial periods, 

demonstrating that the Baja-Mainland divergence most likely occurred in allopatry, 

separated by the Gulf of Mexico. Pleistocene climatic oscillations occurred from 

around 900 Kya onwards, with a periodicity of approximately 100,000 years 

(Kraaijeveld & Nieboer 2000). The Holstein interglacial period occurred from 230-

215 Kya, with sea levels rising dramatically during that period. The first population 

divergence within D. mojavensis occurred around this time, with rising sea levels 

isolating mainland Mexico following an invasion of the mainland from the Baja 
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peninsula. The Eemian interglacial (123-115 Kya) followed, coinciding with the 

divergence of the Mojave and Mainland populations. This last divergence is most 

likely due to range reductions and fragmentation of the cactus host plant in the 

Mojave Desert (barrel cactus, F. cylindraceous), due to increased temperatures drying 

out the region (Axelrod 1983). 

 Evidence suggests that D. mojavensis speciated from D. arizonae 

approximately 2.4 million years ago, with the D. mojavensis populations diverging 

more recently (Matzkin & Eanes 2003). Mexican Drosophila species are thought to 

have moved westwards across Mexico over evolutionary time, speciating as they went. 

The D. mojavensis/D. arizonae ancestor most likely diverged due to the splitting of 

the Baja peninsula from mainland Mexico 3-5 million years ago, giving rise to D. 

mojavensis on the Baja California peninsula (Nason et al. 2002; Ruiz et al. 1990). 

Later, D. mojavensis colonised mainland Mexico (Matzkin 2004) during a period of 

low sea level, with the Pleistocene glacial cycles causing population divergence and 

eventual geographical isolation. Thus geological and climatic extrinsic barriers have 

contributed to the contemporary distribution of D. mojavensis. Importantly, much 

evidence suggests that the Baja geographic region is where D. mojavensis originated, 

and that the colonisation of mainland Mexico and a host shift was followed by 

eventual isolation around 230-270 Kya. Since then derived Mainland and ancestral 

Baja populations evolved a level of premating isolation (Etges et al. 2007; Etges et al. 

2010; Etges et al. 2009; Markow 1991), mediated by divergent CHCs and courtship 

songs and accompanied by a suite of changes in life history traits (Etges 1990; Etges 

& Heed 1987; Etges 1989, 1993). 
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Speciation genes 

Important to understanding how ecological speciation proceeds is the characterisation 

of its molecular basis. This includes the genetic basis of speciation (traditional 

speciation genes) as well as gene expression changes (at regulatory loci) and possibly 

even epigenetic mechanisms that might underlie phenotypes. The identification of 

candidate speciation genes can be challenging and this is particularly true where a 

species displays extensive phenotypic plasticity. For example, QTL analyses are 

sensitive to plasticity because they associate phenotypes with genetic markers, and 

unexpected plasticity (i.e. gene expression differences causing trait variation) might 

decrease this association. Phenotypic plasticity was at one time viewed as noise that 

was of little importance to evolution, however it is now realised that phenotypic 

plasticity might be an important evolutionary process (Fitzpatrick 2012).  

 In Chapter 2 I examined two candidate genes for population-specific 

functional variation that might explain CHC differences and reproductive isolation 

between the Baja and Mainland populations of D. mojavensis. Desat1 and desat2 are 

!9 desaturase genes that have previously been implicated in the reproductive isolation 

of D. melanogaster populations (Dallerac et al. 2000; Takahashi et al. 2001). 

However, little genetic variation was discovered between the D. mojavensis 

populations across both genes, and no mutations were observed that changed the 

amino acid sequence of the proteins. Thus no functional changes were seen between 

populations in desat1 or desat2, indicating that these genes might not play a role in 

the divergent reproductive phenotypes that underlie population sexual isolation. This 

conclusion was also supported by results from Chapter 4, in which no !9 desaturases 

were differentially or alternatively expressed between cactus hosts or involved in the 

mating success of males. However, Chapter 4 did not include examination of Baja 
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males, and Chapter 2 did not cover the promoter region of desat1, and thus it remains 

possible that genetic variation in regulatory features between the Baja and Mainland 

populations in the desat1 promoter, might lead to population-specific expression of 

this gene. Desat1 expression can be complex, with recent work showing it can 

produce several different transcripts involved in coordinating the production and 

perception of courtship pheromones, and that it has rapidly evolving regulatory 

regions (Bousquet & Ferveur 2012; Bousquet et al. 2012). Thus it is possible that the 

Mainland and Baja populations of D. mojavensis might be divergent in desat1 

regulatory features. However, the evidence in Chapter 4 suggests that gene expression 

related to pheromone production is not involved in cactus plasticity or male mating 

success, although several genes associated with olfaction and gustation were seen to 

be plastic across cacti. The role of the desaturases in adaptation and behavioural 

isolation between D. melanogaster populations has also been questioned, with 

evidence for (Fang et al. 2002; Greenberg et al. 2003) and against (Coyne & Elwyn 

2006; Grillet et al. 2012) their involvement. These opposing results highlight the 

difficulty in identifying genes that underlie processes such as adaptation and 

speciation. Even when there is evidence for a particular adaptive phenotype, and 

candidate genes, it can be difficult to narrow down the causative variation linked to 

adaptation and reproductive isolation. This is where multiple lines of independent 

evidence can be an advantage, especially when performed genome-wide to obtain all 

sets of selected loci. Further, examining both genetic and expression variation 

together is advantageous, especially for recently diverged populations or species 

because selection may be able to act more efficiently on cis-regulatory regions than 

coding, as pleiotropy can constrain the evolution of protein coding regions (Jones et al. 

2012; Wray 2007). 
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Gene expression plasticity 

The role of phenotypic plasticity in evolution has previously been contentious with 

some debate as to whether plasticity contributes to or inhibits adaption and speciation 

(Fitzpatrick 2012). However, recent theoretical work (Thibert-Plante & Hendry 2011) 

and empirical studies (Levine et al. 2011) demonstrate that phenotypic plasticity may 

promote colonization and adaptation to new environments. In Chapter 4 I examined 

gene expression patterns according to early development (host cactus rearing) in adult 

Mainland male flies, and male mating success. Associating host cactus and mating 

success gene expression aimed to identify the functions of genes expressed according 

to cactus-dependent mating success. The cactus influence on male mating success in 

D. mojavensis has been demonstrated extensively (Etges et al. 2007; Etges et al. 

2010; Etges et al. 2009) and the influence of the rearing substrate is thought to occur 

early in development, where flies develop in the necrotic tissue. 

 The results of Chapter 4 showed that cactus-dependent mating success was 

associated with the expression of genes functioning in translation, transcription and 

neurological development. The nervous system is thought to be an important aspect of 

courtship and mating in Drosophila. Numerous studies have linked genes involved in 

neurological development and function to courtship behaviour and success in 

Drosophila males (Ditch et al. 2005; Finley et al. 1998; Finley et al. 1997; Gleason 

2005; Grosjean et al. 2008; Sokolowski 2001; Villella et al. 1997; Villella & Hall 

2008). Further, neurological genes are thought to be involved with courtship song and 

pheromone production in males (Ferveur et al. 1995; Manoli et al. 2005; Peixoto & 

Hall 1998) and their expression is particularly associated with neural tissues, which in 

insects have been implicated in control of associative learning and various aspects of 

behaviour (O'Dell et al. 1995; Zanini et al. 2012). In Chapter 4 several genes 
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associated with olfactory and chemosensory behaviour and cognition were 

differentially expressed across cacti (Obp99A, Or83A, Gr94A and drk). Thus it seems 

that cactus specific gene expression includes the sensing and parsing of cues from the 

host cactus environment. This might be related to host plant choice and preference, 

which often involves olfactory cues in insects and might play a role in environment-

specific reproductive success (Cunningham 2012; Grosjean et al. 2011). Further, 

gustatory (and potentially olfactory) genes have neural links to the reproductive 

organs, providing a mechanistic link between sensing the external environment and 

resulting effects on reproductive success (Park & Kwon 2011). However, evidence 

shows that the Baja population, and majority of Mainland subpopulations, prefer agria 

cactus to organ pipe as their hosts, suggesting that a host shift to organ pipe has not 

led to substantial changes in host preference (Newby & Etges 1998). Our 

understanding of how behaviour evolves is limited especially in terms of host plant 

use and chemosensory systems, integral to this is determining the role of the central 

and peripheral nervous systems in ecological adaptation and the evolution of 

behavioural reproduction isolation (Cande et al. 2012). 

 The presence of organ pipe cactus on the Baja peninsula and the extensive 

genotype-by-environment interactions between the Baja and Mainland populations 

suggests that phenotypic plasticity could have played a role in their divergence. D. 

mojavensis originated on the Baja California peninsula after tectonic activity opened 

up the Gulf of Mexico 3-5 million years ago (Ruiz 1990; Matzkin 2004; Nason et al. 

2002). Organ pipe is also present in Baja California, located in the south of the 

peninsula. Thus it is likely that D. mojavensis has encountered organ pipe cactus 

throughout its evolution, but adapted to the most prevalent environment. However, the 

presence of even low levels of gene flow between cactus environments is likely to 
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have resulted in selection for some degree of a plastic response, if given enough time 

to evolve (Yampolsky et al. 2012) and as long as changes in the environment were 

somewhat predictable, as is the case with migration between environments (Scheiner 

1998). The invasion of mainland Mexico during a period of low sea level would have 

led to increased gene flow between ecological environments, maintaining levels of 

plasticity. Rising sea levels eventually isolated these two populations around 230,000 

years ago, leading to predominant use of organ pipe cactus on the mainland and aided 

by adaptive plastic responses evolved in the ancestral Baja population. Plasticity was 

maintained in the Mainland population for a number of life history and reproductive 

traits, with selection acting on trait means across environments (genetic 

accommodation). Selection in the Mainland population increased thorax size, 

development times and egg to adult viability (Etges 1993; Etges et al. 2010) and led 

to the evolution of shorter long-interpulse intervals (L-IPI) in male courtship song 

(Etges et al, 2006), and a female preference for L-IPI (Etges et al. 2007). Further, 

increased amounts of three alkadiene components of CHCs evolved in the Mainland 

population (Etges & Jackson 2001; Stennett & Etges 1997), and a low but significant 

level of reproductive isolation (Etges et al. 2007; Etges et al. 2010; Etges et al. 2009; 

Markow 1991). The maintenance of plasticity was likely due to the existence of a 

number of different host cactus species in the region, as well as a small patch of agria 

at Punta Onah, presumably with few associated costs and limits to plasticity. Thus it is 

possible that phenotypic plasticity played a key role in the adaptation of D. 

mojavensis populations to organ pipe cactus and their incipient speciation. 
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The role of epigenetics 

The role of epigenetics in evolution has been a controversial topic in the last few 

years, with proponents (Richards et al. 2010) and opponents (Dickins & Rahman 

2012) debating its significance to evolutionary studies. In this thesis I have examined 

or encountered epigenetics in three chapters; Chapter 2, Chapter 5 and Chapter 4 and 

thus it seems pertinent to consider what role epigenetic marks might play in evolution. 

Epigenetic marks control gene expression through the regulation of heterochromatin 

or through more direct regulation, such as interference with transcription and 

translation machinery (Bossdorf et al. 2008; Jaenisch & Bird 2003; Ohlsson et al. 

2001). Epigenetic mechanisms play a key developmental role by regulating gene 

expression in somatic cells, however germ line cells can also be epigenetically 

marked, for example through genomic imprinting. Although epigenetic variation can 

be environmentally induced, stably inherited and underlie quantitative trait variation 

(Becker et al. 2011; Johannes et al. 2009; Richards et al. 2010), the role of 

epigenetics in evolution is still under debate. One major factor contributing to the 

controversy of this role is that epigenetics is often viewed as being a Larmarckian 

process (Jablonka & Lamb 1995) and is thus dismissed because it opposes the neo-

Darwinian view of natural selection, and genetic evolution, which is central to the 

Modern Synthesis (Haig 2007). First, an important aspect of neo-Darwinism and the 

Modern Synthesis is that evolution is not ‘directed’ and thus because epigenetic 

variation can be induced and inherited at non-random genomic locations, it is seen as 

Lamarckian. Second, epigenetic variation is not seen as a primary driver of evolution 

as, say, novel mutations can be. Last, epigenetics is defined as independent of 

genetics and thus, under the gene centric view of the Modern Synthesis, cannot be 

involved in genetic evolution. However, these criticisms come from a lack of 
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knowledge about epigenetic mechanism and function and, far from being Lamarckian, 

epigenetic marks may evolve under Darwinian evolution, and have an important role 

in phenotypic evolution (Richards, 2006; 2008). The above three aspects of 

epigenetics are explored below in turn. 

 The environment plays a dual role in evolution, both in creating a phenotype 

alongside genotype (through developmental plasticity), and as acting as a selection 

pressure on that phenotype (leading to adaptation). Phenotypic plasticity can evolve 

because it can be adaptive and it is likely that many plastic responses have an 

epigenetic basis (Jaenisch & Bird 2003; Johnson & Tricker 2010; Levine et al. 2011; 

Richards et al. 2010). Similarly, epigenetic mechanisms are likely to have evolved 

because they are adaptive. The environment can induce epigenetic marks anew every 

generation, and these often occur in specific regions of the genome (e.g. differentially 

methylated regions, DMRs). Further, if such marks can be induced in the germ line, if 

a mechanism exists by which external cues are parsed to the gametes, then this 

induced heritable epigenetic mark would ‘program’ future offspring for their 

environment. Care must be taken in testing this last idea because exposure of each 

new generation to an environment (e.g. maternal effects) will produce the same 

phenotypic results as induced epigenetic inheritance. However, there is now some 

evidence in mammals (Daxinger & Whitelaw 2012) and Drosophila (Seong et al. 

2011) that induced epigenetic inheritance occurs. Further, theoretical models suggest 

that such a mechanism could provide an adaptive advantage in stochastic 

environments, providing a link between short-term individual adaptive responses and 

long-term evolutionary change (Jablonka et al. 1995). However, more empirical work 

is necessary to examine this idea further. It should be noted that such a mechanism is 

not ‘directed’ evolution as such, but more akin to phenotypic plasticity in that it is an 
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evolved mechanism to deal with environmental change. Thus environmental induction 

of epigenetic variation, whether in the germline or soma, still arose through 

Darwinian processes.  

 Evidence now suggests that epimutations (newly derived epigenetic marks) 

can arise stochastically, be heritable, underlie quantitative traits, have similar 

mutation rates to genetic mutations and contribute to phenotypic evolution. The 

majority of empirical studies that examine epigenetics focus on DNA methylation, 

which has been extensively examined in plants and where much progress has been 

made in understanding the epigenetic basis of traits. Evidence suggests that novel 

epimutations can occur spontaneously across generations, in somatic cells with aging, 

in the male germline during meiosis (de Boer et al. 2010) and through mistakes 

during reprogramming, post-fertilization (Schmitz et al. 2011). Schmitz et al (2011) 

demonstrated spontaneously occurring DNA methylation in Arabidopsis thaliana, at 

more than 100,000 CpG positions occurring over 30 generations, the majority of 

which were meiotically stable. Johannes et al, (2009) discovered epialleles that were 

stable over at least 8 generations and contributed to heritable variation in complex 

traits. Similar to DNA allelic variation, epialleles are defined as ‘alternative chromatin 

states at a given locus defined with respect to individuals in a population at a given 

time point and tissue type’ (Johannes et al. 2008). Epimutations at individual 

positions in A. thaliana are much more frequent than DNA mutations, with the lower 

bound of epimutation rates being 4.46 # 10-4 methylation polymorphisms per CG site 

per generation (Schmitz et al. 2011), compared with genetic mutation rates of 7 # 10-9 

base substitutions per site per generation in the same A. thaliana lines (Ossowski et al. 

2010). However, epimutation rates in contiguous regions of methylation, which are 

likely to be functional (e.g. DMRs), are more in the range of DNA mutational change 



! )*'!

(Becker et al. 2011). Becker et al (2011) found 249 DMRs that tended to be more 

stable than individual positions over the 30 generations examined. This indicates that 

epimutations occur as frequently as genetic mutations and are stable at certain key 

functional genomic positions. Lastly, this has been shown to be true in natural 

populations of A. thaliana, with methylation variation causing heritable phenotypic 

variation (Roux et al. 2011), and Vaughn et al (2007) found that natural populations 

of A. thaliana demonstrated high levels of epimutation polymorphism among 

ecotypes. Thus there is much evidence for the importance of epigenetic novelty in 

Darwinian evolution, i.e. heritable epigenetic variation that might be under selection. 

Further, such evidence is not limited to plants, with increasing numbers of studies 

demonstrating epigenetic variation in mammals (Daxinger & Whitelaw 2012), insects 

(Seong et al. 2011) and nematodes (Greer et al. 2011). 

 Ultimately, epigenetic variation is linked to genetic variation to some degree 

because DNA underlies the proteins that create marks, and epigenetic marks occur 

with, and depend on DNA, RNA or proteins. Thus critics of the role of epigenetics in 

evolution might say that it does not have a role in, or influence on, genetic evolution. 

However, Richards (2006) set out three categories of epigenetic mark, based on their 

dependence on genotype. These are; (i) epigenetic variation entirely dependent on 

genetic variation, (ii) facilitated epigenetic variation in which the genotype directs 

epigenetic marks in a probabilistic but not deterministic manner, and (iii) epigenetic 

variation generated by stochastic events, largely independent from the DNA sequence. 

It is clear that all epigenetic marks rely on genetic mechanisms to some degree, yet 

the genotype does not always predict the epigenotype (Richards 2008). However, 

recent theoretical models have examined epigenetics in terms of the genes that control 

the expression of phenotypic variance but do not affect the mean of traits (Carja & 
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Feldman 2012; Feinberg & Irizarry 2010). Feinberg and Irizarry (2010) found 

evidence for genetic variants that change the variance but not the mean of phenotypes, 

and that this is mediated epigenetically. They empirically examined DMRs and 

variably methylated regions (VMRs) in mice and found that VMRs were often located 

near DMRs, indicating that VMRs might evolve into DMRs over time. Further, they 

discovered that DMRs across species differed in their underlying DNA sequence (loss 

or gain of CpG dinucleotides), indicating that functional methylation relies heavily on 

genetic variation for CpG motifs. Feinberg and Irizarry (2010) then simulated the 

effect of selection on genetic loci that can modify the variance of phenotypes (through 

epigenetic variation), without influencing the mean of a trait, across fluctuating 

environments and showed that such a mechanism provides an adaptive advantage. 

Carja and Feldman (2012) recently extended this model over a longer evolutionary 

timescale, showing that initially, a fluctuating environment does increase phenotypic 

variation, however this increase reaches equilibrium at around 10,000 generations. 

These studies demonstrate the importance of interacting genetic and epigenetic 

variation over relatively short evolutionary time periods.  

 Epigenetic marks may feedback into genetic evolution through changes in 

mutation rates or by shielding DNA from selection, influencing mutational change 

and contributing to long-term evolution. Epigenetic marks might influence evolution 

in several ways, such as the suppression of transposable elements or an effect on 

recombination (Richards 2008). Additionally, 5-methylcytosine is subject to 

spontaneous deamination, turning a methylated C into a T, at ~12 times higher a rate 

than traditional DNA mutations (Laird & Jaenisch 1994; Sved & Bird 1990) and CpG 

depletion can occur over generations, in regions that are targeted for methylation 

(Flores & Amdam 2011). Ossowski et al (2010) examined mutation accumulation 
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lines in A. thaliana and found that there were more G:C > A:T transition mutations 

than expected by chance. They demonstrated that methylated sites had a higher 

probability of mutating in this manner, concluding that a combination of UV-induced 

mutagenesis and deamination of methylated cytosines accounted for these mutations. 

The production of facultative heterochromatin involves several histone cores that 

wrap DNA, preventing gene expression by blocking the attachment of transcription 

machinery (Grewal & Moazed 2003). This process shields silenced regions from the 

action of selection, allowing mutations to accumulate, in much the same way as 

heterochromatin accumulates transposable elements (Dimitri & Junakovic 1999). 

Once heterochromatin becomes euchromatin again, accumulated mutations in coding 

regions might lead to a loss of function, on which selection would act. Thus 

epigenetic variation can be linked to genetic variation to different degrees and even 

when linked, epigenetic variation might feed back into the genome. 

Considering the role of epigenetics in evolution does not challenge the 

Darwinian view of evolution. Epigenetic mechanisms can play a role in phenotypic 

plasticity, in terms of developmental environmental responses within and possibly 

across generations. Further, epigenetic novelty can arise in much the same way 

mutations do, be heritable and contribute to quantitative characters and epigenetic 

marks can feedback into the genome, influencing genetic evolution. In Chapter 4, 

gene expression associated with epigenetic mechanisms was demonstrated, with a role 

for both methylation (predominantly of proteins and RNA) and histone modifications 

across cactus hosts and male mating success in D. mojavensis. A recent study found 

that chromatin remodelling factors (such as histone modifying genes) were involved 

in plasticity and genotype-by-environment interactions between tropical and 

temperate populations of D. melanogaster (Levine et al. 2011). Epigenetic 
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mechanisms in both these cases seem to underlie a plastic response to the 

environment and to involve non-DNA methylation mechanisms. Drosophila are part 

of the ‘Dnmt2 only’ group of species, that lack the core DNA methyltransferase genes 

(Krauss & Reuter 2011). Thus in these species epigenetic mechanisms other than 

DNA methylation seem to be utilised for important functions, at least in terms of 

phenotypic plasticity. 

The future investigation of the role of epigenetics in evolution should try to 

partition the roles of different epigenetic mechanisms and assess how they might 

contribute to evolutionary change. For instance, what is the role of mechanisms that 

have evolved to allow adaptive environmentally induced variation, compared to 

selection on novel epimutations? What is the role of genetic dependent compared to 

independent epigenetic variation? How much influence does feedback from 

epigenetic marks actually have on genetic variation and evolution? There are many 

exciting new studies that are beginning to examine epigenetics in more detail. For 

example, a recent study implicates DNA methylation in reversible epigenetic changes 

underlying honeybee castes, suggesting a role for epigenetics in behaviour (Herb et al. 

2012). There is much we do not know about epigenetic mechanisms and their role in 

evolution and more empirical studies are required to examine this role, across a range 

of different organisms. 

 

The molecular basis of ecological speciation 

Ecological speciation represents a reframing of the role of ecology in evolution and 

includes new theories on how speciation occurs at the genetic level. However, 

important to understanding how speciation proceeds is to identify the targets of 

natural selection. From our increasing knowledge on the structure of genomes and 
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how they operate, it is clear that the molecular basis of phenotypes is likely to be 

complex. For example, the human ENCODE project recently attempted to summarise 

the structure of the human genome, in which only 2.94% codes for protein coding 

genes. In total, 62% of the genome was found to be non-coding RNA, both long and 

short RNAs that can regulate gene expression, with the majority of these located 

inside of introns or near genes (ENCODE project consortium 2012). Further, they 

identified the genomic positions of histone modifications and DNA methylation and 

associated these with functional genetic regions, in order to dissect how different 

epigenetic marks regulate gene expression. Although the ENCODE project is far from 

providing a final blue print of the human genome (and in fact makes bold over-

statements about the data, mostly derived from a liberal definition of ‘function’), these 

results do at least highlight the complexity of genomes meaning that the genomic 

targets of selection, for even a single phenotype, may be diverse. In particular, 

regulatory regions might be prominent targets, especially during the initial stages of 

ecological speciation, because cis regulatory mutations allow for a change in 

phenotype without changing the protein, circumventing functional trade-offs due to 

pleiotropy and allowing selection to operate more efficiently (Wray 2007). For 

example Jones et al (2012) discovered that 41% of divergent genetic regions between 

marine and freshwater stickleback ecotypes (Gasterosteus aculeatus) were regulatory, 

with a further 42% likely to be regulatory, and only 17% of changes occurring in 

coding regions. 

Therefore, the key to understanding the molecular basis of ecological 

speciation is an increased understanding of how genomes are expressed. The 

improvement of molecular technologies that enable the combination of several lines 

of evidence (e.g. neutral genetic divergence, functional selective divergence, 
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expression variation and epigenetic variation) will aid in this goal. In this thesis I have 

set out the historical context of the divergence of D. mojavesis populations, in order to 

understand the evolution of reproductive isolation between the Baja and Mainland 

populations. Further, I identified a set of functionally important genes involved in 

phenotypic plasticity across host cacti and male mating success, and established that 

genes directly involved in pheromone expression are unlikely to underlie this 

incipient speciation. Finally, I found a likely role for epigenetic mechanisms in 

phenotypic plasticity, which in Drosophila is unlikely to involve DNA methylation. 
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?8./07904;# H09B0;# 4;.# _7E0Fa# 4_# _0?B+# 9B.# O442.0;7.+#
F01.Df.7>0;@#_>.?BH79.>#_0?B+#.;2.E0/#94#K.]0/45#QB.?.#
?B4H#.]9>.E.#17>07904;#0;#?.]A7F#20E4>8B0?E#>.F79.2#94#
?.]A7F# ?.F./904;+# H09B# ?4E.# .]9>.E.Fa# 20E4>8B0/# ?8.D
/0.?#7;2#49B.>?#10>9A7FFa#?.]A7FFa#E4;4E4>8B0/#$-09/B0.#
.9# 7F5+# *))!&5# =48AF7904;# >.jA0>.?# _.E7F.# /448.>7904;+#
7;2# 9B.# >7;@.# 4_# ?.]A7F# 4>;7E.;97904;# 0;# 9B.# E7F.?#
?..E?# 94# .]8F70;# 9B.#17>07904;# 0;#E4>8B4F4@0/7F# ?.]A7F#
20E4>8B0?E+# 79# F.7?9# 7;./2497FFa5# g.# B71.# 8>.104A?Fa#
/4E8F.9.2# 7# /4E87>7901.# ?9A2a# 7/>4??# 7FF# 9B.# ?8./0.?#
7;2#7#20>./9.2#/4E87>0?4;#4_#848AF7904;#20__.>.;907904;#
f.9H..;#/4;9>7?90;@# ?8./0.?5#R.>.#H.#/4;/.;9>79.#4;#7#
;.H#?9A2a#4_#E4>8B4F4@0/7F#17>07904;#7E4;@?9#848AF7D
904;?#4_#4;.#4_# 9B.#E4?9# ?.]A7FFa#20E4>8B0/# ?8./0.?#4_#
9B.#_7E0Fa#Girardinichthys multiradiatus5# #

<( (K79.>07F?#7;2#K.9B42?#
<=<( ( >1*()%,.$*.()0*4$*)(
QB.#O442.0;7.#/4;?0?9#4_#7>4A;2#%(#.]97;9#?8./0.?#4_#

_0?B+#E70;Fa#_>4E#?B7FF4H#_>.?B#H79.>#2>70;7@.?#4_#/.;D



((*# Current Zoology# X4F5#!"# # 345#% 

9>7F# K.]0/45# QB.# @>4A8# >72079.2# 0;# 9B.# K04/.;.# 7;2#
4//A80.?#9B.#f7?0;?#94#9B.#;4>9B#4_#9B.#K.]0/7;#;.414FD
/7;0/#f.F95#QB.?.#7>.#?E7FF#$A?A7FFa#p#,)#/E#0;#F.;@9B&#
4E;014>4A?#948E0;;4H?+#.]/.89#_4>#7#F7>@.#$/75#*)#/E&#
80?/014>4A?#?8./07F0?9#$Alloophorus robustus&+#7;2#7#_.H#
?8./0.?#H09B# 7# 2.@>..# 4_# ?8./07F0o7904;# ?A/B# 7?#Ameca 
splendens# $7#8F7;9#_..2.>&+# 9B.#f.;9B014>4A?#Zoogoneti-
cus# ?885# 7;2# 9B.# >01.>0;.# @.;.>7# Ilyodon+# Xenotaenia#
7;2#Allodontichthys#$7F?4#7#f.;9B014>.&#$?..#K0FF.>#.9#7F5+#
*))!&5# #
K4F./AF7># $E9Z3L&# 8BaF4@.;0.?# 4_# 9B.# @>4A8#

$Z472>04# 7;2# Z4Em;@A.o+# *))(6# g.ff# .9# 7F5+# *))(&#
/4;_0>E# 9B.0>#E4;48BaFa# 7;2# 9B79# 9B.# @>4A8# 0?# 7>4A;2#
,!#E0FF04;#a.7>?#4F2+# ?A@@.?90;@# 9B.0># >7207904;#H7?#>.D
F79.2#94#9B.#/4E8F.]#14F/7;0/#B0?94>a#4_#9B.#>.@04;5#QB0?#
>7207904;#H7?#8>.24E0;7;9Fa#7FF4879>0/+#fA9#>7;@.?#B71.#
?Af?.jA.;9Fa# /B7;@.2# 2>7E790/7FFa# 2A.# 94# 14F/7;0?E#
$g.ff+# .9# 7F5+# *))(&# 7FF4H0;@# 0;9.>7/904;?# f.9H..;# 20D
1.>@.;9#?8./0.?5# #
[>.104A?Fa+#H.#jA7;90_0.2#E4>8B4F4@0/7F#E.7?A>.?#4_#

?.]A7F# 20E4>8B0?E# 7/>4??# H0F2# /7A@B9# ?7E8F.?# 4_# *!#
?8./0.?# 4_# 9B.# @>4A8# 7;2# 9.?9.2# _4># 7;# 7??4/07904;# f.D
9H..;#?.]A7F#20E4>8B0?E#7;2#90E.#94#?8./07904;#H09B0;#
9B.# /F72.# A?0;@# /4E87>7901.# 788>47/B.?5# `7?.2# 4;# >.D
/4;?9>A/9.2#F.1.F?#4_#?.]A7F#20E4>8B0?E+#90E.#90FF#?8./0D
7904;#H7?#?B4>9.>#0;#E4>.#20E4>8B0/#F0;.7@.?#0;#,)#1?5#d#
/4E87>0?4;?+#7#;4;D?0@;0_0/7;9#20__.>.;/.#$-09/B0.+#.9#7F5+#
*))!&5# P;# 7# 20__.>.;9# ?9A2a# $-09/B0.+# .9# 7F5+# *))<&# H.#
.]7E0;.2#@.;.#_F4H#f.9H..;#848AF7904;?#H09B0;#?8./0.?5#
SA>#F4@0/#H7?#9B79#0_#@.;.#_F4H#H7?#0;_FA.;/.2#fa#?.]D
A7F# ?.F./904;+# 9B.# 2>0_9D?.F./904;# f7F7;/.# H4AF2# 20__.>#
f.9H..;# 848AF7904;?# 4_# ?8./0.?#H09B# /4;9>7?90;@# F.1.F?#
4_# ?.]A7F# ?.F./904;5#g.# /4E87>.2# 9H4#870>?# 4_# ?8./0.?#
H09B# >.F7901.Fa# B0@B# 7;2# F4H# F.1.F?# 4_# ?.]A7F# 20E4>D
8B0?E5#^NQ#H7?# B0@B.># _4># 7#@01.;#@.4@>78B0/# 20?97;/.#
$788>4]0E79.Fa#)5*d#1?5#)5,d#72kA?9.2# _4>#20?97;/.&#f.D
9H..;#f49B#4_#9B.#E4>.#20E4>8B0/#?8./0.?5#^A>9B.>E4>.+#
9B.>.# H7?# .102.;/.# 4_# ?.]Df07?.2# @.;.# _F4H# f.9H..;#
848AF7904;?# 4_# 9B.# 20E4>8B0/# ?8./0.?+# /4;?0?9.;9# H09B#
_.E7F.# 8>._.>.;/.# 7@70;?9# 0EE0@>7;9#E7F.?# $-09/B0.# .9#
7F5+#*))<&5#R.;/.#4A>#?9A20.?#H.>.#/4;?0?9.;9#H09B#7#84D
9.;907F# 0;_FA.;/.# 4_# ?.]A7F# ?.F./904;+# 7?# .102.;/.2# fa#
?.]A7F# 20E4>8B0?E+#f.0;@# /4>>.F79.2#H09B#@.;.# _F4H#79#
9B.#F.1.F#4_#870>.2#/4E87>0?4;?+#7F9B4A@B#9B.>.#H7?#;49#
7#?9>4;@#?0@;7F#4_#?.]A7F#?.F./904;#0;_FA.;/0;@#?8./07904;#
79#9B.#F.1.F#4_#9B.#_7E0Fa5#

Girardinichthys multiradiatus+# 4># LE7>0FF4# _0?B+# 0?#
7E4;@?9# 9B.#E4?9# ?.]A7FFa# 20E4>8B0/# @442.02# ?8./0.?5#
K7F.?#B71.#EA/B#F7>@.>#7;2#/4F4A>_AF#E.207;#_0;?#9B7;#
_.E7F.?# $^0@5# ,&+# 7;2# 8.>_4>E# /4E8F0/79.2# /4A>9?B08#

20?8F7a?#$TA7>9B#7;2#K7/m7?#O7>/07+#*))d6#TA7>9B#.9#7F5+#
*),,&5#N9A20.?#4_#9B.#f.B7104A>7F#./4F4@a#4_#9B0?#?8./0.?#
?A@@.?9# 9B79# ?.]A7F# ?.F./904;# EA?9# f.# 87>90/AF7>Fa# 0ED
84>97;95#^0;#E4>8B4F4@a#0;_FA.;/.?#_.E7F.#E79.#/B40/.6#
_.E7F.?# 8>._.>.;907FFa# 7??4/079.# H09B# E7F.?# 84??.??0;@#
F7>@.>#_0;?#$K7/m7?#O7>/07#.9#7F5+#,ee(&+#7;2#E7F.?#H09B#
>.2A/.2#?.]A7F#20E4>8B0?E#0;#f42a#?B78.#7>.#20?/>0E0D
;79.2# 7@70;?9# $L>.FF7;4DL@A0F7># 7;2# K7/m7?# O7>/07+#
*))"&5# ^0;# E4>8B4F4@a# 7F?4# 0;/>.7?.?# 8>.27904;# >0?I#
$K7/m7?#O7>/07#.9#7F5+#,ee(6#K7/m7?#O7>/07#.9#7F5+#,ee"&5#
=4F4A>+#0;/FA20;@#WX+#0?#7F?4#7#/>09.>04;#_4>#_.E7F.#E79.#
/B40/.# $K7/m7?#O7>/07# 7;2#`A>9# 2.# [.>.>7+# *))*&5# S>D
;7E.;9?# 0;# 9B.# LE7>0FF4# 7>.# /4;20904;D2.8.;2.;9+# f.D
/7A?.#.Ef>a4;0/#.]84?A>.#94#8.?90/02.?#F.72?#94#?Af48D
90E7F#.]8>.??04;#4_#?.]A7FFa#20E4>8B0/#_0;?+#/4F4A>+#7;2#
/4A>9?B08#20?8F7a?#$L>.FF7;4DL@A0F7>#7;2#K7/m7?#O7>/07+#
*))"&5# #
`./7A?.# E7F.# E4>8B4F4@a# 0?# B.>097fF.# $L>.FF7;4D#

L@A0F7>#7;2#K7/m7?#O7>/07+#*))"&+#0;_FA.;/.?#>.8>42A/D
901.#?A//.??#107#_.E7F.#E79.#/B40/.+#7;2#0?#4884?.2#fa#
F4/7F# ;79A>7F# ?.F./904;# $K7/m7?# O7>/07# .9# 7F# ,ee"&# 9B.#
?8./0.?# 788.7>?# 94# f.# 7# @442# /7;20279.# H09B# HB0/B# 94#
.]8F4>.#9B.#84??0fF.#F0;I#f.9H..;#?.]A7F#?.F./904;+#?.]D
A7F# 20E4>8B0?E# 7;2# @.;.# _F4H# 79# 9B.# F.1.F# 4_# 7# 8BaD
F4@.4@>78B0/#7;7Fa?0?5#P_#?.]A7F#20E4>8B0?E#.14F1.?#7?#

#

?$3=( <( ( @"-*( A"9&2*B( G. multiradiatus( 1"2*( -"#3*#( "'.(
/&#*(4&-&,#7,-(7$')(%1"'(7*/"-*)(A9*-&;C(%1$)($)("(0#*3'"'%(
7*/"-*B(
^4>/.2#0;?.E0;7904;?#/7;;49#4//A>#0;#9B0?#_7E0Fa#4_#_0?B+#?0;/.#?8.>E#
9>7;?_.>#0?#4;Fa#702.2#fa#9B.#?E7FF#?8.>E7948420AE#$79#9B.#_>4;9#4_#9B.#
E7F.q?#7;7F#_0;&+#HB0/B#0?#;49#7;#0;9>4E099.;9#/48AF794>a#4>@7;5#



# K7/m7?#O7>/07#=#.9#7F5'#N.]A7F#20E4>8B0?E+#7??4>97901.#E790;@#7;2#@.;.90/#201.>@.;/.# ((% 

7#>.?84;?.#94#?.]A7F#?.F./904;#7;2#201.>@.;/.#0;_FA.;/.?#
@.;.# _F4H+# H.# 8>.20/9.2# 9B79# 7&# ?.]A7F# 20E4>8B0?E#
H4AF2# f.# 17>07fF.# f.9H..;# 848AF7904;?# f&# E7F.?# E7a#
20__.>#E4>.#f.9H..;#848AF7904;?#9B7;#_.E7F.?#$0_#_.E7F.#
8>._.>.;/.?# B71.# ?.F./9.2# _4># .]7@@.>7904;# 4_# E7F.#
E4>8B4F4@a+# 0;/FA20;@# 4>;7E.;9?&# /&# .09B.># ?.]A7F# 20D
E4>8B0?E# 4>#E7F.# E4>8B4F4@a# H4AF2# 8>.20/9# 8799.>;?#
4_# f.B7104A>7F# ?.]A7F# 0?4F7904;# f.9H..;# 848AF7904;?# 2&#
@.;.90/# 20__.>.;907904;# f.9H..;# 848AF7904;?# H4AF2# f.#
/4>>.F79.2#H09B# ?.]A7F# 20E4>8B0?E#4># f.B7104A>7F# ?.]D
A7F#0?4F7904;#f.9H..;#848AF7904;?5#R.>.#H.#9.?9#.7/B#4_#
9B.?.#8>.20/904;?5#
<=D( ( E"/0-$'3("'.(/&#01&-&35#

Girardinichthys multiradiatus#H.>.#?7E8F.2#79#?.1.D#
>7F# F4/7F090.?# 0;# =.;9>7F#K.]0/4+# HB0/B# .;/4E87??# 9B.#
E7k4>09a# 4_# 09?# @.4@>78B0/# >7;@.# $O.?A;2B.09# 7;2#
K7/m7?#O7>/07#*))!6#^0@5#*&5#QB.?.#0;/FA2.#84;2?+#>.?D
.>140>?# 7;2# >01.>?# 0;# 9B>..#E7k4># /79/BE.;9?+# 7F9B4A@B#
9B.#fAFI#4_#9B.#848AF7904;?#7>.#_4A;2#0;#9B.#A88.>#V.>E7#
-01.>#f7?0;5#Q484@>78Ba#?A@@.?9?#9B79#9B.#_.H#F4/7F090.?#
4//A80.2#fa#9B.#LE7>0FF4#0;#9B.#`7F?7?#f7?0;#H.>.#/4F4D
;0?.2# 0;2.8.;2.;9Fa+# HB.>.7?# 9B.# ?E7FF# 7>.7# 4_# 9B.#

[7;A/4# HB.>.# 9B0?# ?8./0.?# 0?# _4A;2# H7?# 8>4f7fFa#
>.7/B.2#9B>4A@B#7#?0;@F.#>.@04;#Fa0;@#72k7/.;9#94#4;.#4_#
9B.# F4H.?9# 840;9?# 4_# 9B.# H79.>?B.2# 20102.5# =4FF./904;?#
H.>.#/4;2A/9.2#H09B#%E#?.0;.#;.9?#B7AF.2# 94H7>2?# 9B.#
?B4>.?# $HB.>.# 72AF9?# /4;@>.@79.6#K7/m7?#O7>/07# .9# 7F5+#
,ee(&5#^0?B#H.>.#7;7.?9B.90?.2#7;2#8B494@>78B.2#A84;#
/789A>.+# HB.;# 7# ?E7FF# 84>904;# 4_# 9B.# 970F# _0;# H7?# /4FD
F./9.2# _4># Z3L# .]9>7/904;5# ^0?B# H.>.# 9B.# @01.;# /4ED
E.>/07F#7;90D?9>.??#9>.79E.;9#f._4>.#f.0;@#9>7;?84>9.2#94#
9B.# F7f4>794>a+# HB.>.# 9B.a# H.>.# B4A?.2# 0;# ()V# 97;I?#
8>4102.2#H09B#_0F9.>?#7;2#7.>7904;#$?..#O4;orF.o#TA7>9B#
7;2#K7/m7?#O7>/07+#*))d&5#
K4>8B4F4@a#H7?#.]7E0;.2#_>4E#20@097F#8B494@>78B?#

97I.;# 4;# 7;7.?9B.90?.2# _0?B6# 7?# >.84>9.2# 0;# O4;orF.oD#
TA7>9B# 7;2# K7/m7?# O7>/07# $*))d&5# g.# 0;/FA2.2# ?0]#
E.7?A>.?# 9B79# B71.# f..;# 0E8F0/79.2# 0;# _.E7F.# E79.#
/B40/.# $?97;27>2# F.;@9B+# f42a# 2.89B+# 7;2# F.;@9B# 7;2#
f>.729B#4_# 9B.#24>?7F#7;2#7;7F# _0;?&+#7;2#_4A># 9B79#B71.#
;49#$.a.#7;2#8A80F#207E.9.>+#2.89B#4_#9B.#/7A27F#8.2A;D
/F.# 7;2# F.;@9B# 4_# 9B.# 970F# _0;&5#K4>8B4F4@0/7F# 17>07fF.?#
H.>.#?97;27>20?.2#94#7#E.7;#4_#o.>4#7;2#7#?97;27>2#2.D
107904;#4_# 4;.# 9B.;# ?Afk./9# 94# 7# /7;4;0/7F# 20?/>0E0;7;9# #

#

?$3=(D( ( F5.#&3#"01$4"-(/"0(&7(G*'%#"-(@*+$4&(
`F7/I#F0;.?#>A;#7F4;@#9B.#H79.>?B.2#20102.?#f.9H..;#9B.#[7;A/4#$[&+#`7F?7?#$`&#7;2#V.>E7#$A88.>#V.>E7+#WV6#F4H.>#V.>E7+#VV&#f7?0;?5#=0>/F.?#
0;20/79.# F4/7F090.?# /4;970;0;@#?Af?97;907F#848AF7904;?#4_#G. multiradiatus#I;4H;# 94#A?6# F7>@.>+# ?4F02#/0>/F.?# ?B4H# 9B.# F4/7904;?#H.#B71.#?9A20.2# 0;#
E4>.#2.970F5#
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7;7Fa?0?# $H09B# 848AF7904;# 7;2# ?.]# @010;@# ,(# 20?/>0E0D
;7;9# @>4A8?+# 05.5# 848AF7904;# ,# E7F.?+# 848AF7904;# ,# _.D
E7F.?+# 848AF7904;# *# E7F.?+# 7;2# ?4# 4;# _4># 7FF# 848AF7D
904;?&5# QB0?# H7?# 0;# 4>2.># 94# ,&# jA7;90_a# @F4f7F# ?.]A7F#
20E4>8B0?E# 7?# 9B.# /7;4;0/7F# 20?97;/.# f.9H..;# E7F.?#
7;2# _.E7F.?# _>4E# .7/B# 848AF7904;+# *&# jA7;90_a# 20__.>D
.;/.?#0;#?.]A7F#20E4>8B0?E#f.9H..;#848AF7904;?+#7?#9B.#
870>H0?.#848AF7904;#/4E87>0?4;?#4_#?.]A7F#20E4>8B0?E+#
%&#7??.??#HB.9B.>#E7F.#E4>8B4F4@a#201.>@.?#E4>.#>78D
02Fa#9B7;#_.E7F.#E4>8B4F4@a+#7;2#(&#7??.??#HB.9B.>#9B.#
20__.>.;/.?# 0;# E7F.# 4># _.E7F.# E4>8B4F4@a# f.9H..;#
848AF7904;?#7>.# >.F79.2# 94# 9B.#7E4A;9#4_#@.;.90/#7;2s4>#
f.B7104A>7F#201.>@.;/.#$7??4>97901.#E790;@&5#g.#202#;49#
/4>>./9# _4># ?0o.# 17>07904;# f._4>.# /4E8F.90;@# 9B.# EAF90D
17>079.# 7;7Fa?0?# f./7A?.# 20__.>.;/.?# 0;# ?0o.# /7;# f.# 7;#
0E84>97;9#/4E84;.;9#4_#?.]A7F#20E4>8B0?E+#7;2#0?#4;.#
4_#9B.#E4?9#H02.Fa#A?.2#8>4]0.?#_4>#?.]A7F#?.F./904;#$.5@5#
O7@.# .9# 7F5+# *))*6# b>770k.1.F2# .9# 7F5+# *),)&5# R4H.1.>+#
4A># /4;/FA?04;?# >.E70;# A;/B7;@.2# 0_# ?0o.# 0?# ;49# 0;D
/FA2.2#0;#9B.#7;7Fa?0?5#
<=H( ( I*1"2$&,#"-("'"-5)*)#
Z797# 4;# f.B7104A>7F# 0?4F7904;# 7;2#E7F.# 7;2# _.E7F.#

E4>8B4F4@0.?# H.>.# /4FF./9.2# _>4E# ?.1.;# 848AF7904;?+#
0;/FA20;@# 9B4?.# 2.?/>0f.2# fa# O4;orF.o# TA7>9B# 7;2#
K7/m7?#O7>/07#$*))d&+#H09B#9B.#7220904;#4_#Q./BA/BAF/4#
7;2#=B0@;7BA787;5#`>0._Fa+#.7/B#4_#f.9H..;#%)#7;2#%!#
_.E7F.?#_>4E#.7/B#848AF7904;#H7?#.]84?.2#94#7#870>#4_#
E7F.?6# 4;.# 4_# B.># 4H;# 848AF7904;# 7;2# 7;49B.># _>4E# 7#
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E7F.# E4>8B4F4@a# f.9H..;# 848AF7904;?# H7?# ;.@7901.Fa#
/4>>.F79.2#94#9B.#2.@>..#4_#8>.DE790;@#0?4F7904;#$05.5#9B.#
@>.79.>#9B.#20__.>.;/.#0;#E7F.#E4>8B4F4@a+#9B.#F4H.>#9B.#
8>.DE790;@#f7>>0.>?6#^0@5#(f6#K7;9.F#Pu)5)%&5#
D=H( ( 6*'*%$4(.$77*#*'%$"%$&'(
QB.# _01.# 84FaE4>8B0/# E0/>4?79.FF09.# F4/0# ?A>1.a.2#

H.>.# _4A;2# 94# B71.# 7;# 7FF.F0/# 201.>?09a# >7;@0;@# _>4E#
;0;.# 94# %!# 7FF.F.?# 7;2# 7;# 4f?.>1.2# B.9.>4oa@4?09a# 4_#
)5)%"t)5e*,#$Q7fF.#(f&5#V4/A?#=L,*#B72#7# F7>@.#;AED
f.># 4_# 7FF.F.?# 7;2# 2.E4;?9>79.2# ?0@;0_0/7;9# 2.107904;#
_>4E#RgC# 0;# B7F_# 9B.# 848AF7904;?# $Q7fF.# !&+# B4H.1.>#
>.?AF9?#H.>.#/4E87>7fF.#H09B#4>#H09B4A9# 9B0?# F4/A?5#34#
49B.>#F4/0#2.E4;?9>79.2#/4;?0?9.;9#?0@;0_0/7;9#2.107904;?#
_>4E#RgC#41.>7FF+# 9B4A@B#(#4_# 9B.#!# F4/0#?B4H.2#?0@D
;0_0/7;9# B.9.>4oa@49.# 2._0/09# 0;# 9B.# =B0@;7BA787;# 7;2#
N7;# [.2>4# Q./BA/BAF/4# 848AF7904;?5# [48AF7904;# ?AfD#
?9>A/9A>.#0?#84??0fF.#_4>#9B.#=B0@;7BA787;#848AF7904;#7?#
0;20102A7F?# /7E.# _>4E# _4A># @.4@>78B0/7FFa# /F4?.# ?7ED
8F0;@# F4/7F090.?5# [4??0fF.# ;AFF# 7FF.F.?# H.>.# 2.9./9.2# fa#
K0/>4D=B./I.># 0;# 4;Fa# 9B>..# 848AF7904;?# _4># F4/A?#
=L,*+#9H4#848AF7904;?#_4>#F4/A?#w=,"#7;2#4;.#_4>#F4/0#
Pg,ed# 7;2# TQ,5e+# H09B# ;4# .102.;/.# 4_# F7>@.# 7FF.F.# #



# K7/m7?#O7>/07#=#.9#7F5'#N.]A7F#20E4>8B0?E+#7??4>97901.#E790;@#7;2#@.;.90/#201.>@.;/.# ((< 

#

?$3=(J( ( >1*()%#*'3%1(&7(0#*Q/"%$'3($)&-"%$&'("3"$')%(0&0,-Q
"%$&'(.$77*#*'4*)($'()*+,"-(.$/&#01$)/(A"B("'.(.$77*#*'4*)(
$'(/"-*(/&#01&-&35(A9B(
#
2>484A9#4>#?/4>0;@#.>>4>?#2A.#94#?9A99.>0;@#0;#7;a#848AD
F7904;5#
C?90E79.?# 4_# ^D?9790?90/# @.;.90/# 20__.>.;907904;# $^NQ&#

_4># .7/B# 848AF7904;# /4E87>0?4;#H.>.# ?0@;0_0/7;9# $7_9.>#
`4;_.>>4;0# /4>>./904;&# .]/.89# _4># 9B79# f.9H..;# CF#
[4>1.;0># 7;2# N7;# K7907?# .F# O>7;2.5# K.7?A>.?# 4_# Z.?9#
H.>.#97I.;#7?#9B.#B7>E4;0/#E.7;#7/>4??#7FF#F4/0#_4>#.7/B#
848AF7904;#870>#7;2#>7;@.2#_>4E#)5),,#94#)5!e"#H09B#CF#
[4>1.;0># 7;2# N7;#K7907?# .F# O>7;2.# 848AF7904;?# f.0;@#
B0@BFa# 20__.>.;9079.2# _>4E# 7FF# .F?.+# fA9# ;49# .7/B# 49B.>#
$Q7fF.#d&5#QB.#T.E847F7#848AF7904;#H7?# 7F?4# _4A;2# 94#
B0@BFa#20__.>.;9079.2#_>4E#7FF#@>4A8?#.]/.89#9B.#N7F7o7>#
F7I.#848AF7904;#$Q7fF.#d&5# #
=4E87>0?4;#4_#9B.#@.;.90/#7;2#9>709#2797#?B4H.2#9B79#

E4>8B4F4@0/7F# 20__.>.;907904;# f.9H..;# 848AF7904;?# 78D
8.7>.2#7>f09>7>a+# 0;# 9B.# ?.;?.# 9B79# 09# 0?#;49#?0@;0_0/7;9Fa#
>.F79.2# 94#@.;.90/#20?97;/.# 0;#.09B.>#?.]#$^0@5#!'#K7;9.F#
Pu)5"!# _4># E7F.?+# )5*e# _4># _.E7F.?&5# -.?AF9?# 4_# 0?4F7D
904;DfaD20?97;/.# 7;7Fa?.?# ?B4H.2# 7# ?0@;0_0/7;9# /4>>.F7D
904;# 4_# @.;.90/# 20?97;/.# $Z.?9&# 94# @.4@>78B0/# 20?97;/.#
$K7;9.F#Pu)5))(<6#^0@5#d&5#R4H.1.>+# 9B0?#0?#/F.7>Fa#?AD
8.>0E84?.2#4;# 7# F7>@.>#20__.>.;/.#f.9H..;#848AF7904;?#
_>4E# 20__.>.;9# H79.>?B.2?# $^0@5# *&5# P`Z# H09B0;# 9B.#
V.>E7#f7?0;#7F4;.#H7?#;4;D?0@;0_0/7;9#$K7;9.F#Pu)5(d&5# #

>"9-*( J( ( E,//"#5( &7( /$4#&)"%*--$%*( )"/0-$'3( )$%*( -&4"Q
%$&')Z( $'4-,.$'3( )"/0-*( )$[*( 0*#( 0&0,-"%$&'( AnB( A"BZ( /$Q
4#&)"%*--$%*(2"#$"9$-$%5($'(G. multiradiatus A9B(

A"B(
[48AF7904;# V4/7904;# n#

V7I.#4_#=B0;7BA787;# ,e#)"q#3+#ee#*eq#g# e(#

=B78AF9.8./# # ,e#,%q#3+#ee#%%q#g# %)#

CF#[4>1.;0># ,e#()q#3+#,))#%"q#g# %)#

N7F7o7># ,e#,<q#3+#ee#*(q#g# *"#

N7;907@4# ,e#((q#3+#ee#(,q#g# ((#

N7;#:A7;0/4# ,e#!!q#3+#ee#(%q#g# (*#

N7;#K7907?#.F#O>7;2.# ,e#(*q#3+#,))#(*q#g# *e#

N7;#[.2>4#Q./BA/BAF/4# ,e#)dq#3+#ee#%,q#g# # %<#

Q.E7?/7F/0;@4# ,e#!!q#3+#,))#)q#g# %)#

T.E847F7# ,e#,eq#3+#ee#,eq#g# ((#
#

A9B(
V4/A?# N0o.#>7;@.# 3AEf.>#4_#LFF.F.?#

w=,"# *("D*e"# **#

TQ,5d# *%*D*!)# e#

Pg,ed# ,e,D**,# e#

TQ,5e# %!<D(*e# ,<#

=L,*# ,*<D*(%# %!#

#
[7>907F#K7;9.F# 9.?9?# /4E87>0;@#@.;.90/#20?97;/.# 94# ?.]D
A7F# 0?4F7904;# 7;2# ?.]A7F# 20E4>8B0?E# H.>.# 7F?4#
;4;D?0@;0_0/7;9# $Pu)5%!# 7;2# Pu)5,# >.?8./901.Fa&5# ^A>D
9B.>+# 7# 8799.>;# 4_# ?.]Df07?.2# 20?8.>?7F# H7?# ;49# ?..;# 0;#
4A>#2797# $Pz)5(!&5#QBA?+# 9B.#4;Fa#17>07fF.# 9B79# ?0@;0_0D
/7;9Fa#.]8F70;?#@.;.90/#20__.>.;907904;#4_#G. multiradia-
tus 848AF7904;?# 0?# @.4@>78B0/# 20?97;/.+# 0;# 7# E7;;.>#
/4E8790fF.#H09B#0?4F7904;#7/>4??#H79.>?B.2?5#

H( # Z0?/A??04;(
Q.?90;@# _4># 7# 849.;907F# >4F.# 4_# ?.]A7F# ?.F./904;# 0;#

?8./07904;# 7;2# 848AF7904;# 201.>@.;/.# B7?# f..;# A;2.>D
97I.;#A?0;@#7#17>0.9a#4_#788>47/B.?#7;2#79#7#;AEf.>#4_#
?/7F.?+# _>4E# f>472# /4E87>7901.# ?9A20.?# 94# 7;7Fa?0?# 4_#
@.;.#_F4H#0;#0;20102A7F#?8./0.?5#-.?AF9?#8>4102.#79#f.?9#
F0E09.2# ?A884>9# _4># 7# /F.7># >4F.# 4_# ?.]A7F# ?.F./904;# 0;#
?8./07904;#$-09/B0.#*))<6#b>770k.1.F2#.9#7F5+#*),)&5#QB0?#
E7a# f.# f./7A?.# 9B.# 0E84>97;/.# 4_# ?.]A7F# ?.F./904;# 0;#
/7A?0;@# >.8>42A/901.# 0?4F7904;# B7?# f..;# 41.>.?90E79.2#
7;2#;79A>7F#?.F./904;#E7a#f.#E4>.#.__./901.#$N4f.F#.9#7F5+#
*),)&5#K790;@#?0@;7F?#E7a#201.>@.#jA0/IFa#4;Fa#f./7A?.#
4_#7;#0;9.>7/904;#H09B#./4F4@0/7F#?.F./904;+#0_#9B.a#7FF4H#
7??4>97901.# E790;@# f.9H..;# .;9090.?# A;2.># 201.>@.;9# #



(("# Current Zoology# X4F5#!"# # 345#% 

>"9-*(K( ( E,//"#5(&7(/$4#&)"%*--$%*(."%"(95(0&0,-"%$&'("'.(-&4,)(

V4/0#
[48AF7904;# [7>7E.9.>#

XC18 ZT1.6 IW196 ZT1.9 CA12 

=B0@;7BA787;# O.;49a8.?# d"# <!# e)# <<# d"#

# HO )5<)dY# )5%d)# )5,**Y# )5<ddY# )5d<dY#

# HE )5e*,# )5(**# )5,!e# )5"<e# )5e,"!*#

=B78AF9.8./# O.;49a8.?# *%# *"# *"# *<# *"#

# HO )5e!<# )5*"d# )5)%d# )5<)(# )5"*,#

# HE )5e*<# )5%<,# )5)%d# )5<<(# )5e),#

CF#[4>1.;0># O.;49a8.?# D# D# D# *<# *d#

# HO D# D# D# )5dd<# )5%"!#

# HE D# D# D# )5(""# )5%"(#

N7F7o7># O.;49a8.?# *"# *<# *<# *"# *"#

# HO )5"*,# )5%%%# )5%<)# )5%*,# )5d)<Y#

# HE )5<d<# )5%<*# )5%e,# )5(!d# )5<!d#

N7;907@4# O.;49a8.?# ((# (%# (%# ((# (%#

# HO )5"(,# )5(,"Y# )5,d%# )5<e!# )5!%!Y#

# HE )5"<*# )5(<d# )5,!%# )5"*<# )5"!(#

N7;#:A7;0/4# O.;49a8.?# %"# %(# D# %e# %!#

# HO )5<d%# )5*d!# D# )5<de# )5<,(Y#

# HE )5"%"# )5*%<# D# )5<,*# )5"d!#

N7;#K7907?#CF#O>7;2.# O.;49a8.?# D# *"# D# *"# *e#

# HO D# )5,)<# D# )5d<"Y# )5%(!#

# HE D# )5,)%# D# )5(<<# )5%<%#

N7;#[.2>4#Q./BA/BAF/4# O.;49a8.?# *d# *%# %)# *%# *,#

# HO )5(d,Y# )5!d!Y# )5,dd# )5(<"Y# )5d,eY#

# HE )5<"*# )5d<(# )5**)# )5<e<# )5e(,#

Q.E7?/7F/0;@4# O.;49a8.?# *e# ,"# *d# *e# *d#

# HO )5"*"# )5%%%# )5)%"Y# )5"*"# )5<de#

# HE )5"ee# )5%e)# )5,,*# )5")*# )5e,d#

T.E847F7# O.;49a8.?# (%# %!# (%# (*# %"#

# HO )5!",# )5())# )5(d!# )5!e!# )5d)!#

# HE )5d*,# )5("<# )5(((# )5d!<# )5<**#

O.;49a8.?'#;AEf.>#4_#@.;49a8.?5#HO' 4f?.>1.2#B.9.>4oa@49?09a5#HE'#.]8./9.2#B.9.>4oa@4?09a5#D#'#F4/A?#E4;4E4>8B0/#0;#9B79#848AF7904;5#
Y'#?0@;0_0/7;9#2.107904;#_>4E#R7>2aDg.0;f.>@#.jA0F0f>0AE#$Pp)5)!&5#
#

>"9-*(U( ( L"$#;$)*(\*)%(*)%$/"%*)(7&#(*"41(0&0,-"%$&'(0"$#(

## V7I.#4_# #
=B0;7BA787;#

=B78AF9.8./# CF# #
[4>1.;0>#

N7F7o7># N7;907@4# N7;# #
:A7;0/4#

N7;#K7907?#
.F#O>7;2.#

N7;#[.2>4# #
Q./BA/BAF/4#

Q.E7?/7F/0;@4 T.E847F7

V7I.#4_# #
=B0;7BA787;#

DD# )5)(<(# )5(*!"# )5,"<"# )5)(*!# )5,)"e# )5(*e<# )5,)"d# )5)*<d# )5*e("#

=B78AF9.8./# # DD# DD# )5%,"%# )5*!)e# )5)<d%# )5)<ed# )5%*# )5,,!(# )5)dd"# )5%*%<#

CF#[4>1.;0># DD# DD# DD# )5*(*(# )5(*e# )5%%**# )5)),# )5%,*e# )5(%)%# )5(),e#

N7F7o7># DD# DD# DD# DD# )5*,e# )5*,*e# )5*!*e# )5*)"d# )5,d",# )5)d!e#

N7;907@4# DD# DD# DD# DD# DD# )5,)d<# )5(*"<# )5,,"# )5)%!,# )5%()!#

N7;#:A7;0/4# DD# DD# DD# DD# DD# DD# )5%%**# )5,(!*# )5)"<!# )5%)%(#
N7;#K7907?# #
.F#O>7;2.# DD# DD# DD# DD# DD# DD# DD# )5%)e# )5(%)(# )5()!d#

N7;#[.2>4# #
Q./BA/BAF/4# DD# DD# DD# DD# DD# DD# DD# DD# )5,),# )5*!*,#

Q.E7?/7F/0;@4# DD# DD# DD# DD# DD# DD# DD# DD# DD# )5*e,d#

T.E847F7# DD# DD# DD# DD# DD# DD# DD# DD# DD# DD#



# K7/m7?#O7>/07#=#.9#7F5'#N.]A7F#20E4>8B0?E+#7??4>97901.#E790;@#7;2#@.;.90/#201.>@.;/.# ((e 

#

?$3=(K( ( @&#01&-&3$4"-(.$2*#3*'4*(9*%;**'(0&0,-"%$&')(&7(
/"-*)( A7$--*.( 4$#4-*)B( "'.( 7*/"-*)( A)1".*.( 4$#4-*)B( "3"$')%(
3*'*%$4(.$)%"'4*#

#

?$3=(U( ( ])&-"%$&'(95(.$)%"'4*(
O.;.90/# 20?97;/.# $Z.?9&# 8F499.2# 7@70;?9# @.4@>78B0/# 20?97;/.# $bE&5#
S8.;# /0>/F.?# >.8>.?.;9# f.9H..;# H79.>?B.2# /4E87>0?4;?# 7;2# _0FF.2#
/0>/F.?#H09B0;#H79.>?B.2#/4E87>0?4;?5#
#

./4F4@0/7F# ?.F./904;# $X7;# Z44>;# .9# 7F5+# *))e&5# N.]A7F#
?.F./904;# E7a# 7/901.Fa# 4884?.# ?8./07904;# A;2.># ?4E.#
/4;20904;?+# _4># .]7E8F.# 0_#E7F.# /4E8.90904;# 0?# 7#E4>.#
84H.>_AF# _4>/.# 9B7;# 7??4>97901.# _.E7F.# 8>._.>.;/.?#
$[7>I.># 7;2# [7>9>02@.+# ,ee"&5# LF9.>;7901.Fa+# 7# 8>4fF.E#
9B79# B7?# f..;# B0@BF0@B9.2# H09B# /4E87>7901.# ?9A20.?# 4_#
?.]A7F# ?.F./904;#7;2# ?8./07904;# 0?# 9B79# 9B.#8>4]0.?#A?.2#
94#.?90E79.#17>07904;#0;#9B.#0;9.;?09a#4_#?.]A7F#?.F./904;#
E7a# f.# E0?F.720;@# $O4;o7F.oDX4a.># 7;2# b4FE+# *),,6#
b>770k.1.F2# .9# 7F5+# *),)&5#SA># ?9A2a# B7?# 7FF4H.2# 7# 2.D
970F.2# .]7E0;7904;# 4_# 9B.# .14FA904;# 4_# 201.>@.;/.# 0;#
?.]A7F# 20E4>8B0?E# 7;2# 7??4>97901.# E790;@+# a.9# ;.09B.>#
B7?# ?B4H;#7;a#/4>>.F7904;#H09B#@.;.# _F4H5#SA>#8>.20/D
904;#H7?# 9B79# @>.79.># ?.]A7F# 20E4>8B0?E#H4AF2# .14F1.#
0;#848AF7904;?#HB.>.# _.E7F.# 8>._.>.;/.?#H.>.# ?9>4;@.>#
7;2# 9B79# ?A/B# 848AF7904;?#H4AF2# 7F?4# fA0F2# A8# @.;.90/#
20__.>.;/.?# 2A.# 94#E4>.# >.?9>0/901.#E790;@?# $-09/B0.# .9#
7F5+#*))<&5#
g.# jA7;90_0.2# ?.]A7F# 20E4>8B0?E# 7E4;@# EAF908F.#

848AF7904;?5# QB0?# 20E4>8B0?E# H7?# 2A.# 94# f49B# ?.]A7F#
?0o.#20__.>.;/.?+#fA9#7F?4#20__.>.;/.?#0;#_0;#E4>8B4F4@a5#

N0o.#20E4>8B0?E#/4AF2#4//A># _4># 7#;AEf.>#4_# >.7?4;?+#
0;/FA20;@# ?.]A7F# ?.F./904;+# fA9# 20__.>.;/.?# 0;# _0;# ?B78.#
?..E#7FE4?9#/.>970;Fa#94#f.#0;_FA.;/.2#fa#?.]A7F#?.F./D
904;5#^0;?#7>.#A?.2#.]9.;?01.Fa#2A>0;@#/4A>9?B08#0;9.>7/D
904;?#7;2#9B.#.]7@@.>79.2#_0;#?B78.#$7;2#/4F4A>&#4_#E7F.#
_0;?#0;#9B0?#?8./0.?#?A@@.?9?#9B.a#79#F.7?9#87>9Fa#_A;/904;#
7?#7;# |4>;7E.;9y+# 05.5# 7# 97>@.9#4_# _.E7F.#E790;@#8>._.>D
.;/.?5#g.#9B.>._4>.#.]8./9.2#94#_0;2#7;#7??4/07904;#f.D
9H..;# 4A># E.7?A>.# 4_# E790;@# 0?4F7904;# 7;2# .09B.># 9B.#
E7@;09A2.# 4_# 9B.# E4>8B4F4@0/7F# 201.>@.;/.# f.9H..;#
848AF7904;?#$05.5#20__.>.;/.?#0;#?.]A7F#20E4>8B0?E#4>#0;#
E7F.#E4>8B4F4@a&#4># 9B.#2.@>..#4_#@.;.90/#201.>@.;/.5#
P;#@.;.>7F+#F4/7F#201.>@.;/.#4_#E7F.#E790;@#9>709?#0?#.]D
8./9.2#94#7>0?.#2A.#94#,&#20__.>.;/.?#0;#E7@;09A2.#4_#7;#
4>;7E.;9#9B79#/7;#f.#.]8>.??.2#@01.;#9B.#F4/7F#./4F4@a+#
7;2#*&#20__.>.;/.?#0;#9B.#E7@;09A2.#4_#7;#4>;7E.;9#8>.D
_.>>.2#fa#9B.#E7k4>09a#4_#9B.#F4/7F#_.E7F.?5#P;2..2+#_>4E#
/F7??0/7F# ^0?B.>07;# E42.F?+# 09# 0?# .]8./9.2# 9B79# 848AF7D
904;?#7>.#2>01.;#787>9#fa#_.E7F.#E79.#/B40/.#4;Fa#94#9B.#
840;9#HB.>.# 9B.a# 7>.# /4A;9.>D?.F./9.2#fa#;79A>7F# ?.F./D
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