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Abstract

Recently, much effort has been expended for improving conventional distance sam-

pling methods, e.g. by replacing the design-based approach with a model-based ap-

proach where observed counts are related to environmental covariates (Hedley and

Buckland, 2004) or by incorporating covariates in the detection function model (Mar-

ques and Buckland, 2003).

While these models have generally been limited to include fixed effects, we propose

four different methods for analysing distance sampling data using mixed effects mod-

els. These include an extension of the two-stage approach (Buckland et al., 2009),

where we include site random effects in the second-stage count model to account for

correlated counts at the same sites. We also present two integrated approaches which

include site random effects in the count model. These approaches combine the analy-

sis stages for the detection and count models and allow simultaneous estimation of all

parameters. Furthermore, we develop a detection function model that incorporates

random effects.

We also propose a novel Bayesian approach to analysing distance sampling data which

v



uses a Metropolis-Hastings algorithm for updating model parameters and a reversible

jump Markov chain Monte Carlo (RJMCMC) algorithm for assessing model uncer-

tainty. Lastly, we propose using hierarchical centering as a novel technique for improv-

ing model mixing and hence facilitating an RJMCMC algorithm for mixed models.

We analyse two case studies, both large-scale point transect surveys, where the in-

terest lies in establishing the effects of conservation buffers on agricultural fields. For

each case study, we compare the results from one integrated approach to those from

the extended two-stage approach. We find that these may differ in parameter es-

timates for covariates that were both in the detection and the count model and in

model probabilities when model uncertainty was included in inference. The perfor-

mance of the random effects based detection function is assessed via simulation and

when heterogeneity in the data is present, one of the new estimators yields improved

results compared to conventional distance sampling estimators.
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Chapter 1

Introduction

1.1 Conventional distance sampling

Distance sampling is a tool for assessing wildlife abundance that is commonly used

when the interest lies in evaluating how many individuals (or clusters of individuals)

of the species of interest occur in a defined study area (e.g. Buckland et al., 2000;

Cañadas and Hammond, 2006; Marques et al., 2007). Although the methods are also

applicable to plants (Buckland et al., 2007), we will generally speak of animals in the

following.

Distance sampling comprises a suite of methods, e.g. line transect sampling (e.g.

Burnham et al., 1980), point transect sampling (e.g. Buckland, 2006), cue counting

(e.g. Borchers et al., 2009) or trapping point transects (e.g. Buckland et al., 2006;

Potts et al., 2012). We focus on line or point transects in the following. Tradition-

ally, each of these methods requires that samplers such as lines or points are placed

within the study area according to some sampling design and that an observer makes

detections of the species of interest along or at these samplers.

1



2

These methods share an underlying concept which recognises that some of the animals

within the search area are not detected and that the proportion of those that were

missed can be estimated by collecting additional information. This additional infor-

mation usually consists of the distance to the detection, i.e. perpendicular distance

from the line for line transects or radial distance from the point for point transects

(Buckland et al., 2001).

These distances are used to estimate a detection function which models the decay

in detection probabilities with increasing distance from the sampler. This detection

function may then be used to estimate the average detection probability within the

search area, which is used to scale up the number of observed detections to an esti-

mate of the number of individuals in the search area (or number of clusters in the

case that detections are made of clusters of individuals). The latter is converted into

an estimate of abundance in the study area using a design-based approach where the

number of individuals in the search area is divided by the proportion of the study

area that was searched. Estimators of abundance or density of the study species are

summarised in Buckland et al. (2001). These conventional distance sampling (CDS)

methods rely on several assumptions (Buckland et al., 2001; Burnham et al., 1980):

I. All animals on the line or point are detected with certainty. If some animals on

the line are missed, due to perception or availability bias, resulting abundance

estimates are likely to be negatively biased.

II. Samplers are located according to a survey with an element of randomisation.

Meeting this assumption has two main consequences.

A: It insures that the area that was searched is a good representation of the

whole study area, allowing use of a design-based approach for scaling up from
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an encounter rate estimate in the search area to an encounter rate estimate in

the study area.

B: Placement of samplers in the study area is independent from the distribution

of animals. Estimators for the average detection probability in the search area

incorporate a function that describes the expected distribution of animals in the

search area with respect to increasing distance from the line or point. Using

CDS methods, we assume that this distribution is on average uniform for lines

and linearly increasing for points, which requires that this assumption is met.

III. Distances are measured without error. Measurement errors may lead to biased

abundance estimates by over- or underestimating the average detection proba-

bility.

IV. Observation process is a snapshot and animals are detected at their initial lo-

cation. For line and point transects, bias in the estimate of average detection

probability may arise due to animal movement whether the movement is random

or responsive to the observer.

V. Detections are independent.

In addition to these assumptions, reliable estimation of abundance using distance

sampling methods requires that:

i. The detection function is sufficiently flexible to capture the decay in detection

probability well and allow unbiased estimation of the average detection probabil-

ity - often referred to as the pooling robustness property. For CDS methods, a

flexible fit of the detection function is obtained by choosing a best fitting model
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from a suite of contending models including different key functions, possibly in

combination with adjustment terms (Buckland et al., 2001).

ii. The detection function has a ‘shoulder’, i.e. that animals out to some distance

from the line are detected with certainty - often referred to as the shape criterion.

iii. The number of samplers is large and that the samplers constitute a good rep-

resentation of the study area. This allows reliable scaling up from number of

animals in the search area to abundance in the study area. In addition, this en-

sures that the distribution of animals with respect to the samplers is on average

as described under assumption II.

iv. Samplers are independent from each other.

1.2 Recent developments in distance sampling

Over the past decade or so, a lot of effort has been invested into developing distance

sampling methods that allow one or more of these assumptions to be relaxed. With

reference to the above lists, these include:

I. Mark-recapture distance sampling

Borchers et al. (1998) developed mark-recapture distance sampling methods

(MRDS) for line transect surveys where detection on the line is not certain.

These authors combined mark-recapture and distance sampling methods where

two independent observers simultaneously conduct the transect survey and set

up mark-recapture trials for each other. This allows the number of animals

missed on the line to be estimated. Studies following this work incorporated
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heterogeneity in the detection models and explored different levels of indepen-

dence between the two observers (e.g. Borchers et al., 2006; Buckland et al.,

2010). Laake et al. (2011) developed MRDS methods for point transects.

II. Modelling non-independent distribution of animals with respect to samplers

Marques et al. (2010) and Marques et al., in press, developed estimators that

replace the assumed distribution of animals with respect to increasing distance

from the samplers for CDS methods with a model of the estimated distribution of

animals with respect to the linear feature from which the survey was conducted.

III. Models for measurement errors in distance sampling

Borchers et al. (2010) developed estimators for a detection function for distance

data with systematic and with stochastic measurement errors. Marques (2004)

proposed estimators for density in the case of multiplicative errors in distance

measurements.

IV. Dealing with animal movement

Fewster et al. (2008) applied MRDS methods to double observer line transect

data to show that animal movement may constitute a problem for species of high

mobility. DiTraglia (2007) proposed adjusted line transect estimators which in-

corporate movement models. Buckland (2006) showed that for some songbirds,

point transects using the snapshot method may produce results with less bias.

Spear et al. (1992) and Spear and Ainley (1997a,b) proposed methods for cor-

recting abundance estimates for directionally flying seabirds obtained from strip

transects by taking into account the birds’ flight speed and direction in relation

to the survey ship.
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V. Covariate models for observed counts at the samplers

Hedley and Buckland (2004) replaced the design-based approach from CDS with

a model-based approach using spatial models that relate animal density to spa-

tial and/or habitat covariates. These models may then be used to make predic-

tions on animal densities throughout the study area, including those parts that

were not surveyed. These methods do not require that the survey followed a

random design.

The two-stage approach (Buckland et al., 2009) may be used for those studies

where the interest lies in the relationship between animal densities and the co-

variates, e.g. for designed experiments where a treatment was applied to part of

the study area.

i. Increasing the flexibility of detection functions

Marques and Buckland (2003, 2004) increased the flexibility of detection functions

by modelling heterogeneity in detection probabilities between detected objects.

Their approach incorporates covariates affecting detection probabilities in the

scale parameter of the half-normal or hazard-rate detection function.

Miller and Thomas, unpublished manuscript, proposed using mixture models.

These are composed of two or more detection functions which are scaled using a

corresponding mixing proportion.
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1.3 Developments of distance sampling methods

proposed in this thesis

While this list of developments in distance sampling methodology is far from exhaus-

tive, it demonstrates the need to supplement or replace some of the methods within

CDS. However, in most cases (with the exception of Potts (2011) and Yuan et al.,

unpublished manuscript) these approaches do not make use of random effects in their

models. The main objective of this thesis is to develop estimators, likelihood formula-

tions and algorithms for incorporating random effects, for which we generally assume

normality with a zero-mean and unknown standard deviation, into models applied to

distance sampling data. In particular, we address two main areas of incorporating

random effects: the covariate model for counts or densities on the plot (chapters 2 to

5) and the detection function model (chapter 6).

In chapter 2 we begin by describing an extended version of the two-stage approach

(Buckland et al., 2009) where we include random effects in the count model to accom-

modate correlated measurements, e.g. due to closeness of samplers in space or repeat

sampling at the same line or point. Hence, we present methods that do not rely

on assumption V. (the assumption of random placement of samplers) or on item iv.

(independence of samplers) from the above lists. In addition, we incorporate models

for heterogeneity in detection probabilities using MCDS, addressing item i. (flexible

detection functions). Each of these items is further addressed in chapters 3 and 4.

However, like the original approach described by Buckland et al. (2009), the extended

two-stage approach from chapter 2 has the disadvantage that the second-stage density

model conditions on the first-stage detection model and hence, uncertainty from the
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latter does not propagate into the density model. We address this issue in chapters

3 and 4 by proposing integrated likelihoods that combine the likelihood components

of the first and second stage into one.

For the integrated likelihood approach presented in chapter 3, counts at the sampler

are divided into counts ni by distance interval i = 1, ..., I. The Poisson model for ni

comprises two components: a mixed effect log-linear Poisson model for the expected

number of animals within the search area of the sampler N which is adjusted for im-

perfect detection using the estimated proportion of N that was detected within the

ith interval. The latter is estimated using the unconditional likelihood of observed

distances (Royle et al., 2004). This approach is applicable to interval distance data or

exact distance data. For the latter, however, the exact distance measurements need

to be converted into interval data.

In chapter 4, we propose integrated likelihood formulations that are applicable to

both exact and interval distance data. Here, counts are adjusted for imperfect detec-

tion within the search area by incorporating the effective area into the mixed effect

log-linear Poisson model as an offset. This approach uses the conditional probability

density function of observed distances (Buckland et al., 2001).

Recognising that these integrated likelihoods may be difficult to maximise in some

cases, we present a novel Bayesian approach to distance sampling in chapter 4 which

uses the integrated likelihood formulations presented in the same chapter. This ap-

proach uses a random walk single-update Metropolis-Hasting algorithm (Hastings,

1970; Metropolis et al., 1953) to update model parameters. Model uncertainty may

be assessed using an RJMCMC algorithm (Green, 1995).

In chapter 5, we present a novel technique for dealing with some of the model mixing
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difficulties one may encounter using hierarchical models for an RJMCMC algorithm.

The difficulties we refer to may arise when the random effects coefficients absorb the

effect of one or more of the fixed effect covariates and prevent the acceptance of these

covariates into the model as the effects are already accounted for. We use hierarchi-

cal centering to reparameterise the model: the generally assumed zero-mean of the

random effect is replaced with a model incorporating the intercept and one or more

covariates from the Poisson model. Now, the random effects coefficients are supposed

to absorb the effects of the covariates included in the centering, given that they have

an effect, and models with these covariates are favoured over those without.

In chapter 6, we address item i. from the above list (flexibility in detection functions)

and present a new detection function model that models heterogeneity in detection

probabilities between different detections by including random effects in the scale

parameter of the half-normal key function. Two estimators for abundance and as-

sociated variance are described and assessed via simulation in comparison to CDS

methods.

For each of the chapters, we analyse case studies or simulated data and contrast re-

sults from competing methods. In chapter 7, we conclude with a general discussion

on these topics.



Chapter 2

Fitting random effects models to

distance sampling data using a

two-stage approach

2.1 Introduction

Traditionally, inference on abundance from distance sampling data relies on a model-

based component (the estimation of the detection function to account for imperfect

detection) and a design-based component (estimation of the encounter rate in the

study area based on encounter rate estimates along the transect lines or points, Buck-

land et al., 2001). The design-based component assumes that transect lines or points

are randomly distributed within the study area. There is currently much interest in

replacing the design-based component by a modelling approach, for which random

line location is not assumed, and which allows animal density to be related to spa-

tial covariates such as habitat (Burt et al., 2003; Buckland et al., 2004; Hedley and

10
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Buckland, 2004; Royle et al., 2004; Kéry et al., 2005). Commonly, the abundance is

modelled as a function of covariates using a generalized linear model (GLM) or gen-

eralized additive model (GAM) but may also be modelled as a spatial point process

(Johnson et al., 2010).

Increasingly, large-scale experimental studies are needed to assess the effects of some

intervention on numbers of species of conservation interest. The intervention might be

a change in agricultural or forestry practice that may have unintended consequences

on population abundance, or it might be the introduction of a management practice

that is intended to increase population abundance. Buckland et al. (2009) describe

a two-stage model-based approach for analysing distance sampling count data from

such studies. In the first stage, a detection function model is fitted to the distance

data, from which an offset is estimated to account for imperfect detection within the

surveyed strip or circle. In the second stage, this offset is incorporated in a count

model using a log-link and a Poisson error structure in a GLM. The problem arising

then is that an assumption has to be made that the estimate of the detection func-

tion in the first stage represents the true detection function. However, non-parametric

bootstrapping may be used to quantify precision of parameter estimates, allowing un-

certainty from fitting the detection function to propagate into the second stage.

Buckland et al. (2009) recommended that when the study consists of a large number

of sites, these should be included as a random effect. This has the advantage that

inference is not limited to those sites included in the study (McCulloch and Searle,

2001). Only one site parameter is then required (as opposed to the j − 1 parameters

for j sites if treated as fixed), and the approach accommodates positive correlation

in counts from a single site.
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We adopt the suggestion of Buckland et al. (2009), and include site random effects

into the two-stage approach using a generalized linear mixed model (GLMM) for the

counts. In contrast with a GLM, the likelihood of a GLMM includes a random effect

component (McCulloch and Searle, 2001). Although other distributions have been

suggested for random effects (e.g. Komárek and Lesaffre, 2008), most commonly a

normal distribution is assumed. In this chapter, we present an extended version of

the two-stage approach of Buckland et al. (2001) which includes random effects in

the second stage count model for which we assume normality with a zero-mean and

unknown standard deviation σb. Our approach is presented for line and point tran-

sect data and applicable to either exact or interval distance data. In the following

section, we present the likelihoods for comparison to the following chapters where

these formulations are modified. We then analyse two case studies, point transects

of indigo buntings (Passerina cyanea L.) and point transects of northern bobwhite

(Colinus virginianus L.) coveys. Results from these analyses are presented here and

are compared to results from analyses in chapters 3 and 4 in the results sections of

those chapters.

2.2 The two-stage approach

Consider a wildlife study carried out at a number of sites, at each of which point or

line transects are placed according to some design. Each site is surveyed at least once

following a distance sampling protocol (Buckland et al., 2001). For line transects the

observer travels down the line and records the perpendicular distances to the line for

each detection of the species of interest. For point transects, the observer remains at
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the point for a fixed amount of time and records the distances from the point to the

detections. Distances can be recorded either exactly or in intervals. We assume that

animals on the line or point are certain to be detected.

If all animals within the search radius were detectable with certainty, then counts

at the line or point could be modelled via a log-link using a GLMM with a Poisson

or negative binomial error structure. Including site as a random effect allows counts

from the same site to covary. For the two-stage approach, we consider the total

count njpr at visit r to line or point p of site j to be a Poisson random variable with

E(njpr) = λjpr which can be modelled by a linear predictor via a log-link function

using a GLMM:

λjpr = exp

(
β0 + bj +

K∑
k=1

xkjprβk

)
. (2.1)

Here β0 represents the fixed effect intercept, bj the random effect coefficient for site j

with bj ∼ N (0, σ2
b ), xkjpr the value of the kth fixed effect covariate measured during

the respective visits to that line (point), and βk the associated coefficients.

In this formulation (eqn (2.1)) we assume perfect detection on the plot. As this is

generally not the case, we need a formulation to allow for detectability decreasing

with distance from the line or point. Hence, in the first stage, a probability density

function f(y) is fitted to the observed detection distances where y represents the

distances from the line or point to the observed detections given that the animal is

in the strip of half-width w centered on the line (lines) or in the circle of radius w

around the point (points) (Buckland et al., 2001). It describes the probability that

an animal was in interval (y, y + dy) given that it was detected within distance w of

the line or point, where
∫ w
0 f(y)dy = 1 and w is the truncation distance:
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f(y) =
π(y)g(y)

w∫
0
π(y)g(y)dy

. (2.2)

The function π(y) describes the expected distribution of animals (whether detected

or not) with distance from the line or point. When lines or points are randomly

positioned, π(y) = 1/w for line transects and π(y) = 2y/w2 for point transects where

w is the truncation distance as before.

The detection function g(y) may be modelled using a key function and adjustment

terms (Buckland et al., 2001). However, for simplicity, we omit adjustment terms from

the equations presented here and will revert to this topic in chapter 6. Commonly

used key functions include the half-normal g(y) = exp (−y2/2σ2) and the hazard-rate

g(y) = 1− exp (−(y/σ)−τ ).

The parameters of the detection function (denoted by θ in the following) are the scale

parameter σ and, additionally for the hazard-rate model, the shape parameter τ . If

distances were measured exactly, the parameter estimates are found by maximizing

the following likelihood, which is conditional on the number of detections n (Buckland

et al., 2004, p. 16):

Ly (θ) =
n∏
e=1

f (ye) (2.3)

where ye refers to the eth detection.

When detections are made in distance intervals, let fi be the probability that a

detected animal is in interval i. The ith interval is delineated by the cutpoints ci−1

and ci where c0 = 0 unless the data are left-truncated (Buckland et al., 2001), and

the outer cutpoint of the outermost interval is cI = w. The fis can be obtained by
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integrating f(y) between the cutpoints of the intervals where:

fi =

ci∫
ci−1

f (y) dy

w∫
0
f (y) dy

. (2.4)

Then, parameters within θ can be estimated by maximising the multinomial likelihood

(Buckland et al., 2004, ch. 2):

LyG (θ) =

 n!
I∏
i=1

ni!


I∏
i=1

fni
i (2.5)

where fi is the probability that the detected animal falls in interval i, n the total

number of detections and ni the number of detections in the ith interval with I being

the outermost interval. Note that in this formulation detections from all sites are

assumed to arise from a single detection function. See below for modelling hetero-

geneity.

f(y) can be used to estimate the effective area ν which is defined as the area be-

yond which as many animals were seen as were missed within (Buckland et al., 2001).

For line transects, the effective strip half-width µ =
∫ w
0 g(x)dx = 1/f(0) and the

effective area ν = 2ljprµ, where ljpr is the length of the line surveyed at the re-

spective visit to the line (this changes to νjpr = 2ljprµ in case the lengths of the

individual lines differ). Similarly for point transects, the effective area at a point is

ν = 2π
w∫
0
yg(y)dy = 2π/h(0), where h(0) is the slope of f(y) evaluated at distance 0.

Consequently, the observed count njpr divided by an estimate of the effective area at

the line or point ν is a valid estimator of density Djpr at the line or point. Hence,

given a log-link function, the log effective area gives the appropriate offset to add to
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the count model from eqn (2.1), giving:

λjpr = E (njpr) = exp

(
β0 + bj +

K∑
k=1

xkjprβk + ln (ν)

)
. (2.6)

Note that the offset is an estimate, whereas offsets are treated as known constants.

Hence, uncertainty about estimating the detection function parameters does not nat-

urally propagate into the count model. We address this issue in section 2.2.3.

Using the formulation for the expected counts including the offset estimated from the

first-stage detection model from eqn (2.6), the likelihood for the second-stage count

model is given by (modified from McCulloch and Searle, 2001):

Ly,n(β, σb|θ) =
J∏
j=1

∞∫
−∞

 Pj∏
p=1

Rj∏
r=1

(λjpr)
njpr exp (−λjpr)
njpr!

 1√
2πσ2

b

exp

(
−
b2j

2σ2
b

)
dbj (2.7)

which is conditional on the parameter estimates for θ from the first stage. Parameter

vector β combines the coefficients for the fixed effect covariates and intercept from

eqn (2.6). J equals the total number of sites and Pj and Rj refer to the total number

of lines (or points) at the jth site and total number of visits to the jth site, respec-

tively. Pj and Rj may vary between different sites. The integral in eqn (2.7) denotes

that we integrate out the random effects for which normality is assumed. Inside the

integral we have two main components: the product of the Poisson likelihoods for

all observed counts at the jth site (inside the square brackets) and the normal den-

sity for the random effects coefficient bj. The random effects are integrated out by

integrating the product of these components over all possible values for bj, i.e. from

negative infinity to positive infinity.
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However, mixed-effect Poisson models of this form including an offset can be fitted

using the glmer function of the lme4 package (Bates, 2009b) in R. This function uses

the adaptive Gauss-Hermite approximation to evaluate the integral in calculating the

marginalized log-likelihood (Bates, 2009a). The number of quadrature points can be

manually chosen with the argument nAGQ. If the default is used, where nAGQ equals

one, the approximation corresponds to Laplace (e.g. MacKay, 2003, ch. 27). Lesaffre

and Spiessens (2001), however, recommend using 10 quadrature points. Larger values

may increase the accuracy in the evaluation at the cost of computing time (Rabe-

Hesketh et al., 2002). To determine how many quadrature points to choose, a model

can be fitted with varying values for nAGQ while using the same model of covariates.

For a range of values, the approximated marginalized likelihood may stabilize. Out

of this range, it is recommended to choose a small value for nAGQ and use the same

value for all models.

2.2.1 Heterogeneity in Detection Probabilities

When there is no heterogeneity in the detection probabilities, it is sufficient to include

detections from all sites in one detection function and estimate one common effective

area. However, detection probabilities may vary between different lines or points or

even between different detections. There are two main strategies within distance sam-

pling to account for heterogeneity in detection probabilities (Buckland et al., 2001,

ch. 3.7). One strategy is post-stratification where the observed distances are divided

into different strata based on one of the available covariates. A best fitting detection

function is found independently for each stratum and stratum-specific estimates of
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the effective area included in the count model.

A generally more parsimonious approach is multiple covariate distance sampling

(MCDS) (Marques and Buckland, 2003, 2004; Marques et al., 2007). Here, the scale

parameter is modelled as a function of covariates and the conditional density of the

observed distances given the associated covariates z becomes f(y|z). This allows us

to model detection probability not only as a function of increasing distance from the

point or line but also with respect to covariates affecting detection conditions and

detectabilities of animals. We thus have (Buckland et al., 2004, p. 33):

f(y|z) =
π(y)g(y,z)

w∫
0
π(y)g(y, z)dy

. (2.8)

The conditional likelihood is thus

Ly (θ) =
n∏
e=1

f (ye|ze). (2.9)

Using the same key functions as above, the scale parameter of the detection function

is now modelled as the exponential of a linear function of these covariates:

σ (z) = δ0 × exp

 Q∑
q=1

zqδq

 , (2.10)

where δ0 and the δq represent the intercept and the coefficients for the Q covari-

ates. In turn, the effective area can now be expressed for each visit r to line

(point) p of site j using covariates z: for line transects νjpr = 2ljpr/Fnjpr
, where

Fnjpr
=
[∑njpr

e=1 f (0|ze)
]
/njpr. For point transects, νjpr = 2π/Hnjpr

, where Hnjpr
=[∑njpr

e=1 h (0|ze)
]
/njpr.
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AIC can be used to compare models from the different strategies. When using strat-

ification, the sum of AIC values from all different strata can be compared to the AIC

value from the MCDS model as long as both analyses are based on exactly the same

data.

2.2.2 Model Selection

For the first-stage detection function, a best fitting model may be found by compar-

ing AIC values using Distance software (e.g. Distance 6, Thomas et al., 2010; Newson

et al., 2010). However, an automatic model selection for the detection function based

on AIC values can be set up in R, e.g. by using calls to the MCDS engine of the

Distance software or by using functions from the mrds package. Similarly for the

second-stage count model, a best fitting model may be found using AIC values.

2.2.3 Estimating the Precision

The precision of parameter estimates can be estimated using a non-parametric boot-

strap routine (Buckland et al., 2009). For each bootstrap iteration sites are resampled

with replacement until the original number of sites is obtained. Each time a site is

picked, all visits to that site are included to avoid the assumption of independence be-

tween visits to the same site. Models for the detection function and for the counts are

fitted to the bootstrapped data. Here two main strategies can be followed. To obtain

precision estimates conditional on the best fitting models (for detection and counts)

for the original data, the same models selected for the original data are refitted to

the bootstrapped data for all iterations. Precision of the estimates is estimated using
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bootstrap standard errors and 95% percentile confidence intervals. To incorporate

model selection uncertainty into inference, the best fitting models for both stages are

found independently within each bootstrap iteration (Buckland et al., 1997). This

can be done by fitting the same set of models that were fitted to the original data

to the bootstrapped data and applying the same model selection routine during each

iteration. Model probabilities are given by the proportion of times the respective

models were selected.

2.3 Case study 1: point transect surveys of indigo

buntings

2.3.1 The data

The National CP-33 Monitoring Program coordinated by the Mississippi State Uni-

versity, Department of Wildlife, Fisheries, and Aquaculture was set up to monitor

beneficial effects of herbaceous buffers around agricultural fields on bird densities in

several Southeastern and Midwestern states (Evans et al., 2013). To set up a monitor-

ing scheme, a minimum of 40 CP-33 contracts per state were randomly selected from

all CP-33 contracts. Buffered treatment fields within these contracts were selected

for monitoring of several priority species. Here, we analyse indigo bunting data.

During the breeding seasons of 2006-2007, point transect surveys were conducted from

one point per field located in the buffer at the edge of the field. Unbuffered control

points on the edge of fields of the same agricultural use, located 1-3km away, were

surveyed concurrently to ensure similar conditions for observing and calling rates of

birds. Each pair of adjacent treatment and control points was considered a site, and
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each site was surveyed between 1-4 times per survey year. The objective was to eval-

uate whether buffers result in higher bird densities.

Observers recorded all male indigo buntings (all singles) detected visually or aurally

in a 10-minute period in predetermined intervals (0-25, 25-50, 50-100, 100-250, 250-

500, >500m). Information on wind speed (in km/hr), fog (scaled 0-2 with increasing

amounts of fog) and cloud cover (as a percentage) were collected simultaneously. We

assume that indigo buntings distribute themselves independently of point locations.

Only those sites surveyed at least once in each of the two survey years were included.

An additional criterion was that each state included in the analysis contained >50 de-

tections. The 446 sites satisfying these criteria were located in nine states (Georgia,

Illinois, Indiana, Kentucky, Missouri, Mississippi, Ohio, South Carolina and Ten-

nessee).

2.3.2 Analysis using the two-stage approach

The first stage involved fitting a collection of detection function models to the dis-

tance data and selecting the best by minimum AIC. As distances were collected in

intervals, we used the multinomial likelihood given in eqn (2.5) to find parameter es-

timates for the respective models. Upon visual inspection of the detection functions

fitted by Distance (Thomas et al., 2010), the data were truncated at 100m as de-

tection probabilities were generally below the recommended 0.1 beyond this distance

regardless of the choice of model.

Hence, with only three distance intervals left, and allowing a degree of freedom for
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assessing model fit, we only considered one parameter models for the detection func-

tion. These included the half-normal or hazard-rate models where, for the latter, the

shape parameter was fixed (see below). For the same reason, modelling heterogeneity

in detection probabilities was limited to post-stratification with year, type (i.e. control

or treatment point) and state as potential covariates. For the stratified models, the

multinomial likelihood for interval distance data from eqn (2.5) changed to:

LyGstrat(θ) =
S∏
s=1

ns!
I∏
i=1

nsi !

I∏
i=1

f
nsi
si (2.11)

where ns is the total number of detections in stratum s and nsi the number of de-

tections in the ith interval of stratum s. The fsi represent the cell probabilities for

interval i in stratum s and were obtained by integrating the conditional f(y) for each

stratum s between cutpoints of the intervals (see eqn (2.4) on page 15 for details).

To determine an appropriate value for the shape parameter, model fit and AIC val-

ues were compared for each stratum using three different values: 2.0, 2.5 and 3.0.

Lower and higher values were considered in preliminary analyses. Lower values were

excluded as detection functions were spiked near distance zero with a rapid decline in

detection probabilities as distances increased. Higher values were excluded, although

AIC scores were lower in two cases, as under these models detection probabilities

were nearly uniform out to unreasonable distances and standard errors for the scale

parameter increased.

Using these three values for the shape parameters, 2.0 was selected for the global

and for both strata of each of the detection models stratified by type or year. For

the state-stratified model, 2.0 was also selected for six states, while 2.5 and 3.0 were
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chosen for two and one state, respectively.

Overall, post-stratification by state using a hazard-rate key function returned a lower

AIC value than other models. Using the estimates for θ, the effective area was cal-

culated using νjpr = 2π
∫ w
0 yg(y)dy for each of the nine states and incorporated into

the second-stage count model as an offset.

For the second stage count model, eqn (2.7) was maximised using the glmer function

in R. Here, Rj ranged from 2 to 8 visits per site. As each site comprised two points,

one control and one treatment, p equalled 1 or 2. The argument nAGQ was set to 10

for all models fitted with glmer. Potential fixed effects for the count model included

the factor covariates year, type (control or treatment point) and state as well as the

continuous variable Julian day. For the latter, we compared the fit of regression

splines using the B -spline basis from the splines package in R with the fit of a one

parameter linear term. The latter returned better AIC values and was hence used for

formulating the contending models. A total of 16 combinations - all possible combi-

nations of the four covariates - were included in the model selection. In these models,

the parameter of interest was the covariate type. A significant type term in the model

would indicate a difference in bird densities between the control and treated plots.

The random effects term bj was assumed normal with bj ∼ N(0, σ2
bj

).

A non-parametric bootstrap using site as the resampling unit as described in section

2.2.3 was conducted to obtain precision estimates for all parameters. The strategy

followed here was to take the best models identified for the real data and fit these to

bootstrapped data. Hence, precision estimates are conditional on these models and

inference does not include model selection uncertainty.
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2.3.3 Results

During the two survey years included in this study, 2006 and 2007, a total of 2924

counts at control or treatment points of 446 sites were made. During these counts, a

total of 3785 indigo buntings were detected within the three innermost distance inter-

vals. Parameter estimates as well as analytical (ASEs) and bootstrap standard errors

(BSEs) for the best detection and count models are given in Table 2.1. Estimates for

the scale parameter of the hazard-rate detection function stratified by state ranged

between 21.08 (ASE=1.74, BSE=3.51, fixed shape parameter=2.0) for Tennessee and

56.30 (ASE=4.13, BSE=6.85, fixed shape parameter=3.0) for South Carolina.

To calulate a baseline expected number of male indigo buntings within the plot area a

using the best model, we set the covariates to type = Control, Julian day = 174 (the

mid-point of all days surveyed) and state = GA. We used the coefficients from Table

2.1 while applying the following transformations (reversing the log-link function of

the Poisson model and converting birds/m2 to birds/a): exp(−10.91+0.0046×174+

0.5 × 0.492) × a. The last component inside the bracket represents the contribution

of the random effects term and a = πw2. The resulting expected baseline of indigo

bunting numbers within the plot was 1.43 (BSE=0.59) (or 43.51 (BSE=18.91) birds

per km2).

The remaining fixed effect coefficients represent proportional changes with respect

to this baseline. The type coefficient for the count model was 0.30 (ASE=0.03,

BSE=0.04) indicating a 35% increase of bird densities on treated fields compared

to control fields. For both models, BSEs were generally larger than ASEs except for

the scale parameters of the detection function for two out of the nine states where

they were smaller. These results are further discussed and compared with those using
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an integrated likelihood approach in chapter 3.

Table 2.1: Maximum likelihood estimates (MLE), analytic (ASE) and bootstrap
(BSE) standard errors for model parameters obtained by the two-stage approach for
best models. Shape parameters for the one-parameter hazard-rate detection function
were fixed.

Two-stage Shape

Model Paramters MLE ASE BSE

Detection model

Scale State GA 37.27 7.72 8.12 2.0

Scale State IL 34.42 2.86 3.17 2.5

Scale State IN 24.34 2.35 4.92 2.0

Scale State KY 27.75 1.13 1.52 2.5

Scale State MO 37.78 3.14 2.86 2.0

Scale State MS 38.73 3.33 4.21 2.0

Scale State OH 24.59 1.97 1.94 2.0

Scale State SC 56.30 4.13 6.85 3.0

Scale State TN 21.08 1.74 3.51 2.0

Count model

Random Effects

Standard deviation 0.49 - 0.04

Fixed Effects

Intercept Djpr -10.91 0.29 0.43

Type Treated 0.30 0.03 0.04

Julian Day 0.0046 0.0017 0.0018

State IL 1.20 0.18 0.38

State IN 1.34 0.18 0.49

State KY 1.79 0.17 0.36

State MO 0.32 0.16 0.36

State MS 0.91 0.17 0.37

State OH 0.92 0.17 0.37

State SC 0.28 0.18 0.39

State TN 2.12 0.17 0.44
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2.4 Case study 2: point transect surveys of north-

ern bobwhite coveys

2.4.1 The data

As part of a study to assess the potential benefits of herbaceous buffers around agri-

cultural fields, Mississippi State University, Department of Wildlife, Fisheries, and

Aquaculture set up a monitoring program using point transects in a number of Mid-

western and Southeastern states in the US (Evans et al., 2013). Similar to case study

1, survey points located at the edge of the field were paired up: one point on a

buffered treatment field and the other on a non-buffered control field of the same

agricultural use and within 1− 3km of the treatment point. Each pair of points will

be referred to as a site in the following. Repeat visits were made to each point during

fall of three survey years (2006-2008), and each detected northern bobwhite covey

was recorded along with their estimated radial distance to the point. To facilitate

unbiased distance estimation, observers used satellite images of the point location

and surroundings to mark each detected covey. As this survey did not include ob-

taining estimates of cluster size for each covey, we consider cluster densities (rather

than densities of individuals).

Only those states were included in the analysis that contained more than 50 de-

tections of coveys: Georgia, Illinois, Indiana, Iowa, Kentucky, Missouri, Mississippi,

North Carolina, South Carolina, Tennessee and Texas. Within these states, 447 sites

were visited between 1 and 3 times in each survey year. After defining a truncation

distance of 500m following recommendations of Buckland et al. (2001), the analysed

data included a total of 2545 detections with associated distances that were observed
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during 2534 counts.

2.4.2 Analysis using the two-stage approach

As distance were measured exactly during the surveys, the first step included fitting

a detection function to observed distances by maximising the likelihood in eqn (2.3).

Preliminary investigation of the distance data indicated that the hazard-rate detec-

tion function provided a much better fit than the half-normal. In addition to the

global model, we included seven different multiple covariate models where the scale

parameter of the hazard-rate detection function was modelled as a function of one,

two or three of the covariates, all possible combinations of including the covariates

state, year and/or type. For these models, the likelihood changed to eqn (2.9) from

page 18.

In a second step, the effective area was incorporated into the density model for λjpr

for which the likelihood is given in eqn (2.7). Parameter estimates were obtained

using the glmer function of the lme4 package (Bates, 2009b) in R. The number of

quadrature points was set to 10 using the argument nAGQ of this function, follow-

ing recommendations of Lesaffre and Spiessens (2001). We explored 16 models that

included a fixed intercept and a random effect for site and combinations of the four

covariates state, type, year and Julian day. Best fitting models for both steps were

found by minimum AIC values.

As the effective area represents an estimate but is included in the model as if it

was a known constant, non-parametric bootstrapping was used to estimate uncer-

tainty (bootstrap standard errors (BSE) and 95% confidence intervals) of parameter
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estimates. To implement a non-parametric bootstrap routine with 999 repeats, an

automatic model selection was set up in R that included calls to the MCDS engine

from the Distance software (Thomas et al., 2010) for the first step. For each boot-

strap iteration, sites were resampled with replacement until the original number of

sites was obtained (Buckland et al., 2009). To include model uncertainty in inference,

the strategy followed here was to select best fitting models based on minimum AIC

values for each bootstrap iteration (Buckland et al., 1997).

2.4.3 Results

The preferred detection model from the analysis of the original data was the hazard-

rate function that included the covariates year, type and state in the model for the

scale parameter. The preferred count model included all available covariates, i.e. year,

type, Julian day and state. The same models were preferred for the bootstrap anal-

ysis although three other models were selected for both the detection and the count

model with smaller probabilities (Table 2.2). Maximum likelihood estimates as well

as bootstrap standard errors (BSEs) and 95% confidence intervals are given in Table

2.3. The type coefficient was 0.63 (ASE=0.12) indicating an 88% increase in covey

densities on treated fields compared to control fields. These results will be discussed

further and compared to those from an RJMCMC algorithm in chapter 4.
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Table 2.2: Models and their probabilities resulting from bootstrap analysis. Each
count model included a fixed effect intercept and a random effect for site in addition
to shown covariates (JD = Julian day). Model probabilities refer to the percentage
of times the respective models were chosen during 999 bootstrap iterations.

Model Probability

Detection Function

MCDS: State 0.01

MCDS: Year + State 0.16

MCDS: Type + State 0.02

MCDS: Year + Type + State 0.81

Count

Type + State 0.003

Year + Type + State 0.01

Type + JD + State 0.10

Year + Type + JD + State 0.89
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Table 2.3: Maximum likelihood estimates (MLE), bootstrap standard errors (BSE)
and 95% confidence intervals (CI) using the two-stage approach for the models with
the highest probabilities (see Table 2.2 for model probabilities). Units of measure-
ments were metres for the detection function model and square metres for the count
model.

Two-stage

MLE BSE 95% CI

Detection function: fixed effects

Scale Intercept 138.59 16.13 112.26, 163.79

Shape 3.01 0.27 2.68, 3.41

Scale: Year 2006 0.10 0.06 -0.05, 0.14

Scale: Year 2007 -0.15 0.05 -0.25, -0.1

Scale: Type Control 0.15 0.05 0.05, 0.23

Scale: State GA 0.42 0.17 0.05, 0.54

Scale: State IA 0.21 0.16 -0.12, 0.30

Scale: State IL 0.70 0.17 0.35, 0.76

Scale: State IN 0.66 0.14 0.34, 0.72

Scale: State KY 0.64 0.12 0.35, 0.68

Scale: State MO 0.69 0.09 0.46, 0.71

Scale: State MS 0.61 0.10 0.37, 0.64

Scale: State NC 0.66 0.12 0.35, 0.70

Scale: State SC 3E-5 0.14 -0.29, 0.12

Scale: State TN 0.47 0.12 0.19, 0.54

Count model: random effects

Standard deviation 0.78 0.04 0.69, 0.81

Count model: fixed effects

Intercept Density -13.23 0.33 -13.91,-12.87

Year 2007 0.17 0.13 -0.16, 0.37

Year 2008 0.17 0.11 -0.12, 0.31

Type Treatment 0.63 0.12 0.36, 0.71

Julian Day -0.01 3E-3 -0.02, -0.01

State IA -0.74 0.44 -1.65, -0.24

State IL -0.53 0.38 -1.25, -0.07

State IN -1.18 0.41 -1.99, -0.70

State KY -0.44 0.34 -1.07, -0.02

State MO 0.05 0.34 -0.63, 0.46

State MS -0.37 0.34 -1.04, 0.05

State NC -1.31 0.36 -1.99, -0.87

State SC 0.08 0.42 -0.76, 0.56

State TN -1.03 0.38 -1.80, -0.60

State TX 1.46 0.29 0.99, 1.81



Chapter 3

An integrated likelihood approach

for modelling distance sampling

data with mixed effects

3.1 Introduction

In this chapter, we deal with some of the shortcomings of the two-stage approach

presented in chapter 2 and provide an alternative method, the integrated likelihood

approach. As for the two-stage approach, the motivation for the integrated likelihood

approach also was to replace the design-based component of conventional distance

sampling with a model where animal densities or counts are related to covariates

such as habitat.

However, the shortcoming of the two-stage approach described by Buckland et al.

(2009), and equivalently of the extended version described in chapter 2, is that it

treats the offset, and hence the detection function from the first stage, as known.

31
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Hence, nonparametric bootstrapping needs to be used to quantify precision of param-

eter estimates, to allow uncertainty from fitting the detection function to propagate

into the second stage.

Royle et al. (2004), on the other hand, developed an integrated likelihood for point

transect data where distances were measured in intervals. These authors combined

a covariate model for the latent variable Np (the true but unknown abundance of

animals at the point) with the cell probabilities fi (derived from the detection func-

tion) to model the observed counts npi in the ith distance interval at the pth point.

An advantage of the approach of Royle et al. (2004) is that all model parameters for

both the Np and the fi are estimated in one step. However, Royle et al. (2004) only

assumed a global half-normal detection function where the distance information was

pooled across all points for the respective distance intervals.

Here, we extend the approach of Royle et al. (2004) in the following ways. We model

heterogeneity in detection probabilities and include model selection for the fi model

as well as for the Np. We also extend Royle et al.’s Poisson model by including a

random effect for site in the abundance model to account for correlated counts at the

same sites. This was motivated by our case study 1, the point transects of indigo

buntings, where a large number of sites was included in the analyses and the number

of repeat visits to the same site varied.

In the following we begin by describing our extended version of the integrated like-

lihood of Royle et al. (2004) for both line and point transects (section 3.2), analyse

our case study of indigo buntings using this integrated likelihood and contrast results

with those using the two-stage approach from chapter 2 (section 3.3), and discuss

further applications (section 3.4).
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3.2 Integrated likelihood

As in the previous chapter, we begin by considering a wildlife study that was carried

out at a number of sites, at each of which point or line transects were placed according

to some design and that each site was surveyed at least once following a distance

sampling protocol (see Buckland et al., 2001 or chapter 2 for further details).

If all animals within the search area were detectable with certainty, then observed

counts within the search distance around the line or point would equal the true number

of animals within the search distance around the line (point) and could be modelled

via a log-link using a generalised linear mixed model (GLMM) with a Poisson error

structure (E(Njpr) = λjpr) where Njpr is the total number of animals present within

the search area ajpr at visit r to line (point) p of site j. The search area ajpr equals

2wljpr for lines (ljpr = length of the respective line) and πw2 for points; in both cases

w represents the truncation distance. Combining adjacent lines or points as sites and

including site as a random effect allows (repeat) counts from the same site to covary

without causing bias for the remaining parameters in the model. The λjpr may then

be modelled by a linear predictor via a log-link function using:

λjpr = exp

(
β0 + bj +

K∑
k=1

xkjprβk

)
. (3.1)

Here, β0 represents the fixed effect intercept, bj the random effect for site j with

bj ∼ N(0, σ2
b ), xkjpr the observed covariate values for the k = 1, 2, ..., K fixed effects

and βk the associated coefficients. In the following β0, ..., βK may be summarised as

β. This is similar to chapter 2, however, in this formulation (eqn (3.1)), the combina-

tion of fixed and random effects represents a model for the true numbers on the plot



34

(which is identical to eqn (2.1) from chapter 2.2 page 13 which assumes perfect detec-

tion within the search area). In contrast, the combination of fixed and random effects

of eqn (2.6) from chapter 2.2 page 16 represents a model for density. As detection

is generally not perfect on the plot, we need a formulation to allow for detectability

to decrease with distance from the line or point. Here, we employ the unconditional

likelihood of observed distances which we denote with fu(y) (Royle et al., 2004) and

contrast with the conditional formulation in the following section.

3.2.1 The unconditional likelihood of observed distances

The unconditional likelihood of observed distances is given by fu(y) = π(y)g(y) (Royle

et al., 2004). As for the conditional f(y) from chapter 2, π(y) describes the expected

distribution of animals (whether detected or not) with distance from the line or

point, and g(y) the probability of detecting an animal given that it is at distance y.

As before, π(y) is assumed to be known (1/w for lines and 2y/w2 for points) and

a detection function model is proposed for g(y) (Buckland et al., 2001). Detection

function parameters pertaining to the unconditional function are summarised as θu

in the following.

However, the difference between the conditional and the unconditional formulation

for f(y) is that the conditional likelihood conditions on the animal being at distance

y and that it is detected while the unconditional only conditions on the animal being

at distance y. Hence, the normalising constant in the denominator for the condi-

tional f(y) is
∫ w
0 π(y)g(y)dy while for the unconditional fu(y) it is

∫ w
0 π(y)dy (which

always equals 1 for both lines and points under the assumed distributions for this
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function described above in this section). It follows that for the conditional formula-

tion
∫ w
0 f(y)dy = 1 (and this may be called a probability density function), while for

the unconditional formulation
∫ w
0 fu(y)dy 6= 1.

To illustrate the difference, one may think of the likelihood as a joint density of two

variables, the animal being at distance y and whether the animal was detected δ given

it was at distance y (where δ equals one if detected or zero if not). Hence, π(y)g(y)

can be rewritten as π(y)p(δ = 1|y) where p(δ = 1|y) is the probability that the animal

is detected given it is at distance y. The conditional likelihood only pertains to those

animals that were detected and δ = 1 while the unconditional likelihood pertains to

all animals that were available to be detected and δ = 1 or δ = 0.

For the integrated likelihood approach we assume that distances from the line or point

are recorded by I distance intervals, or, if distances are recorded exactly, that these

are binned into I intervals after the survey is completed. Using the unconditional

formulation for interval distance data, the I areas under fu(y) between the cutpoints

of the intervals ci represent the I proportions of Njpr recorded within the I intervals

(as opposed to the proportions of njpr when using the conditional f(y) from Buckland

et al., 2001) and can be obtained using:

fui =
∫ ci

ci−1

fu(y)dy =
∫ ci

ci−1

π(y)g(y)dy. (3.2)

Due to imperfect detection on the plot, we cannot assume that all Njpr were de-

tected. Hence, the sum of the I proportions fui does not equal one, but
∑I
i=1 fui =

E[njpr]/Njpr = Pa, where Pa is the average detection probability during the respective

visit to the plot.

In Figure 3.1 we illustrated an example for the case with I = 3 distance intervals.



36

Here, the fourth cell probability in the graphs with the unconditional function repre-

sents the proportion of Njpr that was not detected (i.e. fu4 = 1−Pa). Note that this

cell probability cannot be estimated in the same manner as the I cell probabilities,

i.e. using eqn (3.2). We address this issue below. The I cell probabilities from the

conditional f(y) can be converted into the fui using fi ∗ Pa = fui .

In the graphs from Figure 3.1, the horizontal line at 1/w for lines and the diagonal

line defined by 2y/w2 for points are π(y).

equivalent to what the observer would have seen had he or she not missed any ani-

mals. Consequently, using the unconditional fu(y), the four cell probabilities under

the horizontal line at 1/w between 0 and w sum up to 1 for lines. Equivalently

for points, the cell probabilities under 2y/w2 between 0 and w sum up to 1 using

the unconditional formulation (note that in the formulations for π(y) given above,∫ w
0 π(y)dy always equals 1 for both lines and points). In contrast, using the condi-

tional f(y), the sum of the cell probabilities under f(y) between 0 and w equals 1 for

both lines and points. Thus, for the conditional formulation, each of the I estimated

cell probabilities represents an expected proportion of observed counts njpr, while for

the unconditional formulation each of the I estimated cell probabilities represents an

expected proportion of the true (but unknown) number of animals in the search area

around the line or point Njpr.

The additional cell probability for the unconditional formulation, i.e. the area be-

tween the horizontal line at 1/w and fu(y) from 0 to w for lines or between the

diagonal line 2y/w2 and fu(y) from 0 to w for points, represents the proportion of

animals within the search area that were missed by the observer (fu4 in Figure 3.1).

For the conditional f(y), this area is not considered for the likelihood formulation



37

Figure 3.1: Examples for a conditional and unconditional likelihood with a half-
normal model using the same scale parameter (σ = 55) plotted between 0 and w = 100
including three distance intervals. The f1, f2, f3 and fu1 , fu2 , fu3 , fu4 refer to the cell
probabilities. For the conditional f(y) :

∑3
i=1 fi = 1, while for the unconditional

fu(y) :
∑4
i=1 fui = 1.

(see section 2.2 chapter 2 pages 12-17 for reference) as here we condition on both

that the animal is available for detection and that it is detected (δ = 1) while for the

unconditional fu(y) we do not condition on it being detected (δ = 1 or 0). For the

unconditional fu(y), however, this cell probability is considered, although there are

no observed counts associated with this cell to estimate it. We address this issue in

the following section.

3.2.2 Formulating the integrated likelihood

Royle et al. (2004) showed, that when combining the multinomial likelihood for the

unconditional case with the Poisson likelihood of the true number of animals Njpr at
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the point (or sampler in general), the latter may be integrated out over all possible

values for Njpr, i.e. njpr, ...,∞. This combined likelihood may then be reduced to a

Poisson likelihood for observed counts njpri in the ith interval of the sampler where

the expected value is the product of the covariate model for Njpr and the cell prob-

ability fui . This reduced likelihood no longer contains the cell probability for the

animals that were missed (fu4 from Figure 3.1 and the example above). Although

Royle et al. (2004) did not present the mathematical derivation for this, we present

it in Appendix A.

Hence, for the integrated likelihood approach we use the unconditional cell probabil-

ities fui . We divide the observed counts njpr at the line (point) into the counts made

within each distance interval i and consider these counts njpri as a Poisson random

variable, njpri ∼ Poisson(λjprfi). The integrated likelihood function, where the Pois-

son rate λjpr (eqn (3.1)) is adjusted for imperfect detectability using fui (eqn 3.2), is

then defined as:

Ly,n(β, σb,θu) =

J∏
j=1

∫ ∞
−∞

 Pj∏
p=1

Ij∏
i=1

Rj∏
r=1

(λjprfui)
njpri exp (−λjprfui)
njpri!

×
1√

2πσ2
b

exp

(
−
b2j

2σ2
b

)
dbj. (3.3)

As before in chapter 2, J equals the total number of sites, Pj and Rj refer to the total

number of lines (points) and visits to a line (point) for the jth site, respectively and

may vary between different sites. Ij refers to the outermost distance interval and is

generally the same for each site. The component inside the square brackets of the

right hand side of eqn (3.3) pertains to the Poisson likelihood of the observed counts
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njpri and the component to the right of the brackets to the normal densities of the

random effect coefficients.

By maximising this likelihood function, e.g. by using the optim or nlm function in R,

all parameters are estimated simultaneously. Although it is easier to maximise the

log-likelihood, the likelihood values inside the integral cannot be converted onto the

log scale before integration, so that the log of eqn (3.3) becomes:

logLy,n(β, σb,θu) =

J∑
j=1

log
∫ ∞
−∞

 Pj∏
p=1

Ij∏
i=1

Rj∏
r=1

(λjprfui)
njpri exp (−λjprfui)
njpri!

×
1√

2πσ2
b

exp

(
−
b2j

2σ2
b

)
dbj.

(3.4)

3.2.3 Modelling heterogeneity in detection probabilities

Note that in the formulations above (eqns (3.3) and (3.4)), detections from all points

are pooled to obtain parameter estimates for one common fu(y) assuming no hetero-

geneity in detection probabilities between different lines (points) or different detec-

tions. As for the two-stage approach (chapter 2), heterogeneity in detection proba-

bilities can be modelled using stratification or multiple covariate distance sampling

(MCDS) (Buckland et al., 2001, p. 88-92). Here, the global fui are replaced with

stratum-specific or covariate-specific fujpri in eqns (3.3) and (3.4). The fujpri may

require further breaking down in case strata or covariates differ between detections

during the same visit to a line or point (e.g. male vs. female birds). See section 2.2.1

for details.
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3.2.4 Model selection

The function value returned by optimising equation (3.4) is the log-likelihood (logL)

of the model evaluated at the maximum likelihood estimates of the parameters. This

can be converted into a model selection criterion, e.g. AIC where AIC = -2logL +

2p (p = the number of parameters) (Akaike, 1979). In cases where the number of

possible models is too large to consider, stepwise model selection may be used where

one covariate is added to or removed from the model at a time. To obtain model-

averaged estimates for parameters of interest, a weighted average may be taken across

the models using AIC weights (Buckland et al., 1997).

3.2.5 Estimate of precision

Standard errors can be obtained using the Hessian matrix, which is calculated by

optimisation routines such as the optim and nlm commands in R.

3.3 Case study 1: point transects of indigo buntings

Here, we analyse the indigo bunting data from case study 1 presented in the previous

chapter. For details on these data see section 2.3.1 page 20. Results from the inte-

grated approach are compared with those from the two-stage approach analysed and

presented in chapter 2.
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3.3.1 Analysis using the integrated likelihood approach

As before, we found in preliminary modelling of the detection function, that estimated

detection probabilities dropped below 0.1 beyond 100m regardless of model choice,

and so following recommendations of Buckland et al. (2001), we limited the analysis

to the three innermost distance intervals (0-25, 25-50 and 50-100m). With just three

intervals, and allowing a degree of freedom for assessing model fit, we considered

only one-parameter models for the fui . Hence, model selection for fui included the

half-normal and hazard-rate detection functions, where for the latter, the shape pa-

rameter was fixed. For the same reason, modelling detection heterogeneity was limited

to stratification using one of the available factor covariates year (2006 or 2007), type

(treated or control field) and state (9 levels). The covariates windspeed, cloudcover

and fogscore were not considered as these were continuous covariates and/or did not

reveal any significant influence on detection probabilities in preliminary analyses. We

determined appropriate values for the fixed shape parameters for the global or the

stratified hazard-rate functions in preliminary analyses. See section 2.3.2 for details

(page 21).

The λjpr were modelled using eqn (3.1), with year, type, continuous Julian day and

state as possible covariates. In these models, the parameter of interest was the co-

variate type. A significant type term in the λjpr model would indicate a difference

in bird densities between the control and treated plots. The random effects term bj

was assumed normal with bj ∼ N(0, σ2
b ). Analytical standard errors (ASEs) were

obtained from the Hessian matrix.

Since complex models can be difficult to fit, we used stepwise forward model selection

as described in section 3.2.4. For each contending model, eqn (3.4) was maximized
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using the optim function in R, where, as for the analysis of the data with the two-

stage approach in chapter 2, the total number of sites was J = 446 and the total

number of distance intervals was Ij = 3. Rj ranged from 2 to 8 visits per site. As

each site comprised two points, one control and one treatment, p = 1 or 2. We analyse

the same 2924 counts at control or treatment points of the 446 sites that were made

during the two survey years. These included a total of 3785 indigo bunting detections

in the three innermost distance intervals.

3.3.2 Results

In the following, the results from the integrated approach are given in more detail

than for the two-stage approach as we were interested in the effect of incorporating

heterogeneity in detection probabilities on abundance model parameters (and vice

versa) for this approach.

3.3.2.1 Model selection

For the integrated approach, forward stepwise model selection was started with the

half-normal detection function for the detection model and the β0 + bj (intercept

+ random effect) model for λjpr (Table 3.1). Considering the global and stratified

hazard-rate models next (stratified by either year, type or state) for the detection

function indicated that a state-stratified hazard-rate model gave the lowest AIC val-

ues. With this model for the detection function, covariates were added to the abun-

dance model one at a time and retained if inclusion lowered the AIC value. Here,
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the best model by AIC included the covariates type, Julian day and state. We did

not consider model averaging in this case as the difference in AIC values between the

best and the second best model was 138, so the model-averaged estimates would be

the same as the estimates under the best model. The equivalent models were selected

for the two-stage approach although here separately for each of the two stages (see

section 2.3.3 in chapter 2 page 24).

Table 3.1: Models included in the forward stepwise model selection for the integrated
approach including the half-normal (HN) and the global and stratified hazard-rate
(HR) detection functions for fujpri and the inclusion of four covariates for λjpr in
addition to the intercept β0 and the random effects bj. 4AIC is given in relation to
the overall best model (model 9). Improved? refers to whether in this iterative model
selection process starting with model 1 the respective model yielded an improved AIC
compared to the previous and whether it should be retained.

ID fujpri Model λjpr Model Log-Lik Parameters 4AIC Improved?

1 HN global β0 + bj -7327.74 3 375.92 NA

2 HR global β0 + bj -7296.49 3 313.41 yes

3 HR by year β0 + bj -7295.73 4 313.91 no

4 HR by type β0 + bj -7268.85 4 260.13 yes

5 HR by state β0 + bj -7248.12 11 232.68 yes

6 HR by state β0 + bj + year -7247.77 12 233.99 no

7 HR by state β0 + bj + type -7205.50 12 149.45 yes

8 HR by state β0 + bj + type+ JD -7198.99 13 138.41 yes

9 HR by state β0 + bj + type+ JD + state -7121.78 21 0 yes

3.3.2.2 Comparing contending models from the integrated approach

Parameter estimates with standard errors for each contending model for the integrated

approach from Table 3.1 are shown in Table 3.2. Substantial differences in parameter
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estimates between models were obtained by including state in the λjpr model (model

9). This resulted in an increase in detection function parameters for seven states

and a decrease for the remaining two. Given the same truncation distance and fixed

shape parameters, larger scale parameters of a hazard-rate detection function trans-

late into larger estimates of fujpri (i.e. proportions of Njpr that were detected) for the

respective strata. Including state in the abundance model also led to a decrease in

the random effect standard deviation. The change in detection function parameters

was probably because with state in the abundance model, the state-specific fujpri

represent proportions of the estimates of the expected Njpr that are modelled as a

function of state (as well as of type and Julian day), while before they represented

proportions of the expected Njpr that were not modelled as a function of state. In

addition to a change in point estimates for parameters, the standard errors increased

for all detection function parameters after including state in the λjpr model (model 9

compared to models 5-8). The decrease in the random effect standard deviation for

model 9 indicated that the state covariate modelled part of the variation absorbed by

the random effects coefficients in the λjpr models 1-8 (Table 3.2).
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3.3.2.3 Comparing best models from the integrated and two-stage ap-

proach

For the best fitting model, estimates of the scale parameters of the hazard-rate de-

tection function from the integrated approach ranged between 26.11 for Tennessee

(ASE=0.04, fixed shape=2.0, Table 3.3) and 57.79 for South Carolina (ASE=4.40,

fixed shape=3.0). They were generally larger for the integrated approach compared to

the two-stage approach except for Mississippi where the estimate was slightly smaller.

The discrepancy between parameter estimates in the two approaches was less than

10% in five states and up to 24% in the remaining four.

In the following we refer to baseline expected number of male indigo buntings within

the plot area a for the values returned by the respective models after setting the

covariates to type = Control, Julian day = 174 (the mid-point of all days surveyed),

state = GA and incorporating a contribution of the random effects term using the

mean of logN(0, σ̂2
b ). To compare these baselines for the two approaches, we applied

the following transformation: exp(β̂0 + β̂2×174+0.5× σ̂2
b ) using the coefficient values

from Table 3.3 for the respective approaches (see eqns (3.1) page 33 and (2.6) page

16 for details), with β̂0 being the intercept estimate and β̂2 being the estimate for the

Julian day coefficient. For the two-stage approach the resulting value also needed to

be multiplied by the search area of the plot (a = πw2 = 31416m2), as the intercept

represents birds/m2 (as opposed to birds per search area of the plot for the integrated

approach). The estimates of the baseline expected numbers of male indigo buntings

were 1.05 (ASE=0.29) and 1.43 (BSE=0.59) individuals per search area a (or 33.52

(ASE=9.12) and 43.51 (BSE=18.91) birds per km2) for the integrated and two-stage

approach, respectively.
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Table 3.3: Maximum likelihood estimates (MLE), analytic (ASE) and bootstrap
(BSE, two-stage approach only) standard errors for model parameters obtained by
the integrated and the two-stage approach for best models. Shape parameters for the
one-parameter hazard-rate detection function were fixed.

Integrated likelihood Two-stage Shape

Model Paramters MLE ASE MLE ASE BSE

Detection model

Scale State GA 45.85 9.33 37.27 7.72 8.12 2

Scale State IL 36.03 3.21 34.42 2.86 3.17 2.5

Scale State IN 27.31 2.66 24.34 2.35 4.92 2

Scale State KY 29.63 1.23 27.75 1.13 1.52 2.5

Scale State MO 41.31 3.03 37.78 3.14 2.86 2

Scale State MS 38.50 3.31 38.73 3.33 4.21 2

Scale State OH 27.15 2.16 24.59 1.97 1.94 2

Scale State SC 57.79 4.40 56.30 4.13 6.85 3

Scale State TN 26.11 0.04 21.08 1.74 3.51 2

Abundance model

Random effects

Standard deviation 0.50 0.02 0.49 - 0.04

Fixed effects

Intercept Njpri -0.99 0.28 - - -

Intercept Djpr - - -10.91 0.29 0.43

Type Treated 0.30 0.02 0.30 0.03 0.04

Julian Day 0.0053 0.0005 0.0046 0.0017 0.0018

State IL 1.46 0.32 1.20 0.18 0.38

State IN 1.50 0.32 1.34 0.18 0.49

State KY 2.00 0.29 1.79 0.17 0.36

State MO 0.53 0.29 0.32 0.16 0.36

State MS 1.25 0.31 0.91 0.17 0.37

State OH 1.11 0.30 0.92 0.17 0.37

State SC 0.59 0.31 0.28 0.18 0.39

State TN 2.14 0.28 2.12 0.17 0.44
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The remaining fixed effects represent proportional changes compared to the respec-

tive baseline estimates. The type coefficient was the same for the two approaches

(0.30, Table 3.3) with ASE=0.02 for the integrated approach and ASE=0.03 and

BSE=0.04 for the two-stage approach. This indicated a 35.0% increase in density or

abundance on the treated fields (exp(0.30) = 1.35). For the remaining fixed effect

coefficients in the λjpr model, parameter estimates were again larger for the inte-

grated approach. The coefficient for the continuous covariate Julian day was 0.0053

(ASE=0.0005) for the integrated likelihood approach and 0.0046 for the two-stage

approach (ASE=0.0017, BSE=0.0018).

Discrepancies in estimates for the state coefficients between the two approaches were

more pronounced than for detection function parameters, ranging between 1 and

111%. Larger coefficients again translate into proportionately larger increases in λjpr

for the respective factor levels compared to the baseline expected number of birds.

The random effect standard deviation was slightly larger for the integrated likelihood

approach (0.50, ASE=0.02 vs. 0.49, BSE=0.04).

Comparing ASEs between the two approaches, detection function parameters were

smaller for the integrated approach for three states and larger for the remaining six,

whereas ASEs from the integrated approach were smaller than BSEs from the two-

stage approach in five states and larger in four. ASEs for the intercept and the

coefficients for type and Julian day in the λjpr models were smaller for the integrated

approach than ASEs and BSEs for the two-stage approach. For the state coefficients,

ASEs from the integrated approach were always larger than ASEs from the two-stage

approach but always smaller than BSEs.
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3.4 Discussion

Designed experimental studies generally have an advantage over purely observational

studies in that they allow inference on cause and effect of a treatment. Designed

experiments allow attribution of the change in animal abundances directly to the

treatment, while purely observational studies do not.

For the CP-33 Monitoring Program, the experimental design comprised sites, each

with a pair of survey points, one in a buffered treatment field and one in a nearby

unbuffered control field; repeat surveys were conducted concurrently at both points

of each site. This study is possibly unique due to its scale (over 400 sites with repeat

surveys each year at each site). Analysis of such data is complex and it is critical

to attribute the causes for variations in observed counts to the correct sources by

appropriate model specification together with objective model selection criteria.

The aim of our case study was to determine whether buffers improved habitat for

birds which would be indicated by higher densities near buffered compared to un-

buffered fields. Our analyses demonstrated that implementation of buffers resulted

in an increase of indigo bunting densities by 35%. Previous studies have shown ben-

eficial effects of such buffers for birds (e.g. Evans et al., 2013). Conover et al. (2011)

showed that field buffers increased nesting activities along field margins for a range

of birds, including indigo buntings. In contrast, Riddle and Moorman (2010) showed

that implementing field borders had no beneficial effect on nesting success of indigo

buntings. However, their effort was limited to 12 hog farms and his inference limited

to breeding success. Besides the potential for additional breeding habitat, buffers

may also provide new habitat for breeding and escape cover. While our results give

evidence of larger densities of indigo buntings on buffered fields, behavioural data
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would be necessary to make inference on how these birds make use of this habitat.

It is important to avoid false inference due to random variation. Hence, Buckland

et al. (2009) recommended that repeat surveys be made on plots. This, however, pos-

sibly introduces correlation between counts at the same site which we accommodated

by including a random effect for site in the abundance model. This is a new tech-

nique in the context of distance sampling analysis methods where covariate models

for abundance have generally been limited to fixed effects. If sites are few and budget

limitations allow for multiple repeats of counts at each site, site may indeed be in-

cluded as a fixed effect in the abundance model, although inference is then restricted

to the sites surveyed. For large-scale studies, such as our case study, this strategy

would require the estimation of too many parameters. In any case, we wish to draw

inference on the effects of field buffers generally, and not just on those field buffers in

the survey, and inclusion of a random effect for site in the abundance model allows

us to do this.

Potential correlations between counts at the same site may be accommodated by

expanding the two-stage approach of Buckland et al. (2009) by including a random

effect for site in the count model (as presented in chapter 2). However, the two-stage

approach conditions on the first-stage detection function model for the second-stage

count model and uncertainty from the first stage does not propagate into the second

stage. For our case study, this was evident in artificially small analytical standard

errors for state in the λjpr model obtained with the two-stage approach. Underesti-

mation of standard errors may result in retaining the wrong covariates in the final

model. This issue may generally be avoided using the integrated likelihood approach

where all parameters are estimated simultaneously.
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We considered a collection of abundance models and models for the detection function.

One may argue that modelling raw counts (i.e. not adjusted for imperfect detection

on the plot) in a GLMM without an offset might have been sufficient for inference

on the parameter of interest. For our case study, inference on the parameter of inter-

est, the type coefficient, would have remained the same regardless of choice of model

(those including type in the plot abundance models, models 7-9, Table 3.2) or ap-

proach (Table 3.3). As the best detection function did not include the type covariate

and state and type were not correlated (absolute correlation between type and any

state coefficients was <0.01), inference on this parameter would have also remained

the same if modelling raw counts in a GLMM without any offset. However, inference

on parameter estimates for a covariate that is both in the detection function and the

λjpr model may differ substantially between the two approaches (or when comparing

either of these approaches to modelling raw counts). Dissimilarities between estimates

for state both in the detection function and the abundance model likely resulted from

estimating all parameters in one step for the integrated approach as opposed to two

steps for the two-stage approach. Conceptually the difference between the approaches

is that for the integrated approach, we assume that the patterns by which animals

distribute themselves in the study area (and resulting densities) and the observation

process influence each other, while they are considered as separate processes for the

two-stage approach. We argue – along the lines of Royle et al. (2004) and Johnson

et al. (2010) – that the former case is the more realistic assumption.

A source of unmodelled variation in large-scale studies often is the large number of

observers. Ideally, the number of observers in a study is small and all observers are

well trained in the distance sampling protocol and distance estimation. Inter-observer
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differences might then be modelled using MCDS analyses for the detection function

(see section 3.2.3 page 39). For our case study, the data were collected by 172 ob-

servers, so that too many parameters would be required to include observer as a fixed

effect. Stratifying the detection function by state possibly captured some of the inter-

observer variation. An alternative strategy is to include a random effect for observer

in the detection function model, requiring the estimation of only one parameter, the

random effect standard deviation (e.g. Yuan et al., unpublished manuscript). We

address this issue in chapter 6. However, we demonstrated that modelling hetero-

geneity in detection probabilities may have a strong influence on parameters in the

abundance model and that using a model selection routine is necessary to determine

which parameters should be retained in the final model.

We expect designed distance sampling experiments to become widely used for assess-

ing effectiveness of conservation measures, and for environmental impact studies. The

use of random effects as described here allows correlations in multiple counts from

a single sampling unit to be accommodated, and allows inference to be extended

to a wider area for which the sites are a representative sample, thus strengthening

the ability of wildlife and natural resource managers to evaluate the implications of

changes in the environment.



Chapter 4

Building hierarchical models with

an integrated likelihood for

distance sampling data

4.1 Introduction

Bayesian methods are becoming increasingly popular for modelling wildlife popula-

tions and abundances (e.g. Buckland et al., 2000; Marcot et al., 2001; Durban and

Elston, 2005; Schmidt et al., 2009; King et al., 2010). However, few distance sampling

studies have taken a Bayesian approach. Karunamuni and Quinn (1995) developed a

Bayes estimator for f(0) using a half-normal detection function. Other studies have

built upon this approach. Eguchi and Gerrodette (2009) extended this model by in-

cluding a binomial likelihood for the encounter rate along the line and described a

joint posterior distribution for the count model and effective strip width, Gimenez

et al. (2009) implemented an estimator for f(0) in WinBUGS software, while Zhang

53
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(2011) developed an empirical Bayes estimator for f(0). All these studies follow a

similar approach in that they develop their methods for line-transect data using the

half-normal detection function and use the Gibbs sampler to explore the parameter

space.

Gibbs sampling is potentially easier to implement than the alternative, the Metropolis-

Hastings (MH) update, when standard distribution functions are used. The joint

posterior distribution, and consequently the set of full conditionals, however, may be

difficult to obtain when using non-standard distributions. As the detection function

for distance sampling data often involves such non-standard distributions (e.g. the

hazard-rate key function) we use the MH algorithm.

Our Bayesian approach to density estimation from distance sampling data presented

here is applicable to both line and point transect data and to any detection func-

tion. We use an integrated likelihood that combines the likelihood components of the

detection and count models. For the latter, we use a Poisson likelihood for the dis-

tance sampling counts that incorporates a component corresponding to the detection

function, thus allowing for imperfect detection at the line or point. In comparison to

Eguchi and Gerrodette (2009) who use a binomial likelihood to scale up from density

at the line to density in the study area, our Poisson model relates animal counts to

covariates. This approach does not rely on random placement of samplers in the study

area (Hedley and Buckland, 2004). We include a random effect for site in the Poisson

model to accommodate correlated counts due to e.g. repeat counts at the same site.

The parameter space is explored using a Metropolis-Hastings (MH) update, different

prior distributions for the parameters are easily implemented, and a reversible jump
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Markov chain Monte Carlo (RJMCMC) algorithm allows model uncertainty to be in-

corporated. This may include different key functions for the detection function model

and different covariate combinations for both the detection function and the count

models.

These developments were motivated by our case study 2, a large-scale experimental

study to assess the effects of establishing conservation buffers along field margins

on density of several species of conservation interest such as the northern bobwhite.

Pairs of points were set up at the edge of fields in farmland in 13 states in the USA.

These pairs of points consisted of one point on a buffered treatment field and one on

a nearby non-buffered control field and will be referred to as sites in the following.

Point transect surveys of coveys were conducted at least once but up to three times

per year in autumn 2006− 2008. For details on the data see section 2.4.1 in chapter

2 page 26.

In the following we begin by developing the integrated likelihood (section 4.2). This

integrated likelihood combines the two likelihood components of the two-stage ap-

proach presented in chapter 2, hence uses the conditional probability density function

of observed distances (Buckland et al., 2001). In contrast, for the integrated likeli-

hood from chapter 3 we use the unconditional formulation (Royle et al., 2004). We

then describe the Bayesian approach (section 4.3), analyse bobwhite covey data using

our Bayesian approach (and a maximum likelihood approach, the two-stage approach

from chapter 2, for comparison) (section 4.4), before concluding with a discussion

(section 4.5) where we contrast our Bayesian approach with existing studies dealing

with distance sampling likelihoods (e.g. Buckland et al., 2004; Eguchi and Gerrodette,

2009, Johnson et al., 2010, Royle et al., 2004).
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4.2 An integrated likelihood for distance sampling

data

To obtain abundance estimates of a population of interest using distance sampling

methods, lines or points may be placed in the study area according to some design

(see Buckland et al., 2001, for details). Each line or point is surveyed at least once

following the distance sampling protocol where the observer travels down the line

(line transects) or remains at the point for a fixed amount of time (point transects).

Detections are recorded along with the perpendicular distance from the line to the

detection (or radial distance from the point to the detection). These distances may

be recorded exactly or in predetermined distance bands. Thus, surveys of this type

produce two types of data: firstly, the observed distances ye with e = 1, 2, 3, ..., n (n

being the total number of detections).

Secondly, the observed counts np at point p or encounter rate along the line (i.e. ob-

served counts along line p divided by its length: np/lp) with
∑P
p=1 np = n. In the case

that distances are recorded in intervals, the counts np at line or point p are divided

into the number of counts in each of i distance intervals npi (instead of ye exact dis-

tance measurements). For modelling the detection function, the latter may be pooled

across all lines/points to form the ni, i.e. the counts in the i distance interval from

all surveyed lines/points.

In addition, if detections are made of groups of animals (rather than single individ-

uals), a third type of data generated from a distance sampling survey is cluster size
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se which represents the number of individuals within the eth detected group. For

simplicity, we ignore cluster sizes for this study. Methods could, however, easily be

extended to also include a model for cluster sizes.

In contrast to many existing covariate models for distance sampling data (e.g. Hedley

and Buckland, 2004; Buckland et al., 2009), the proposed integrated likelihood deals

with both components of the data simultaneously. It consists of the likelihood com-

ponents for the detection function, which is denoted by Ly(θ) for exact distance data

(see eqn (4.5) below for interval data), and the Poisson likelihood for observed counts,

Ln(β|θ). We use θ and β to summarise the detection function and Poisson model

parameters, respectively. These are defined in more detail below. The integrated like-

lihood is the product of the two components (modified from Buckland et al., 2004,

ch. 2):

Ln,y (β,θ) = Ly(θ)Ln(β|θ). (4.1)

We consider each individual likelihood component in Ln,y (β,θ) and begin with Ly(θ).

Here, we use the conditional formulation for f(y), as opposed to the unconditional

formulation from chapter 3. This allows us to define this likelihood for exact and

interval distance data, while the formulation for the integrated likelihood from chapter

3 was limited to interval data. Let f(y|θ) denote the conditional probability density

function of observed distances which is given as (Thomas et al., 2010):

f(y|θ) =
π(y)g(y|θ)

w∫
0
π(y)g(y|θ)dy

, (4.2)
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where y is the observed distance from the line (point) and w is the truncation distance

(i.e. the furthest distance from the line or point included in the analysis). As before

(chapters 2 and 3), π(y) describes the expected distribution of animals with respect to

the line (π(y) = 1/w) or point (π(y) = 2y/w2). The detection function g(y|θ) may be

modelled e.g. as half-normal (g(y|θ) = exp (−y2/2σ2), with θ = {σ}) or hazard-rate

(g(y|θ) = 1− exp (−(y/σ)−τ ), with θ = {σ, τ}). The likelihood, which is conditional

on the number of detections n, may be expressed as (Buckland et al., 2004, p. 16):

Ly (θ) =
n∏
e=1

f (ye|θ), (4.3)

where ye refers to eth detection.

When detections are recorded in distance intervals, let fi denote the probability that

a detected animal is in the ith interval which is delineated by the cutpoints ci−1 and

ci:

fi(θ) =

ci∫
ci−1

f (yi|θ)dy

w∫
0
f (yi|θ)dy

, (4.4)

where the truncation distance, w corresponds to the outermost cutpoint. Note that

the fi represent proportions of the observed counts on the plot (as opposed to propor-

tions of the true number of animals on the plot when using the unconditional fui from

chapter 3). As a consequence, we do not consider the cell probability associated with

the animals that were missed on the plot. Here, the sum of the I cell probabilities

equals one (
I∑
i=1

fi = 1) and the multinomial likelihood LyG, given in the following

equation, replaces Ly in eqn (4.1):
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LyG (θ) =

 n!
I∏
i=1

ni!


I∏
i=1

fi(θ)ni , (4.5)

where ni is the number of detected animals in the ith interval.

Note that in eqns (4.3) and (4.5), detections from all sites are pooled in one detection

function. For modelling heterogeneity using multiple covariate distance sampling

(MCDS) methods, the scale parameter σ of the half-normal or hazard-rate detection

function is modelled as a function of covariates (σ(z) = δ0 × exp(
∑Q
q=1 zqδq), where

δq, q = 0, 1, 2, ..., Q replace σ in θ) (Marques and Buckland, 2003).

For the log-linear Poisson model, Ln(β|θ) we begin by considering counts njpr at visit

r to line or point p at site j as a Poisson random variable with mean λjpr. To adjust

these counts for imperfect detection out to distance w, f(y|θ) from eqn (4.2) is used

to estimate the effective area ν(θ) which is defined as the area beyond which as many

animals are seen as are missed within (Buckland et al., 2001). Consequently, dividing

counts by the area effectively surveyed along the line (point) gives a valid estimator

for density. For line transects, ν = 2lp
∫ w
0 g(y|θ)dy, where lp is the length of the line

surveyed; for point transects ν = 2π
∫ w
0 yg(y|θ)dy. Note that again, these definitions

for ν are given for the case where all detections are pooled in one detection function.

When modelling heterogeneity, e.g. by using MCDS methods, the effective area may

vary between different lines (points) and the global ν becomes νjpr. These may

require further breaking down in case covariates are included that pertain to individual

detections as opposed to individual visits to a line/point. By including the effective

area as an offset, counts are divided by the effective area: E[njpr]/νjpr = λjpr/νjpr or

E[njpr] = λjpr with:
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λjpr (β|θ) = exp

(
β0 + bj +

K∑
k=1

xkjprβk + ln (νjpr(θ))

)
, (4.6)

where β0 is the fixed effect intercept, bj the random effect for site j (bj ∼ N (0, σ2
b )),

xkjpr the covariate values of the k fixed effect covariates measured during visit r to

that line or point and βk the associated coefficients. Vector β = {β0, β1, β2, ..., βK , σb}

denotes the parameters associated with the covariates affecting densities and the ran-

dom effect standard deviation. Here, the combination of fixed and random effects in

(4.6) models density at the line (point) rather than counts while the observed counts

remain the response variable.

Eqn (4.6) is given for the general case where lines or points that may produce corre-

lated counts, due to closeness in space and/or due to repeated measurements at the

same line (point), are grouped together as site j. The inclusion of a random effect

for site accommodates covariances for these measurements. However, in cases where

lines (points) follow a random survey design (Buckland et al., 2001) and each line

(point) is surveyed only once, the random effect term may be omitted.

Using this model for λjpr, the likelihood for the count model, conditional on the

estimate of the effective area, may be expressed as:

Ln(β|θ) =
J∏
j=1

∫ ∞
−∞

 Pj∏
p=1

Rj∏
r=1

(λjpr)
njpr exp (−λjpr)
njpr!

× 1√
2πσ2

b

exp

(
−
b2j

2σ2
b

)
dbj, (4.7)

where J refers to the total number of sites, and Pj and Rj refer to the total number

of lines (points) at and visits to the jth site, respectively. Ln(β|θ) forms the second

likelihood component in eqn (4.1). Note that in a maximum likelihood context the
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likelihood function including a random effect (for which normality is assumed) is

generally formulated with an integral as shown in eqn (4.7) as the random effect

is integrated out analytically (or by approximation) and the individual coefficients

bj are not estimated (e.g. McCulloch and Searle, 2001). In the Bayesian context,

however, the random effect is not integrated out analytically. Here, we use a data

augmentation scheme where the individual coefficients bj are included in the model

specification and the updating process (see below).

4.3 The Bayesian approach

4.3.1 Hierarchical models

Using a Bayesian approach, random effects models can be implemented using hierar-

chical models where the standard deviation of the random effect (σb from eqn (4.7))

is considered to have a distribution rather than a fixed value (which is also true for

the remaining fixed effect coefficients) (Davison 2003). Individual random effects co-

efficients (the bj from eqns (4.6) and (4.7)) are fitted in the model and updated at

each iteration of the chain (see below).

Prior beliefs regarding the parameters such as knowledge obtained from a different

study previously conducted, may be included in the current study via the prior dis-

tribution. This may allow inference on model parameters in cases where too little

data exists in the current study to obtain maximum likelihood estimates with great

precision (e.g. Eguchi and Gerrodette, 2009). However, in the following we assume

the case where no prior information exists and place uniform priors on all parameters

θ and β (eqns (4.1)-(4.7)).



62

4.3.2 MCMC algorithm

A Markov chain Monte Carlo algorithm is used to explore the posterior distribution of

the parameters given the data and obtain summary statistics of interest. Commonly

used MCMC methods are the Gibbs sampler and Metropolis-Hastings (MH) update.

The Gibbs sampler samples directly from the conditional posterior distribution of the

respective parameter. In particular, during each iteration t, each parameter is up-

dated consecutively by drawing a sample from the posterior distribution conditional

on the current state of the other parameters. This approach is relatively conve-

nient to use when using standard distributions (e.g. Spiegelhalter et al., 2003; King

et al., 2010), e.g. by using the user-friendly software WinBUGS. However, when using

non-standard distributions such as the half-normal detection function these methods

become more complex. For example, Gimenez et al. (2009) implemented the ‘zero-

trick’ in WinBUGS to obtain the posterior distribution for estimating animal density

from distance sampling data. For this trick they considered a set of n detections with

associated perpendicular distances ye (e = 1, 2, 3, ..., n) where the likelihood contri-

bution of each detection equals a likelihood term Le. This likelihood contribution

is calculated using the half-normal detection function. The ‘zero-trick’ implies using

a set of n zeros, each with an assumed Poisson distribution, P (φe). The essential

part of this trick is that the Poisson likelihood with expected value φ of a zero ob-

servation equals exp(−φ). Hence, they then set φe = − log(Le) where Le represents

the contribution of the eth observed perpendicular distance to the likelihood. Then,∑n
e=1 log(Le) =

∑n
e=1−φe.
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However, we were interested in developing methods that do not rely on tricks or

transformations and are easily implemented for a range of detection function mod-

els. Hence, we focus on the MH update (Hastings, 1970; Metropolis et al., 1953)

in the following, as some of the likelihood functions that may be used to form the

posterior conditional distributions of parameters are non-standard (e.g. half-normal

or hazard-rate detection function that may include a covariate model for the scale

parameter). In particular, we use a random walk single-update MH algorithm with

normal proposal density where we cycle through each parameter in Ln,y (β,θ). To

use a simple scenario, assume β = {β0, σb}. Then, e.g. for parameter β0 with current

value βt0 we propose to move to a new state, β′0, with β′0 ∼ N
(
βt0, σ

2
β0

)
(e.g. Hastings,

1970; Davison, 2003). This newly proposed state is accepted as the new state with

probability α(β′0|βt0) given by (King et al., 2010):

α(β′0|βt0) = min

(
1,
Ln,y(β

′
0, σ

t
b,θ

t)p(β′0)q(β
t
0|β′0)

Ln,y(βt0, σ
t
b,θ

t)p(βt0)q(β
′
0|βt0)

)
. (4.8)

Here, q(β′0|βt0) denotes the proposal density of β′0 given the current state is βt0. We

note that the terms q(βt0|β′0) and q(β′0|βt0) cancel in the acceptance probability since

we use a symmetrical proposal distribution. The analogous MH updates are used for

random effect coefficients. Proposal variances are chosen via pilot-tuning (Gelman

et al., 1996).

4.3.3 Model selection: reversible jump MCMC

To discriminate between competing models, we treat the model itself as a parameter

and form the joint posterior distribution over both parameters and models which is
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given (up to proportionality) by:

πn,y (βm,θm,m) ∝ Ln,y(βm,θm,m)p(βm,θm|m)p(m), (4.9)

where Ln,y(βm,θm,m) denotes the probability density function of the data given cur-

rent parameter values βm and θm and model m, p(βm,θm|m) the prior distribution

for model parameters βm and θm and p(m) the prior probability of model m. As this

distribution is too complex to sample from directly, an RJMCMC algorithm is used

to move within both parameter and model space simultaneously (Green, 1995).

For this RJMCMC algorithm each iteration involves two steps; step 1: update pa-

rameters given the current model using the MH algorithm (within model move) as

described above in section 4.3.2; step 2: update the model using a reversible jump

(RJ) algorithm (between model move). During RJ step, model m conditional on the

current parameter values is updated. This move involves a proposal to update the

model itself; suppose the chain is in model m and we propose to move to model m′. A

bijective function describes the relationship between the current and proposed param-

eters and is used to convert parameters from model m to parameters for model m′. In

a simple scenario, say, where model m contains parameters β = {β0, β1} and model

m′ contains parameters β′ = {β′0, β′2}, the bijective function might be expressed as

an identity function where:

β′0 = β0

u′ = β1

β′2 = u. (4.10)
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Here u and u′ are random samples from some proposal distributions for the respective

parameters. The acceptance probability may then be expressed as:

A =
πn,y(β

′,m′)P (m|m′)q′(u′)
πn,y(β,m)P (m′|m)q (u)

|J | , (4.11)

where P (m′|m) denotes the probability of proposing to move to model m′ given that

the chain is in model m, q(u) and q′(u′) are the proposal densities of u and u′ and |J |

is the Jacobian (which equals one if the bijective function is the identity function).

For the RJ step in general, two main strategies may be followed. In cases where

models differ only in the combination of the same set of covariates, a single RJ step

may involve going through each covariate and proposing to delete or add it depending

on whether it is in the current model or not. This involves generating a value for the

new parameter from a proposal distribution (if we propose to add it) or setting it to

zero (if we propose to delete it) and calculating the acceptance probability each time

we propose to add or delete a parameter.

In those cases where all parameters of the newly proposed model change, one RJ step

involves generating new values for all parameters of the new model and accepting

or rejecting the new model based on the above acceptance probability. A proposed

move from a half-normal detection function model to a hazard-rate model represents

a simple example for this scenario.

Posterior model probabilities are estimated as the proportion of time the chain spent

in a particular model after the burn-in.
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4.4 Case study 2: point transect surveys of north-

ern bobwhite coveys

Here, we analyse the northern bobwhite covey data from our case study 2 presented

in chapter 2 using an RJMCMC algorithm. For details on the data see section 2.4.1

page 26. Results from the Bayesian approach are compared with those from the two-

stage approach analysed and presented in chapter 2.

4.4.1 Analysis using the Bayesian approach

We used eqns (4.3) and (4.7) to form the integrated likelihood function as shown in

(4.1). Potential covariates included in the models for Ly(θ) and Ln(β|θ) were the

factor covariates year (three levels: 2006, 2007, 2008), type (two levels: Control or

Treatment plot), state (11 levels) and the continuous covariate Julian day which was

centred around its mean before the analyses (for the Ln(β|θ) model only as it did

not reveal any influence on detection probabilities during preliminary analyses). The

covariates wind speed, cloud cover, atmospheric pressure, month and habitat were

tested in preliminary analyses but did not reveal any effect on detection probabilities

or counts. Uniform priors were placed on all parameters. Lower and upper bounds

for these are given in Table 4.1. To make summary statistics of parameters directly

comparable to the maximum likelihood approach (see section 2.4 in chapter 2), the

highest covariate levels (in numerical or alphabetic order) of detection function pa-

rameters were absorbed in the intercept to follow formatting inherent in Distance

software, while the lowest levels were absorbed in the intercept for the count model
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to follow formatting inherent in the glmer function from the lme4 package in R.

Table 4.1: Lower and upper bounds for uniform prior distributions for all model
parameters. The different states included GA, IA, IL, IN, KY, MO, MS, NC, SC,
TN and TX.

Parameters Lower Upper

Detection Function

Scale Intercept: 1 100 000

Shape: 1 20

Year levels: 2006, 2007 -3 3

Type level: Control -2.5 2.5

State levels: GA:TN -2.5 2.5

Counts

Intercept: -20 -7

Year levels: 2007, 2008 -1 1

Type level: Treatment 0 1

Julian Day: -0.1 0.1

State level: IA:TX -3 3

Random effect standard deviation 0 2

Preliminary investigation of the distance data indicated that the hazard-rate detec-

tion function provided a much better fit than the half-normal. Hence, we included

eight different hazard-rate models as choices for the probability density function of

observed distances f(y|θ) in Ly(θ) during the RJ step: one global (with no covariates)

and seven multiple covariate models. For the global model, the only two parameters

that required estimation were the scale and the shape parameters (see section 4.2 for

details). The multiple covariate models contained additional parameters as the scale

parameter was modelled as a function of one, two or three of the covariates.
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For Ln(β|θ), λjpr from eqn (4.6) was modelled including a fixed effect intercept and

combinations of the four fixed effect covariates (16 different combinations) as well as

a random effect for site.

The chain was started without any covariates for either the detection function or

count model. During a single RJ step of each iteration, each of the covariates was

proposed to be added or deleted depending on whether it was in the current model

or not. Values u for the new parameters contained in the new model were drawn

from parameter-specific proposal distributions shown in Table 4.2. These were ini-

tially defined as normal distributions with mean and standard deviation equal to the

maximum likelihood estimates and standard errors from the full models. However,

we adjusted means (by averaging estimates across different models for the respective

parameters) and standard deviations during pilot-tuning to improve model mixing.

To move from e.g. a global hazard-rate model to a model including a covariate, the

global scale parameter σ was converted into δ0 × exp(z1δ1) with σ = δ0 and u = δ1,

where δ1 is the coefficient associated with covariate z1. The bijective function in this

case (as well as in all the other possible model moves) was the identity function similar

to the example shown in section 4.3.3. Therefore, the Jacobian |J | (from eqn (4.11))

equalled one. We assume that all models were equally likely a priori, hence the prob-

ability of moving to model m conditional on the chain being in model m′, P (m|m′)

was equal to P (m′|m) and vice versa for all possible model moves and cancelled when

calculating the acceptance probability (see eqn (4.11) in section 4.3.3 page 65).

Proposal distributions for the MH step were normal where the mean was the current

value of the parameter and the standard deviation was parameter-specific. The RJ
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Table 4.2: Mean and standard deviation (SD) of Normal proposal distributions for
parameters proposed to be added or deleted during the RJ step of the RJMCMC
algorithm. All parameters were categorical, except for continuous Julian day.

Parameters Mean SD
Detection Function
Year level 2006 0.11 0.10
Year level 2007 -0.15 0.10
Type level: Control 0.50 0.10
State level: GA 0.42 0.10
State level: IA 0.21 0.10
State level: IL 0.70 0.10
State level: IN 0.67 0.10
State level: KY 0.64 0.10
State level: MO 0.69 0.10
State level: MS 0.61 0.10
State level: NC 0.66 0.10
State level: SC 0.03 0.10
State level: TN 0.47 0.10
Count
Year level: 2007 0.16 0.05
Year level: 2008 0.08 0.05
Type level: Treatment 0.42 0.10
Julian Day: -0.01 0.01
State level: IA 0.71 0.24
State level: IL -0.49 0.24
State level: IN -1.16 0.23
State level: KY -0.41 0.22
State level: MO 0.01 0.20
State level: MS -0.38 0.22
State level: NC -1.36 0.23
State level: SC 0.07 0.22
State level: TN -1.05 0.23
State level: TX 1.77 0.21

and MH step together completed one iteration. A total of 100 000 iterations was car-

ried out where the first 10 000 were considered the burn-in period and were ignored

for obtaining model probabilities and summary statistics for parameters.

4.4.2 Results

For the Bayesian approach, the preferred detection function model included the co-

variates year, type and state in the model for the scale parameter of the hazard-rate
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key function (probability = 1.00 to two decimal places, Table 4.3). Two other mod-

els were chosen with probabilities of < 0.001 that included two covariates (type and

state) or one covariate only (type).

Table 4.3: Models and their probabilities resulting from RJMCMC and bootstrap
analyses. Each count model included a fixed effect intercept and a random effect for
site in addition to shown covariates (JD = Julian day). Model probabilities refer to
the percentage of times the respective models were chosen during 90 000 iterations
(after 10 000 iterations of burn-in) for RJMCMC and during 999 bootstrap iterations.

Model RJMCMC Two-stage

Detection Function

MCDS: Type < 0.001 -

MCDS: State - 0.01

MCDS: Year + State - 0.16

MCDS: Type + State < 0.001 0.02

MCDS: Year + Type + State 1.00 0.81

Count

Type + State - 0.003

Year + Type + State - 0.01

Type + JD + State 0.89 0.10

Year + Type + JD + State 0.11 0.89

The same model including the covariates year, type and state was the preferred model

for the two-stage approach having been selected by AIC for 81% of bootstrap resam-

ples. Three other models were selected: one with covariates year and state (16%),

one with type and state (2% probability) and one with state alone (1% probability).

For the count model, two models dominated the RJMCMC algorithm, the model with

covariates type, Julian day and state as the preferred model (0.89 probability) and

the full model (year + type + Julian day + state, 0.11 probability, Table 4.3). For

the bootstrap the latter was the preferred model selected in 89% of resamples, while
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the former was the second most frequently chosen model (10%). Two other models

were chosen during the bootstrap including the covariates year, type and state (1%)

and the model including covariates type and state (0.3%).

For the parameters of the detection function model, the posterior means of the pa-

rameters in the preferred model were in most cases similar to the maximum likelihood

estimates resulting from the two-stage analysis on the original data (Table 4.4). The

intercept for the scale parameter and the shape parameter were larger for the Bayesian

approach while the coefficients for the scale parameter were on average smaller.

Interestingly, measures of uncertainty were mostly smaller for the Bayesian approach

despite the fact that both stages from the two-stage approach were combined in one.

The posterior standard deviations were smaller than the bootstrap standard errors for

all detection function parameters. 95% credible intervals were narrower than the 95%

confidence intervals for all but four detection function parameters (state coefficients

IN, MS, NC and TN). Intervals from the two approaches overlapped in all cases for

the detection function parameters.
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Table 4.4: Mean, standard deviation (SD) and 95% credible intervals (CRI) from
the RJMCMC analysis along with maximum likelihood estimates (MLE), bootstrap
standard errors (BSE) and 95% confidence intervals (CI) using the two-stage approach
for the models with the highest probabilities (see Table 4.3 for model probabilities).
Units of measurements were metres for the detection function model and square
metres for the count model.

RJMCMC Two-stage

Mean SD 95%CRI MLE BSE 95% CI

Detection function: fixed effects

Scale Intercept 152.96 8.97 135.47, 170.12 138.59 16.13 112.26, 163.79

Shape 3.30 0.16 3.00, 3.63 3.01 0.27 2.68, 3.41

Scale: Year 2006 0.06 0.03 0.01, 0.12 0.10 0.06 -0.05, 0.14

Scale: Year 2007 -0.11 0.04 -0.19,-0.05 -0.15 0.05 -0.25, -0.1

Scale: Type Control 0.13 0.04 0.05, 0.20 0.15 0.05 0.05, 0.23

Scale: State GA 0.38 0.07 0.23, 0.52 0.42 0.17 0.05, 0.54

Scale: State IA 0.17 0.10 -0.01, 0.36 0.21 0.16 -0.12, 0.30

Scale: State IL 0.66 0.09 0.48, 0.85 0.70 0.17 0.35, 0.76

Scale: State IN 0.62 0.10 0.43, 0.81 0.66 0.14 0.34, 0.72

Scale: State KY 0.58 0.08 0.43, 0.74 0.64 0.12 0.35, 0.68

Scale: State MO 0.62 0.06 0.51, 0.73 0.69 0.09 0.46, 0.71

Scale: State MS 0.55 0.07 0.41, 0.70 0.61 0.10 0.37, 0.64

Scale: State NC 0.60 0.09 0.43, 0.79 0.66 0.12 0.35, 0.70

Scale: State SC 0.01 0.08 -0.14, 0.16 3E-5 0.14 -0.29, 0.12

Scale: State TN 0.44 0.10 0.25, 0.63 0.47 0.12 0.19, 0.54

Count model: random effects

Standard deviation 0.82 0.05 0.73, 0.91 0.78 0.04 0.69, 0.81

Count model: fixed effects

Intercept Density -13.10 0.18 -13.43, -12.73 -13.23 0.33 -13.91,-12.87

Year 2007 - - - 0.17 0.13 -0.16, 0.37

Year 2008 - - - 0.17 0.11 -0.12, 0.31

Type Treatment 0.62 0.07 0.48, 0.75 0.63 0.12 0.36, 0.71

Julian Day -0.01 2E-3 -0.02, -0.01 -0.01 3E-3 -0.02, -0.01

State IA -0.81 0.29 -1.38, -0.23 -0.74 0.44 -1.65, -0.24

State IL -0.59 0.27 -1.12, -0.06 -0.53 0.38 -1.25, -0.07

State IN -1.24 0.27 -1.79, -0.71 -1.18 0.41 -1.99, -0.70

State KY -0.47 0.25 -0.98, 0.03 -0.44 0.34 -1.07, -0.02

State MO 0.01 0.22 -0.44, 0.42 0.05 0.34 -0.63, 0.46

State MS -0.43 0.25 -0.92, 0.05 -0.37 0.34 -1.04, 0.05

State NC -1.39 0.26 -1.88, -0.87 -1.31 0.36 -1.99, -0.87

State SC 0.01 0.27 -0.53, 0.53 0.08 0.42 -0.76, 0.56

State TN -1.10 0.28 -1.65, -0.57 -1.03 0.38 -1.80, -0.60

State TX 1.74 0.18 1.33, 1.99 1.46 0.29 0.99, 1.81
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For the count model, means and intervals were again similar between the two ap-

proaches. The mean and standard deviation of the random effects standard deviation

were slightly larger for the Bayesian approach (0.82, SD=0.05) compared to the two-

stage approach (0.78, BSE=0.04) (Table 4.4). The fixed effect intercept was slightly

larger for the Bayesian approach (-13.10, SD=0.18) compared to the two-stage ap-

proach (-13.23, BSE=0.33). However, fixed effect coefficients that were in the pre-

ferred models for both approaches were generally smaller for the Bayesian approach,

except for Julian day where the means were equal and state coefficient TX where the

mean was larger for the Bayesian approach.

Again, measures of uncertainty were mostly smaller for the Bayesian approach: stan-

dard deviations from the Bayesian approach were smaller for all fixed effect covariates

in the count model compared to bootstrap standard errors. 95% credible intervals

were narrower for all coefficients of the count model compared to 95% confidence in-

tervals, except for the covariate Julian day where they were equal. 95% credible and

confidence intervals overlapped for all count model parameters. The only covariate

selected for the preferred count model for the two-stage approach that was not also

in the preferred model for the Bayesian approach was year. 95% confidence intervals

for both year coefficients included zero indicating that this covariate might have been

negligible for the count model.

The parameter of interest in these models was the coefficient for the level Treat-

ment of the type covariate in the count model. This was 0.62 (SD=0.07) and 0.63

(BSE=0.12) for the Bayesian and the two-stage approach, respectively, indicating an

increase in covey densities by 86% (exp(0.62)=1.86) or 88% (exp(0.63)=1.88) by the

respective methods. A positive coefficient for the level Control of the type covariate



74

in the detection function indicated that detection probabilities were slightly larger on

this type of field compared to level Treatment resulting in larger values for the offset

(νjpr from eqn (4.6)). However, the resulting differences in the offset between control

and treatment fields did not exceed 0.23 for any year or state including both methods

and could not have artificially created a positive coefficient for treatment fields in the

count model as large as in the present models.

4.5 Discussion

There are two main aspects described in this chapter that are relatively innovative

and deserve comparison to existing methods. We present a novel approach for com-

bining the likelihood functions for analysing distance sampling data in section 4.2.

We also present a Bayesian approach for analysing distance sampling data of multiple

types in a straightforward manner.

Bayesian methods have been used before for analysing line transect data with a global

half-normal detection function (e.g. Eguchi and Gerrodette, 2009; Gimenez et al.,

2009; Zhang, 2011) or a half-normal with covariates (Moore and Barlow, 2011). We

used the hazard-rate detection function and included model selection between differ-

ent covariate combinations for the scale parameter.

In section 4.2, we summarised the equations needed to compose this likelihood for

line transects, point transects, exact and interval distance data and for including co-

variates in the scale parameter model (as described by Marques and Buckland, 2003).

Different key functions, e.g. the half-normal, hazard-rate or others, may easily be

implemented. It may also be extended to include adjustment terms (added to the
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half-normal or hazard-rate model, Buckland et al. (2001)) or covariates in the shape

parameter.

The log-linear Poisson model for densities described in section 4.2 may be used when

information for covariates is available. It does not depend on a random survey design

in contrast with the conventional distance sampling approach and data arising from

surveys conducted from platforms of opportunity may be used (Hedley and Buck-

land, 2004). In addition, it allows identification of relationships between abundance

or density and parameters of interest, such as the type covariate in our case study. It

is different from the approaches described by Hedley and Buckland (2004) or Buck-

land et al. (2009) in that these authors analyse their data in two stages. In their

second stage count model, they condition on the estimate of the effective area which

is derived from the first stage detection function model. Our integrated likelihood

approach estimates all parameters simultaneously allowing to quantify the precision

of the parameters in the count model while taking proper account of the estimation

of detection function parameters.

Using the Poisson model including a random effect for estimating densities as defined

in eqn (4.6) also allows us to accommodate correlated measurements due to closeness

in space and/or time, for example as occurs when there are repeat counts at the same

line or point. This is different from the integrated likelihood described by Royle et al.

(2004). These authors considered the true but unknown abundances at the site as

a random effect with a Poisson distribution (in their notation Ni ∼ Poisson(λi))

and integrated it out. Hence, they derived a Poisson likelihood for the observed

counts with expected value equal to λiπk(θ), where πk(θ) describes the probability

that an animal occurs and is detected in the kth distance band. In contrast, we
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consider variations in the observed counts between the different sites as a normally

distributed random effect with mean zero, hence accounting for correlations between

measurements at the same sites. We used this approach to obtain unbiased estimates

of coefficients retained in the count model which may then be used to predict total

abundance at the line or point. In addition, the approach of Royle et al. is limited to

interval distance data.

Similar to Hedley and Buckland (2004) and Buckland et al. (2009), our likelihood may

be extended to include smooth functions for continuous covariates, e.g. by fitting re-

gression splines using the B -spline basis, or the Poisson likelihood may be replaced

with a negative binomial likelihood if more appropriate, e.g. in case overdispersion

in the count data is present. In cases where no covariates are available and the sur-

vey followed a random design, our covariate model for Ln(β|θ) in eqn (4.1) may be

replaced with a binomial likelihood to estimate abundance in the covered region or

the survey area (Buckland et al., 2004, eqns (2.33) and (2.34), respectively). For the

latter, the average inclusion probability is defined as the product PcP̂a, where Pc is

the probability that an animal is covered (i.e. within truncation distance w, known

from the survey design) and P̂a is the average detection probability in the covered

region. This approach allows direct estimation of total abundance in the study area.

To estimate total abundance in the study area using our approach requires making

predictions of abundance in the entire area including those subareas that were not

covered during the survey. This, in turn, requires knowledge of covariates retained in

the preferred model(s) for these areas. While the binomial model only allows estima-

tion of total abundance in the study area, our approach allows us to estimate local

abundances on a smaller scale within the study area.
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Alternatives to both our Poisson model and the binomial model of Buckland et al.

was presented by Johnson et al. (2010) and Niemi and Fernández (2010). These

authors modelled distance sampling data as a thinned spatial point process. While

Niemi and Fernández (2010) conditioned on a ‘known’ detection function, Johnson

et al. (2010) estimated parameters of the detection model and the intensity parame-

ters simultaneously. While the underlying theory may differ, the Poisson model from

our integrated likelihood and the spatial point process model of Johnson et al. have

similar assumptions, i.e. perfect detection on the line (point), animals follow certain

distribution patterns which may be captured by measurable covariates, the observa-

tion process is a snapshot, and animals distribute themselves independently from each

other and from the line (point). However, the approach of Johnson et al. does not

require defining a truncation distance for each line which might make it favourable for

study areas with complex boundaries, e.g. narrow bays. However, while our approach

requires defining a truncation distance, it may vary between different transects or

transect segments.

The comparison of summary statistics for model parameters from the Bayesian ap-

proach with parameter estimates from the two-stage approach revealed some differ-

ences in means and point estimates (Table 4.4) which cannot be due to prior sensitivity

as we used uniform priors on all parameters for the Bayesian approach. We assume

these differences may have been due to the fact that - as opposed to the two-stage

approach - the likelihoods for both components of our model are combined for the in-

tegrated likelihood and influence each other. We argue, in concurrence with Johnson

et al. (2010), that simultaneous estimation of all parameters in one stage represents

a more realistic model without having to rely on the assumption of a true detection



78

function model.

Model uncertainty for the detection model might have been captured better with the

two-stage approach where - besides the preferred model - three other models were

selected during the bootstrap with probabilities of up to 0.16 as opposed to two oth-

ers with probabilities of < 0.1%. However, for the count model, results from the

two-stage approach were slightly ambiguous in that the analysis of the original data

(and the bootstrap) favoured a model that included the covariate year (in addition to

covariates type, Julian day and state) where coefficients for both levels were signifi-

cant at the 0.001% level. However, 95% confidence intervals for both year coefficients

resulting from the bootstrap overlapped zero, suggesting that the year effect may not

be different from zero (Table 4.4). This ambiguity was not present in the results from

the Bayesian approach as the preferred count model did not include year.

Overall, our Bayesian approach delivered valid results. Besides the often stated ben-

efits for Bayesian analyses, e.g. allowing for prior information to be included, it pro-

vided a particular benefit for using the integrated likelihood defined in section 4.2:

it might be challenging in some cases, such as our case study, to find the maximum

likelihood estimates for all parameters in one step. The covey data included a total of

2545 observed distances during 2534 counts and the full model included 31 parameters

with a random effect (447 sites). Using maximum likelihood methods, the random

effect is integrated out. However, due to the integrated nature of the detection and

count models, functions such as glmer from the lme4 package in R may not be used

as these treat the offset as a constant. Using the hierarchical model set up for the

Bayesian approach where the random effect coefficients are included in the model

specification and updated during each iteration, offers a straightforward technique to
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explore the parameter space. In comparison to the RJMCMC algorithm, an equiv-

alent model selection routine using a maximum likelihood approach that considered

all possible model combinations would have required maximising Ly,n(β,θ) for 128

models (possible combinations of eight detection functions and 16 count models).

Hence, the RJMCMC algorithm provided a very efficient option for incorporating

model uncertainty.



Chapter 5

Using hierarchical centering to

facilitate a reversible jump MCMC

algorithm for random effects

models

5.1 Introduction

For Bayesian analyses, for a given model, the posterior distribution of the parameters

is formed by combining the likelihood of the data with the prior distributions of the

parameters. An MCMC algorithm is often used to sample from this posterior distri-

bution to obtain inference on the parameters of interest. In the presence of model

uncertainty, the posterior distribution can be extended to be defined jointly over both

parameter and model space. This posterior distribution is often explored using the

80
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reversible jump Markov chain Monte Carlo (RJMCMC) algorithm (Green, 1995).

However, the art of setting up an RJMCMC algorithm can be challenging on multiple

levels. The objective is generally to construct a chain that moves freely between mod-

els, efficiently exploring model and parameter space simultaneously. The RJMCMC

algorithm entails iteratively updating the parameters conditional on the model (i.e.

within-model move) and then updating the model (and corresponding model param-

eters) conditional on the current parameters (i.e. between-model move). See chapter

4 for details.

Mixing problems for the within-model moves are often due to high autocorrelation

within the constructed Markov chain. Improvements for mixing within a given model

have been investigated in the framework of MCMC with the aim of reducing posterior

correlations and increasing the effective sample size by reparameterisation. In this

context, Browne (2004) and Browne et al. (2009) showed that hierarchical centering

(first described by Gelfand et al., 1995) can significantly reduce the autocorrelation

within the MCMC algorithm. The use of hierarchical centering in the presence of

random effects refers to exchanging the zero mean of the random effect component,

typically assumed to be of normal form, with a model consisting of an intercept and

one or more fixed effect covariates. This will be described in detail in section 5.2.

Papaspiliopoulos et al. (2007) investigated the circumstances when hierarchical cen-

tering performs well in comparison to noncentering.

Other methods for improving mixing of an MCMC algorithm include parameter ex-

pansion, which refers to augmenting the model with additional parameters to form an

expanded model (Browne, 2004). The original model is embedded in the expanded

one and parameters from the original model can be constructed with parameters from
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the expanded model. Vines et al. (1995) describe a method of reparameterisation for

random effects models called sweeping which is suitable also for models with multiple

sets of random effects in a GLMM framework. The idea consists of adding the mean

of the random effects coefficients to the intercept of the fixed effects while subtracting

the same quantity from each random effect coefficient.

For the between-model move in an RJMCMC algorithm (the RJ step), the current

model is updated by proposing to move to an alternative model (with given param-

eters) and accepting this move with some probability. Mixing problems for these

between-model moves may arise for multiple reasons, e.g. due to difficulties in find-

ing proposal distributions and updating procedures that produce suitable acceptance

probabilities. Besides careful pilot-tuning of proposal distributions, several methods

for improving the acceptance rate for the reversible jump step have been proposed.

For example, Green and Mira (2001) proposed delayed rejection, where after initial

rejection a second attempt to jump is made with samples generated from a new dis-

tribution that may depend on the rejected proposal. Brooks et al. (2003) assumed

a family for the proposal distribution, where the proposal parameters are chosen to

maximise (in some form) the acceptance probability. Al-Awadhi et al. (2004) demon-

strated that increasing acceptance probabilities may be achieved by using a secondary

Markov chain with a fixed number of steps that serves to move the value of an RJM-

CMC proposal closer to a mode before calculating the acceptance probability for the

proposed move. Papathomas et al. (2011) proposed that model mixing for generalised

linear models may be improved by using proposal densities that draw samples from

parameter subspaces of competing models. Forster et al. (2012) used the Laplace

approximation to integrate out the random effects and orthogonal projections of the
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current linear predictor onto the proposed linear predictor to produce effective pro-

posals for generalised linear mixed models.

While these previous approaches describe strategies to improve the acceptance rate

for RJ steps in general, they can be quite complex to implement. We propose an

approach using hierarchical centering that is relatively straightforward to implement

for random/mixed effects models. A particular problem that one may encounter with

random effects models is that the random effects coefficients may begin absorbing

the effect of one or more fixed effect covariates if these are not present in the model

at times during the Markov chain. The inclusion of such effects into the model may

then be unlikely as they are already accounted for within the random effects. We

will demonstrate below that using hierarchical centering provides a simple way of

reparameterising the model that will prevent this problem and improve the between-

model mixing.

Hierarchical centering was initially described by Gelfand et al. (1995) as a method

to improve convergence for mixed models using MCMC methods. Here we extend

the ideas to improve mixing in an RJMCMC algorithm. In particular, we consider

the case for a log-linear Poisson model with fixed effects and a normally distributed

random effect, where the overall likelihood combines the Poisson likelihood for each

observation and the normal density for each random effect coefficient. We demon-

strate how the Poisson likelihoods and the normal densities are affected differently

during a proposal to add a covariate for a regular RJMCMC algorithm and one in-

cluding hierarchical centering.

We demonstrate the improved model mixing using our case study 1, point transects

of indigo buntings. This is the same data as described in chapter 2 and analysed with
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the two-stage and the integrated approach in chapters 2 and 3. In brief, to study

the effect of establishing conservation buffers along margins of agricultural fields on

density of several species of conservation interest, pairs of points were set up at the

edge of fields in a number of states in the USA. These pairs of points consisted of one

point on a treatment field and one on a nearby control field without a buffer and will

be referred to as sites in the following. We use a combined likelihood including the

likelihoods for the detection function and the log-linear Poisson model where counts

are adjusted for imperfect detection within the search area around the point (as de-

scribed in chapter 4). A random effect for site is included in the Poisson model to

accommodate correlated counts between different sites.

In the following we begin by describing how to implement hierarchical centering for

RJMCMC, describe the effects on the dynamics of the algorithm, and present updat-

ing methods for the RJ step using hierarchical centering (section 5.2). We then apply

the methods to our case study (section 5.3) and discuss our findings (section 5.4).

5.2 Hierarchical centering

The hierarchical centering described in this chapter refers to mixed effect models

where a normal distribution is assumed for the random effect. Other distributions

may be assumed for the random effect (e.g. Komárek and Lesaffre, 2008) to which

these methods can be applied but we focus on the normal distribution for simplicity.

We describe the case for a generalised linear mixed model with a Poisson error struc-

ture. Here, the expected value λ is modelled via a log-link function with a common

intercept, β0 and random effect coefficients bj for group j are included for which nor-

mality is assumed.
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For a mixed effect model without hierarchical centering, the random effect is incor-

porated into the model under the assumption of a global zero-mean and unknown

standard deviation, σb, i.e. bj ∼ N (0, σ2
b ) (e.g. Bates, 2009b). Let us assume we have

a set of K covariates, xk (and associated coefficients, βk) that can be incorporated as

fixed effects. The expected value for the full model including all covariates may then

be expressed as:

λj = exp

(
β0 +

K∑
k=1

xkβk + bj

)
, bj ∼ N

(
µ = 0, σ2

b

)
. (5.1)

Different models correspond to the combinations of covariates present in the model

(i.e. non-zero βk values). During a between-model move of an RJMCMC algorithm

using this scenario, the proposal to delete or add one (or more) of the covariates alters

the formula for λ while the distribution for the random effects terms bj remain the

same (see chapter 4 for details on the RJ step).

In hierarchical centering, the mean of the random effect is modelled using a combina-

tion of the intercept and one or more covariates that are “pulled from” the λ model

from eqn (5.1) (Gelfand et al., 1995). In the case that the intercept and covariate x1

are used for centering, the full model from eqn (5.1) becomes:

λj = exp

(
K∑
k=2

xkβk + bj

)
, bj ∼ N

(
µ = β0 + x1β1, σ

2
b

)
. (5.2)

The proposal to delete or add x1 from the model involves altering the distribution

for bj, while the proposal to delete or add any other covariates remains the same as

before (altering the formula for λ).

In the case that all k covariates are included in the centering, the full model from eqn
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(5.1) becomes:

λj = exp (bj), bj ∼ N

(
µ = β0 +

K∑
k=1

xkβk, σ
2
b

)
. (5.3)

In this scenario, the formula for λ remains unchanged during the proposals to delete

or add any of the covariates, while the distribution for bj changes for each proposed

model move.

These methods may also be extended to estimate the random effect standard devia-

tion as a function of covariates, for example if different levels of variability are present

for different levels of a factor covariate. We refrain from this to keep the example rel-

atively simple. However, it is essential that only those covariates are included in the

centering (i.e. x1 in eqn (5.2) or xk with k=1,...,K in eqn (5.3)) that have consistent

values for all observations within a group (Browne et al., 2009). We refer to a group

in terms of the grouping unit for the random effect, i.e. all observations belonging

to the same group j are modelled with the same random effects coefficient bj in the

equations given above. The grouping for the random effect should generally occur to

account for intra-group dependence (Davison, 2003). In the case, for example, where

a study consists of a large number of sites and repeat measurements were taken at

the same sites, we expect the measurements from the same sites to be correlated.

However, for hierarchical centering to be applicable, the grouping for the random ef-

fect needs to be so that for any of the covariates included in the centering, values for

the respective covariate are the same within a group. If, for example, the grouping

unit for a study is site, then the covariate state (state as in the geographical governed

entity) can be included in the centering as each site only belongs to one state. Hence,

all observations for a given site belong to the same state regardless of how many



87

times the measurements were repeated. Conversely, Julian day could not be included

as different values are possible for different observations within a given site due to

repeating the measurements on different days. As long as this condition holds, any

combination of covariates may be included.

Hierarchical centering relies on the fact that the random effect coefficients pick up

the effect of the covariates included in the centering (given that they have an effect)

as they are updated during the within-model move of each iteration of the RJM-

CMC. Running separate MCMC algorithms (without between-model moves) on the

full models from eqns (5.1), (5.2) or (5.3) would probably result in the same pos-

terior distribution and nearly identical summary statistics for the covariates if the

chain was run long enough - although mixing might be different for these different

parameterisations. However, when including the between-model moves in an RJM-

CMC algorithm, mixing problems may become more severe, potentially leading to

the wrong conclusions. Here, results may be different depending on which scenario

was used. If, e.g. under the scenario of eqn (5.1), the random effect coefficients absorb

the effect of covariate x1, the chain will likely get stuck in models that do not include

x1. For the scenarios of eqns (5.2) and (5.3), moves to models including covariate x1

would be favoured if the random effect coefficients absorbed the effect of x1 as then

the coefficients will be closer to their modelled means. We will show below, that this

is due to the fact that here different parts of the likelihood are affected by a proposed

model move compared to eqn (5.1).
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5.2.1 Effects of hierarchical centering on RJMCMC dynam-

ics

Using either one of the models for λ from above (eqns (5.1), (5.2), or (5.3)), the

likelihood of the log-linear Poisson model, Ln(β, σb), with a normally distributed

random effect may be formulated as:

Ln(β, σb) =
J∏
j=1

 Rj∏
r=1

(λjr)
njr exp (−λjr)
njr!

× 1√
2πσ2

j

exp

(
−(bj − µ)2

2σ2
j

)
, (5.4)

where vector β contains the coefficients for covariates included in the models and njr

are the observed measurements. The indices j = 1, 2, 3, ..., J represent the groups for

the random effects and r = 1, 2, 3, ..., Rj indices the different measurements taken for

the j th group. Hence, for each of J groups of observations the probability of observing

njr under the log-linear Poisson model with expected value of λjr is multiplied for all

observations within that group, which is then multiplied by the normal density of the

random effect coefficient bj. The only coefficients that influence both parts of this

likelihood, i.e. the Poisson likelihood for the observations and the normal densities, are

the random effect coefficients, regardless of which scenario is used from the previous

section.

Using a random walk single-update Metropolis-Hastings algorithm for the within-

model move, the probability of accepting the newly proposed state for, say parameter

β1 at time t is calculated with:

α(β′1|βt1) = min

(
1,
Ln(β′1,β

t
−1, σ

t
b)p(β

′
1)q(β

t
1|β′1)

Ln(βt1,β
t
−1, σ

t
b)p(β

t
1)q(β

′
1|βt1)

)
, (5.5)
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where Ln(β′1,β
t
−1, σ

t
b) is the probability density function of the data conditional on

the newly proposed parameter value β′1 (Brooks and Gelman, 1998; King et al., 2010).

For our example it is calculated using eqn (5.4). The prior distribution is denoted

by p() and q(β′1|βt1) is the proposal density of β′1 given the current state is βt1. From

eqn (5.5) we can deduce that on average, Ln(βt, σtb) will improve with each itera-

tion in particular if the posterior is not too sensitive to prior probabilities and if

symmetrical proposal distributions are used (and q(βt1|β′1) and q(β′1|βt1) cancel in eqn

(5.5)). Furthermore, combining what we know from eqns (5.1) to (5.4), it is evident

that the Poisson likelihoods within Ln(βt, σtb) will improve if the variation that is

not accounted for by the fixed effect coefficients is picked up by the random effect

coefficients. On the other hand, the normal densities will return higher values for

random effect coefficients close to their mean values.

For the RJ step, the dynamics are more complex. Here, the calculation of the accep-

tance probability to move to another model also includes the proposal densities for

the newly proposed parameter values, a priori model probabilities and the Jacobian

(which is derived from the bijective function). For details see eqn (4.11) in chapter 4

page 65.

Hence, for any RJMCMC algorithm, the MH step will on average improve the likeli-

hood of the current model with each iteration as long as the chain remains in the same

model. Current parameter values including those of the random effect coefficients will

be adjusted in such a manner that they, on average, produce λjr that return higher

likelihood values for njr under the current model.

Intuitively, one may think that without hierarchical centering a problem arises for a

between-model move (using models from eqn (5.1)) when a covariate, say x1, may
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have an effect but is not included in the current model. Then, the random effect

coefficients may begin to absorb this effect and, in this manner, adjust the value

for λjr to improve the likelihood. This may result in a “tug-of-war” between the

Poisson likelihood trying to adjust the coefficients in such a manner that the effect

of x1 is accounted for and, on the other hand, the normal densities trying to keep

the coefficients close to zero. This will typically also result in an inflated random

effect standard deviation since the random effects coefficients are replacing some un-

explained variability attributable to x1. If this has indeed occurred, an acceptance of

x1 into the model during a between-model move step may become very unlikely as

its effect is already accounted for by the random effect coefficients. Hence, during a

proposal to add x1, the new model with x1 will create inferior λjr. These will then

return decreased likelihood values even if the randomly drawn value(s) for x1 would

produce a larger likelihood under circumstances before the effect has been absorbed

by the random effect coefficients.

This issue may be addressed using hierarchical centering since proposing to add x1

into the model will not change λjr (and the Poisson likelihood). Here, the random

effects coefficients absorb the effects of the covariates included in the model within

the mean of the random effect distribution (in addition to the intercept β0). Using

eqn (5.2) this would be covariate x1 (as in our example), using eqn (5.3) this would

be covariates xk with k = 1, 2, 3..., K. The only part of the likelihood that is affected

when updating this/these covariate(s) (for within-model and between-model moves)

are the normal densities from eqn (5.4). It is likely that, on average, the normal den-

sities improve for the individual random effects coefficients as these will on average

be closer to their assumed mean. As λjr remains the same, likelihood values returned
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by the Poisson part of eqn (5.4) remain the same.

5.2.2 RJ updating methods using hierarchical centering

To demonstrate how to implement hierarchical centering, we continue with our sim-

ple example from the previous section of including covariate x1 into an intercept-only

model, say model m. Suppose that at a given iteration the current state of the chain

is model m, where λ = exp (bj) with bj ∼ N (µ = β0, σ
2
b ) from eqn (5.3) (although if

x1 is the only covariate available, K = 1 and eqns (5.2) and (5.3) are equivalent). We

then propose to move to model m′ by adding covariate x1. Hence, model m′ is defined

as λ′ = exp
(
b′j
)

with b′j ∼ N
(
µ′ = β′0 + x1β

′
1, σ

′
b
2
)
. Let us assume that covariate x1

is a categorical covariate with L levels (individual levels are denoted with l) and that

all measurements within a group j belong to the same level of x1. In the following,

we describe two different ways for implementing the RJ step. The difference between

them lies in the definition of the proposal distributions for the new parameters for the

between-model move, and, hence, should only have an influence on the acceptance

probability of this move. It should not have an influence on summary statistics of the

parameters in the final model given that the chain had an adequate burn-in.

5.2.2.1 Hierarchical centering using predefined proposal distributions

For this method, we define proposal distributions for the intercept and the L levels

of covariate x1 before starting the chain (as for the other parameters in the model).

If, for example, normal proposal densities are used, we define the proposal density

for the intercept β0 as β0 ∼ N (µ0, σ
2
0) and for coefficient β′1l as β′1l ∼ N

(
µ′1l, σ

′
1l
2
)
.
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The proposal to add x1 to model m during the RJ step involves drawing random

samples from these proposal distributions that are used as coefficients in the model

for the random effect means µ, and calculating the acceptance probability for this

move (based on eqn (4.11) in chapter 4).

5.2.2.2 Hierarchical centering using updated proposal distributions

Here, the proposal distributions of both the global random effects mean, µ = β0 of

model m and the covariate-specific means, µ′ = β′0 + x1β
′
1 of model m′ are updated

before the RJ step during each iteration of the RJMCMC algorithm. The covariate-

specific means for our example with covariate x1 with L levels can also be expressed

as µ′l = β′0 + x1β
′
1l. To update µ = β0 at iteration t + 1, we take the overall mean

of the current values of all random effect coefficients (i.e. µt+1 = b̄tj). To update

µ′l = β′0 + x1β
′
1l, we take the L means of the coefficients belonging to the respective

levels of covariate x1, i.e. µ′t+1
l = b̄′tjl, where the b′tjl are those coefficients belonging to

the lth level of x1 at iteration t.

5.3 Case study: point transects of indigo buntings

5.3.1 Data and Methods

Here we analysed the point transect data of indigo buntings from chapter 3 again.

This data is described in detail in section 2.3.1. As the models from eqns (5.1) to

(5.3) assume perfect detection on the plot, we needed to supplement these with a

model to adjust counts for imperfect detection. Thus, we fitted a detection function

to the observed distances of individual detections which was then used to estimate
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the effective area, ν. The effective area was incorporated into the log-linear Poisson

model for λjr as an offset as described in detail in chapter 4. With the offset included,

the full model without hierarchical centering from eqn (5.1) becomes:

λjr = exp

(
β0 +

K∑
k=1

xkβk + bj + ln (ν)

)
, bj ∼ N

(
µ = 0, σ2

b

)
. (5.6)

Site was used as the grouping factor for the random effect. Available covariates were

state with nine levels (x1), year (2006, 2007, x2), Julian day (x3) and the parameter

of interest, covariate type with two levels: control or treatment plot (x4). We re-

frained from modelling heterogeneity in detection probabilities to keep this example

relatively simple. Hence, the effective area ν from eqn (5.6) was assumed to be the

same for all observed counts.

As state was the only covariate that had consistent values for all measurements within

a given site, we were limited to using only one covariate within the hierarchical cen-

tering. With hierarchical centering using the state covariate, x1, the full model from

eqn (5.2) becomes:

λjr = exp

(
K∑
k=2

xkβk + bj + ln (ν)

)
, bj ∼ N

(
µ = β0 + x1β1, σ

2
b

)
. (5.7)

To estimate parameters of both the detection function and the count model in one

step, we combined the likelihood components pertaining to the respective models us-

ing the integrated likelihood, Ln,y (β, σb,θ) = LyG(θ)Ln(β, σb|θ) described in chapter

4. Ln(β, σb|θ) is equivalent to eqn (5.4); however, it becomes conditional on detection

function parameters θ when including the effective area as an offset in eqns (5.6) or

(5.7). The maximum number of visits to a site Rj ranged from 4-16 between sites as
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each site consisted of two points and was visited 1−4 times in each of the two survey

years.

As distances were recorded in intervals (rather than exact distances), the likelihood

for the detection function component, LyG(θ) was defined as the multinomial likeli-

hood given in eqn (4.5) of chapter 4. As before, we only analysed data from the three

innermost distance intervals (see chapter 2 for details). For the detection function

models, we considered the half-normal and hazard-rate key functions as the two (non-

nested) model options (Buckland et al., 2001). For the count model, we considered

all possible combinations of the covariates year, type, Julian day and state. We ran

two different analyses on the same data: firstly, regular RJMCMC with a global zero-

mean random effect (as shown in eqn (5.6)) which we refer to as the global zero-mean

analysis (GZM).

To implement hierarchical centering, we pulled the intercept β0 and covariate state

from the λjpr model to include them in the model for the random effect mean (as

shown in eqn (5.7)). This analysis will be referred to as HC in the following. We

used predefined proposal distributions for all parameters. These were the same for

both analyses (see Table 5.1). A priori model probabilities were considered equal and

the identity function used for the bijective function; hence, the Jacobian for calculat-

ing the acceptance probability for the between-model move given in eqn (4.11) from

chapter 4 equalled one. For both analyses, we placed the same set of uniform priors

on the parameters (Table 5.1).

For each analysis, the chain was started with the most parsimonious models: the

half-normal detection function and a density model containing the fixed effect inter-

cept and a random effect for site. However, we ran additional chains for each type
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of analysis (GZM and HC) that included state in the initial density model which we

refer to as GZM-state and HC-state in the following. We ran 200 000 iterations for

each analysis, the first 20 000 were considered as the burn-in phase. The effective

sample size was calculated for each parameter using the function effectiveSize from

the R package coda.

Table 5.1: Means and standard deviations (SD) of normal proposal distributions
for model parameters as well as their lower and upper boundaries for uniform prior
distributions. HN and HR refer to the half-normal and the hazard-rate detection
functions respectively.

Proposal Distributions Uniform Priors

Parameters Mean SD Lower Upper

Detection Function

Scale HN: 37 2 10 99

Scale HR: 28 2 10 99

Shape HR: 2 1 1 10

Density

Random effect SD - - 0 1

Intercept: - - -20 -7

Year level: 2007 0.05 0.2 -1 1

Type level: Treated 0.3 0.1 0 1

Julian Day: 0.0055 0.003 -0.1 0.1

State level: IL 0.4 0.5 -2.5 2.5

State level: IN 0.3 0.5 -2.5 2.5

State level: KY 0.7 0.5 -2.5 2.5

State level: MO 0 0.5 -2.5 2.5

State level: MS 0.5 0.5 -2.5 2.5

State level: OH 0 0.5 -2.5 2.5

State level: SC 0.2 0.5 -2.5 2.5

State level: TN 0.8 0.5 -2.5 2.5
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5.3.2 Results

The preferred detection model was the hazard-rate function with posterior probabil-

ity of 1.00 for all analyses (Table 5.2). Probabilities for the density models differed

between the methods. When the chain was initialised without state in the model,

the preferred model for density from the GZM analysis included the covariates type

and Julian day with probability 0.85. The alternative model included the additional

covariate year and was selected during the remaining 15% of the iterations. The

covariate state was never included in any of the models for this analysis.

By contrast, all other analyses, including GZM-state, HC and HC-state, included

Table 5.2: Posterior model probabilities for the analyses of the indigo bunting data.
GZM and the HC analyses did not include state in the initial model. GZM-state and
HC-state did include state in the initial model.

Analysis GZM GZM-state HC HC-state

Detection Function Model

CDS: Hazard-rate key 1.000 1.000 1.000 1.000

Density Model

Type + JD 0.851 – – –

Year + Type + JD 0.149 – – –

Type + State – 0.735 – 0.066

Year + Type + State – 0.004 – 0.004

Type + JD + State – 0.259 0.946 0.876

Year + Type + JD + State – 0.002 0.054 0.054

state with probability = 1.00. The preferred model for GZM-state included type and

state (0.74 probability) (Table 5.2). The second most preferred mode included the

additional covariate Julian day (0.26 probability). Two more models were selected
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including type, year and state (< 0.01 probability) and year, type, year and state

(< 0.01 probability).

The preferred model for the HC analysis included type, Julian day and state (0.95

probability) and the second most preferred model included type, Julian day, year

and state (0.05 probability) (Table 5.2). Similarly, the preferred model for HC-state

included type, Julian day and state (0.88 probability). Three other models were se-

lected including type and state (0.07 probability), year, type, Julidan day and state

(0.05 probability) and year, type and state (< 0.01 probability).

When comparing the probabilities of being in the model for different covariates be-

tween analyses, we found the largest discrepancies for covariates state and Julian day

(Table 5.2). The probability of state being in the model was 0.00 for GZM and 1.00

for all other analyses. This discrepancy caused us to believe that the chain for the

GZM analysis had not converged. For covariate Julian day, the probability of being

in the model was 0.26 for the GZM-state analysis, while it was 0.93 for HC-state and

1.00 for the remaining two. Again, this caused us to believe that the chain of the

GZM-state analysis had not converged.

Summary statistics for the parameters of the preferred models resulting from the

four analyses are given in Table 5.3. Means and 95% credible intervals (CRI) were

nearly identical between analyses for detection function parameters of the hazard-rate

detection function.
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Table 5.3: Mean and 95% credible intervals for models with highest posterior support
from the respective analyses. State level GA is absorbed in the intercept.

Analysis GZM GZM-state HC HC-state

Detection Function Parameters

Scale σ 28.20 28.16 28.05 28.24

(25.03,31.25) (24.91,31.21) (25.00,31.04) (25.00,31.04)

Shape τ 2.08 2.08 2.08 2.09

(1.92,2.26) (1.91,2.25) (1.92,2.25) (1.92,2.26)

Density: Random Effects Parameters

Standard deviation σb 0.77 0.58 0.51 0.51

(0.65,0.91) (0.49,0.68) (0.45,0.57) (0.45,0.57)

Density: Fixed Effect Parameters

Intercept β0 -10.62 -9.85 -10.44 -10.63

(-11.21,-10.13) (-10.12,-9.59) (-10.97,-10.01) (-11.22,-10.01)

Type level: Treated β4 0.31 0.31 0.30 0.31

(0.24,0.37) (0.24,0.37) (0.24,0.37) (0.24,0.37)

Julian Day β3 0.008 – 0.004 0.005

(0.006,0.012) – (0.002,0.007) (0.002,0.009)

State level: IL β1IL - 1.04 0.97 0.95

- (0.70) (0.63,1.32) (0.60,1.31)

State level: IN β1IN - 0.85 0.79 0.77

- (0.49,1.16) (0.45,1.14) (0.42,1.12)

State level: KY β1KY
- 1.35 1.24 1.21

- (1.03,1.66) (0.90,1.57) (0.87,1.55)

State level: MO β1MO
- 0.43 0.35 0.33

- (0.15,0.72) (0.04,0.67) (0.01,0.66)

State level: MS β1MS
- 1.22 0.97 0.96

- (0.89,1.56) (0.64,1.31) (0.61,1.30)

State level: OH β1OH
- 0.56 0.39 0.36

- (0.25,0.86) (0.07,0.72) (0.03,0.69)

State level: SC β1SC
- 0.78 0.68 0.66

- (0.45,1.12) (0.32,1.04) (0.30,1.02)

State level: TN β1TN
- 1.45 1.38 1.35

- (1.13,1.78) (1.04,1.72) (1.01,1.70)



99

By contrast, summary statistics of the random effects standard deviation of the den-

sity model were very different between the analyses. In particular, the mean of this

parameter was larger for the GZM analysis and CRIs did not overlap those from ei-

ther analysis involving hierarchical centering. For the GZM-state analysis, the mean

and CRIs for this parameter were closer to those from the HC and HC-state analyses

than to the GZM analysis. Although surprisingly similar, the intercept of the density

model cannot be compared between the GZM and the remaining three analyses as it

represents a global mean for GZM and the mean for state GA only for the others.

The mean for this parameter from GZM-state was larger which was likely due to the

fact that here the preferred model did not include Julian day. For the type covariate,

mean and CRIs were almost identical. For covariate Julian day, the mean and limits

for CRIs were larger for GZM compared to HC or HC-state. For the coefficients of

the different state levels, means were all greater than zero, indicating that the state

absorbed in the intercept, GA, had the lowest bird densities.

The effective sample sizes for detection function parameters and for the intercept and

type covariate of the density model were similar for all four analyses (Table 5.4). How-

ever, for the GZM-state analysis, the effective sample sizes for the state coefficients

were consistently larger than those from HC or HC-state. On the other hand, effec-

tive sample sizes for the random effects standard deviation were consistently larger

for analysis with hierarchical centering than for those without.
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Table 5.4: Effective sample sizes for model parameters from the four RJMCMC anal-

yses.

Parameter GZM GZM-state HC HC-state

Detection function

Scale 856 916 853 741

Shape 1045 1160 997 934

Density: random effects

Standard deviation 249 324 1408 1259

Density: fixed effects

Intercept Density 78 243 184 82

Type Treatment 9516 8846 11152 9484

Julian Day 83 – 47 22

State IL – 540 113 49

State IN – 483 120 52

State KY – 368 76 32

State MO – 447 51 22

State MS – 497 102 45

State OH – 430 71 31

State SC – 559 122 55

State TN – 500 94 43

5.4 Discussion

The purpose of incorporating random effects in count models is generally to model

variation that is otherwise unaccounted for. When using RJMCMC methods, the dan-

ger exists that the random effect coefficients account for too much of the variation

and prevent the inclusion of a fixed effect covariate into the model. We demonstrated

this case with our GZM analysis that was initiated without state in the model. Due
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to lack of convergence, the covariate state was never selected and the resulting ran-

dom effect standard deviation was much larger compared to the GZM-state, HC or

HC-state analyses. The HC analysis was also initiated without state in the model but

revealed posterior probabilities of state being in the model of 1.00. However, for both

analyses that were initiated without state in the model, GZM and HC (as well as for

HC-state), the random effect coefficients absorbed the effect of the state covariate.

For GZM, this prevented the inclusion of this parameter into the model. For HC, this

favoured the inclusion of state into the model as here this covariate was part of the

model for the random effect mean.

Similarly, the chain from the GZM-state analysis revealed different probabilities of

being included in the model for Julian day (total probability of being included in any

density model = 0.26) compared to the other analyses (total probability of being in-

cluded in any model = 1.00, 1.00 and 0.93 for GZM, HC and HC-state, respectively).

As this covariate was not part of the preferred model for the GZM-state analysis, this

likely caused means and CRIs of the intercept and state coefficients to be different

compared to the other analyses. The mean and CRIs for this parameter were also

larger for GZM than for HC or HC-state. It is likely that for the latter two, the

inclusion of the state covariate in the density model caused this change rather than

any change in analysis method or resulting dynamics. On the other hand, implement-

ing hierarchical centering had no effect on detection function parameters or the type

covariate from the density model. For these, summary statistics were nearly identical

between all analyses.

We could not confirm the findings of Browne (2004), that implementing hierarchical

centering would improve the effective sample size for the covariate involved in the
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centering. He compared the effective sample sizes for the same covariate in two dif-

ferent MCMC chains, one with hierarchical centering and one without. Our example

was different in that we used RJMCMC chains. However, for our case study, effective

sample sizes were similar for all parameters between the analyses except for the ran-

dom effect standard deviation and the state covariate. For the former, the effective

sample size increased using hierarchical centering while for the latter effective sam-

ple sizes decreased using hierarchical centering – the latter being a contradiction to

Browne (2004).

Overall we showed that the main benefit of implementing hierarchical centering lies

in improving mixing between-models and, hence, in improving inference on model pa-

rameters. For our case study, the parameter of interest was type, i.e. how densities dif-

fered between control and treatment points. For this parameter, model probabilities,

summary statistics and hence inference were nearly identical between the analyses.

However, had we been interested in how densities changed between different states,

the parameter of interest would have been state. Inference on this covariate using the

GZM analysis could potentially have led us to believe falsely that this covariate had

no effect on densities. Similarly, had our interest been temporal variation in densities

of indigo buntings throughout the year, inference on the Julian day covariate from

the GZM-state analysis could have falsely lead us to believe that this covariate had

no effect on densities.



Chapter 6

Incorporating random effects in

the detection function for line

transect data

6.1 Introduction

Distance sampling is a commonly used tool for wildlife studies where the interest lies

in obtaining estimates N̂ of the number of animals N in the study area (e.g. Archer

et al., 2008; Buckland et al., 2001; De Segura et al., 2007; Edwards and Kleiber,

1989; Palacios et al., 2012). The most common form of distance sampling is line

transect sampling, in which lines are laid out in the study area according to some

design and observations of animals are made along these lines during the survey(s).

To scale up from the observed number of animals during the survey(s) n to N̂ , a

Horvitz-Thompson-like estimator is used (Borchers et al., 1998; Yuan, 2012) where

the number of observed animals is divided by the inclusion probability, assuming that

103
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this inclusion probability is the same for all animals. Hence, this method relies on

obtaining an asymptotically unbiased estimate of the inclusion probability from addi-

tional data collected during the survey. In the simplest case, this information consists

of the distances to the detections.

For line transect data the inclusion probability consists of two components, the av-

erage detection probability Pa within the search area and the probability that the

animal was within the covered area πa (i.e. the area that the observer(s) searched in)

(Buckland et al. 2001, Thomas et al., unpublished manuscript). Then, the estimator

for the total number of animals N̂ is given by N̂ = n/(πaP̂a). The proportion of area

surveyed πa (πa = covered area/survey area = a/A) assumes that the covered area is

a good representation of the study area which relies on an appropriate survey design

(e.g. Buckland et al., 2001; Strindberg and Buckland, 2004). To obtain an estimate of

the average detection probability P̂a within the search area, we need a flexible model

for the detection function to capture the decay in detection probabilities with increas-

ing distance from the line. Using conventional distance sampling (CDS) methods it is

generally assumed that all animals on the line are detected with certainty while with

increasing distances, detection probabilities may decrease (Buckland et al., 2001).

Flexible detection functions that capture the shape of this decay well, are the half-

normal and hazard-rate detection functions in combination with adjustment terms.

An estimator for animals within the covered region is then given by

N̂Pa = n/P̂a. (6.1)
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It has been shown that this estimator yields approximately unbiased estimates, even

though different animals may have different detection probabilities, e.g. due to dif-

ferent properties that makes them easier/harder to detect or different observation

conditions at different times of the survey. This quality is generally referred to as the

pooling robustness criterion (Burnham et al. 1980; Buckland et al. 2004), which, for

line transects, may be expressed as:

n

P̂a
≈

n∑
e=1

1

P̂ae
. (6.2)

On the right hand side of this equation, the estimate of the average detection proba-

bility P̂ae is given for each of e = 1, 2, ..., n individuals. Despite the fact that pooling

robustness generally holds, there may be an interest in modelling the Pae . This in-

terest may arise, e.g. when abundance estimates are desired for subareas of the study

region (e.g. different habitats) or during different survey years. It has also been shown

that this approach may increase precision of the abundance estimate (Marques et al.,

2007). The Pae are generally estimated by including covariates in the detection func-

tion model which allow the detection function for the eth detection to be adjusted

depending on the covariate values associated with the detection (Marques and Buck-

land, 2003, 2004).

An approach for fitting flexible detection functions which allows but does not rely on

the use of covariates was presented by Miller and Thomas (unpublished manuscript),

who proposed the use of mixture models. Here, the detection function is composed of

(in their notation) J mixture components (each a detection function that may contain

adjustment terms and/or covariates) which are scaled by mixing proportions φj.

However, we investigate the case where heterogeneity in detection probabilities exists
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but requires too many parameters to be estimated using fixed effect covariates or a

small number of mixture components. We build upon the multiple covariate distance

sampling (MCDS) approach where the fixed effect covariates enter the detection func-

tion via the scale parameter of the half-normal or hazard-rate key function (Marques

and Buckland, 2003). We use a half-normal detection function and model the scale

parameter using an intercept common to all detections and random effects coefficients

for the different detections for which we assume normality with a zero-mean (Laake

and Skaug, unpublished manuscript). This allows fitting a flexible detection function

at the cost of only one additional parameter, the random effects standard deviation.

This model may also be extended to include fixed effect covariates. We present the

likelihood for this detection function as well as two estimators for abundance and

associated variances. One estimator is a function of the expected average detection

probability estimated from a detection function with a random effect. The second

estimator is a function of the expected value of the reciprocal of the average detection

probability and also estimated from a detection function with a random effect. Both

estimators use simulated values from the estimated distribution of the random effects

coefficients to calculate the expected values.

In the following sections we revise the likelihood and estimators for abundance us-

ing CDS methods (section 6.2). We then develop the likelihood and estimators for

incorporating random effects in the detection function (section 6.3). We compare

the performance of the new estimators to CDS estimators using a simulation study

(section 6.4). Finally, we discuss the consequences of these findings (section 6.6).



107

6.2 The detection function without random effects

- conventional distance sampling methods

We begin by reviewing the likelihood for the probability density function of observed

distances f(y) and estimators for the average detection probability using CDS meth-

ods. The probability density function is given by f(y) = π(y)g(y)/
∫ w
0 π(y)g(y)dy

(Buckland et al., 2001), where w is the truncation distance (i.e. the furthest distance

included in the analysis). The y refer to perpendicular distances from the line; π(y)

describes the expected distribution of animals with respect to increasing distances

from the line out to w. As is generally done for CDS methods, we assume that lines

were placed in the study area independently of the distribution of animals, hence on

average resulting in a uniform distribution for this function, π(y) = 1/w.

For CDS methods, we also assume that all animals on the line are detected with cer-

tainty. Then, the detection function g(y) can be modelled using e.g. the half-normal

(exp (−y2/2σ2) or the hazard-rate model (1 − exp (−(y/σ)τ ). In the case that dis-

tances are measured exactly (as opposed to in distance intervals) the likelihood of the

parameter given the data is defined as:

Ly(θ) =
n∏
e=1

f(ye), (6.3)

where ye is the distance of the eth detection from the line, e = 1, 2, ..., n. Maximising

this likelihood returns the values for the detection function parameters that yields the

best fit to the observed data given the detection function. Generally, we maximise the

log of eqn (6.3). AIC values may be used to compare the fits of competing models.

We use ĝ(y) to denote the best fitting detection function.
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To obtain an estimate of the average detection probability Pa in the covered area, we

use the following relationship:

P̂a =
µ̂

w
=

∫ w
0 ĝ(y)dy

w
, (6.4)

that expresses the average detection probability as the effective strip half width µ̂

divided by the truncation distance. The effective strip half width is defined as the

perpendicular distance from the line beyond which as many animals were detected

as were missed within and is estimated by integrating ĝ(y) between zero and the

truncation distance. We divide the number of detections n by the estimated average

detection probability to obtain an estimate of the number of animals in the covered

region N̂Pa as in eqn (6.1) and refer to this as the Pa estimator. We then divide this

estimate by πa to scale up from the estimated numbers of animals in the covered area

to the estimated number of animals in the study area:

N̂ =
N̂Pa

πa
. (6.5)

6.2.1 Estimating the variance

Maximising the likelihood given in eqn (6.3) using e.g. the optim command in R, pro-

duces a Hessian matrix H which can be used to estimate the variance of the detection

function parameter estimates θ̂. The variance associated with the ith element of θ̂ is

the ith element of the main diagonal of the inverse Hessian, H−1.

To estimate the variance of the average detection probability using the Hessian, we use

the first derivative of eqn (6.4) with respect to the individual parameters contained

in θ evaluated at θ̂ (Borchers et al., 2002). An estimate of the variance associated
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with P̂a is given by:

v̂ar(P̂a) =
1

w2

[
∂µ̂

∂θ

∣∣∣∣
θ=θ̂

]T
H−1

[
∂µ̂

∂θ

∣∣∣∣
θ=θ̂

]
. (6.6)

These first derivatives can be difficult to obtain analytically. Hence, we use finite

differences instead (see Appendix C.1 for details).

The estimate of the variance of P̂a in combination with an estimate of the variance

of the encounter rate (Fewster et al., 2009) along the lines can be converted into a

variance estimate of the number of animals in the study area (abundance) using the

delta method (Buckland et al., 2001). The variance of abundance can be used to

create log-based confidence intervals for the abundance estimate. These methods are

detailed in Appendix B.

6.3 The half-normal detection function with ran-

dom effects

For this approach we assume that heterogeneity in detection probabilities exists be-

tween different detections due to differences in detection functions. As before, we

use the conditional probability density function of observed distances, f(y). How-

ever, now we introduce a random effect in the model for the scale parameter of the

half-normal detection function which is given for the eth detection as:

σe = β0 × exp(be). (6.7)
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Here, β0 is the intercept common to all detections and be is the random effect coef-

ficient for the eth detection. We assume these coefficients are normally distributed

with a zero-mean and unknown standard deviation σb (be ∼ N(0, σ2
b )). For simplicity,

we focus on the half-normal key function without adjustment terms, although meth-

ods could be extended to the hazard-rate model and to include adjustment terms.

The latter, however, might not be necessary as this function with the random effects

may provide sufficient flexibility.

The likelihood of the parameters (θ = β0, σb) given the data is then defined as (Laake

and Skaug, unpublished manuscript):

Ly(θ) =
n∏
e=1

∫∞
−∞ g(ye|β0, be)× π(be)dbe∫∞

−∞
∫ w
0 g(y|β0, be)dy × π(be)dbe

(6.8)

where ye refers to the distance of the eth detection from the line (with e = 1, 2, ..., n).

The component π(be) is the normal density for the eth random effect coefficient. The

estimates of the detection function parameters are obtained by maximising the log of

this likelihood. The random effect coefficients are not estimated individually but are

integrated out.

To obtain an estimate of the number of animals in the covered area, two estimators

are available that include a random effect (Potts, 2011). Both estimators use simu-

lated values from the distribution of the random effects coefficients. These and their

respective variance estimators are discussed in the following.

6.3.1 The Pr estimator

This approach uses the expected value of the average detection probability P̂r (defined

in the following eqn) to scale up from the number of detected animals n to an estimate
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of the number of animals in the covered area, denoted as N̂Pr :

N̂Pr =
n

P̂r
=

n∫∞
−∞ π̂(be)P̂edbe

(6.9)

where π̂(be) denotes the normal density of the random effects coefficient be (with

be ∼ N (0, σ̂2
b )). The estimate of the average detection probability for the eth detection

P̂e is given by P̂e =
∫ w
0 ĝ(y, β̂0, be)dy/w =

∫ w
0 exp

(
−y2

2(β̂0×exp(be))2

)
dy/w and hence is a

function of the random effects coefficients be (as well as of the fixed intercept β̂0)

(modified from Potts, 2011). Here, ĝ() denotes the half-normal detection function for

which the scale parameter is modelled using β̂0 and be (see eqn (6.7)). Similar to the

Pa estimator from section 6.2, we will refer to eqn (6.9) as the Pr estimator in the

following.

In practice, the random effect of eqn (6.9) can be integrated out via simulation. For

this we combine eqns (6.4) and (6.7) and simulate values for be by drawing E = 10000

random samples from N(0, σ̂2
b ). For each sampled be, a new value is calculated for

the average detection probability which we denote P̂esim . The expected value of the

average detection probability Prsim is estimated using:

P̂rsim =

∑E
e=1 P̂esim
E

=

∑E
e=1 µ̂esim
E × w

=

∑E
e=1

∫ w
0 ĝ(y, β0, be)dy

E × w
, (6.10)

which replaces the P̂r in eqn (6.9) for obtaining an estimate of number of animals in

the covered area. To scale up from numbers of animals in the covered area to number

of animals in the study area we use πa as before:

N̂ =
N̂Pr

πa
. (6.11)
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6.3.1.1 Estimating the variance

Again, we use the inverse of the Hessian H returned from the optimisation algorithm.

The main diagonal ofH−1 gives the variance estimates of the parameters (θ̂ = β̂0, σ̂b).

For converting this Hessian into a variance estimate for P̂r, we use the derivative of

eqn (6.10) with respect to the parameters θ evaluated at θ̂. The estimate of the

variance is then given by:

v̂ar(P̂r) =
1

w2

[
∂µ̂r
∂θ

∣∣∣∣
θ=θ̂

]T
H−1

[
∂µ̂r
∂θ

∣∣∣∣
θ=θ̂

]
, (6.12)

where µ̂r =
∫∞
−∞ π̂(be)

∫ w
0 ĝ(y, β̂0, be)dydb. As before, the derivative is obtained using

finite differences. However, here we evaluate this derivative for E = 10000 simulated

values for be and take the average of the resulting values (for details see Appendix C.2).

As before, we combine the variances of the estimated average detection probability

and encounter rate using the delta method to obtain an estimate of the variance of

abundance in the study area (Appendix B).

6.3.2 The (1/Pr) estimator

For this approach we use the expected value of the reciprocal of the average detection

probability ̂(1/Pr) (defined in the following eqn). The estimator for number of animals

in the covered area for this approach, N̂1/Pr is given by:

N̂1/Pr = n×
̂( 1

Pr

)
= n×

∫ ∞
−∞

π̂(be)

P̂e
dbe (6.13)

(modified from Potts, 2011). As before, π̂(be) denotes the normal density of the

random effects coefficients, be ∼ N (0, σ̂2
b ). The average detection probability P̂e is
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calculated using P̂e =
∫ w
0 ĝ(y, β̂0, be)dy/w =

∫ w
0 exp

(
−y2

2(β̂0×exp(be))2

)
dy/w for varying

values of be.

Again, the random effect of eqn (6.13) is integrated out via simulation by drawing

E = 10000 random samples from N(0, σ̂2
b ). For each sampled be, we calculate a new

value for (1/P̂esim). The expected value of the reciprocal of the average detection

probability ̂(1/Prsim) is then given by:

̂(
1

Prsim

)
=

1

E

E∑
e=1

1

P̂esim
=

1

E

J∑
e=1

w

µ̂esim
=

1

E

E∑
e=1

w∫ w
0 ĝ(y, β̂0, be)dy

. (6.14)

For this approach ̂(1/Prsim) is substituted for ̂(1/Pr) in eqn (6.13). Similar to above,

we use the following to scale up from numbers of animals in the covered area to

number of animals in the study area using πa:

N̂ =
N̂1/Pr

πa
. (6.15)

6.3.2.1 Estimating the variance

The variance estimator associated with the ̂(1/Pr) estimator is given by:

v̂ar
̂( 1

Pr

)
= w2

∂
(̂

1
µr

)
∂θ

∣∣∣∣
θ=θ̂


T

H−1

∂
(̂

1
µr

)
∂θ

∣∣∣∣
θ=θ̂

 , (6.16)

where (1̂/µr) =
∫∞
−∞

π̂(be)∫ w

0
ĝ(y,β̂0,be)dy

db. As parameter estimates for this approach are

obtained by maximising the same likelihood as for the Pr estimator, we use the same

Hessian as in section 6.3.1.1. However, now we use the derivative of eqn (6.14) with

respect to the detection function parameters θ = β0, σb evaluated at θ̂. As before,
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the derivative is obtained using finite differences (see Appendix C.3). The variance

of the total abundance in the study area is obtained by combining v̂ar
(̂

1
Pr

)
and the

encounter rate variance using the delta method. Log-normal confidence intervals are

constructed using the methods described in Appendix B.

6.4 Simulation study

6.4.1 Generating simulated data

We conducted a simulation study to evaluate the bias and precision of estimators

for Pa (eqn (6.4)), Pr (eqn (6.10)) and (1/Pr) (eqn (6.14)) and respective variance

estimators (eqns (6.6), (6.12) and (6.16)) for different degrees of heterogeneity in de-

tection probabilities between detections.

Each simulation consisted of the following steps. We used the R package wisp (Zuc-

chini et al., 2007) to create a new study area of known dimensions and abundance of

animals that were evenly distributed throughout the study area. Animals occurred

as individuals as opposed to in clusters and had equal exposures (exposures allow

the user of wisp to make some animals more detectable than others). In this study

area, we randomly placed a number of lines of the same length along which detec-

tions were made within a predefined search area (out to truncation distance w) during

a simulated survey. Detection probabilities were certain on the line and decreased

with increasing distance from the line according to a half-normal detection function

model.

Using the wisp package, the only option to manipulate the scale parameter of the

half-normal detection function directly is by modelling this parameter individually
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for each line in the study area with the setpars.survey.lt function. The arguments

disthalf.min and disthalf.max of this function allow specifying the perpendicular dis-

tances, at which detection probability is 0.5 for animals with minimum and maximum

exposure, respectively. For a half-normal detection function, the relationship between

either of these distances and the scale parameter is given by dishalf.min = c ∗ scale

with c =
√
−2 log(0.5) or equally dishalf.max = c ∗ scale. Setting dishalf.min =

disthalf.max for each line, all animals detected along the same line shared a common

detection function.

Using this relationship between disthalf.min and the scale parameter, heterogeneity in

detection probabilities between individual lines was introduced using eqn (6.7) where

the scale parameter of the half-normal detection function for each of k = 1, 2, ..., K

lines was modelled as σk = β0×exp(bk) (with bk ∼ N (0, σ2
b )). The parameters β0 and

σb were known and a random sample was drawn for the bk of each line. Detections

that were made along these lines were extracted from the wisp objects and analysed

with each of the estimators (see next section for analysis details).

This completed one simulation. For each simulation we specified a different seed for

the steps involving the placement of animals in the study area, the drawing of the

random effect coefficients and placement of the lines to ensure that each simulation

was unique. The simulations were repeated 1000 times for each set of known parame-

ters. These settings included the number of lines, the number of animals in the study

area N , the truncation distance w, the detection function parameters β0 and σb and

the size of the study area (and hence the proportion of the study area covered πa,

Table 6.1). The differences in numbers of lines, N and detection probabilities between

the different sets resulted in differences in the average total number of detections, the
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average number of detections per line and the number of lines that had detections.

Table 6.1: Settings for the four sets of simulations: K and N respectively refer to the
total number of lines and animals in the study area, w is the truncation distance, β0
and σb are the detection function parameters and πa is the proportion of the study
area covered. Also shown are the resulting means (and standard deviations) of the
total number of detections, detections per line and lines with detections. Note that
the size of the study area A varied between sets with A = 2wK/πa.

σb = 0.2 σb = 0.5

Set 1 2 3 4

K 200 50 200 50

N 10 000 10 000 20 000 8 000

w 5 5 18 18

β0 1.70 1.70 5.10 5.10

πa 0.2 0.125 0.072 0.18

Total detections 862.25 (31.65) 536.93 (27.82) 552.70 (28.82) 553.30 (42.39)

Detections per line 4.39 (2.17) 10.74 (3.83) 3.10 (1.91) 11.09 (5.89)

Lines with detections 196.30 (1.89) 49.99 (0.08) 178.07 (4.43) 49.90 (0.30)

6.4.1.1 Visualising heterogeneity in detection probabilities

To illustrate the effect of normally distributed random effects, i.e. be ∼ N(0, σ2
b ), en-

tering the detection function via the scale parameter using the model from eqn (6.7),

we plotted these for the cases where β0 was fixed and be ∼ N(0, 0.22) or be ∼ N(0, 0.52)

in Figure 6.1. For each of the two cases, 200 random samples for be were drawn and

detection functions calculated of which we plotted those with the minimum, maxi-

mum, mean, 2.5 and 97.5 percentile values of be. In addition, the mean of the 200

detection functions was calculated and plotted in the same Figure.
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Naturally, heterogeneity increased with increase in random effects standard deviation.

However, the difference between the detection function where the scale parameter was

modelled using the mean of the random effects coefficients (mean(be) from Figure 6.1)

and the mean of all 200 detection functions (mean from Figure 6.1) also increased

with increase in random effects standard deviation. For the mean of these functions,

detection probabilities were smaller for small distances but larger for larger distances

when compared with the detection function corresponding to the mean of the random

effect. This was an indication that a half-normal model without adjustment terms

or random effects might not be sufficiently flexible to capture the decay in overall

detection probabilities for this type of heterogeneity, if we rely on pooling robustness

and do not model the heterogeneity.

Hence, the four sets of simulations with two different values for the random effect

standard deviation will allow us to assess the effects of increasing amounts of het-

erogeneity in detection probabilities on the performance of the estimators described

above.

6.4.2 Analysis

For each simulation, we extracted the detections from the wisp objects and fitted the

probability density functions both without and with random effects by maximising

the log of the respective likelihoods given in eqns (6.3) and (6.8). For the mod-

els without the random effect we included a selection routine where the best fitting

model was chosen between a set of contending models. This was done to ensure that
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Figure 6.1: Half-normal detection functions for which the scale parameter was mod-
elled with random effects. Shown are the functions resulting from the minimum,
maximum, 2.5 and 97.5 percentiles and the mean of randomly sampled 200 coeffi-
cients be. In addition, the mean of all detection functions is plotted in green.

a sufficiently flexible model was fitted to the detections so that pooling robustness

would hold.

We tested the half-normal and hazard-rate key functions and without adjustment

terms or with cosine adjustment terms of orders up to 5. However, the hazard-rate

function and the adjustment terms of orders higher than 3 were omitted as best bias

and coverage results were obtained by using only the half-normal with adjustment

terms of orders up to 3. Hence, models included were the half-normal key function

either without adjustment terms or with cosine adjustment terms of orders up to 3.

For the models fitted without the random effect, we distinguished between estimators

with and without model selection in the following where PaHN refers to the Pa esti-

mator where only the half-normal model without adjustment terms was considered,

while Pa∗ refers to the estimator with model selection.
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We then used the estimators for the average detection probability without a random

effect (PaHN estimator from eqn (6.4) and v̂ar(P̂aHN) from eqn (6.6)) to obtain an

estimate of abundance in the covered area and scaled up using methods described in

section 6.2 to obtain an estimate of abundance in the study area N̂ with associated

95% log-normal confidence intervals for each simulation. The same was repeated for

the Pa∗ estimator.

For the estimators with a random effect we only included the half-normal model with-

out adjustment terms. Even though the data was generated using the same random

effect coefficient for all detections made along the same lines (i.e. bk ∼ N(0, σ2
b ) for

k = 1, 2, ..., K lines), we used the model given in eqn (6.8) where the random effects

coefficients were assumed to differ between different detections (i.e. be ∼ N(0, σ2
b ) for

e = 1, 2, ..., n detections). One could argue that in a real life situation, heterogeneity

in detection probabilities exists between groups of detections (e.g. those made along

different lines, by different observers, different observation conditions, etc. or a com-

bination of different factors), but too many different groups exist to model them as

fixed effects. In addition, as it is often impossible to define these groups that share a

common detection function in a real life situation, we wanted to investigate how the

estimators from above perform when ignoring these groups and assuming individual

random effects.

We obtained estimates of abundance in the covered area N̂Pr and N̂1/Pr from the re-

sulting parameter estimates where the likelihood included a random effect, using the

Pr and (1/Pr) estimators (eqns (6.10) and (6.14)). Associated variances v̂ar(P̂r) and

v̂ar ̂(1/Pr) were estimated using eqns (6.12) and (6.16). The estimates of abundance

in the covered area were then scaled up to estimated abundance in the study area
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including associated 95% log-normal confidence intervals using the methods described

above (sections 6.3.1 and 6.3.2).

The performance of the estimators was evaluated by examining the bias of the result-

ing abundance estimates and whether 95% log-normal confidence intervals produced

the appropriate coverage rate. Percent bias was estimated by taking the mean and

standard error of 100 × (N̂ − N)/N of the 1000 simulations (N̂ and N are the esti-

mated and true abundances in the study area, respectively). Coverage was considered

appropriate if anywhere between 936 and 962 confidence intervals from a set of 1000

simulations covered the true value for abundance. (1000 binomial trials, each with

p=0.95, generate between 936 and 962 successes 95% of the time.)

To evaluate the performance of the variance estimators for P̂aHN , P̂a∗, P̂r and ̂(1/Pr),

we compared the standard deviation of the 1000 abundance estimates to the mean of

the 1000 associated standard errors for the respective simulation sets. These should

approximately be the same.

6.4.3 Results

6.4.3.1 Parameter estimates

We begin by summarising the parameter estimates obtained for the simulations by

maximising the likelihoods using a half-normal detection function without and with

normally distributed random effects (without adjustment terms). Mean and standard

deviations of these estimates are shown in Table 6.2. The estimates for β0 and σb were

approximately unbiased when using the likelihood with the random effects. The fact

that β0 estimates were larger than truth for the estimator without the random effect
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was expected as the mean of all detection functions from the respective simulation

was larger than a detection function using β0 only (i.e. 1/K
∑K
k=1(β0×exp(bk)) > β0).

Table 6.2: Mean (and standard deviation) of parameters estimates obtained from
1000 simulations using the half-normal detection function with and without random
effects (RE).

Set 1 2

Parameter β̂0 σ̂b β̂0 σ̂b

without RE 1.81 (0.05) - 1.79 (0.08) -

with RE 1.72 (0.08) 0.19 (0.10) 1.68 (0.11) 0.20 (0.11)

Truth 1.70 0.20 1.70 0.20

Set 3 4

Parameter β̂0 σ̂b β̂0 σ̂b

without RE 6.71 (0.33) - 6.66 (0.48) -

with RE 5.10 (0.57) 0.50 (0.12) 5.08 (0.64) 0.50 (0.12)

Truth 5.10 0.50 5.10 0.50

6.4.3.2 Bias in abundance estimates using estimated parameter values

The PaHN estimator yielded negatively biased abundance estimates for all simulation

sets, with bias of less than 5% for sets 1 and 2 with the smaller amount of heterogeneity

and between 16 and 18% for sets 3 and 4 with the larger random effects standard

deviation. Including model selection improved bias for CDS methods. Negative bias

using the Pa∗ estimator was less than 2% for sets 1 and 2 and between 2 and 4%

for sets 3 and 4. The Pr estimator on the other hand provided abundance estimates

that were on average unbiased for each set (with bias of less than 1%). The (1/Pr)
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estimator yielded positively biased abundance estimates for all sets, between 3 and

7% for sets 1 and 2 and between 28 and 30% for sets 3 and 4.

Table 6.3: Average bias of abundance estimates (and standard errors) yielded by
different estimators. The estimators involving Pa did not include a random effect in
the detection function, those involving Pr did.

Set 1 2 3 4

Pa HN -4.44% (0.13) -3.57% (0.17) -17.07% (0.15) -16.38% (0.16)

Pa * -1.84% (0.18) -1.07% (0.22) -3.46% (0.22) -2.74% (0.22)

Pr -0.50% (0.16) -0.97% (0.20) 0.40% (0.27) 0.95% (0.26)

(1/Pr) 3.84% (0.24) 6.06% (0.31) 29.30% (0.71) 28.32% (0.75)

6.4.3.3 Coverage rates

Assessing the coverage rate of 95% log-normal confidence intervals, we found substan-

tial differences between estimators (Table 6.4). As mentioned above, we considered

the coverage rates between 93.6 and 96.2% to be appropriate. The PaHN estimator

performed worst where coverage rates were too low for all simulation sets. Here,

coverage rates decreased down to only 9% with increase in random effects standard

deviation. For the Pa∗ estimator, coverage rates were appropriate for set 2, too low

for sets 1 and 3 and too high for set 4. For the Pr estimator, coverage rates were

appropriate for sets 1 and 3 and slightly too high for sets 2 and 4. Using the (1/Pr)

estimator, coverage rates were appropriate for set 1, too high for set 2 and too low

for sets 3 and 4.
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Table 6.4: Coverage rates of log-normal 95% confidence intervals around estimates of
abundance in the study area yielded by the different estimators.

Set 1 2 3 4

Pa HN 86.1% 93.5% 9.9% 37.3%

Pa * 90.3% 93.6% 92.5% 98.3%

Pr 96.2% 97.7% 94.2% 97.3%

(1/Pr) 95.7% 96.7% 70.1% 76.4%

6.4.3.4 Performance of variance estimators

The var(P̂aHN) and var(P̂r) estimators consistently overestimated the variance. The

var(P̂a∗) estimator underestimated variance for sets 1 and 3 and overestimated vari-

ance for sets 2 and 4. The var ̂(1/Pr) estimator overestimated the variance for sets

1 and 2 and underestimated it for sets 3 and 4. Variance estimates were generally

smallest for the var(P̂aHN) estimator and increased by including model selection or

random effects. Variance estimates were highest for the var ̂(1/Pr) estimator.

6.5 Simulations without random effects

In addition to the above simulations, we ran four sets of simulations (1000 iterations

each) where the number of lines and animals in the study area, the truncation dis-

tance, the scale parameter of the half-normal detection function and the proportion

of the study area that was covered were the same as in Table 6.1. The random effects

standard deviation, however, was set to zero. These simulations served two purposes.
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Table 6.5: Assessing performance of variance estimators by comparing the standard
deviation of the 1000 abundance estimates (sd) to the mean of the standard errors
associated with the individual abundance estimates (s̄e).

Set 1 2 3 4

Estimator sd s̄e sd s̄e sd s̄e sd s̄e

var(P̂a) HN 399.89 428.03 531.45 579.87 961.47 1023.87 411.06 549.37

var(P̂a) * 577.42 500.50 657.47 703.38 1415.11 1389.81 540.08 700.08

var(P̂r) 494.62 540.62 641.52 724.13 1679.46 1711.96 651.56 825.81

var ̂(1/Pr) 762.34 808.44 975.78 1072.72 4610.80 4092.37 1906.73 1723.42

Firstly, we wanted to verify that this simulation technique using the wisp package

(from creating a study area to surveying along the randomly placed lines) produced

detections that could be analysed reliably using CDS methods. Hence, we evaluated

bias and coverage rates for the P̂aHN estimator. No model selection was included

here as we knew the true model the data originated from was the half-normal key

function without adjustment terms. Secondly, we wanted to test how the estimators

from section 6.3 performed when the random effect was fitted despite the fact that

all detections originated from one common detection function.

Bias in abundance estimates was generally low (i.e. less than 2%) for the PaHN and

the Pr estimator, while it was slightly larger for the (1/Pr) estimator (Table 6.6).

Coverage rates were high enough for all estimators, except they were larger than

what we defined as appropriate above for the PaHN estimator for sets 2 and 4, where

they were 100% and slightly too large for the (1/Pr) estimator for set 2.

Hence, we were able to draw the following conclusions: 1. The detections can be

analysed reliably using CDS methods, although some of the coverage rates using the
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PaHN estimators were too high. 2. The Pr estimator produces reliable results even

though a random effect was fitted to detections that shared a common detection func-

tion. The positive bias in the estimates from the (1/Pr) estimator was moderate.

Table 6.6: Bias (and standard errors) in abundance estimates as well as coverage
rates of 95% log-normal confidence intervals for the four sets of simulations without
random effects yielded by the estimators in the left column.

Set 1 2 3 4

Bias

PaHN 0.88% (0.13) -1.16% (0.26) -0.22% (0.05) 0.35% (0.17)

Pr 0.64% (0.15) 1.66% (0.31) 0.38% (0.05) 1.52% (0.18)

(1/Pr) 2.13% (0.19) 4.89% (0.44) 0.50% (0.06) 2.44% (0.21)

Coverage

PaHN 94.9% 100.0% 96.1% 100.0%

Pr 95.2% 96.0% 95.6% 95.1%

(1/Pr) 95.6% 96.9% 96.0% 95.9%

6.6 Discussion

It is generally assumed that, due to pooling robustness, CDS methods provide unbi-

ased estimates of abundance, despite potential heterogeneity in detection probabili-

ties, as long as a sufficiently flexible detection function is fitted to the data (e.g. Buck-

land et al., 2001, 2004; Burnham et al., 1980, Thomas et al., unpublished manuscript).
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If pooling robustness held for the generated data of our simulation study, we would

have expected that resulting abundance estimates were on average unbiased and that

coverage rates were appropriate for the Pa∗ estimator, i.e. using CDS methods (with-

out a random effect in the detection function) and including model selection. Model

selection should ensure that a sufficiently flexible detection function was chosen for

the data that allowed unbiased estimation of the average detection probability. How-

ever, negative bias increased to up to 3.46% for this estimator with increase in the

amount of heterogeneity that was introduced in the data.

When modelling the detection function with a random effect, however, the Pr estima-

tor performed consistently well without adjustment terms or model selection. This

estimator yielded abundance estimates with an average bias of less than 1% regardless

of the amount of heterogeneity in detection probabilities. Using the (1/Pr) estimator

on the other hand, positive bias increased substantially with increase in heterogeneity.

The Pr estimator also returned the best coverage rates among all tested estimators.

Coverage rates using the Pa∗ estimator were too low for simulation sets 1 and 3. For

all simulations, this was due to underestimating the upper boundary of the confidence

interval. Interestingly, it was also sets 1 and 3 where the variance of abundance was

underestimated. To obtain coverage rates that were high enough to be appropriate

using this estimator, the data needed to be truncated at 2.0m and 4.5m for sets 1 and

3, respectively. This truncation disposed of the long tail of detections at distances

where average detection probabilities were low. For comparison, the Pr estimator

returned appropriate coverage rates even when including this tail. Here, the trunca-

tion distance was set to 5.0m and 18.0m for sets 1 and 3, respectively. Hence, this

estimator allowed inclusion of distances with low detection probabilities that needed
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to be excluded from the analysis for producing reliable results using CDS methods.

Interestingly, the Pr estimator returned abundance estimates that were nearly un-

biased and appropriate coverage rates for all four sets of simulations where no het-

erogeneity existed between detections. Here, bias was just slightly larger than for

the PaHN estimator. Hence, we conclude that the Pr estimator produces reliable

results for both cases investigated in our simulation study, i.e. with and without het-

erogeneity in detection probabilities. However, the only type of heterogeneity tested

in this study was with normally distributed random effect coefficients in the scale

parameter of the detection function. Further simulations are needed to investigate

how the Pr estimator performs in the case where these coefficients have a non-normal

distribution, e.g. positively skewed. We also conclude that the (1/Pr) estimator pro-

duces positively biased abundance estimates where the amount of bias depends on

the amount of heterogeneity in the detection probabilities.



Chapter 7

Final discussion

7.1 General discussion

In this thesis we investigated four different methods of incorporating random effects

into models for analysing distance sampling data. Using random effects is a new tech-

nique in the context of distance sampling analysis methods where covariate models

for both the detection function and abundance have, until recently, generally been

limited to fixed effects. For each method we presented the likelihood and methods

for obtaining estimates of abundance in the covered area.

Firstly, we extended the two-stage approach, described by Buckland et al. (2009) for

fixed effect models, by incorporating random effects in the second-stage count model

(chapter 2). We also presented two integrated likelihood approaches for analysing

distance sampling data which combine the two analysis stages and allow estimation

of parameters from both stages simultaneously. For one formulation we extended the

approach of Royle et al. (2004) by modelling heterogeneity in detection probabilities

128
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and including a random effect for site in the abundance model (chapter 3). This ap-

proach uses the unconditional likelihood of observed distances and requires observed

distances to be in intervals (rather than exact). Our second integrated likelihood

approach uses the conditional probability density function of observed distances, and

is applicable to both exact and interval distance data (chapter 4). Again, the random

effect is incorporated in the count model to account for correlated measurements at

the same sites. Furthermore, we developed estimators of abundance in the covered

area that incorporate random effects in the detection function (chapter 6).

In addition, we proposed a novel Bayesian approach to analysing distance sampling

data which uses a random walk single-update Metropolis-Hastings algorithm for up-

dating model parameters and an RJMCMC algorithm for incorporating model un-

certainty (chapter 4). Lastly, we proposed using hierarchical centering as a novel

technique for improving model mixing and hence facilitating an RJMCMC algorithm

for mixed effect models (chapter 5). These proposed methods are discussed further

in the following.

7.1.1 Relaxing the assumption of independent counts for co-

variate models

Using a model-based approach for scaling up from encounter rate or density in the

covered area to encounter rate or density in the study area, relaxes the assumption of

random placement of samplers from conventional distance sampling (CDS) methods

(see assumption II.A from chapter 1 on page 2 or Buckland et al., 2001 for details)

and data arising from surveys conducted from platforms of opportunity may be used
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(Hedley and Buckland, 2004). Similar to the methods described by Hedley and Buck-

land (2004) and Buckland et al. (2009), our covariate models from chapters 2, 3 and 4

may be extended to include smooth functions for continuous covariates, e.g. by fitting

regression splines using the B -spline basis.

However, when using a covariate model without random effects (e.g. Hedley and

Buckland, 2004 or Buckland et al., 2009) each count at a line/point is considered

independent. Conceptually this means that each count is considered to contribute

the same amount of new information to the analysis. In the case that counts are

correlated, this is no longer the case. For both our case studies, counts were corre-

lated due to repeated counts at the same sites. Repeated counts from the same site

were likely to be more similar to each other than a count from a different site and,

hence, contributed less new information to the analysis. By incorporating random

effects into the covariate models, the similarities between counts at the same sites

are modelled with the random effect coefficients. Hence, our methods relaxed the

assumption of independent counts.

While mixed effect models can accommodate this type of positive correlations, they

require specifying a grouping structure. In the case of a single random effect this

involves defining the groups within which we allow counts to be correlated while still

assuming inter-group independence. For our case study, this grouping structure con-

sisted of the different sites. In other cases, it may be more difficult to specify grouping

structures, e.g. if surveyed lines were broken up into small segments and counts from

each segment considered a new observation. Here, we expect the correlations between

counts at segments of the same line to decay with increasing distance along the line.

In this case, it may be more appropriate to model the correlation structure using
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generalised estimating equations (GEEs) (e.g. Halekoh et al., 2006; Peterson et al.,

2011).

However, Bolker et al. (2008) recommended the use of GLMMs as, compared to a

GLM, the inclusion of random effects in a GLMM allows biologists to generalise their

conclusions to new times, places and species or, as in our case studies, to field buffers

in general and not just those from the surveyed sites. This, however, is conditional

on that the defined correlation structure is reasonable.

7.1.2 Covariate models for designed distance sampling ex-

periments

Besides relaxing the assumptions of random survey design and independent counts

mentioned above (section 7.1.1), the covariate models presented in chapters 2, 3, and

4 allow identification of relationships between abundance or density and covariates.

This can be of particular interest for designed distance sampling experiments such as

our case studies 1 and 2. For both these studies, the parameter of interest was the

type covariate (with two levels: buffered treatment or unbuffered control fields) which

allowed us to establish that the treatment applied to the fields had the desired effect.

For both studies, the coefficient for treated fields was positive, indicating an increase

in bird numbers on treated compared to untreated fields.

Designed experimental studies in general have an advantage over purely observational

studies in that they allow inference on cause and effect of a treatment. The difference

between observational and designed experimental studies in ecology lies in that for

the latter, one part of the environment that may have an effect on numbers of the
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species of interest is actively altered at the treated study plot(s) while all other pa-

rameters that may have an effect on animal density or detectability preferably remain

the same in comparison to the control plot(s). In this manner, designed experiments

allow attribution of any potential change in animal abundances between treated and

control plots directly to the treatment, while purely observational studies do not.

For our case studies, this was accomplished by pairing up each survey point from a

treated field with a survey point from a nearby control field and conducting repeat

surveys concurrently at both points to ensure similar observation conditions. The

surveys were repeated at each site to avoid false inference due to random variation.

The use of mixed effect models where site was the grouping factor for the random

effect allowed us to use the individual counts from repeat visits to the points as the

response variable. This made our methods very suitable for these large scale studies

which are possibly unique due to their scale (over 400 sites with repeat surveys each

year at each site).

Overall, we expect designed distance sampling experiments to become widely used

for assessing effectiveness of conservation measures, and for environmental impact

studies. One could argue that it might be sufficient to model raw counts rather than

counts that were adjusted for imperfect detection. However, we demonstrated how

model parameters may change depending on the detection model used (Table 3.2)

and that model selection for both the detection and the abundance or count models

is an important part of inference (chapters 3 and 4). As described above, the in-

clusion of site random effects accommodates correlations in multiple counts from a

single site and allows inference to be extended to a wider area for which the sites are a

representative sample, thus strengthening the ability of wildlife and natural resource
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managers to evaluate the implications of changes in the environment.

7.1.3 Integrated likelihood methods for distance sampling

data

Integrated modelling is becoming increasingly popular for ecologists (e.g. Besbeas

et al., 2002; McCrea et al., 2010). It refers to simultaneous modelling of data from

different sources, which may have been collected independently from each other, with

the aim to improve the respective models. Within the distance sampling framework,

integrated approaches have been proposed e.g. by Royle et al. (2004) and Johnson

et al. (2010) or, using Bayesian methods, e.g. by Eguchi and Gerrodette (2009) and

Moore and Barlow (2011). For integrated modelling of distance sampling data, how-

ever, the data sources to which the likelihood components of the integrated likelihood

pertain (i.e. distances to the detections and number of detections at the line/point)

are not independent but are collected simultaneously.

The motivation for developing our integrated likelihood methods arose from the short-

coming of the two-stage approach (Buckland et al., 2009) which requires using non-

parametric bootstrapping to allow uncertainty from the first-stage detection function

to propagate into the second-stage count model. For the two-stage approach, analyt-

ical standard errors for count model parameters may be artificially small. This was

evident for our case study 1 in chapter 3, where these were particularly small for the

state covariate in comparison to the bootstrap standard errors (or compared to the

equivalent analytical standard errors from the integrated likelihood approach) (Table

3.3).
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Underestimated standard errors may even lead to retaining the wrong covariates in

the final model. Evidence for this was seen in the two-stage analysis of our case study

2 in chapter 4. Here, year was part of the best count model for the original data and

both coefficients (both 0.17, Table 4.4) significant at the 0.001 level. Analytical stan-

dard errors were again artificially small at 0.049 and 0.050 (not shown) for years 2007

and 2008, respectively. The equivalent bootstrap standard errors were 0.13 and 0.11

and 95% confidence intervals obtained from the bootstrap included zero as a plausible

value for these coefficients (Table 4.4). This issue may generally be avoided using the

integrated likelihood approach where all parameters are estimated simultaneously.

In addition to improving analytical standard errors for count model parameters, esti-

mating all parameters simultaneously may affect the parameter estimates themselves.

We demonstrated this for our case study 1 in chapter 3 where detection function pa-

rameter estimates for state changed after including state in the count model (Table

3.2).

These differences may be caused by the difference in underlying concepts for the in-

tegrated vs. the two-stage approach. For the integrated approach, we assume that

the observation process and the patterns by which animals distribute themselves in

the study area influence each other. For the two-stage approach, these are considered

separate processes. We argue that the integrated approach is the more realistic con-

cept.

However, our integrated likelihood methods are also advantageous for our Bayesian

approach for analysing distance sampling data, as they allow us to define one joint

posterior distribution encompassing the detection and count models.
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7.1.4 Bayesian analysis of distance sampling data

The novelties of our proposed Bayesian approach for analysing distance sampling data

are the use of a Metropolis-Hasting (MH) algorithm for updating model parameters

and the use of an RJMCMC algorithm for updating models. The few Bayesian dis-

tance sampling studies that exist to date, have used the Gibbs sampler for updating

model parameters and either ignored model uncertainty (e.g. Eguchi and Gerrodette,

2009; Zhang, 2011) or used the Deviance Information Criterion (DIC) (Moore and

Barlow, 2011). The latter study, however, conducted model selection separately for

the different components of the analysis (detection, density and group size models).

Gimenez et al. (2009) describe RJMCMC methods in their paper, but do not apply

them in their line transect case study.

Our integrated likelihood methods allow all components of the analysis to be mod-

elled simultaneously. The use of the MH updating allows easy implementation of

different detection functions which may include adjustment terms, covariates and/or

stratification. This variety of detection function models may be difficult to implement

when using the Gibbs sampler, as this method requires sampling directly from a joint

posterior distribution and this may be difficult to obtain when using non-standard

distributions. We demonstrated in chapters 4 and 5 how RJMCMC may be used

to move between different key functions with different covariate combinations for the

detection model and between different covariate models for the Poisson model. In this

fashion, our methods using RJMCMC provide a very efficient solution for exploring

the model space including a large number of contending models. In comparison, using

the DIC for model selection requires setting up and completing a separate MCMC

chain for each contending model.



136

In contrast to maximum likelihood methods, our Bayesian approach provided addi-

tional benefits for our integrated likelihood methods. Firstly, for some studies, it

might be challenging to find the maximum likelihood estimates for all parameters in

one step, in particular if the number of observations is large and the models are rich

in parameters. Using maximum likelihood methods, the random effect is integrated

out which might be analytically challenging. For the integrated likelihood methods,

functions such as glmer from the lme4 package in R may not be used as they gener-

ally only deal with the count model component of the likelihood. Using a hierarchical

model set up as in our Bayesian approach from chapter 4, the random effect coef-

ficients are included in the model specification and updated during each iteration,

which offers a straightforward technique to explore the parameter space.

Secondly, by combining the likelihood components, the number of possible models in-

creases substantially making model selection quite elaborate when trying to fit each

contending model separately to the data using maximum likelihood methods. Our

RJMCMC methods allow us to explore the model space of all contending models

simultaneously. It does, however, require the definition of proposal distributions and

bijective functions that allowed easy jumps between models.

We found that the most problematic part of the RJMCMC algorithm for our hierar-

chical models was setting it up in such a manner that the chain indeed moved freely

within the model space. The problems we encountered with our case study 1 con-

sisted mostly in that the random effects coefficients absorbed the effect of the state

covariate and prevented the inclusion of this covariate into the model as its effect

was already accounted for. Model probabilities and summary statistics of parameters
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would have falsely led us to the conclusion that state did not have an effect. In chap-

ter 5, we proposed using hierarchical centering as a novel technique for solving such

mixing problems. Here, the mixed model is reparameterised: the generally assumed

zero-mean of the random effect is replaced with a model incorporating the intercept

and one or more covariates from the Poisson model. In this formulation, the ran-

dom effects coefficients are supposed to absorb any potential effects of the covariates

included in the centering, and models with these covariates are favoured over those

without.

7.1.5 A new method for fitting flexible detection functions

In chapter 6, we proposed a new method for fitting flexible detection functions which

incorporate random effects in the model for the scale parameter of the half-normal

key function. We tested this function using a simulation study and compared the

performance of the new estimators to CDS estimators applied to the same data.

The simulation sets with heterogeneity consisted of 4 x 1000 simulations with two

different amounts of heterogeneity which was introduced by modelling the scale pa-

rameter of the half-normal detection function using a common intercept and normally

distributed random effects (i.e. in the same manner as the proposed detection func-

tion models the random effect). The amount of heterogeneity was determined by the

size of the random effects standard deviation. For the CDS estimators we included a

model selection routine to ensure that a sufficiently flexible detection function would

be fitted to satisfy the pooling robustness criterion.

Average negative bias in abundance estimates using the CDS estimators was <2%
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for the simulations with the smaller amount of heterogeneity but increased to up to

3.46% for those with the larger amount of heterogeneity. It is expected that, with

further increase in heterogeneity, average negative bias will increase even further. In

contrast, one of the new estimators with the random effects in the detection function

(the Pr estimator) performed consistently well with an average bias of <1% regardless

of the amount of heterogeneity in the data. This estimator also delivered the best

coverage rates that were either appropriate or just too high. For those simulations

where coverage rates were too low using the CDS estimators, the data needed to be

truncated substantially to obtain high enough coverage rates. Hence, for these sim-

ulations, the Pr estimator delivered the best results without having to truncate the

long tail of detections with low detection probabilities.

In addition, we conducted a simulation study without heterogeneity in detection prob-

abilities. Here, the CDS estimators performed slightly better than our proposed Pr

estimator. However, for the latter, average bias also remained less than 2% and cov-

erage rates were appropriate for all four sets of simulations.

The second proposed estimator (the (1/Pr) estimator) delivered positively biased

abundance estimates where bias increased substantially with increase in the amount

of heterogeneity. Coverage rates for this estimator were generally appropriate or just

too high for the simulations without and with the smaller amount of heterogeneity

but deteriorated for the larger amount of heterogeneity.

It is generally assumed that, due to pooling robustness, CDS methods provide unbi-

ased estimates of abundance, despite potential heterogeneity in detection probabili-

ties, as long as a sufficiently flexible detection function is fitted to the data (e.g. Buck-

land et al., 2001, 2004; Burnham et al., 1980, Thomas et al., unpublished manuscript).
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Results from our simulation studies could not confirm the validity of this criterion

without truncating the data substantially, as coverage rates were too small for two

of the four sets of simulations with heterogeneity and bias in abundance estimates

increased with increasing amount of heterogeneity. The performance of the Pr esti-

mator on the other hand, was unaffected by the amount of heterogeneity in detection

probabilities. One of the caveats of this study is, however, that we only introduced

heterogeneity in the same manner as was assumed under the newly proposed meth-

ods, i.e. that the random effects coefficients are normally distributed. Further studies

are needed to investigate how the newly proposed estimators perform in the case of

non-normal distributions for the random effect.



Appendix A

Deriving the integrated likelihood

for chapter 3

Royle et al. (2004) combined the multinomial likelihood (inside the large round brack-

ets in eqn (A.1)) for observed counts yik in the k distance intervals at the ith point

and unobserved counts (Ni − yik) with the Poisson likelihood (to the right of the ×

symbol in the same equation) for the Ni, the true number of animals at the ith point.

Integrating this combined likelihood over all possible values for Ni gives (eqn (4) from

Royle et al., 2004):

L(α, θ|yi) =
∞∑

Ni=yi.

 Ni!(∏
k
yik!

)
(Ni − yi.)!

[∏
k

πk(θ)
yik

]
×
[
1−

∑
k

πk(θ)

]Ni−yi.


×exp(−λi(α))λi(α)Ni

Ni!
, (A.1)

where the πk(θ) are the cell probabilities estimated using the unconditional likelihood

of observed distances and θ the detection function parameters. The covariate model
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for the expected number of Ni includes parameters α. This likelihood can be reduced

to
∏
k
Poisson[yik;λi(α)πk(θ)] (Royle et al., 2004). Although these authors do not

provide the proof for this, we prove it here. Eqn (A.1) can be rewritten as:

L(α, θ|yi) =
∞∑

Ni=yi.


(

1−∑
k
πk(θ)

)Ni−yi.

(Ni − yi.)!

× λi(α)Ni exp(−λi(α))

× 1(∏
k
yik!

) [∏
k

πk(θ)
yik

]
(A.2)

Or as:

L(α, θ|yi) = Term1 × Term2 (A.3)

where:

Term1 =
∞∑

Ni=yi.


(

1−∑
k
πk(θ)

)Ni−yi.

(Ni − yi.)!

× λi(α)Ni exp(−λi(α)) (A.4)

and

Term2 =
1(∏

k
yik!

) [∏
k

πk(θ)
yik

]
(A.5)

We then use the following relationship:

∞∑
x=0

ax

x!
= exp(a), (A.6)

where we set:

a = λi(α)

[
1−

∑
k

πk(θ)

]
(A.7)

x = Ni − yi.. (A.8)
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Then, Term1 can be rearranged in the following manner:

Term1 =
∞∑

Ni=yi.


(

1−∑
k
πk(θ)

)Ni−yi.

(Ni − yi.)!

× λi(α)Ni exp(−λi(α))

=
∞∑

Ni−yi.=0


[
λi(α)

(
1−∑

k
πk(θ)

)]Ni−yi.

(Ni − yi.)!

× λi(α)yi. exp(−λi(α))

= exp

(
λi(α)[1−

∑
k

πk(θ)]

)
× λi(α)yi. exp(−λi(α))

= exp

(
−λi(α)

∑
k

πk(θ)

)
× λi(α)yi.

(A.9)

Also, λi(α)yi. = λi(α)

∑
k

yik
=
∏
k
λi(α)yik and exp(−λi(α)

∑
k
πk(θ)) =

∏
k

exp(−λi(α)πk(θ)).

Hence, when recombining Term1 and Term2, we obtain:

L(α, θ|yi) = exp

(
−λi(α)

∑
k

πk(θ)

)
× λi(α)yi.

1(∏
k
yik!

) [∏
k

πk(θ)
yik

]

=
∏
k

exp (−λi(α)πk(θ))× (λi(α)πk(θ))
yik

yik!
(A.10)

Which is equivalent to L(α, θ|yi) =
∏
k
Poisson[yik;λi(α)πk(θ)].



Appendix B

Methods for building 95%

log-normal confidence intervals

around abundance estimates for

chapter 6

B.1 Estimating the variance of encounter rate

For CDS methods, the average encounter rate of detections is generally expressed as

the number of detections n divided by the total line length that was surveyed L. The

variance of the encounter rate is given by:

v̂ar
(
n

L

)
=

K

L2(K − 1)

K∑
k=1

l2k

(
nk
lk
− n

L

)2

, (B.1)
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where K is the number of lines, the lk refer to the length of the kth line (with∑K
k=1 lk = L) and the nk refer to the number of detections of the kth line (with∑K
k=1 nk = n) (Fewster et al., 2009).

B.2 Estimating the variance of abundance

For detections of single objects the estimate of the variance of abundance is given by

(Buckland et al., 2001):

v̂ar(N̂) = N̂2 ×
(
v̂ar(P̂a)

P̂ 2
a

+
v̂ar(n/L)

(n/L)2

)
, (B.2)

where N̂ is the abundance estimate, n/L is the encounter rate and v̂ar(n/L) the

associated variance from above in this section.

When using the Pa estimator, we use eqns (6.6) to estimate the associated variance

v̂ar(P̂a) as shown in eqn (B.2). In the case that we model the detection function with

a random effect, we use the Pr or the (1/Pr) estimators instead which are given in

sections 6.3.1 and 6.3.2, respectively. Then, v̂ar(P̂r)/P̂
2
r or v̂ar(1̂/Pr)/

̂(1/Pr)2 replace

the equivalent term for P̂a in eqn (B.2).

B.3 Log-based confidence intervals for abundance

To build 95% confidence intervals we use the log-based approach assuming that esti-

mates of abundance are positively skewed and follow a log-normal distribution. The
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limits of this interval are given by (Buckland et al., 2001):

(
N̂/C, N̂ × C

)
, (B.3)

where

C = exp
(
zα ×

√
ˆvar(logeN̂)

)
(B.4)

and

ˆvar(logeN̂) = loge

(
1 +

ˆvar(N̂)

N̂2

)
. (B.5)

This method is used for estimators with and without random effects in the detection

function.
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Obtaining approximations of

derivatives via finite differences for

chapter 6

C.1 Derivatives used for v̂ar(P̂a)

The likelihood given in eqn (6.3) is a function of the detection function parameters θ.

Hence, we can obtain variance estimates for the elements in θ̂ from the main diagonal

of the inverse of the Hessian, i.e. H−1. The Hessian is calculated when using e.g. the

optim or nlm function in R for maximising the likelihood.

The estimate of the average detection probability P̂a is a function of the estimated

detection function ĝ(y) and hence depends on the model for g(y) and the parameter

estimates θ̂ (P̂a = µ̂/w =
∫ w
0 ĝ(y)dy/w from eqn (6.4)). Consequently, to obtain a

variance estimate of P̂a, we require two components, the Hessian and the derivatives

of the average detection probability P̂a with respect to θ evaluated at θ̂ (see eqn (6.6)
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page 109) (Borchers et al., 2002). To illustrate that these derivatives may be difficult

to obtain analytically, we rewrote eqn (6.6) using ĝ(y), as opposed to µ̂ from above.

v̂ar(P̂a) =
1

w2

[
∂
∫ w
0 ĝ(y,θ)dy

∂θ

∣∣∣∣
θ=θ̂

]T
H−1

[
∂
∫ w
0 ĝ(y,θ)dy

∂θ

∣∣∣∣
θ=θ̂

]
(C.1)

However, a numerical approximation of the derivatives evaluated at the maximum

likelihood estimates θ̂ can be obtained via finite differences. For the ith element of θ

we use:

∂
∫ w
0 ĝ(y, θi, θ̂−i)dy

∂θi

∣∣∣∣
θi=θ̂i

=

∫ w
0 ĝ(y, θ̂i + δθ̂i, θ̂−i)dy −

∫ w
0 ĝ(y, θ̂i − δθ̂i, θ̂−i)dy

2δθ̂i
, (C.2)

where δθ̂i represents a small fraction of θ̂i (δ = 0.0001).

C.2 Derivatives used for v̂ar(P̂r)

To obtain an approximation for the derivative in eqn (6.10) in section 6.3.1 is similar

to eqn (C.2). However, we need to account for the fact that the Pr estimator involves

a simulation, where E = 10000 samples are drawn for the random effects coefficients

be from N(0, σ̂2
b ). These bes are incorporated in the model for the scale parameter of

the detection function (eqn (6.7)) and a derivative calculated for each of E iterations

using finite differences. The derivative for the ith element of θ is the average of these

derivatives evaluated at θ̂i of the E samples:

∂
∫ w
0 ĝ(y, θi, θ̂−i)dy

∂θi

∣∣∣∣
θi=θ̂i

=
1

E

E∑
e=1

∫ w
0 ĝ(y, be, θ̂i + δθ̂i, θ̂−i)dy −

∫ w
0 ĝ(y, be, θ̂i − δθ̂i, θ̂−i)dy

2δθ̂i
.

(C.3)
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Using a half-normal detection function with a random effect, θ contains two pa-

rameters, β0 and σb. For the derivative with respect to β0, the detection function

for the eth sample is calculated using the scale parameter which is obtained using

σ̂e = (β̂0 + δβ̂0) × exp(be) and σ̂e = (β̂0 − δβ̂0) × exp(be) for θ̂i + δθ̂i and θ̂i − δθ̂i,

respectively. As before, we set δ = 0.0001.

For the derivative with respect to the random effects standard deviation, the sam-

ples for the random effects coefficients be are drawn from N(0, (σ̂b + δσ̂b)
2) and

N(0, (σ̂b − δσ̂b)
2). To avoid extra variability due to random sampling, we set the

seed of the random number generator to the same constant using the set.seed func-

tion in R before drawing the E samples from each of the respective distributions.

Using the seed, the value for the variance estimate is approximately the same regard-

less of the seed. Without the seed, we found that the value for the variance estimate

remains highly variable despite the large number of samples.

C.3 Derivatives for v̂ar
̂

(1/Pr)

Using the estimator for the reciprocal of the average detection probability with a

random effect in the detection function, ̂(1/Pr) from section 6.3.2 involves simulating

E samples from the random effects distribution as in the previous section. Again, the

derivative of the ith element of θ is given by the average of the derivatives evaluated

at θ̂i over the E samples:

∂ 1∫ w

0
ĝ(y,θi,θ̂−i)dy

∂θi

∣∣∣∣
θi=θ̂i

=
1

E

E∑
e=1

1∫ w

0
ĝ(y,be,θ̂i+δθ̂i,θ̂−i)dy

− 1∫ w

0
ĝ(y,be,θ̂i−δθ̂i,θ̂−i)dy

2δθ̂i
. (C.4)
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The remainder is equivalent to section C.2.
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