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ABSTRACT

The Qilian Orogen records early Paleozoic collisional suturing of the Qaidam Block and the Central Qilian Block to
the North China Craton. The composition and U-Pb age of detrital zircons and the composition of Cr-spinels from
the Early Silurian Lujiaogou and Angzanggou formations in the northern part of orogen indicate derivation from
evolving oceanic and continental source terranes. Heavy-mineral chemistry indicates the incorporation of suprasub-
duction zone-type ophiolitic detritus in addition to continent-derived material. Integrating these chemical and age
data with regional data on the duration of subduction-related magmatic activity, syn- and postcollisional granitic
rocks, and high-pressure metamorphic rocks constrains the transformation from oceanic subduction to continental
collision to 450-440 Ma. The collision resulted in a flood of detritus into the northern part of the orogen from the
Central Qilian Block, which masked input from the intervening magmatic arc, implying rapid exposure of the block.

Online enhancements: appendix tables.

Introduction

The North China Craton experienced a series of  collision events within the orogen, enable the tim-
orogenic events around its margins during the early ~ ing and sequence of collisional events to be accu-
Paleozoic (Chen et al. 1997; de Jong et al. 2006;  rately constrained.

Kusky et al. 2007; Zhang et al. 2008b). The Qilian
Orogen lies along the western border of the craton
and represents the northernmost part of the Ti-
betan Plateau (fig. 1a; Gehrels et al. 20034; Song et~ The north-northwest-trending Qilian Orogen (35°-
al. 2006; Xu et al. 2006). The orogen records early-  40°N, 94°-107°E; fig. 1a) records the early-middle
mid-Paleozoic ocean closure and continental col-  Paleozoic collision between the Qaidam Block to
lision (Zuo and Liu 1987; Xu et al. 1994; Feng and the south and the North China Craton to the north.
He 1996; Bian et al. 2001; Du et al. 2004; Song et ~ Lhe orogen is fault bounded and is separated from
al. 2009). New detrital-zircon U-Pb ages and the  the Tarim Block to the west by the Altyn Tagh Fault
geochemistry of heavy minerals from the Early Si- and from the North China Craton to thq north and
lurian sequences from the North Qilian orogen, €3St by the Longshoushan and Tongxin-Guyuan

bined with regional dat re-, syn-, and post- faults, respectively (Feng and He 1996). It is sepa-
combined with teglonal Gata on pres, syi-, and pos rated from the Qaidam Block to the south and the

Qinling Orogen to the south and southeast by a
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2011 series of thrust faults (fig. 1b). The orogen is sub-
* Author for correspondence; e-mail: duyuanshengl26@  divided from north to south into three north-north-
126.com. west-trending, fault-bounded units termed the
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Figure 1. a, Major tectonic units of China. b, Subunits

of the Qilian Orogen and the adjacent regions. Revised from

Feng and He (1996) and Xu et al. (2006). Study area marked by the box.

North Qilian Belt, the Central Qilian Block, and
the South Qilian Belt.

The North Qilian Belt (fig. 1b) consists of a broad
suture zone, termed the North Qilian suture, the
North Qilian island arc, and the Hexi-Corridor Ba-
sin. The suture zone marks the boundary with the
Central Qilian Block. The suture zone along the
south of the Cambro-Ordovician suprasubduction
zone (SSZ) arc sequences contains accretionary-
wedge, high-pressure metamorphic rocks, mafic/ul-
tramafic rocks, and probably lensoidal Precambrian

fragments (Xiao et al. 1978; Wu et al. 1993; Xia et
al. 1995; Feng and He 1996; Zhou et al. 1996; Song
et al. 2004; Du et al. 2007). From the Cambrian to
the Devonian, the Hexi-Corridor Basin evolved
from a volcanosedimentary basin to one filled with
siliciclastic rocks and intercalated carbonates that
records the change from oceanic subduction and
closure to the continental collision of the Central
Qilian Block and the North China Craton
(BGMRGP 1989; Feng and He 1996; Qian et al.
2001; Du et al. 2003). Metamorphic and magmatic
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assemblages within the North Qilian Belt include
blueschist-eclogite metamorphic rocks, ophiolites,
island-arc volcanic and I-type granitic rocks, and
syn- and postcollisional granitic rocks (fig. 2; Liou
et al. 1989; BGMRQP 1991; Wu et al. 1993, 2005,
Xia et al. 1995, 2003; Zhang et al. 1995, 1997; Mao
et al. 1999, 2000; Chen et al. 2002; Shi et al. 2004b;
Song et al. 2004; Wang et al. 20054; Chen 2007; Liu
et al. 2007; Tseng et al. 2007; Xia and Song 2010;
Yu et al. 2010).

The Central Qilian Block is composed mainly of
Proterozoic granitic gneiss and siliciclastic and car-
bonate metasedimentary rocks (Wan et al. 2000,
2001; Smith 2006). These basement rocks have a
Yangtze (Gondwana) affinity based on geochronol-
ogy, geochemistry, and paleontology (Zhang et al.
19984, 2006; Guo et al. 2000; Wan et al. 2000, 2006;
Gehrels et al. 2003a; Tung et al. 20074; Xu et al.
2006, 2007; Yong et al. 2008a). The Neoproterozoic
basement assemblage within the belt underwent
early Paleozoic orogeny (BGMRQP 1991; Fan and
Lei 2007; He et al. 2007; Chen et al. 2008; Yong et
al. 2008b; Tseng et al. 2009). Paleozoic granitic in-
trusions within the belt can be grouped into sub-
duction-related I-type, syncollisional S-type, and
postcollisional I-type on the basis of geochemistry,
and they range in age from 488 to 382 Ma (fig. 2;
BGMRQP 1991; Su et al. 2004; Chen et al. 2008;
Yong et al. 2008b).

Qaidam Block South Qilian Belt

Central Qilian Block
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The South Qilian Belt records the collision be-
tween the Qaidam Block and the Central Qilian
Block (Xu et al. 2006). Lithologic units include
Cambrian-Ordovician lava flows, pyroclastic rocks
and bathyal deposits, Silurian flysch, and the early
Paleozoic North Qaidam ultrahigh-pressure (UHP)
metamorphic belt, which fringes its southern mar-
gin (Yang et al. 2000; Xu et al. 2006). Within or
north of the UHP belt are island-arc magmatic
rocks and syn- and postcollisional granitic rocks
dated by zircon U-Pb geochronology from 514 to
372 Ma (fig. 2; Shi et al. 2004a; Wu et al. 2006,
2007, 2009).

Sampled Silurian Strata

Silurian strata in the North Qilian Belt occur
within the Hexi-Corridor Basin and consist of a
thick turbidite clastic succession with minor vol-
canic rocks, tuffs, tuffaceous sandstones, and in-
tercalated limestones and cherts. They are uncon-
formably overlain by lower-middle Devonian
molasse deposits (BGMRGP 1989). The succession
in the basin is divided into the Sunan Subprovince
in the west and the Jingyuan Subprovince in the
east (see Shuiquan Section; Yang et al. 2009) on the
basis of contrasting litho- and biostratigraphic re-
lations (Regional Geological Surveying Team 1986).
Our sampled section is in the Sunan Subprovince,

North Qilian Belt North China Craton
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Figure 2. Time-space diagram outlining age ranges of magmatism, metamorphism, and sedimentation related to the
Paleozoic orogeny in the Qilian Orogen. NQB = North Qaidam ultrahigh-pressure metamorphic belt; NQS = North

Qilian Suture Zone.
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south of Sunan County (fig. 3). From north to south,
the major units, often with faulted contacts, are
Silurian clastic rocks, an Ordovician back-arc vol-
canosedimentary sequence, Ordovician island-arc
volcanic rocks, a mid-ocean and fore-arc complex,
and the Central Qilian Precambrian basement (fig.
3; Feng and He 1996; Xia et al. 2003).

The sampled Silurian strata unconformably over-
lie Ordovician grayish-green phyllitic slates (fig.
4a). They include, from base to top, the lower Si-
lurian Lujiaogou and Angzanggou formations, the
middle Silurian Quannaogoushan Formation, and
the upper Silurian Hanxia Formation. Contacts be-
tween units are conformable. Our samples are from
the lower Silurian, which consists of conglomerates
and intercalated sandstones in the lower Lujiaogou
Formation and siltstone and shale in the upper Ang-
zanggou Formation (fig. 3). The pebbles in the con-
glomerates are mainly subangular to angular vol-

YANG ET AL.

canic rocks, rounded to subrounded black-green
cherts, and gray quartz with some greenschist (fig.
4b). The interbedded coarse to medium sandstones
are mainly composed of volcanic lithic fragments,
chert fragments, and quartz grains, with rare feld-
spars and sedimentary lithic fragments.

Analytical Methods

Analyses were undertaken at the State Key Labo-
ratory of Geological Processes and Mineral Re-
sources, China University of Geosciences (Wuhan).
Spinel grain compositions were determined from
polished thin sections on a JEOL JXA-8100 electron
microprobe. The analyses were performed under
the following conditions: accelerating voltage of 15
kV, a specimen current of 20 nA, and a beam size
of 5 um using the ZAF correction model. The an-
alytical uncertainties are generally less than 2%.
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Figure 3. Left, Geological map showing major lithologic assemblages in the Sunan area (revised from Feng and He
1996). NQ = North Qilian Belt; CQ = Central Qilian Block. Locations of three ophiolites are marked: Yushigou (1),
Dachadaban (2), and Jiugequan (3). Right, measured section showing relative position of samples. O, ;, = middle-
upper Ordovician; S,1 = Early Silurian Lujiaogou Formation; S,a = Early Silurian Angzanggou Formation; S,q =

Middle Silurian Quannaogoushan Formation.
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Figure 4.

a, Unconformable contact between the metamorphosed middle—upper Ordovician and the unmetamor-

phosed Early Silurian, about 10 km south of Sunan County. Pen is 10 cm long, for scale, and photo is looking toward
the east. b, Lujiaogou Formation conglomerates, Sunan Section. Hammer is 35 c¢m, for scale, and photo is looking
toward the east. The major pebbles are subangular to angular volcanic rocks (Lv), rounded to subrounded black-green
cherts (Ch), and gray quartz (Qt). ¢, Photomicrograph (cross-polarized light) for sample Su-12, showing the detrital
components: volcanic fragments (Lv), quartz grains (Q), chert fragments, and one detrital Cr-spinel grain. d, Micro-
photograph under plane-polarized light for a detrital Cr-spinel surrounded by matrix and quartzes. A color version
of this figure is available in the online edition or from the Journal of Geology office.

The detection limits of the major elements are
lower than 0.0060%. All Fe is expressed as FeO,
and the ferric iron content of each analysis was
determined by assuming stoichiometry and an
ideal XYO, formula with Ti in ulvospinel compo-
nent, following the methods of Barnes and Roeder
(2001).

Zircons for analysis were separated from rock
samples by standard techniques, mounted in epoxy,
and polished. The surface of the grain mounts was
acid-washed in dilute HNO,; to suppress lead con-
tamination. Cathodoluminescence images were
also obtained on the JEOL JXA-8100 electron mi-
croprobe.

Zircon U-Pb dating was undertaken on an Agi-
lent 7500a laser ablation (LA-)JICPMS with a Geolas
2005 laser. The detailed analytical procedure fol-

lows Yuan et al. (2004). The repetition rate was 5
Hz, and the spots were 25 um in diameter. Zircon
91500 was used as an external standard to correct
for isotopic fractionation during analysis. Off-line
selection and integration of background and ana-
lytic signals and time-drift correction and quanti-
tative calibration for U-Pb dating were performed
with ICPMSDataCal (Liu et al. 2008). The ages
were calculated with ISOPLOT 3.00 (Ludwig 2003).
Uncertainties reported for individual ages are at
+10. On probability density diagrams, only anal-
yses with concordance of greater than 90% are
shown.

Zircon trace-element analyses were also con-
ducted by LA-ICPMS. The spots were 32 pm in
diameter. The NIST610 reference glass was used
for calibrating the trace-element composition of
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zircons. The average analytical error ranges from
ca. £10% for light rare earth elements (LREEs) to
ca. =5 % for the other REEs. Instrument and data-
acquisition parameters for the LA-ICPMS are the
same as those described by Yuan et al. (2004).

Results

Cr-Spinel Composition, Lujiaogou Formation. Crt-
spinel analyses were undertaken on sample Su-12,
a coarse, gray lithic arenite from the middle part of
the Lujiaogou Formation (fig. 3). This sample has
higher overall Cr content (up to 276 ppm) and
higher Cr/Ni ratios relative to the remaining Sunan
samples and those from the Shuiquan Section (Yang
et al. 2012). It contains translucent dark reddish-
brown and yellowish-brown detrital chrome spinel
(fig. 4c, 4d). Grains range from 40 to 200 um in
length and from euhedral to subangular, suggesting
fragmentation during denudation and transporta-
tion. The analyzed grains have a wide composi-
tional range (table Al, available in the online edi-
tion or from the Journal of Geology office). The
Cr,0, content ranges from 34.26% to 59.65% and
is negatively correlated with Al,O, content, which
is in the range 10.39%-33.37% (fig. 5a). The Fe*'#
(atomic ratio Fe®*/(Cr + Al 4+ Fe?*)) varies from 0.02
to 0.06. The usually low TiO, content (0.02%-
0.24%, with most <0.2%) and high Fe**/Fe** ratios
of the grains suggest a predominantly peridotitic
origin with a minor volcanic basaltic component
for these detrital grains (fig. 5b; Lenza et al. 2000;
Kamenetsky et al. 2001). The atomic ratio Mg#
(Mg/(Mg + Fe?*)) varies from 0.33 to 0.72, and the
Cr# (Cr/(Cr + Al)) varies from 0.41 to 0.79, similar
to that of alpine-type peridotites (Dick and Bullen
1984; fig. 5c). The analyzed spinel grains plot
within the ophiolite field on both (Ti/Fe) x 100-Cr/
Fe and Fe?**-Cr-Al diagrams and in the SSZ peri-
dotite field on a TiO,-Al,O, diagram (fig. 5d-5f;
Cookenboo et al. 1997; Chutakositkanon et al.
2001; Preston et al. 2002).

Zircon U-Pb Ages, Angzanggou Formation. Sample
Su-y was selected from the upper part of the Ang-
zanggou Formation for detrital-zircon dating (fig.
3). It is a grayish-yellow silty shale and is mainly
composed of laminar sericites and secondary clay
minerals, with minor fine quartz grains. The zir-
cons from this shaly sample are rounded, colorless,
and small (mostly less than 50 um in diameter),
with indistinct internal cathodoluminescence
structures. Only 23 grains were large enough to be
dated, and they yielded 23 analyses ranging from
Archean to Early Silurian (table A2, available in the
online edition or from the Journal of Geology office;
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fig. 6a). Fourteen analyses with concordance >90%
clustered in three age ranges of 2074-1653, 1098-
852, and 436-419 Ma, with one grain yielding an
age of 2525 + 16 Ma (fig. 6b).

Zircon Age and Trace-Element Compositions, Lujiao-
gou Formation. Samples Su-10 and Su-11 are
coarse, grayish lithic arenites from the middle part
of the Lujiaogou Formation (fig. 3). They contain a
large population of detrital zircons that are light
pink to pink in color and generally euhedral to sub-
euhedral in shape and yield early Paleozoic ages
(Yang et al. 2009). Grain size ranges from 70 to 200
pm. Trace-element data for 49 of the zircon grains
are listed in tables A3 and A4, available in the on-
line edition or from the Journal of Geology office.
Grains that showed significant depth-related frac-
tionation during laser ablation or yielded strongly
discordant U-Pb ages were excluded from further
consideration. The available grains displayed ages
from 531 to 433 Ma, forming three age groups:
Cambrian (531-492 Ma), Ordovician (487-444 Ma),
and Early Silurian (443-433 Ma). All the zircon
grains are rich in heavy REEs relative to LREEs,
with a positive Ce anomaly and a negative Eu
anomaly (fig. 7). Integrated with the high Th/U ra-
tios (>0.3, except two grains with Th/U = 0.19 and
0.27) and an internal structure of well-developed
oscillatory zoning (Yang et al. 2009), this REE pat-
tern suggests an igneous origin for these zircons
(Hoskin and Ireland 2000; Hoskin and Schaltegger
2003). The zircons have Hf contents of 4937-13,043
ppm and Y contents of 199-4124 ppm. The U/Yb
ratios are 0.39-4.5 for the Silurian group, 0.21-3.2
for the Ordovician group, and 0.51-6.9 for the Cam-
brian group. On the U/Yb-Hf, Th/Y-Hf, U/Yb-Y,
and Th/YDb-Y diagrams (fig. 8; Grimes et al. 2007),
nearly all the Cambrian-Silurian grains plot within
the continental-zircon field, with several Cam-
brian-Ordovician grains within the overlap region
between the continental- and oceanic-crust fields.

Discussion and Conclusions

Detrital-Zircon Provenance. All Early Silurian and
Late Ordovician clastic sedimentary rocks in the
Hexi-Corridor Basin contain Precambrian detrital
zircons that range in age from Archean to Neopro-
terozoic (fig. 9a-9d). The Neoarchean to early Pa-
leoproterozoic detritus within the basin was likely
derived from the adjoining North China Craton to
the north, with analyzed samples and an inferred
source region characterized by prominent age
groups at 2.8-2.4 and 2.1-1.7 Ga (fig. 9a-9d, 9g;
Kroner et al. 1988; Wan et al. 2003; Darby and Geh-
rels 2006; Tung et al. 2007b; Li et al. 2008). In the
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Figure 6. a, U-Pb concordia diagram for zircon analyses from sample Su-y. b, Histogram of the ages with concordance

> 90%. The four shaded columns represent the age ranges 0.5-0.45 Ga (1) for the North Qilian magmatic arc rocks
(BGMRQP 1991; Xia et al. 1995, 2003; Zhang et al. 1997; Mao et al. 1999, 2000; Wang et al. 2005a; Chen 2007; Yu
et al. 2010), 1.1-0.8 Ga (2) for the Central Qilian Block (Guo et al. 2000; Wan et al. 2000, 2001; Gehrels et al. 2003b;
Tung et al. 2007a; Wang et al. 2007; Xu et al. 2007; Yong et al. 2008a; Xue et al. 2009), and 2.1-1.7 and 2.6-2.4 Ga
(3 and 4, respectively) for the North China Craton (Kroéner et al. 1988; Wan et al. 2003; Darby and Gehrels 2006;

Tung et al. 2007b; Li et al. 2008).

North China Craton, these events relate to the as-
sembly of the craton along the Trans—North China
Orogen (Zhao et al. 2002; Wilde et al. 2004). The
late Paleoproterozoic to Neoproterozoic detrital-
zircon grains in the analyzed samples were proba-
bly derived from the Central Qilian Block, where
Mesoproterozoic—-Neoproterozoic granitic intru-
sions and metamorphosed sedimentary rocks with
late Paleoproterozoic to Neoproterozoic detrital
zircons constitute the major part of the basement
(fig. 9¢, 9f; Guo et al. 2000; Wan et al. 2001; Gehrels
et al. 20034, 2003b; Tung et al. 2007a; Wang et al.
2007; Xu et al. 2007; Yong et al. 20084; Xue et al.
2009). Cambrian-Ordovician zircon grains, in ad-
dition to Precambrian detritus, occur in the Lujiao-
gou Formation of the Sunan area in the Sunan Sub-

province (Yang et al. 2009) and in the Late
Ordovician sediments of Xiehao area in the Jing-
yuan Subprovince (Xu et al. 2010; fig. 9b, 9d), over-
lapping the ages of arc-related igneous activity and
ophiolites preserved in the North Qilian suture (Xia
etal. 1995, 2003; Zhang et al. 1997; Mao et al. 1999,
2000; Shi et al. 2004b; Wang et al. 20054; Wu et al.
2005; Chen 2007; Tseng et al. 2007; Xia and Song
2010; Yu et al. 2010).

Ophiolitic Provenance. Three lines of evidence
can be used to recognize ophiolitic detritus in sed-
imentary rocks: (1) serpentinite fragments (Arai and
Okada 1991; von Eynatten 2003), (2) anomalously
high concentrations of Cr and Ni (Hiscott 1984;
Garver and Scott 1995; Garver et al. 1996; Totten
et al. 2000 and references therein), and (3) the oc-
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Figure 7. Chondrite-normalized rare earth element (REE) patterns for zircons of 433-443 Ma (a), 444-487 Ma (b),
and 492-513 Ma (c). Chondrite REE values are from Taylor and McLennan (1985).
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crustal origin.

currence of Cr-spinels (Stevens 1970; Dick and Bul-
len 1984; Cookenboo et al. 1997; Ganssloser 1999;
Hisada et al. 1999; Lee 1999).

The presence of Cr-spinel in sedimentary rocks
is generally interpreted as an indicator of ophiolite
erosion (Stevens 1970; Pober and Faupl 1988; Coo-
kenboo et al. 1997; Ganssloser 1999; Zhu et al.
2005; Meinhold et al. 2007). In the Qilian Orogen,
three potential Cr-spinel sources are present: the
Alaskan-type Zhamashi mafic intrusions along the
north margin of the Central Qilian Block (Tseng et
al. 2009), the Ordovician island-arc basaltic rocks
(Hsu and Shau 2002), and the mafic-ultramafic bod-
ies constituting the North Qilian ophiolites (Feng
and He 1996; Zhang et al. 1998b; Tseng et al. 2007;
Xia and Song 2010). The low TiO, content, high
Fe**/Fe®" ratio, low Fe**# value, and large grain size
of the detrital spinels closely match those of spinels

from mantle peridotites (fig. 5a, 5b) and distinguish
them from those hosted by continental flood basalt
(CFB), ocean-island basalt (OIB), island-arc basalt
(ARC), mid-ocean ridge basalt (MORB), continental
mafic-ultramafic intrusions, the Alaskan ultra-
mafic complex, and other unusual rocks such as
kimberlites (fig. 5¢-5f; Arai 1992; Lenza et al. 2000;
Barnes and Roeder 2001; Kamenetsky et al. 2001).
Therefore, the only possible spinel source is the
ophiolitic rocks in the North Qilian Belt (fig. 3),
precluding a derivation from the Zhamashi intru-
sions (Tseng et al. 2009) or the Ordovician island-
arc basaltic rocks (Hsu and Shau 2002).

Potential ophiolitic source rocks within the
North Qilian Belt are represented by the Jiugequan,
Dachadaban, and Yushigou-Dongcaohe ophiolites,
which were emplaced during the Cambrian to
Early-Middle Ordovician within/between the back
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Figure 9. Probability density diagram comparing detrital-zircon ages from the Early Silurian strata in Hexi-Corridor
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province (this study); b, Early Silurian Lujiaogou Formation of Sunan Section, Sunan Subprovince (Yang et al. 2009);
¢, Early Silurian Angzanggou Formation of Shuiquan Section, Jingyuan Subprovince (Yang et al. 2009); d, Late Or-
dovician sediments of Xiehao Section, Jingyuan Subprovince (Xu et al. 2010); ¢, Central Qilian Block granitic intrusions
(Guo et al. 2000; Wan et al. 2000, 2001; Gehrels et al. 2003b; Tung et al. 2007a; Wang et al. 2007; Xu et al. 2007;
Yong et al. 2008a; Xue et al. 2009); f, metasedimentary basement of the Central Qilian Block (Gehrels et al. 20034;
Tung et al. 2007a; Xu et al. 2007); g, detrital zircons from the basement of the North China Craton (Kroner et al.
1988; Wan et al. 2003; Darby and Gehrels 2006; Tung et al. 2007b; Li et al. 2008). The shaded column represents the
age range of the North Qilian magmatic-arc rocks (0.5-0.45 Ga; BGMRQP 1991; Xia et al. 1995; Zhang et al. 1997;
Mao et al. 1999, 2000; Xia et al. 2003; Wang et al. 2005a4; Chen 2007; Yu et al. 2010).
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of some samples from the Lujiaogou Formation.

arc, the fore-arc complex, and the mid-ocean ridge
within the broad suture zone of the North Qilian
Belt (Xia et al. 1995; Feng and He 1996; Shi et al.
2004b; Xia and Song 2010). The Cr# and Ti content
of the analyzed detrital spinels from the Lujiaogou
Formation are distinct from those of the Dongcaohe
ophiolite and equivalent units (fig. 5), which were
inferred to represent oceanic lithosphere formed in
a mid-ocean ridge setting (Shi et al. 2004b; Tseng
et al. 2007).

Of the two remaining ophiolite bodies, the ophi-
olite in Dachadaban, rather than that in Jiugequan,
is considered the more likely source of the Cr-spi-
nel grains, because the former was emplaced south
of the early Paleozoic arc terrane, a fore-arc envi-
ronment (Chen et al. 1995; Feng and He 1996;
Zhang et al. 1998b), enabling greater transport and
sorting of detritus before deposition than is possible
from the Jiugequan ophiolite, which lies to the
north of the arc terrane, a back-arc setting (Xia and
Song 2010). Pronounced sedimentary recycling
could concentrate Cr-spinel relative to unstable
lithic fragments and minerals, resulting in the high
Cr/Ni ratio and the presence of detrital Cr-spinels
but also the lack of serpentinite fragments in the
studied lower Silurian sandstones (von Eynatten
2003; Yang et al. 2012). Although no corresponding
spinel chemical data from the Dachadaban ophio-
lite are available for comparison, this interpretation
is consistent with the studied Cr-spinels falling in
the SSZ peridotite field on the Al,0,-TiO, diagram
(fig. 5f), and it is also supported by the Th/Sc-Cr/

Th and Cr/V-Y/Ni plots (fig. 10; McLennan et al.
1993; Totten et al. 2000). On these two diagrams,
we performed a two-end-member mixing calcula-
tion. We used the average values of Shuiquan sam-
ples as the continent-provenance end member
(Yang et al. 2012) and the averaged arc rocks south
of Sunan County as the arc-provenance end mem-
ber (Xia et al. 2003). The mixing calculation shows
that these two end members cannot by themselves
account for the high Cr/Th and Cr/V ratios of the
Sunan clastic rocks (fig. 10). Adding the high-Cr
rocks of Dachadaban ophiolite to the continent-
provenance end member (Chen et al. 1995; Feng
and He 1996; Zhang et al. 1998b) enabled the es-
tablishment of a mixing line that matched well the
chromium-increasing trend (fig. 10). It is worth
stating here that the data presented in this article
alone cannot absolutely eliminate the Jiugequan
ophiolite as a source.

Given that most zircons formed at mid-ocean
ridge (MOR) spreading centers are compositionally
distinct from “continental” crustal zircons (Grimes
et al. 2007), detrital zircons may be used as a po-
tential provenance indicator for oceanic crust.
Trace-element data for the analyzed early Paleozoic
zircons mainly plot within the field of continental
zircons, with a small proportion of the grains falling
in the overlap zone with oceanic-crust zircons (fig.
8). The grains of this small group have U/YDb ratios
of 0.21-0.35, slightly higher than those of oceanic-
crust zircons analyzed from other regions (0.18, on
average; Grimes et al. 2007) but much lower than
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Figure 11. Ages for major units and events related to early Paleozoic orogeny in the Qilian Orogen area. The compiled
data include (a) the Sm-Nd isochron ages and zircon U-Pb ages for arc volcanics in the North Qilian Belt (Xia et al.
1995, 2003; Zhang et al. 1997; Wang et al. 2005a; Yu et al. 2010) and the Central Qilian Block (Yuan et al. 2002;
Zhao et al. 2003; Shi et al. 2004a; Wang et al. 2005b; Zhu et al. 2010); (b) zircon U-Pb ages (including one Re-Os
isochron age) for island-arc I-type granitoids in the North Qilian Belt (BGMRQP 1991; Mao et al. 1999, 2000; Wu et
al. 2005; Chen 2007), the Central Qilian Block (Su et al. 2004), and the South Qilian Belt (Wu et al. 2006, 2009); (c)
zircon U-Pb ages for syncollisional S-type granitic rocks in the North Qilian Belt (Chen 2007), the Central Qilian
Block (BGMRQP 1991; Su et al. 2004; Chen et al. 2008; Yong et al. 2008b), and the South Qilian Belt (Wu et al. 2006,
2007, 2009); (d) zircon U-Pb ages for postcollisional I-type granitic rocks in the North Qilian Belt (plus three Rb-Sr
and Re-Os isochron ages; Zhang et al. 1995; Qian et al. 1998; Wu et al. 2005; Liu et al. 2007), the Central Qilian
Block (Su et al. 2004), and the South Qilian Belt (Wu et al. 2006, 2007, 2009); and (e) zircon U-Pb ages and Ar-Ar
ages for high—ultrahigh-pressure (HP-UHP) metamorphic rocks in the North Qilian Belt and the southern South Qilian
Belt (northern Qaidam Belt; Liou et al. 1989; Zhang et al. 1997, 2005, 2007; Song et al. 2004, 2005, 2006; Liu et al.
2006). The shaded column represents the age range (450-440 Ma) at which the Qilian Orogen evolved from oceanic
subduction to continental collision.

that of continental granitoid zircons (1.07, on av-
erage; Grimes et al. 2007). They also have inter-
mediate Th/Yb ratios. The slight enrichment in Th
and U suggests a subduction-related setting for the
crystallization of these zircons (Grimes et al. 2007).
Overall, however, the early Paleozoic zircon trace
elements argue for a continental source, possibly
formed in an arc-related setting (Grimes et al.

2007). An unambiguous oceanic-crust provenance
for zircons was not detected. Considering that the
field of oceanic-crust zircon was defined by grains
from the MOR igneous rocks (Grimes et al. 2007),
this result is coincident with that of the detrital
Cr-spinel data, which also negate a derivation from
a MOR-type ophiolite (see above). Notably, the con-
tinent-arc and some island-arc rocks have zircon
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Figure 12. Model of the tectonic transformation of the North Qilian Orogen from oceanic subduction to continental
collision as well as the associated magmatic, metamorphic, and sedimentary events. a, Subduction of the South and
North Qilian oceans (>550-450 Ma) and accompanying arc volcanism, island-arc I-type granitic intrusions, and eclogite
(blueschist)-facies metamorphism. b, Ocean closure and initiation of continental collision accompanied by syncol-
lisional S-type granitic intrusions and high-pressure (HP) granulite metamorphism (450-440 Ma). ¢, Erosion of the
Central Qilian Block and the volcanic-arc and the uplifted ophiolites within the suture zone of the North Qilian Belt
during the deposition of the Lujiaogou Formation, accompanied by high-medium-pressure granulite metamorphism
and mafic intrusions. d, Rapid uplift and thrusting of the Central Qilian Block resulting in the rapid influx of debris
from this source into the foreland basin during the deposition of Angzanggou Formation, accompanied by ultrahigh-
pressure (UHP) metamorphism, mafic intrusions, and postcollisional I-type granitic rocks. QDB = Qaidam Block;
CQB = Central Qilian Block; NCC = North China Craton.

fields overlapping those of the continental granit- Tectonic Transformation. In the North Qilian

oids (Grimes et al. 2007). Thus, a possible expla-
nation is that some zircons may be dispersed from
an SSZ ophiolitic provenance in the same way as
the Cr-spinels but exhibit chemical characters that
distinguish them from those in MOR rocks but are
similar to those in subduction-related rocks. An-
other explanation is that an ophiolitic source con-
sisting mainly of mafic and ultramafic rocks will
not yield many, if any, zircons, and so MOR-like
zircons were simply not analyzed.

Belt, the Yushigou-Dongcaohe ophiolite belt is
dated at 550-497 Ma and has a MORB-type geo-
chemical signature (Feng and He 1996; Shi et al.
2004b; Tseng et al. 2007). The lavas are overlain by
radiolarian cherts and are interpreted to represent
a fragment of the North Qilian oceanic basement
that lay between the continental Central Qilian
Block and the North China Craton (Xia et al. 1995;
Shi et al. 2004b). Subduction of the North Qilian
Ocean beneath the south margin of the North
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China Craton to form the North Qilian Belt is in-
ferred to have begun at the beginning of the Or-
dovician, on the basis of arc-related volcanic rocks
ranging in age from 486 to 446 Ma (Xu et al. 1994;
Xia et al. 1995, 2003; Feng and He 1996; Zhang et
al. 1997; Wang et al. 20054; Yu et al. 2010), island-
arc I-type granitoids dated at 495-460 Ma
(BGMRQP 1991; Mao et al. 1999, 2000; Chen 2007),
and eclogite-blueschist facies metamorphic rocks
with SHRIMP zircon ages of 489-463 Ma and Ar-
Ar ages of 462-448 Ma (Liou et al. 1989; Zhang et
al. 1997, 2007; Song et al. 2004, 2009; Liu et al.
2006; fig. 11).

The Hexi-Corridor Basin, in which the analyzed
Silurian samples occur, lies between the arc vol-
canic rocks and the North China Craton. It was
initiated in the Early Ordovician as a back-arc basin
(Xu et al. 1994, Xia et al. 2003). The presence of
detrital-zircon grains as young as ~435 Ma and of
ophiolite-derived Cr-spinel in the lower Silurian
Lujiaogou Formation of Sunan Subprovince within
the basin suggests that this unit was receiving ma-
terial from syndepositional igneous activity related
to erosion of the island arc (fig. 12). The presence
of Precambrian grains within the unit derived from
the Central Qilian Block and the North China Cra-
ton, with the former lying to the south of the North
Qilian Ocean, suggests that this unit approximates
the timing of ocean closure and collisional suturing
of the two continental fragments. A similar age pat-
tern of detritus was reported for the Late Ordovi-
cian sediments within the Jingyuan Subprovince,
which were deposited after 450 Ma (Xu et al. 2010).
These relationships are consistent with the pres-
ence of syncollisional S-type granite dated at
447 + 3.6 Ma within the North Qilian Belt (Chen
2007), suggesting that the continental collision ini-
tiated after the ocean closure by the end of the
Ordovician.

In the regional context, all three units of the Qi-
lian Orogen (north, central, and south) display evi-
dence for syncollisional S-type granitic magma-
tism during the Late Ordovician-Early Silurian
(BGMRQP 1991; Su et al. 2004; Wu et al. 2006,
2007, 2009; Chen 2007; Chen et al. 2008; Yong et
al. 2008b), which is related to the collision between
the Qaidam Block, the Central Qilian Block, and
the North China Craton. They are all dated in the
range 450-440 Ma, which postdates the arc volca-
nism, island-arc I-type granitoids (Yuan et al. 2002;
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Zhao et al. 2003; Shi et al. 20044a; Wang et al. 2005b;
Zhu et al. 2010), and oceanic subduction-induced
eclogite-facies metamorphism (Song et al. 2004,
2006; Zhang et al. 2005, 2007) but predates the post-
collisional I-type granitic magmatism (Zhang et al.
1995; Qian et al. 1998; Wu et al. 2005; Liu et al.
2007) and continental subduction-induced North
Qaidam UHP metamorphism (Song et al. 2005,
2006; figs. 2, 11). The high-pressure granulite-
facies metamorphism at about 450 Ma in the south-
ern South Qilian Belt is interpreted to be related to
the early Paleozoic continental collision between
the Qaidam and Central Qilian blocks (Zhang et
al. 2008a). The ca. 445-434-Ma northwest-south-
east-trending mafic volcanics and mafic dikes in
the Central Qilian and North Qilian belts were also
considered to be consequences of the southwest-
northeast compression and contraction induced by
continental collision (Xia et al. 1995; Chen et al.
2006; He et al. 2007). The P-T paths of eclogite and
blueschist assemblages reflect a process by which
the protoliths underwent deep burial to reach peak
metamorphism during oceanic subduction before
ca. 443 Ma and then experienced uplift and erosion
during the mountain building of the Qilian Orogen
(Chen et al. 2002). These data indicate that the
switch from oceanic subduction to continental col-
lision and orogenesis for the whole Qilian Orogen
occurred in the Late Ordovician-Early Silurian,
about 450-440 Ma (fig. 12). The timing of colli-
sional suturing within the Qilian Orogen corre-
sponds to, and may have contributed to, the doc-
umented widespread regional uplift across the
North China Craton (Liu et al. 1999; Wang et al.
2010).
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