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Abstract 

Seasonality influences life history through its effect on the availability of essential resources, 

with birds timing breeding to occur during peak food availability. Due to density-dependence, 

investment in breeding is determined largely by the seasonality of food availability, with an 

increased investment being traded-off against adult survival. A bird’s mass acts as an index 

of a species’ foraging environment, because a bird bases its foraging decisions on a trade-off 

between the risk of predation and the risk of starvation. Under constant predation risk a bird 

increases its mass as insurance against increased foraging unpredictability. In tropical 

savannahs day length and temperature remains relatively constant, and there is not a season 

of increased density-dependent mortality which acts across all species. Thus species have 

evolved a broad range of life history traits under the same environmental conditions, although 

how a species experiences seasonality depends largely on its foraging niche. This thesis 

shows that most savannah species varied their mass across the year, having a reduced mass in 

the non-breeding season which suggests that foraging remained predictable. Independent of 

gonad or egg growth they then increased their mass as they started to breed, with the timing 

of breeding coinciding with peak food availability. Across species in the same foraging niche 

mass acts as an index of breeding investment, with females increasing their mass more than 

males. While across species in different foraging niches an increased mass response was 

associated with higher adult survival, probably because breeding strategy and subsequently 

adult survival are governed by food limitation. This thesis shows that birds adaptively 

manage their mass during breeding and that mass is not a result of energetic stress, thus under 

constant predation risk a bird’s mass is a result of foraging predictability as a function of 

competition for available food and investment in breeding. 
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Chapter 1: General Introduction 

Seasonality influences life history through its effect on the availability of essential resources 

(Ashmole 1963, Ricklefs 1980, Martin 1987). Birds reduce the costs of breeding by timing 

the provisioning of chicks to coincide with peak food availability (e.g., Perrins 1970). Due to 

density-dependence, investment in breeding is determined largely by the seasonality of food 

availability, with an increased investment being traded-off against adult survival (McNamara 

et al. 2008, Griebeler et al. 2010). Mass acts as an index of a species foraging environment 

because a bird bases its foraging decisions on a trade-off between the risk of predation and 

the risk of starvation (Lima 1986, Houston and McNamara 1993, Witter and Cuthill 1993). 

Under constant predation risk a bird will increase its mass in response to a decrease in 

foraging predictability, so as to reduce the risk of starvation (Rogers 1987, Houston and 

McNamara 1993, MacLeod et al. 2008). In tropical savannahs day length and temperature 

remain relatively constant, and there is not a season of increased density-dependent mortality 

which acts across all species such as winter in the Northern hemisphere. Therefore how a 

species experiences seasonality will depend on seasonal variation in its essential resources, 

and so how a bird manages its mass across the year may provide insights into life history 

evolution. This thesis investigates how birds in the highly seasonal but predictable 

environments of a West African savannah, manage their mass within the starvation vs 

predation framework across seasonally changing resource availability and in response to life 

history events.  

Seasonality and life history evolution 

All animals live in a seasonally changing environment where there is spatial and temporal 

variation in the availability of essential resources. Within an animal’s genetic and 

phenological constraints this variation is thought to be the driving force in the evolution of 

different life history traits (Boyce 1979, Roff 1992, Stearns 1992). Life history theory tries to 

explain how an animal maximises the number of surviving young when resources are limited 

by the environment (Lack 1968), and is based on the model that growth is costly and reduces 

the amount of resources that can be used in reproduction, and similarly, that reproduction is 

costly and reduces subsequent survival (Williams 1966, Stearns 1976, Ricklefs 1977, Calow 

1979). Thus the beneficial evolution of one trait is a trade-off against a detrimental change in 
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another trait, where environmental constraints often determine the relative importance of each 

trait for survival. For example, reproductive rate is determined by clutch size, nesting 

success, season length, and nest cycle length, each of which represents the outcome of many 

different interactions of an individual’s life history with its environment (Ricklefs 2000). 

Evolutionarily, birds have adjusted the seasonal regulation of life history stages to the 

seasonality of the environments in which they live. Most birds live in an environment with 

predictable seasonal changes in conditions within and between years, with species evolving a 

suite of life history traits that maximise overall fitness (Roff 1992, Stearns 1992). The 

characteristics of the traits depend on the predictability and seasonality of the environment, 

with general life history patterns being expressed as r or K selection (MacArthur and Wilson 

1967, Pianka 1970, Saether et al. 2002). Species which evolve under r selection inhabit an 

environment where resources are superabundant for a predictable but short period, followed 

by a less favourable period, for example a period of extreme temperatures and minimal food 

availability, e.g. in the arctic. So selection acts on populations during the non-breeding season 

when competition for remaining resources intensifies and populations experience a period of 

increased density-dependent mortality. There are then more resources per individual when 

conditions improve, and so species maximise fitness by producing large numbers of young 

when conditions allow. An increased investment in breeding has both immediate and longer 

term consequences for survival which results in higher adult mortality. Conversely, species 

which evolve under K selection inhabit environments which do not experience such climatic 

seasonal extremes, and as a result populations remain at, or close to, their carrying capacity 

throughout the year. As such, populations are more limited by density-dependent factors such 

as competition during breeding and so species invest fewer resources into reproduction and 

more into self-maintenance and as a consequence are more likely to survive as adults. This 

results in species which breed more slowly and parents which dedicate a longer period to 

parental care in order to maximise the fitness of their offspring in a highly competitive 

environment (Horn and Rubenstein 1984, Richard et al. 2002). No species undergoes either 

complete r or K selection but evolves through a combination of both, the degree of each 

determined by the environment (Pianka 1970). 

Seasonality becomes less acute with decreasing latitude, and as such species adopt a more K 

selected life history (MacArthur and Wilson 1967), with life history traits in birds close to the 

equator differing from Northern temperate species in many ways, such as: higher survival 
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rates (Yom-Tov 1994, Johnston et al. 1997, Geffen and Yom-Tov 2000, Peach et al. 2001), 

lower clutch sizes (Lack 1947, Cody 1966, Ricklefs 1980, Skutch 1985, for review see 

Martin 1996, Cardillo 2002, Schaefer et al. 2004), lower annual fecundity (Schaefer et al. 

2004), longer post fledging care (Geffen and Yom-Tov 2000, Russell 2000, Russell et al. 

2004, Schaefer et al. 2004), slower growth rates (Ricklefs 1976, Martin et al. 2011) and 

increased immunity (Martin et al. 2008). Bird species in the Southern hemisphere show traits 

more consistent with tropical bird species than Northern hemisphere bird species (Yom-Tov 

1987, Rowley and Russell 1991, Russell et al. 2004). This may be due to reduced seasonality 

in the availability of food in the Southern hemisphere, together with high ambient 

temperatures, lack of severe winters, and the high proportion of predators in these regions 

(Ashmole 1963, Skutch 1985, Rowley and Russell 1991, Martin et al. 2000b, Martin et al. 

2006).  

Seasonality and life history traits 

The host of different trade-offs which influence each life history trait mean that it has been 

difficult to determine the driving force behind life history evolution. More recent analytical 

models have concluded that because of density-dependence it is the degree of seasonality of 

resources which is the primary driver of life history evolution, with factors such as levels of 

nest predation and the length of the breeding season refining a species’ optimal strategy 

within its environment (McNamara et al. 2008, Griebeler et al. 2010). The seasonality of food 

availability can influence a range of life history traits such as laying date (Perrins 1970), off-

spring growth rate (Blancher and Robertson 1987), interval between breeding attempts 

(Arcese and Smith 1988), predation rate (Arcese and Smith 1988), nest attentiveness during 

incubation (Chalfoun and Martin 2007) and parental care tactics (Markman et al. 2002). 

Specifically I will discuss how seasonal variation in resource availability influences the 

following core life history traits: 

The timing of breeding 

The costs of reproduction are widely assumed to be fundamentally important to the evolution 

of life-history strategies, because breeding is the largest single cost that a bird will experience 

in a year (Roff 1992, Stearns 1992). In order to maximise off-spring survival and minimise 

the cost of breeding to adults, provisioning for chicks should coincide with the period of 
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highest food availability because an increase in food delivery per chick increases growth rate, 

condition and immunological resistance (e.g., Perrins 1970, Gustafsson et al. 1994). 

Therefore the predictability and scale of the seasonal food peaks is vital for determining how 

a bird maximises its fitness by producing the greatest number of surviving young. In a 

predictable but highly seasonal environment where there is a single short breeding season 

where food may not be limiting (reviewed in Martin 1987), there may only be a narrow 

window of opportunity for breeding with those individuals which breed earlier in the season 

being able to increase the number of surviving young (Perrins 1970, Martin 1987). In the 

tropics where seasonality is reduced, breeding seasons are longer and there is a less defined 

peak in food availability. So birds are not as constrained as to when they can breed, and there 

may be sufficient time to attempt multiple broods should previous nests fail (Stutchbury and 

Morton 2001, Stutchbury and Morton 2008). As day length remains relatively constant, 

species probably rely less on increases in photoperiod to initiate breeding and more on 

environmental cues such as food availability (e.g., Wikelski, Hau & Wingfield 2000; Hau, 

Perfito & Moore 2008). As such, the timing of breeding tends to be population specific, 

depending on the local climatic conditions that drive seasonal peaks in food availability 

(Wingfield 1980, Moore et al. 2005), and there is increased variation in the timing of 

breeding across species in the same habitat, because seasonality depends more on a species’ 

particular foraging niche. 

Species living in an unpredictable environment have to trade off maintaining physiological 

preparedness (which can be costly) with being unprepared (which decreases the chances of 

successful reproduction; Tokolyi et al. 2012). Consequently selection favours those 

individuals that can maximise reproductive success through rapid breeding attempts when 

conditions allow, even at a cost to their own survival (Grant et al. 2000, Hau et al. 2004). The 

Zebra Finch Taeniopygia guttata is a classic example of an opportunistic breeder because it is 

capable of breeding throughout the year in the arid interior of Central Australia (Zann et al. 

1995, Perfito et al. 2007), where rainfall is unpredictable. In the non-breeding season many 

individuals in the population maintained increased physiological readiness for breeding, even 

at a cost to body condition compared to zebra finches inhabiting a more predictable seasonal 

habitat (Perfito et al. 2007). 
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Clutch size  

One of the best known latitudinal gradients in life history is the increase in avian clutch size 

with increasing latitude (Moreau 1944, Lack 1947, Ricklefs 1980, Martin 1996, Cardillo 

2002). The clutch size of a species should correspond to the number of young that parents can 

nourish adequately so as to maximise their individual fitness (Lack 1947, 1948). Thus the 

reproductive rate should depend on the seasonality of resources and population density during 

the breeding season (Ashmole 1963). Therefore clutch sizes increase with increasing 

seasonality because there are more resources available per individual during breeding 

(McNamara et al. 2008), with clutch sizes tending to be larger in years or habitats with 

greater food availability (Reviewed in Martin 1987). An increase in clutch size and therefore 

reproductive effort is then traded off against adult survival (Saether 1988, Martin 1995, 

Ghalambor and Martin 2001), and so the seasonality of an individual’s foraging niche 

directly shapes life history evolution. 

Nest predation 

Seasonal variation in essential resources causes movements of predators on many scales (e.g., 

Thiollay & Clobert; Sperry et al. 2008), and subsequently there is thought to be high 

variability between species, seasons and years in the levels of nest predation experienced 

(Robinson et al. 2000). Nest predation is the primary cause of reproductive failure in most 

birds, thus acts as a strong selective force on parental care tactics, which directly influence 

life history through their effect on nestling success and therefore fitness (Slagsvold 1982, 

Martin et al. 2000a, Martin et al. 2000b). An increase in the risk of a nest being predated is 

associated with a reduced total feeding rate and per-nestling feeding rate, because more 

frequent nest visits by parents increase the probability of a nest being detected by predators 

(Martin et al. 2000a, Martin et al. 2000b, Eggers et al. 2005, Fontaine and Martin 2006, 

Massaro et al. 2008, Martin et al. 2011). Birds are thought to be able to assess nest predation 

risk and adjust egg size, clutch size and the rate they feed the nestlings accordingly, with 

parents investing more in the young when there is reduced predation risk. Thus perceived 

predation risks yield significant fitness consequences for the young (Fontaine and Martin 

2006, Martin 2011). Although food limitation is probably the dominant force behind variation 

in clutch size, high levels of nest predation may reduce both the number of eggs laid 
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(McNamara et al. 2008, Griebeler et al. 2010) and chick growth strategies (Martin et al. 

2011) below the limits set by food availability. 

Post-fledging care 

The seasonality of a bird’s foraging environment has a strong influence on parental care 

tactics, which determine life history through their effects on juvenile survival and therefore 

fitness. Those species that inhabit a less seasonal environment experience reduced density-

dependent mortality during the non-breeding season, resulting in an increase in competition 

for food during the breeding period. Consequently density-dependent factors will be 

increasingly important in determining population dynamics; as such an individual’s ability to 

compete in a highly competitive environment is a strong selective force on its fitness 

(Ashmole 1963). In such an environment, species that provide extended parental care may 

allow juveniles to survive until they become sufficiently competitive. High adult survival and 

low territory turnover also favour longer parental care and delayed dispersal, and have been 

related to increased survival of the young (Willis 1967, Fogden 1972, Willis 1972, Skutch 

1976), partly through increased immunocompetence of the chicks (Ricklefs 1992). In 

accordance with this idea, birds inhabiting tropical and/or Southern hemisphere habitats tend 

to have longer post-fledgling parental care and delayed dispersal, relative to Northern 

hemisphere species (Martin 1996, Ghalambor and Martin 2000, Russell 2000, Russell et al. 

2004).  

Survival  

Survival depends on the seasonality of resources and its effects on breeding, because 

breeding is costly and an increased investment in each breeding attempt and/or numerous 

breeding attempts carries physiological and behavioural costs which reduce the chances of 

immediate and longer term survival (Bryant 1988, Dufty Jr 1989, Cressler et al. 2010). An 

increase in seasonality and thus an increase in the food available to an individual during 

breeding, allows individuals to invest more in each breeding attempt. An increase in 

reproductive effort has immediate physiological costs such as a reduction in immunity to 

disease (Sheldon and Verhulst 1996, Norris and Evans 2000) as well as possible longer term 

consequences (Gustafsson et al. 1994, Daan et al. 1996). Breeding also leads to behavioural 

changes, which can reduce survival (reviewed by Lima 2009), such as increased aggression 
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(Dufty Jr 1989) or nest defence (Caro 2005), and therefore risk of injury. An increase in 

reproductive effort also means that birds need to spend more time foraging to feed chicks and 

so spend a greater proportion of their time exposed to predators, and as such are less likely to 

survive to the next breeding season (reviewed in Stephens et al. 2007).  

Mass variation 

A bird’s mass acts as a bridge between the seasonality of its foraging environment and life 

history because how a bird adaptively manages its mass is a reflection of environmental 

conditions (Pravosudov & Grubb 1997). Seasonal mass variation can therefore be considered 

a life history trait because it is a function of seasonal variation in resource availability. A bird 

regulates its mass as a trade-off between the risk of starvation and the risk of predation, in a 

way consistent with maximising overall survival (Lima 1986, Lemon 1991, Houston et al. 

1993, Rogers and Smith 1993, Gentle and Gosler 2001, Olsson et al. 2002). In order to avoid 

the risk of starvation a bird is as heavy as possible because greater fat reserves allow birds to 

survive longer periods of unpredictable foraging (Rogers 1987). However, in order to reduce 

the risk of predation a bird needs to be as lean as possible because increased mass reduces 

acceleration when escaping predators (Lima 1986, McNamara and Houston 1990, Houston 

and McNamara 1993, Witter and Cuthill 1993, Gosler et al. 1995). Being fat also carries 

costs in terms of increased metabolic expenditure and extended exposure to predators while 

foraging to maintain the mass (Witter and Cuthill 1993). Therefore fat reserves are not 

maintained when foraging is more predictable and starvation risk is reduced. 

Interruptions to a bird’s foraging, such as from an increase in predation risk, severe weather 

events or conflict with time spent engaged in breeding activities causes a bird to increase its 

reserves against the increased risk of starvation, i.e. an interrupted foraging response 

(Houston and McNamara 1993, Pravosudov and Grubb 1997, Lilliendahl 1998, Gentle and 

Gosler 2001, McNamara et al. 2005, MacLeod and Gosler 2006). This adaptive increase in 

body mass can increase the chances of survival through the availability of stored energy 

reserves as insurance against starving due to unpredictable foraging conditions (Houston and 

McNamara 1993, Bednekoff and Houston 1994, Gosler 1996). Macleod et al. (2008) found 

that in European starlings Sturnus vulgaris subjected to constant predation risk, the scale of a 

bird’s mass response gave an index to the quality of the foraging environment. They 
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concluded that a larger mass increase was indicative of a poorer foraging environment and 

thus an indication of population decline.  

Mass can act as an index of life history strategy because a bird’s foraging decisions have 

direct influence on its immediate and future survival (Lima 1998a, Caro 2005). Birds show 

many behavioural and physiological changes to reduce mortality from predation and these are 

likely to have negative effects on other aspects such as fitness and population dynamics, as 

well as affecting the ecology of their own prey and predators (Cresswell 2008). If a bird is not 

starving, how it manages its mass as a consequence of interruptions to its foraging is 

dependent on the quality of the foraging environment and provides a framework to predict 

life history, behaviour, fitness, population dynamics and community structures (Abrams 

1984, McNamara and Houston 1987, Bolker et al. 2003, Cresswell 2008). 

Seasonal mass variation: tropical savannahs as model systems 

High levels of species diversity combined with the lack of the driving evolutionary force of 

winter means that tropical environments offer a powerful tool for disentangling mass 

variation in response to life history events. The absence of seasonally short day lengths and in 

most environments, low temperatures, may mean that foraging remains predictable 

throughout the year. Or at the least a possible ‘lean’ season may be reduced (Ward 1969, 

Fogden 1972). The non-lethal effects (or perception) of predation may also remain relatively 

constant across the year because communities are driven more by density-dependent than 

independent forces, so there are higher numbers of competitors and con-specifics to spread 

the risk of being depredated (Brandt 2007, Cresswell 2008). If foraging remains predictable 

and perception of predation does not vary significantly across the seasons, then in the non-

breeding season birds may not need to store excess fat as in the Northern hemisphere and so 

any seasonal variation in mass may be due to other factors such as from interruptions to 

foraging (Rogers and Smith 1993) or birds compensating for seasonal water constraints with 

increased metabolic water (Macmillen 1990).  

In particular, the savannahs of West Africa may be ideal for understanding the effects of 

seasonality of a bird’s foraging environment on mass variation and subsequently life history. 

This is because they lack a period of high density-dependent mortality which acts across all 

species, and day length and temperatures remain relatively constant across the year, as does 

the timing, intensity and duration of the rains (Bourliέre and Hadley 1970), which are driven 
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by the annual movement of the Inter-Tropical Convergence Zone (Bourliέre and Hadley 

1970, Perry and Walker 1977, Tyson 1986, Osborne 2000). The seasonal availability of 

water, which goes from almost negligible at the end of the dry season to superabundant at the 

end of the wet season, has a considerable influence on leaf production, and the flowering and 

fruiting of savannah trees (de Bie et al. 1998). Young leaves are eaten by numerous adult 

insects and/or their larval stages, and so the abundance of such insects is related to the 

seasonality of leaf production (Poulin et al. 1992). Ground-dwelling arthropods are present in 

low numbers throughout the dry season, but the arrival of the rains then causes an explosion 

in the density and diversity of arthropod populations (Dingle and Khamala 1972, Poulin et al. 

1992). Those species that rely directly on water for survival may experience increased 

seasonality, incurring greater costs when water is limiting such as from increased travel 

(Brandt and Cresswell 2008). Many insectivorous, nectivorous and frugivorous species live 

relatively independent of standing water (Fisher et al. 1972, Fogden and Fogden 1979, Gill 

2007), so are affected by rainfall through its effect on primary productivity. However, food 

and water are often strongly complimentary in granivorous birds (Kotler et al. 1998); with 

many species relying on drinking water to facilitate the digestion of seeds during the dry 

season, particularly during high midday temperatures (Immelmann and Immelmann 1967, 

Skaed 1975, Ward 1978, MacMillen and Baudinette 1993, MacMillen and Hinds 1998). 

Therefore how species or populations experience seasonality is likely to be determined by 

their foraging niche, because different food types will vary in the timing and scale of their 

peak abundance (Poulin et al. 1992, Peach et al. 2001). 

Dispersal reduces the seasonality of competition 

In tropical savannahs seasonal variation in food availability causes the movement of 

populations on many scales, with avifaunal communities consisting of both transient and 

sedentary populations of many species (Fry et al. 1992-2004, McGregor 2005). Therefore, 

although food availability increases during breeding, an increase in energetic expenditure 

coupled with an increase in the number of competitors and con-specifics for available food 

sources may mean that foraging predictability actually decreases. Therefore some populations 

will be increasingly constrained by density-dependent factors during breeding, so selection 

acts on those individuals who invest in smaller clutch sizes and longer parental care. These 

species may be more similar in their life history strategy to lowland tropical forest species 

having smaller clutch sizes and higher rates of adult survival (McGregor et al. 2007a). If 
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populations do remain close to their carrying capacity then it may be less costly, e.g. through 

reduced competition for resources, for some individuals to either breed out of the main 

breeding season or to have extended breeding seasons. 

The study site 

This study was conducted on the Jos Plateau in Nigeria, which lies midway along a rainfall 

gradient from rainforest in the south to dry Sahel and deserts in the north (Figure 1). The 

plateau is situated on the interface between humid (annual rainfall > 1500mm) and semi-

humid habitats (< 1500 mm) where seasonality may be more pronounced (Omoregie and 

Akenova 1999), at least in West Africa, because there is a single intense wet season 

(Dowsett-Lemaire 1997), which retains a relatively high year to year stability compared to 

two wet season regimes (Herrmann and Mohr 2011). Combined with cooler temperatures due 

to the altitude of the site (1300 m asl), this may mitigate some of the factors causing the 

decline in arthropod abundance (Poulin et al. 1992), thus allowing for slightly increased 

diversity in life history strategies compared to more arid habitats. The Jos plateau therefore 

combines components of both more arid and more humid environments.  
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Figure 1: Location of the study site in Nigeria, West Africa. 

Amurum Community Forest Reserve (Amurum; N 09° 52’; E 08° 58’) is located in the centre 

of the Guinea savannah zone in Nigeria and consists of 120 hectares of four main habitat 

types; gallery forests, rocky outcrops ‘inselbergs’, degraded guinea savannah and mixed 

farmland (Figure 2). The site contains areas of vegetation typical of the Guinea savannah 

zone with small patches of 13m-17m high broadleaved woodlands and gallery forests 

(Brachystegia eurycoma, Parkia bigobosa, Vitellaria paradoxa, Terminalia, spp.). Most of 

the site is dominated by low growing scrub of Combretum spp., occasional Acacia spp., and 

large areas of grassland dominated by species such as Andropogon spp., and Hyparrhenia 

spp. (Figure 3, Elgood et al. 1994). Due to its close proximity to Jos (12km to the West) 

much of the habitat surrounding the reserve has been severely degraded by anthropogenic 
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pressures. Relatively Amurum is a high quality heterogenic habitat, and as such probably acts 

as a source habitat to the surrounding area. Across the plateau, forest and savannah patches 

are linked by a network of gallery/riverine forest which may act as corridors for the dispersal 

of both forest and savannah species (Omotoriogun et al. 2011). In Amurum Forest Reserve 

the rainy season lasts for approximately six months, from the 10th of April ± 9 days until the 

13th of October ± 11 days, there was an annual rainfall of 1337 ± 159 mm (2001-2011), with 

the heaviest rainfall occurring in August (290 mm ± 28 mm). Maximum temperatures range 

from between 20 and 25 C during the coldest months, rising to 30 to 35 C at the end of the 

dry season. Day length varies annually by 68 minutes. 

 

Figure 2: Amurum Community Forest Reserve. The reserve is surrounded by land that is 

farmed by subsistence farmers. 

Data were also used from birds caught in Yankari Game Reserve, Bauchi State (N09° 20’; 

E10° 30’). The habitat comprised more Sudan, rather than Guinea, savannah and therefore 

had some differences in floral composition. However, overall the degree of seasonality and 

climate was similar to Amurum. 
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Figure 3: Typical habitat within Amurum Community Forest Reserve, showing degraded 

guinea savannah, galley forest and inselberg habitats.  

Methodological details 

This thesis uses data collected from birds caught using four-panelled mist nets in Amurum. 

On capture the bird was first aged and sexed, before the maximum wing chord was measured 

using a stopped wing rule (Svensson 1992). The mass was recorded using electronic scales to 

the nearest 0.1g. The bird was assessed for body and wing moult (Redfern and Clark 2001) 

and whether or not there was a brood patch present (Redfern and Clark 2001). Each bird was 

then fitted with an individually numbered ring so that it could be identified if recaught, before 

being released unharmed. The ringing program at the A. P. Leventis Research Institute 

(APLORI) commenced in November 2001 and has been run continuously by PhD students at 

the University of St Andrews. Ringing is conducted throughout the year, and until 2010 it 

was concentrated over two 14 day Constant Effort Sites (CES), utilising 272m of mist net. 

The CES was carried out at the end of the end of the dry season in March-April and again at 
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the end of the wet season in September-October. In order to increase the numbers of species 

and individuals caught, as well as to have systematic ringing during the most biologically 

interesting period during the wet season (June), since 2010 the CES program changed to 

being conducted at two sites alternately over six days, five times a year. The CES has then 

been conducted at the end of the dry season (March), start of the wet season (April), middle 

of the wet season (June), end of the wet season (October) and start of the dry season 

(November). Nets were reduced to 153m at the original site, and 171m of new net were set at 

a site surrounding APLORI, totalling 324m. 

Ringing activities also provided an opportunity to instruct West African APLORI MSc 

students in this field technique, several competent ringers have now been produced who are 

currently expanding APLORI’s ringing activities through different research projects within 

Nigeria. During this thesis I concentrated on expanding APLORI’s current ringing activities, 

along with updating the database to Access 2007 and managing the writing of the Ringing 

Guide to the Birds of West Africa which is available on APLORI’s website 

http://www.aplori.org. In total there have now been 25,000 individuals caught of 366 species, 

along with 7,300 recaptures. 

Aims of the study and hypotheses to be tested 

In the following five chapters of this thesis: 1) Firstly, I established patterns of seasonal and 

annual mass variation across 47 species of small savannah birds; 2) I then explored the use of 

two breeding indictors to ascertain to what degree there was seasonality of breeding in 25 

species of savannah bird and how timing of peak breeding was related to feeding guild; 3) 

This allowed me to expand on the previous two chapters to investigate how birds increased 

their mass during breeding through an interrupted foraging response, and how the scale of 

any mass gain was related to sex and species-specific investment in breeding activities; 4) 

The next chapter established mass variation as a life history trait by exploring the relationship 

between seasonal mass variation and variation in the timing of peak mass across the years 

with adult survival; 5) Finally, I summarise the subjects researched in this thesis and how 

these relate to one another to establish mass variation as a bridge between foraging theory 

and life history in tropical birds. 

 

http://www.aplori.org/
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Chapter 2: Patterns of seasonal and annual mass variation in West African Tropical 

Savannah birds 

A bird regulates its mass as a trade-off between the risk of predation and the risk of starvation 

(Brodin 2001). Birds in the Northern hemisphere increase mass reserves in response to 

seasonally low temperatures and shorter day lengths that increase foraging unpredictability 

and so starvation risk (Houston and McNamara 1993, Cresswell 1998, Brodin 2007). 

However, in many tropical environments day length and temperatures remain relatively 

constant across the year and so bird species may not need to increase their reserves in the 

non-breeding season because foraging remains predictable (e.g., Ward 1969, Fogden 1972, 

Rozman, Runciman & Zann 2003). If food availability remains high then any seasonal 

variation in reserves may provide insights into individual investment in life history events. 

Mass variation in the savannah species of this study is probably representative of mass 

variation in tropical environments which don’t experience seasonally cold temperatures (see 

also Ward 1969, Fogden 1972, Crowe et al. 1981, Wikelski et al. 2000, Rozman, Runciman 

& Zann 2003). 

This chapter tested two hypotheses: 

I. That tropical bird species vary their mass seasonally, 

II. Species that vary their mass do so in response to seasonally variable foraging 

opportunities characterized by a dry and wet season, moderated by their 

foraging guild and migratory status. 

Chapter 3: The seasonality of breeding in savannah birds of West Africa assessed from brood 

patch and juvenile occurrence 

Breeding is a costly life-history activity which conflicts with adult survival (Saether 1988, 

Bennett and Owens 2002). Animals reduce the costs of reproduction by timing their breeding 

around periods of increased resource availability, avoiding periods of resource constraint 

(Lack 1968). In the tropics the rains drive distinct seasonal peaks in resource availability and 

many species time their breeding around these peaks (Poulin et al. 1992), despite the fact that 

foraging probably remains predictable for much of the year. So how a species experiences 

seasonality will determine the timing and length of its breeding season. This chapter assessed 

the suitability of two potential breeding indicators, proportion of brood patches in adult birds 

and the ratio of juveniles to adults, to test two hypotheses:   
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I. That species will show a distinct seasonal peak in breeding activity even though 

individuals of most species can potentially nest throughout the year,  

II. That seasonal peaks are coincident with peak food availability so that timing of 

breeding will depend on the feeding guild. 

Chapter 4: Breeding as interrupted foraging – seasonal mass gain in tropical savannah birds 

Birds put on mass reserves in response to interruptions to their foraging which may arise 

from a number of sources such as predators, disturbances, long winter nights or extreme 

weather events (Lima 1986). Theoretically, breeding should also represent a similar 

interruption in foraging because adult birds have to divert time away from their own foraging 

to incubate eggs, feed chicks and to guard mates, nests and territories. So within the same 

foraging environment the scale of any mass response will reflect foraging predictability as 

determined by an individual’s level of investment in breeding. This chapter tested two 

specific hypotheses: 

I. That mass gain occurs during the breeding season for both incubating and non-

incubating birds (i.e. mass increases during the breeding season and is not solely due 

to gonad or egg development), 

II. That the scale of mass gain due to breeding of males and females differs due to sex 

specific costs associated with different breeding stages. 

Chapter 5: Mass variation during breeding as an indication of food limitation and its 

consequences for adult survival 

If foraging is predictable in the non-breeding season a bird will reduce its mass to avoid 

mass-dependent costs. Within such a foraging environment the scale of any subsequent mass 

increase during breeding is an index of breeding investment, with higher levels of reserves 

also being associated with poorer quality environments (MacLeod et al. 2008). However, in 

tropical savannahs where day length and temperatures remain relatively constant, how a 

population experiences seasonality will depend on its foraging niche. If predation risk 

remains relatively constant across the year then the level of body reserves should reflect life 

history events, as a consequence of adaptation to the quality of the foraging environment. 

Animals that are r selected exploit super abundances of often unpredictable food availability, 

so during breeding they are not constrained by absolute levels of resources or competition 

and so might show a reduced mass response. In contrast animals that are K selected exploit 
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lower levels of predictable food availability and are constrained during breeding by the 

absolute level of food resources and competition for them and so may show an increased 

mass response. This chapter tested two specific hypotheses: 

I. That savannah species which show a larger interrupted foraging response will have 

higher apparent survival  

II. That species which show peaks in mass at different times in different years will have 

reduced apparent adult survival. 
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Chapter 2: Patterns of seasonal and yearly mass 

variation in West African tropical savannah birds 

Published as Cox et al. 2011 IBIS 153:672-683. 

Summary 

Birds in the Northern hemisphere usually increase mass reserves in response to seasonal low 

temperatures and shorter day length that increase foraging unpredictability and so starvation 

risk. In the lowland tropics relatively low temperatures and short day lengths are absent and 

so the risk of starvation may be reduced, leading to much smaller seasonal effects on mass. 

Nevertheless, other factors such as high temperatures and water and food availability may 

vary greatly between tropical wet and dry seasons leading to variable starvation risk and 

seasonal mass effects. Using data collected from 47 species of birds caught over a 10-year 

period in a tropical savannah region in West Africa we tested for seasonal variation in mass 

in response to a predictable, strongly seasonal tropical climate. Many species (91%) showed 

seasonal variation in mass, and this was often in a clear annual pattern that was constant 

across the years. Many species (89%) varied their mass in response to seasonally predictable 

rainfall. Annual variation in mass was also important (45% of species). Relatively few 

species (13%) had a seasonal pattern of mass variation that varied between years. Feeding 

guild or migratory status was not found to affect seasonal or annual mass variation. Seasonal 

mass change was on average 8.1% across the 21 species with very large sample size and was 

comparable to both northern and southern temperate species. Our study showed that 

biologically significant consistent seasonal mass variation is common in tropical savannah 

bird species, and this is most likely in response to changing resource availability brought 

about by seasonal rainfall and the interrupted foraging response due to the constraints of 

breeding.  

Introduction 

Birds regulate their mass as part of the trade-off between the risk of starvation and the risk of 

predation (Brodin 2001). For example, birds lay down fat deposits to insure against 

unpredictable foraging opportunities in winter, when day length and temperature are reduced 

(Cresswell 1998, Brodin 2007). Carrying fat, however, bears a cost in terms of increased 



 

28 

 

mass-dependent predation risk, due to reduced acceleration during escape flights of fatter 

birds (Lima 1986, McNamara and Houston 1990, Houston and McNamara 1993, Witter and 

Cuthill 1993), and higher metabolic costs and extended exposure to predation while foraging 

(Lima 1987). Therefore fat reserves are not maintained when starvation risk is reduced, such 

as during the summer in northern temperate regions when temperatures are higher and 

foraging is more predictable. A bird’s mass is therefore a reflection of environmental 

conditions (Pravosudov and Grubb 1997).  

Regular cold temperatures and short day length occurring in the winter of temperate and 

boreal regions are the main reason for seasonal weight variation in birds occurring in northern 

latitudes (Rogers and Heath-Coss 2003). In the tropics, however, temperature and day length 

remain relatively constant throughout the year, and so there is no season when birds have a 

particularly high risk of starvation due to longer and colder nights (Brodin 2007). Warmer, 

shorter nights, followed by predictable foraging conditions suggest that tropical birds can 

afford to avoid the cost of carrying elevated fat reserves throughout the year. Furthermore, 

the cost of increased fat reserves may be higher in the tropics. Perceived or actual risk of 

predation may be different in the tropics compared to northern temperate regions (Brandt and 

Cresswell 2009), because survival rates appear to be higher (Jullien and Clobert 2000, Peach 

et al. 2001, McGregor et al. 2007a) and there is an increase in the density and diversity of 

predators (Thiollay 1991, 1999). Nevertheless significant adaptive mass variation has been 

recorded in tropical birds (McNeil 1971, Fogden and Fogden 1979, Brandt and Cresswell 

2009), although there are surprisingly few studies that have measured this in non-migrating 

birds. For example, across its geographical range, 59 different populations of a common 

African species (Common Bulbul Pycnonotus barbatus) have been shown to display a degree 

of plasticity in their weight variation in response to varied environmental conditions: 

individual birds tended to be heavier at sites with lower temperatures and populations 

responded to increased seasonality by increasing their body mass in colder months (Crowe et 

al. 1981).  

Although the risk of starvation caused by seasonal low temperatures may be less important in 

determining seasonal mass change in tropical birds, other factors may still cause mass 

reserves to vary seasonally. In particular, tropical environments are characterised by rainfall 

seasonality, with the monsoon rains driving predictable peaks in the abundance of food 

sources and the availability of standing water (Osborne 2000). Seasonal availability of water 
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(Macmillen 1990) and its interaction with high diurnal temperatures (Goulart and Rodrigues 

2007) have both been shown to affect mass reserves in birds. Consequently many tropical 

species schedule costly activities, such as breeding, moult and migration seasonally (Fogden 

1972, Elgood et al. 1973, Sinclair 1978, Dittami and Gwinner 1985, Cruz and Andrews 1989, 

Abrams 1991, Poulin et al. 1992). Any effects of seasonal variation in starvation risk because 

of variable rainfall may however be dependent on feeding guild. Granivores may have a peak 

of food availability after the rains as grasses set seed (Crowley and Garnett 1999, Brandt and 

Cresswell 2009), whereas insectivores may have a peak of food availability during the rains 

as invertebrate numbers peak (Dingle and Khamala 1972).  

Temporally variable resources may also result in seasonal movements on many scales 

(Elgood et al. 1973, Karr 1976, Newton 2008). Seasonal mass change could be expected to 

occur in intra-African migrants as they increase their fuel reserves in preparation for 

migration (Fry 1967, Jones and Ward 1977, Ward and Jones 1977) due to the high energy 

demands of migration (King and Farner 1965, Ramenofsky 1989). Starvation risk, and 

therefore mass reserves in the tropics might also be caused by density-dependent processes 

associated with a higher population density of con-specifics and competitors (Rohde 1992, 

Gaston 2000). For example, spatial redistribution of birds due to migration may change local 

competition levels and so seasonal foraging uncertainty for both migrants and residents that 

the migrants join or leave, again leading to seasonal mass variation (Rogers 1987).    

In this paper we use data collected over a ten year period in a tropical west African savannah 

to test two hypotheses: 1) that tropical bird species vary their mass seasonally and 2) species 

that vary their mass do so in response to seasonally variable foraging opportunities 

characterised by a dry and wet season, moderated by their foraging guild and migratory 

status.  

Methods 

Study site 

We estimated the seasonal weight variation of small tropical birds in Guinea savannah 

woodland at the AP Leventis Ornithological Research Institute (APLORI) Amurum Forest 

Reserve on the Jos Plateau (09°52’N, 08°58’E) and at Yankari Game Reserve (09°45’N, 

10°30’E) in Nigeria: we caught 13,353 individuals of 47 species (Table 1). All retraps of 
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birds were excluded from the analysis to avoid pseudoreplication or over parameterisation of 

the model. We included all species where more than 60 individuals were caught: species with 

smaller sample sizes did not have a sufficient spread of captures across seasons and years to 

allow meaningful analysis.   

Birds were trapped using understory mist nets between November 2001 and March 2011. 

Trapping occurred year round but was concentrated at a Constant Effort Site (CES) 

conducted biannually in Amurum for a 14 day period, at the end of the dry season (March-

April) and the end of the wet season (September-October). During the CES, 272 meters of 4 

shelf net was used between 06:00 to 10:30 h WAT (although with few captures after 09:30 

h). Trapped birds were aged and sexed where possible. Maximum wing-chord was measured 

using a stopped wing rule to 1mm (Svensson 1992). Mass was measured to 0.1g using digital 

scales (Ohaus Scout). For each species the time of year was classified into four seasons 

estimated from the approximate start and finish of the rains: end of dry season (February-

April), start of wet season (May-July), end of wet season (August-October), start of dry 

season (November-January). Seasonal rainfall at the site was estimated from monthly rainfall 

summaries from Jos Airport (09°52’N, 08°53’E), which is located in the centre of Jos Plateau 

and 26km from Amurum Forest Reserve. Each species was assigned a residency status on the 

basis of seasonal variation in capture rates. Migratory status was assigned to any species that 

had > 50% reduction in capture rate between the end of the wet season and the end of the dry 

season CES (Table 1). A species was considered sedentary if there was a less than 50% 

variation in catching totals between CESs. Species were assigned to feeding guilds according 

to diet (Elgood et al. 1994, Urban et al. 1997 and Fry et al. 2004). 

Variables and statistical analysis 

We adopted the Information Theoretic statistical approach to test for the relative importance 

of six parameters on mass variation in each species (AICc, Burnham & Anderson 2002). 

Parameters included in the model were season (S), year (Y), variation in the annual timing of 

mass variation (S*Y), age, seasonal rainfall (mm), sex (where sexes could be reliably 

distinguished in the hand), and wing length (as an index of overall size, mm). We included 

the interaction (S*Y) to test if seasonal patterns were consistent between years. If S*Y was 

not significant (n = 40 species), we reran the model excluding this interaction. If S*Y was 
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significant (n = 7 species) we ran separate models for every year and averaged effect size 

across years. 

The mass of a species for a particular season was calculated from the parameter estimates (for 

example, mass = Intercept + (mean wing * wing estimate) + year estimate + (total rain * rain 

estimate) + age estimate for adults + sex estimate (if included) + season estimate). The 

predicted mass of a species in the lightest and heaviest season within a year was calculated by 

using the season with the lowest and highest parameter estimate respectively. The 

proportional difference in predicted mass between the lightest and heaviest season was then 

calculated ((mass in the heaviest season – the mass in the lightest season) / mass in the 

lightest season). To standardise effects across species the estimate for year was either 

arbitrarily set for 2006 (the year of largest sample size and mid-point of the study) for species 

with models that did not show a significant interaction of season with year (S*Y). For species 

where this interaction was significant, we simply averaged effect sizes across the different 

years’ models.  

The best models were then evaluated using AICc to calculate the Akaike weight (W1) of the 

top model. W1 converts the deviance of all possible models to a scale of zero to one. Each 

weight then represents the likelihood that that model is the best model. We also calculated the 

number of models which showed equal support for the top model (delta (Δ) < 2 (Burnham & 

Anderson 2002, Richards 2005). We recorded which variables were represented in models 

where Δ < 2 (Table 1, Fig. 1) before model averaging all possible models to obtain relative 

variable weights. There was a positive relationship between sample size and the weight of the 

top model and a negative relationship between sample size and the number of models where 

Δ < 2. Analysis was conducted using the MuMIn and lme4 packages in R 2.13.0 (R 

Development Core Team 2011). 

We examined to what extent the range of species in our sample was phylogenetically 

representative of West African savannah birds. Although we sampled reasonably randomly 

with respect to species that might show seasonal mass variation (any species caught in 

sufficient numbers by mist-netting was included here), any overall estimate of the proportion 

of species showing seasonal mass gain may be confounded if some genera (or families, or 

orders) were sampled more frequently with respect to proportion of species than others, and 

some taxa are more likely to show seasonal mass change than others. We adjusted for any 

such effects of uneven sampling across species by multiplying the total number of species 
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within genera (or within families, or within order) available at the study site by the proportion 

of species sampled within that genus (or family, or order) that showed seasonal mass change. 

We then averaged this true estimate of the number of species within genera across all genera 

present at the study sites (or species within families across all families present at the study 

sites, or species within order across all orders present at the study sites) showing seasonal 

mass change.  

Time of day was not included in analysis because these data were missing in many cases so 

greatly reducing our sample sizes. Inclusion of time of day to the nearest hour in the best 

model for each species did not significantly affect seasonal and annual parameter estimates 

except as might be expected by a reduction in sample size (n = 9 010, species = 38). The lack 

of effect of time of day on seasonal results was expected because data were almost always 

collected between 06:30 and 10:30 h (and most commonly between 07:00 - 09:00 h), and any 

effects acted in an unbiased way across seasons.  

Results 

 

There was strong evidence for consistent seasonal mass variation linked to rainfall variation 

in most species. Season was included as a parameter in at least one of the top models for 43 

species (91%, Table 1, Fig. 1). All four species that did not include season in their top models 

had significantly different seasonal catching totals and small sample sizes (Table 1), 

suggesting that seasonal mass variation may have been detected in these species with a larger 

or more seasonally uniform dataset. The timing of the seasonal mass change varied across 

years for six species (13%, Table 1). Year was included as a parameter in at least one of the 

top models for 21 species (45%, Table 1). Rainfall was included as a parameter in at least one 

of the top models for 42 species (89%, Table 1). An example of a species showing 

predictable seasonal variation in mass (African Thrush Turdus pelios) and a species showing 

variation in the seasonal pattern of mass change dependent on year (Northern Red Bishop 

Euplectus franciscanus) are illustrated in Figure 2. 

Seasonal mass change was on average 12.6% (+ 1.6) across the 47 species. Most species had 

their highest mean mass at the end of the wet season and start of the dry season, but there was 

no clear season in which most species were lightest (Table 1, Fig. 3). There was no 

significant difference in the frequency of the season with the lowest mass (x
2

3 = 0.3, P = 0.96) 
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or highest mass (x
2

3 = 0.5, P = 0.93) according to resident or transient status (Table 1). The 

effects of the predictor variables were fairly consistent regardless of feeding guild, and there 

was no significant difference in the frequency of the season of lowest mass (x
2

9 = 9.8, P = 

0.37) or highest mass (x
2

9 = 15.8, P = 0.07) according to guild (Table 2). There was no 

significant variation in percentage mass change by either residency status (F1,41 = 0.03, P = 

0.86) or guild (F3,41 = 0.3, P = 0.80) controlling for overall mass (F1,41 = 0.4, P = 0.53).     

There were 194 possible species caught during mist-netting at Amurum and Yankari, 47 

(24.2%) provided mass data sufficient for meaningful analysis and 43 showed seasonal mass 

variation in their top models. Unbiased estimates of occurrence of seasonal mass change were 

high at all taxonomic levels. Seasonal mass change was estimated to occur in 91.9% (+ 4.4) 

of species within genera averaged across all genera present at the sites (n = 79 possible 

species in the 32 genera caught), 90.8% (+ 5.5) of species within family averaged across all 

families present at the sites (n = 118 possible species in the 20 families caught) and 97.9% (+ 

2.0) of species within order averaged across all orders present at the sites (n = 163 possible 

species in the five orders caught). 

Discussion 

Our study showed that the mass of about 91% of tropical savannah species was affected by 

season grouped into wet and dry periods. Rainfall was in the top models for 89% of these 

species and in all top models for species where the seasonal timing of mass varied 

significantly between years, suggesting that annual variation in the arrival of the rains is 

important as well as its variability. There were no clear differences in seasonal mass patterns 

with migratory status or foraging guild again suggesting a reasonable consistency of selection 

for mass regulation in response to rainfall across species. 

The magnitude of seasonal mass gain was of the order of 12.6%. Six species showed 

relatively high variation in seasonal mass (> 25%), but their analyses were probably less 

reliable because of small sample sizes (n < 200). After controlling for sample size (by 

including only species where n > 200) the maximum average degree of seasonal mass change 

in tropical species (8.1% + 4.1, species = 21) was comparable to both northern temperate 

(maximum of 12%, Baldwin & Kendeigh 1938, 2-8%, Sep–Dec only, Haftorn 1989) and 

southern temperate species (8-14%, Rozman et al. 2003). Even the four species (9%) which 
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did not have season in their top models showed a comparable variation range in mass gain 

(9%).  

That variation in the timing and amount of rainfall results in consistent mass variation across 

many bird species is perhaps not surprising. There is strong seasonality in the tropics brought 

about by the arrival of the rains, which causes a profound increase in primary productivity 

and the availability of standing water (Dingle and Khamala 1972, Wolda 1978, Poulin et al. 

1992). Species were generally heaviest during the late wet season which probably coincided 

with high invertebrate population dentisties (Dingle and Khamala 1972), or at the start of the 

dry season when seed availability is most abundant (Crowley and Garnett 1999, Brandt and 

Cresswell 2009). This also coincided with the peak of breeding for many species (unpubl. 

data from the occurrence of brood patches during the CES). We conclude that although there 

is no “winter” period with a particularly high starvation risk, the arrival of the rains and the 

subsequent increase in resources changes the predictability of the foraging environment for 

many species, causing variation in fat reserves.  

That mass reserves peak with favourable foraging conditions in tropical savannah birds 

presents an apparent conflict when considering the northern hemisphere paradigm of low fat 

reserves being associated with favourable foraging conditions. However, under increasingly 

favourable foraging conditions and constraints to foraging time such as high predation risk, 

an increase in resource availability may result in a shift from a mass-dependent predation risk 

response (where birds lose mass) to an interrupted foraging response (where birds increase in 

mass, Lima 1986, Houston & McNamara 1993, Houston et al. 1993). This is because overall 

mass levels are affected by foraging unpredictability as a direct consequence of 

environmental factors (such as temperature) but also foraging unpredictability caused by 

conflicts with foraging such as avoiding predators. For example, when prey avoid predators, 

both in time and space, the prey’s foraging options are reduced and this may then lead to 

mass increases as insurance against the increased unpredictability in foraging (Lilliendahl 

1998, Gentle and Gosler 2001, Rands and Cuthill 2001). Interrupted foraging occurs, 

however, only if foraging conditions are sufficiently good to allow long term energy budgets 

to be met in the remaining time and space available after birds have avoided predators 

(Brodin 2007). Although it is well established that reduction in foraging predictability 

directly from the environment leads to high total body mass (e.g., Rogers 1987, Bednekoff et 

al. 1994, Gosler et al. 1995, Cresswell 1998), these studies are all associated with northern 
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temperate winters when environmental effects on foraging predictability are likely to be very 

severe. In tropical areas, however, the effects of behaviours that conflict with foraging may 

be relatively more important because baseline foraging certainty is always relatively high and 

so mass response by birds may be largely concerned with interrupted foraging responses. 

Such situations are possible, even in northern temperate species as demonstrated by a range 

of species (MacLeod et al. 2007) and particularly by Great Tits Parus major (Cresswell et al. 

2009b). 

Overall, our results of lowest mass, on average, in the non-breeding season suggest that 

foraging predictability in the tropics (and possibly in the Southern hemisphere, Rozman et al. 

2003) remains high, probably because of relatively high temperatures and relatively little 

shortening of day length. Consequently birds can minimise mass to avoid mass-dependent 

costs. In contrast, in the northern temperate non-breeding season, much greater unpredictable 

foraging associated with very long nights followed by freezing days, when foraging is 

impossible, causes birds to increase fat reserves. Temperate species therefore accept a higher 

maintenance cost and a higher predation risk in the non-breeding season, which may account 

for some of the lower survival rates reported on average for temperate versus tropical species 

(McGregor et al. 2007a). Furthermore, we suggest that a seasonal breeding period in both 

temperate and tropical areas is associated with increased mass because the constraints of 

breeding reduce foraging predictability in terms of self-maintenance for an adult bird. In 

other words, breeding season priorities such as feeding chicks, singing, territory maintenance, 

mate guarding and nest building conflict with foraging, but increased mass reserves allow 

self-maintenance to be scheduled between these activities, rather than always taking priority. 

Consequently we see an interrupted foraging response associated with the breeding season 

because many breeding activities conflict with foraging for self-maintenance. However, in 

temperate areas this mass increase is not apparent because it is always measured relative to 

the greater mass increase in the non-breeding season preceding it. It is interesting to note, that 

in temperate species where annual mass variation has been analysed in detail that minimum 

annual mass occurs immediately after breeding, before moult (e.g., Macleod et al. 2005). 

This relatively brief period of long day length and favourable temperatures where only self-

maintenance is required, is perhaps then equivalent to the non-breeding season in tropical 

areas.          
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We could find little evidence for the effects of seasonal mass gain associated with migrants. 

We suggest that many transient species only travel relatively short distances within Africa, 

and do not need to barrier cross, so they may be able to forage each day while they migrate in 

short daily legs (Elgood et al. 1973, Payne 1980). We also found little evidence for any 

effects of potential changes in density associated with some species migrating, despite major 

changes in abundance of many species across seasons. For example, resident populations of 

species, such as the Northern Red Bishop show increased population density during the rains 

as transient populations converge at breeding locations (Craig 1980). Our study was not 

designed specifically to test these hypotheses however and it seems likely that true migratory 

fattening occurs in long distance intra-African migrants, and as a result of competition. 

Further research is needed at sites which have greater variation in both these variables than 

we could measure.  

Overall our results show that approximately nine out of ten tropical savannah species from 

West Africa vary their mass seasonally and we provide evidence that this is most likely in 

response to rainfall seasonality. We suggest that these birds vary their mass in response to a 

variation in resource availability and foraging constraint as in temperate birds, but with the 

season with the maximum mass being that with the highest resource availability as a 

consequence of the interrupted foraging response, and relatively high foraging predictability 

during the rest of the year.  
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Table 1: Seasonal mass variation in 47 species of West African savannah birds captured by mist-netting over a 10 year period in central Nigeria. 

Results of models to test whether there was seasonal (S), annual (Y) or variation across the years in season (S*Y) of variation in mass 

controlling for rainfall, age, sex and wing length. We used AICc to calculate the Akaike weight (W1) of the top model and the number of models 

which show equal support to the top model (∆, ∆ < 2). We present which variables were present (2) or absent ( ) in the top models (- denotes that 

the variable was not analyzed in the model), and the relative importance (Σ) of a predictor as the sum of the W1 of the models in which the 

predictor was present. Minimum and maximum mass and the proportional maximum mass change between seasons are given along with the 

season of the minimum and maximum mass. We identified species guilds from diet in Elgood et al. (1994), Urban et al. (1997) and Fry et al. 

(2004): I Insectivore, F frugivore, N nectivore, G granivore. Transient status was identified over resident status by a > 50% change in capture 

rate between dry and wet season CES. 

Species n 

G
u

il
d
 

W1 
 

∆
  

se
as

o
n
 

y
ea

r 

se
as

o
n
*
y

ea
r 

ra
in

 

ag
e 

se
x
 

w
in

g
 

Σ 
S 

Σ 
Y 

Σ 
S*Y 

Min.  

mass (g) 

Max. 

mass  (g) 

% 

difference  

Mean 

mass (g) 

Season 

min. mass 

Season 

max. mass 

N
o

. 
o

f 
d

ry
 s

ea
so

n
 

C
E

S
 c

ap
tu

re
s 

N
o

. 
o

f 
w

et
 s

ea
so

n
 

C
E

S
 c

ap
tu

re
s 

M
ig

ra
to

ry
 

COLUMBIFORMES               
      

   

Columbidae                        

Streptopelia hypopyrrha 159 F 0.44 3    -   -  0.45 0  32.14 37.71 17 36.58 3 4 26 15 R 

Stigmatopelia senegalensis 85 G 0.5 2   -     0.6 0  40.69 48.45 19 45.72 3 1 38 26 R 

Turtur nigrcollis 230 G 0.41 2   -   -  >0.99 >0.99 >0.99 35.45 39.71 12 37.41 4 2 199 108 R 

COLIIFORMES 
              

      
   

Coliidae 
              

      
   

Colius striatus 298 F 0.18 6      -  0.48 >0.99 0.42 51.01 57.09 12 52.27 4 3 98 64 R 
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CORACIIFORMES 
              

      
   

Meropidae 
              

      
   

Merops bulocki 205 I 0.26 4   -   -  0.15 0.03  22.77 24.45 7 23.91 3 1 73 16 T 

PICIFORMES 
              

      
   

Capitonidae 
              

      
   

Pogoniulus chrysoconus 239 F 0.23 6   
 

  -  0.81 0.37  10.50 10.84 3 10.86 1 4 106 23 T 

Lybius vieilloti 62 F 0.21 5   -   -  0.45 0  32.14 37.71 17 36.58 3 4 26 15 R 

Indicatoridae 
              

      
   

Indicator indicator 111 I 0.22 4   -     0.6 0  40.69 48.45 19 45.72 3 1 38 26 R 

PASSERIFORMES 
              

      
   

Pycnonotidae 
              

      
   

Pycnonotus barbatus 614 F 0.65 2      -  >0.99 >0.99 >0.99 35.45 39.71 12 37.41 4 2 199 108 R 

Turdidae 
                       

Turdus pelios 516 I 0.38 3   -   -  >0.99 0.09  64.51 69.68 8 65.28 1 3 251 42 T 

Muscicapidae                        

Cossypha niveicapilla 176 I 0.36 3   -   -  0.99 0 0 34.00 37.23 10 36.28 2 1 60 23 T 

Ceromela familiaris 117 I 0.43 1   -   -  0.69 0  15.59 17.37 11 16.88 4 2 43 10 T 

Myrmecocichla cinnamomeiventris 63 I 0.28 3   -     0.59 0  39.03 45.59 17 39.35 1 2 18 9 R 

Sylviidae 
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Eremomela pusilla 70 I 0.34 2   -   -  0.11 0.29  6.88 7.43 8 7.03 1 2 17 8 T 

Cisticolidae 
                       

Camaroptera brachyura 226 I 0.66 1   -   -  0.66 >0.99  10.76 11.64 8 10.87 1 3 47 32 R 

Prinia subflava 64 I 0.38 3   -   -  0.64 0  6.45 9.33 45 8.40 2 4 16 10 R 

Cisticola aberrans 85 I 0.3 4   -   -  0.17 0.04  13.20 13.68 4 13.26 1 3 24 12 R 

Monarchidae 
                       

Terpsiphone viridis 84 I 0.59 2   -   -  0.96 0.01  13.81 14.68 6 14.21 1 4 35 5 T 

Platysteiridae 
                       

Batis senegalensis 68 I 0.38 3   -     0.29 0  7.92 10.82 37 9.88 2 4 23 10 T 

Platysteria cyanea 94 I 0.38 2   -     0.1 0.98  13.94 14.86 7 13.79 1 1 23 26 R 

Zosteropidae 
                       

Zosterops senegalensis 241 F 0.4 2   -   -  0.55 0.02  9.42 9.66 2 9.42 2 3 72 39 R 

Nectarinidae 
                       

Cyanomitra verticalis 130 N 0.78 1   -     0.91 0.02  11.52 12.87 12 12.15 2 4 40 38 R 

Chlcomitra senegalensis 476 N 0.39 3   -     0.97 >0.99  10.69 11.13 4 10.23 4 3 205 72 T 

Cinnyris venustus 354 N 0.14 8   -     0.87 0.64  6.15 6.43 5 6.26 3 1 152 67 T 

Cinnyris pulchellus 201 N 0.58 2   -     0.05 0.03  7.11 8.05 13 6.98 4 3 16 1 T 

Malaconotidae 
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Laniarius barbarus 82 I 0.34 4   -   -  0.46 0.53  46.78 51.84 11 48.89 1 4 24 10 T 

Passeridae 
                       

Petronia dentata 64 G 0.46 2   -   -  0.89 0  15.61 23.84 53 18.00 1 3 16 2 T 

Ploceidae 
                       

Sporopipes frontalis 62 G 0.15 7   -   -  0.25 0.09  17.06 19.10 12 17.02 1 3 21 19 R 

Ploceus luteolus 147 G 0.42 1   -   -  0.7 >0.99  13.67 14.79 8 14.44 2 3 28 24 R 

Ploceus vitellinus 284 G 0.33 3   -   -  0.63 0.35  17.94 21.61 20 20.18 2 4 58 26 R 

Ploceus heuglini 81 G 0.35 3   -   -  0.48 0.02  20.95 27.91 33 23.61 3 4 55 9 T 

Ploceus cucullatus 738 G 0.61 2        0.99 >0.99 0.99 36.45 40.25 11 36.38 2 3 210 90 T 

Ploceus nigrcollis 209 G 0.43 2   -   -  >0.99 0.31  25.01 26.63 6 26.40 1 4 59 50 R 

Euplectes hordeaceus 169 G 0.86 1   -     >0.99 0.01  17.15 21.95 28 19.99 2 4 98 18 T 

Euplectes franciscanus 1762 G 0.38 2      -  >0.99 >0.99 >0.99 14.67 15.46 5 15.22 1 3 222 1084 T 

Estrildidae 
                       

Estrilda melpoda 88 G 0.27 3   -   -  0.34 0.14  7.06 7.93 12 7.21 4 3 23 7 T 

Estilda caerulescens 530 G 0.27 4      -  0.49 >0.99 0.05 8.92 9.46 6 9.22 4 3 158 73 T 

Estrilda troglodytes 149 G 0.23 3   -   -  0.48 0.92  7.79 8.17 5 7.62 1 4 56 15 T 

Urarginthus bengalus 692 G 0.46 3   -     0.78 >0.99  9.72 10.22 5 10.08 4 3 83 193 T 

Ortygospiza atricollis 139 G 0.22 6   -     0.98 0  10.31 11.11 8 10.58 1 3 77 39 R 
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Lagonosticta rufopicta 113 G 0.24 3   -   -  0.6 0.13  9.43 10.23 9 9.27 4 3 14 28 R 

Lagonosticta senegala 763 G 0.46 2   -     >0.99 0.93  8.06 8.60 7 8.69 2 4 120 185 T 

Lagonosticta sanguinodorsalis 480 G 0.54 1        >0.99 >0.99 0.97 9.98 11.05 11 10.45 1 3 59 64 R 

Lagonosticta rara 84 G 0.18 5   -     0.17 0.44  9.73 10.37 7 9.82 1 3 35 8 T 

Spermestes cucullatus 768 G 0.5 2      -  >0.99 >0.99 >0.99 8.75 9.22 5 8.94 2 3 329 94 T 

Viduidae 
                       

Vidua chalybeata 71 G 0.31 3   -   -  0.51 0  11.55 12.48 8 12.24 2 4 10 16 R 

Emberizidae 
                       

Emberiza tahapisi 361 G 0.2 6   -   -  0.62 0.18  13.36 14.50 9 13.50 3 4 147 35 T 
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Table 2: Important parameters affecting mass in 47 species of West African tropical bird, 

summarized across four feeding guilds (mean values and percentage inclusions were 

calculated from Table 1, see also Table 1 for variable explanations). 

  
Frugivores Insectivores Nectivores Granivores 

All 

species 

 No. species 6 14 4 23 47 

Migratory 

status 

Transient 2 8 3 14 27 

Resident 4 6 1 9 20 

Mean W1 0.35 0.35 0.47 0.47 0.38 

Mean ∆ 4 3.5 3 3 3.4 

% inclusion 

of each 

variable in 

the top 

models 

(∆ < 2) 

S 100 86 75 96 92 

Y 50 29 50 52 47 

S*Y 33 0 0 17 13 

Rain 100 86 100 87 89 

Age 66 57 100 35 47 

Wing 100 100 100 96 98 

Mean Σ of 

predictor 

variables 

S 0.6 0.53 0.7 0.68 0.63 

Y 0.4 0.21 0.42 0.43 0.37 

Season of 

min. mass 

1 1 8 0 9 18 

2 1 3 1 7 12 

3 1 2 1 3 7 

4 3 1 2 4 10 

Season of 

max. mass 

1 0 4 1 0 5 

2 2 3 0 1 6 

3 2 3 2 13 20 

4 2 4 1 9 16 

 

 

 

 

 

 



43 

 

S Y S:Y rain age wing

0

20

40

60

80

100
%

 i
n
c
lu

s
io

n
 i
n
 s

p
e

c
ie

s
 t
o
p

 m
o
d

e
ls

 (
d
e
lt
a
 <

 2
)

Parameter

 

Figure 1: Proportional representation in species’ top models (∆ < 2) of the effect on a bird’s 

mass of the parameters: season (S), year (Y), variation in seasonal mass change pattern 

(S*Y), rain, age and wing (sex not shown because it was not tested for every species).   
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Figure 2: Species which displayed mass variation were found to either: A) vary their mass in 

a clear annual pattern that was consistent across the years (n = 37), or B) vary their mass 

differently in different seasons across years (n = 6). We present the mean mass of two case 

study species by season and year: individual lines represent different years. A) African 

Thrush (n = 516), being heaviest at the end of the wet season (69.7g, n = 89) and lightest at 

the end of the dry season (64g.5, n = 324), resulting in an 8% annual change in mean mass. 

B) Northern Red Bishop (n = 1762), being on average heaviest at the end of the wet season 

(15.2g, n = 511) and lightest at the end of the dry season (14.7, n = 391), resulting in a 5% 

annual change in mean mass.  
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Figure 3: Season of the highest and lowest mass for 47 species of tropical savannah bird, 

from data pooled across years. Most species were heaviest at the end of the wet season or 

start of the dry season (2
3 = 14.0, P = 0.003), while there was no season in which most 

species were lightest (2
3 = 5.5, P = 0.14). 
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Chapter 3: The seasonality of breeding in savannah 

birds of West Africa assessed from brood patch and 

juvenile occurrence 

Accepted for publication by the Journal of Ornithology 

Summary 

In order to maximise breeding success in a seasonally fluctuating environment animals breed 

during periods of increased resource abundance, and avoid times of resource constraint. In 

tropical savannahs variation in resources in time and space is dependent on the amplitude of 

the rains and their predictability. We quantified the degree to which tropical savannah birds 

have breeding concentrated around predicted periods of increased food availability coincident 

with rainfall. We used the proportion of adults caught with brood patches and/or juvenile to 

adult ratio in birds caught over a ten year period in 25 species of small West African 

savannah bird to assess the degree to which there were clear seasonal peaks in breeding 

activity. We found two thirds of species bred in all seasons (68%), but that most species 

showed distinct seasonal peaks (96%) in the timing of their breeding. Over half of species 

(60%) varied the timing of their breeding across the years. Granivorous species bred later 

than insectivorous and frugivorous species, which probably indicates synchronisation with 

their respective food types’ peak abundance. Overall we show distinct seasonal peaks in 

breeding effort (i.e. breeding seasons) and this is most likely in response to changing resource 

availability brought about by seasonal rainfall. We also demonstrated the potential utility of 

using brood patches to test for patterns in breeding in multi species long term datasets. 
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Breeding is the most costly life history activity, with energetic expenditure peaking while 

parents are rearing nestlings (e.g. Bryant 1988; Nilsson and Råberg 2001). Animals reduce 

the costs of reproduction by timing their breeding around periods of increased resource 

availability (Martin 1987, Bennett and Owens 2002). This then ensures maximum 

reproductive output for each breeding attempt by synchronising the production of young with 

seasonal peaks of resource abundance to enable rapid growth and to increase juvenile 

survival (e.g. Perrins 1970). Adult survival during breeding is also maximised because 

breeding is only initiated when there is anticipated to be sufficient food available for females 

during egg formation (e.g. Nager et al. 1997), without there being a significant risk of 

starvation to the female (Perrins 1970, Martin 1987).  

In many tropical environments, variation in the timing of breeding in time and space is 

dependent on both the amplitude of the rains and their regularity (Wingfield et al. 1992, 

Komdeur 1996, Moore et al. 2005). In those environments where the dry period is less 

pronounced, clear breeding seasons may be absent (Voous 1950), and there is greater 

diversity across species in the timing of peak breeding (e.g. Thomson 1950; Brown and 

Britton 1980). A study conducted in Limonochocha National Biological Nature Reserve in 

equatorial Ecuador, for example, where rainfall and temperature remain relatively constant, 

found that 26 species of antbirds (Formicariidae) displayed almost no breeding seasonality 

(Tallman and Tallman 1997). However, most tropical environments are distinctly seasonal in 

their rainfall and correspondingly the timing and length of the breeding season may be both 

species and population specific (Komdeur 1996, Hau et al. 2000, Wikelski et al. 2003, Moore 

et al. 2005).  

Seasonal rainfall drives fluctuations in food availability, which is a key factor for many 

species in determining annual fecundity, number of broods and the time taken between 

renesting attempts (Martin 1987, Konig and Gwinner 1995, Martin 1995, Komdeur 1996). In 
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almost all tropical habitats food availability across the breeding season fluctuates in relation 

to rainfall (e.g. Janzen 1973; Wolda 1978; Poulin et al. 1992 Mulwa et al. 2012), so with 

seasonally predictable rainfall patterns we expect to see predictable periods of increased food 

availability. Therefore although there is an extended season when birds can possibly breed 

(and many tropical species may be capable of breeding for much of the year; e.g. Franklin et 

al. 1999), a predictable period of increased food availability and subsequently higher juvenile 

survival means that there will be a strong selective pressure to breed during these periods. 

How a bird experiences seasonality will depend on the response of its foraging niche to 

variation in rainfall. The high degree of niche specialisation in the tropics thus leads to a 

diverse variety of breeding strategies, with the timing and predictability of seasonal 

fluctuations in food availability appearing to be the driving force determining the timing of 

breeding in most species (Poulin et al. 1992, Poulin et al. 1993, Komdeur 1996, Moore et al. 

2005, Hau et al. 2008). However, other factors such as nest predation (e.g. Morton 1971), 

climate (e.g. Tye 1991) or juvenile survival during post-natal dispersion (Young 1994) might 

also be important in determining when to be species and population specific and dependent 

on environmental conditions at the site (Moore et al. 2005). Where there is not a season of 

particularly high starvation risk, individual pairs may initiate breeding outside of the main 

breeding season, thus giving a false impression of year round reproduction at the species 

level (Miller 1965, Wingfield et al. 1997), even though most individuals of the species may 

breed during a defined season. This season may vary however with different feeding guilds 

such as insectivores timing their breeding to coincide with the insect peak of the early rains 

and granivores with the seed peak at the end of the rains (Poulin et al. 1992). 

There has been a lot of interest in the breeding seasons of species in humid tropical forests 

(e.g. Fogden 1972; Wikelski et al. 2000), in East Africa. However there have been no 

quantitative, across species studies in West African where the presence of a single, 
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predictable wet season may mean that birds are more constrained in when they can breed. 

Ideally, a study would follow a species at an individual level, tracking a large number of 

colour ringed individuals and recording breeding success, number of broods, time taken 

between nesting attempts and survival of fledged juveniles (e.g. Grzybowski et al. 2005; 

Nesbitt Styrsky and Brawn 2011). Unfortunately this is not practical in a multi species study 

in most tropical environments, where population densities are often low, nests hard to find 

and individuals difficult to track. We therefore used temporal changes in two breeding 

indicators, the proportion of adults with brood patches, or changes in juvenile to adult ratios 

within a population to quantify the degree to which there are specific periods of increased 

breeding costs which occur during egg laying, incubation and chick provisioning. This may 

provide insights into how seasonality affects the timing and length of the breeding seasons in 

a strongly seasonal savannah environment in West Africa. We used such indices to test two 

specific hypotheses: 1) that species will show a distinct seasonal peak in breeding activity 

even though individuals of most species can potentially nest throughout the year; and 2) that 

seasonal peaks are coincident with predicted peaks in food availability so that timing of 

breeding will depend on the feeding guild. 

Methods 

We estimated the seasonality of breeding in small tropical birds in Amurum Community 

Forest Reserve, at the A.P. Leventis Ornithological Research Institute (APLORI), on the Jos 

Plateau (09°55’N, 08°53’E) in Nigeria. The site is located in the centre of the Guniea 

savannah forest zone with very strong seasonality due to a single rainy season. It consists of 

120 hectares of four main habitat types: degraded guinea savannah woodland, gallery forest, 

rocky outcrops (inselbergs) and farmland. Much of the land surrounding the reserve has been 

degraded by anthropogenic pressures. In West African savannahs the seasons are divided into 
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a distinct wet and dry season. Daily rainfall summaries between January 2002 and November 

2011 was obtained from Jos Airport (09°52’N, 08°53’E), located in the centre of Jos Plateau 

and 26 km from Amurum Forest Reserve. In Amurum where the rainy season lasts for 

approximately six months, from the 10th of April ± 9 days until the 13th of October ± 11 

days, there was an annual rainfall of 1337 ± 159 mm (2001-2011), 97.4 % of which fell 

within the wet season with the heaviest rainfall occurring in August (290 mm ± 28 mm). 

Maximum temperatures range from between 20 to 25 C (<10 C in extreme cases) during 

the coldest months, rising to 30 – 35 C at the end of the dry season. Amurum is located 

1270m asl, with day length varying annually by 68 minutes. 

We caught 9,228 individuals of 25 species (Table 1). To avoid under representation of adult 

birds breeding over several years we retained individuals retrapped in different years in the 

analysis: 2280 records of 25 species. Birds were trapped using mist nets between January 

2002 and November 2011. Trapping occurred year round but was concentrated at a Constant 

Effort Site (CES) conducted biannually in Amurum for a 14-day period at the end of the dry 

season (March–April) and at the end of the wet season (September–October). During the 

CES, 272 m of four shelf nets was used between 06:00 and 10:30 h WAT (although there 

were few captures after 09:30 h). Where possible birds were aged and sexed. Species were 

assigned to feeding guilds (Fry et al. 1992-2004). This methodology was repeated outside of 

the CES, with the exception that netting occurred opportunistically throughout the year, and 

there was variation in the number of net metres used. However, overall annual netting effort 

was approximately the same as a single CES. 

Determination of variables 

The presence of brood patches and of juveniles was used to identify timing of breeding 

periods. Assessment of brood patches was made using a six-stage scoring system: 0 (no 
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brood patch); 1 (patch forming; defeathering process has begun); 2 (breast and belly fully de-

feathered, some wrinkling of skin evident and signs of oedema); 3 (skin of belly opaque and 

engorged, broad swollen wrinkles); 4 (skin shows thin wrinkles, no longer engorged); 5 

(refeathering; Redfern 2008). It was assumed that tropical species show a similar progression 

of brood patch development to temperate species. Stages 2-4 generally occur during the 

period of incubation and brooding (Bailey 1952, Hinde 1962, Jones 1971), however a bird is 

also breeding at stages 1 and 5 (Redfern 2010). We therefore included all stages as an 

indication of breeding. To standardise across species where sexes could and could not be 

distinguished in the hand, all birds with brood patches were included in analyses irrespective 

of sex since males of a number of species included here were also known to incubate (e.g. 

Fry 2004). We only included species where there were > 10 adults with brood patches. 

Trapped birds were aged as juvenile if they had a complete juvenile plumage containing no 

adult feathers; immature, if they had a mixture of juvenile and adult feathers, or had moulted 

into their sub-adult plumage (e.g. the African thrush Turdus pelios); adult, if birds no longer 

retained any juvenile feathers and as such were considered to be capable of breeding. 

Juvenile feathers were identified by feather shape and structure, as feathers tend to be weaker 

and looser than following generations of feathers (Svensson 1992). Ringing has been 

conducted in the reserve since 2001 and species can usually be reliably aged from plumage 

characteristics: birds of uncertain ages were excluded from the analysis. After fledging, birds 

only maintain their juvenile plumage for an approximate short period before they undergo 

post-juvenile moult. Therefore if a bird is caught with juvenile plumage it is possible to 

estimate the number of days since fledging and subsequently when it hatched. Most species 

of northern temperate passerines undergo post-juvenile moult between three and eight weeks 

after leaving the nest (e.g. Jenni and Winkler 1994), and tropical passerines may follow a 

similar timeframe (Franklin et al. 1999, Jones et al. 2002). If the mean fledging period for 
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tropical passerine species is approximately 16.8 days (se ± 0.37, n = 204, derived from data in 

Byers 1995; Feare et al. 1998; Cheke et al. 2001), then we can estimate when the chick 

hatched. Large confidence limits linked to the uncertainty of our estimate of individual 

variation in the timing of post juvenile moult, should be considered against the low temporal 

resolution of the study (i.e. three month seasons, see below). Across the 15 species, for where 

there was sufficient data, the period between peak juvenile abundance and the peak presence 

of brood patches correlated with the estimate of the number of days between presence of 

juveniles and hatching dates (see below). Therefore we assumed that the presence of 

juveniles estimated the timing of breeding in adult birds. Immature birds were assumed not 

be to actively breeding and so were excluded from the analysis. Only species where there 

were records for > 10 juveniles were included. 

Statistical analysis 

In total we identified 1594 individuals with brood patches and 999 juveniles. We assumed 

that the peak timing of breeding for the adults coincided with peak brood patch abundance 

and used brood patch data within the same species to then determine how peak juvenile 

abundance related to the timing of peak breeding. For each of the 15 species we modelled 

how the response variable varied across 26 two week periods, commencing from 1
st 

January, 

included as a factor. The response variable was the relative proportion of birds with brood 

patches, or juveniles, to the total number of adult birds caught. This was included in the 

model as the real relative frequency of adult birds with brood patches, or juveniles, to the 

number of adult birds without brood patches, or adults. We used the cbind command in the R 

(version 2.14.0) statistical environment (R Development Core Team 2011) to do this and the 

lme4 package (Bates and Maechler 2010).  
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The two weeks of peak breeding was then calculated from the parameter estimates. For each 

species we estimated the number of days between peak presence of brood patches and peak 

juvenile abundance, before averaging across species to estimate a lag of 35 days ± 17 days. 

The presence of juveniles in catches was therefore considered a suitable method of 

identifying breeding periods. We subsequently used this estimate to calculate peak breeding 

for the three species where there was insufficient brood patch data (Table 1). However, where 

both measures were available, the presence of brood patches was considered to be a more 

precise measure of breeding and was used over the presence of juveniles.  

We categorised the year into four seasons of distinctly different resource availability 

correlated to the approximate start and finish of the rains: end of dry season (10
th

 January – 

09
th

 April); start of wet season (10
th

 April – 09
th

 July); end of wet season (10
th

 July – 09
th

 

October); start of dry season (10
th 

October – 09
th

 January). We estimated variation in seasonal 

rainfall as a covariate by dividing the actual rainfall (mm) for a season within year by the 

average rainfall (mm) for that season across years: thus a value above 1 indicated a season in 

which rainfall was above the seasonal average.  

We tested for variation in seasonal breeding across species by building a generalized linear 

mixed model (GLMM) with a binomial error structure and with species as a random factor. 

We modelled how the response variable (proportion of adults with brood patches (across 22 

species) or proportion of juveniles to adults (across 18 species); constructed with the cbind 

command in R) varied seasonally, annually or was affected by variation in rainfall. We justify 

the validity of fixed effects models across species because the variance absorbed by the 

random effect was relatively small (Table 2), allowing us to rerun each model as a GLM (i.e. 

without the random effect). We compensated for over dispersion in the GLM by fitting an 

empirical scale parameter. However, this suggested the GLMM may also be over dispersed, 

which was compensated for by including a random effect for each species/season 
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combination. This allowed for an additional variance component within species at the level of 

the linear predictor. The GLM and GLMM provided consistent estimates for the effects of 

each predictor variable, so here we present the results of the GLMM (Table 2). 

For each species we modelled the occurrence of seasonal breeding by building a GLM with a 

pseudo-binomial error structure, logit link function and empirical scale parameter. We tested 

the statistical significance of season, year and variation in seasonal rainfall on our response 

variables, by dropping each from the full model, and applying a likelihood ratio test (Table 

1). We corrected for multiple tests using sequential Bonferroni correction (Rice 1989). For 

each species and season we calculated the proportion of adults with brood patches or 

juveniles to adults predicted by the model by back-transforming the parameter estimates. 

Above we used a stepwise model opposed to an Akaike Information Criteria (AIC) approach 

to specifically test for the effect of predictor and confounding variables on the response 

variable. We provided further support for our model by excluding the predictor variable 

season, and rerunning the model, before comparing AIC values. Across all species we found 

that the model was significantly improved by including season. 

For each species we calculated the two week period of peak breeding (as above), either from 

the two weeks with the highest proportion of brood patches or the two weeks with the highest 

proportion of juveniles minus the mean lag period between peak juveniles and peak brood 

patches (37 days). We built a linear model to test whether the two weeks of peak breeding 

(included as a continuous variable) varied by feeding guild across species. 

Results 

There was strong evidence for the seasonality of breeding across savannah species. Mixed 

effect models testing for the effect of season, while controlling for the possible confounding 

effects of year and variation in rainfall on the proportion of brood patches (across 22 species) 



56 

 

or juveniles (across 18 species), showed that across species there was a seasonal effect (Table 

2). Most species showed reduced breeding towards the end of the dry season, before 

increasing breeding after the onset of the rains (Fig. 1).  

There was strong evidence for the seasonality of breeding within most savannah species. Of 

the 22 species where there were sufficient numbers of adults with brood patches caught, we 

found seasonal variation in 21 (95%) species (Tables 1 and 3). Only the Common bulbul 

Pycnonotus barbatus showed no significant evidence of seasonal breeding (Fig. 2a). All three 

species which lacked sufficient brood patch data showed significant seasonal variation in the 

proportion of juveniles (Table 1). Twelve (80%) of the 15 species for which there were 

sufficient data showed seasonal variation in both juveniles and brood patches (Table 1). 

Overall (through the presence of brood patches or where there was insufficient data, 

juveniles) 24 species (96%) varied their timing of peak breeding within a year (20 species 

(80%) significantly after sequential Bonferroni correction and four marginally significant 

species (16%); Table 1). Fifteen species (60%) also varied their timing of peak breeding 

across years (12 species (48%) significantly after sequential Bonferroni correction and three 

marginally significant species (12%); Table 1). Seasonal variation in rainfall only affected 

breeding in seven species (28%; one species (4%) significantly after sequential Bonferroni 

correction and six species (24%) marginal; Table 1). We found evidence of breeding in all 

seasons in 20 species (80%; Table 1 and 3). 

The timing of peak breeding across species was variable, with there being a strong interaction 

between season and species in the 21 species which showed seasonal variation in the 

proportion of brood patches (season * species added to model in Table 2, df = 69, deviance = 

1026, P < 0.0001) and the 15 species which showed seasonal variation in the proportion of 

juveniles (season * species added to model in Table 2, df = 51, deviance = 1049, P < 0.0001). 
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At least one species showed a peak of breeding in each season (Table 3, e.g. compare 

Tchagra senegalus Fig. 2b with Lonchura cucllatus Fig. 2c and Fig. 2d that shows intra-

annual variation in rainfall). Annual variation in seasonal rainfall was not found to influence 

breeding across species in the proportion of birds with brood patches (df = 1, deviance = 999, 

P = 0.1), but did influence the proportion of juveniles to adults (df =1, deviance = 678, P = 

0.006). This suggests that in a tropical environment such as our study site where rainfall is 

predictable across years, most species may time their breeding independent of annual 

environmental variation, but that seasonal rainfall may influence productivity and juvenile 

survival. At an increased temporal resolution the 14 day period of peak breeding varied by 

feeding guild (F3,22 = 8.5, P < 0.001), with granivores breeding later in the year than 

insectivorous and frugivorous species (Table 4, Fig. 3).  

Discussion  

Our study tested for seasonality in breeding in a large dataset and showed that although two 

thirds of species (68%) in the savannah environment of West Africa were capable of breeding 

in all four seasons, most species (96%) showed distinct seasonal peaks in breeding activity 

which was coincident with predictable seasonal rainfall and was dependent on feeding guild.  

Methodological considerations 

Modelling seasonal breeding at a population level through the use of a breeding indicator, 

such as the presence of brood patches or juveniles, appears to provide a robust method of 

using existing ringing datasets to investigate patterns of breeding across species. 

Identification of either a brood patch or a juvenile in the hand is a straight forward field 

technique for estimating the most costly stage of breeding for parent birds (Walsberg and 

King 1978, Redfern 2010). Although the presence of a brood patch may not be a reliable 
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indicator of breeding in some bird guilds (Tranquilla et al. 2003), in small passerine birds the 

different stages of brood patch development has been closely linked to breeding stages 

(Redfern 2008, 2010). For example; nest building (brood patch score 1), egg production and 

incubation (brood patch score 3) or parental care (brood patch score 4 and 5; Hinde 1962; 

Jones 1971). However, there are limitations to the resolution in breeding activities which can 

be inferred from using brood patches as a breeding indicator, as there may be variation in the 

stage of brood patch development, relative to actual egg production (Hinde 1962, Zann and 

Rossetto 1991), and as well as variation as to the extent of brood patch formation in males 

(Zann and Rossetto 1991). Further work is needed to determine how much individual 

variation there is within and across species and guilds in the development of brood patches in 

relation to stages of breeding. 

We found that three species (Cinnyris venustus, Lagonosticta sanguinodorsalis, Emberiza 

tahapisi) showed seasonal variation in the proportion of brood patches but not the proportions 

of juveniles (Table 1). This suggests that the proportion of juveniles as a breeding indicator 

maybe confounded by seasonal variation both within and across species, by factors such as: 

the number of days before commencing post-juvenile moult (Ginn and Melville 1983) and 

variation in clutch size (Ludvig et al. 1995). Therefore, where possible, the proportion of 

adults with brood patches was used over the proportional presence of juveniles. However, 

despite these potentially confounding factors we found a strong correlation between our 

breeding indicators. There was a reasonably consistent lag (37 days ± 17 days) between the 

peak abundance of adults with brood patches and the peak presence of juveniles, and so the 

presence of juveniles was likely to be a reliable indicator of peak breeding activities for the 

three species (Cloius striatus, Merops bulocki, Ploceus nigricollus) where there was 

insufficient brood patch data. Clearly it is better to use brood patch data whenever possible 
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but on average juvenile ratio data is also likely to indicate seasonality of breeding at a 

population level at a seasonal temporal scale.  

Average seasonality of breeding 

Almost three quarters of species (16 out of the 22 species for where there was sufficient 

brood patch data) showed evidence of incubating eggs in all four seasons, while seven of 

these species (out of the 10 for which there was data) also managed to successfully fledge 

chicks in all seasons, indicating that breeding is possible outwith the main breeding season. 

Aside from possible density-dependent advantages of breeding out of season such as reduced 

competition, selection should favour breeding during peak food availability. Therefore we 

suggest that individuals which breed out of season may be doing so opportunistically, 

capitalising on localised increases in food availability. The common occurrence of a few 

individuals breeding out of the main season mean that studies with small sample sizes, or 

accounts of a few nests found in any one time of year, should be treated with caution when 

drawing conclusions about general seasonality (or aseasonality) of breeding in the tropics. 

Although most species showed a peak in breeding during the late wet and/or early dry season, 

it is important to point out that this only indicates what is happening on average. Although 

most species time their peak breeding to occur at the end of the rains some species will 

specialise as dry season breeders: the lack of a season where resources are constrained, such 

as winter in the Northern hemisphere, has allowed species to evolve to occupy a wide variety 

of niches. For example, the familiar chat Cercomela familiaris forages on ground dwelling 

invertebrates, which may not vary across the seasons (Poulin et al. 1992), and thus foraging 

may become more predictable at the end of the dry season due to a reduction in grass cover. 

At the higher temporal resolution of two-week periods, the timing of peak breeding was 

dependent on feeding guild, with species probably synchronising their peak breeding season 
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with their particular feeding niche. Insectivorous and frugivorous species showed peak 

breeding during the wet season probably coinciding with the explosion in invertebrate 

numbers and peak fruit abundance, respectively (Poulin et al. 1992). In contrast granivorous 

birds bred later with respect to rainfall probably concentrating their breeding at the start of 

the dry season when the grain crop is at its peak (Fig. 3; Crowley and Garnett 1999). 

Specialised seed eating finches may breed later than other guilds because they experience 

greater increased seasonality in their food availability, with seeds going from negligible at the 

start of the rains to superabundant when seeds ripen and fall (Crowley and Garnett 1999, 

Brandt 2007). Carry over effects from the wet season probably mean that foraging for 

invertebrates to feed chicks remains reasonably predictable into the dry season, while seed 

availability becomes superabundant allowing parents to efficiently forage for themselves 

while providing for chicks. We also suggest that breeding maybe favourable during this 

period for some species due to increased nest survival resulting from changes in grass cover 

(e.g. Hovick et al. 2012). Some species, such as the cinnamon-breasted rock bunting 

Emberiza tahapisi, which breeds largely in the dry season, may then trade-off these benefits 

with declining invertebrate availability.  

Seasonal breeding in West Africa savannahs 

The savannahs of West Africa act as a model system for understanding how the seasonality 

of resources affects synchrony in breeding across species, because, although day length and 

temperature remain relative constant across the year, the rains drive a single wet and dry 

season of distinctly different resource availability. Where rainfall is less constrained such as 

in humid tropical forests or in East Africa, where there are two wet seasons, the seasonality of 

food availability is likely to be reduced because organisms experience a longer period where 

water is abundant which tends to result in species which reproduce more slowly and as a 

consequence live longer . However, increased seasonality leads to a period of increased 
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density-dependent mortality, therefore there is more food available when species start to 

breed, which leads to larger clutch sizes and subsequently reduced survival  (McNamara et al. 

2008). We might therefore predict an increase in breeding synchrony (and clutch size) within 

and across species relative to regions where rainfall is less constrained, because species 

respond to large peaks in food availability (Griebeler et al. 2010). However, although some 

species displayed distinct breeding seasons, three quarters of species from all four feeding 

guilds initiated breeding in all four seasons which suggests that despite relatively high 

seasonality, food availability for many species may not be constrained in any particular 

season.  

The savannah communities of West Africa are dynamic with species movements on many 

scales as populations follow seasonal variation in food availability (e.g. Elgood et al. 1973; 

McGregor 2005; Cresswell et al. 2009). Thus an increase in the numbers of competitors and 

conspecifics at source habitats could result in the food available per individual not increasing 

significantly. Therefore the timing of breeding is likely to be more species, population and 

breeding pair specific with individuals capitalising on local increases in food availability. 

Consequently birds are unable to support the larger clutch sizes which we see in seasonal 

environments and instead clutch sizes in many species are more comparable to humid forest 

species (Fry et al. 1992-2004).  

General conclusions 

Overall, most species of West African savannah bird bred seasonally, with distinct peaks in 

breeding occurring within a main breeding season, the timing of which was dependent on 

feeding guild and so that is probably related to peak food availability. However, small 

numbers of individuals of two-thirds of species were also able to incubate and successfully 

fledge young outside of the main breeding season. The ability to breed throughout the year 
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suggests that there is not a high risk of starvation in the non-breeding season. Nevertheless 

the existence of a seasonal peak in food abundance will select for an apparent breeding 

season as individuals are selected to breed at the optimum time. Other constraints on timing 

of breeding may of course also select for a fixed breeding season such as moult or migration. 

In addition, the correlation in peak timing between our breeding indicators provides support 

for the reliability of using brood patches to access the stages of breeding in small savannah 

birds.  
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Table 1: The seasonality of breeding in 25 species of savannah bird caught between 2002 and 2011 in West Africa. General linear models for 

each species tested the effect of season, year and variation in rainfall on two response variables; the proportion of adults caught with brood 

patches, and/or the proportion of juveniles to adults. Pooling data across years for each species, we show the season with the lowest proportion 

of adults with brood patches, and the approximate start (S.) or end (E.) of the month which best fits the two week period of the highest breeding 

activity (also numbered 1-26). From the literature we identified a species’ feeding guild: F, frugivorous; G, granivorous; I, insectivorous; N, 

nectivorous. 
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COLIIFORMES              

Coliidae              

Speckled mousebird Colius striatus 385 - 16 - - - <0.0001 0.03 0.01 - E. Jun. 

(12) 

No F 

CORACIIFORMES                

Meropidae                

Red-throated bee-eater Merops bulocki  130 - 18 - - - 0.009 0.0009 0.02 - S. Mar. 

(6) 

No I 

PICIFORMES                

Capitonidae                

Yellow-fronted tinkerbird Pogoniulus chrysoconus 342 109 - 0.002 0.0004 0.05 - - - 1 S. Aug. 

(16) 

Yes I 

PASSERIFORMES                

Pycnonotidae              

Common bulbul Pycnonotus barbatus 573 45 -    - - - 4 E. May. 

(10) 

Yes I/F 

Turdidae                

African thrush Turdus pelios 508 18 22 0.03   <0.0001 <0.0001  1 S. Aug. 

(16) 

 Yes I 

Muscicapidae                

Familiar  chat Ceromela familiaris 107 14 18 <0.0001 <0.0001  <0.0001 <0.0001  3 S. May. 

(9) 

Yes I 

Cisticolidae                

Grey-backed camaroptera Camaroptera brachyura 293 35 14 0.0003   0.002   1 S. Sep. 

(18) 

Yes I 

Zosteropidae                

Yellow white-eye Zosterops senegalensis 271 64 - 0.01   - - - 1 E. Sep. 

(19) 

Yes F 
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Nectariniidae               

Red-chested sunbird Chlcomitra senegalensis 379 21 41 0.002   <0.0001  0.04 1 S. Sep. 

(18) 

Yes N 

Variable sunbird Cinnyris venustus 314 16 35 <0.0001 <0.0001 0.0005    2 S. Sep. 

(18) 

Yes N 

Green-headed sunbird Cyanomitra verticalis 178 14  0.003 0.0001 0.0003 - - - 2 S. Sep. 

(17) 

Yes N 

Malaconotidae              

Black-crowned tchagra Tchagra senegalus 82 18 - 0.0001 <0.0001  - - - 1 S. Sep. 

(17) 

Yes  

Ploceidae               

Village weaver Ploceus cucullatus  601 66 73 <0.0001   <0.0001 <0.0001 0.004 1 E. Oct. 

(21) 

Yes G 

Little weaver Ploceus luteolus  120 11 13 <0.0001 <0.0001  0.002 <0.0001  1 S. Nov. 

(22) 

Yes G 

Black-necked weaver Ploceus nigricollis 222 - 16 - - - 0.001   - E. Oct. 

(21) 

Yes G 

Vitelline masked weaver Ploceus vitellinus 242 42 47 <0.0001 0.0002  0.0006 0.03 0.03 1 E. Oct. 

(21) 

Yes G 

Northern red bishop Euplectes franciscanus 204

5 

515 369 0.0002   <0.0001 <0.0001  1 S. Dec. 

(24) 

No G 

Estrildidae                

Lavender waxbill Estrilda caerulescens 668 61 23 <0.0001 0.0004 0.05 <0.0001   2 E. Sep. 

(18) 

Yes G 

Red-cheeked cordon-bleu Uraeginthus bengalus 739 168 32 <0.0001 0.003  <0.0001 0.002  2 E. Nov. 

(23) 

Yes G 

Black-bellied firefinch Lagonosticta rara 92 21 - <0.0001 0.003 0.05 - - - 2 S. Dec. 

(25) 

Yes G 

Bar-breasted firefinch L. rufopicta 98 25 - <0.0001 <0.0001  - - - 2 S. Dec. 

(24) 

No G 

Rock firefinch L. sanguinodorsalis  541 71 49 <0.0001   <0.0001 <0.0001  1 E. Dec. 

(26) 

Yes G 

Red-billed firefinch L. senegala 655 150 50 0.0002 <0.0001     2 S. Dec. 

(24) 

Yes G 

Bronze mannikin Lonchura cucullatus 609 49 145 <0.0006   <0.0001   1 S. Oct. 

(20) 

Yes G 

Emberizidae               

Cinnamon breasted rock-bunting Emberiza tahapisi 315 31 18 <0.0001 <0.0001     2 E. Nov. 

(23) 

Yes G 

1
If the predictor variable was significant after sequential Bonferroni correction (Rice 1989) in bold. 

2 
The start or end of the month which showed the highest annual breeding activity. Where possible this was calculated from the proportional 

brood patch data. Where BP data was insufficient we subtracted one month from peak juvenile abundance (italics). 
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Table 2: Estimates from mixed effects models testing seasonal variation in the occurrence of 

brood patches across 22 species (brood patch; no brood patch) and juveniles across 19 species 

(juveniles; adults), both as a proxy for breeding, while controlling for possible year effects 

and inter-annual variation in rainfall (included in the models below but parameter estimates 

not shown). We included species as a random effect, while compensating for possible over 

dispersion in the model by fitting an observational level random effect (random).  

 Estimate SE Z value p 

Brood patch     

Intercept -3.30 0.28 -11.6 <0.0001 

Start wet 0.13 0.16 0.8 0.4 

End wet 1.67 0.18 9.0 <0.0001 

Start dry 1.65 0.14 12.0 <0.0001 

Species Variance 0.45   SE 0.67 

Random Variance 0.55   SE 0.74 

     

Juveniles     

Intercept -3.29 0.36 -9.1 <0.0001 

Start wet 0.15 0.28 0.5 0.6 

End wet 1.23 0.28 4.4 <0.0001 

Start dry 2.19 0.22 9.7 <0.0001 

Species Variance 0.25    SE 0.50 

Random Variance 1.65    SE 1.29 

 

  



66 

 

Table 3: The proportion of adults with brood patches and/or the proportion of juveniles to 

adults caught per season in 25 species of West African savannah bird. The data were pooled 

by season between 2002 and 2011. 

 % of adults with brood patches % juveniles 

Species End 

dry 

Start 

wet 

End 

wet 

Start 

dry 

End 

dry 

Start 

wet 

End 

wet 

Start 

dry 
Colius striatus - - - - 0.0 7.0 6.7 2.8 

Merops bulocki - - - - 23.8 19.8 0.0 0.0 

Pogoniulus chrysoconus 25.1 22.9 46.6 42.9 - - - - 

Pycnonotus barbatus* 7.3 12.4 9.5 5.1 - - - - 

Turdus pelios 1.4 4.8 12.1 4.9 0.0 2.3 22.6 8.8 

Cercomela familiaris 12.3 16.4 0.0 0.0 1.8 22.6 22.5 23.2 

Camaroptera brachyuran+ 3.4 8.8 3.3 21.8 0.7 0.3 10.0 21.8 

Zosterops senegalensis 12.2 30.3 58.2 25.7 - - - - 

Chalcomitra senegalensis+ 2.2 5.7 22 3.0 4.2 4.5 19.1 27.2 

Cinnyris venustus 8.3 0.0 2.3 10.7 13.7 6.5 12.7 9.0 

Cyanomitra verticalis 2.0 3.9 9.9 7.5 - - - - 

Tchagra senegalus 6.0 24.9 46.4 19.9 - - - - 

Ploceus cucullatus+ 0.8 7.9 17.7 20.5 0.9 5.0 11.4 20.9 

Ploceus luteolus 0.0 0.0 13.5 18.5 2.4 5.3 5.2 13.1 

Ploceus nigricollis - - - - 3.2 6.3 25.6 37 

Ploceus vitellinus+ 15.4 6.0 5.7 18.1 4.7 2.0 14 22.5 

Euplectes franciscanus 0.0 1.3 49.0 33.0 0.0 0.0 1.2 18.9 

Estrilda caerulescens+ 6.1 2.6 25.4 27.4 2.6 0.5 6.1 12.6 

Uraeginthus bengalus 2.1 7.3 19.5 39.1 1.8 0.0 0.0 9.6 

Lagonosticta rara 6.2 11.6 75.0 47.5 - - - - 

Lagonosticta rufopicta 20.8 0.0 29.7 33.8 - - - - 

Lagonosticta sanguinodorsalis 11.2 9.0 25.4 36.4 3.6 0.0 1.0 15.9 

Lagonosticta senegala+ 22.4 9.1 26.7 32.6 9.9 10.8 2.7 5.9 

Lonchura cucullatus+ 3.5 10.1 19.6 23.9 0.9 0.6 16.1 53.7 

Emberiza tahapisi 9.7 0.0 0.0 20.9 7.0 2.1 0.0 4.7 

 

*The only non-seasonal breeder 

+
Species which both incubated eggs and successfully fledged chicks in all four seasons    
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Table 4: A general linear model of how the two week period of peak breeding activity varied 

by feeding guild across 25 species of West African Savannah species.  

Guild Estimate Error t p 

Intercept (Frugivore) 15.7 2.2 7.2 <0.0001 

Granivore 7.0 2.4 2.9 0.009 

Insectivore -1.5 2.6 -0.6 0.6 

Nectivore 2.0 3.1 0.6 0.5 

Adjusted R2 0.49    
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Fig. 1 Average seasonal timing of breeding. Log odds ratios (as a measure of the effect size 

and non-independence of the two binary response variables) and proportions of adult birds 

caught with brood patches (across 22 species), and juveniles to adults (across 18 species) 
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Fig. 2 a-d Examples of individual species’ seasonal timing of breeding. Log odds ratios (as a 

measure of the effect size and non-independence of the two binary response variables) and 

proportions of adult birds caught with brood patches, and/or juveniles to adults in three case 

study species: a species showing no significant seasonal peak in brood patch abundance 

(Pycnonotus barbatus; Fig. 2a); a species which showed a peak in brood patch abundance at 

the end of the wet season (Tchagra senegalus; Fig. 2b) and a species which showed a peak in 

brood patch abundance at the start of the dry season (Lonchura cucullatus; Fig. 2c). Mean 

seasonal rainfall (2002 – 2011; Fig. 2d) is also shown to demonstrate the general driver of 

these patterns. 
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 Fig. 3 Variation in the two weeks of peak breeding by feeding guild in 25 species of small 

West African savannah bird. Week 1 commences on January 1
st
 and runs across the year.  
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Chapter 4: Breeding as interrupted foraging - 

seasonal mass gain in tropical savannah birds 

Summary 

1. Theoretically any interruption to foraging caused by, for example, predators, 

disturbance or environmental conditions should cause an increase in mass in birds as 

they compensate for the consequent increased risk of starvation. Breeding could also 

be considered an interruption in foraging because birds become constrained in the 

time and location of their foraging.  

2. Therefore we predict that breeding birds should also show an interrupted foraging 

mass increase, independent of any increases due to gonad or egg development. We 

would also predict that the sex that invests more time and energy in reproduction 

should show a higher mass increase due to interrupted foraging.  

3. We tested these predictions using data from ten species of three feeding guilds 

collected over a ten year period in a West African savannah.  

4. We show that independent of egg production and probably gonad growth; 1) birds 

increased their mass during breeding and we provide evidence that this is due to an 

interrupted foraging response, and 2) females showed higher mass gain than males 

which probably represents an increased investment in breeding. We also show that 

females but not males, increased their mass during brood patch development, 

probably as a fixed cost due to increased fat reserves associated with egg formation.  

5. We conclude that mass gain before breeding and mass loss during breeding is the 

result of adaptive management reflecting the level of investment in young, 

independent of sex or incubation stage and is not a consequence of energetic stress. 

As such the scale of any mass gain has important implications for food limitation 

theory and life history, as it reflects a trade-off between foraging predictability and 

breeding strategy. 

Introduction  

Birds put on mass reserves in response to interruptions in their foraging, which reduces the 

predictability of foraging and so increases the risk of starvation (Rogers 1987, Houston and 
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McNamara 1993, Lilliendahl 1998). Interruptions to foraging may arise from a number of 

sources such as predators, disturbances, long winter nights or extreme weather events (Lima 

1986). Theoretically, breeding should also represent a similar interruption to foraging 

because adult birds have to divert time away from their own foraging to incubate eggs, feed 

chicks and to guard mates, nests and territories. Therefore we should expect mass increases in 

birds during breeding (independent of any increases because of development of reproductive 

organs (Murton and Westwood 1977, Wikelski et al. 2000) or eggs (Lack 1968) and we 

should expect that if individuals, sexes or species invest more in their breeding attempts, that 

this should be reflected in greater increases in mass reserves during breeding.  

Under constant predation risk, interrupted foraging theory is widely recognised to be the 

mechanism behind variation in mass during the non-breeding season in the northern 

hemisphere (e.g. Houston and McNamara 1993, Lilliendahl 1998, Pravosudov and Grubb 

1997, McNamara et al. 2005). However, mass variation during the breeding season has not 

been investigated from an interrupted foraging theory perspective, because studies have 

focused on mass loss which occurs during the short, intense breeding season (e.g. Freed 1981, 

Nur 1984, Nagy et al. 2007). In tropical birds however, little or no mass may be gained 

during the non-breeding season because foraging remains predictable due to constant day 

lengths and warm temperatures (Fogden 1972, Fogden and Fogden 1979, Rozman et al. 2003, 

Cox et al. 2011). Mass, however, does peak in the breeding season (e.g., Fogden 1972; 

Fogden & Fogden 1979; Rozman et al. 2003; Cox et al. 2011) suggesting that an interrupted 

foraging mass gain could be occurring. Here we investigate the degree to which the mass 

increase in tropical savannah birds during the breeding season is due to an interrupted 

foraging response, rather than simply as a consequence of factors such as, egg production or 

gonad development.  

The timing of mass gain or loss relative to food and breeding peaks, and any differences 

between the sexes related to differential investment are crucial in disentangling whether mass 

gain due to interrupted foraging during breeding occurs. Consider a hypothetical savannah 

bird species breeding in a strongly seasonal tropical environment. During the non-breeding 

dry season when foraging probably remains predictable (Cox et al. 2011), mass (as a proxy 

for body reserves) is maintained at low levels to reduce mass-dependent energy (Rogers and 

Heath-Coss 2003) and predation costs (Witter and Cuthill 1993). Food availability then 

increases with the arrival of the rains and birds will time the energy requirements of the 

chicks to coincide with a predictable seasonal food peak (Martin 1987). Although an increase 
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in food availability should result in a decrease in mass in adults, foraging predictability may 

actually decrease, because breeding activities conflict with the time available for foraging for 

self and the associated increased energetic expenditure result in a birds reserves being 

depleted more rapidly. Therefore we would predict an increase in mass during the breeding 

season, independent of any mass increases due to gonad and egg development (Figure 1). We 

would also expect more mass to be gained by the sex that invests most heavily in 

reproduction, and differences in the timing of mass gain to reflect sex-dependent differences 

in investment (e.g. males engaging in pre-breeding territoriality and mate guarding, and 

females investing more heavily in incubation and feeding young).  

Any mass gain during the breeding period in birds is of course confounded by mass increases 

due to gonad and egg development (e.g., Lack 1968). Such mass increases occur during egg 

production and incubation (Martin 1987), the timing of which can be identified by the 

presence of a brood patch (Hinde 1962, Jones 1971, Redfern 2008). Therefore if females put 

on mass due to interrupted foraging, rather than simply because of gonad and egg production, 

we would expect birds without brood patches also to show increased mass during the 

breeding season. This is because during the breeding season most individuals in a population 

are likely to be engaged in breeding activities which interrupt their foraging, not only those 

which have a brood patch which designates a specific period during the breeding process. In 

addition, if the mass increase is due solely to gonad growth we would expect non-incubating 

males and females to show similar patterns of mass regulation 

Females vary their mass during brood patch development (Redfern 2010). We predict that 

peak mass will occur during laying as a consequence of the mass of the egg which when fully 

formed can weigh ~10% of the females mass (Lack 1968, Payne 1977), because of an 

increase in fat reserves because the egg costs 40% of the basal metabolic rate to produce 

(Fogden and Fogden 1979, Rahn et al. 1985) and also to compensate for missed foraging 

opportunities. Females engaged in parental care will then maintain increased reserves due to 

the time and energy constraints of feeding the chicks, with the size of the mass increase 

reflecting the level of parental investment. Any mass increase in males with brood patches is 

expected to be less than females and will reflect their level of investment during incubation. 

We use data collected over a 10 year period in a West African savannah region to test two 

general predictions that arise if birds show mass gain during breeding because of interrupted 

foraging:  
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1) That mass gain occurs during the breeding season for both incubating and non-incubating 

birds (i.e. mass increases during the breeding season and is not solely due to gonad or egg 

development) 

2) That the scale of mass gain due to breeding of males and females differs due to sex 

specific costs associated with different breeding stages (accounting for any differences due to 

egg development). 

Methods 

We estimated temporal variation in mass in relation to breeding in small tropical birds caught 

in Guinea savannah woodland at the A.P. Leventis Ornithological Research Institutes 

(APLORI), Amurum Forest Reserve on the Jos Plateau (09°52’N, 08°58’E) in Nigeria: we 

caught 3386 individuals of 10 species. To avoid under representation of adult birds breeding 

over several years we retained individuals retrapped in different years in the analysis: 1031 

records of 10 species (Table 1). 

Birds were trapped using mist nets between January 2002 and December 2011. Trapping 

occurred year round but was concentrated at a Constant Effort Site (CES) conducted 

biannually in Amurum for a 14-day period at the end of the dry season (March–April) and at 

the end of the wet season (September–October). During the CES, 272 m of four shelf nets 

were used between 06:00 and 10:30 h WAT (although there were few captures after 09:30 h). 

Species were assigned to feeding guilds (Fry et al. 1993, 2000, 2004).  In West Africa the 

seasons are divided into a distinct wet and dry season. There was an annual rainfall of 1337 ± 

159 mm (2001-2011), with 97.4% of rain falling in the wet season from the 10th of April ± 9 

days until the 13th of October ± 11 days. See Cox et al. In submission for a climatic 

description of the study site. 

Determination of variables 

Where possible trapped birds were aged and sexed, only birds in full adult plumage were 

included in the analysis. Maximum wing-chord was measured using a stopped wing rule to 1 

mm (Svensson 1992). Mass was measured to 0.1g using digital scales (Ohaus Scout). 

Assessment of brood patches were made using a six-stage scoring system: 0 (no brood patch); 

1 (brood patch forming; defeathering process has begun); 2 (breast and belly fully de-
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feathered, some wrinkling of skin evident and signs of oedema); 3 (skin of belly opaque and 

engorged, broad swollen wrinkles); 4 (skin shows thin wrinkles, no longer engorged); 5 

(refeathering; Redfern 2008). In European resident and migrant passerine species the 

different stages of brood patch development has been closely linked to breeding stages 

(Redfern 2008, 2010), and it was assumed that small savannah species show a similar 

progression of brood patch development to temperate species. Only species for which there 

were ≥ 10 females with brood patches were included in analyses.  

All ten species showed evidence of breeding throughout the year, either through the presence 

of brood patches or juveniles, however at a population level, species showed distinct breeding 

seasons (Cox et al. In submission). During the main breeding season most individuals will be 

engaged in breeding activities, such as mate guarding, territoriality or parental care, even if 

they are not actively incubating (indicated by the presence of a brood patch). At the study site 

the period which the greatest proportion of a population had brood patches coincided with the 

period when food was likely to be most available : Granivore 24.2 ± 1.2 (November; Crowley 

& Garnett 1999; Poulin, Lefebvre & McNeil 1992); Nectivore 17.7 ± 0.0 (August; Poulin 

1992); Frugivore 17.5 ± 2.1 (August; Poulin 1992 ); variation in peak breeding activity across 

26 two-week periods, numbered 1-26 where 1 is the first two weeks in the calendar year, 

taken from Cox et al. In submission). To increase sample size in statistical models when 

exploring whether mass gain is determined by sex-dependent breeding investment we pooled 

species by feeding guild. 

In our models we controlled for the important potential effects of confounding variables on 

mass. We controlled for active wing moult because a bird may either increase mass to allow 

more choice in time and space as to when it can forage or decrease mass to compensate for 

reduced take-off ability (Swaddle and Witter 1997). We controlled for inter-annual 

fluctuations in environmental conditions by including year in the model, and body size 

because larger animals have different costs of acquiring and maintaining fat reserves (Witter 

and Cuthill 1993). We calculated variation in seasonal rainfall as a covariate by dividing the 

actual rainfall (mm) for a season within year by the average rainfall (mm) for that season 

across years: thus a value above one indicated a season in which rainfall was above the 

seasonal average. All analysis was conducted in the R (version 2.15) statistical environment 

(R Development Core Team 2011), and we used the nlme package (Pinheiro et al. 2011). 
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Statistical analysis 

Hypothesis 1: Mass gain occurs for both incubating and non-incubating breeding birds 

For each species we built a General Linear Model to test whether birds with and without 

brood patches varied their mass across the months. We controlled for possible year effects, 

whether the bird was in active wing moult or not, rainfall and body size. Where sexes were 

distinguishable in the hand we controlled for sex, but did not test for its possible interactions 

with other variables because of large confidence intervals due to small sample sizes in some 

species and months. The mean mass and the predicted mass increase in birds with or without 

brood patches was calculated from the parameter estimates, we used the months where the 

mean mass was lightest and heaviest within a year, using the month with the lowest and 

highest parameter estimate, respectively (Table 1).  

We used the parameter estimates to test three specific predictions:  

1) Independent of incubation (i.e. birds without brood patches) birds increase their mass 

during the breeding season. We calculated the percentage difference in mass between the 

month of maximum and minimum mass, before running a match paired t-test of the 

maximum mass gain across species relative to no mass change (i.e. 0).  

2) Across months, birds with brood patches are heavier than those without. We ran a matched 

pairs t-test of the mass change in birds with brood patches relative to those without. To 

increase sample size within months, we also pooled species by feeding guild and built 

Generalized Linear Mixed Models (GLMM) to test for the effects of the predictor and 

potentially confounding variables on the percentage difference in mass to the mean species 

mass (MASS DIFFERENCE). Species was included as a random factor. We used the 

parameter estimates to calculate the percentage change in mass for each feeding guild in birds 

with or without brood patches (Fig. 2a-c).  

3) Birds without brood patches show a greater increase in mass during the breeding season, 

compared to mass gain which occurs because of brood patch development. We ran a matched 

paired t-test of percentage change in mass between the month of maximum and minimum 

mass, compared to the average mass gain across the months in birds with brood patches.  

Hypothesis 2: mass gain is determined by sex-dependent breeding investment 
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We tested for sex-dependent differences in monthly mass gain across non-incubating males 

and females of two feeding guilds; across two sunbird (scarlet-chested sunbird Chalcomita 

senegalensis; variable sunbird Cinnyris venustus), and across three finch (red-cheeked 

cordon-bleu Uraeginthus bengalus; red-billed firefinch Lagonosticta senegala; rock firefinch 

L. sanguinodorsalis) species. We controlled for the confounding effects on mass of egg 

production by excluding birds with brood patches from the model. We built a GLMM for 

each feeding guild to test for the effect on mass difference of the interaction sex*month. We 

controlled for possible year effects, whether the bird was in active wing moult or not, rainfall 

and body size. Species was included as a random factor. 

We caught sufficient males with brood patches to test for sex-dependent differences in mass 

gain, dependent on the presence of a brood patch across three species of granivorous finch; 

red-cheeked cordon-bleu, red-billed firefinch and the rock firefinch, but only on a seasonal 

basis. We categorised the year into four seasons of distinctly different resource availability 

correlated with the approximate start and finish of the rains: end of dry season (10
th

 January – 

09
th

 April); start of wet season (10
th

 April – 09
th

 July); end of wet season (10
th

 July – 09
th

 

October); start of dry season (10
th 

October – 09
th

 January). We then built a GLMM (with 

species as a random factor) to determine the effect on mass difference of the interactions 

between sex*season and sex*brood patch; we controlled for possible year effects, whether 

the bird was in active wing moult or not, rainfall and body size.  

We tested for sex-dependent variation in mass during brood patch development by pooling 

the individuals from the three species of granivorous finch (red-cheeked cordon-bleu; red-

billed firefinch; rock firefinch) where we had caught sufficient males with brood patches 

(Table 2). We built a GLMM with species as a random factor to test for the effect on mass 

difference of the interaction sex*brood patch score, while controlling for possible seasonal 

and year effects, whether the bird was in active wing moult or not, rainfall and body size. The 

mean mass and the predicted mass increase at each stage of brood patch development were 

calculated from the parameter estimates. We also caught sufficient numbers of birds with 

brood patches to test for variation in MASS DIFFERENCE dependent on brood patch score 

in two species of frugivorous birds (yellow-fronted tinkerbird Pogoniulus chrysoconus; 

yellow white-eye Zosterops senegalensis;) where sexes were indistinguishable in the hand 

(Table 1). We controlled for season, year, whether the bird was in active wing moult or not, 

rainfall and body size. Species was included as a random factor. 
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Results 

Mass gain occurs for both incubating and non-incubating breeding birds 

There was strong evidence that independent of the presence of a brood patch, birds varied 

their mass across the year in all ten species (8.9% ± 1.5%; t(9) = 18.8, P <0.0001; Table 1), 

probably because even though birds did not display a brood patch they were engaged in 

activities which interrupted foraging during the breeding season. Birds with brood patches 

then showed a further mass increase relative to those without (5.0 % ± 1.8 %; t(9) = 8.9, P 

<0.0001; Table 1). The average monthly mass gain in birds with brood patches relative to 

those without did not vary by feeding guild; granivores (4.2% ± 2.2%); nectivores (5.5% ± 

1.2%); frugivores (3.5% ± 2.7%; F
2

7 = 2.6, P = 0.1; Fig. 2a-c). Across species, mass gained 

across the year in birds without brood patches, was larger than the additional mass increase in 

birds with brood patches (t(17.4) = 5.3, P = < 0.0001): i.e. mass is gained during the breeding 

season regardless of whether a brood patch is present, and this mass gain is larger than any 

mass gain associated with a brood patch. 

Mass gain is determined by sex-dependent breeding investment 

We investigated monthly mass variation in, males and females without brood patches, i.e. 

independent of egg production, across two sunbird (scarlet-chested sunbird; variable sunbird) 

and across three finch species (red-cheeked cordon-bleu; red-billed firefinch; rock firefinch; 

Table 2).  

Male and female sunbirds followed similar overall mass gain strategies, with both sexes 

increasing their mass during the breeding season, but with a significantly different seasonal 

pattern (the interaction month*sex in Table 3a, Fig. 3a). Females showed a greater variation 

in mass across the year, with peak mass coinciding with peak breeding in the late wet season 

and minimum mass in the middle of the dry season (females 12.2%; males 5.5%; Fig. 3a).  

Male and female granivores had quite different overall mass gain strategies (the interaction 

month*sex in Table 3b, Fig. 3b). Initially, both sexes had reduced mass in the non-breeding 

season, they then increased their mass at the start of the wet season which coincided with a 

possible ‘lean’ season as remaining seeds started to germinate with the arrival of the rains (% 

difference between March and May in males 3.7 ± 2.5, and females 3.7 ± 1.9; Fig. 3b). Males 
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then decreased their mass before maintaining a constant mass throughout the breeding and 

non-breeding seasons (Fig. 3b). In contrast, after the ‘lean’ period female granivores first 

decreased their mass as did males, before increasing their mass (6.2% + 2.2%) to peak just 

after the start of the main breeding season. They then lost mass through the breeding season 

despite an increase in breeding effort (Fig. 3b). The largest drop in mass occurred during the 

month of peak breeding (4.9% ± 1.6%) which coincided with the ripening of the seed crop 

(Fig. 3b; Crowley 1999 ). 

We further tested the hypothesis that mass gain occurs for both incubating and non-

incubating males and females across three granivore species (red-cheeked cordon-bleu; red-

billed firefinch; rock firefinch). Species were pooled by season, so that we had sufficient 

power to examine any sex-dependent differences on mass gain dependent on the presence of 

a brood patch (Table 4; Fig. 4). Females with brood patches were heavier in all seasons than 

those without (2.6% ± 0.2%), while the presence of a brood patch in males had no effect on 

mass (0.6% ± 0.2%; the interaction sex*brood patch; Table 4; Fig. 4). 

We tested for sex-dependent variation in mass during brood patch development across three 

finch species (red-cheeked cordon-bleu; red-billed firefinch; rock firefinch; Table 2; Fig. 5a). 

Males and females followed different overall mass gain strategies (the interaction sex*brood 

patch score; Table 5a). Females showed no mass change while the brood patch was 

defeathering (brood patch score 1; Fig. 5a). They then gained mass, with peak mass occurring 

while they were laying and/or incubating eggs (9.9% ± 0.8%; brood patch score 3; Fig. 5a). 

After fledging, the parents reduced mass, but still showed a 5.4% ± 0.8% increase relative to 

birds without brood patches (Fig. 5a). Males showed no mass change during brood patch 

development relative to males without brood patches (Fig. 5a).  

Across frugivore species (yellow-fronted tinkerbird; yellow white-eye) birds increased their 

mass during brood patch development (Table 5b), with peak mass also occurring during 

laying and incubation (5.9% ± 1.5%; brood patch score 3; Fig. 5b). They then reduced their 

mass directly after fledging but still retained a mass gain of 3.4% ± 1.2% relative to birds 

without brood patches (brood patch score 4). By the time that the brood patch had started to 

refeather they had regained their pre-incubation mass (brood patch score 5; Fig. 5b). We 

acknowledge that this result is likely confounded because females will show an increased 

mass gain during egg development bringing up the average, while males may not vary their 

mass (see also Redfern 2010), bringing down the average, nevertheless the pattern is 
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consistent with the results above from other species which are not confounded by egg 

development. 

Discussion 

We show that tropical savannah birds increase their mass during breeding and we provide 

evidence that this is due to an interrupted foraging response and not simply due to a mass 

increase from egg or gonad growth. Independent of egg and gonad growth females showed a 

larger mass increase than males, which probably reflects their increased investment in 

breeding. Females but not males showed a further mass increase during brood patch 

development which was probably a fixed cost due to increased fat reserves associated with 

egg formation. 

Evidence that the mass gain during breeding is due to an interrupted foraging response  

Research suggests that species may increase their mass during breeding in one or more of 

three ways; either due to egg production, gonad growth or through an interrupted foraging 

response. We found that in all three feeding guilds across the year mass variation occurred in 

birds with and without brood patches, and that birds with brood patches were consistently 

heavier than those without (Table 1; Fig. 2a-c). In passerine birds brood patch development 

closely follows the stages of breeding, with the defeathering process beginning well before 

birds lay down the extra fat associated with egg production (Hinde 1962, Jones 1971). 

Including the presence of a brood patch in the model controlled for any mass increase due to 

egg production. Although incubation and provisioning of young is the most costly period for 

parent birds (Bryant 1988, Nilsson and Råberg 2001), we found that the mass gain in birds 

without brood patches was greater than any subsequent mass increase which occurred during 

brood patch development (Table 1; Fig. 2a-c). This probably reflects the high physiological 

and energetic costs of breeding relative to non-breeding activities. 

Similar to temperate species, many tropical species seasonally regress their reproductive 

organs, which might be an adaptation for minimising energy expenditure during the non-

breeding season (e.g., King 1973; Dawson et al. 2001). In the northern hemisphere gonad 

mass can increase several hundred fold (Dawson et al. 2001), commencing 1-2 months before 

the onset of the breeding season (Wikelski et al. 2000), and tropical species may show a 

similar progression (Dittami 1987, Rödl et al. 2004). So if the mass increase which occurs in 
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birds without brood patches is due to gonad growth we would expect any mass response to 

take place a month before the breeding season and to follow the proportion of individuals 

breeding (i.e., Fig. 1).  

Key to disentangling whether the mass increase during breeding is due to an interrupted 

foraging response and not due to gonad growth is through the differences in food types which 

adults feed themselves and their chicks. Invertebrates are a good source of nutrients for 

young (Ward 1969, Berthold 1976) and sunbirds and finches both feed their chicks on 

invertebrates while adults forage for nectar (Markman et al. 1999, Fry et al. 2000) and seeds, 

respectively (Dyer et al. 1982, Fry et al. 2004). Specialized seed eating finches inhabit a 

seasonal foraging environment with seed availability varying from almost negligible at the 

start of the wet season to super-abundant at the start of the dry season when seeds ripen and 

fall (Crowley and Garnett 1999). Despite seed availability remaining low during the second 

half of the wet season many individuals respond to peak invertebrate abundances (Poulin et 

al. 1992) by commencing breeding activities. This is because, in a seasonal environment, 

earlier clutches are often larger and more successful and so birds lay as early as they can find 

sufficient food (Perrins 1970). Seed availability, however, for the adults has not yet peaked 

and so females show an increased mass response because of this increased starvation risk. 

Food availability and thus foraging predictability for adults then peaks with the ripening of 

the seed crop in November, and there is a decrease in mass despite an increase in breeding 

effort (Fig. 3b). Thus we see a lag between the month of peak mass and peak breeding and so 

the mass gain at the start of breeding season must be due to an interrupted foraging response 

and not gonad growth because the gonads will still be fully grown during peak breeding (see 

theoretical model Fig. 6). Thus any mass increase due to gonad growth may be relatively 

small. We did not detect this lag in sunbird species probably because peak food availability 

for adults coincides with peak invertebrate abundance, at least at the temporal scale of this 

study (Poulin et al. 1992) and so foraging predictability approximately coincides with 

breeding effort (Fig. 3a). 

Mass loss during breeding has been observed in many species in the northern hemisphere 

(e.g., Hillstrom 1995; Cavitt & Thompson 1997), particularly in females and was initially 

assumed to occur due to the energetic stress hypothesis (e.g., Ricklefs 1974). From an 

interrupted foraging perspective any mass loss which occurs during provisioning for young is 

perhaps a measure of the scale of the interrupted foraging response which occurred during 

laying and the early stages of chick provisioning, with individuals with larger broods storing 
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more mass (shown by greater mass loss). For example; female black-throated blue warblers 

(Setophaga caerulescens) in New Hampshire given supplementary food showed a smaller 

mass decrease while provisioning for chicks than did control females, which the authors 

attributed to the energetic stress hypothesis (Nagy et al. 2007). However, interrupted foraging 

theory predicts that those birds in a more predictable foraging environment (i.e. provided 

with supplementary food) would show a reduced interrupted forging response (shown by a 

smaller mass loss during provisioning) which is what occurred. 

The scale of the interrupted foraging response is an index of sex-specific breeding investment  

Our results are consistent with mass change during the breeding season reflecting 

reproductive investment, mediated by the interrupted foraging response. Females and males 

are likely to occupy the same foraging niche in most species and so any change of mass may 

well reflect differing foraging predictability, which can be attributed to sex-specific roles 

during breeding. For example, male and female sunbirds both increased their mass during the 

breeding season, before decreasing their mass at the start of the dry season. Females lost 

twice as much mass as males, which may represent their increased investment in provisioning 

for chicks (Markman et al. 1995). Similarly, male and female finches showed distinctly 

different patterns of mass regulation across the year. After an interrupted foraging response 

associated with a possible ‘lean’ season, both sexes then decreased mass before females 

increased their mass during breeding (discussed above). However, males showed no 

subsequent change in mass, which suggests that they invest relatively little in chick 

production, or their investment is maintained at a constant low level throughout the year (for 

example, through territory maintenance, mate guarding, chick feeding, vigilance, and 

extended post-fledging care). Consequently males are likely to be prioritising their foraging 

over off spring survival.  

Numerous other studies have shown that males invest less in chick care than females do and 

also that males have higher survival, so supporting our observations (Markman et al. 1995, 

McCleery et al. 1996, Verhulst 1998, Siefferman and Hill 2008). Increased mass loss in 

females relative to males has previously been recorded in birds in the northern hemisphere 

(e.g., Freed 1981, Gosler 1991), and was associated with larger broods and subsequently 

lower survival in females, while male mass or survival was not affected by brood size (Nur 

1984). For example, females may incur a greater energetic expenditure which can be 



84 

 

attributed in part to an increased rate of provisioning young (Williams and Nagy 1985, 

Verhulst and Tinbergen 1997, Burness et al. 2001) and increased immune response (Pap et al. 

2010) compared to males. If females invest more time and energy in their off spring they then 

have less time available to forage for themselves and expend reserves more rapidly, and so 

they may store more fat to allow them increased flexibility in time and space for foraging 

(Rogers 1987, Houston et al. 1997).  

Sex specific mass variation in relation to brood patch development 

We tested for sex-dependent seasonal mass variation in relation to brood patches across three 

finch species. Males did not vary their mass during incubation in any season, so they 

probably do not increase their overall investment during breeding (Fig. 4; see also Redfern 

2010, Neto and Gosler 2010). We did not find a seasonal effect on the mass gain in females 

with brood patches, irrespective of the changing environmental conditions across the seasons, 

peak mass gain in females occurred during laying and incubation regardless of season. 

Therefore mass gain in females during incubation is probably a fixed cost resulting from the 

combination of increased fat reserves in the days immediately before laying (Fogden and 

Fogden 1979), the oedema of brood patch formation and the mass of the partly formed egg. 

After fledging, females maintained increased reserves (5.2% ± 0.2%; brood patch score 4 and 

5), despite the ability of small passerines to lose up to 9% of their mass daily (e.g., Cresswell 

1998). Thus females must retained fat reserves independent of egg production costs, most 

likely due to an interrupted foraging response in order to compensate for the demands of 

feeding chicks and of post fledgling care. 

The yellow-fronted tinkerbird and yellow white-eye also varied their mass during brood patch 

development, with peak mass also occurring during laying and incubation (Fig. 5b). Birds 

maintained an increased mass while provisioning chicks, but had regained normal breeding 

mass by the time the brood patch was refeathering (brood patch score 5). Variation across 

species in the scale of the interrupted foraging response in females post fledging, probably 

represents a trade-off between the number of off spring, parental investment and foraging 

efficiency (see also Redfern 2010).  
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General conclusions 

In conclusion, we show that in ten West African savannah species, independent of egg and 

probably gonad growth birds increased their reserves during breeding through an interrupted 

foraging response. We conclude that within the starvation-predation framework the scale of 

any mass gain during breeding is likely to be a trade-off between foraging efficiency and the 

level of investment in breeding. 

The presence of an interrupted foraging response during breeding has probably not previously 

been detected because most empirical studies have been conducted in Northern temperate 

regions where any mass increase is swamped by the greater mass loss which occurs as 

conditions improve in spring (Rogers 1987, Houston and McNamara 1993). Resident species 

show decreased mass directly after the breeding season when foraging remains predicable, 

because birds do not need to carry insurance against longer colder nights of winter or 

interruptions to foraging from life history activities (Cresswell 1998), i.e. mimicking 

conditions in the non-breeding season in tropical savannahs. The loss of mass post breeding 

in temperate birds should therefore reflect any interrupted foraging response which occurred 

during the breeding season. 

Weight loss in females during breeding in the northern hemisphere has been well documented 

and has previously been explained as due to energetic deficiency (the energetic stress 

hypothesis; Ricklefs 1974, Johnson et al. 1990, Martins and Wright 1993, Woodburn and 

Perrins 1997, Nagy et l. 2007) or to an adaptive reduction in wing-loading to save energy 

during flight (the wing-loading hypothesis; Freed 1981, Norberg 1981, Moreno 1989, Jones 

1994, Curlee and Beissinger 1995, Merkle and Barcley 1996, Gebhrdt-henrich et al. 1998), or 

through a combination of both (Neto and Gosler 2010). Interrupted foraging theory provides 

a more likely, universal explanation for mass regulation during breeding, where birds 

adaptively manage their mass in response to varying foraging predictability as in most other 

situations in birds (Rogers 1987, Houston and McNamara 1993, Rogers and Heath-Coss 

2003, MacLeod et al. 2007, MacLeod et al. 2008), rather than energetic expenditure as, 

outwith situations of imminent starvation. Previous studies have investigated mass loss 

between incubation and provisioning of chicks which is only part of the breeding mass 

response. We show the greater mass change relative to predictable foraging in the non-

breeding season, which allowed us to tease apart any mass response from egg production or 
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gonad growth and the mass change due to an interrupted foraging response at specific stages 

in the breeding cycle.  

The scale of the mass gain during the breeding season varies between species within the same 

habitat (Cox et al. 2011), and we predict this will relate to the seasonality of a species’ 

foraging niche. Those species which inhabit a foraging niche with smaller seasonal peaks in 

food availability will put on more mass gain against increased foraging unpredictability, 

related to breeding activities. As such they will allocate fewer resources to breeding aspects 

such as immunocompetence and so will live longer as adults (Norris and Evans 2000), but at 

a cost to investment in their own off spring (Lemon 1993). So during breeding, populations 

will be restricted more by density-dependent factors such as food limitation and competition, 

and as a consequence will be more K selected, trading-off a lower investment in each 

breeding attempt (i.e. smaller clutch sizes) but for longer (i.e. longer parental care). 

Across populations of a species in different habitats, those birds which inhabit better quality 

foraging environments will be better able to meet their foraging needs and so will show a 

smaller mass response. This allows them to prioritize breeding activities around foraging 

without incurring fitness costs, so that they will produce better quality off spring and live 

longer as adults (MacLeod et al. 2007). Therefore across populations in different habitats the 

scale of the mass gain may give us an index of the demographics of bird populations in 

different habitats or of life history strategy as a consequence of food limitation across species 

in the same habitat. 
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Table 1: Mass variation in breeding birds in ten species of West African savannah bird, caught over a ten year period in Nigeria. For each 

species we tested for the effect the presence of a brood patch and month on mass (P values given), while controlling for the possible 

confounding effects of year, rainfall, body size, whether the bird was in active wing moult or not and in species where sexes were distinguishable 

in the hand, sex. 

Species 
n  

no 

brood 

patch 

n  

brood 

patch 

Mass* 

(g) 

% mass 

increase in 

birds with 

brood 

patches* 

 % difference 

between 

months of 

max. & min. 

mass* 

Brood patch  

(P-value)  

Month  

(P-value) 

Sex 

(P-value) Guild 

Yellow-fronted tinkerbird  

(Pogoniulus chrysoconus) 

233 109 10.9 ± 0.7 2.7 ± 2.9 8.0 0.0008 0.002 - Frugivore 

Yellow white-eye 

(Zosterops senegalensis) 

207 64 9.5 ± 0.7 3.2 ±2.0 7.3 0.009 0.7 - Frugivore 

Variable sunbird  

(Cinnyris venustus) 

298 14 6.1 ± 0.5 8.2 ± 2.1 11.7 0.006 0.001 <0.0001 Nectivore 

Scarlet-chested sunbird  

(Chalcomitra senegalensis) 

354 20 10.6 ± 1.0 4.4 ± 1.5 7.9 0.008 <0.0001 <0.0001 Nectivore 

Red-cheeked cordon-bleu  

(Uraeginthus bengalus) 

572 196 9.7 ± 0.8 3.6 ± 0.7 9.4 <0.0001 <0.0001 <0.0001 Granivore 

Lavender waxbill  

(Estrilda caerulescens) 

607 61 9.2 ± 1.2 5.0 ± 2.2 7.0 <0.0001 0.0001 - Granivore 

Red-billed firefinch  

(Lagonosticta senegala) 

502 182 8.7 ± 0.7 4.2 ± 0.8 9.0 <0.0001 <0.0001 0.05 Granivore 

Rock firefinch  

(L. sanguinodorsalis) 

438 117 10.3 ± 0.9 5.3 ± 1.0 10.6 <0.0001 <0.0001 0.4 Granivore 

Black-faced quailfinch  

(Ortygospiza atricollis) 

120 10 10.8 ± 0.7 6.4 ± 2.5 8.3 0.01 0.003 0.06 Granivore 

Cinnamon-breasted rock bunting 

(Emberiza tahapisi) 

282 32 14.0 ± 1.1 7.2 ± 1.4 9.8 0.0001 0.001 0.8 Granivore 

* Values calculated from the parameter estimates. 
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Table 2: Mass variation in birds with brood patches in males and females of five species of West African savannah bird. For each species and 

sex we calculated the expected mean mass change in birds with brood patches and the maximum difference in mass between seasons in a year 

from the parameter estimates of the model mass ~ brood patch*sex + sex*season + wing + rainfall + moult. 

Species Sex 

n 

 no brood patch 

n  

brood patch Mass* (g) 

% mass change in 

birds with brood 

patches* 

% difference 

between seasons of 

max. & min. mass* 

Scarlet-chested sunbird 

 

Female 181 15 9.7 ± 0.7 6.1 ± 0.5 3.5 

(Chalcomitra senegalensis) Male 173 5 11.1 ± 0.7 4.0 ± 2.0 5.0 

Variable sunbird 

 

Female 144 12 6.0 ± 0.5 6.0 ± 1.5 4.5 

(Cinnyris venustus) Male 154 2 6.5 ± 0.5 0.2 ± 3.0 2.3 

Red-cheeked cordon-bleu 

 

Female 236 176 10.2 ± 0.9 4.7 ± 0.7 10.4 

(Uraeginthus bengalus) Male 336 20 9.9 ± 0.6 -4.2 ± 2.0 8.0 

Red-billed firefinch 

 

Female 202 151 8.7 ± 0.8 6.8 ± 0.9 6.7 

(Lagonosticta senegala) Male 300 31 8.8 ±0.6 -2.2 ± 1.7 7.0 

Rock firefinch 

(L. sanguinodorsalis) 

Female 172 90 10.4 ± 0.9 7.8 ± 1.0 5.1 

(L. sanguinodorsalis) Male 266 27 10.4 ± 0.7 2.4 ± 1.9 4.8 

* Values calculated from the parameter estimates.  

Sample sizes of birds with brood patches were too small in sunbird species for robust analysis but the parameter estimates are included for 

comparison (italics)
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Table 3: An ANOVA of the mixed effects models testing for mass variation across months in 

males and females a) across two species of sunbird (scarlet-chested sunbird; variable sunbird) 

b) across three species of finch (red-cheeked cordon-bleu; red-billed fire-finch; rock 

firefinch). We controlled for the possible confounding effects of egg production by excluding 

birds with brood patches from the analysis. We also controlled for possible year effects, 

rainfall, body size and whether a bird was in active wing moult or not. Species was included 

as a random factor.  

Parameter d.f. F-value P-value 

a)  
Intercept (den df 615) 1 31.3 <.0001 

Sex 1 1.7 0.2 

Month 11 2.9 0.0009 

Year 9 2.7 0.004 

Wing 1 69.0 <.0001 

Wing moult 1 0.4 0.5 

Rainfall 1 0.3 0.6 

Month*sex 11 1.9 0.04 

Species (Random)* Intercept 10.8           Residual 

6.5 b)  
Intercept (den df 1474) 1 48.8 <.0001 

Sex 1 5.8 0.0 

Month 11 10.6 <.0001 

Year 9 3.4 0.0 

Wing 1 46.4 <.0001 

Wing moult 1 0.8 0.4 

Rainfall 1 0.1 0.8 

Month*sex 11 9.3 <.0001 

Species (Random)* Intercept 1.4           Residual 

6.8 
* Where the intercept is the standard deviation of the variation across species and the residual 

is the standard deviation of the variation within species.   

 

  



90 

 

Table 4: An ANOVA of the mixed effects model testing for mass variation across the 

seasons in males and females across three species of finch (red-cheeked cordon-bleu; red-

billed fire-finch; rock firefinch) in relation to the presence of a brood patch. We controlled for 

the possible confounding effects of year, rainfall, body size and whether a bird was in active 

wing moult or not. Species was included as a random factor. We model simplified by 

removing any non-significant interactions.  

 

Parameter d.f. F-value P-value 

(Intercept den df 1983) 1 58.2 <.0001 

Brood patch 1 51.9 <.0001 

Sex 1 38.7 <.0001 

Season 3 28.8 <.0001 

Year 9 4.6 <.0001 

Wing 1 52.9 <.0001 

Wing moult 1 0.7 0.4 

Rainfall 1 0.4 0.5 

Sex*Brood patch 1 12.5 0.0004 

Sex*Season 3 24.7 <.0001 

Species (random)* Intercept 1.7          Residual 

7.2 
* Where the intercept is the standard deviation of the variation across species and the residual 

is the standard deviation of the variation within species.   
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Table 5: ANOVA’s of mixed effect models testing for variation in mass during brood patch 

development, of males and females; a) across three species of finch (red-cheeked cordon-

bleu; red-billed fire-finch; rock firefinch), and b) across two frugivore species where sexes 

were indistinguishable in the hand (yellow-fronted tinkerbird; yellow white-eye). We 

controlled for the possible confounding effects of season, year, rainfall, body size and 

whether a bird was in active wing moult or not. Species was included as a random factor.  

Parameter d.f. F-value P-value 

a)  
Intercept (den df 1847) 1 50.1 <.0001 

Brood patch score 5 29.0 <.0001 

Sex 1 8.2 0.004 

Season 3 9.7 <.0001 

Year 9 5.5 <.0001 

Wing 1 48.0 <.0001 

Wing moult 1 0.5 0.5 

Rainfall 1 0.03 0.9 

Brood patch score*Sex 5 5.2 0.0001 

Species (random)* Intercept 1.7          Residual 

7.4 b)  
Intercept (den df 550) 1 39.1 <.0001 

Brood patch score 1 5.2 0.0001 

Month 11 2.1 0.1 

Year 9 1.8 0.07 

Wing 1 39.5 <.0001 

Wing moult 1 0.1 0.8 

Rainfall 1 0.5 0.5 

Species (random)* Intercept 1.4           Residual 

6.8 
* Where the intercept is the standard deviation of the variation across species and the residual 

is the standard deviation of the variation within species.   
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Figure 1: Theoretical model of how in the absence of any breeding effort the mass of either 

sex would decrease in response to increased food availability (dotted). If we consider 

breeding effort male (dashed) and female (solid) savannah birds will increase their mass in 

relation to sex specific investment. Therefore the actual mass in breeding birds will be a sum 

of the mass loss through increased food availability and the increase in mass due to an 

interrupted foraging response.  
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 Figure 2: Monthly mass change in birds with (dashed) and without (solid) brood patches; a) 

across two sunbird species, b) across six species of finch, and c) across two frugivore species. 

Mean monthly rainfall (2002 – 2011) is also shown to demonstrate the general driver of these 

patterns. 
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 Figure 3: Monthly mass change in males (dashed) and females (solid) males without brood 

patches, a) across two species of sunbird and b) across three species of finch. The bottom 

graph shows the percentage of females caught with brood patches, as an indicator of the 

proportion of the population engaged in breeding activities. 
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Figure 4: Seasonal mass change in incubating (solid, *) and non-incubating (solid, o) 

females and incubating (dashed, *) and non-incubating (dashed, o) males across three species 

of finch (red-cheeked cordon-bleu; red-billed fire-finch; rock firefinch), relative to the 

percentage of females caught with brood patches.  
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Figure 5: Mass variation during brood patch development across a) males (dashed) and 

females (solid) across three species of finch (red-cheeked cordon-bleu; red-billed fire-finch; 

rock firefinch), and b) two species of frugivore where sexes were indistinguishable in the 

hand (yellow-fronted tinkerbird; yellow white-eye).   
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Figure 6: Theoretical model of mass variation in females (solid) and males (dashed) across 

the year in relation to breeding effort (dotted). Food availability for chicks peaks at the end of 

the wet season, with the scale of the interrupted foraging response dependent on sex-specific 

investment. Then mass decreases despite an increase in breeding effort as food availability 

peaks for adults because foraging predictability increases. The lag between peak mass and 

peak breeding provides evidence that mass gain is also due to a bird regulating its mass 

through an interrupted foraging response and not solely due to gonad growth.  
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Chapter 5: Mass variation during breeding as an 

indication of food limitation and its consequences for 

adult survival 

Summary 

Levels of body reserves have been used as a proxy for survival in many studies because they 

reflect environmental variation and the degree to which an organism can buffer the 

consequent unpredictability of foraging. A universal source of increased foraging 

unpredictability is breeding, because animals become constrained in time and space 

(interrupted foraging), and have increased energy requirements. Animals consequently 

increase body reserves during breeding but this is dependent on the quality of the foraging 

environment, with higher levels of reserves being associated with poorer quality 

environments. This means that levels of body reserves should reflect life history which is a 

consequence of adaptation to the quality of the foraging environment. Species that are K 

selected exploit lower levels of predictable food availability and so are constrained during 

breeding by the absolute level of food resources and competition for them, whereas r selected 

species exploit super abundances of often unpredictable food availability and so are not so 

constrained. Therefore we would predict that, across species, there should be a positive 

relationship between survival and the level of mass reserves during breeding because this 

reflects life history adaptation to absolute food availability. We tested the direction of the 

relationship between levels of mass reserves gained during seasonal breeding and adult 

survival in 40 species of tropical bird collected over 10 years in a West African savannah, 

controlling for annual mass variation and variation in the timing of peak mass, clutch size, 

body size, guild, migratory status and phylogeny. We showed that species that had a greater 

seasonal mass increase had higher adult survival, supporting the hypothesis that life history 

determines the relative degree of the interrupted foraging response and so the relative level of 

body reserves during breeding. There was some evidence that those species which showed 

peaks in mass at different times in different years (i.e. breeding in response to unpredictable 

food availability) were less likely to survive as adults, further supporting the hypothesis. The 
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study shows that across tropical bird species the degree of seasonal mass variation is an 

indication of life-history adaptation and therefore survival. 

Introduction 

Levels of body reserves have been used as a proxy for survival because they reflect 

environmental variation and the degree to which an organism can buffer the consequent 

unpredictability of foraging (e.g., Houston and McNamara 1993, Rogers and Smith 1993, 

Caro 2005, MacLeod et al. 2007). A universal source of increased foraging unpredictability is 

breeding, because animals become constrained in time and space (interrupted foraging), and 

have increased energy requirements. Many tropical (and possibly Southern hemisphere, 

(Rozman et al. 2003) bird species vary their mass across the year, decreasing their mass in the 

non-breeding season (e.g., Ward 1969, Fogden 1972, Fogden and Fogden 1979, Cox et al. 

2011), because foraging may remain predictable (Sinclair 1978, Cox et al. 2011), and thus 

reducing mass-dependent energy requirements (Rogers and Heath-Coss 2003) and predation 

costs (Witter and Cuthill 1993). Species then commence breeding activities in anticipation of 

increased food availability, and birds will time the energy requirements of chicks to coincide 

with predictable seasonal food peaks (Martin 1987). Energetic expenditure increases during 

the breeding season (e.g., Anava et al. 2002, Hambly et al. 2007), at the same time activities 

such as mate guarding, territoriality, nest building, incubation and parental care conflict with 

the time available for foraging for self (i.e. interrupt foraging; Cox and Cresswell in 

submission). So despite an increase in food availability, foraging predictability may actually 

decrease during the breeding season, and so a bird increases its reserves through an 

interrupted foraging response, independent of any mass increase from egg or gonad growth 

(Cox and Cresswell In submission). Animals may increase body reserves during breeding but 

this is dependent on the quality of the foraging environment, with higher levels of reserves 

being associated with poorer quality environments (MacLeod et al. 2008). 

If levels of body reserves reflect environmental quality then they should also reflect life 

history because this is also a consequence of adaptation to the quality of the foraging 

environment. Species that are K selected exploit lower levels of predictable food availability 

and so are constrained during breeding by the absolute level of food resources and 

competition for them (Ashmole 1963, MacArthur and Wilson 1967, Martin 1986, Martin 

1987, McNamara et al. 2008). In tropical and southern hemisphere environments, if a bird is 
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unable to meet its foraging requirements it will prioritise its own future survival over that of 

its off-spring, with a loss in off spring fitness (Ghalambor and Martin 2001, Tieleman et al. 

2008) and selection will favour those individuals that raise smaller broods (Ricklefs 1977, 

Roff 2002, McNamara et al. 2008). An increased investment in its own condition means that 

a bird has more flexibility in time and space as to when it can forage, and so can buffer 

fluctuations in environmental conditions and interruptions to its foraging (reviewed in Roff 

2002), along with reducing physiological breeding trade-offs (Dufty Jr 1989, Hau et al. 

2010), and so individuals are more likely to survival as adults, i.e. are more K selected. 

Therefore selection acts on individuals who prioritise their own foraging needs over breeding 

costs; trading off the reduced investment in each breeding attempt with longer parental care 

and thus increased survivorship of juveniles. In contrast, r selected species exploit super 

abundances of often unpredictable food availability and so are not so constrained during 

breeding by availability of food. Larger seasonal peaks in food availability mean that parents 

can meet their own foraging needs and successfully raise larger broods when conditions 

allow, and so selection favours more young but at a cost to adult survival, probably through 

reduced immunocompetence (Sinervo and Svensson 1998, Wingfield et al. 2001) and 

increased susceptibility to fluctuations in environmental conditions (Bennett and Owens 

2002). 

Therefore we would predict that, across species, there should be a positive relationship 

between survival and level of mass reserves during breeding because this reflects life history 

adaptation to absolute food availability. Those species that inhabit a less seasonal foraging 

environment with reduced seasonal peaks in food availability will have reduced foraging 

success during breeding (Thiollay 1988) and so species will show an increased interrupted 

foraging response (MacLeod et al. 2008). Those species that occupy a more seasonal niche, 

where resources vary both within and across the years in response to fluctuations in 

environmental conditions, such as the annual seed crop which goes from almost negligible at 

the start of the rains to superabundant when the seeds ripen and fall (Crowley and Garnett 

1999), will adopt a more r selected life history (Ghalambor and Martin 2001, Peach et al. 

2001, McNamara et al. 2008). 

We tested whether there was a positive correlation between levels of mass reserves gained 

during seasonal breeding and adult survival in 40 species of tropical bird collected over 10 

years in a West African savannah, controlling for annual mass variation and variation in the 

timing of peak mass, clutch size, body size, guild, migratory status and phylogeny. 
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Methods 

We tested the relationship between mass variation and adult survival at three temporal scales 

in 40 species of tropical savannah birds caught using understory mist nets in Guinea savannah 

woodland at Amurum Forest Reserve on the Jos Plateau (09°55’N, 08°53’E), and at Yankari 

Game Reserve (09°45’N, 10°30’E) in central Nigeria. Details of survival estimation are given 

in Stevens et al. (in press), but in summary survival estimates were calculated for 40 species 

(6939 individuals, 2099 recaptures) caught in Amurum between January 2000 – December 

2008 (Table 1). Analysis of survival was performed using the general methods of capture-

mark-recapture modelling outlined by Lebreton et al. (1992). The data were analysed with the 

program MARK (White and Burnham 1999); using standard time-dependent, time-since-

marking models (TSM) and Cormack-Jolly-Seber (CJS) models. Goodness of fit tests were 

performed on the general starting models (Φt pt) for all species. The median c-hat technique 

within MARK was used to derive the variance inflation factor (ĉ) and assess the extent of 

lack of fit (i.e. over- or under-dispersion) of the model to the data. Model selection was 

performed using information theoretic methods.  

Estimates of mass variation were given in Cox et al 2011; in summary 47 species (13,353 

individuals) were caught in Guinea savannah in Amurum and Yankari, between November 

2000 – March 2011 (Table 1). We built a general linear model for each species testing the 

effect of the parameters: season (S), year (Y) and the variation in the annual timing of mass 

change (SY, the interaction between season and year) on the mass of a bird while controlling 

for seasonal rainfall, age, wing length and sex where sexes were distinguishable; time of day 

was not found to be an important predictor because almost all data were collected early in the 

morning. We calculated the degree of seasonal mass change for each species from the 

seasonal parameter estimates of mean mass across years (where SY was not significant) as 

the proportional difference in predicted mass between the lightest and heaviest seasons. 

Where SY was significant we calculated the seasonal mass change as above but for each year 

separately (where there was a sufficiently large sample size) before averaging the 

proportional difference across years. We calculated the degree of annual mass change as the 

proportional difference in mass change between the years in which the birds were lightest and 

heaviest, using the annual parameter estimates of mean mass across years from models for 

each species without the SY interaction (2001 and 2011 were excluded because yearly data 
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were incomplete). For species not covered in Cox et al. (2011) but for which we had survival 

estimates, we followed the same methods to calculate their mass change parameters.  

In this analysis we also control for the potential confounding effects of other life history 

trade-offs (see Bennett and Owens 2002) by including clutch size because this has been 

shown to correlate with survival, so that species with larger clutch sizes tend to be more r 

selected (e.g., Saether 1988, Peach et al. 2001). Mean clutch size estimates were taken from 

the Birds of Africa series Vol. 3-7 (Fry et al. 1992-2004). Where multiple estimates of clutch 

size were given we used those having the largest sample sizes that were geographically 

closest to our study area. Species were assigned to feeding guilds according to diet (Fry et al. 

1992-2004). We also control for any confounding effects of guild and migratory status 

because these will change the degree of environmental certainty for different species under 

the same set of environmental conditions. Granivores for example, may experience higher 

levels of seasonal unpredictability in food supply than insectivores and so may compensate 

for decreased predictability by increasing fecundity at a cost to adult survival (Lloyd 1999). 

Similarly transient species might buffer variation through movement to track resources rather 

than body reserves as in sedentary species, so that transient species may favour K selection, 

being limited more by density-dependent factors (Boyce 1984). Migratory status was 

assigned to any species that had >50% reduction in capture rates between the end of the wet 

season and the end of the dry season (see, Cox et al. 2011). We also control for body mass, 

which correlates positively with survival in birds (Saether 1989, Jeschke and Kokko 2009), 

and because larger animals have different costs of acquiring and maintaining reserves (Witter 

and Cuthill 1993).  

Statistical analysis 

We ran a general linear mixed model testing for relationships between survival and all the 

predictor and potentially confounding variables. Mass variation within (S), and across (Y) 

years were included as covariates. Individual parameter estimates for the variation in the 

annual timing of mass change (the interaction between seasonal mass gain pattern and year, 

variable peak mass, SY) had large confidence limits because of small sample sizes (resulting 

from the split between each of four seasons over ten years) so we treated variable peak mass 

simply as a factor (1 significant annual variation in seasonal mass peak; 0 not significant). 

We also controlled for clutch size, feeding guild (g), migratory status (m) and body size (b). 
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Closely related species may share characteristics through common descent and are therefore 

not statistically independent (Harvey and Pagel 1991). To account for possible non-

independence of variables across species, and for an increased level of variance in the model 

(Jeschke and Kokko 2009) we controlled for phylogenetic variation by including nesting of 

family within order as random factors in the model. Finally to control for possible 

experimental noise due to species with small sample size, we weighted the model by the 

number of individuals used to calculate mass variation. We tested the statistical significance 

of our predictor and potentially confounding variables on survival, by dropping each from the 

full model, and applying a likelihood ratio test (Table 2). Analysis was conducted using 

R.2.15.0 (R Development Core Team 2011) and the nlme package (Pinheiro et al. 2011). The 

final model structure was: survival ~ S + Y + SY + clutch size + b + m + g + (~1 | family 

%in% order), weight = “n”. 

Results  

There was a positive correlation between survival and seasonal mass variation across species 

controlling for the degree of environmental predictability, body size and phylogeny (an 

increase in survival of 0.91% for every 1% increase in seasonal mass variation, Table 2, Fig. 

1). There was no correlation between survival and annual mass variation (Table 2). Species 

which showed significant variation in the timing of the seasonal mass peaks between years 

had significantly lower survival (SY; 0= 0.60, 1= 0.44 using parameter values from Table 2 

and average values for each variable from each SY class from the study; Fig. 2). However, 

this result was dependent on weighting the model by sample size (without weighting, F = 

0.2, P = 0.7). We also reconfirmed the negative relationship between clutch size and survival 

(survival decreased by 6% for every 1% increase in clutch, Table 2). Neither, migratory 

status nor feeding guild, significantly affected survival and were subsequently removed from 

the minimal adequate model.  

Conclusion 

We show that across tropical bird species, in the same habitat, the degree of seasonal mass 

variation acts as an indication of adult survival and therefore life-history adaptation. Those 

species which showed an increased mass response during breeding were more likely to 

survive as adults (Fig. 1), while species which varied their mass at different times in different 
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years had lower adult survival (Fig. 2). These results are consistent with the hypothesis that 

increased foraging unpredictability leads to increased mass as a result of the adaptive 

management of energy reserves. 

In a highly seasonal savannah environment, as in this study, there is not a period of high 

density–dependent mortality which acts across all species, such as winter in the northern 

hemisphere. This has allowed the evolution of a wide range of life history strategies under the 

same environmental conditions (e.g. see the variation in survival rates in McGregor et al. 

2007; Stevens et al. 2012). Those species that inhabit a less seasonal foraging niche will 

experience increased density-dependent mortality in the breeding season and therefore 

populations will be governed more by competition during breeding with fewer resources 

available per individual (Ashmole 1963, Martin 1986, Martin 1987). Therefore birds will 

experience reduced foraging predictability around breeding activities and so will store more 

reserves against this increased starvation risk. Selection may then favour those individuals 

that invest less in each breeding attempt (i.e. smaller broods) but over a longer period (i.e. 

extended parental care). This affects survival because an increased investment in self 

maintenance decreases the physiological (Dufty Jr 1989, Richner et al. 1995, Hau 2007) and 

energetic (McNamara and Houston 2008) costs and gives increased insurance against 

fluctuations in the foraging environment (Rogers 1987). Consequently birds are more likely 

to survive as adults. Therefore species which showed an increased interrupted foraging 

response in this study tended to be more K selected (Fig. 1).  

In contrast, those species that rely on a more seasonal food source, such as specialized seed 

eating finches, probably experience a period of increased density-dependent mortality during 

the non-breeding season (Peach et al. 2001, Cox and Cresswell In submission). During the 

breeding season however, food availability may far exceed carrying capacity, which will 

affect life history through its effects on provisioning rates, nest predation and chick growth 

rates (Tveraa et al. 1998, Markman et al. 2002). Consequently larger clutch sizes can evolve 

(e.g., Ricklefs 1980), which has negative implications for adult survival. Increased food 

availability both leads to a decreased mass response as a bird can meet its foraging needs and 

also its higher breeding costs, although some of these will be offset by lower adult survival.  

We found evidence that where peak mass occurred at different times in different years, mass 

variation was associated with lower adult survival (16% lower, see Fig. 2). This suggests that 

these species rely on a food source which varies in predictability across the years. Species 
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with a greater unpredictability of foraging will be less likely to survive as adults and so need 

to produce more young when conditions allow, as predicted by life-history theory 

(MacArthur and Wilson 1967, Pianka 1970). Many finch species breed opportunistically 

(e.g., Zann et al. 1995, Grant et al. 2000, Cox et al. In submission), maintaining an active or 

semi-active reproductive system in the non-breeding season despite fitness costs (Perfito et 

al. 2007) which further drives r selection. 

We did not find a relationship between adult survival and inter-annual mass variation. This is 

perhaps because any fluctuations in resource availability and so foraging predictability at this 

level are reflected in off-spring fitness and not adult survival (Ghalambor and Martin 2001, 

Markman et al. 2002, Tieleman et al. 2008). We predict that those years which have 

increased food availability are likely to show a reduced level of mass increase (MacLeod et 

al. 2008) and probably increased juvenile survival (Markman et al. 2002), because foraging 

will be more predictable. Therefore the scale of the interrupted foraging response either 

within a population across the years or across populations, may act as an index of the quality 

of the foraging environment and so population productivity for that year (MacLeod et al. 

2008). 

General conclusions 

We provide evidence to support the generality of interrupted foraging theory as a single 

explanation of how animals regulate their mass under changing environmental conditions, by 

showing how it links with life history. As population dynamics depend on individual 

survival, a bird’s mass provides a framework to predict the behaviour, fitness, population 

dynamics and community structure of birds (Abrams 1984, McNamara and Houston 1987, 

Bolker et al. 2003, Cresswell 2008, MacLeod et al. 2008). Several studies have investigated 

how fat regulation acts as an indication of survival and population change (MacLeod et al. 

2007, MacLeod et al. 2008, Cresswell et al. 2009b). However, these studies have focused on 

the relationship between mass variation and survival in the non-breeding season. These 

studies were conducted in the northern hemisphere where food is unlikely to be limiting in 

the breeding season (e.g., Houston and McNamara 1993, Witter and Cuthill 1993, Gosler et 

al. 1995) and more likely to be limited in the non-breeding season. In tropical environments 

the reverse may apply for many K selected species. Here we show that in a tropical 

environment there is probably a direct relationship between food limitation in the breeding 
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season and adult survival, which has wide implications for life history strategy. If food is a 

limiting factor through low availability and increased competition, then selection will favour 

smaller clutch sizes and consequent increased investment in promoting juvenile survival 

through extended parental care, as well as longer life spans for adults. 

The positive relationship between adult survival and mass variation provides empirical 

evidence to support recent theoretical models which concluded that food limitation, expressed  

as the seasonality of resources, as opposed to nest predation and/or the length of the breeding 

season is the driving evolutionary force behind life history evolution (McNamara et al. 2008, 

Griebeler et al. 2010). Variance within this relationship may be due to varying levels of 

species specific nest predation or varying length of breeding seasons within the same habitat, 

for example: increased levels of nest predation or the fear of nest predation may cause 

smaller broods (Martin 1996, Martin 2011) and may vary considerably between years and 

species (Robinson et al. 2000). Our results support the hypothesis that within the starvation-

predation framework, how a bird regulates its mass is a trade-off between foraging 

predictability and conflict with life history activities (Cox and Cresswell In submission). 

Determining how an individual balances its foraging needs (i.e. mass regulation) while 

maximising its fitness in a changing environment can act as an index of both life history 

strategies and the seasonality of a species’ foraging niche. Although this study supports 

previous work in the northern hemisphere in that across species within the same habitat mass 

can act as a reliable indicator of environmental quality and population dynamics (Lima 1986, 

MacLeod et al. 2007), further work is needed to gather empirical data on the seasonality of 

food availability for a range of species. For example: how at an individual level does this 

relate to the scale of the interrupted foraging response and trade-offs between life history 

traits, such as adult and juvenile survival, nest predation, fecundity, brood sizes, and the 

length of the breeding season.
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Table 1: Life history data of 40 species of West African savannah bird. 

Species n survival 

(recaptures) 

Survival Clutch n mass % 

Seasonal 

mass 

change 

% 

Annual 

mass 

change 

S

Y 

Mean 

mass 

(g) 

Migratory 

status 

Guild 

COLUMBIFORMES Columbidae 

Turtur abyssinicus 68 (44) 0.606 2 230 9 34 0 60.8 R G 

COLIIFORMES Coliidae 

Colius striatus 223 (95) 0.619 1.9 298 12 10 1 52.3 R F 

PICIFORMES Capitonidae 

Pogoniulus chrysoconus 186 (134) 0.416 2.5 239 3 7 0 10.8 T F 

Lybius vieilloti 36 (33) 0.599 2.5 65 17 9 0 36.7 R F 

PASSERIFORMES Pycnonotidae 

Pycnonotus barbatus 311 (111) 0.668 2 614 12 30 1 37.6 R F 

Chlorocichla flavicollis* 34 (24) 0.844 2 49 14 23 0 50.7 T I 

Turdidae 

Turdus pelios 190 (87) 0.799 2.4 516 8 7 0 65.2 T I 

Muscicapidae 

Cossypha niveicapilla 80 (75) 0.779 2.5 176 1 12 0 36.6 R I 

Cercomela familiaris 45 (37) 0.539 3 117 11 13 0 17.2 T I 

Myrmecocichla cinnamomeiventris 41 (11) 0.657 2 63 17 16 0 39.5 R I 

Sylviidae 

Melocichla mentalis* 24 (17) 0.948 2 37 11 12 0 33.2 R I 

Eremomela pusilla 33 (21) 0.586 2 70 7 23 1 8.6 T I 

Sylvietta brachyuran* 32 (31) 0.875 2 60 2 6 0 13.8 R I 

Cisticolidae 

Camaroptera brachyura 137 (168) 0.636 2.7 226 8 5 0 10.9 R I 

Cisticola aberrans 30 (29) 0.650 2.5 85 4 11 0 13.4 R I 

Cisticola cantans* 57 (28) 0.806 2 60 8 4 0 11.5 T I 

Cisticola guinea* 39 (26) 0.510 3 39 15 26 0 9.0 R I 

Plastysteiridae 

Platysteira cyanea 51 (53) 0.700 3 94 27 21 0 11.7 R I 

Zosteropidae 

Zosterops senegalensis 152 (55) 0.527 2.5 241 2 7 0 9.5 R F 

Nectarinidae 
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Cyanomitra verticalis 87 (80) 0.654 2 130 12 4 0 12.4 R N 

Chalcomitra senegalensis 202 (62) 0.769 2 476 4 7 0 10.3 T N 

Cinnyris venustus 206 (42) 0.534 2 354 5 9 0 6.3 R N 

Malaconotidae 

Malaconotus sulfureopectus* 25 (14) 0.923 1.8 46 10 21 0 28.7 R I 

Tchagra senegalus* 41 (24) 0.660 2 58 8 30 1 51.1 T I 

Passeridae 

Sporopipes frontalis 62 (41) 0.592 4 62 12 14 0 17.0 R G 

Ploceidae 

Ploceus cucullatus 301 (34) 0.694 2.3 738 11 9 1 36.6 R G 

Ploceus luteolus 45 (26) 0.487 2.5 147 8 8 0 14.5 R G 

Ploceus nigricollis 116 (63) 0.786 2 209 6 9 0 26.5 T G 

Ploceus vitellinus 205 (76) 0.726 2.4 284 20 14 0 20.2 R G 

Euplectes franciscanus 1252 (360) 0.720 3 1762 5 8 1 15.2 T G 

Euplectes hordeaceus 165 (47) 0.786 3 169 28 15 0 20.0 T G 

Estrildidae 

Estrilda caerulescens 378 (326) 0.566 5 530 6 16 1 9.3 T G 

Estrilda troglodytes 136 (24) 0.571 5 149 5 24 0 7.6 T G 

Uraeginthus bengalus 498 (226) 0.456 4.7 692 5 10 0 10.1 T G 

Lagonosticta rufopicta 62 (38) 0.564 4.5 113 9 10 0 9.3 R G 

Lagonosticta rara 34 (26) 0.528 3.5 84 7 7 0 9.8 T G 

Lagonosticta sanguinodorsalis 305 (300) 0.559 4 480 11 8 1 10.5 R G 

Lagonosticta senegala 400 (137) 0.515 3.4 763 7 18 0 8.7 T G 

Spermestes cucullatus 424 (43) 0.269 5 768 5 8 1 8.9 T G 

Emberizidae 

Emberiza tahapisi 226 (31) 0.491 2.6 361 9 9 0 13.5 T G 

Note: Seasonal mass variation varied significantly with year (SY; 1 yes, 0 no). Values come 

from data already published except for seven additional species (labelled with *) where we 

calculated new values of seasonal mass change, SY and mass. We identified species guilds 

from the literature: I insectivore, F frugivore, N nectivore, G granivore. Transient status (T) 

was identified over resident status (R) by a >50% change in capture rate between dry and wet 

seasons. 
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Table 2: ANOVA of the minimum adequate model testing for relationships with adult 

survival. Each variable was dropped from the model in turn, before applying a likelihood 

ratio test. 

Variable estimate error t P 

Intercept        (df 20) 0.75 0.11 6.9 <0.0001 

Seasonal mass 0.91 0.29 3.1 0.005 

Annual mass 0.17 0.25 0.7 0.52 

Variable peak mass -0.14 0.05 -3.0 0.007 

Clutch size -0.07 0.03 -2.7 0.01 

Mean mass -0.0007 0.001 -0.6 0.54 

 

Note: The model includes order/family as a random factor, to control for any variation due to 

phylogeny and the model was weighted by sample size. Migratory status and feeding guild 

were both removed from the model through model simplification.  
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Figure 1: Relationship between adult survival and seasonal mass variation by feeding guild 

in 40 species of small tropical savannah bird: X Frugivore; * Insectivore; ∆ Nectivore; + 

Granivore. Parameter estimate = 0.91 +- 0.29, t = 0.31, p = 0.005. 
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Figure 2: Relationship between species which varied thir peak mass at different times in 

different years (included in the model as a two level factor) and adult survival. The model 

was weighted by sample size. 
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Chapter 6: Concluding discussion 

Seasonal mass variation as a consequence of food limitation during breeding 

Under constant predation risk a bird’s mass acts as an index of the foraging environment, 

because a decrease in foraging predictability will cause a bird to increase its reserves against 

the increased risk of starvation. Breeding activities increase energetic expenditure and 

interrupt the time available for foraging for self and so foraging becomes less predictable. 

How a bird manages its mass during breeding can either be an index of investment in 

breeding in individuals in the same foraging habitat, or it can give an indication of breeding 

strategy and life history in populations across different foraging habitats. This thesis provides 

clear evidence that birds adaptively manage their mass during breeding and that mass change 

is not a response to the physiological stress of provisioning for chicks. Furthermore, this 

thesis provides support for food limitation being the main driving force behind patterns of life 

history variation, with variance around the predicted upper limits set by food limitation 

probably being set by other factors such as levels of nest predation and length of the breeding 

season which were not explored here. This thesis shows that how an individual manages its 

mass acts as a bridge between population dynamics, foraging theory and life history, and that 

the mass of a bird can be seen to provide an index of how a bird maximises its fitness in a 

changing environment. 

Tropical savannahs as model systems 

The tropical savannahs of West Africa act as model systems for studying the effects of 

seasonality on life history, because they are highly seasonal environments where day length 

and temperature remain relatively constant, and so how a bird experiences seasonality will 

depend largely on its particular foraging niche (Peach et al. 2001). A broad range of K to r 

selected species within the same environment provides an increased understanding of the 

selective pressures of food limitation on the evolution of life history traits.  

Close to the equator the absence of the universal driving evolutionary force of winter means 

that seasonality is driven primarily by the predictable annual movement of the rains, which 

cause increases in primary productivity and consequently invertebrate populations (Bourliέre 

and Hadley 1970, de Bie et al. 1998). As day length and temperatures remain relatively 
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constant how a species experiences seasonality will largely be determined by variation in its 

essential resources such as food and water availability for itself and its off-spring (Ahumada 

2001, Peach et al. 2001). The savannahs of West Africa are an ideal system for studying the 

effects of seasonality on life history, because there is only one wet season annually, the 

timing of which remains relatively predictable across the years (Bourliέre and Hadley 1970). 

The single dry and the wet season each consist of distinctly different resource availability and 

species will have evolved to maximise their fitness across this changing environment. 

Specifically, Amurum Forest Reserve consists of a mosaic of four main habitat types 

(inselberg, gallery forest, degraded Guinea savannah, farmland) within a relatively small area 

(~4 hectares), thus providing a heterogenic landscape capable of supporting diverse 

communities of species.  

An increase in species diversity means that many species have evolved to specialise in 

specific foraging niches, because where there is high competition for resources it is beneficial 

to outcompete competitors for a specific food type (Martin 1986). Therefore density-

dependence results in seasonality not only being determined by the total food available but 

also by seasonal variation in competition for it. Savannah communities are dynamic with 

many species consisting of both transient and sedentary populations, therefore some 

populations may experience reduced seasonality because although the rains drive a 

significant increase in primary productivity, competition may increase proportionately and 

will likely influence life history through variation in foraging predictability. While species 

which inhabit a more seasonal environment may not be constrained in the same way as food 

becomes super-abundant. This makes tropical savannahs ideal systems for disentangling how 

life history traits evolved in response to seasonality. 

Seasonality is dependent on a species’ foraging niche 

Within a tropical savannah, if how a species experiences seasonality is largely to do with its 

foraging niche then we can expect a wide range of r to K selected species, which is what we 

find (Peach et al. 2001, McGregor 2005, Stevens 2010). At one end of the continuum there 

are specialized seed eating finches which are characterised by having large clutch sizes and 

low rates of adult survival. These are comparable with species in the Northern hemisphere 

(i.e. r selected). These species rely on the seasonal grain crop and the availability of free 

standing water to aid digestion of seeds, both of which go from negligible to superabundant 
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across the seasons (Peach et al. 2001, Brandt 2007). Therefore food availability and 

subsequently the breeding season will be limited to more rapid breeding attempts in response 

to predictable and unpredictable peaks in food availability (Zann et al. 1995, Grant et al. 

2000). A period when resources are constrained means that there are more resources available 

per individual when food availability increases, allowing parents to support larger broods, 

which consequently has negative implications for adult survival. However, within these r 

selected species, the predictability of foraging for self-maintenance during breeding becomes 

predictable as the seed crop ripens and falls (food does not have to be caught and is abundant) 

despite an increase in energy expenditure and the demand for food associated with larger 

broods, so that these species can reduce their mass during breeding. 

Conversely, specialised insectivorous species such as the sulphur breasted bush-shrike 

Malaconotus sulfureopectus, have high survival and small clutch sizes (i.e. K selected; 

Stevens 2010). These species forage on small and medium sized insects in the canopy and so 

individuals are likely to face quite different levels of foraging predictability which will be 

defined not only by the abundance of food and competition for it, but also by the time 

required to find, capture and process their prey (Martin 1986, Ahumada 2001). During the 

non-breeding season birds reduce their energy expenditure and there is sufficient food 

available to forage opportunistically. Because of density-dependence a reduction in the 

seasonality of food availability means that mortality will be reduced during the non-breeding 

season and so populations may stay closer to their carrying capacity. Therefore during 

breeding there will be fewer resources available per individual. Consequently the increased 

demand for food due to an increase in energy expenditure associated with breeding, and an 

increase in population size as young birds fledge, may mean that density-dependent mortality 

acts more strongly during the breeding season and so parents provide longer parental care in 

order to increase the competitive ability of fledged young. The unpredictability of foraging 

during breeding probably remains high throughout so resulting in increased mass reserves. 

Seasonal mass variation in savannah birds 

Within the starvation vs. predation trade-off framework a birds’ mass is the result of foraging 

predictability, where foraging predictability is a function of food availability, risk of 

predation while obtaining food, competition for food (density-dependence), and interruptions 

to the time available for foraging from say a predator, severe weather event or breeding 
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activities. If predation risk remains relatively constant across the year, and if a bird is not 

starving then a bird’s mass will be a trade-off between food availability and interruptions to 

the bird’s foraging which may occur due to life history events such as breeding or in 

preparation for migration. There was evidence that for most species foraging remained 

predictable throughout the year, because most species maintained a low mass and so avoided 

mass dependent costs and this may be a common strategy generally in the tropics (Ward 

1969, McNeil 1971, Fogden 1972, Crowe et al. 1981, Crick and Fry 1986, Brown and 

Bhagabati 1998, Wikelski et al. 2000, Cox et al. 2011) and in the Southern hemisphere (Box 

et al. 2002, Rozman et al. 2003). There was also evidence that some individuals of two thirds 

of the species studied (68%) were capable of breeding in all four seasons, despite most 

individuals breeding during a specific period of increased food availability. This suggests 

there must be sufficient food available to instigate breeding activities without a risk of 

starvation to the female (Perrins 1970, Martin 1987). If a bird’s mass is a function solely of 

food availability then we might have predicted that a bird would further decrease its mass 

with an increase in food availability. However, independent of egg production or gonad 

growth this thesis shows that birds actually increase their mass, which provided an 

opportunity to investigate mass variation in response to trade-offs during breeding. Only 

finch species were found to gain mass as a possible response to unpredictable food 

availability at the start of the rains which provided evidence of the increased seasonality 

experienced by this feeding guild. However, some individuals were still capable of 

successfully fledging young at this time despite an increased mass associated with reduced 

food availability, thus highlighting the opportunistic nature of this solely tropical family 

(Grant et al. 2000, Hau et al. 2004, Perfito et al. 2007). 

Birds adaptively manage their mass during breeding 

Adaptive management of mass by birds in the non-breeding season is now well established 

(Rogers 1987, Houston and McNamara 1993, Rogers and Heath-Coss 2003, MacLeod et al. 

2007, MacLeod et al. 2008), but there is still debate over whether a bird adaptively manages 

its mass during breeding (Norberg 1981, Croll et al. 1991, Merkle and Barclay 1996, 

Wojczulanis-Jakubas et al. 2012), or whether a bird’s mass is a response to food limitation 

and physiological stress, known as the Energetic Stress Hypothesis (Ricklefs 1974, Johnson 

et al. 1990, Martins and Wright 1993, Merila and Wiggins 1997, Woodburn and Perrins 

1997, Nagy et al. 2007), or possibly a combination of both (Neto and Gosler 2010). This 
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thesis provides clear support for the growing body of evidence which shows that birds 

adaptively manage their mass during breeding. 

During the breeding season in the Northern hemisphere, many birds, particularly females, are 

heaviest during incubation before losing mass whilst they are feeding chicks (Ricklefs 1974, 

Hillstrom 1995, Merkle and Barclay 1996, Cavitt and Thompson 1997, Woodburn and 

Perrins 1997). However, this has previously been viewed from the perspective of a mass 

decrease relative to the much larger mass gain caused by poor foraging conditions in winter. 

Instead, if mass variation during breeding is viewed from the perspective of a mass increase 

relative to predictable foraging in the non-breeding season as is the case in many tropical and 

Southern hemisphere species (e.g., Fogden 1972; Rozman et al. 2003), then interrupted 

foraging provides a universal explanation for seasonal mass change. For example, breeding 

birds which were given more supplementary food lost less mass than control birds (i.e., 

smaller interrupted foraging response) because foraging was more predictable and therefore 

birds did not need to store increased reserves, although previously this was attributed to the 

energetic stress hypothesis (Garcia et al. 1993, Nagy et al. 2007). Interestingly, the presence 

of supplemented food during breeding does not always result in a reduction in mass. Instead 

the availability of an predictable food source means that a bird needs to spend less time 

searching for food, thus allowing it to dedicate more time to other breeding activities such as 

surveillance and mate guarding, and so birds actually increase their mass to compensate for 

the allocation of resources to other activities (Arcese 1989). Therefore predictions of mass 

consequences are problematic because foraging predictability directly affects how an 

individual-apportions its available resources to different activities. 

Neto and Gosler (2010) examined variation in four indices of body condition; pectoral 

muscle, fat score, weight and lean weight in a breeding population of Savi’s warbler 

locustella luscinioides, in Portugal. They argue that variation in mass was adaptive if they 

involved changes in fat that can be rapidly metabolised, whereas physiological stress should 

influence muscle score to a greater extent because muscle is a less efficient store of energy. 

They found that both males and females recovered fat reserves after each breeding attempt 

and thus showed evidence of adaptive management. They also observed a reduction in 

pectoral muscle mass across the breeding season that corresponded to increasing numbers of 

breeding attempts, and suggest that this was evidence of physiological stress. However, 

measures of fat scores have often been confounded in tropical species, because there is 

frequently little or no visible surface fat (Ward 1969, Fogden 1972, McGregor 2005), and this 
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was also found to be the case in this study. However, dissection of individuals has shown that 

males and females do vary their fat and protein reserves during breeding (McNeil 1971, Jones 

and Ward 1976, Fogden and Fogden 1979), and this also appears to also be the case in Zebra 

finches in the Southern hemisphere (Rozman et al. 2003). Individuals increased pectoral 

muscle with the onset of breeding, before then decreasing muscle mass through the breeding 

season (Ward 1969, Fogden 1972), while fat reserves increased directly before egg laying 

(Jones and Ward 1976, Fogden and Fogden 1979). This suggests that the larger increase in 

mass with the onset of the breeding season observed in this study maybe due to increases in 

pectoral muscle. While the further smaller mass increase associated with incubation in 

females is probably due to increases in fat related to stages of egg production.  

The mass increase observed during the breeding relative to the non-breeding season, suggests 

that birds are able to adaptively manage both their longer term (protein) and more immediate 

(fat) energy reserves during breeding, and interrupted foraging theory currently provides the 

most universal explanation for this. If savannah birds experienced protein loss due to 

physiological stress we would expect to see individuals regain mass after breeding, instead of 

further decreasing their mass as they enter the non-breeding season. It may be that increased 

brood sizes and longer day lengths, and thus increased workloads, intensifies the stress of 

breeding in the Northern hemisphere. Thus birds may experience higher levels of 

physiological stress, which is why breeding birds lost protein mass during the breeding 

season. It would be interesting to investigate changes in internal protein and fat levels across 

a range of savannah species with different life history strategies, i.e. between specialised 

insectivorous species which have larger seasonal mass change but smaller clutch sizes, 

compared to the more r-selected finch species.  

Interrupted foraging is the most current theory which is able to explain how birds manage 

their mass in response to stress both in the breeding and non-breeding season. It should be 

noted however that although this theory has proven to be robust across different systems, it is 

not yet conclusive and there may be other explanations for how birds vary their mass. This 

thesis provides further support for interrupted foraging theory. 

Mass variation within species as an index of breeding investment 

Under constant predation risk interrupted foraging theory states that a bird’s mass is a 

response to foraging predictability (Houston and McNamara 1993, MacLeod et al. 2008). If 
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foraging becomes less predictable a bird will increase its mass to reduce the risk of starvation, 

with foraging predictability being a consequence of food availability and life history 

demands. Therefore, within the same foraging niche, where food availability is constant 

across individuals, the mass of a bird during breeding acts as an index of investment in 

breeding. Numerous studies have found that in many species females show the greater mass 

increase and greater energetic expenditure compared to males, which is related to their 

increased investment in breeding (Williams and Nagy 1985, Verhulst and Tinbergen 1997, 

Burness et al. 2001). Therefore, should males and females show the same level of breeding 

investment and energetic expenditure, then we would expect that both parents would follow 

similar mass gain strategies, which is what is found in Little Auk (Allie allie; Wojczulanis-

Jakubas et al. 2012). As such the scale of any mass change which occurs during breeding 

relative to predictable foraging in the non-breeding season can give us an index of how 

breeding affects foraging predictability, and consequently influences life history through food 

limitation theory (Martin 1987). Future studies should investigate how birds manage their 

mass under different breeding systems, for example as a measure of the investment of helpers 

relative to parents in cooperatively breeding species (Crick and Fry 1986), or parents feeding 

a larger brood-parasite chick rather than several of their own? 

Birds act as a model system for studying mass variation as an index of breeding investment 

because they are relatively easy to catch and weigh and are capable of relatively large within 

day mass variation (e.g., Rogers & Smith 1993; Cresswell 1998). Adaptive management of 

mass is probably a universal strategy in bird species across both the breeding and non-

breeding season; therefore it is highly likely that the mass of other animal groups during 

breeding were also a result of adaptive management. Body mass loss during breeding has also 

been observed to occur in females of other flying vertebrates, e.g. bats (Burnett & Kutz 1982) 

and non-flying vertebrates, including Adelie penguins (Pyhoscelis adeliae; Johnson & West 

1973), red deer (Cervus elaphus; Albon, Mitchell & Staines 1983), northern elephant seals 

(Mirounga angustirostris; Costa, Le Boeuf & Huntley 1986; Deutsch, Haley & Le Boeuf 

1990) and brushtail possums (Trichosurus vulpecula; Isaac 2005), which has previously been 

interpreted as a result of reproductive stress. Researchers should therefore be cautious when 

assuming that mass loss is an indication of stress or cost of reproduction, because an animal’s 

mass during breeding is probably also a trade-off between foraging predictability (as a 

function of competition and food availability) and investment in breeding, and it is possible 

to explain the above studies from this perspective.  
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Mass variation across species as an index of life history strategy 

This study provides empirical support for recent theoretical models which show that the 

seasonality of food limitation through density-dependence is the defining evolutionary force 

behind life history evolution (McNamara et al. 2008, Griebeler et al. 2010). Food availability 

during breeding limits the number of off spring produced or negatively influences the quality 

or condition of the off spring or parents, such that future survival or breeding success is 

reduced (reviewed in Martin 1986). Decreased food availability (either from abundance or 

competition), increases search time which decreases feeding rate with birds needing to spend 

more time foraging to store reserves against this increased foraging unpredictability (i.e. large 

mass response), and so less time is available for other activities (reviewed in Martin 1986). 

As a consequence selection in a less seasonal foraging niche acts on those individuals that 

invest in fewer, but fitter young per breeding attempt. Increased reserves mean that a bird will 

be in better condition to buffer the physiological and behavioural costs of breeding (e.g., 

Norris & Evans 2000), because breeding is energetically demanding (Bryant 1988) and has 

physiological costs such as a reduction in immunity to disease (Sheldon and Verhulst 1996, 

Norris and Evans 2000) and the release of testosterone which increases aggression (Dufty Jr 

1989), both of which reduce immediate and long-term survival. An increased investment in 

self-maintenance may increase survival because it gives a bird more flexibility in time and 

space as to when it can forage, allowing it to avoid periods of increased predation risk 

(Lilliendahl 1998), as well as buffering fluctuations in foraging conditions and so reducing 

the risk of starvation (Rogers 1987, Houston and McNamara 1993). However, being fat is 

costly (Witter and Cuthill 1993, Gosler et al. 1995), and so how a bird maximises its fitness 

between the costs and benefits of carrying increased reserves provides insights into life 

history evolution.  

Those species that experience increased seasonality (r selected) will have more food available 

during breeding and so their breeding strategy is likely to be limited more by factors such as 

competition for nesting space or nest predation. Therefore despite relatively large clutch sizes 

and consequently increased energetic expenditure foraging remains predictable and so species 

do not need to store large amounts of reserves against an increased starvation risk (i.e. low 

mass response). An increase in breeding effort is traded-off against adult survival (reviewed 

in Bennett & Owens 2002). Therefore within the same environment the scale of the 

interrupted foraging response during breeding acts as an index of life history strategy. 
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Mass variation during moult; tropical savannahs as model systems 

Birds adaptively manage their mass during life history activities in order to optimise fitness. 

Therefore we may expect there to be a mass response during moult, because this is an 

energetically demanding process with birds needing to spend a greater proportion of time 

foraging to provide the energy for feather growth (Myrcha and Pinowski 1970). A bird in 

moult may have one of three mass responses: it may decrease its mass in order to compensate 

for increased wing loading due to wing-area reductions and so be able to escape more rapidly 

from predators (mass-dependent response; Swaddle & Witter 1997; Senar, Domenech & 

Uribe 2002); or it may increase its reserves because the increased demand for food, coupled 

with the reduced escape time from predators means that foraging predictability is reduced, 

therefore increased reserves allow birds to forage only during periods of reduced predation 

risk (interrupted forging response; Lind, Gustin & Sorace 2004); or a bird may optimise its 

moult strategy so that there is no discernible effect on mass (Lind 2001). Where food 

becomes limiting such as with the onset of winter in the Northern hemisphere, Great tits 

Parus major have been shown to arrest their greater covert moult due to direct protein stress 

or a correlate of protein stress (Gosler 1991), and so a birds mass has direct implications for 

moult strategy. 

In the tropics the speed of moult is both species and individual specific and tends to be slower 

than in the Northern hemisphere (e.g., McGregor, Ottosson & Cresswell 2007; Stevens 

2010). Predictable foraging in the non-breeding season in tropical savannahs probably allows 

individuals to reduce the costs of moult by replacing feathers at a slower rate, which results in 

smaller gaps in the wing, and consequently has a reduced effect on flight performance 

(Swaddle and Witter 1997). Longer moulting periods will also reduce protein stress on flight 

muscles, and subsequently there is likely to be a reduced mass response (Gosler 1991). The 

diversity of moult strategies, extended moult periods and predictable foraging in the non-

breeding season make tropical savannahs model systems for studying mass variation during 

moult in birds. Throughout this thesis I controlled for whether a bird was in active wing 

moult or not in all models and did not find an effect of moult on mass. This suggests that 

species may have evolved an optimal moult strategy so that moult does not affect mass. 

However more detailed study is probably required. 

Some tropical birds have been observed to overlap their moult with breeding activities 

(Fogden 1972, Payne 1972, Foster 1974, Britton 1978, Wilkinson 1983), and this was found 



121 

 

to be common in the savannah birds in Nigeria (Stevens 2010). Moult is an energetically 

demanding process and thus species that overlap moult and breeding, appear to have 

additional energy available during breeding periods which could be devoted to reproduction 

but that appears not to be the case (Foster 1974). Organisms that do not utilise all potentially 

available energy for breeding should presumably be at a selective disadvantage. Therefore 

those individuals that overlap their moult with breeding activities may show an increased 

mass response to compensate for their increased unpredictability of foraging due to higher 

energy costs. High levels of nest predation in some tropical environments are thought to 

reduce clutch sizes below the upper limits set by food limitation (Martin 1996), consequently 

there may be sufficient energy available for a bird to overlap its moult and breeding. Thus 

any effect on mass that combining these two costly procedures has will provide further 

insights into food limitation theory. Further individual level studies into the scale of mass 

variation in birds which engage in a moult breeding overlap relative to degrees of nest 

predation are required. 

Mass variation as a life history trait 

In conclusion, this thesis shows mass variation to be a clear life history trait because it is a 

function of environmental seasonality and there are direct trade-offs between it and survival. 

A bird carrying excess reserves is unlikely to starve, but is more likely to be predated through 

increased exposure to predators and through reduced escape time. Therefore a bird’s mass 

under a given set of environmental conditions is a trade-off with immediate and longer term 

survival. Birds trade off increased mass, and consequently condition and their ability to 

buffer physiological costs during breeding, with increased breeding activities such as clutch 

sizes, provisioning for chicks, territoriality and aggression. In order to understand the 

selective pressures that determine behaviour and community structures, limit populations, and 

act on life history evolution, it is essential to understand how a bird regulates its mass 

between the risk of starvation and the risk of predation (Abrams 1984, McNamara and 

Houston 1987, Bolker et al. 2003, Cresswell 2008). This is because the mass of a bird can 

provide an index of both individual condition and the quality of the foraging environment and 

therefore survival rates (Sutherland et al. 1996, Lima 1998b, Caro 2005, MacLeod et al. 

2007, MacLeod et al. 2008). As such, a bird’s mass acts as a bridge between population 

dynamics, foraging theory and life history. 
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