
INVESTIGATING PROTEIN- PROTEIN INTERACTIONS

IN ORDER TO DEVELOP NOVEL THERAPEUTICS FOR

THE TREATMENT OF ALZHEIMER'S DISEASE

Laura Aitken

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2013

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/3531

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/3531


 
 

 

Investigating protein- protein interactions 

in order to develop novel therapeutics for 

the treatment of Alzheimer’s disease 

 

 Laura Aitken  

 

 

 

This thesis is submitted in partial fulfilment  

for the degree of  

Doctor of Philosophy at the University of St Andrews 

 

February 2013 



 

 
 
 

 



 

 
	
  

i	
  
	
  

	
   	
  

Abstract 

Alzheimer’s disease (AD) accounts for around two thirds of all dementia cases and an 

increase in life expectancy of the population has resulted in a substantial increase in 

dementia cases and with that a rise in AD. AD is a debilitating and ultimately fatal 

neurodegenerative disorder of the elderly, and despite being identified over a century 

ago, the current treatments do not treat the underlying causes behind the disease, instead 

they help to mask the symptoms of the disease and prolong the brain’s remaining 

function. It is therefore vital that an effective, disease modifying treatment for this 

disease is established as soon as possible.  

Soluble intracellular forms of amyloid β (peptide Aβ), a hallmark of AD have been 

identified and intracellular targets of Aβ are being investigated as potential drug targets 

for the disease. Two key intracellular, mitochondrial proteins investigated as potential 

drug targets: amyloid binding alcohol dehydrogenase (ABAD) and cyclophilin D 

(CypD) are the focus of the work reported in this thesis. 

To begin identifying potential inhibitors of the ABAD-Aβ interaction, a two-pronged 

approach was taken. Firstly, a series of analogues based on a known inhibitor of the 

interaction were tested using a variety of biophysical assays, for their therapeutic affect 

on the interaction, and secondly a fragment based screening approach was used to 

identify new small molecule binding partners of ABAD which could potentially be 

modified to produced inhibitors of the ABAD-Aβ interaction. Three different CypD 

constructs have been successfully expressed and purified, and taken into crystal trials. It 

is hoped that these constructs can be used to significantly aid the progress of identifying 

any potential inhibitors and binding partners of CypD that may produce therapeutic 

effects, and in the future could lead to the identification of an effective disease 
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modifying drug in the treatment of AD. The work reported in this thesis has built upon 

previously reported findings and the groundwork has also been established for several 

in vitro biophysical assays, these include for example: measuring ABAD enzyme 

activity, and the novel morphology specific Aβ aggregation assay, which can be used as 

screening tools to help identify potential inhibitors of these interactions.  

Both the ABAD-Aβ interaction, and the blockade of CypD are known to be drug targets 

in the treatment of AD, and by elucidating the molecular mechanisms behind these 

interactions, through implementing biophysical assays, this will help in the 

identification and design of potential new therapeutic agents for the treatment of AD. 
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“……I know three people who have got better after a brain tumour. I haven’t heard of 

anyone who’s got better from Alzheimer’s. I’m slipping away a bit at a time… and all I 

can do is watch it happen. It’s a physical disease, not some mystic curse; therefore it 

will fall to a physical cure. There’s time to kill the demon before it grows.” 
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1.1 An overview of Alzheimer’s disease 
Alzheimer’s disease (AD) accounts for around two thirds of all dementia cases and is 

thought to affect 820,000 people in the UK (Hubbard-Green 2012), 5.4 million people 

in the US (The Alzheimer’s Association 2012), and 36 million people worldwide 

(Hubbard-Green 2012.). An increase in life expectancy of the population has resulted in 

a substantial increase in dementia cases and with that a rise in AD. This rise in dementia 

cases not only provides a huge burden for the social care network, but also has a 

substantial negative economic impact for society, with the cost of treating dementia 

presently standing at £23 billion for the UK (Alzheimer’s Research UK 2012). 

Alzheimer’s disease is a debilitating and ultimately fatal neurodegenerative disorder of 

the elderly. What starts out as minor forgetfulness will progress into the loss of 

declarative memory and then loss of long-term memories. As a consequence of this, 

problem-solving abilities, perceptual skills, language and other brain functions are also 

impaired and gradually decline. Psychiatric and behavioural problems may also occur 

(Ravetz 1999). The loss of these brain functions then causes social dependence and then 

death, although the progression time of this disease can vary. It is therefore vital that an 

effective treatment for this disease is established as soon as possible.  

Although this disease was first identified over a century ago, by Alois Alzheimer 

(Galimberti & Scarpini 2011), the main mechanisms of this disease and indeed the 

underlying causes, have proved challenging for researchers to ascertain. It is however 

clear that AD can occur sporadically, often later in a patient’s life, or as an inherited 

disease caused by mutations in genes encoding proteins involved in Aβ turnover. 

Familial AD is associated with an earlier age of onset (Crouch et al. 2008). 
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1.1.1 Neuropathology of Alzheimer’s disease 

AD is clinically diagnosed by progressive memory loss. It is difficult for clinicians to be 

absolute on their diagnosis as there are a number of other types of dementia such as 

fronto-temporal, dementia with Lewy-bodies and vascular dementia (Wong et al. 2002; 

Wilhelmus et al. 2011). Furthermore clinical and pathological similarities also occur 

between Creutzfeldt-Jakob disease (CJD) a prion protein dementia, and AD (Masters et 

al. 1981). A definitive clinical AD diagnosis is only possibly by examining brain tissue 

after death, therefore the diagnosis is given as probable AD, whereby all other possible 

diseases have been ruled out. As AD results from the death of neurons, particularly in 

the hippocampus, frontal and temporal lobes, brain scans are often used in diagnosis to 

show and monitor brain atrophy and decreased blood flow (Besson et al. 1992; 

Nordberg 2004). An example of the differences between a normal brain and an AD 

brain is shown in Figure 1.1. 
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Figure 1.1: The changes observed between a normal brain and an AD brain. A) A normal brain 

imaged using positron emission topography (PET) depicting changes in blood flow when compared to 

that of B) PET scan of an AD brain. C) A normal brain D) An AD brain showing brain atrophy. (Image 

adapted from Mattson 2004). 

 

1.1.2 Possible causes of Alzheimer’s disease  

The two classic Alzheimer’s disease pathological hallmarks are the appearance of 

extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) 

consisting of a hyperphosphorylated protein called tau. However, although originally 

thought to be one of the major causes of AD, it is now considered that there is no 

correlation between the number of Aβ plaques and the decline of cognitive function 

(McLean et al. 1999; Lin & Beal 2006). However, there has shown to be correlation 

between intracellular amyloid and the progression of the disease (Lue et al. 1999; 

McLean et al. 1999) and therefore it is undisputed that Aβ is still a major factor in AD 

and many researchers are now investigating the accumulation of intracellular amyloid, 
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in particularly within the mitochondria (Caspersen et al. 2005). This is described in 

more detail in section 1.3.  

The only cause of AD that can be stated conclusively is in the small population (about 

1% of AD sufferers) (van Es & van den Berg 2009) who have familial AD which is 

caused by an inherited genetic defect. There are several possible mutations which could 

cause familial AD and interestingly several of the mutations produce increased Aβ 

levels. These are mutations found in the amyloid precursor protein (APP) gene and the 

presenilin 1 (PS1) and presenilin 2 (PS2) genes (Bird 2010). Presenilins are components 

of the γ -secretase complex that, together with β -secretase, processes APP to produce 

Aβ (summarised in section 1.2.1). It is also known that presenilins are found to be 

located in a subcompartment of the endoplasmic reticulum (ER), which provides a 

bridge structure between the ER and the mitochondria called mitochondria-associated 

ER membranes (MAMs) (Area-Gomez et al. 2009). MAMs are responsible for various 

housekeeping functions including cholesterol, lipid and fatty acid metabolism and Ca2+ 

homeostasis (Hayashi et al. 2009), all of these functions have been found to be altered 

in AD (Canevari et al. 2004; Mattson 2004; Hertzel et al. 2006; Di Paolo & Kim 2011). 

This could be explained from γ -secretase activity associated with APP processing being 

essentially confined to the MAM region (Area-Gomez et al. 2009), thus any 

dysfunction in MAMs could provide a fundamental role in AD pathology. 

A number of genetic risk factors for the development of sporadic late-onset AD have 

now been identified. These include carrying the ε4 allele of the apolipoprotein E (ApoE) 

gene (Kim et al. 2009). ApoE is a plasma protein and is involved in the transport and 

redistribution of lipids in cells (Mahley & Rall 2000). There are three ApoE isoforms: 

ε2, ε3 and ε4. The isoform ε2 contains a C158R mutation and ε4 contains a C112R 

mutation relative to ε3 and it is this ε4 isoform mutation which is elevated in patients 
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with sporadic AD (Kim et al. 2009). Other genetic risk factors for sporadic AD are 

mutations in the gene encoding the membrane sorting receptor sortilin-1 (Rogaeva et al. 

2007) and increased levels of the non-proteinogenic amino acid, homocysteine, as well 

as low serum folate (Ravaglia et al. 2005).  

More recently CLU (ApoJ), PICALM and CR1 have all been described as genetic risk 

factors for AD (van Es & van den Berg 2009). The CLU gene encodes a multifunctional 

protein which is a secreted chaperone, when under some stress conditions is also located 

in the cell cytosol. It has been suggested to be involved in several basic biological 

events such as cell death, tumour progression, and neurodegenerative disorders (van Es 

& van den Berg 2009). In animal models of AD, CLU is shown to bind to soluble Aβ 

and form complexes which are capable of crossing the blood brain barrier. Also in 

Alzheimer's disease brain, CLU expression is reported to be increased and is shown to 

be present in amyloid plaques and in the cerebrospinal fluid of AD cases (Harold et al. 

2009). PICALM (phosphatidylinositol-binding clathrin assembly protein) is 

ubiquitously expressed in all tissue types but shows a high expression level in neurons. 

As its name suggests, it is involved in clathrin mediated endocytosis (CME), this is 

important for the intracellular trafficking of proteins and lipids such as nutrients, growth 

factors and neurotransmitters (Harold et al. 2009). It is thought that PICALM can 

control the risk of AD through APP processing via endocytic pathways resulting in 

changes in Aβ levels. Cell culture experiments have shown that full length APP is 

retrieved from the cell surface by CME and inhibition of endocytosis reduces APP 

internalization and reduces Aβ production and release. Increased synaptic activity is 

known to lead to the elevated endocytosis of synaptic vesicle proteins and there is 

evidence to support the theory that increased CME, triggered by increased synaptic 

activity, drives more APP into endocytotic compartments resulting in an increase of Aβ 
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production and release (Harold et al. 2009). Like CLU, CR1 is shown to have an effect 

on Aβ clearance (Kok et al. 2011). To clarify, these are risk factors and therefore it is 

not certain that an individual will automatically develop the disease, the risk of 

developing it are merely increased.  

There are also behavioural and environmental risk factors that can increase an 

individual’s chance of developing AD. These include smoking, excessive alcohol 

consumption, poor diet causing increased mid-life cholesterol levels (Wolozin 2004), 

head injury (Munoz & Feldman 2000), chronic inflammatory disease (Munoz & 

Feldman 2000) and many others. 

 

1.1.3 Tau Pathology 

The main area of work addressed in this thesis is Aβ interactions, and their role as 

potential therapeutic targets in AD; however, it is important to include the other main 

pathology of Alzheimer’s disease, hyperphosphorylated tau forming intracellular 

neurofibrillary tangles (NFTs).  

Tau protein belongs to a family of proteins called microtubule- associated proteins 

(MAPs) and contributes to the correct function of a neuron by promoting tubulin 

assembly and stabilising microtubules by providing structural support, therefore 

changes in the amount or structure of tau will affect its ability to carry out this role 

(Kosik 1993). Tau has the ability to promote tubulin binding, which is controlled by its 

phosphorylation state, which is normally regulated by the dual action of kinases and 

phosphatases on the tau molecule (Mandelkow et al. 1995) (Shown in Figure 1.2). In 

AD abnormal phosphorylation of the tau protein not only causes a decrease in tubulin 
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binding, but also promotes self- polymerisation in the form of NFTs (Iqbal & Grundke-

Iqbal 2008).  

Human tau is located on the long arm of chromosome 17 at position 17q21 and contains 

16 exons. Alternative splicing of exons 2, 3 and 10 result in 6 different tau isoforms that 

are differentially expressed during brain development (Sergeant et al. 2005). The six tau 

isoforms differ on the contents of three or four tubulin binding domains in the C-

terminal region of the protein, or the insertion of one, two or no inserts of 29 amino 

acids at the N-terminal region of the protein. All isoforms therefore vary in length from 

between 352 and 441 amino acid residues (Kolarova et al. 2012).  

 

Figure 1.2: The normal function of 441 amino acid tau protein. Tau protein stabilises microtubules 

through its tubulin binding domains (blue boxes). This function is maintained through the action and 

presence of kinases and phosphatases. The capability of tau binding to microtubules is regulated by the 

phosphorylation of tau (pink boxes). Also when tau is present this may inhibit the directed transport of 

vesicles along microtubules by kinesin (Kolarova et al. 2012).   

 

As explained in Figure 1.2, tau binding to microtubules is regulated by the 

phosphorylation of tau. In a diseased state such as AD, the phosphorylation state is 
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increased to hyperphosphorylated tau lesions, which causes tau to lose its biological 

activity. The mechanisms by which this occurs are still widely debated; however post 

translational modifications appear to be the main cause (Martin et al. 2011). These 

modifications producing hyperphosphorylated tau include acetylation, glycation, 

ubiquitination, nitration and proteolyic truncations (Kolarova et al. 2012).  

It has been shown in a genetic model of tau-related neurodegenerative disease in the 

fruit fly (Drosophila melanogaster) that transgenic flies exhibited progressive 

neurodegeneration, early death, enhanced toxicity of mutant tau, accumulation of 

abnormal tau, and relative anatomic selectivity, without the NFT formation that is seen 

in human disease (Wittmann et al. 2001). Furthermore, a study in transgenic mice 

expressing non-mutant human tau isoforms revealed that the presence of tau filaments 

did not correlate directly with the cell death occurring within individual cells, 

suggesting that cell death can occur independently of NFT formation (Andorfer et al. 

2005). Instead they observed that the mechanism of neurodegeneration involved the re-

expression of cell-cycle proteins and DNA synthesis, indicating that non-mutant tau 

pathology and neurodegeneration may be linked via abnormal, incomplete cell-cycle re-

entry (Andorfer et al. 2005). Although the NFTs accumulate in human patients’ brains 

with AD it has been suggested that this is a protective response to the toxic build-up of 

the hyperphosphorylated tau in order to prolong the lifespan of neurons (Binder et al. 

2005).  
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1.1.4 Current treatments for Alzheimer’s disease 

Currently there is no cure for AD, and the four current drugs that are licensed in the 

United Kingdom only treat the underlying causes (symptoms) of the disease and slow 

down its progression. The drugs are used to stabilise and maximise the remaining brain 

function for as long as possible, but ultimately, a therapeutic effect is only achieved for 

a short period of time before cognitive decline resumes. The four drugs are described in 

more detail in Table 1.1 

In order to alleviate some of the other symptoms associated with AD such as: 

depression, anxiety and psychosis, other drugs may also be prescribed in conjunction 

with the cholinergics. It is worth adding that benefits have also been seen from 

increasing exercise and having a healthy lifestyle (Wilcox et al. 2009).  

 

Table 1.1:Drugs available as a treatment for AD in the UK (Adapted from the Alzheimer’s Societry 

website) 

Drug Brand Name Manufacturer Type Action 

Aricept 
Donepezil  

hydrochloride 
Pfizer 

Acetyl- 
Cholinesterase 
Inhibtor 

Increases the 
acetylcholine level and 
duration of action by 
inhibiting the 
cholinesterase enzyme. 

Used in mild to 
moderate stages of AD 

Reminyl 
Galantamine 

 hydrobromide 
Shire 

Exelon Rivastigmine Novartis 

Ebixa Memantine Lundbeck Ltd NMDA receptor 
antagonist 

Switches off the 
overactive glutamate 
receptors of the N-
methyl-D-aspartate 
(NMDA) and thus 
prevents glutamate 
toxicity. 

Due to possible side 
effects- used in moderate 
to severe AD 
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In a normal brain the electrical impulse is transmitted across the synaptic cleft via a 

neurotransmitter, acetylcholine. This is then recycled by acetylcholinesterase. As the 

levels of acetylcholine are significantly reduced in an AD brain, thus also reducing the 

impulse activity, the activity and acetylcholine levels are raised by administering 

patients with AD acetylcholinesterase inhibitors. These will reduce the breakdown or 

recycling of acetylcholine and therefore increase its concentration at the post-synaptic 

receptors (Bores et al. 1996). 

NMDA receptor antagonists are also used in the treatment of AD. In a normal brain, the 

neurotransmitter glutamate, transmits an impulse via the NMDA receptor and is then 

taken up by glial cells and recycled. In an AD brain, amyloid prevents the glial cells 

from recycling the glutamate. This increase in glutamate prevents the post-synaptic 

membrane from firing correctly and produces weakened signals. Treatment with an 

NMDA receptor antagonist such as memantine prevents a glutamate accumulation and 

can return the post-synaptic membrane function to normal (Danysz & Parsons 2003).  

A topical issue at present is the potential use of immunotherapy in the treatment of AD. 

Using immunotherapy as a treatment for AD is not a new phenomenon, in fact it was 

first hypothesised over 13 years ago by Schenk et al. using a study in transgenic mice 

(PDAPP mice) which contain a mutant version of the human amyloid precursor protein 

(APP) gene (valine717 mutated to phenylalanine) that is associated with an early-onset 

and aggressive form of AD (Schenk et al. 1999). A platelet-derived growth factor 

promoter is used to increase the brain expression levels of the mutant APP, to exceed 

the endogenous mouse level of APP by about 4–6 fold. This results in the 

overproduction of Aβ that deposits plaques in a similar way to that found in human AD 
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brains. Importantly, several other of the consequent neurodegenerative changes that 

occur in AD, also develop in PDAPP brains, including the formation of neuritic 

plaques, astrocytosis, and microgliosis (Schenk et al. 1999). Initial findings showed that 

young PDAPP transgenic mice were immunised with Aβ42, which essentially prevented 

amyloid deposition; astrocytosis was dramatically reduced, and there was also a 

reduction in Aβ-induced inflammatory response (Schenk et al. 1999). Aβ42 

immunisation also appeared to arrest the progression of amyloidosis in older PDAPP 

mice. Overall, it was shown that the direct Aβ immunisation appeared to increase the 

clearance of amyloid plaques, and it was therefore suggested that this could be an 

effective therapeutic for AD. This direct immunisation with synthetic intact Aβ42 

stimulates T-cell, B-cell and microglial immune responses, and was an approach used 

by many groups (including Schenk et al. 1999; Games et al. 2000). Because this 

immunotherapy approach had proved to be so effective in reducing amyloid plaques in 

AD mice model brains and also improving cognitive function, it was taken further into 

clinical trials. One trial, AN1792, from Elan Pharmaceuticals appeared successful in 

phase I, however the phase II trial of Aβ42 peptide vaccine was halted because of T 

cell-mediated meningoencephalitis in 6% of its patients (Orgogozo et al. 2003).   

Another possible therapeutic immunology approach involves the passive administration 

of monoclonal antibodies directed against Aβ. As Aβ disorders, are considered 

conformational diseases, due to the amyloid formation triggering conformational 

changes in a specific peptide or protein, resulting in its mis-folding, amyloid 

conformation-specific antibodies that recognize specific amyloid species, eg, fibrils or 

oligomers, from many types of amyloid proteins have been produced and characterised 

(Glabe 2004; Sarsoza et al. 2009).  Britschgi et al. demonstrated the presence of 

sequence independent, oligomeric conformational antibodies in human plasma and 
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cerebrospinal fluid and although the diversity, and overall function of such endogenous 

conformational antibodies remain largely uncharacterized, studies have suggested that 

these antibodies decline with age and advancing AD, suggesting that they may play a 

neuroprotective role against toxic amyloid oligomers (Britschgi et al. 2009). 

Although the Aβ immunotherapy approach has proved to be somewhat frustrating due 

to a lack of clarity on where the broken down amyloid is sequestered to, there are many 

continued approaches into utilising this field. One such example of a useful tool that has 

come from an immunology study, is the use of carbon-11-labelled Pittsburgh compound 

B (11C-PiB) PET, a marker of cortical fibrillar Aβ load in vivo, which was used to 

investigate whether Bapineuzumab, a humanised anti-Aβ monoclonal antibody, would 

reduce cortical fibrillar Aβ load in patients with AD (Rinne et al. 2010). Rinne’s 

findings showed that treatment with Bapineuzumab for 78 weeks reduced cortical 11C-

PiB retention compared with both baseline and placebo, therefore concuding that 11C-

PiB PET seems to be a useful tool in assessing the effects of potential Alzheimer’s 

disease treatments on cortical fibrillar Aβ load in vivo. 

It has always been the theory that removal of Aβ plaques would be beneficial to suffers 

of AD, however it is unclear if the small soluble amyloid can be cleared effectively, and 

also where it would be sequestered to, therefore the removal and the dissolvation of Aβ 

plaques may not be the correct therapeutic path. By carrying out this Aβ plaque busting, 

this could result in the release of more toxic substances. This theory is supported by a 

follow up study on the initial patients in the Elan Pharmaceutical trial (AN1792), which 

found that although immunisation with Aβ42 resulted in successful clearance of 

amyloid plaques in patients with AD, this clearance did not prevent progressive 

neurodegeneration and 7/8 patients consenting to a post mortem had severe end stage 

dementia before death (Holmes et al. 2008). 
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Another possible therapeutic immunological approach is that of a more recent concept 

using Tau immunology. In fact there are limited reports published using either active or 

passive Tau immunotherapy in animal models. Of these publications using active 

vaccination Rosenmann et al. used a tau fragment (379–408) phosphorylated at Ser396 

and Ser404 (phosphorylation sites commonly associated with NFT) to vaccinate the 

P301L mouse model (a mouse model expressing a human tau mutation, capable of 

developing cognitive decline and motor defects). Later studies on behavioural analysis 

with these mice showed improved performance after immunisation and this 

demonstrated that antibodies were able to cross the blood brain barrier and bind to 

hyperphosphorylated tau (Asuni et al. 2007). Further studies also revealed that there 

was a 40% reduction in NFTs and a 20% increase in microglia (Boimel et al. 2010). 

Although this data appeared to be encouraging, in 2006, Rosenmann et al. also reported 

that full-length tau was encephalitogenic, triggering a severe autoimmune response 

demonstrating the potential danger of using soluble tau as an immunogen or of 

antibodies recognising epitopes of full-length tau for passive vaccination (Rosenmann et 

al. 2006). In this study (using mice vaccinated with soluble tau) the mice developed 

NFT like structures, axonal damage, gliosis, mononuclear infiltrates, and motor 

phenotypes. An optimal vaccine should therefore aim to target pre-filament tau species 

(tau oligomers), which form at early stages of NFT development rather than mature, 

meta-stable NFT (Kayed 2010). Pre-filament specific phosphorylation sites have yet to 

be conclusively identified due to the complexity of tau aggregation and the overlap 

between the three stages of NFT development with regard to tau phosphorylation sites 

(Augustinack et al. 2002). This is also harder to target, due to tau phosphorylation being 

a physiological process that is essential for normal tau function. A passive tau vaccine 

study using two antibodies that selectively recognize pathological forms of tau reduces 
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the extent of biochemically detectable tau pathology in two different mouse models, and 

thus suggests that this translates into a reduction in axonal degeneration, a preservation 

of motor function and slowing of disease progression in the P301S model of tauopathy 

(Chai et al. 2011). Chai et al. make an attempt in predicting the mechanism by which 

this proposed passive vaccine would work, based on the familiar extracellular Aβ 

plaque reduction mechanisms. However, they suggest that the mechanism may be more 

complicated, where antibodies would somehow get access to intracellular tau to block 

its aggregation or trigger its clearance. As this passive vaccine approach is a relatively 

new development in the therapeutic field for AD, a complete understanding of the 

mechanism of action will be important for the generation of better antibodies, with the 

best combination of epitope, affinity and effector functions, for anti-tau immunotherapy 

treatment in AD.  

Over the past 5 years another area of therapeutical interest is that of the use of 

methylene blue as a way to slow down the progression of AD by breaking up NFTs (Oz 

et al. 2009). Methylene blue (or Urolene blue) has had many applications throughout its 

lifetime from an antiseptic dye treating urinary tract infections, to dying jeans blue. In 

the case of AD, it has been proposed to have many actions including alterations in the 

cholinergic, serotonergic and glutamatergic neurotransmitter systems, mitochondrial 

function and upon the formation of amyloid plaques and of neurofibrillary tangles 

making it a promising candidate for the treatment of AD. A clinical trial of Rember (a 

formulation of methylene blue) was carried out in collaboration between Dr. Wischik 

(University of Aberdeen) and his spin out company TauRx pharmaceuticals in 2008. 

Initial results again seemed promising, however the drug was only effective when it 

dissolved in the stomach, and at the highest dose, of 100mg three times daily, no effect 

was seen as a result of this, and adverse side effects (at the 100mg dose) were also seen 
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as the compound dissolved in the intestines resulting in diarrhea in around 30% of the 

patients (Wischik et al. 2008). Wischik et al. came under heavy critisim from the 

Alzheimer’s research community for their Rember study as no previous data; 

preclinical, imaging or clinical was published before the drug candidate Rember was 

released and also because there was no proof of efficacy study, as this comes from the 

phase III trial and the study was halted at phase II.  

 

Therefore given the complexity of the disease, it may be more appropriate to think of 

future treatments for AD in three categories:  

1) The formation or clearance of Aβ/ hyperphosphorylated tau.  

2) The protection of specific sensitive targets, these may include ABAD (section 1.4) or 

CypD (section 1.5), however chemists tend to avoid developing drugs specifically for a 

protein-protein interaction, as they tend to be notoriously difficult to develop.  

3) Support and stabilisation, this would include utilising current drug therapies that 

already exist to prolong the neuronal networks. Developing a drug is difficult, but 

developing a drug that must cross the blood- brain barrier is even harder. However, with 

advances in technologies and increased capabilities these challenges can be overcome.  
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1.2 Amyloid- β peptide in Alzheimer’s disease 
 

1.2.1 Amyloid production by APP cleavage 

Amyloid beta (Aβ), which is the principle component of the amyloid plaques, is a small 

peptide, of 40- 42 amino acids which is derived from the amyloid precursor protein 

(APP) via endoproteolytic cleavage.  APP is a transmembrane glycoprotein ubiquitously 

expressed in the brain. The APP gene is located on chromosome 21 and alternative 

splicing generates many isoforms of between 365 and 770 amino acids (Goldgaber et al. 

1987; Kang et al. 1987; Matsui et al. 2007). The most interesting isoforms are the three 

major APP mRNA species: APP751 and APP770 contain a Kunitz-type serine protease 

inhibitor domain (APP-KPI), and APP695 lacking this inhibitor domain (Matsui et al. 

2007).  

APP processing occurs normally in nearly all neuronal and non-neuronal cells following 

the sequential cleavage of APP by three secretases α, β, and γ. This processing can be 

divided into two pathways: non-amyloidogenic and the amyloidogenic pathway. The 

majority of APP is processed via the non- amyloidogenic pathway, where APP is firstly 

cleaved by α-secretase to release non-toxic protein fragments of sAPPα and C83 α-

carboxyl- terminal fragments (α-CTPs). Membrane anchored α-CTPs are then 

subsequently cleaved by γ-secretase to produce the p3 peptide and APP intracellular 

domain (AICD) (Wilquet & Strooper 2004). In the amyloidogenic pathway, APP is first 

cleaved at the amino terminus by β-secretase producing sAPPβ and membrane bound 

C99 (β-CTPs) protein fragments. It is the subsequent cleavage of the C99 fragments, by 

γ-secretase that produces the toxic Aβ peptide and the position of this cleavage results 

in peptides of varying lengths (most commonly 40 and 42 amino acids long) (Wilquet & 

Strooper 2004). The sequential APP cleavage pathways are summarised in Figure 1.3.  
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Figure 1.3: The processing of APP in the amyloidogenic and non-amyloidogenic pathways. The 

majority of APP is processed in the non- amyloidogenic pathway by the sequential cleavage by α- 

secretase and then γ- secretase to produce non-toxic protein fragments p3 and AICD. In the case of the 

amyloidogenic pathway APP is sequential cleaved by β-secretase and then γ-sectreatase to produce the 

toxic fragment Aβ. (Image taken from Stanga 2011) 

 

1.2.2 Forms of amyloid- β 

There are several isoforms of Aβ the majority of which are made up of either 40 or 42 

amino acids (Aβ40 and Aβ42). Aβ peptides are generated within the cell at different 

subcellular sites. Aβ40 is only generated in the trans-Golgi network (TGN), whereas 

Aβ42 is produced in the ER as well as Golgi compartments (Hartmann et al. 1997). 

Although much of the generated Aβ is secreted, there is a significant build-up of Aβ 
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peptides, which is not readily secreted, thus levels of Aβ42 are shown to be elevated in 

patients suffering from AD (Gouras et al. 2000).  

More importantly, these peptides can exist in different aggregation states- from the 

soluble monomer and oligomers to the insoluble β-sheet amyloid fibrils. It is the many 

states and isoforms of amyloid that make it difficult for researchers to ascertain 

amyloid’s biological effects and due to its penchant for aggregation, experiments are 

extremely challenging. The length of the Aβ peptide has a significant impact on its 

aggregation properties. The Aβ peptide has a hydrophobic C-terminus and a hydrophilic 

N-terminus. Extending the peptide’s length increases the molecules hydrophobicity and 

causes aggregation at the C-terminus. Therefore the Aβ42 isomer is more likely to 

aggregate than the Aβ40. It is know that Aβ levels are increased in AD causing 

insoluble fibrils to form. These fibrils can be made by any species of Aβ, including 

Aβ40, Aβ42 and Aβ(11-25), and consist of a cross-β sheet structure (Nelson et al. 

2005). However, fibrillar Aβ is not the only source of toxic Aβ, dimers, trimers, 

oligomer and protofibrillar structures have also been identified in vitro and in vivo 

(Hartley et al. 1999; Walsh et al. 1999).  In addition to these protofibrils, it is also 

possible to synthesise species in a laboratory. One particular species is ADDL (Aβ- 

derived diffusible ligand), this species is abundant in AD brain, and binds to 

hippocampal neurons to induce deficits in rodent cognition (Shughrue et al. 2010) it is 

this binding which is believed to result in neuronal deficits, furthermore ADDLs are 

thought to be a therapeutic drug target in AD simply because Aβ fibrils are intrinsic to 

AD pathology (Gong et al. 2003). However ADDLs were found to be potent 

neurotoxins, which were able to cause neuronal death at nanomolar concentrations 

(Lambert et al. 1998).  
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1.2.3 Amyloid cascade hypothesis 

In 1992 Hardy and Higgins produced a hypothesis which was thought to explain the 

underlying cause in a cascade of events that lead to Alzheimer’s disease. It was 

proposed that the clearance imbalance of Aβ and the formation of plaques lead to a 

signalling cascade causing synaptic dysfunction and neuronal death. Since then this 

hypothesis has been modified many times, but the hypothesis still remains valid today, 

with the exception that soluble Aβ oligomers and intraneuronal Aβ instead of amyloid 

plaques initiate the signalling cascade (Hardy & Higgins 1992). This cascade is 

summarised in Figure 1.4.  
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Figure 1.4: The amyloid cascade hypothesis. The amyloid cascade hypothesis suggests that the 

deposition of the amyloid-β peptide in the brain parenchyma is a crucial step that ultimately leads to 

Alzheimer’s disease. Autosomal dominant mutations that cause early onset familial Alzheimer’s disease 

(FAD) occur in three genes: presenilin 1 (PSEN1), PSEN2 and amyloid precursor protein (APP). In order 

to cover all forms of aggregation the term aggregate stress has been used to describe the potential 

mechanisms that may lead to amyloid-β aggregation, the formation of paired helical filaments (PHFs) of 

tau aggregates and ultimately, resulting in neuronal loss. This hypothesis has been modified over the 

years and it has become clear that the correlation between dementia or other cognitive alterations and 

amyloid-β accumulation in the brain in the form of amyloid plaques is not linear, neither in humans nor in 

mice. The amyloid cascade hypothesis now suggests that synaptotoxicity and neurotoxicity may be 

mediated by such soluble forms of multimeric amyloid-β peptide species. (Taken from a recent review 

Karran et al. 2011) 
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1.2.4 Amyloid-β as a potential drug target 

Given the impact that Aβ has in AD, it is unsurprising that many researchers are 

investigating Aβ as a possible therapeutic target for new drugs. There are currently three 

possible approaches that are being investigated:  

1) Target the prevention of Aβ formation.  

2) Target the clearance issues of Aβ to help remove the build-up.  

3) Target the toxic effects and try to diffuse the toxicity using immunotherapy. 

 Controlling the APP production pathway and inhibiting the β and γ secretases could 

potentially achieve the prevention of Aβ build up. The role of BACE1 (β-secretase) has 

been investigated using BACE1 knockout mouse models (BACE1-/-), where initial 

studies suggested that the animals were identical to wild type animals and did not 

produce detectable Aβ, thus supporting the hypothesis that inhibition of this enzyme 

could achieve Aβ prevention whilst not affect other pathways (Roberds et al. 2001; Luo 

et al. 2003). Later studies indicate that these mice may exhibit schizophrenic like 

behaviour potentially due to BACE1’s role in neuregulin processing, suggesting that 

other pathways are affected during BACE1 inhibition (Savonenko et al. 2008). Several 

other inhibition strategies targeting BACE1 have been carried out, but to date only one 

inhibitor CTS-21166 has progressed to a clinical trial (Luo & Yan 2010).    

The clearance and neutralisation of Aβ is most specifically related to immunotherapy. 

Possible vaccines are described in more detail in section 1.1.4. 
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1.3 Mitochondrial dysfunction and oxidative stress in AD 

As outlined in section 1.1 the underlying causes of AD are still unclear, however 

another possible underlying mechanism of the disease is that of mitochondrial 

dysfunction and oxidative stress. Mitochondria are the major sites of energy production 

in all cells, in the form of ATP synthesis. Other functions also include roles in cell 

signalling, cellular differentiation, cell death, as well as the control of the cell cycle and 

cell growth. The structure of the mitochondrion is shown in Figure 1.5.  

 

 

Figure 1.5: Structure of a mitochondrion. The mitochondria consist of two lipid membranes (inner and 

outer) and it is inside the inner membrane which generates energy (in the form of ATP) using the electron 

transport chain for oxidative phosphorylation. The outer membrane is permeable allowing substances to 

move between the cytosol and the inner membrane space. The matrix is an area enclosed by the inner 

membrane which is principally used to store the components of the citric acid or tricarboxylic acid cycle 

and β- oxidation.  

 

Evidence to support the theory that mitochondrial dysfunction is involved in AD came 

from examining post mortem brain samples of patients with AD. These samples 

indicated a decrease in glucose metabolism, therefore showing a decrease in 

mitochondria function (Mattson 2004). Furthermore a PET study recording how patients 

with AD responded to performing functional tasks, showed a decline in the cerebral 
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metabolic rate in the parietal and temporal lobes of patients with AD (Kessler et al. 

1991). Again this is evidence of a decline in mitochondrial function. 

The mitochondrial electron transport system is the largest source of reactive oxygen 

special (ROS) and hydrogen peroxide (Kowaltowski et al. 2009). ROS are damaging to 

almost all of the contents of cells, especially mitochondria. The brain is particularly 

susceptible to damage due to ROS and one of the main etiological hypotheses is that 

free radical oxidative damage in neuronal degeneration occurs in AD (Chauhan & 

Chauhan 2006).   

 

1.3.1 Mitochondrial dysfunction and Aβ 

It has been shown that Aβ peptides are found within the mitochondria of AD brains 

(Lustbader et al. 2004; Caspersen et al. 2005; Manczak et al. 2006) however it is still 

not understood if the peptide is produced outside the mitochondria and transported 

across the membrane, or if Aβ is produced intracellularly, or both. 

A study by Peterson in 2005 established that extracellular Aβ can be imported into the 

mitochondria via the translocase of the outer membrane (TOM) complex machinery 

(Petersen et al. 2008). Subsequent import studies revealed that the import is 

independent of the mitochondria membrane potential and that it solely relies on the 

transporters TOM20, TOM40 and TOM70. It is important to add that there have also 

been findings that have shown that the γ-secretase complex components are also found 

inside the mitochondria, thus allowing potential Aβ production inside the mitochondria 

(Hansson et al. 2004).  

Another source of intracellular Aβ entry could be through the amyloid precursor protein 

(APP). APP carries a dual leader sequence which will either permit targeting to the ER 
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or to the mitochondria (Lin & Beal 2006). When this leader sequence was mutated, no 

APP mitochondrial localisation was observed, whereas APP is detected in the 

mitochondria of diseased brains (Anandatheerthavarada et al. 2003; Devi et al. 2006; 

Lin & Beal 2006). Subsequent studies later revealed an association with APP and the 

mitochondrial import channel in a transmembrane arrested form, resulting in the 

blockage of the transport channel (Devi et al. 2006).  

Although Aβ entry mechanisms are still widely debated, what is clear is that once inside 

the mitochondria, Aβ will bind to many intracellular proteins. These proteins include 

amyloid binding alcohol dehydrogenase (ABAD) and cyclophilin D (CypD), which are 

of particular interest in this project and will be discussed in more detail in sections 1.4 

and 1.5 respectively.   

It is also known that changes in the electron transport chain (ETC) enzyme activities can 

also result in mitochondrial dysfunction and oxidative stress and therefore, that the 

electron transport chain is disrupted in AD (Parker Jr et al. 1990; Mutisya et al. 1994; 

Parker Jr et al. 1994). The ETC results in the formation of ATP via the reduction of 

oxygen to water in a complex enzymatic system consisting of 5 distinct phases: 

complex 1 (NADH dehydrogenase), complex 2 (succinate dehydrogenase), complex 3 

(ubiquinol–cytochrome-c reductase), complex 4 (cytochrome-c oxidase), and complex 5 

(ATP synthase). The ETC studies primarily focus on cytochrome C oxidase (CO), as the 

decrease in CO activity is the most consistent change seen in ETC enzyme activity 

where patients have AD. Indeed it has been shown that patients exhibit a 25–30% lower 

CO level than normal in the cerebral cortex (frontal, parietal, temporal, and occipital) 

and in the platelets of AD patients (Mutisya et al. 1994). More recently, the link 

between mitochondrial function and CO was supported by the discovery of mutations in 

CO genes that segregate with late-onset AD (Davis et al. 1997). CO is produced by the 
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combined effect of mitochondrial and nuclear genes however its catalytic centre is 

formed by three mitochondrial subunits COI- COIII, (Christen 2000). Thus, the 

assembly and function of ETC enzyme complexes are dependent on the coordinated 

expression of the genes located in two different informational systems of the cell. 

Evidence indicates that alterations of gene expression occur in the AD brain (Selkoe 

1991) and therefore this may affect the production of the ETC enzymes and thus the 

ETCs ability to function.  

Downstream proteins that are affected by changes in mitochondrial Aβ include 

endophilin (Ep-1) which becomes up-regulated and causes changes to the cell stress 

kinase c-Jun N-terminal kinase (JNK), and peroxiredoxin II (Prx-II) which is also up-

regulated and could be a potential cell protector by increasing the degradation of 

peroxides (Yao et al. 2007; Ren 2008). Proteomic analysis of brains from transgenic 

animals engineered to over-express both APP and ABAD (Tg-mAPP/ABAD) identified 

increased expression of other proteins, hinting at other downstream effects of the 

interaction of ABAD and Aβ. Expression of Prx-II, an antioxidant enzyme, was found 

to be increased in mice overexpressing mAPP and in Tg-mAPP/ABAD mice (Yao et al. 

2007). Transfection of cortical neurons with Prx-II was found to reduce Aβ toxicity, 

suggesting that its overexpression in AD is playing a protective role (Yao et al. 2007). 

Interestingly, Prx-II has also been linked with PD, where it was found to be 

phosphorylated by Cdk5 (cyclin-dependent kinase 5), and hence inactivated in MPTP-

induced models of the disease (Qu et al. 2007). Similarly, increased phosphorylation of 

Prx-II was seen in the nigral neurons of human Parkinson’s diseased (PD) brains, 

whereas the overall expression levels of Prx-II remained unchanged. As in AD models, 

overexpression of Prx-II in the mPTP-induced in vitro and in vivo models of PD was 

found to protect against neuronal loss (Qu et al. 2007). In light of these findings, the 
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consequences of Prx-II up-regulation in AD, its thought to provide a potential protective 

role, but this still needs to be investigated in more detail. 

Ep-1, a presynaptic protein, also referred to as SH3GL2 (SH3-domain GRB-like 2)], 

was also identified as being up-regulated in Tg-mAPP/ABAD mice compared with mice 

expressing ABAD alone and non-transgenic littermates (Ren et al. 2008). Further 

analysis showed that there was up-regulation of Ep-I in the hippocampus and cortex of 

Tg-mAPP/ABAD mice and in the temporal cortex of human AD brains (Ren et al. 

2008). Increases in JNK activation have been observed in vivo and in vitro (Zhu et al. 

2003; Lagalwar et al. 2007) although this had been thought to be solely due to increases 

in ROS production. Ren et al. 2008, showed that an increase in Ep-I expression could 

increase JNK activity with the subsequent death of primary neuronal cell cultures. 

However, when neuronal cultures were transfected with truncated Ep-I, lacking its SH3 

domain, the activation of JNK by Aβ was blocked and cell viability increased. 

Therefore it could be hypothesized that the increase in Ep-I expression shown in the AD 

brain could be another mechanism for the activation of the JNK signalling pathway.  

Notably, the reported increases in both Prx-II and Ep-I in AD brains were shown to be 

directly due to the binding of ABAD and Aβ, as interfering with this binding in living 

organisms resulted in the expression of these two proteins returning to normal levels 

(Yao et al. 2011).   

 

1.3.2 Oxidative stress and Aβ 

Many studies have confirmed that oxidative stress resulting from Aβ occurs in human 

AD brains (Cutler et al. 2004; Chauhan & Chauhan 2006), mouse models (Park et al. 

2004; Chauhan & Chauhan 2006), and in in vitro cell cultures (Chauhan & Chauhan 
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2006). It is common that ROS will be produced, subsequently producing more damage 

to cells and there will also be increased cytochrome c oxidase (CO) activity, causing an 

attempted protective effect in an attempt to minimise damage to cells and their contents 

(Fukui et al. 2007).   

Transgenic mouse models expressing the combined London and Swedish mutations of 

APP have proved a great tool in elucidating the mitochondrial events that are occurring 

during times of oxidative stress. The mice in these studies developed reduced ATP 

levels and cytochrome c oxidase activity at a 3 months of age, before any amyloid 

plaques were visible (Hauptmann et al. 2009). It was then observed that after 6 months 

ROS could be detected (Hauptmann et al. 2009). Similarly another study carried out on 

the triple transgenic AD mouse model (3 x Tg encoding mutations in App, Tau and 

PS1) showed that after three months the mice exhibited decreased mitochondrial 

respiration and increased oxidative stress levels (Yao et al. 2009).  

Several studies have now shown that direct exposure to Aβ significantly impairs 

functionality of the mitochondrial electron transport chain (ETC) (Crouch et al. 2008). 

The ETC plays a pivitol role in ATP production and its constituent enzyme complexes 

1-4 are a major source of ROS generation, particularly when activity of one or more of 

the enzyme complexes is inhibited. 
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1.4 Amyloid binding alcohol dehydrogenase 

ABAD was first identified as an intracellular receptor for Aβ in 1997 using a yeast two- 

hybrid screen (Yan et al. 1997), and is the most characterised intracellular Aβ binding 

protein. Other names for this protein are: endoplasmic reticulum amyloid binding 

protein (ERAB), 3-hydroxyacyl- CoA dehydrogenase type 2 (HADH 2), Short chain L 

3-hydroxyacyl-CoA dehydrogenase type 2 (SCHAD) and MHBD. Termed ERAB as it 

was first identified in the ER, it was later recognised to be localised in the mitochondria 

and have dehydrogenase activity (Yan et al. 1999). ABAD is expressed in all tissue 

types and it is also expressed in all regions of the brain, and significantly increased in 

AD brains compared to controls (Yan et al. 1997; Yan & Stern 2005). Utilising the 

cofactor provides an easy measurement of in vitro ABAD activity, whereby NAD(H) 

production/consumption is measured (Muirhead et al. 2010). 

 

1.4.1 Functions of amyloid binding alcohol dehydrogenase 

ABAD is a member of the dehydrogenase family and shares common features with 

other members of its family, such as its dependence on the dinucleotide cofactor 

NAD(H). The features of this multifunctional enzyme include its presence in 

endoplasmic reticulum and mitochondria, its capacity to bind Aβ and promote Aβ-

induced cell stress, and its ability to act on a broad array of substrates, including linear 

alcohols, 3-hydroxyacyl-CoA derivatives, D-β-hydroxybutyrate, and steroids (Table 1). 

Moreover, the results in Table 1 indicate the experimentally determined enzymatic 

parameters for a range of these substrates. As expected, different substrates have 

different reaction rates with the enzyme, indicating that although ABAD is able to 

catalyse reactions on a number of different substrates, some have a higher turnover than 

others (Muirhead et al. 2010). It is also shown that widely ranging values for enzyme 
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activity have been reported for the same substrate, often varying by several orders of 

magnitude. However, comparisons between values obtained may be complicated due to 

the range in conditions used during assays used to the potentially wide range of roles 

that the enzyme is able to perform within the cell (Yan & Stern 2005; Muirhead et al. 

2010). It is important to note that an enzyme’s ability to metabolize a particular 

substrate in vitro does not necessarily guarantee that it performs the same actions in 

vivo. 

One function of this protein, is catalysing the reversible reduction of aldehydes and 

ketones and the oxidation of alcohols using its cofactor NAD(H) (Figure 1.6). It is 

believed that the primary function of ABAD is energy production and metabolic 

homeostasis, in particular its involvement in the third step of the β-oxidation of fatty 

acid in times of a glucose deficiency, utilising its role as an L-3-hydroxyacyl-CoA 

dehydrogenase (Powell et al. 2000).   

ABAD is known to have a role in the degradation pathway of isoleucine. In clinical 

cases of MHBD (2-methyl-3-hydroxybutyryl-CoA dehydrogenase) deficiency, i.e. 

deficiency of the enzyme catabolizing the penultimate step in isoleucine degradation, 

two missense mutations within ABAD were identified in patients presenting with 

MHBD deficiency; Arg130 was mutated to a cysteine residue in four patients and was 

found to cause neurological deficits, loss of mental and motor skills and psychomotor 

retardation, whereas a Leu122 to valine substitution, identified in a single case, 

presented with only psychomotor retardation (Ofman et al. 2003). The mutations were 

shown to either fully (R130C) or greatly (L122V) inactivate the enzyme. Furthermore, 

the R130C mutation was also thought to reduce the enzyme’s stability, causing the 

lower protein levels observed in these patients (Ofman et al. 2003). 
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Other suggested functions include the metabolism of hydroxysteroids such as oestradiol 

(He et al. 2001). This is significant if ABAD is metabolizing sex steroids, as it is 

documented that women are more likely to suffer from AD than men, and that 

postmenopausal hormone replacement therapy can prove beneficial in delaying the 

onset of the disease (Tang et al. 1996; Fukuzaki et al. 2008).  

 

Table 1.2- Experimentally derived activity parameters for ABAD with a range of substrates 

(Muirhead et al. 2010) 

SUBSTRATE 
CO-

FACTOR 

SPECIFIC 

ACTIVITY 

(µmol min-1 

mg-1) 

Vmax (µmol 

min-1 mg-1) 
Km (µM) Kcat (s-1) 

S-Acetoacetyl- CoA 

NADH - 430 ± 45 68 ± 20 190 
NADH - - 89 ± 5.4 37 ± 1.6 
NADH 1.1 - 22.7 - 
NADH - - 53 ± 9 11.1 ± 0.7 

17β- Oestradiol 

NAD+ - 23 ± 3 14 ± 6 10 

NAD+ - - 15 ± 7 
0.00088 ± 

0.0012 

NAD+ 
0.0156 ± 
0.0008 

- 43 ± 2.1 
0.093 ± 
0.0028 

Dihydroandrosterone NAD+ 
0.130 ± 
0.0018 

- 34 ± 2.4 
0.011 ± 
0.0013 

Androsterone NAD+ 
0.0121 ± 
0.0009 

- 45 ± 9.3 1.0 

Ethanol NAD+ - 2.2 ± 0.4 1210 ± 260 1.9 

1- Propanol 
NAD+ - 4.2 ± 0.5 272000 ± 62000 

0.0060 ± 
0.0005 

NAD+ - - 83200 ± 21000 16 

2-Propanol 

NAD+ - 36 ± 2 150000 ± 17000 
0.0179 ± 
0.0008 

NAD+ - - 156000 ± 18000 
0.036 ± 
0.0023 

NAD+ - - 280000 ±33000 - 

β-Hydroxybutyrl-CoA 
NAD+ 65.7 - 9.8 - 
NAD+ - 26.3 134 - 

L-β-Hydroxybutyrate NAD+ - 0.004 1600 - 
D-β-Hydroxybutyrate NAD+ - 0.004 4500 - 
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Figure 1.6: The reduction and oxidation of alcohols and ketones by ABAD, using its cofactor 

NAD(H) (Muirhead et al. 2010) 

 

It has been suggested that in the absence of Aβ, ABAD is able to play a cytoprotective 

role during periods of oxidative stress. For example, in mouse models of ischaemic 

stress (stroke), ABAD expression was found to be increased in both ABAD 

overexpressing and non-transgenic mice following 45 minutes of transient middle 

cerebral artery occlusion (Yan et al. 2000). However, the transgenic animals showed 

fewer effects of the stroke, including fewer neurological deficits and increased ATP 

levels and were therefore thought to be protected to some degree by the elevated levels 

of ABAD (Yan et al. 2000). Conversely, ABAD levels were shown to be decreased in 

the ventral midbrain of  Parkinson’s disease (PD) patients, as well as in the ventral 

midbrain of MPTP (1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine) treated mice, used 

as a model of PD. However, MPTP-treated mice overexpressing ABAD were protected 

against apoptosis and the loss of dopaminergic neurons in this brain region, suggesting 

that this enzyme can protect against neurodegeneration in times of low Aβ (Tieu et al. 

2004). 
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1.4.2 Structure of amyloid binding alcohol dehydrogenase 

The crystal structure of ABAD is well documented, with several structures of the 

enzyme published. These include structures in complex with its co-factor NAD+ 

(Powell et al. 2000), a human mutant construct complexed with an inhibitor (Kissinger 

et al. 2004) and the human protein in complex with Aβ (Lustbader et al. 2004). From 

these structures, information on the catalytic mechanism and its interaction with Aβ has 

been deduced. At present, there are however no crystal structures of ABAD independent 

from other molecules. 

ABAD is found to exist as a homo-tetramer, in both solution and in its crystal form, 

which is made up of four identical single domain monomers of 27 kDa each. 

Tetramerization has been shown, by molecular modelling, to stabilise the binding 

interface region (Marques et al. 2008). The conserved catalytic triad of Ser155, Tyr168 

and Lys172 is found in the active site of other short chain dehydrogenase reductase 

enzymes (Kissinger et al. 2004; Lustbader et al. 2004). Where the mutation of these 

residues to glycine inactivates the enzyme (Yan et al. 1999). In the reduction of a 

ketone to an alcohol, the hydrogen atom of Tyr168 is thought to co-ordinate to the 

carbonyl of the ketone substrate, thus increasing the electrophilicity of the carbonyl 

carbon atom. It is proposed that the ammonium group of Lys172 interacts with the 

hydroxyl group of Tyr168, increasing the acidity of this residue. The hydride that 

controls reduction is donated to the activated carbonyl by the NADH cofactor, leading 

simultaneously, to deprotonation of Tyr168 by the newly formed hydroxyl group. The 

hydroxyl group of Ser155 is able to form a hydrogen bond with the deprotonated 

tyrosine, stabilizing the resulting negative charge (Figure 1.7). Structures of rat ABAD 

with either 3-ketobutyrate or 17β- oestradiol showed that the two substrates bound in 
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similar positions within the active site (Powell et al. 2000). These structures confirm the 

close proximity of the presumed catalytic triad residues to the substrate molecule.  

 

 

Figure 1.7: The catalytic triad core of ABAD. A PyMol representation of the X-ray crystal structure of 

rat ABAD bound to its co-factor and an acetoacetic acid substrate. The three conserved active site 

residues, Ser155, Tyr168 and Lys172 (carbon atoms in yellow), the NAD+/NADH co-factor (carbon 

atoms in green) and the acetoacetic acid substrate (carbon atoms in magenta) are represented as sticks. It 

can be seen that the ketone oxygen of the substrate interacts with Tyr168 and is favourably oriented in 

order to receive or donate a hydride to or from the co-factor. Nitrogen atoms= blue; oxygen atoms=, red; 

phosphorus atoms= orange (Muirhead et al. 2010). 

 

Molecular modelling studies (Marques et al. 2008) developed 10 ns MD (molecular 

docking) simulations of the ABAD tetramer, as well as of the structural units (monomer 

and dimer) that assemble to form the tetramer. The crystal structure of ABAD in 

complex with a NAD-inhibitor (Kissinger et al. 2004) was used to obtain the starting 
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structures and the simulations were performed both in the presence and absence of the 

ligand. In this study they were able to compare the stability of the dimer and monomer 

with that of the tetramer and to study the effects of the inhibitor binding on the 

flexibility of the enzyme structure as a whole. The results indicated that the dimer and 

monomer show a comparable stability with that of tetramer. Some regions of the protein 

are however more stabilised upon tetramerization as they show no change when 

exposed to the solvent, whereas dimer and monomer became more flexible. During 

these studies it was shown that throughout binding of the cofactor and inhibitor ABAD 

became stabilised, in particular, the substrate- binding loop (Loop D). In the absence of 

the ligand, this region showed a much higher flexibility and an increase in distance 

away from the binding cavity. These results show that the ABAD monomer could be 

used as a model for AD, but it would have its limitations, as the substrate- binding loop 

is a lot less flexible in the tetramer.  

As we do not yet understand ABADs mechanism of action, it is possible that given the 

similarities of the active site between ABAD and its related enzyme 3-hydroxyacyl-

CoA dehydrogenase (HAD), that it may be possible to assume the mechanisms of action 

are similar (Liu et al. 2007). Studies suggest that the reversible oxidation of 

hydroxyacyl-CoA linked substrates proceed through an essential enolate intermediate, 

to form 3-ketoacyl- CoA, which can be stabilised by an Asn208 residue or a Ser137 

residue (Figure 1.8). When comparing the structures of rat and human ABAD (Powell et 

al. 2000; Lustbader et al. 2004) with other HADs, both ABAD molecules were shown 

to have two inserted residues in the regions of 100-110 and 140-150; therefore, 

suggesting that although similar this may not be the entire mechanism. 
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Figure 1.8 : Reversible oxidation of hydroxyacyl CoA to 3-ketoacyl-CoA via enolate intermediate 

stabilised by Asn206 or Ser137 (Liu et al. 2007). 

 

1.4.3 The ABAD- Aβ interaction 

The initial identification of ABAD as an intracellular binding partner of Aβ was based 

on a yeast two-hybrid screen (Yan et al. 1997), which identified four positive clones 

(one from human brain and three from HeLa cells), all of which had the same cDNA 

sequence.  

Radio labelled ligand-binding studies confirmed the interaction of ABAD- Aβ and a Kd 

of 88 nM was determined (Yan et al. 1997). Subsequently, a number of techniques have 

been employed to demonstrate the interaction between ABAD and Aβ, including 

ELISA (Xie et al. 2006), X-ray crystallography (Lustbader et al. 2004), surface 

plasmon resonance (SPR) (Lustbader et al. 2004; Yan et al. 2007) co-

immunoprecipitation (Yan et al. 1997; Lustbader et al. 2004) and 

immunocytochemistry followed by confocal microscopy (Lustbader et al. 2004). 

Crucially both Aβ40 and Aβ42 were found to inhibit the activity of purified ABAD 

Enolate Intermediate 
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protein, with Ki values of 1.2– 1.6 µM for the reduction of acetoacetyl-CoA 

(Oppermann et al. 1999), 2.6 µM for the oxidation of octanol (Yan et al. 1999) and 3.2 

µM for the reduction of 17β-oestradiol (Yan et al. 1999). Studies by Oppermann et al in 

1999 showed that residues 13– 22 of Aβ were essential for inhibiting ABAD activity, a 

region that is also characterized by its fibril-forming properties of residues 16– 20. At 

cellular level the effects of Aβ can also be observed. Upon the addition of Aβ42 to a 

neuroblastoma cell line (SK-N-SH cells), the localisation of ABAD appeared to change 

from the ER and mitochondria to the plasma membrane (Yan et al. 1997; Yan et al. 

1999). The significance of this event has not been explored further, to date.  

COS cells, which had been transfected with a DNA plasmid encoding ABAD, exhibited 

increased Aβ induced cell stress when compared with non-transfected cells, which 

naturally produce low quantities of endogenous ABAD when exposed to Aβ42 (Yan et 

al. 1999). Similar results were shown in cells overexpressing both ABAD and Aβ, 

displaying a significant increase in apoptosis than those overexpressing ABAD or Aβ 

alone (Yan et al. 1999). By preparing a catalytically inactive mutant ABAD (mtABAD: 

containing mutations in the catalytic triad), Yan et al. were also able to show that 

catalytically active ABAD is necessary to cause these effects when exposed to Aβ (Yan 

et al. 1999). COS cells overexpressing the mtABAD/mAPP showed no increase in 

cytotoxicity when compared with mAPP alone, while those cells transfected with wild 

type ABAD/mAPP produced an increase in DNA fragmentation compared with mAPP 

alone. These results demonstrate that the effects produced are not merely down to the 

loss of ABAD activity due to the presence of Aβ, but that it must result in a change in 

functionality of the enzyme upon binding.  

The toxic effect of overexpressing ABAD together with Aβ has also been confirmed in 

an AD mouse model. Compared with neurons from non-transgenic mice and mice 
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overexpressing ABAD or mAPP alone, E18 cortical neurons cultured from Tg-

mAPP/ABAD mice were found to exhibit higher levels of hydrogen peroxide, 

decreased mitochondrial function and increased cell death (Takuma et al. 2005). 

Mitochondrial dysfunction was observed in vivo in Tg-mAPP/ABAD mice, which had 

decreased glucose metabolism and ATP production at 9 months of age (Takuma et al. 

2005). These mice were also found to have deficits in spatial and temporal memory 

compared with non-transgenic mice, with impaired performance in the radial-arm water 

maze as early as 4–5 months of age (Lustbader et al. 2004). These results again 

emphasise that it is the combination of ABAD and Aβ that is necessary for effects to be 

seen and that these effects occur early in the disease process. 

The crystal structure of ABAD in complex with Aβ lends support to the theory that 

there is a conformation change of the enzyme, distorting the active site upon binding 

with Aβ (Lustbader et al. 2004). Compared with other published ABAD structures 

(Powell et al. 2000; Kissinger et al. 2004), the active site and NAD+ binding site were 

shown to be highly distorted in the presence of Aβ and no bound NAD+ co-factor was 

observed. Further studies using SPR confirmed binding of ABAD and Aβ at nanomolar 

concentrations and showed that a conformational change in ABAD occurs upon binding 

of Aβ (Yan et al. 2007). Saturation transfer difference NMR was used to show that the 

presence of Aβ inhibited the binding of NAD+ to ABAD in a concentration dependent 

manner (Yan et al. 2007). Similarly, the ability of Aβ to bind ABAD was reduced in the 

presence of NAD+, suggesting that the binding of Aβ and NAD+ to ABAD are 

competitive (Yan et al. 2007). These observations provide strong evidence that Aβ has 

an influence on the physical structure of ABAD, disrupting its activity. 

A proposed consequence of the ABAD-Aβ complex is the cellular accumulation of 

toxic aldehydes, in particular 4-hydroxynonenal (HNE) and malondialdehyde (MDA), 
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which have shown to be increased in AD (Sayre et al. 1997; Delibas et al. 2002). Under 

normal conditions ABAD would provide a protective effect against the accumulation of 

these aldehydes, but under the presence of Aβ this protective role is lost (Murakami et 

al. 2009).  

From these studies, it has been shown that the interaction of Aβ with ABAD has 

multiple effects at the molecular, cellular and whole animal level. When Aβ binds to 

ABAD the overall effect is to inhibit the ABAD enzyme activity. However, the precise 

molecular mechanisms of how this occurs are yet to be elucidated. 

 

1.4.4 ABAD-Aβ interaction as a potential therapeutic target 

It has long been established that the interaction between ABAD and Aβ can lead to 

harmful effects on cell viability along with subsequent damaging effects on the 

cognitive performance in transgenic AD mouse models, thus reflecting the importance 

of these cellular effects on disease progression. Therefore, these studies indicate that the 

ability to block this interaction could provide a potential target for the treatment of AD.  

There is another strong argument for targeting the ABAD- Aβ interaction as a novel 

therapeutic target in AD. Studies have shown that this interaction has been implicated in 

the progression of AD, yet there is a huge void in the drugs that are able to act on the 

underlying mechanisms of the disease.   

A “decoy peptide molecule” (DP) encoding ABAD residues 92–120 was found to 

inhibit the binding of Aβ40 and Aβ42 to ABAD with Ki of 4.9 and 1.7 µM, respectively 

(Lustbader et al. 2004). The ABAD- Aβ inhibition was thought to occur by the decoy 

peptide binding to Aβ, as these residues correspond to the ABAD binding site. This 

peptide was later considered as a drug candidate starting point for disrupting the 



Chapter 1: Introduction 

 

 41 	
  
	
  

	
  

ABAD- Aβ interaction and developing a novel drug strategy for treating AD. Cellular 

studies have demonstrated the protective effects of this DP. By making a Tat-DP fusion 

peptide by the addition of the Tat domain from the human immunodeficiency virus 

(HIV) this allows the DP to cross cell membranes, where it was found to attenuate Aβ-

induced cell toxicity in cultured primary neurons from wild type, Tg ABAD and Tg 

ABAD/mAPP animals, as shown by reductions in cytochrome c release, production of 

ROS, DNA fragmentation and LDH release (Lustbader et al. 2004). As the DP is so 

small it would not be considered a suitable drug candidate, so in order to capitalise on 

its potential to reverse the symptoms seen when ABAD and Aβ interact, it was 

important to try and increase its half-life and stability. Therefore, a separate study 

expressed the DP through a larger lentiviral system, fusing the DP to the protein 

cytosolic thioredoxin-1 (TRX) (Yang et al. 2007). This fusion DP, ABAD (92–120)-

TRX, was observed to be co-localised with Aβ and, like Tat-DP, was found to 

significantly decrease Aβ toxicity. Transfected cells exhibited decreased apoptosis, 

decreased LDH release and increased cell viability in response to Aβ treatment when 

compared with untransfected cells or those transfected with thioredoxin alone (Yang et 

al. 2007). The benefits of the DP were also observed in animal studies where the 

DP(93–116), was again fused to the HIV Tat domain containing a mitochondrial 

targeting sequence (to assemble the peptide in the mitochondria) [Tat-mito-DP(93–

116)]. Transgenic mice over expressing mAPP (Tg mAPP) which were treated with Tat-

mito-DP(93–116) from the age of 7–10 months were found to have preserved 

mitochondrial function when compared to animals treated with a peptide encoding the 

reverse peptide sequence (Tat-mito-RP)(Yao et al. 2011). Similarly, 10–11 month old 

double transgenic mice over-expressing mAPP and mito-DP(92–120) were found to 

have preserved mitochondrial function when compared with Tg mAPP animals (Yao et 
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al. 2011). The most significant finding was when six-month old Tg mAPP mice were 

treated with Tat-mito-DP(93–116) or the reverse DP sequence (Tat-mito-RP) by 

intraperitoneal injection over two weeks. After treatment, western blot analysis of the 

hippocampus showed elevated Prx-II and Ep-I protein expression levels in untreated Tg 

mAPP and Tat-mito-RP treated animals, compared with non-Tg controls. Animals 

treated with Tat-mito-DP showed significant decreases in Prx II and Ep-I protein 

expression levels compared with Tat-mito RP treated animals, with expression levels 

comparable to those of non-Tg. Therefore the up-regulated protein biomarkers of AD, 

Prx-II and Ep-I were found to return to normal basal levels following treatment with the 

decoy peptide, thus supporting its potential role as a therapeutic agent (Yao et al. 2007; 

Ren et al. 2008).  

A continuation of these DP studies has revealed that the DP is capable of reversing 

behavioural symptoms associated with transgenic AD model animals. In 2004 

Lustbader et al. identified that ten month old Tg mAPP mice showed deficits in the 

radial-arm water maze test when compared with non-Tg animals. However in 2011 

when Yao et al. compared Tg mAPP mice which were treated with Tat-mito- DP(93–

116) (using intraperitoneal injection for three months from the age of seven months), 

this resulted in an improvement in spatial learning and memory compared with vehicle-

treated animals. Similarly, as an independent method to highlight the significance of 

this interaction, 10–12 month old transgenic mice over-expressing the decoy peptide 

[mito-DP(92–120)] and mAPP showed less impairment than Tg mAPP mice (Yao et al. 

2011). These studies demonstrate that disrupting the ABAD-Aβ interaction can prevent 

downstream consequences of this interaction, and thus provide support that the ABAD-

Aβ complex is a potential therapeutic target for treating AD.  
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 There are some small molecule inhibitors of the ABAD-Aβ complex which have been 

identified (Inbar & Yang 2006; Xie et al. 2006). These compounds are designed from 

thioflavin T (ThT), the amyloid β-sheet binding dye, and frentizole, an 

immunosuppressant with a similar structure first identified by an ELISA-based 

screening assay. ThT and frentizole were shown to be promising inhibitors of the 

ABAD-Aβ complex with IC50 values of 230µM, 200µM respectively, however no in 

vitro activity data is available for these compounds as yet (Inbar & Yang 2006; Xie et 

al. 2006). Due to the ThT action of staining β-sheet structure, it is thought that this is 

where the ThT would target when inhibiting the compound, therefore being unable to 

target smaller Aβ monomers. Regardless, these small molecule inhibitors are capable of 

inhibiting the ABAD-Aβ interaction and provide evidence that small molecule 

inhibitors of this interaction are a viable approach.   

Another approach for drug discovery using this target complex, is to use either 

crystallography or molecular docking experiments. In 2004, Kissinger et al. crystallised 

human ABAD with its co-factor NAD+ and a small molecule inhibitor. They designed 

an inhibitor (AG18051) that could occupy the substrate-binding site and still allow 

ABAD to form a covalent bond with NAD+, thus providing a basis for the design of 

potent, highly specific human ABAD inhibitors which could be used in the treatment of 

Alzheimer’s disease.  

This AG18051 inhibitor has been used in further studies, such as Lim et al., who 

identified that in the presence of AG18051, Aβ-mediated toxicity, metabolic 

impairment and reduction in estradiol levels are eradicated in SH-SY-5Y neuroblastoma 

cells (Lim et al. 2011), as well as showing as a decrease in ROS levels under Aβ42 

toxicity. As estradiol is a hormone and product of ABAD activity, Lim et al. also 
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suggest that as well as using the AG18051 inhibitor in drug development, it may be 

possible to use estradiol as a marker.     

The use of the loop D region in ABAD could also provide a useful drug target, however 

during crystallography studies the loop D region was unable to be crystallised as it is 

very flexible (Lustbader et al. 2004). The loop D region is shown to be 28 amino acids 

long, and when adding a target sequence to this, it could prove too large to be a drug 

like molecule. However as discussed, the exact make up of the loop D region is 

unknown at present, therefore with further development it may be possible to design a 

smaller mitochondrial targeting sequence that may help to introduce stability and 

increase the rigidity of the region. 
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1.5 Cyclophilin D 

Recently, a second major Aβ–protein interaction has been found within mitochondria. 

Cyclophilin D (CypD), a peptidylprolyl isomerase F, is found in the mitochondrial 

matrix and translocates to the inner mitochondrial membrane during the opening of the 

mitochondrial permeability transition pore (mPTP) in times of oxidative stress (Connern 

& Halestrap 1994). The mPTP plays a central role in both necrotic and apoptotic 

neuronal cell death. Opening of the mPTP collapses the membrane potential and 

plausibly amplifies apoptotic mechanisms by releasing proteins with apoptogenic 

potential from the inner membrane space (Halestrap 2005). The mPTP is thought to 

involve adenine nucleotide translocase (ANT) in the inner membrane, voltage- 

dependent ion channel (VDAC) in the outer membrane and CypD in the mitochondrial 

matrix, although there may also be other components (Halestrap 2005; Leung & 

Halestrap 2008). CypD associates with ANT and potentially other targets on the inner 

mitochondrial membrane, contributing to the opening of the mPTP. This association 

leads to colloidosmotic swelling of the mitochondrial matrix, dissipation of the inner 

membrane potential (ψm) and/or generation of ROS. Due to these findings, CypD is 

considered to be part of the mPTP complex as summarized in Figure 1.9.  

 

Oxidative and other cellular stresses promote CypD translocation to the inner membrane 

(Connern & Halestrap 1994; Nakagawa et al. 2005). Other studies provided substantial 

evidence that a genetic deficiency in CypD protects against Ca2+ and oxidative stress 

induced cell death (Basso et al. 2005). Other CypD functions include providing a 

pivotal regulatory role in the mPTP opening (Baines et al. 2005) and CypD has also 

been shown to be involved in protein folding (Freeman et al. 1996). 
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Figure 1.9: Probable components of the mPTP and how the pore differs when under oxidative 

stress. On the left; a resting mPTP with the components including, ANT (Adenine Nucleotide 

Translocase), PiC (mitochondrial phosphate carrier) and CypD at the inner mitochondrial membrane 

(IMM) and VDAC (Voltage Dependent Anion Channel). During times of oxidative or other stresses (as 

shown on the right of the diagram) pore formation leads to the leakage of H+ and Ca2+ to the cytosol, 

disruption of the mitochondrial membrane potential and necrosis. Prolonged or repeated sub-lethal mPTP-

formation is thought to cause mitochondrial swelling and rupture of the outer mitochondrial membrane 

and then finally apoptosis. (BAX= Bcl-2–associated X protein, CK= Creatine Kinase, HK= hexokinase) 

(Taken from Abou-Sleiman et al. 2006)  

 

 

 

1.5.1 The CypD- ABAD interaction 

As discussed in sections 1.2 and 1.3, the overexpression of ABAD produced a 

protective effect on cells under metabolic stress. In contrast, overexpression of ABAD 

in an Aβ rich environment increased Aβ induced neuron toxicity. Yan and Stern 

reported that ABAD binds CypD (unpublished observation, Yan and Stern, 2004; Ren 

2008). Therefore, they hypothesized that CypD may be a contributor to the beneficial 

effects of ABAD on cellular functions. By anchoring the CypD in the matrix 

compartment, the molecule is unable to translocate to the inner mitochondrial 
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membrane, where it could form the mPTP and potentially lead to neuronal death. 

However, in an Aβ rich environment, the Aβ-ABAD interaction might displace CypD, 

resulting in its translocation to the inner mitochondrial membrane, thereby leading to 

mPTP formation (Yan & Stern 2005) This hypothesis is shown in Figure 1.10. 

 

 

Figure 1.10: Protective effect hypothesis from the possible CypD- ABAD interaction. Under 

physiological conditions, ABAD-CypD interaction maintains CypD in the mitochondrial matrix, 

preventing it translocating to the inner membrane of mitochondria. In an Aβ rich environment, ABAD-Aβ 

interaction displaces CypD, results in its translocation to the inner membrane of mitochondria, which 

leads to the opening of MPTP and cell death. Ψm= mitochondrial membrane potential, MPT= membrane 

permeability transition pore. (Taken from Yan & Stern 2005). 

 

 

The observations that Aβ progressively accumulates in brain mitochondria of AD 

patients led Du et al. to further investigate the mechanism underlying Aβ-mediated 

mitochondrial dysfunction. In these studies, it was established, by surface plasmon 

resonance (SPR), that CypD can bind Aβ (Du et al. 2008). Elevated CypD levels were 
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reported in human AD brains, as well as in a mAPP expressing mouse model for AD 

(Du et al. 2008). The Kd for the interaction of CypD and monomerised Aβ40 and Aβ42 

was 1.7 µm and 164 nM respectively, whereas interactions with oligomeric Aβ40 and 

Aβ42 had a Kd of 227 nM and 4 nM, thus indicating that the oligomeric forms of Aβ 

appear to have a greater affinity for CypD and that Aβ42 has a greater affinity than 

Aβ40. Co-localization of CypD and Aβ in the mitochondria was also observed by 

confocal microscopy in the cerebral cortex of both mice overexpressing mAPP and in 

human AD brains, and immunoprecipitation confirmed the enriched presence of CypD– 

Aβ complexes in AD brains (Du et al. 2008). 

As with the ABAD and Aβ interaction, at present the exact contact sites of the 

interaction between CypD and Aβ are unknown, though recent molecular-docking 

experiments have attempted to produce a model. Singh et al also predicted an 

interaction between ANT and Aβ, which together with CypD has a possible functional 

impact on the mPTP (Singh et al. 2009). It is not known as yet, whether these 

predictions will prove to be true, as to date, they have not been experimentally tested. 

The crystal structure of CypD has been published (Schlatter et al. 2005; Kajitani et al. 

2008), but only in the presence of DMSO (Schlatter et al. 2005) or CsA (cyclosporin A) 

an inhibitor of CypD (Kajitani et al. 2008). Notably, in both cases a truncated mutant 

form of CypD was used, starting at Cys29 and containing a single point mutation 

(K133I). However, at present it is unknown whether these mutated or truncated regions 

play an important role in the interaction. The crystallographic studies are show in more 

detail in Figure 1.11.  

From the CsA study it was observed that one half of the CsA residues (Sar3-Dal8) are 

exposed in a solvent region, whereas the other residues (Bmt1, Aba2, Mle9- Mva11) are 

buried in CypD (Kajitani et al. 2008). As CsA is composed of hydrophobic residues it 
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will therefore interact with CypD via hydrophobic contacts. Notably hydrogen bonds 

are only formed with the nitrogen and oxygen atoms of CsA (Kajitani et al. 2008), and 

all the residues that are in contact with CsA are conserved throughout the human 

cyclophilins. Residues Ser59, Ser81, Arg82, Ile117, Lys148 and Ser149 which are 

located near the CsA binding site of CypD are not well conserved in human 

cyclophilins and are believed to recognise specific ligand proteins (Kajitani et al. 2008). 

Significantly any molecules that are capable of binding to these residues could be 

considered to be leading compound CypD specific inhibitors (Kajitani et al. 2008). 
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Figure 1.11: Crystal studies that have been carried out on CypD to date: A) ΔCypDK133I Crystals 

produced by Schlatter et al. B) A ribbon representation of the ΔCypDK133I mutagenic studies showing 

the active site region and the various mutations that were made to facilitate crystallisation. Only the 

K133I construct would facilitate crystallisation and was found to be important in maintaining crystal 

contacts. Kajitani et al. observed that their crystals were composed of two CypD-CsA complexes in an 

asymmetric unit, one of the two CypD complexes makes no contact with the other complex via Ile133, 

but Ile133 on the other CypD molecule is directly involved in the intercomplex interaction (Kajitani et al. 

2008). (A and B taken from Schlatter et al. 2005) C) Binding geometry of CsA on CypD. Green circles 

mark the CsA atoms involved in the hydrophobic contact with CypD. The CypD residues in green 

ellipsoids are involved in the hydrophobic interactions with CsA. The red dotted lines represent hydrogen 

bonding. This panel was prepared based on a scheme drawn with LIGPLOT.21 Abbreviations of CsA 

residues: Bmt, (4R)-4[(E)-2-butenyl]-4,N-dimethyl-L-threonine; Aba: L-a-aminobutyric acid, Sar: 

sarcosine, Mle, N-methyl leucine; Dal, D-alanine; Mva, N-methyl valine. D) The structure of CypD 

(ribbon model) bound with CsA (stick model). (C and D taken from Kajitani et al. 2008) 

 

 

CypD levels of expression are elevated in the aging human brain and in an Aβ-rich 

environment (Du et al. 2008). The reported consequence of the binding of CypD and 

A B 

D 
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Aβ is elevated levels of ROS, which in turn induces mPTP opening and cell death (Du 

et al. 2008; Singh et al. 2009). Also, it is believed that this interaction enhances the 

translocation of CypD from the matrix to the inner mitochondrial membrane where 

CypD will interact with the mPTP, resulting in its opening (Du et al. 2008). This 

interaction would lead to a build-up of Aβ in the inner mitochondrial membrane, which 

in itself would cause changes to the mitochondrial membrane potential, leading to cell 

death (Singh et al. 2009). Most of these potential consequences have been determined in 

studies of CypD-deficient animals (Ppif−/−), whereby, the cortical mitochondria, isolated 

from the AD mouse model lacking CypD, are resistant to both Aβ and Ca2+-induced 

mitochondrial swelling and opening of the mPTP (Du et al. 2008; Du et al. 2011). They 

also display increased calcium buffering capacity and an attenuation of the generation of 

mitochondrial ROS. Furthermore, CypD-deficient neurons are protected against Aβ and 

oxidative stress-induced cell death. Importantly, deficiency of CypD greatly improved 

the learning and memory of a transgenic mAPP expressing AD mouse model (Du et al. 

2008; Du et al. 2011). These animals exhibited increased spatial and memory learning 

and alleviated Aβ-mediated reduction of long-term potentiation at 12 and 24 months, by 

which age the mAPP expressing mice are known to display AD like symptoms and 

synaptic dysfunction (Du et al. 2011). Thus the CypD- Aβ dependent activation of the 

mPTP directly links to the cellular and synaptic perturbation relevant to the 

pathogenesis of AD (Du et al. 2008). 

 

 

1.5.2 CypD as a potential therapeutic target 

The results showing that CypD deficiency is able to ameliorate Aβ toxicity in transgenic 

animals means that CypD can also be considered as a potential drug target for AD, as it 
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has for other neurodegenerative disorders (Schinzel et al. 2005; Du et al. 2008). Indeed, 

it has been reported that in the presence of CsA, a known immunosuppressant and 

inhibitor of CypD (Matsuda & Koyasu 2000), there is a decrease in mPTP formation 

and that a CsA– CypD complex is formed in mitochondria (Nicolli et al. 1996). 

Importantly it was also shown that CsA can inhibit some of the Aβ-induced toxicity (Du 

et al. 2008). Another recent study also indicates that the inhibition of CypD is the basis 

for its neuroprotective properties in, for example, ischaemia/ reperfusion injury (Mbye 

et al. 2009). However, it has been shown previously that CsA is a highly unspecific, 

large, bulky compound with poor solubility in water and relatively poor bioavailability 

(Nicolli et al. 1996) limiting the use of CsA as a drug molecule for neurodegenerative 

disorders.  

A recent study produced a new mPTP inhibitor called antamanide, which has been 

shown to inhibit the mPTP by targeting CypD (Azzolin et al. 2011). This new inhibitor 

is highly selective and completely eliminates all aspects of CypD function, and is also 

shown to be completely inactive in CypD null mice. The antamanide inhibitor works in 

a similar fashion to the CsA interaction with CypD, whereby antaminide targets CypD 

leading to mPTP inhibition and cell protection from other factors causing mPTP 

opening. Although in its early stages of research these findings have great implications 

for the comprehension of CypD activity on the permeability transition pore and for the 

development of novel pore-targeting drugs exploitable as cell death inhibitors, such as 

in AD. Antamanide is a cyclic peptide produced from the fungus amanita phalloides, 

which again in a similar manner to CsA requires phosphate in order to obtain inhibition 

(Azzolin et al. 2011). The key residues for inhibition are residues 6 and 9 both 

phenylalanine residues which must be present for inhibition (Azzolin et al. 2011). This 

is represented in Figure 1.12. 
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Figure 1.12: Antamanide structure and key residue study: A) The structure of the cyclic peptide 

Antamanide and the amino acid residue sequence. B) The key residues of Antamanide, residue changes 

are in red. And the effects of these changes are shown in a Ca2+ retention capacity test (CRC) whereby the 

ratio of CRC detected in the presence (CRC) and absence (CRCo) is shown with increasing 

concentrations of antamanide (Azzolin et al. 2011).  

 

Further proof that antamanide exhibits mPTP inhibition has been shown in mouse 

models by comparing changes in wild type and CypD knock out mice fibroblasts 

(Azzolin et al. 2011).  Analysis of fibroblast mitochondria (shown in Figure 1.13) found 

that under increasing concentrations of antamanide the calcium retention capacity 

(CRC) ratio was significantly increased when comparing that to a control. However the 

increase was not as significant as CsA compared with control animals, but these 

A 

B 
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experiments show that both antamanide and CsA inhibit the mPTP (Azzolin et al. 

2011).  

 

 

Figure 1.13:  The ratio of CRC detected in the presence (CRC) and absence (CRCo) with increasing 

concentrations of Antamanide (AA) and CsA, in mitochondria from wild type fibroblasts (left) or 

CypD knock-out fibroblasts (right). Results show a significant (students t-test analysis *: p<0.01) 

increase in the mitochondrial Ca2+ uptake when in the presence of either antamanide or CsA when 

compared to that of the controls. And there is no change in the CypD knock out fibroblasts in the 

presence of antamanide or CsA compared to untreated mitochondria. These results indicate that both 

antamanide and CsA inhibit the mPTP (Azzolin et al. 2011).  

 

As antamanide works in a similar manner to CsA it is possible to presume the 

interaction sites may be similar. In the CypD- CsA interaction the binding pocket is 

formed by a groove where the peptidylprolyl isomerase (PPIase) activity site is located 

(Kajitani et al. 2008). As discussed in section 1.5.2 the CsA is inserted half into the 

binding cavity by establishing hydrogen and hydrophobic bonds with the CypD amino 

acids, leaving the exposed residues on the outside of the CypD-CsA complex to be free 

to interact with other molecules, in particular residues 3-7 on CsA (Waldmeier et al. 
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2003). Antamanide has two residues Phe6 and Phe9 which are vital for inhibition (see 

Figure 1.14) and it has been suggested that these regions are located inside the binding 

pocket (Azzolin et al. 2011). Crystallography studies of the antamanide and CypD 

complex would be useful in order to maintain a greater understanding of the other 

inhibitory affects that antamanide may have. As antamanide is similar in action to CsA 

it is suggested that other functions could include gene transcription and proliferation, as 

well as chemotaxis and motility (Azzolin et al. 2011). These studies would also allow 

the development of a more efficacious inhibitor as the small cyclic peptide may provide 

the basis for a new larger inhibitor (drug like molecule) that may incorporate the CypD 

binding site more effectively.  

Other potential CypD inhibitors that may be used in the treatment of Alzheimer’s 

disease have been developed from quinoxaline in the hope of developing lead molecules 

to inhibit the mPTP (Guo et al. 2005). These studies found four molecules GW2, 5, 6 

and 7, that exhibited high inhibitory activity against rat mitochondrial swelling and Ca2+ 

uptake. The studies paid particular focus to GW5 (2,3- (difuran-2-yl)-6-(pyrrolidin-1-yl) 

carbonylamino quinoxaline) which was the most potent and selective of all the 

compounds and this indicates that it may be a potential lead like molecule in future drug 

development (Guo et al. 2005). The kinetics of these molecules were investigated using 

SPR and fluorescent titration techniques, and the inhibitory affects were measured 

against rat liver Ca2+ dependent mitochondria swelling and Ca2+ uptake/release. 

Molecular docking analysis was used to try and identify the interaction at atomic level. 

Using rat crystal data from the PDB they identified that the GW1-7 compounds are in 

fact binding in the same pocket as CsA, but due to there smaller size they only occupy a 

small part of the site (Guo et al. 2005). The rat model is highly comparable with the 
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human CypD model, with a weighted root mean squared distance of 0.6040 and an 

identity score of 95.7% (Guo et al. 2005). 

 

 

 

Figure 1.14: Rat and human CypD protein crystal structures: A) The overlapping rat and human 

CypD models. B) GW1-7 in the CypD binding pocket (Guo et al. 2005). 
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1.6 Project Aims 

The aim of the research described in this thesis was to investigate protein- protein 

interactions as therapeutic targets in the treatment of AD. 

More specifically I investigated; ABAD- Aβ interaction, CypD- Aβ interaction and the 

potential interaction between CypD- ABAD using various biophysical techniques. 

These techniques included; principally x-ray crystallography, nuclear magnetic 

resonance (NMR), thermal shift analysis and isothermal titration calorimetry (ITC). By 

undertaking the research in this thesis it is hoped that we will gain a better 

understanding of the thermodynamic properties of each reaction, and establish where 

the molecules bind and if there are any significant residues or areas of the active site 

that may be used in future drug design experiments. 
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2.1  Molecular biology techniques 

2.1.1  Culture media 

LB Agar (Sigma): 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) NaCl, 1.5% 

(w/v) agar.  

Luria broth (LB; Sigma): 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) 

NaCl. 

Terrific broth (TB; Sigma): 1.2% (w/v) tryptone, 24.5% (w/v) yeast extract, 0.94% 

(w/v) K2HPO4, 0.22% (w/v) KH2PO4  

Auto-induction media (Invitrogen): An entire Magic Media SoluPouch A placed in 950 

mL milliQ water, autoclaved for 20 minutes on the liquid cycle, allowed to cool to 37 

°C before selected antibiotic addition and the addition of Magic Media component B. 

Store at 4°C for up to 1 month. 

 

2.1.2  Polymerase chain reaction 

Polymerase chain reaction (PCR) was carried out using a Biometra TPersonal 

thermocycler (Biometra) in a 50 µL reaction volume containing 50 ng template DNA, 

0.2 µM forward and reverse primers (Invitrogen), 20 µM dNTPs (Promega), 2.5 U Pfu 

Turbo DNA polymerase (Agilent technologies) and 10 x cloned Pfu DNA polymerase 

reaction buffer (supplied with the polymerase, Agilent technologies). The thermal cycle 

profile for the PCR is detailed as in Table 2.1 where annealing temperatures (AT) were 

determined based on the primers used.   
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Table 2.1: A thermal cycle profile used during a standard PCR reaction (30 cycles per reaction). 

 

 

 

 

 

 

 

2.1.3  Restriction digests  

Restriction digests were performed using restriction enzymes and their appropriate 

buffers (Promega) on 3–5 µg DNA in a total volume of 50 µL for 4–16 hours. The 

restriction digest was heat inactivated at 68 °C for 20 min. DNA clean-up was achieved 

using Wizard PCR and Gel cleanup kit (Promega).  

 

2.1.4  Agarose gels 

A 1% (w/v) agarose gel was used to separate DNA fragments larger than 1kb and 2% 

(w/v) agarose gels were used for DNA fragments smaller than 1kb. 1% (w/v) or 2% 

(w/v) agarose was melted in TBE buffer (0.45M Tris-borate, 10mM EDTA, pH 8.3; 

Sigma). Once cooled, a final concentration of 0.5 µg/mL ethidium bromide (Sigma) was 

added. The gel was left to set for 20 minutes at room temperature in a DNA gel rig 

(VWR). 6 x agarose gel buffer (50% glycerol, 49.75% TBE, 0.25% bromophenol blue) 

was added to the samples before DNA was loaded into the wells. Hyperladder I 

Step 
Temperature 

(°C) 
Duration (s) 

1 94 180 

2 94 30 

3 AT 40 

4 72 60 

5 72 600 

6 4 ∞ 
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(Bioline) was run simultaneously to analyse DNA band size. DNA gels were run at 60 

V for 1 hour or 72 V for 45 min and bands were visualised under UV light using 

GeneSnap software (Syngene). 

 

2.1.5  DNA purification by gel electrophoresis 

PCR products, DNA fragments and plasmids were separated by their molecular weight 

using agarose gel electrophoresis (see section 2.1.4). Analytical gels were visualised 

with a BioRad ChemiDoc XRS+ imager. For preparative gels to isolate DNA fragments 

generated by PCR or restriction digest, DNA was visualized by a low intensity UV lamp 

and the appropriate bands excised from the gel using a sterile scalpel. DNA was isolated 

from the gel band using Wizard PCR and Gel cleanup kit (Promega) according to the 

manufacturer’s instructions. 

 

2.1.6  DNA ligation 

Ligations were carried out using 0.5 µL T4 turbo DNA ligase (Promega), 10 x reaction 

buffer (Promega) according to the manufacturers protocol. 1 µL vector DNA and either 

3, 6, 10 µL insert DNA in a total volume of 20 µL were incubated at either 4 °C 

overnight or at room temperature for 1 h.  A control reaction of 1 µL of vector in the 

absence of DNA insert was also set up.  

 

2.1.7  Making competent cells 

E. coli DH5α or BL21 CodonPlus glycerol stocks were used to inoculate a culture 

whereby a scrape of the glycerol stock was added to 5ml LB medium. E. coli bacterial 
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cells were grown in an orbital incubator at 37 °C, with shaking at 210 rpm for 16 hours. 

In BL21 innoculations chloramphenicol (35 µg/mL) was added before incubation. After 

incubation, 0.5ml of overnight cell mixture was placed in fresh 50ml LB medium, and 

further incubated at 37 °C with shaking at 210 rpm, until the absorbance reading was 

approximately 0.4, as measured at  600nm (UV1601 Shimadzu Corporation). Cells were 

harvested by centrifugation (Beckman; J6-MC, rotor 4.2, 3500 rpm, 10 min, 4 °C). The 

supernatant was removed and the pellet was re- suspended in ice-cold CaCl2 (20 mL, 

100 mM), by vortexing. After incubating on ice for 30 min, the cells were centrifuged 

(J6-MC, rotor 4.2, 1500 rpm, 5 min, 4 °C), the supernatant removed and the pellet re- 

suspended in ice cold CaCl2 (1 mL, 100 mM).  A further incubation on ice for 30 min 

gave a suspension of competent cells for immediate use or cryogenic storage. For 

cryogenic storage, competent cells were stored after addition of glycerol (50%, 25 µL) 

to 100 µL cells. Aliquots were flash-frozen and stored at -80 °C. 

 

2.1.8  Transformation 

Ligation mixture (10 µL) or plasmid DNA (1- 5 µL) was added to competent E. coli 

DH5α or BL21 CodonPlus cells and the mixture was incubated on ice for 30 min, 

before heat-shocking at 42 °C (2 min) and returning to ice (5 min). LB broth (0.5 mL) 

was added and the culture incubated at 37 °C with shaking at 210 rpm for 1 h. 

Transformed cells were grown by spreading on LB-agar plates containing the relevant 

antibiotic (100 µg/mL ampicillin or 50 µg/mL kanamycin) and incubating at 37 °C  (16 

h). Cultures were grown at two concentrations: 100 µL of transformation culture (low 

concentration) or 400 µL of transformation culture pelleted by centrifugation for 1 min 

and resuspended in a small volume (100 µL) of culture medium (high concentration).  
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2.1.9  Isolation of plasmid DNA from transformed DH5α cells 

A single colony from an agar plate (Section 2.1.8) or a glycerol stock scrape was added 

to 5 mL LB medium, containing the appropriate antibiotic (100 µg/mL ampicillin or 50 

µg/mL kanamycin). Transformed E. coli DH5α cells were grown 37 °C, with shaking at 

210rpm for 16 hours. DNA was purified using a Qiagen Spin Miniprep Kit (Qiagen), 

according to the manufacturer’s instructions. The DNA concentration of purified 

plasmid was measured at 260nm (Nanodrop Spectrophotometer, Thermo Scientific) and 

stored at -20 °C. DNA sequencing was performed by DNA Sequencing & Services 

(MRCPPU, College of Life Sciences, University of Dundee, Scotland, 

www.dnaseq.co.uk) using Applied Biosystems Big-Dye Ver 3.1 chemistry on an 

Applied Biosystems model 3730 automated capillary DNA sequencer. 

 

2.1.10  Glycerol stocks  

600 µL LB overnight medium containing transformed DH5α cells and 400 µL sterile 

50% glycerol were mixed and stored at -80 °C. 
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2.2  Protein expression and purification 

2.2.1 SDS- page gel electrophoresis 

SDS- polyacrylamide gel electrophoresis (SDS- PAGE) was carried out using 10, 12, 

15, 17 welled NuPAGE Novex, 1 mm, 4–12% Bis-Tris gels (Invitrogen) in 2-(0-

morpholino) ethane sulfonic acid (MES) buffer run at a constant voltage (200 V, 120 A, 

35 min). Mark12 pre-stained standard (Invitrogen) was used as a molecular weight 

marker. Gels were then stained with coomassie blue stain (10% acetic acid, 50% 

methanol, 0.25% W/V coomassie brilliant blue R-250) for 10 min and de-stained in the 

microwave for 10 min. Gels were imaged on a UVP Gel Doc imager (UVP).   

 

2.2.2 Small scale expression and induction 

Plasmid DNA was transformed into E. coli BL21 CodonPlus cells as described in 

section 2.1.8. Overnight cultures comprising the transformed DNA in 5 mL LB broth 

containing the appropriate antibiotic (100 µg/mL ampicillin or 50 µg/mL kanamycin) 

were incubated at 37 °C, 210 rpm for 16 h. Overnight cultures (100 µL) were used to 

inoculate 10 mL fresh LB containing the appropriate antibiotic and were incubated at 37 

°C, 210 rpm until an absorbance at 600 nm of ~0.6 was obtained. Protein expression 

was induced by addition of isopropyl β-D-1-thiogalactopyranoside (IPTG; 1 mM), 

followed by incubation at 25 °C, 180 rpm for 16 h.  Cells were harvested by 

centrifugation (6000 rpm, 4 °C, 15 min) and the cell pellet stored at -80 °C. 

To test for effective induction, 1 mL samples were taken pre- induction and 1, 2, 4 and 

16 h post induction. These samples were boiled in equal volumes of protein sample 

buffer (PSB; 2% (w/v) sodium dodecyl sulfate (SDS), 20% (v/v) glycerol, 20 mM Tris-
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HCl, 20 mM ethylenediaminetetraacetic acid (EDTA), 0.24 M β-mercaptoethanol, 1 

µg/mL bromophenol blue) for 10 min, and are analysed via SDS- PAGE (section 2.2.1). 

 

2.2.3 Large scale expression 

Plasmid DNA was transformed into E. coli BL21 CodonPlus cells as described in 

section 2.1.8. Overnight cultures comprising the transformed DNA in 200 mL LB broth 

containing the appropriate antibiotic (100 µg/mL ampicillin or 50 µg/mL kanamycin) 

were incubated at 37 °C, 210 rpm for 16 h. Overnight cultures (10 mL) were used to 

inoculate 12 x 1 L fresh LB containing the appropriate antibiotic and were incubated at 

37 °C, 210rpm until an absorbance at 600 nm of  ~0.6 was obtained. Protein expression 

was induced by addition of IPTG (1 mM), followed by incubation at 25 °C, 180 rpm (16 

h). Cells were harvested at 6000 rpm, 4 °C for 15 min (Beckman Avanti J-20XP; JLA 

8.1000 rotor), the supernatant was removed and the pellets were stored in 3 L aliquots at 

-80 °C.  

 

2.2.4 His-TEV ABAD or His-TEV CypD small scale purification 

The cell pellets of E. coli BL21 containing expressed His-TEV ABAD/ His-TEV CypD 

protein (see section 2.2.2) were re- suspended for 30 min, 4 °C, in lysis buffer (20 mM 

NaH2PO4, 30 mM imidazole, 500 mM NaCl, 10% (v/v) glycerol, pH 7.4) with the 

addition of complete EDTA-free protease inhibitor tablets (Roche), lysozyme (1 

mg/mL), DNase (20 µg/mL) and Triton X-100 (0.1% (v/v)). Cells were lysed by 

sonication (10 s sonication then ice for 1 min, repeated three times) and the lysate was 

cleared by centrifugation (Sorvall Evolution RC, rotor S5-34 55-34 angle, 20500 rpm, 

30 min, 4 °C). Cleared lysate was filtered (0.44 µm membrane; Whatman) then Ni-NTA 
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His-bind beads (Qiagen; 1 mL) were added to the lysate and were mixed at 4 °C, 1 h. 

This mixture was then applied to an empty gravity column (GE Healthcare) and the 

lysate was allowed to drip through. 50 mL of lysis buffer was applied to the column and 

fractions were collected at 10 mL intervals. 50 mL of elution buffer (20 mM NaH2PO4, 

300 mM imidazole, 500 mM NaCl, 10% (v/v) glycerol, pH 7.4) was applied to the 

column and fractions were collected at 5 mL intervals. SDS- PAGE was used to confirm 

in which fractions the His-TEV protein was found and these fractions were 

subsequently pooled. This small scale method was used as an indication of the His-TEV 

protein solubility, therefore the method did not proceed onto tag cleavage (see section 

2.2.5)  

 

2.2.5 His-TEV ABAD large scale purification 

Cell pellets E. coli BL21 containing His-TEV-ABAD protein (see section 2.2.3) were 

re-suspended for 30 min, 4 °C, in lysis buffer (20 mM NaH2PO4, 30 mM imidazole, 500 

mM NaCl, 10% (v/v) glycerol, pH 7.4) with the addition of complete EDTA-free 

protease inhibitor tablets (Roche), lysozyme (1 mg/mL), DNase (20 µg/mL) and Triton 

X-100 (0.1% (v/v)). Cells were lysed by passage through a cell disruptor at 30 kPSI 

(Constant Systems Ltd) and the lysate was cleared by centrifugation (Sorvall Evolution 

RC, rotor S5-34 55-34 angle, 20500 rpm, 30 min, 4 °C). Cleared lysate was filtered 

(0.44 µm membrane; Whatman) then applied to a Ni-NTA (GE Healthcare) column pre-

washed with lysis buffer and protein eluted with 300 mM imidazole buffer (20 mM 

NaH2PO4, 300 mM imidazole, 500 mM NaCl, 10% (v/v) glycerol, pH 7.4). Tobacco 

etch virus (TEV) protease was added to the protein at a mass-to-mass ratio of 1:10, to 

cleave the histidine tag and the protein was then dialysed into 20 mM Tris-HCl, 30 mM 
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imidazole, 500 mM NaCl, 10% (v/v) glycerol, pH 7.4 containing EDTA (1 mM) and 

DTT (1 mM) to aid solubility. Protein digestion and dialysis was carried out at 4 °C for 

16 h. Complete digestion was firstly checked by SDS- PAGE (see section 2.2.1), then 

fully digested protein was passed over a second Ni-column and the flow-through, 

containing ABAD, was concentrated using a Vivaspin column (10 kDa MWCO, GE 

Healthcare) to ~7 mL before final purification using gel filtration to remove the 

imidazole (Hi-Load 16/60 Superdex 75 prep grade column, GE Healthcare, flow rate 

1.5 mL/min). Protein was eluted in gel filtration buffer (10 mM Tris-HCl, 150 mM 

NaCl, 10% glycerol, pH 7.5) and concentrated (Vivaspin column (10 kDa MWCO, GE 

Healthcare)) to 10 mg/ml and then 20 mg/ ml. Aliquots (25 µL and 50 µL) were taken 

for both concentrations and flash frozen in liquid nitrogen before final storage at -80 °C. 

 

2.2.6 ΔCypDK133I purification 

Plasmid ΔCypDK133I DNA was transformed into E. coli BL21 CodonPlus cells as 

described in section 2.1.8. ΔCypDK133I was expressed as in section 2.2.3. E. coli BL21 

containing ΔCypDK133I cell pellets were re-suspended for 30 min, 4 °C, in lysis buffer 

(100 mM Tris-HCl, 250 mM NaCl, 2 mM EDTA, 2 mM DTT, 10% (v/v) glycerol, pH 

7.8) with the addition of complete EDTA-free protease inhibitor tablets (Roche), DNase 

(20 µg/mL) and Triton X-100 (0.1% (v/v)). Cells were lysed by passage through a cell 

disruptor at 30 kPSI (Constant Systems Ltd) and the lysate was cleared by 

centrifugation (Sorvall Evolution RC, rotor S5-34 55-34 angle, 20500 rpm, 30 min, 4 

°C). Cleared lysate was filtered (0.44 µm membrane; Whatman) then applied to a 

Resource S cation exchange column (GE Healthcare), pre-washed with lysis buffer and 

protein eluted with a step wise gradient of high salt buffer buffer (100 mM Tris-HCl, 
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1M NaCl, 2 mM EDTA, 2mM DTT, 10% (v/v) glycerol, pH 7.8). The Resource S 

cation exchange column was washed with lysis buffer and the protein was then again 

passed through the column to remove further contaminants. The protein was then 

dialysed into 100 mM Tris-HCl, 250 mM NaCl, 2 mM EDTA, 10% (v/v) glycerol, pH 

7.8, where dialysis was carried out at 4 °C for 16 h. The protein was concentrated using 

a Vivaspin column (3 kDa MWCO, GE Healthcare) to ~7 mL before final purification 

using gel filtration (Hi-Load 16/60 Superdex 75 prep grade column, GE Healthcare, 

flow rate 1.5 mL/min). Protein was eluted in gel filtration buffer (50 mM KH2PO4, 100 

mM NaCl, 2 mM EDTA, 2 mM DTT, pH 7.3) and concentrated (Vivaspin column (10 

kDa MWCO, GE Healthcare)) to 25 mg/ ml. Aliquots (25 µL) were taken and flash 

frozen in liquid nitrogen before final storage at -80 °C. 

 

2.2.7 GST CypD purification with Thrombin cleavage  

Plasmid GST CypD (pGEX-4T-1) DNA was transformed into E. coli BL21 CodonPlus 

cells as described in section 2.1.8. GST CypD was expressed as in section 2.2.3. E. coli 

BL21 containing GST CypD cell pellets were re-suspended for 30 min, 4 °C, in lysis 

buffer (1x PBS, 1 mM DTT, 10% (v/v) glycerol, pH 7.4) with the addition of complete 

EDTA-free protease inhibitor tablets (Roche), lysozyme (1 mg/mL), DNase (20 µg/mL) 

and Triton X-100 (0.1% (v/v)). Cells were lysed by passage through a cell disruptor at 

30 kPSI (Constant Systems Ltd) and the lysate was cleared by centrifugation (Sorvall 

Evolution RC, rotor S5-34 55-34 angle, 20500 rpm, 30 min, 4 °C). Cleared lysate was 

filtered (0.44 µm membrane; Whatman) then applied to a GSTrap FF (GE Healthcare) 

column pre-washed with lysis buffer and protein eluted with (50 mM Tris-HCl, 10 mM 

reduced glutathione, 500 mM NaCl, 10% (v/v) glycerol, pH 8.0). Thrombin protease 
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was added to the protein at a mass-to-mass ratio of 1:10, to cleave the GST tag and the 

protein was then dialysed into 50 mM Tris-HCl, 150 mM NaCl, 10% (v/v) glycerol, pH 

8.0, containing DTT (5 mM) to aid solubility. Protein digestion and dialysis was carried 

out at 4 °C for 16 h. Complete digestion was firstly checked by SDS- PAGE, this was 

never observed, therefore the mass: mass ratio of protein: Thrombin was increase to 1:5 

and the protein was further dialysed for 6 h. To decrease precipitation the [DTT] was 

increased to 10 mM. Digestion was found to be incomplete therefore the purification 

did not proceed further.  

 

2.2.8 PreScission protease purification 

Plasmid PreScission protease DNA was transformed into E. coli BL21 CodonPlus cells 

as described in section 2.1.8. PreScission was expressed as in section 2.2.3. E. coli 

BL21 containing PreScission cell pellets were re-suspended for 30 min, 4 °C, in lysis 

buffer (1x PBS, 1 mM DTT, 10% (v/v) glycerol, pH 7.4). Cells were lysed by passage 

through a cell disruptor at 30 kPSI (Constant Systems Ltd) and this was repeated to 

ensure complete lysis. The lysate was cleared by centrifugation (Sorvall Evolution RC, 

rotor S5-34 55-34 angle, 20500 rpm, 30 min, 4 °C). Cleared lysate was filtered (0.44 µm 

membrane; Whatman) then applied to a GSTrap FF (GE Healthcare) column pre-

washed with lysis buffer and protein eluted with (50 mM Tris-HCl, 10 mM reduced 

glutathione, 150 mM NaCl, 1 mM DTT, 10% (v/v) glycerol, pH 8.0). PreScission 

protease was then concentrated (Vivaspin column (10 kDa MWCO, GE Healthcare)) to 

1 mg/ml and aliquots (1 mL) were taken, and flash frozen in liquid nitrogen before final 

storage at -80 °C. 
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2.2.9 GST CypD purification 

Plasmid GST CypD (pGEX-6p-1) DNA was transformed into E. coli BL21 CodonPlus 

cells as described in section 2.1.8. GST CypD was expressed as in section 2.2.3. E. coli 

BL21 containing GST CypD cell pellets were re-suspended for 30 min, 4 °C, in lysis 

buffer (1x PBS, 1 mM DTT, 10% (v/v) glycerol, pH 7.4) with the addition of complete 

EDTA-free protease inhibitor tablets (Roche), lysozyme (1 mg/mL), DNase (20 µg/mL) 

and Triton X-100 (0.1% (v/v)). Cells were lysed by passage through a cell disruptor at 

30 kPSI (Constant Systems Ltd) and the lysate was cleared by centrifugation (Sorvall 

Evolution RC, rotor S5-34 55-34 angle, 20500 rpm, 30 min, 4 °C). Cleared lysate was 

filtered (0.44 µm membrane; Whatman) then applied to a GSTrap FF (GE Healthcare) 

column pre-washed with lysis buffer and protein eluted with (50 mM Tris-HCl, 10 mM 

reduced glutathione, 500 mM NaCl, 10% (v/v) glycerol, pH 8.0). Precision protease was 

added to the protein at a mass-to-mass ratio of 1:10, to cleave the GST tag and the 

protein was then dialysed into 50 mM Tris-HCl, 150 mM NaCl, 10% (v/v) glycerol, pH 

8.0, containing DTT (5 mM) to aid solubility. Protein digestion and dialysis was carried 

out at 4 °C for 16 h. Complete digestion was firstly checked by SDS- PAGE (see 

section 2.2.1), then fully digested protein was passed over a second GSTrap FF column 

and the flow-through, containing CypD, was concentrated using a Vivaspin column (3 

kDa MWCO, GE Healthcare) to ~7 mL before final purification using gel filtration to 

remove the imidazole (Hi-Load 16/60 Superdex 75 prep grade column, GE Healthcare, 

flow rate 1.5 mL/min). Protein was eluted in gel filtration buffer (50 mM Tris-HCl, 150 

mM NaCl, 5 mM DTT, 10% glycerol, pH 8.0) and concentrated (Vivaspin column (3 

kDa MWCO, GE Healthcare)) to 10 mg/ml and then 20 mg/ ml. Aliquots (25 µL and 50 

µL) were taken for both concentrations and flash frozen in liquid nitrogen before final 

storage at -80 °C. 
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2.2.10 His-TEV CypD purification trials (96 well) 

Transformations of His-TEV CypD into 8 different cell lines was carried out as 

described in section 2.1.8. A 5 mL overnight culture of each cell line containing the 

His-TEV CypD was set up including ampicillin (100 mg/mL). Ampicillin (100 mg/mL) 

was added to three different medias (LB, TB and auto induction (AI) media) and a 96 

well block (2 mL capacity) was set up as shown in Table 2.2. Each well contains 500 

µL media+ ampicillian, and 15 µL of the corresponding overnight culture. The block 

was incubated at 37 °C, 900 rpm until Abs600 nm ~0.6 was obtained. The LB and TB 

containing wells were then induced with 0.4 mg/mL IPTG and the block was incubated 

at 25 °C, 900 rpm overnight. 

After incubation the block was centrifuged at 4600 xg for 40 min, the supernatant 

removed, and the pellets were lysed via two freeze thaw cycles. The pellets were 

resuspended in 400 µL 50 mM Tris-Hcl, 50 mM sucrose, 1 mM EDTA, pH 8.0 with the 

addition of 100 mg/mL lysozyme and 2 mg/mL DNase before use, then left at room 

temperature for 15 min, before adding 400 µL 10 mM Tris-Hcl, 50 mM NaCl, 1 mM 

EDTA, 10 mM MgCl2, pH 8.0 with the addition of 2 mg/mL DNase before use, before 

the block was sealed, mixed by inversion and left for a further 15 min at room 

temperature. The block was centrifuged at 4600 xg for 1 h. In preparation for 

purification, 100 µL of 50% Ni-NTA beads (diluted with equilibration buffer: 50 mM 

Tris-HCl, 50 mM NaCl, 10 mM imidazole, pH 8.0; Qiagen) was added to a 96 well 

filter block. 700 µL equilibration buffer was then passed through the beads by 

centrifugation for 1 min at 900 xg; the flow through discarded.  
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Table 2.2: Protein expression set up in 96 well plates. Each row represents a different His-TEV CypD 

Cell line. Coloured wells represent different media types (yellow LB media; orange TB media; red AI 

media). 

BL21 DE3 
A1 

 

          A12 

C43 (DE3) 
B1 

 

          B12 

Rosetta 

(DE3) 

C1 

 

          C12 

Origami 

(DE3) 

D1 

 

          D12 

Tuner 

(DE3) 

E1 

 

          E12 

BL21* 

(DE3) 

F1 

 

          F12 

HMS174 

(DE3) 

G1 

 

          G12 

BLR (DE3) 
H1 

 

          H12 

 

 

Once the 1 h spin was complete the supernatant (~ 700 µL) was applied to the Ni- NTA 

beads and the filter block was centrifuged at 900 x g for 1 min, the flow through was 

discarded. 700 µL of wash buffer (50 mM Tris-HCl, 300 mM NaCl, 40 mM imidazole, 

10% (v/v) glycerol, pH 8.0) was then applied to the beads and the filter block was 

centrifuged at 900 x g for 1 min, the flow through was discarded and the filter block 

was placed into a new collection block. 100 µL of elution buffer 20 mM Tris-HCl, 500 
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mM NaCl, 300 mM imidazole, 10% (v/v) glycerol, pH 8.0 was applied to the beads and 

the filter block was left to stand at room temperature for 5 min before centrifuging at 

900 x g for 1 min. 

To analyse for soluble protein fractions 37.5 µL from each well was added to 12.5 µL 4 

x SDS free sample loading buffer, and the samples were denatured by boiling at 95 °C 

for 10 min. Samples were then run on a 96 well 6% E-PAGE gel (Invitrogen) according 

to manufacturers instructions. Standards and staining were the same as detailed in 

section 2.2.1. 
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2.3  In vitro assays 

2.3.1 Preparation of amyloid β monomers 

For the purpose of the work carried out in this thesis, only Aβ42 peptides were used.  

Monomerised Aβ peptides were prepared from lyophilised Aβ purchased from 

Innovagen or GenicBio. 0.1 mg of lyophilised Aβ was dissolved in 1 mL ice- cold hexa-

fluoro-isopropanol (HFIP) and left to dissolve for 1 h at room temperature. HFIP was 

then allowed to evaporate overnight in a fume hood. Samples were dried under a 

vacuum for 1 h and stored at -20 °C.   

For in vitro assays, 0.1mg monomerised Aβ aliquots were dissolved in 

dimethylsulfoxide (DMSO) to a final concentration of 5 mM. 

 

2.3.2 Enzyme activity assay 

Assay buffer: 10 mM HEPES, 100 mM NaCl, pH 7.5 (as the buffer is warmed to 30 °C 

the pH was measured at 30 °C). 

S-acetoacetyl-CoA substrate (AcAcCoA): prepared as 9.6 mM stock in assay buffer and 

stored at -20 °C in 100 µL aliquots. (Diluted to 4.8 mM before use in assay buffer).  

Nicotinamide adenine dinucleotide (NAD+): prepared as 10 mM stock in assay buffer 

and stored at -20 °C in 200 µL aliquots. 

ABAD- Diluted from frozen stock (see section 2.2.5) to a 0.2 mg/mL stock in assay 

buffer. Due to aggregation and denaturation, this was made fresh; it is not possible to re-

freeze this after use.  
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Frentizole compounds: 1 mg compound dissolved into a 10 mM stock solution with 

DMSO, then further diluted to a 1 mM working stock with propylene glycol. All 

dilutions for these compounds were carried out with propylene glycol.  

Using a Nunc 96 well plate the enzyme activity assay was set up in the order given in 

accordance with Table 2.3, whereby after each addition the mixture is thoroughly mixed 

by pipetting ten times. In order to start the reaction ABAD is added and the initial rate is 

recorded over the first 30 s using the FLUOstar plate reader (BMG Labtech; parameters 

λ= 340 nM, T= 30 °C, 0.5 s measuring intervals). Enzyme activity is calculated using, 

ε= 6220 L/mol/cm for NADH, where the NADH rate of consumption = AcAcCoA rate 

of reduction. Assays were performed as n= 3, 6, 9 and the error was reported as ± SEM 

(standard error mean). Controls were set up with no ABAD to test for frentizole 

compound auto-fluorescence, and with propylene glycol and DMSO to test for assay 

interference.   

 

Table 2.3: Enzyme activity assay set up: 

 

 

Solution Concentration  [Assay]  Volume (µL) 

Buffer - - 144 

AcAcCoA 4.8 mM 120 µM 4 

NADH 10 mM 250 µM 4 

Frentizole 
compound 

1 mM 25 µM 4 

ABAD 0.2 mg/mL 5 µg/mL 4 

Total - - 160 
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2.3.3 Isothermal titration calorimetry 

Frozen stock solution of ABAD (20 mg/mL; see section 2.2.5) in 10 mM Tris-HCl, 

150 mM NaCl, 10% (v/v) glycerol, pH 7.5 (see section 2.2.5). Frozen stock solution 

of ΔCypDK133I (25mg/ml) in 50 mM KH2PO4, 100 mM NaCl, 2 mM EDTA, 2 mM 

DTT, pH 7.3 (see section 2.2.6). Cell (ΔCypDK133I) and syringe (ABAD) solutions 

were prepared in phosphate buffer (10 mM sodium phosphate, pH 7.4), matching 

protein, ligand and buffer solutions with gel filtration buffer as appropriate. The pH 

of all solutions was adjusted to pH 7.40 ± 0.01. All solutions were degassed at 20 °C 

for 15 min before use. Calorimetric titrations were carried out at 25 °C using a VP-

ITC instrument (Microcal LLC). The instrument was operated in high feedback 

mode, applying a reference power of 5 µcal/s and stirring the cell contents at 305 

rpm. The cell volume was 1.4 mL and the injector volume was 290 µL. The cell 

solution contained ABAD (49.3 µM monomer concentration), while the syringe 

contained 15 mM ΔCypDK133I. The cell and syringe were first washed with buffer (5 

times) and degassed buffer (1 times) before filling. The ligand solution was injected 

into the cell in a series of 20 injections (initial injection 3 µL, subsequent injections 

7 µL, injection rate 0.5 µL s-1) every 360 s. In order to account for heat of dilution, 

the cell solution was then replaced with buffer and the ligand injection repeated. The 

heat of dilution was then subtracted from the main experiment. Raw data was 

processed using MicroCal Origin software. Baseline adjustment and integrations 

were carried out manually. 
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2.3.4 Thermal shift analysis 

Solutions of Frentizole analogue series (10 mM compound stock in DMSO; diluted to 1 

mM with propylene glycol) were diluted to 25 mM in propylene glycol. Protein master 

mix containing ABAD (20 mg/mL; see section 2.2.5) and SYPRO® Orange (1:500, 

Invitrogen) was prepared. Ninety-six well plates (Greiner) were then prepared by 

mixing 33.3 µL protein master mix with 10 µL frentizole analogue compound (total 

volume 100 µL; final [ABAD] 20 µM; [compound] 25 µM; [DMSO] 2.5 %; Assay 

buffer: 10 mM Tris-HCl, 150 mM NaCl, 10% (v/v) glycerol, pH 7.5). Assays were 

performed using a Stratagene Mx3005P qPCR machine (Sybr filter, ex. 492 nm, em. 

516 nm). Initial temperature was set to 25 °C, increasing in increments of 1 °C every 60 

s for 120 cycles (25–85 °C). Readings were taken in triplicate at each temperature point. 

The negative reciprocal was plotted and the protein unfolding temperature (Tm) taken as 

the lowest point of the curve obtained. The change in unfolding temperature (ΔTm) was 

then calculated as the shift from the Tm when no compound was present. Controls with 

no compound, no SYPRO® Orange or no ABAD were also run. Monomerised Aβ (see 

section 2.3.1) was added to the assay at [Aβ final] 50 µM. 

 

2.3.5 Nuclear magnetic resonance 

Samples for NMR analysis to analyse ABAD binding partners with the Maybridge 

fragment library were produced as shown in Table 2.4. ABAD (20 mg/mL; section 

2.2.5) was diluted to final assay concentration of 20 µM with assay buffer. 605 

Maybridge fragments were divided into 55 fragment cocktails (in eppendorfs) and were 

kindly provided by Dr Stephen McMahon (University of St Andrews).  Assay buffer 

used was 50 mM Sodium Phosphate (pH 7.5), 10% D2O.  
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Table 2.4: NMR sample set up: 

 

 

 

 

 

 

Samples were loaded into NMR spin tubes and saturated transfer difference and 

WaterLOGSY experiments were carried out on the 600 MHz triple channel (HXY) 

wide-bore solid-state NMR spectrometer (with wide-bore magnet, equipped with five 

(1.3-, 2.5-, and 4-mm) MAS probeheads and one static probehead). Analysis was 

carried out using the AMIX profiler system where binding of fragments to ABAD was 

detected by comparing reference spectra for the cocktail eppendorfs with changes in the 

ABAD- cocktail spectra.  

 

2.3.6 ForteBio Octet384 RED Assay  

Assay solutions were prepared as follows: 

ABAD protein (section 2.2.5) was diluted in assay buffer; 10 mM HEPES, 100 mM 

NaCl (pH 7.5), to produce a 0.5 mg/mL stock solution. Biotin (2 mg, Thermo Scientific) 

was reconstituted in water to create a 2 mM stock solution, and then added to ABAD 

protein in a 1:1 molar ratio. The sample was left to biotinylate at room temperature for 

30 minutes. Excess biotin was removed using Zebra desalt spin columns (Thermo 

Scientific) following the manufacturers instructions.  

Solution Volume (µL) 

Buffer 726 

Cocktail  6 

ABAD 18 

Total 750 



Chapter 2: Materials and Methods 

 

 81 	
  
	
  

	
  

As described previously in section 2.3.1, 0.1mg monomerised Aβ aliquots were 

dissolved in DMSO to a final concentration of 5 mM, before further dilution with assay 

buffer to create a 5 point, 5 fold Aβ gradient, ranging from 22 µM to 35.2 nM. 

A stock solution of NADH (1 mM) was prepared using the assay buffer. This solution 

was then diluted further with assay buffer to create a 5 point, 5 fold Aβ gradient, 

ranging from 1 mM to 200 µM.     

Biotinylated ABAD protein (b-ABAD, 50 mg/mL) was immobilized onto a Super 

Streptavidin (SSA) biosensor surface (Fortebio) over a period of 10 minutes. The 

biosensor surface was exposed to the Aβ solution (35.2 µM) for 100 seconds to measure 

the association of ABAD and Aβ. The sensor was then washed in assay buffer for 100 

seconds to measure the dissociation of ABAD and Aβ. This association and dissociation 

process was repeated four times, with the concentration of Aβ increasing along the 

gradient each time. The same procedure was then repeated for NADH. Rate constants 

are then calculated from the binding data, including on-rate (ka), off-rate (kd), and 

equilibrium dissociation constant (KD).  

This procedure can be repeated to measure non specific binding, whereby, the SSA 

sensor, with ABAD bound, is replaced with an SSA sensor with no ABAD protein 

bound.  

 

2.3.7 HiLyte Fluor 555 Aβ (Aβ555) morphologically specific 

aggregation assay  

Aβ labelled with HiLyte Fluor 555 (Aβ555 or Cy3 labelled Aβ) was purchased from 

Anaspec and monomerised as described in section 2.3.1.  
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Again the amyloid used in this assay was the full length Aβ42 

To obtain HFIP-induced aggregates, pre-treated Aβ555 monomers were resuspended in 

DMSO to a final concentration of 2.5 mg/mL. Aβ peptides were subsequently diluted in 

Tris-HCl buffer solution (50 mM, pH 7.9) to the final desired concentration and ≤ 4 % 

HFIP was added to induce aggregation. All aqueous solutions were prepared with 

deionized water. Incubation of the peptides for 1 h at 4°C with vigorous agitation by 

continued vortexing results in the progressive formation of Aβ555 globular intermediates.  

For oligomeric and fibril-like aggregates formed at pH 7.9, HFIP-pre-treated Aβ555 

monomers were resuspended in DMSO to a final concentration of 2.5 mg/mL and 

subsequently diluted to 7 µM in 50 mM Tris-HCl buffer (pH 7.9) containing 150 mM 

NaCl and incubated at 37°C for 24 h as reported previously.  

For plaque like structures, pH 6 induced aggregates were created by re-suspending 

HFIP-pre-treated Aβ555 monomers in DMSO to a final concentration of 2.5 mg/mL and 

subsequently diluting to 7 µM in 50 mM 2-(N-morpholino)ethanesulfonic acid (MES) 

buffer at pH 6.0. Samples were incubated without agitation at 37°C for 5 hours. 

Fluorescence emission spectra from N-terminally labelled Aβ42 aggregates were 

obtained using a peltier- Varian Eclipse fluorescence spectrophotometer. Cuvettes with 

a 1 cm path length were used and agitation was achieved with the insertion of magnetic 

stirring bars. Emission spectra were recorded using excitation wavelengths of 547 nm. 

Emission scans were taken every 5 minutes, where changes in intensity of the Cy3 dye 

were monitored. After 4 emission scans and immediately before the 5th scan (25 

minutes), ABAD protein was injected into the samples on a 1:1, 1:2, and 1:100 ABAD 

protein to Aβ555 basis. A control sample containing no ABAD protein was also run. 
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2.4  X-ray crystallography 

2.4.1 General techniques 

ABAD protein was produced as described in Section 2.2.5, with the His tag removed by 

TEV protease cleavage. 

Commercially available crystallisation screens were used to screen initial conditions of 

crystallization, such as JCSG+, Classics, JMAC and PEGS (Sigma). A nano-drop 

crystallization robot Cartesian HoneyBee, Genomic Solutions), as part of the Hamilton-

Thermo Rhombix system, was used for preparing 96 well plates. The Hamilton 

STARline robot was used to prepare optimization screens. All crystal screens used are 

detailed in Appendix C. 

Using 30% (v/v) glycerol in the crystallization buffer, the crystals of target proteins 

were cryoprotected. A suitable protein crystal was picked out from the drops with a 

crystal loop and transferred to 5 µL cryoprotectant drop. Then the crystal was mounted 

onto the X-ray generator at 100K in-house using a Rigaku/MSC MicroMax-007HF 

rotating anode equipped with a Saturn 944+ CCD detector at wavelength 1.54 Å. 

 

2.4.2 CypD and ABAD co-crystallisation  

CypD was prepared as described in section 2.2.6 and section 2.2.9, ABAD was prepared 

as described as in section 2.2.5. Using various screens (section 2.4.1), 24 well plate 

crystal trials (hanging drop method) were set up as follows: drop size, 1 µL; 1:1, 1:2 or 

2:1 ratio of protein solution: crystallisation buffer; reservoir volume, 400 µL. Plates 

were incubated at 20 °C. 
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2.4.2 ABAD and Maybridge fragment co-crystallisation  

ABAD was prepared as described in section 2.2.5. Fragments were provided as 2 M 

stocks in DMSO. Protein solutions were prepared as shown in Table 2. 5. Crystal trials 

were set up in 96 well plates (sitting drop method) as follows: dropsize, 150 nL; 1:1 

ratio of protein solution: crystallisation buffer; reservoir volume, 70 µL. Plates were 

incubated at 20 °C. 

 

Table 2.5: Protein solutions for ABAD- Maybridge fragment co-crystallography: 

 

 

 

 

 

 

2.4.3 ABAD crystallography (soaks method)  

ABAD was prepared as described in section 2.2.5. Protein solutions were prepared as 

shown in Table 2. 5. DMSO. Crystal trials were set up (without Maybridge fragment 

addition) in 96 well plates (sitting drop method) as follows: dropsize, 150 nL; 1:1 ratio 

of protein solution: crystallisation buffer; reservoir volume, 70 µL. Plates were 

incubated at 20 °C. Once crystals had grown Maybridge fragments (20 mM, 1 µL) were 

pipetted onto crushed ABAD crystals and re-examined after 1 h to see if new crystals 

had formed.  

 With NADH  Without NADH 

ABAD 10 mg/mL 10 mg/mL 

NADH 5 mM - 

DTT 1 mM 1 mM 

Maybridge 
Fragment 

10 mM 10 mM 
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2.4.3 Aβ and ABAD co-crystallisation  

Aβ was prepared as described in section 2.3.1 and ABAD was prepared as described as 

in section 2.2.5. Solutions were prepared as shown in Table 2.5. Using various screens 

(section 2.4.1), 24 well plate crystal trials (hanging drop method) were set up as 

follows: drop size, 1 µL; 1:1, 1:2 or 2:1 ratio of protein solution: crystallisation buffer; 

reservoir volume, 400 µL. Plates were incubated at 20 °C. 



 

 86 	
  
	
  

	
  



 

 87 	
  
	
  

	
  

 

 

 

 

Chapter 3: Elucidating and identifying potential small 

molecule inhibitors of the ABAD- Aβ interaction  

 

 

 

  



 

 88 	
  
	
  

	
  

 



Chapter 3: Elucidating and identifying potential small molecule inhibitors of the ABAD-Aβ interaction 

 89 	
  
	
  

	
  

3.1  Introduction  

Amyloid binding alcohol dehydrogenase (ABAD) is a mitochondrial protein that is the 

best characterised intracellular Aβ binding protein (Yan et al. 1997; Yan et al. 1999; 

Lustbader et al. 2004). The features of this multifunctional enzyme include its presence 

in both the endoplasmic reticulum and the mitochondria, its capacity to bind Aβ and 

promote Aβ-induced cell stress, and its ability to act on a broad array of substrates. One 

function of this protein is catalysing the reversible reduction of aldehydes and ketones, 

and the oxidation of alcohols using its cofactor NAD(H). It is believed that the primary 

function of ABAD is energy production and metabolic homeostasis, in particular its 

involvement in the third step of the β-oxidation of fatty acids in times of a glucose 

deficiency, utilising its role as an L-3-hydroxyacyl-CoA dehydrogenase (Powell et al. 

2000). When ABAD binds to Aβ (in the loop D region of ABAD) the overall effect is to 

inhibit the ABAD enzyme activity. However, the precise molecular mechanisms of how 

this occurs are yet to be elucidated. 

The decrease in ABAD activity upon Aβ binding has been shown and the interaction of 

ABAD with Aβ has multiple effects at the molecular, cellular and whole animal level 

(detailed in 1.4.3). Therefore, this indicates that the ability to block this ABAD- Aβ 

interaction could produce a potentially novel therapeutic target for the treatment of AD.  

There has also been the identification of potential inhibitors against this interaction 

(detailed in 1.4.3 and 1.4.4), this has further emphasised that the targeting of the 

ABAD- Aβ interaction could produce novel therapeutic target in AD (Kissinger et al. 

2004; Xie et al. 2006). Furthermore, another strong reason for pursuing this approach to 

aid the treatment of AD is that, as yet, there is still a huge void in the drugs that are able 

to act on the underlying mechanisms of the disease.   



Chapter 3: Elucidating and identifying potential small molecule inhibitors of the ABAD-Aβ interaction 

 90 	
  
	
  

	
  

A previous member of the Gunn-Moore Laboratory (Dr Kirsty Muirhead) identified 

potential small molecule inhibitors of this ABAD-Aβ interaction by carrying out 

thermal shift analysis (TSA or Thermofluor®), with ABAD protein and the Maybridge 

fragment library (Muirhead 2011). Potential inhibitor molecules were then classed as 

‘hit’ compounds. Due to the variance observed between biophysical assays and ‘hit’ 

compounds obtained, for example, when an identical set of compounds is screened 

against the same biological target using three different assay formats, the concordance 

in the number of biologically active compounds or ‘hits’ obtained from each assay is 

just 35% (Lipinski & Hopkins 2004). Therefore, it was deemed necessary to re-test and 

evaluate these compounds using other assay formats. Therefore, in my work, the two 

main biophysical techniques employed to investigate the ABAD-Aβ interaction and to 

identify and characterise potential inhibitors of this interaction were x-ray 

crystallography (described in 4.1.1) and nuclear magnetic resonance (NMR).  

 

3.1.1  The use of fragment screening in drug discovery 

Lipinski's influential analysis of the Derwent World Drug Index introduced the concept 

of ‘drug-likeness’: whereby orally administered drugs are far more likely to reside in 

areas of chemical space defined by a limited range of molecular properties. These 

properties have been defined as Lipinski's ‘rule of five’ (Lipinski et al. 1997). This 

analysis shows that, historically, 90% of orally absorbed drugs have fewer than five 

hydrogen-bond donors, less than ten hydrogen-bond acceptors, molecular masses of less 

than 500 daltons, and cLog P values (a measure of lipophilicity) of less than five. Since 

this work, various definitions of, and methods to predict, drug-likeness have been 

proposed (Erlanson et al. 2000; Congreve et al. 2003; Lipinski 2004; Lundqvist 2005). 
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However, the consensus is that ‘drug-likeness’ is defined by a range of molecular 

properties and features that can differentiate between drugs and non-drugs for such 

characteristics as oral absorption, aqueous solubility and permeability (Lipinski & 

Hopkins 2004).  

One such proposed method for predicting ‘drug likeness’ is that of the ‘rule of three’ 

(Congreve et al. 2003) or the use of a fragment based screening library to aid drug 

discovery. In these fragment-based approaches, low molecular weight chemical 

fragments (typically 150-300 daltons) are initially selected and screened on the basis of 

their ability to bind to the target of interest or to inhibit it in a functional assay (Carr et 

al. 2005). These fragments, which can be considered the building blocks of a more 

complex lead series, are then combined or optimized into larger compounds that meet or 

exceed the criteria typically applied to high throughput screen hits (Lipinski’s ‘rule of 

5’) (Carr et al. 2005). The shrewd rationale behind these fragment-based strategies is 

that, many drug targets contain distinct areas for binding ligands, substrates, and/or co-

factors. A fragment based approach offers the possibility of identifying novel molecules 

with improved affinity, selectivity, and pharmaceutical properties that are able to 

sample the chemical space available most efficiently (Erlanson et al. 2004; Lipinski & 

Hopkins 2004). Furthermore, these smaller fragments are less likely to contain moieties 

that interfere with, or block, a ligand-protein interaction (Erlanson et al. 2004).  

The Maybridge ‘rule of three’ fragment library is one of many libraries that can be used 

to identify potential ‘hits’ against an interaction. The principle of this library design is 

that the collection of chemical entries are pharmacophore rich, and all conform to the 

following criteria: a molecular weight less than 300 daltons, fewer than three hydrogen-

bond donors, less than three hydrogen-bond acceptors, cLog P values of less than three, 

fewer than three rotatable bonds (flexibility index) and a polar surface area of less than 
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60 Å (Major & Smith 2011). In this chapter of work only 674 fragments, a very small 

portion of the total Maybridge library, were screened to identify and evaluate potential 

small molecule inhibitors of the ABAD- Aβ interaction.  

 

3.1.2  NMR screening and hit-validation in drug discovery 

One- dimensional nuclear magnetic resonance (NMR) has been developed as a 

important tool for the characterisation of interactions of small molecule ligands with 

their corresponding binding protein (Diercks et al. 2001; Pellecchia et al. 2002; 

Campos-Olivas 2011). In fact, a significant number of industrial and academic 

laboratories employ NMR for screening small molecule compound collections for 

binding to defined macromolecular targets, thus potentially providing initial, low 

affinity hits for a fragment-based approach in the drug discovery process (Campos-

Olivas 2011).  

Saturation transfer difference (STD) NMR is a method that allows the study of 

molecular interactions in solution, and has emerged as one of the most popular ligand-

based NMR techniques for the study of protein−ligand interactions (Angulo et al. 2008; 

Xia et al. 2010; Viegas et al. 2011). The success of this technique is due to the fact that 

it is focused on the signals of the ligand, without any need of processing NMR 

information about the macromolecule and indeed only using small quantities of non-

labelled macromolecule are required (Xia et al. 2010; Viegas et al. 2011). The STD-

NMR experiment relies on the fact that, for a weak-binding ligand (dissociation 

constant, KD, ranging from 10−8 mol L−1 to 10−3 mol L−1), there is an exchange between 

the bound and the free ligand state (Viegas et al. 2011). An STD experiment (shown in 

Figure 3.1) involves subtracting a spectrum in which the protein was selectively 
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saturated (on-resonance spectrum) with signal intensities ISAT, from one recorded 

without protein saturation (off-resonance spectrum), with signal intensities I0. In the 

difference spectrum (ISTD = I0 − ISAT) only the signals of the ligand(s) that received 

saturation transfer from the protein, via spin diffusion, through the nuclear Overhauser 

effect will remain (Viegas et al. 2011). Other small molecules that may be present, but 

do not bind to the protein, will not receive any saturation transfer; their signals will be 

of equal intensity on the on-resonance and the off-resonance spectra and as a 

consequence, after subtraction no signals will appear in the difference spectrum from 

the nonbinding small molecule(s). The difference in intensity due to saturation transfer 

can be quantified (ISTD = I0 − ISAT) and constitutes an indication of binding (Viegas et 

al. 2011).  

 

Figure 3.1: Schematic representation of a STD experiment. In a STD experiment, the difference 

between the signal intensities (ISAT), from a spectrum recorded without protein saturation (off-resonance 

spectrum), with signal intensities I0 and a spectrum in which the protein was selectively saturated (on-

resonance spectrum) result in a difference spectrum (ISTD = I0 − ISAT), where only the signals of the 

ligand(s) that bind to the protein, and therefore receive saturation transfer from the protein, via spin 

diffusion through the nuclear Overhauser effect are shown (Taken from Viegas et al. 2011). 
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Another type of NMR experiment, which is widely used in fragment based drug 

discovery, is WaterLOGSY (water- ligand observed via gradient spectroscopy). 

Whereby, this experiment utilizes the large bulk water magnetization to transfer 

magnetization via the protein- ligand complex to the free ligand in a selective manner 

(shown in Figure 3.2). Furthermore, the resonances of non-binding compounds appear 

with opposite sign and tend to be weaker than those of the interacting ligands (Dalvit et 

al. 2001; Stockman & Dalvit 2002).  

 

 

Figure 3.2: Schematic representation of the principle behind a WaterLOGSY NMR experiment. An 

example of a typical protein- ligand Waterlogsy NMR experiment, whereby, the protein is shown in grey 

with the buried cavities and the active binding site visible. The ligand is shown in the bound and free 

states. Excitation of bulk water (circles) is shown with a solid arrow and some of the different 

magnetization transfer pathways are also shown with double headed arrows (Taken from Dalvit et al. 

2001).  
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3.1.3  Thermal shift analysis  

Thermal shift analysis (TSA or Thermofluor®) is another biophysical technique used in 

fragment based drug discovery (Boettcher et al. 2010; Kranz & Schalk-Hihi 2011). The 

principle behind this technique is straightforward, whereby, the unfolding temperature 

(Tm) of a protein acts as an indicator of protein stability. When the protein is heated in a 

solution containing fluorescent dye (in this case SYPRO® orange), it becomes 

denatured and the protein’s hydrophobic core structure is exposed. SYPRO® orange 

can then bind to the exposed hydrophobic region, producing a fluorescence emission. 

Under normal aqueous conditions the SYPRO® orange dye is quenched therefore, the 

fluorescence emission can be used to determine the Tm of the protein (shown in Figure 

3.3). When a small molecule binding partner is present, the stability of the protein and 

its ability to unfold will alter as will the Tm. It is therefore possible that this technique 

can be used as a screening method for small molecule binding partners of proteins 

(Kranz & Schalk-Hihi 2011). This technique also allows the selectivity of small 

molecules depending on whether the small molecule stabilises (positive ΔTm) or 

destabilises (negative ΔTm) the protein (Kranz & Schalk-Hihi 2011).  For the purpose of 

this application on the ABAD- Aβ interaction only small molecules with a stabilising 

effect were considered as ‘hit’ compound.   
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Figure 3.3: Schematic representation of the principle of thermal shift analysis as a measure of 

protein stability and a method for screening potential small molecule binding partners of proteins. 

A) Protein and SYPRO® orange dye are mixed in solution, upon heating the protein becomes denatured 

allowing the dye to bind to the protein’s exposed hydrophobic core. This causes a fluorescence emission, 

from which the unfolding temperature (Tm) can be calculated. B) When a small molecule is bound to the 

protein, this results in a change in Tm, depending on whether the small molecule has a stabilising effect 

(resulting in a positive ΔTm, shown in green) or a destabilising effect (resulting in a negative ΔTm, shown 

in red). Image taken from (Muirhead 2011). 
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3.2  Chapter aims 

Using both x-ray crystallography and nuclear magnetic resonance the aims of this 

chapter were: 

1. To use nuclear magnetic resonance spectroscopy to identify small molecules that 

are capable of binding to ABAD, and to validate potential ‘hit’ molecules that 

had been identified previously using thermal shift analysis, by Dr Kirsty 

Muirhead (formally FGM laboratory). 

2. Subsequently to use x-ray crystallography to obtain a 3-D co-crystal structure of 

any small molecules bound to ABAD to give a greater understanding of where 

the key residues of interaction are on the protein, and the chemical space 

occupied by the molecule.  

3. To use x-ray crystallography to gain a clearer crystal structure of the ABAD- Aβ 

interaction, in which the loop D active site region is no longer distorted.  

It was hoped that this chapter of work would ultimately produce small molecules that 

prevent the ABAD-Aβ interaction. Using the crystallographic information obtained 

would facilitate future chemical modifications to the molecules, potentially altering 

them sufficiently to develop ‘lead-like’ molecules, and eventually transforming them 

into potential therapeutic agents against Alzheimer’s disease.   
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3.3 ABAD protein production 

3.3.1 The pEHis-TEV ABAD construct 

To date, there are only three ABAD x-ray crystallography based, published journal 

articles (Powell et al. 2000; Kissinger et al. 2004; Lustbader et al. 2004). Powell et al. 

used a rat ABAD construct in their studies; however, Kissinger et al. and Lustbader et 

al. both used a human ABAD construct in their studies. The most relevant study to this 

chapter of my thesis was from Lustbader et al. who were the first group to crystallise a 

full length, non- mutated ABAD protein, bound to both Aβ and its co-factor NAD. 

Although this was a successful crystallisation the highly flexible loop D region (the 

believed site of the ABAD-Aβ interaction) was distorted and unable to be mapped fully 

(Lustbader et al. 2004). Therefore, it would also be advantageous to be able to produce 

an ABAD-Aβ co- crystal, where the loop D region is intact and stable allowing a 

complete interaction structure to be created.  

The plasmid construct used in this chapter of work is the pEHis-TEV ABAD (homo 

sapien) plasmid. Figure 3.4 shows the plasmid construct that encodes the ABAD insert 

within the bacterial expression vector pEHis-TEV(b), the DNA sequence can be found 

in Appendix A. Of particular note is that this plasmid has a TEV (tobacco etch virus) 

protease cleavage sight for the removal of the histidine tag.  

The ABAD protein sequence can be found in Appendix A. 
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Figure 3.4: Plasmid construct pEHis-TEV ABAD. The ABAD insert (shown in red), located between 

the Nco1 and Sal1 restriction sites in the pEHis-TEV(b) bacterial expression vector. The antibiotic 

resistance for this construct is kanamycin. The TEV protease cleavage site is shown in pink. (ABAD 

Protein MW= 27000 Da) 

 

 

3.3.2 pEHis-TEV ABAD expression and purification  

In order to carry out any biophysical techniques it was first necessary to produce and 

purify ABAD protein. Firstly, the His-TEV ABAD expressing plasmid was transformed 

into E.coli BL21 Codon Plus cells as described in section 2.1.8. As this construct had 

not been used previously in our laboratory, it was necessary to start with expression 

trials on a small scale induction test format (section 2.2.4) in order to determine if the 

expressed protein was soluble and what bacterial growth conditions were optimal for 
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protein expression. These bacterial expression conditions were found to be growth at 37 

°C, 210 rpm for approximately 4 h (or until an absorbance at 600 nm of ~0.6 was 

obtained), before protein expression was induced by the addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG; 1 mM), followed by incubation at 20 °C, 180 rpm for 16 

h. Once these tests were complete, large scale expression experiments (section 2.2.3) 

were then performed before progressing onto a small scale protein purification test 

(section 2.2.4). As the small scale His-TEV ABAD purification was deemed successful 

due to the construct being found in the soluble elution fractions (described in 2.2.4) a 

large scale His-TEV ABAD method development protein purification test was carried 

out to determine the optimal buffers and TEV protease concentration for purifying His-

TEV ABAD protein (described in 2.2.5). Once these conditions were established it was 

then possible to produce pure untagged ABAD protein. Figure 3.5 summarises the 

various stages of this His-TEV ABAD purification and the production of pure, untagged 

protein as indicated by SDS- page gel electrophoresis (section 2.2.1). Overall, the 

average yield obtained from a 4 L bacterial culture expressing His-TEV ABAD after 

purification, was in the region of 100 mg.  Due to the larger than expected yield, extra 

care had to be taken during purification in order to avoid saturating the Ni2+ columns, 

and thus maintaining their efficiency.    
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Figure 3.5 ABAD in the protein purification process. A) A gel image taken after electrophoresis 

showing ABAD containing protein fractions recovered after the first HisTrap column, where histidine 

tagged ABAD is capable of binding to the columns Ni2+ resin whilst impurities pass directly through the 

column. Lanes 2-4 indicate the impure fractions from the HisTrap column (these lanes exhibit multiple 

protein bands). Lanes 5-9 indicate purer His-TEV ABAD protein, with one protein band visible at the 

expected MW for His-TEV ABAD (27 kDa).  B) A gel image taken after electrophoresis showing His-

TEV ABAD before, during and after histidine tag removal. Lanes 2-3 are uncleaved His-TEV ABAD 

protein (sample taken before the addition of TEV protease). Lanes 7-8 indicate partial cleavage of the 

histidine tag with 2 protein bands visible (this sample was taken after 1 h of TEV protease cleavage). 

Lanes 4-5 indicate complete histidine tag removal with a protein band observed at a lower molecular 

weight than that detected in the uncleaved samples (lanes 2-3). C) A gel image taken after electrophoresis 

showing ABAD containing protein fractions recovered after gel filtration. Lane 2 exhibits two protein 

bands, indicating impure ABAD protein has been recovered after gel filtration; however, lanes 3 and 4 

indicate pure ABAD has been recovered after gel filtration, with a protein band visible at the expected 

molecular weight. The corresponding fractions from the gel filtration column in lanes 3 and 4 were 

collected and flash frozen in liquid nitrogen before final storage at 10 and 20 mg/mL, 25 and 50 µL 

aliquots, -80 °C. The presence of ABAD protein was also confirmed by mass spectrometry.  
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3.4 NMR as a screening tool to validate small molecule 

binding partners of ABAD 

3.4.1 Previous ‘hit’ identification of small molecule binding 

partners of ABAD using TSA 

Previous work in the Gunn-Moore laboratory (carried out by Dr Kirsty Muirhead) 

identified 16 ‘hit’ small molecule binding partners of ABAD by carrying out thermal 

shift analysis using 674 Maybridge fragment library compounds (Muirhead 2011). Of 

the 16 fragments Dr Muirhead established 7 fragments were potential inhibitors of the 

ABAD-Aβ interaction using an enzyme activity assay (described in section 5.3.1). The 

structures of these fragments are shown in Table 3.1. These findings acted as a 

foundation for the remainder of the work described in this section of work (3.4.1-3.4.3).  

The 674 compounds from the Maybridge fragment library proved to be too large an 

amount for Dr Muirhead to effectively screen in one pass, in an academic environment. 

Therefore the thermal shift analysis screening was carried out in systematic waves. 

Firstly, the entire 674 fragments were screened individually (not in triplicate) and 

compounds identified as either non- binders (ΔTm < +2°), or destabilisers (-ΔTm) were 

discarded. The remaining 84 compounds were then re-screened in triplicate to allow for 

any assay errors.  This resulted in 16 compounds (Table 3.1), which were classed as 

‘hit’ compounds.  
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Table 3.1: Maybridge fragment compounds that are binding partners with ABAD, identified using 

thermal shift analysis. Compound numbers represent their identification within the Maybridge library 

and compounds highlighted in pink are classified as potential inhibitors of the ABAD- Aβ interaction 

(Taken from Muirhead 2011). 

 

 

As these compounds originate from a portion of the Maybridge fragment library, they 

conform to the ‘rule of three’ principle. Therefore, as the molecule weights of these 

compounds are small (below 300 daltons) there is no notable structure- activity 

relationship (SAR) between the fragments. Due to the variance observed between 
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biophysical assays and ‘hit’ compounds obtained, for example, when an identical set of 

compounds is screened against the same biological target using three different assay 

formats, the concordance in the number of biologically active compounds or ‘hits’ 

obtained from each assay is just 35% (Lipinski & Hopkins 2004), it is therefore 

important to re-test these potential ‘hit’ compounds to confirm they are capable of 

binding to ABAD and elucidate any potential inhibitory effects that they may have.  

 

3.4.2 NMR screening to validate TSA of the Maybridge fragment 

library  

The Maybridge fragment library was adapted by the Prof Jim Naismith group, 

(University of St Andrews) to allow the library to be screened using two, one 

dimensional nuclear magnetic resonance (NMR) experiments (saturation transfer 

difference (STD) and WaterLOGSY) as a method of ‘hit’ validation. Using these two 

NMR experiments it was possible to evaluate and confirm the thermal shift analysis 

results shown in 3.4.1.  

The Maybridge fragment library was adapted in such a way that all control spectra 

(unbound fragments) were individually analysed, and the fragments were then grouped 

into cocktails of 11 fragments under the stringent condition that each fragment produced 

a different resonance spectrum. Thus, when the protein was added to the fragments, it 

was easy to determine which molecule(s) were binding to the protein. All control 

spectra were then stored in the AMIX profiler analysis software to facilitate 

straightforward experiments where only protein plus each fragment cocktail is required 

to be tested. From the 674 Maybridge fragments that were screened by thermal shift 

analysis, there were 605 fragments that provided sufficiently different resonance 
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spectra, which could therefore be grouped into 55 fragment cocktails and tested by both 

STD- NMR and WaterLOGSY NMR (as described in section 2.3.5) to identify potential 

binding partners of ABAD protein. Purified ABAD protein was diluted with sodium 

phosphate assay buffer to give a final assay concentration of 20 µM (20 mg/mL as 

described in section 3.3.2) and added to 55 NMR tubes containing the 605 Maybridge 

fragment cocktails and 10 % D2O (as described in section 2.3.5). The 10% D2O solvent 

was added to the sample to reduce the spin-spin coupling resulting from the hydrogen 

bonding between molecules. Since D2O has a different magnetic dipole moment to 

hydrogen atoms, the signal produced by D2O does not contribute to the NMR signal at 

the hydrogen resonance frequency range.  

The NMR analysis (carried out using the AMIX profiler software) for both the STD-

NMR and WaterLOGSY-NMR experiments was carried out independently of each 

other, and then the results were compared to produce a table of fragments, which were 

categorised as ‘hits’ in both experiments. Due to the large number of ‘hit’ fragments 

identified, the individual STD-NMR ‘hits’ (89 fragments) and the individual 

WaterLOGSY- NMR ‘hits’ (78 fragments) are not presented here. Only the combined 

‘hits’ from both NMR experiments (51 fragments) are shown in Table 3.2.  
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Table 3.2: Maybridge fragment compounds that were binding partners with ABAD, identified 

using STD-NMR and WaterLOGSY-NMR. ID numbers represent their unique identifier within the 

NMR cocktail experimental set-up, alongside their corresponding Maybridge fragment library number.  

 

 

The next stage of the ‘hit’ fragment evaluation process was to compare these NMR 

‘hits’ with the previously identified thermal shift analysis ‘hits’. On comparison, these 

two techniques produced very little ‘hit’ similarity. From the 16 compounds identified 

by Dr Kirsty Muirhead (Table 3.1) there were only two fragments (fragment numbers 

94 and 390) that were also identified as ‘hits’ from the NMR experiments. On closer 

inspection of the thermal shift analysis data there were 8 compounds from the NMR 

experiments, which were also ‘hits’ in the thermal shift data, but had been discarded 

!"#$ %&'()*+,#$ !"#$ %&'()*+,#$
!"# $#% %&% '($
!"!! $)* %+! %*%
!,* #) %-.! *!(
!&! /% %0* !!'
!&!1 $1! %2/ %%!
!&!! !)$ %2!1 !'#
!+!1 **! %3!1 !!!
!0) !$! $"! '/1
!2# !(* $"' /(
!2!1 $'' $"% !*'
*"* $$$ $,/ %/#
*"$ !#) $&! '$#
*3% // $&* %'
'"% '%$ $+$ !%*
'"!! ')! $0# !#1
',' $%* $0) '$)
',/ '*1 $2!1 !'%
'&! %!' $3!! !$$
'&$ %)/ #"* !'/
'+! !'' #,! !%)
'+% %1/ #&! *!'
'-.* '(1 #-.! '$$
'-.( $*' #0% !(#
'0! %/* #3$ /#
'0$ '%(
'2* ')*
'2!1 !$1



Chapter 3: Elucidating and identifying potential small molecule inhibitors of the ABAD-Aβ interaction 

 107 	
  
	
  

	
  

during the thermal shift analysis identification process, possibly due to anomalies in the 

Tm curves, or because they had not produced a clear result on the first pass screen 

(described 3.3.1). These 8 ‘hit’ fragments are shown in Figure 3.6.  
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Figure 3.6: Nuclear magnetic screening and thermal shift analysis screening fragment ‘hit’ 

comparison. A) Maybridge fragment numbers of the 8 fragments that are ‘hits’ in both types of NMR 

experiment (STD-NMR and WaterLOGSY-NMR) and also classified as a stabilising ‘hit’ fragment in 

thermal shift analysis. B) The molecular structures of the 8 Maybridge fragments that interact with 

ABAD. Unique Maybridge library numbers for each compound are shown in red, alongside their 

unfolding temperatures (ΔTm) calculated from the thermal shift analysis.  Chemical names of the 

fragments are detailed as follows: 94: 7-methyl-1H-indole, 99: 1-benzofuran-5-amine, 136: 1H-indole-3-

carbonitrile, 217: 5-chloro-2-hydroxybenzonitrile, 221: 4-hydroxy-1-methyl bicyclo[2.2.2]octan-2-one, 

358: 2-(3,5-difluorophenyl)acetic acid, 390: 2-(1H-indol-3-yl)acetic acid, 441: 5-Methyl 

benzo[b]thiophene-2-methanol.     
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3.4.3 ABAD- Maybridge fragment co-crystallography 

In order to investigate these 8 ‘hit’ fragments further, it was necessary to gather more 

information on how these molecules interact with the ABAD protein. Therefore, x-ray 

co- crystallography was used to try and obtain a three dimensional structure of the 

interaction. It was hoped that from these co-crystal trial studies, that the key residues for 

interaction, on the ABAD protein, could be identified. By elucidating and understanding 

the mode of binding, then it would become easier to evaluate the fragment’s ability to 

occupy the available chemical space within the ABAD binding site. This structural 

information is invaluable if the fragments are to progress to chemical modification and 

onto ‘lead- like’ compounds (Carvalho et al. 2009).  

Co-crystallography trials of purified ABAD protein (10 mg/mL; produced as described 

in section 3.3) and the Maybridge fragment were set up as described in section 2.4.2. 

The Maybridge fragments were provided as 2 M stocks in DMSO, and were therefore 

diluted with DMSO to produce a 10 mM stock. It was initially observed that upon 

contact with the 10 mM Maybridge fragment stocks, that the ABAD protein then 

appeared to become denatured and precipitate out of solution. It was therefore suggested 

that the DMSO was facilitating the denaturing of the ABAD protein. To reduce the 

percentage of DMSO in the crystallographic trial and retain the ABAD protein in 

solution, the fragments were therefore diluted with water at a 50:50 ratio. All of the 

fragments demonstrated reduced aqueous solubility when this dilution was carried out 

with the exception of fragment 94 which appeared to remain in solution and was 

therefore progressed further into co-crystal trials with the ABAD protein. Several other 

solvents (for example, 1 x PBS solution, ethanol, isopropanol; all diluted with water) 

were also tested to try to remove or reduce the percentage of DMSO used in the co-
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crystal trials; however in all cases ABAD continued to denature and precipitate out of 

solution.  

In order to try and stabilise the ABAD protein, co-crystallisation trials were next set up 

in the presence and absence of NAD+. To date, all published crystal structures of ABAD 

have contained NAD+
 either bound to the co-crystals, or found within the crystal trial set 

up conditions (Powell et al. 2000; Kissinger et al. 2004; Lustbader et al. 2004) as this 

may be necessary for the stabilization of the structure. Conversely, the fragments could 

be binding to ABAD within the co-factor binding site, and so NAD+
 had been removed 

in some trials to rule out a competition effect. The co-crystal trials that were set up with 

ABAD (10 mg/mL) protein and Fragment 94 (10 mM) are shown in Table 3.3. Full 

details of the exact components of each crystal screen can be found in Appendix C.  The 

nature of the plates used allowed two different tests to be run in parallel using the same 

reservoir of screen solution. Therefore in a 96 well crystal trial it was possible to test a 

protein in 192 different conditions.  

 

Table 3.3: Co-crystal trial screen set up for ABAD and Maybridge fragment 94. 

Screen	
  Name	
   Site	
  1	
  Compound	
   Site	
  2	
  Compound	
  

JCSG	
   ABAD	
  +	
  94	
   ABAD	
  +	
  94	
  +	
  NAD	
  	
  

JMAC	
   ABAD	
  +	
  94	
   ABAD	
  +	
  94	
  +	
  NAD	
  

Sto	
  PEG	
  1	
   ABAD	
  +	
  94	
   ABAD	
  +	
  94	
  +	
  NAD	
  

Sto	
  20	
   ABAD	
  +	
  94	
   ABAD	
  +	
  94	
  +	
  NAD	
  

Sto	
  PEG	
  2	
   ABAD	
  +	
  94	
   ABAD	
  +	
  94	
  +	
  NAD	
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Two possible crystals were identified from these initial trials: in the JCSG screen in site 

2, position A11 and also in the Sto PEG 2 screen, site two position F2. The images 

taken of these two crystals are shown in Figure 3.7; however, these crystals did not 

achieve any notable diffraction when subjected to x-ray diffraction using the in-house x-

ray diffraction equipment at the University of St Andrews (Rigaku/MSC MicroMax-

007HF rotating anode equipped with a Saturn 944+ CCD detector).  

 

 

Figure 3.7: Images taken of needle like crystal arrangements obtained from the co-crystallography 

trials of ABAD and Maybridge fragment number 94. A) An image taken of the needle like crystals 

obtained from a JCSG crystal screen used to facilitate the co-crystallisation of ABAD and fragment 94. 

Conditions for reservoir well A11 are detailed under the image. B) An image taken of the needle like 

crystals obtained from the stochastic PEG 2 screen used to facilitate the co-crystallisation of ABAD and 

fragment 94. Conditions for reservoir well F2 are detailed under the image  

 

Unusually, the crystallography trials that contained ABAD’s co-factor NAD+ did not 

produce any notable crystals that could have been taken forward into in-house 
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diffraction trials. This finding was contrary to the literature, as all three previous journal 

articles had demonstrated ABAD protein crystallography have NAD+ present within the 

molecular structure. This could indicate that the crystals found are background 

precipitation and not needle like ABAD crystal structures. It also suggests that the 

NAD+ could be required to stabilise the conformation of ABAD, and also could further 

suggest that fragment 94 could be competing with the NAD+ and perhaps interacting 

with the protein in the NAD+ binding site.  

Therefore, in order to produce crystals that were capable of x-ray diffraction, the crystal 

conditions from the previously published human ABAD structure papers were used as a 

template for the screen design (Kissinger et al. 2004; Lustbader et al. 2004). However, 

unfortunately despite several attempts, it was not possible to reproduce the crystals that 

were achieved in these papers for ABAD protein, with bound Maybridge fragment. 

Due to the difficulties arising through both the fragment solubility issues, and the 

ABAD protein becoming denatured and the resulting precipitation causing problems 

during the co- crystallisation process, it was necessary to provide an alternative method 

of crystallisation. It was decided to pursue a method where native ABAD protein 

crystals were grown initially and then the fragments can then be soaked into the protein.    

 

3.4.4 Maybridge fragment soaking of ABAD crystals 

In an attempt to make an advancement with the ABAD and Maybridge fragment library 

and gain further structural information to allow the fragments to progress further along 

in the drug development pathway, purified native ABAD protein (10 mg/ml) was 

entered into crystallography trials. These trials were set up as described in section 3.4.3 

with the exception that the Maybridge fragment would be added (soaked in) once 



Chapter 3: Elucidating and identifying potential small molecule inhibitors of the ABAD-Aβ interaction 

 113 	
  
	
  

	
  

diffracting ABAD crystals were obtained. A summary of all the crystal trial screens 

performed are shown in Table 3.4, full descriptions of the screen conditions can be 

found in the Appendix C. All crystal plates were set up in a 96 well sitting drop method 

(section 3.4.3) with 10mg/mL ABAD, 1mM DTT, ± 5mM NAD+  

 

Table 3.4: ABAD crystal trial screen set up. 

Screen	
  Name	
   Site	
  1	
  Compound	
   Site	
  2	
  Compound	
  
JCSG	
   ABAD	
   ABAD	
  +	
  NAD	
  
JMAC	
   ABAD	
   ABAD	
  +	
  NAD	
  

Sto	
  PEG	
  1	
   ABAD	
   ABAD	
  +	
  NAD	
  
Sto	
  20	
   ABAD	
   ABAD	
  +	
  NAD	
  

Sto	
  PEG	
  2	
   ABAD	
   ABAD	
  +	
  NAD	
  
Sto	
  19	
   ABAD	
   ABAD	
  +	
  NAD	
  
Sto	
  18	
   ABAD	
   ABAD	
  +	
  NAD	
  

Sto	
  Peg	
  3	
   ABAD	
   ABAD	
  +	
  NAD	
  
Sto	
  17	
   ABAD	
   ABAD	
  +	
  NAD	
  
Sto	
  21	
   ABAD	
   ABAD	
  +	
  NAD	
  
Sto	
  22	
   ABAD	
   ABAD	
  +	
  NAD	
  

ABAD	
  Opt	
  1	
   ABAD	
   ABAD	
  +	
  NAD	
  
ABAD	
  Opt	
  2	
   ABAD	
   ABAD	
  +	
  NAD	
  
ABAD	
  Opt	
  3	
   ABAD	
   ABAD	
  +	
  NAD	
  

  

 

From the stochastic screens (detailed in Table 3.4), many different types of crystals 

were observed. By selecting the best-observed crystals, well conditions were examined 

and varied significantly to produce three optimisation trials (again, full optimisation 

conditions can be found in Appendix C). One of these conditions proved to be most 

effective as a basis for crystallography trials: 0.77 M Sodium Citrate (unbuffered), 0.1 

M Sodium Citrate (pH 5.5), 0.17 M Magnesium Acetate (From Sto19, well E3, site 2, 

shown in Figure 3.8). Altering these conditions within a 96 well plate to create an 

optimised crystal trial (LA opt 1) appeared to be the most successful optimisation 

crystal trial, with crystal structures appearing to form in nearly all the wells. 
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Nevertheless, on continuing this forward to in-house x-ray diffraction (Rigaku/MSC 

MicroMax-007HF rotating anode equipped with a Saturn 944+ CCD detector, 

University of St Andrews), no notable diffraction was seen in any of the 12 crystals 

sampled. Another crystal, from each of the 12 crystals sent for in- house diffraction 

analysis, was re-solubilized in gel filtration buffer (section 3.3.2) and analyzed by SDS- 

PAGE gel electrophoresis to establish if ABAD protein was detectable in the crystals.  
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Figure 3.8: Crystal trials with ABAD protein. A-D) Needle like crystals obtained from stochastic 

crystal screen trials. Reservoir well conditions for each crystal are detailed as follows: A) Stochastic18- 

well C6, site 2: 2.41 M Sodium- DL Malate (pH 7.0), 0.1 M Sodium Citrate (pH 4.5), 0.19 M Potassium 

Nitrate.  B) Stochastic19- well E3, site 1: 0.77 M Sodium Citrate (unbuffered), 0.1 M Sodium Citrate (pH 

5.5), 0.17 M Magnesium Acetate. C) Stochastic PEGS 3- well H9 site 1: 12.42% PEG MME 5000), 0.1 

M Bis tris (pH 6.0) 0.28 M Magnesium Sulphate. D) Stochastic PEGS 3- well G6, site 1: 24.01% PEG 

8000, 0.1 M Bicine (pH 8.5), 0.26 M Sodium Potassium Phosphate.  B) The conditions from this 

experiment were used to design a crystal optimisation screen (LA Opt1). 

 

Despite best efforts diffracting ABAD crystals were unable to be produced. X-ray 

crystallography is a time consume process, with ABAD crystals taking between 7-21 

days to grow, however, these trials have provided a basis for future ABAD 

crystallography investigation studies.  
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3.5 Conclusion and summary of results 

Nuclear magnetic resonance (NMR) spectroscopy was a technique used successfully in 

this chapter to validate previously identified small molecule binding partners of ABAD. 

Two types of NMR experiments (saturation transfer difference (STD) and 

WaterLOGSY) were selected for this purpose. Both NMR experiments were run in 

parallel against ABAD protein mixed with Maybridge fragments, creating a fast and 

effective screening method. By applying both NMR experiments this acts as a 

validation experiment, in itself, as only fragments that displayed a change in their 

spectrum (signifying ABAD binding occurring) in both the STD-NMR and 

WaterLOGSY NMR experiments were taken forward and classified as true ‘hit’ 

compounds for analysis against the previously obtained results from the thermal shift 

analysis results. 

The NMR analysis revealed 51 ‘hit’ small molecule binding partners of ABAD protein 

from the Maybridge fragment library. Of these 51 compounds, eight compounds 

(fragment number 94, 99, 136, 217, 221, 358, 390 and 441) were classified as ‘hit 

molecules in both thermal shift analysis (TSA) and two NMR experiments. The 

structures of these fragments are shown in Figure 3.6..  

These fragments were then taken forward into co-crystallography trials with purified 

ABAD protein. Unfortunately, despite several attempts no diffracting crystals were 

obtained, despite stochastic screening against many conditions and further screen 

optimisation based on the observed crystal images.  It was therefore decided to try and 

crystallise native ABAD protein, before soaking in the fragment once diffracting ABAD 

crystals could be achieved and reproduced successfully. Again, despite the many 

crystallography trials set up, no diffracting ABAD crystals could be achieved. These 
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crystallography studies do however provide a basis for any future ABAD 

crystallography trials in excluding and narrowing down many crystallography 

conditions that were unsuccessful. The conclusion and discussion of these results as 

well as future perspectives is described further in Chapter 6.   
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4.1  Introduction  

Cyclophilin D is a mitochondrial protein that is known to interact with Aβ (Yao et al. 

2007; Yan et al. 1999; Yan et al. 2007). During times of oxidative stress or in the 

presence of Aβ, this promotes the translocation of CypD to the inner mitochondrial 

membrane, contributing to the opening of the mPTP and causing cell death. Therefore 

by preventing the translocation of CypD then this could be beneficial in the treatment of 

Alzheimer’s disease. This hypothesis has already been proven, by inhibiting the CypD- 

Aβ interaction in the transgenic mAPP expressing AD mouse model, and this in turn has 

been shown to improve cognitive function and recover memory loss (Du et al. 2008; Du 

et al. 2011). As this interaction is becoming better understood, the direction of this 

chapter of my thesis focussed on another potential binding partner of CypD, amyloid 

binding alcohol dehydrogenase (ABAD), and the difficult task of trying to prove the 

unpublished hypothesis from Yan and Stern in 2004. This hypothesis suggested that 

ABAD can bind to CypD and that the ABAD-Aβ interaction may encourage the 

opening of the mPTP, leading to neuronal death (unpublished observation, Yan and 

Stern, 2004).  In addition, previous work from the Gunn-Moore laboratory has agreed 

with this hypothesis as it was backed up by FRET (Förster resonance energy transfer) 

observed between the two proteins (Ren 2008). However as yet, these results have 

failed to be replicated at the biochemical level.  

Therefore, in order to confirm this potential binding partner of CypD it was necessary to 

elucidate these possible interactions further. There are many biophysical techniques that 

can be employed to investigate protein- protein interactions, and in this chapter the two 

techniques, which were used x-ray crystallography and isothermal titration calorimetry 

(ITC).  
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4.1.1  X-ray Crystallography 

X-ray crystallography is a well-used technique and is considered to be the optimum 

method for establishing the three dimensional structure of a molecule, by determining 

the arrangement of atoms within the crystal. The data that is produced from x-ray 

crystallography includes the size of the atoms, length of the bonds, types of bonds, bond 

angles and the disorder in the molecule. X-ray crystallography works on the principle 

that protein crystals will diffract x-rays to produce diffraction wave patterns in the form 

of the constructive, destructive or partial interference of scattered waves. The diffraction 

pattern produced obtains the orientation of atoms in space (via bond lengths and angles) 

or the atomic positions within a regular crystal lattice. The process relies on having a 

crystal which is capable of being mounted on a goniometer and then rotated, whilst 

being bombarded with x-rays to produce the pattern of reflections (or scattering 

diffraction pattern). This in itself means that any imperfections or cracks in the crystal 

will produce poor data (Drenth 2006).    

There are certain pitfalls and limitations when carrying out x-ray crystallography, with 

the main difficulty being that growing suitable crystals capable of diffraction is a time 

consuming endeavour. Crystals for x-ray diffraction must be pure (homogenous) and 

perfectly formed, with no twinning (when two crystals are formed in a symmetrical 

manner they will share crystal lattice points and so this increases the symmetry 

observed. This observed symmetry does not correlate to the crystal itself and is known 

as twinning), imperfections or contaminants and they must be relatively small usually 

about 0.2 mm (Drenth 2006). Flexibility within a molecule (such as in the loop D region 

of ABAD) also proves problematic when looking to achieve good quality crystals. A 

further difficulty in protein crystallography is the fragile nature of the crystals 

themselves. Proteins are irregularly shaped and any change in temperature, pH or 
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protein concentration will have an effect on the ability to produce diffracting crystals. 

Also a new protocol for the optimal crystal conditions must be defined for each protein 

and therefore in order to obtain these unique conditions for each new protein can be 

very time consuming. This individual protocol per protein, also applies to different 

proteomes and mutations within the protein itself may well require changes to the 

crystallisation conditions (Drenth 2006).  

Once these pitfalls have been overcome the complicated two-dimensional data can be 

analysed and converted into a three-dimensional data set in the form of electron density 

maps. The data is then indexed to identify the unit cell dimensions, symmetry and the 

molecule’s space group. After indexing, the data is then integrated to record the Millar 

index and intensity of each reflection. In order to assess the quality of the data the R-

factor can then be calculated, to give an estimate of how many errors there are and the 

reliability within a data set (Drenth 2006). When analysing the 3-D data, the phase of 

the wave cannot be calculated and therefore the important structure factor cannot be 

calculated. Therefore the phase of the wave is estimated using various techniques such 

as molecular replacement, anomalous x-ray scattering or heavy atom derivatives to 

solve the phase problem.  Once this is complete a structural model can then be built and 

the refinement process can begin to improve it. This involves building a new electron 

density map and measuring this against the original map to produce a new R-factor. 

This could be repeated several times until a molecule’s structure is solved and deposited 

into a crystallographic database such as the Protein Data Bank (PDB) (Drenth 2006). 
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4.1.2  Isothermal Titration Calorimetry 

Isothermal titration calorimetry (ITC) is a biophysical technique that is used to 

determine the thermodynamic parameters of interactions in solution. ITC works by 

taking a direct measurement of the heat effect produced during an interaction, i.e. ITC 

measures the release (exothermic) or absorption (endothermic) of heat. This technique is 

capable of measuring the binding affinity (Ka) changes in enthalpy (ΔH) and the 

stoichiometry of two molecules in solution. Using these measurements it is then 

possibly to calculate the entropy (ΔS) and Gibbs free energy changes (ΔG) (Pierce et al. 

1999). When used in conjunction with other biophysical techniques, such as structural 

information gained from x-ray crystallography, ITC can complete the representation of 

a protein- protein interaction and help to understand the forces that stabilise the folded 

conformations of proteins (Pierce et al. 1999).  

During an ITC experiment, a syringe containing one protein solution (ligand) is titrated 

into a cell containing a solution of the other protein at a constant temperature (Figure 

4.1). When the ligand is injected into the cell, the two compounds interact, and heat is 

released or absorbed in direct proportion to the amount of binding. As the protein in the 

cell becomes saturated with ligand, the heat signal diminishes until only the background 

heat of dilution is observed (Pierce et al. 1999). 

Although ITC has many advantages the major disadvantage it has, which is also similar 

to other biophysical techniques (Guss & King 2011), such as surface plasmon resonance 

(SPR), is the high concentration and quality of protein which is required. The sensitivity 

of the instrument can also be a problem and obtaining a Kd range for low affinity 

interactions is very difficult (Jecklin et al. 2009).  
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Figure 4.1 ITC experimental set up. A) The cell feedback network which is used to measure and 

compensate for the heat produced during an interaction. The syringe is rotating during an experiment to 

facilitate mixing and the plunger is used to inject precise volumes into the cell. B) Enhancement of the 

two coin shaped cells within the machine whereby the thermoelectric device measures changes between 

the cell sample and the reference cell (ΔT1) and changes within the reference cell and the jacket (ΔT2). As 

the interaction occurs heat is released or absorbed and as ΔT1 is kept constant, as a baseline, throughout 

the study the power required to maintain this constant measurement is described as the total heat change 

resulting from the interaction. (Adapted from GE Healthcare technologies 

http://www.microcal.com/technology/itc.asp). 
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4. 2  Chapter aims 

Using both x-ray crystallography and isothermal titration calorimetry the ultimate aim 

of this chapter was to establish whether CypD binds to ABAD and the subsequent 

parameters for this interaction. In order to achieve these goals, new DNA constructs 

were prepared in order to attempt to identify the binding site and key residues of the 

interaction. The general work- flow plan is depicted in Figure 4.2. 

 

 

Figure 4.2: Schematic representation of the CypD experiments performed in this chapter. The basis 

of the work flow program for this chapter, starting with x-ray crystallography and ITC experiments using 

a truncated, mutated CypD construct, then leading onto utilising several full length CypD studies and 

biophysical experiments with purified CypD protein.   
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4.3 Truncated CypD experiments 

4.3.1 ΔCypD K133I background 

The only CypD construct which had been previously crystallised successfully to date, 

was a truncated mutant construct (ΔCypDK133I) which was missing 29 amino acids from 

its N-terminal region (Schlatter et al. 2005; Kajitani et al. 2008). This construct was a 

kind gift from Dr Masahiro Fujihashi (Kajitani Group, Kyoto University, Japan). Figure 

4.3 shows the plasmid construct that encodes the truncated mutant CypD (ΔCypDK133I) 

insert within the bacterial expression vector pET 21a, the DNA sequence can be found 

in Appendix A. Of particular note is that as well as the truncation of the N terminus, a 

key residue was mutated at position 133, where a K133I mutation has been inserted into 

the construct to improve crystallisation (Kajitani et al. 2008) (Protein sequences are 

detailed in Appendix A). 
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Figure 4.3: Plasmid construct pET21a- ΔCypDK133I. The truncated CypD (ΔCypDK133I, shown in red) 

insert, located between the Nde1 and BamH1 restriction sites in the pET21a bacterial expression vector. 

The antibiotic resistance for this construct is ampicillin. The K133I mutation is also shown on the 

ΔCypDK133I insert in green. (ΔCypDK133I protein MW= 17759 Da) 

 

4.3.2 ΔCypDK133I expression and purification 

In order to carry out biophysical techniques it was necessary to produce and purify the 

truncated ΔCypDK133I protein. Firstly, the ΔCypDK133I expressing plasmid was 

transformed into E.coli BL21 Codon Plus cells as described in section 2.1.8. As this 

construct had not been used previously in our laboratory, it was necessary to start with 

expression trials on a small scale induction test format (section 2.2.2) in order to 

determine if the expressed protein was soluble and what bacterial growth conditions 

were optimal for protein expression. These bacterial expression conditions were found 

to be growth at 37 °C, 210 rpm for approximately 4 h (or until an absorbance at 600 nm 

of ~0.6 was obtained), before protein expression was induced by the addition of 

isopropyl β-D-1-thiogalactopyranoside (IPTG; 1 mM), followed by incubation at 20 °C, 
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180 rpm for 16 h. Once these tests were complete, large scale expression experiments 

(section 2.2.3) were then performed before progressing onto protein purification 

(section 2.2.6). Next after further method development to find the optimal buffers and 

identify the most efficient columns for purifying the protein completely, the purified 

truncated CypD protein was produced. Figure 4.4 summarises the various stages of this 

ΔCypDK133I purification and the production of pure ΔCypDK133I protein as indicated by 

SDS- page gel electrophoresis (section 2.2.1). 
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Figure 4.4 ΔCypDK133I in the purification process. A) A gel image taken after electrophoresis showing 

ΔCypDK133I containing protein fractions recovered after the first cation exchange column. Lanes 2-12 

indicate the impure fractions from the cation exchange column (these lanes exhibit multiple protein bands 

including a protein band at the correct expected molecular weight for ΔCypDK133I at around 17.8 kDa). 

Lanes 13-15 indicate more pure ΔCypDK133I protein, with one protein band visible at the expected MW 

for ΔCypDK133I.  B) A gel image taken after electrophoresis showing ΔCypDK133I containing protein 

fractions recovered after the second cation exchange column. Lanes 2-3 indicate impure protein fractions, 

with more than 1 protein band visible, and therefore these samples were discarded. Lanes 4-7 indicate 

purer ΔCypDK133I containing fractions with a visible protein band at the expected ΔCypDK133I molecular 

weight. These fractions were pooled and continued the purification process onto dialysis and gel 

filtration. C) A gel image taken after electrophoresis showing ΔCypDK133I containing protein fractions 

recovered after gel filtration. Lanes 2-4 show no ΔCypDK133I protein has been recovered after gel 

filtration in the corresponding fractions, however lanes 5-9 indicate pure ΔCypDK133I with a protein band 

visible at the expected molecular weight. Subsequently these fractions were collected and flash frozen in 

liquid nitrogen before final storage at 25 mg/mL, 25 µL aliquots, -80 °C. The presence of ΔCypDK133I 

protein was also confirmed by MALDI-TOF mass spectrometry.  
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As the ΔCypDK133I protein is in an untagged construct the protein purification was 

complex and time consuming. In order to achieve pure protein, the purification took 

approximately 4 days in total, and this created a problem whereby the yield achieved 

was very low and it was found that the protein often precipitated out from solution. By 

purifying more than 6 L of bacterial ΔCypDK133I expressing cultures in one run, the 

purification columns became saturated and were less effective, and so it was necessary 

to perform multiple purifications. Overall, the average yield obtained from a 6 L 

bacterial culture expressing ΔCypDK133I, after purification, was in the region of 20- 25 

mg.   

 

4.3.3 ΔCypDK133I and ABAD co-crystallography 

Despite the low protein yield, I had managed to purify enough protein to investigate 

whether the truncated CypD protein can bind to ABAD by setting up co-crystallisation 

protein trials. These were set up as described in section 2.4.2. These trials did 

successfully produce crystals in various conditions (most notably in 25% Jeffamine and 

0.1 M HEPES pH 7.5), which were all capable of diffraction in house using the 

Rigaku/MSC MicroMax-007HF rotating anode equipped with a Saturn 944+ CCD 

detector at a wavelength if 1.54 Å. Details of these crystals are shown in Figure 4.5. As 

the crystal structure of both the human ΔCypDK133I (Schlatter et al. 2005; Kajitani et al. 

2008) and the human ABAD (Lustbader et al. 2004) protein had been previously 

solved, the crystal structure of these potential co-crystals was easy to establish using 

molecular replacement. Unfortunately the analysis revealed that these potential co-

crystals were simply a replication of Schlatter and Kajitani's work in producing only 

ΔCypDK133I crystals, with no ABAD present. This was also confirmed by SDS-page gel 
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electrophoresis of a solubilised protein crystal which showed only the presence of the 

ΔCypDK133I protein and not the ABAD protein (Figure 4.5).  

 

 

 

Figure 4.5: ΔCypDK133I protein x-ray crystallography, both individually and in a co-crystallisation 

attempt with purified ABAD protein. A) An image of a ΔCypDK133I protein crystal obtained from a 

crystallographic trial. B) Diffraction pattern of the ΔCypDK133I protein crystal. C) A gel image of a taken 

of re-solubilised co-crystals which confirmed that the crystals obtained are purely ΔCypDK133I crystals, 

with a protein band being visible around the expected molecular weight of 17.8 kDa and no visible 

protein band at 27 kDa, the expected molecular weight of ABAD protein. (If these were co-crystals after 

re-solubilisation, there would have been two protein bands generated at each of the protein’s predicted 

molecular weight). This result was also confirmed by mass spectrometry.  



Chapter 4: Results and Discussion: CypD as a therapeutic AD target 

 

 133 	
  
	
  

	
  

It was therefore hypothesised that the CypD binding site could be in the missing region 

of the ΔCypDK133I construct, or that the K133I mutation (present in ΔCypDK133I to 

improve the crystal contacts) was preventing the ABAD from binding.  

It was therefore decided to first try a pull down assay using the His-tagged ABAD and 

ΔCypDK133I using a Ni2+- NTA column to test if the two compounds would bind and 

could be purified together. This was carried out by first, resuspending a cell pellet of 

E.coli BL21 containing ΔCypDK133I in lysis buffer and a cell pellet of E.coli BL21 

containing His-TEV ABAD, then incubating both proteins together for 1 h at 4 °C with 

mixing. This mixture was then lysed and purification was carried out as detailed in 

section 2.2.5. Unfortunately SDS-page gel electrophoresis revealed, that after the 1st 

nickel column there were no bands present at the expected MW of 45 kDa 

(ΔCypDK133I = 17.8 kDa, ABAD=27 kDa, total= 44.8 kDa).  

Therefore at this stage, it was unclear whether ΔCypDK133I is capable of binding to 

ABAD; to investigate this further it was then decided to perform an ITC experiment 

with the two proteins.  

 

4.3.4 ΔCypDK133I and ABAD Isothermal Titration Calomrimetry 

An ITC experiment using the VP-ITC instrument (Microcal LLC) with purified 

ΔCypDK133I and ABAD protein was set up in accordance with section 2.3.3, to test the 

binding in the micro molar range. Due to the sensitive nature of ITC experiments, all 

buffers were prepared and degassed fresh before use to limit the chance of experiencing 

any temperature changes that are not specific to the reaction. ITC experiments require a 

large amount of protein therefore in this experiment the limiting factor was the quantity 
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of purified ΔCypDK133I protein, so this was placed into the syringe and injected into the 

cell containing ABAD protein at regular intervals (section 2.3.3).  

The raw data was processed using MicroCal Origin software and a baseline and 

integration adjustments were carried out manually. The results of this ITC experiment 

confirmed that ΔCypDK133I appears to be unable to bind ABAD (Figure 4.6). 
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Figure 4.6: ΔCypDK133I and ABAD ITC experiment compared to a typical representative ITC binding 

result. A) Top half of diagram- ΔCypDK133I protein from the syringe injected into ABAD protein in the ITC cell 

over a period of 80 minutes. A) Bottom half of diagram- integrated heats of the ΔCypDK133I injections into 

ABAD. As the plotted data does not fit to a sigmoidal curve, this indicates that no binding is occurring. B) Top 

half of diagram- A typical plot for the injection (raw) data from two random interacting proteins. The heat 

released upon their interaction (ΔH, µcal/sec) is monitored over time. Each peak represents a heat change 

associated with the injection of a small volume of sample into the ITC reaction cell. As successive amounts of the 

ligand are titrated into the ITC cell, the quantity of heat absorbed or released is in direct proportion to the amount 

of binding. As the system reaches saturation, the heat signal diminishes until only heats of dilution are observed B) 

Bottom half of diagram- Typical integrated heat results of two random proteins interacting during an ITC 

experiment. The sigmoidal nature of the curve is a classic representation of the type of data achieved in an ITC 

experiment when two proteins interact. The binding curve is analysed with the appropriate binding model to 

determine KB, n and ΔH. Where KB = 1/Kd. (taken from GE Healthcare technologies: 

http://www.microcal.com/technology/itc.asp). 
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4.4 His-TEV CypD experiments 

4.4.1 His-TEV CypD background 

The results from section 4.3 indicated that the truncated and mutated CypD construct 

(ΔCypDK133I) was not able to bind or interact with ABAD. One possible reason for this 

could be due to the fact that the ΔCypDK133I construct is missing an important N-

terminal region, or that the presence of the K133I mutation was preventing the 

interaction. Therefore, despite previous researchers’ experiences and noted 

observations, it was deemed necessary to use a full length CypD encoding construct to 

investigate these possibilities. As previously described, most biophysical techniques 

tend to require a significant amount of purified protein. Therefore, in order to increase 

the protein yield recovered after purification it was important to use the quickest and 

simplest purification method possible. In this instance, it was decided to apply a 

histidine tag to the full-length, non-mutated CypD construct. By using a histidine tag 

this aids purification by allowing the protein to be purified using a HisTrap column 

containing Ni2+ Sepharose. Proteins with a histidine construct bind onto the nickel 

sepharose, whilst impurities simply pass through the column. After histidine tag 

cleavage the column can also be used to separate cleaved protein from the cleaved 

histidine tag, as the tag will bind to the column and cleaved protein will flow through 

the column. This method of utilising an affinity purification tag is regarded as one of the 

easiest method of protein purification (Kobs 2004). This DNA construct was made by 

Dr Kirsty Muirhead (Formally FGM group) and is shown in Figure 4.7. (The DNA and 

protein sequence can be found in Appendix A). 
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Figure 4.7: pEHis-TEV- CypD. The full length CypD insert (shown in red), is located between the 

BamH1 and Hind III restriction sites of the bacterial expression vector pEHis-TEV. The antibiotic 

resistance for this construct is kanamycin. The Histidine tag is shown in green, and the TEV cleavage site 

for tag removal is shown in pink (MW of purified protein = 23079.3 Da). 

 

4.4.2 His-TEV CypD expression and purification 

In order to produce the His-tagged full length CypD protein, the His-TEV CypD 

expressing plasmid was transformed into E.coli BL21 Codon Plus cells as described in 

section 2.1.8. Again, initial small scale induction tests (section 2.2.2) revealed that the 

protein appeared to express well: however, when a small scale purification test was 

carried out (section 2.2.4) the His-TEV CypD protein was found as an insoluble fraction 

in the resuspended cell pellet instead of being found in the soluble fraction after cell 

lysis. Therefore, in order to minimise the time spent on method development for this 

construct, a 96 well block method for testing protein expression and trialling protein 
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purification was carried out (section 2.2.10). This was a relatively new technique for the 

laboratory at the time, in fact it had only been performed twice previously, but it was 

seen as a fast and efficient way of testing protein expression in several bacterial cell 

lines at the same time.  

The use of differing bacterial cultures and media can enhance the expression of 

bacterially expressed protein. Therefore, the His-TEV CypD protein expression and 

purification was tested against 8 different bacterial expressing cell lines. The following 

cell lines were all transformed with the plasmid expressing His-TEV CypD:  BL21 

(DE3), C43 (DE3), Rosetta (DE3), Origami (DE3), Tuner (DE3), BL21* (DE3), 

HMS174 (DE3) and BLR (DE3) cells, at the same time as also being tested against 

three different medias (LB Broth, TB Broth and auto-induction media). This technique 

is explained in further detail in section 2.2.10, but the 96 well block layout is detailed in 

Table 4.1. Further details of all bacterial cell lines used in these experiments can be 

found in Appendix B.  
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Table 4.1: 96well plate expression set up. Each row represents a different E. coli cell line expressing 

His-TEV CypD. Coloured wells represent different media types (yellow LB media; orange TB media; red 

AI media). 

 

 

BL21 

DE3 

A1 

 

          A12 

C43 

(DE3) 

B1 

 

          B12 

Rosetta 

(DE3) 

C1 

 

          C12 

Origami 

(DE3) 

D1 

 

          D12 

Tuner 

(DE3) 

E1 

 

          E12 

BL21* 

(DE3) 

F1 

 

          F12 

HMS174 

(DE3) 

G1 

 

          G12 

BLR 

(DE3) 

H1 

 

          H12 
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Two His-TEV CypD protein samples from each transformed bacterial cell line grown in 

the different media were analysed by SDS-PAGE gel electrophoresis using a 96 well 

6% E-PAGE gel (Invitrogen). The two His-TEV CypD samples analysed were the 

resuspended cell pellet sample and the corresponding elution fraction; in order to test 

for His-TEV CypD protein in both soluble and insoluble fractions. This method also 

allowed for all the samples to be run together, on a single 96well gel, with the exception 

of the BL21 DE3 samples as these had been tested previous. Figure 4.8 shows an image 

of the gel after electrophoresis, and from this it can be seen that in all the bacterial cell 

lines, and in all the different media types, the His-TEV CypD protein was found in the 

insoluble cell pellet fraction, as indicated by a protein band at the expected His-TEV 

CypD molecular weight of 23 kDa.  
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Figure 4.8: A 96 well gel image of E. coli cell lines expressing His-TEV CypD protein. An image of a 

gel taken after the 96 well E-PAGE gel electrophoresis after His-TEV CypD protein purification. Wells 

1-6 represent the elution samples for each cell line in various media. Wells 7-12 represent the equivalent 

sample for each cell line taken from resuspending the corresponding cell pellet collected after lysis. Each 

row represents a different bacterial expressing cell line. The red arrows indicate the protein band where 

His-TEV CypD protein is expected to be found (MW=23 kDa), but due to the complex nature of this gel, 

only the protein band in rows A, C, E and G have been highlighted, even though this protein band was 

found in rows A-G, wells 6-12. The difficulty in analysing the gel image due to size and skewed running 

nature was aided by confirming the presence of His-TEV CypD, in the highlighted protein bands, by 

MALDI-TOF mass spectrometry.  

 

This experiment was repeated a further two times, following the method described in 

2.2.10, with the exception that after induction, the incubation temperature was lowered 

in the first repeat experiment to 20 °C. After the same results were observed during gel 

electrophoresis analysis, the second repeat experiment used a temperature of 15 °C after 

induction, with the incubation time being increased to 24 h to obtain sufficient His-TEV 
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CypD protein expression in such a low temperature. Unfortunately the results obtained 

from these two experiments were identical to those obtained and shown in Figure 4.8.  

In conclusion, despite using a range of different bacterial cell lines and also different 

induction conditions and media types, the full length His-TEV CypD protein appeared 

to be insoluble when expressed. It may have been possible to buy in more bacterial 

expressing cell lines and keep repeating this technique until eventually a soluble 

expression system was found, but that would have been costly and time consuming.  

Also, by introducing another point mutation into the His- TEV CypD sequence this may 

have changed the conformation sufficiently to allow soluble His-TEV CypD expression 

and purification, but introducing a different mutation other than the K133I point 

mutation found in the ΔCypDK133I construct would have complicated the analysis of this 

hypothesis further, as a full length non- mutated construct was most needed in order to 

gain further knowledge about this CypD-ABAD interaction. Therefore it was chosen to 

abandon work with the His-TEV CypD construct and proceed with another affinity 

tagged purification method and utilise a different fusion tag to aid purification; a full 

length glutathione S- transferase tagged (GST) CypD construct.  
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4.5 GST- tagged CypD experiments 

4.5.1 pGEX-4T-1 CypD background 

As the His-TEV CypD construct produced insoluble protein, it was necessary to utilise 

a different affinity tagged CypD protein in order to achieve the purification of a full 

length CypD protein. A full length GST-fusion CypD construct was therefore obtained 

from our collator Prof Shi Du Yan (University of Kansas).  The full length CypD insert 

was cloned into the pGEX-4T-1 vector located between the EcoR1 and Xho1 restriction 

sites. This vector contains a thrombin protease cleavage site for GST tag removal.  This 

vector is also ampicillin resistant. (pGEX-4T-1 CypD plasmid map is shown in Figure 

4.9 and the DNA sequence can be found in Appendix A). 
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Figure 4.9: pGEX-4T-1 CypD. The full length CypD DNA insert (shown in red) is located between the 

EcoR1 and Xho1 restriction sites of the bacterial expression vector pGEX-4T-1. The antibiotic resistance 

for this construct is ampicillin. The GST tag is shown in blue and the construct contains a Thrombin 

cleavage site for GST tag removal which is shown in pink (MW= 49079.3 Da). 

 

 

4.5.2 pGEX-4T-1 CypD expression and purification 

In order to produce full length GST CypD protein, the GST CypD expressing plasmid 

was transformed into E.coli BL21 Codon Plus cells as described in section 2.1.8. Once 

again initial small scale induction tests (section 2.2.2) revealed that the GST CypD 

protein appeared to express well. Therefore, a large scale expression study was carried 

out (section 2.2.3) before proceeding onto GST CypD protein purification as detailed in 

section 2.2.7. The method for purification was adapted from the GE Healthcare GST 

protein purification manual, with certain inclusions such as increased concentration of 

DTT to improve CypD protein solubility.  



Chapter 4: Results and Discussion: CypD as a therapeutic AD target 

 

 145 	
  
	
  

	
  

Upon the addition of the thrombin protease in order to remove the GST tag, the GST tag 

was still found bound to the protein regardless of how many units of thrombin was 

added to the protein (gel image after electrophoresis is shown in Figure 4.10). 

Unfortunately, this finding was also found to be consistent with other co-researchers 

who had previously used this GST vector: therefore a different vector base, pGEX-6P-1 

was selected for use which contains a PreScission protease cleavage site. Due to the 

large size of the GST tag (26 kDa) it was anticipated that the CypD protein may not fold 

as efficiently or maintain its conformation throughout protein expression and 

purification. This theory proved could be correct as it appears that the CypD protein 

could be folding in a way that prevents thrombin protease from working effectively.  
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Figure 4.10: SDS-PAGE of the purification of pGEX-4T-1 CypD. Lane 2 is a crude bacterial fraction 

containing the GST CypD protein recovered after the first step of purification; cell lysis. The white box 

highlights the position of where the expected molecular weight of GST CypD would appear (49 kDa). 

Lanes 3-7 are GST CypD protein containing fractions recovered after the thrombin protease cleavage step 

of purification. The red arrow indicates that the GST CypD complex is still present and makes up the 

majority of the proteins in the solution. Initially it was thought that the protein band indicated by the blue 

arrow (in lanes 3-7) was the cleaved CypD protein, however when analysed by mass spectrometry it was 

found that this protein band was an uncoupled GST monomer. These results are representative of further 

experiments that were carried out to establish the correct ratio of thrombin: GST CypD protein for 

cleavage of the GST tag. Subsequently the parameters for the thrombin cleavage of the GST tag on the 

CypD protein could never be established.  

 

4.5.3 pGEX-6P-1 CypD plasmid creation 

An empty pGEX-6P-1 vector and its tag removal protease (PreScission) was a kind gift 

from Dr Jesko Koehnke (Prof Jim Naismith group, University of St Andrews). In order 

to create the pGEX-6P-1 CypD construct, both the pGEX-6P-1 vector and pGEX-4T-1 

CypD were digested with EcoR1 and Xho1 to remove the CypD insert from the pGEX-

4T-1 vector and to linearize the vector before ligation (described section 2.1.3). The 

restriction digest product was then run on a 2% agarose gel for optimal DNA separation 
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and the full length CypD containing DNA insert was isolated from the gel band as 

described in sections 2.1.4 and 2.1.5. The isolated CypD DNA was then ligated into the 

linearized pGEX-6P-1 vector as described in section 2.1.6. This process is shown in 

Figure 4.11.  

 

 

Figure 4.11: pGEX-6P-1 CypD plasmid preparation. A) pGEX-6P-1 vector was digested with EcoR1 

and Xho1 to linearize the vector before ligation. B) pGEX-4T-1 CypD was digested with EcoR1 and Xho1 

to remove the CypD DNA insert. (Continued overleaf) 
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Figure 4.11: pGEX-6P-1 CypD plasmid preparation continued: C) Following gel extraction, the cut 

pGEX-6P-1 vector (A) was ligated with the isolated CypD DNA (B) resulting in the pGEX-6P-1 CypD 

plasmid formation.  

 

 

4.5.4 pGEX-6P-1 CypD expression and purification 

Before pGEX-6P-1 CypD protein could be expressed and purified it was necessary to 

express and purify a large quantity of PreScission protease in order to be able to cleave 
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the GST tag. This is a straightforward purification process using a GSTrap column 

containing glutathione sepharose, which is capable of binding a GST- tagged protein, 

whilst other impurities will flow through the column. This is described in more detail in 

section 2.2.8. Mass spectrometry and gel electrophoresis analysis confirmed that only 

PreScission protease had ben produced (shown in Figure 4.12).  

Firstly the pGEX-6P-1 CypD (GST CyD) expressing plasmid was transformed into 

E.coli BL21 Codon Plus cells as described in section 2.1.8. Initial small scale induction 

(section 2.2.2) revealed that the GST CypD protein appeared to express well. Therefore, 

a large scale GST CypD expression was carried out (section 2.2.3) proceeding onto 

purification as detailed in section 2.2.9. Again, the method for purification was adapted 

from the GE Healthcare GST protein purification manual, with certain inclusions such 

as the increased concentration of DTT to improve protein solubility and overnight 

incubation of PreScission protease (with dialysis) to allow complete removal of the 

GST tag. Following purification, the recovered, pure, full length CypD protein was 

flash frozen in liquid nitrogen and stored at -80 °C. The yield was slightly lower than 

anticipated as there appeared to be a large amount of uncoupled GST monomers and 

dimers produced after lysis, however on average approximately 50 mg of protein was 

recovered from a 6 L bacterial expression. Due to the small size difference of 3 kDa 

between GST monomers (26 kDa) and CypD protein (23 kDa) it is difficult to 

determine which gel band relates to pure protein and which is the GST tag after gel 

electrophoresis (section 2.2.1), so to be completely sure all bands were confirmed by 

mass spectrometry analysis before advancing the protein into any other studies. Figure 

4.12 summaries the images obtained throughout the purification procedure after gel 

electrophoresis. 
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Figure 4.12: Purification of PreScission protease and pGEX-6P-1 CypD A) An image of a gel taken 

after the protein purification of PreScission protease. Lane 2 is empty, lanes 3 and 4 contain one protein 

band (indicated by the white box) found at the expected molecular weight of pure PreScission protease 

(48 kDa). This was confirmed by mass spectrometry before being used in the pGEX-6P-1 CypD 

purifications for GST tag removal. B) A gel image taken after gel electrophoresis, at the end of the CypD 

protein purification method. Lanes 2 and 3 are empty, lane 4 contains one protein band (indicated by the 

white box) found at the expected molecular weight of purified full length CypD (MW=23 kDa).  

 

4.5.5 Full- length CypD crystallisation trials 

With the success of being able to produce for the first time full length untagged CypD 

protein, the purified CypD protein (22.5 mg/mL) was used to setup crystal trials as 

detailed in section 2.4.2. For these trials both native CypD and CypD-ABAD trials were 

setup in order to see if any crystals could be achieved. Native CypD is a stable protein, 

however when this was added, in equal molar ratios, to the ABAD protein, precipitation 
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was observed in some of the wells. This could possibly have been due to differences in 

storage buffer as ABAD is quite unstable to a change in environment.  

Both the CypD alone and co-complex CypD-ABAD trials, carried out in various buffer 

and precipitant conditions (detailed in Appendix A), failed to produce any good quality 

crystals that could be taken further into crystal trial optimisation studies or diffraction 

studies. However this finding may not be surprising, as no full- length CypD construct 

has been crystallised to date, and only the truncated mutant (ΔCypDK133I construct) has 

been published. Therefore, as the ΔCypDK133I construct was designed with a K133I 

mutation in order to improve the contacts made upon crystallisation and to enable the 

correct protein folding it was deemed logical to produce a full length CypD construct 

with a matching K133I mutation. 
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4.6 pGEX-6P-1 CypDK133I construction 

4.6.1 pGEX-4T-1 CypDK133I construction 

On inspection of the pET-21a ΔCypDK133I plasmid sequence it was found that this 

plasmid shared two restriction sites (Nco1 and Not1) with the pGEX-4T-1 CypD 

plasmid around the lysine 133 residue. Therefore 5 µg of both the ΔCypDK133I and 

pGEX-4T-1 CypD plasmids were digested with Nco1 and Not1 (described in section 

2.1.3). A 2% agarose gel (section 2.1.4) was used to separate the fragments from the 

vectors and the DNA was isolated from the gel band as described in section 2.1.5. The 

250bp fragment containing the K133I mutation was ligated with the cut pGEX-4T-1 

vector as described in section 2.1.6, producing colonies which could then be picked and 

transformed into DH5α cells (section 2.1.8) and verified by The University of Dundee’s 

sequencing service. This plasmid construction was successful and is outlined in Figure 

4.13.  
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Figure 4.13: Schematic representation of pGEX-4T-1 CypDK133I construction. A) pGEX-4T-1 CypD 

was digested Nco1 and Not1. After separation with gel electrophoresis a gel band indicating the presence 

of a cut pGEX-4T-1 vector (DNA was then isolated and purified) and another gel band indicating the 

small piece of digested CypD (which was discarded). B) pET-21a ΔCypDK133I was digested with Nco1 

and Not1. After separation by electrophoresis, the gel band present at approximately 250 bp was isolated 

and the DNA was purified, as this was thought to be the DNA insert containing the K133I mutation. 

(Continued overleaf) 
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Figure 4.13: Schematic representation of pGEX-4T-1 CypDK133I construction continued. C) pGEX-

4T-1 (A) and the ΔCypDK133I ≈ 250 bp (B) were ligated to form the pGEX-4T-1 CypDK133I vector. This 

was confirmed by DNA sequencing. 

 

Since thrombin GST tag cleavage is not possible during pGEX-4T-1 CypD protein 

purification, it was therefore necessary to remove the CypDK133I insert from the pGEX-

4T-1 vector and incorporate it into the pGEX-6P-1 vector to produce a pGEX-6P-1 

CypDK133I. This expression vector was chosen, as the GST tag removal by PreScission 

protease was successful in the native pGEX-6P-1 CypD purification (as described in 

4.5.4). As pGEX-6P-1 CypD can be purified completely to produce full length CypD 

protein, it would have been advantageous to use this vector to produce a pGEX-6P-1 
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CypDK133I plasmid. Unfortunately the restriction sites (Nco1 and Not1), found in the 

pGEX-4T-1 and pET-21a ΔCypDK133I plasmids, were not shared with the pGEX-6P-1 

CypD plasmid; therefore it was not possible to clone this mutation directly into the 

pGEX-6P-1 CypD plasmid. Site directed mutagenesis was also carried out on the 

pGEX-6P-1 CypD plasmid, however this also failed to successfully produce a pGEX-

6P-1 CypDK133I plasmid.    

 

4.6.2 pGEX-6P-1 CypDK133I construction 

Adopting a similar strategy used in section 4.6.1, the pGEX-4T-1 CypDK133I plasmid 

and the pGEX-6P-1 CypD plasmid were used to produce a pGEX-6P-1 CypDK133I 

construct (outlined in Figure 4.14). By carrying out a symmetrical restriction digest with 

BamH1, on both plasmids (section 2.1.3) this left a cut, linearized pGEX-6P-1 ΔCypD 

vector and a 222 bp DNA fragment containing the K133I mutation. High fidelity 

enzymes (New England Biolabs) were used in these digestions, as the standard Promega 

enzymes did not give a successful digestion. The DNA band at the expected 222 bp size 

(separated with gel electrophoresis) was isolated from a 2% agarose gel (section 2.1.4). 

Before ligation the open pGEX-6P-1 ΔCypD vector was treated with calf intestine 

alkaline phosphatase to prevent self-ligation. Following ligation (section 2.1.6) colonies 

were transformed into DH5α cells and the CypD DNA was extracted (section 2.1.8). 

The CypD DNA was further digested with Sal1 and Nco1. The identification of a gel 

band at the expected molecular weight after gel electrophoresis was used to indicate if 

the colony contained the entire CypDK133I insert in the correct orientation. Those 

colonies that contained a gel band at approximately 620 bp were sent to The University 

of Dundee’s sequencing service for further conformation. This pGEX-6P-1 CypDK133I 
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plasmid construction was made successfully and gel electrophoresis results are shown in 

Figure 4.15.  

 

 

Figure 4.14: Schematic representation of pGEX-6P-1 CypDK133I construction. A) pGEX-4T-1 

CypDK133I was digested with BamH1. After separation by gel electrophoresis this produced a gel band at 

approximately 222 bp, which was the expected molecular weight for the cut ΔCypDK133I DNA. B) pGEX-

6P-1 CypD was digested with BamH1. After separation by gel electrophoresis there were two gel bands 

present, one at approximately 222 bp and the larger band presumed to be pGEX-6P-1 ΔCypD.  
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Figure 4.14: Schematic representation of pGEX-6P-1 CypDK133I construction continued: C) 

Following DNA isolation the extracted pGEX-6P-1 ΔCypD DNA was treated with alkaline phosphatase 

and then ligated with the ΔCypDK133I DNA. This was firstly confirmed by digestion with Sal1 and Nco1 

(Figure 4.15) and then subsequently confirmed by DNA sequencing.  
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Figure 4.15: Agarose gel of pGEX-6P-1 CypDK133I DNA. Following ligation, colonies were grown and 

transformed into DH5α cells and new pGEX-6P-1 CypDK133I DNA was isolated from the cells. The DNA 

from each grown colony was then digested with Sal1 and Nco1 to determine if the plasmid had ligated 

together effectively and in the correct orientation. Gel electrophoresis was carried out and corresponding 

colonies that produced a DNA band at 620 bp (highlighted by the white box) were deemed to have 

successfully incorporated the CypD gene containing a K133I mutation. The DNA obtained from the gel 

bands in lanes 4 and 6 (at the expected 620 bp size) were confirmed by DNA sequencing as pGEX-6P-1 

CypDK133I DNA.  

 

 

4.6.3 Full length CypDK133I crystallisation trials 

Finally having made a pGEX-6P-1 CypDK133I protein construct, it was transformed into 

E.coli BL21 Codon Plus cells (as described in section 2.1.8), then expressed and the 

CypDK133I protein purified as described in sections: 2.2.2, 2.2.3, 2.2.8, 2.2.9 and 4.5.4. 

Only a small amount of CypDK133I protein was recovered. As was also found in pGEX-

6P-1 CypD purification, there was evidence of degradation of the protein after cell lysis. 

However the protein was soluble and the GST tag was cleaved easily by PreScission 

protease. The overall yield of CypDK133I protein obtained was in the region of 20 mg 

from a 4 L of bacterial culture. A possible way of reducing the amount of degradation 

present after cell lysis is to use another method, such as sonication, to disrupt and lyse 

the cells.  
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Using CypDK133I purified protein a small number of crystal trials were setup as in 

section 4.5.5. These trials failed to produce any good quality CypDK133I crystals or 

CypDK133I- ABAD co-crystals that could be taken further into crystal trial optimisation 

studies or diffraction studies. 
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4.7 Conclusion and summary of results 

From the experiments presented in this chapter it was established that the truncated 

mutant CypD protein (ΔCypDK133I) was not shown to bind to ABAD protein in both 

Isothermal titration calorimetry (ITC) experiments (in the micromolar range) and 

through co-crystallography trials. From these experiments it was not possible to rule out 

why the ΔCypDK133I protein did not bind ABAD and there are three possibilities:  

1) The K133I mutation present within the ΔCypDK133I construct could be 

preventing the interaction from occurring. 

2) The binding site for the ABAD-CypD interaction is located in the truncated N-

terminal region and some of the missing amino acids are required to hold the 

structure in the correct conformation for an interaction to occur.  

3) CypD protein does not bind to ABAD.  

Although the co- crystal trials were unsuccessful, it was possible to produce diffracting 

crystals of the native ΔCypDK133I protein, thus replicating previously published data 

(Schlatter et al. 2005).  

 In order to try and solve some of these possibilities it was necessary to construct a full- 

length CypD encoding construct and a full-length CypD encoding construct with the 

K133I mutation (summaries of all the various CypD encoding constructs used in this 

chapter are shown in Figure 4.16). Eventually, after a long period of method 

development and purification issues, two full-length constructs pGEX-6P-1 CypD and 

pGEX-6P-1 CypDK133I were constructed successfully. These constructs were used to 

produce protein, that when purified progressed, into crystal trials; however as yet no 

good quality crystals have been made and therefore they have not progressed onto 

optimisation and diffraction trials. This is unsurprising as there are no full length CypD 
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protein constructs that have been crystallised and published to date. The conclusion and 

discussion of these results as well as future perspectives is described further in Chapter 

6.   

 

 

Figure 4.16: The 5 CypD proteins described in chapter 4. Left) Represents how the protein is 

constructed and in particular details the various length, tag and mutation differences between each 

construct. The blue area represents the CypD region, the tags to aid purification are shown along with 

their corresponding cleavage sites. If the protein contains the K133I mutation this is also shown. Right) 

Represents the development stages of the protein and how the protein has performed during each phase. 

(Y= Yes/successful, N= No/unsuccessful, TBC= to be confirmed/on-going work). Protein seqences can 

be found in Appendix A. 
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5.1  Introduction  

It has been established that the interaction between ABAD and Aβ can lead to harmful 

effects on cell viability along with subsequent damaging effects on the cognitive 

performance in transgenic AD mouse models, thus reflecting the importance of these 

cellular effects on disease progression. These studies indicate that the ability to block 

this interaction could provide a potential target for the treatment of AD (Muirhead et al. 

2010).  

At the cellular level, the decoy peptide (described in 1.4.4) has been used to block the 

ABAD- Aβ interaction, and this peptide produced a significant decrease in Aβ toxicity, 

transfected cells exhibited decreased apoptosis, decreased LDH release and increased 

cell viability in response to Aβ treatment when compared with untransfected cells 

(Yang et al. 2007). These beneficial responses have also been shown in animal models 

(Yao et al. 2011). Specifically, when transgenic mice over- expressing mAPP (Tg 

mAPP) were treated with the decoy peptide these transgenic mice exhibited a preserved 

mitochondrial function when compared to untreated animals (Yao et al. 2011). Also, 

two protein biomarkers peroxiredoxin II and endophilin 1, the levels of which are both 

increased as AD progresses, were found to be significantly reduced in Tg mAPP 

animals when compared to non- transgenic mice (Yao et al. 2011). Behavioural 

symptoms associated with the transgenic AD animal models have also been reversed 

with the treatment of the decoy peptide in Tg mAPP mice (Yao et al. 2011). Although 

the decoy peptide is not deemed a suitable drug candidate due to its small size and poor 

half-life, these studies have shown that inhibiting the ABAD- Aβ interaction has 

beneficial effects at all levels, and would be a suitable drug target in the treatment of 

AD.    
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As previously discussed in section 1.4.4 there have been a variety of potential small 

molecule inhibitors of the ABAD- Aβ interaction identified, that could help to 

potentially slow down the progression of AD. Xie et al. identified one such inhibitor, 

frentizole, in 2006. Since then, no further journal articles have been published using 

frentizole as an inhibitor of the ABAD- Aβ interaction, and recent speculation would 

suggest that in its present form, the frentizole’s immunosuppressant action has more 

harmful side effects than positive therapeutic effects (Professor Sir Mark Pepys FRS, 

personal communication). However, using this compound as a starting structure, our 

collaborator, Dr Kamil Musilek (University of Hradec Kralove, Czech Republic), has 

designed a series of 28 frentizole analogues, which required further testing to establish 

if these compounds would inhibit the ABAD- Aβ interaction, and to determine if any of 

these analogues could be developed further into ‘drug like’ molecules.  

In order to evaluate these analogues, at the molecular level, a series of assays were 

specifically developed and modified. These assays were: 

• The in vitro ABAD enzyme activity assay, which utilises ABAD’s co-factor 

(NAD+) and measures NAD+ production/ consumption over time.  

• A morphology specific single colour fluorescence quenching assay for 

monitoring Aβ aggregation.  

• Thermal shift analysis, of ABAD- Aβ and the analogue series to determine 

where the analogue is potentially interacting. 

• The use of the Fortebio Octet RED 384 system to study in real time, the 

ABAD- Aβ interaction and to detect and analyse the kinetics of potential drug 

compounds. 
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5.1.1 A morphology specific single colour fluorescence 

quenching assay for monitoring Aβ aggregation 

The formation of Aβ extracellular plaques is a hallmark for AD, but this is not the only 

form of amyloid structure present in an AD state. Aβ peptides are capable of 

aggregating into many forms including: smaller fibril structures (Jan et al. 2010), 

globule like structures (Nichols et al. 2005) and more dense plaque like structures (Su & 

Chang 2001). The many aggregation forms that Aβ can adopt have made it very 

difficult to produce reproducible results within an assay. However it is now possible to 

reliably control which Aβ aggregation morphology is prepared so that this hurdle can be 

overcome.  

Aβ aggregates forming a fibrillar morphology which can be promoted with the addition 

of HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) to the monomerised form of Aβ peptide 

(Jan et al. 2010). Similarly larger Aβ structures adopting a globule like morphology can 

be promoted with the addition of sodium chloride (NaCl) to monomerised Aβ and this is 

deemed to be the most physiological type of in vitro Aβ aggregation (Nichols et al. 

2005). By altering the pH of monomerised Aβ to acidic pH 6, this promotes the Aβ 

aggregation in the form of plaque like structures (Su & Chang 2001). The ability to 

produce different morphologies and the differences in the structures of these aggregates 

are illustrated in Figure 5.1.  
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Figure 5.1: Transmission electron microscopy (TEM) images illustrating the ability to induce 

morphological specific Aβ aggregation from monomerised Aβ. A) Fibril like structures obtained by 

the addition of 150 mM NaCl in 50 mM Tris-HCl buffer (pH 7.9) to monomerised Aβ (Jan et al. 2010). 

B) Globule like structures obtained by the addition of 1.5% (v/v) HFIP to monomerised Aβ (M. R. 

Nichols et al. 2005). C) Plaque like structures obtained by altering the pH of the monomerised Aβ to an 

acidic pH 6 (Y. Su & P.-T. Chang 2001).  

 

To detect Aβ aggregates, small biomarkers such as Congo Red and Thioflavin T (ThT) 

that specifically bind to the β-sheet structure of amyloid can be used (Maezawa et al. 

2008). However, both assays are unable to differentiate between Aβ morphological 

states and are therefore are inadequate not only in the understanding of Aβ aggregation 

and its link to AD, but also from a therapeutic perspective to search for morphology 
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specific inhibitors and in vivo imaging agents. Subsequently, an alternative approach has 

been developed using fluorescently tagged Aβ peptides to detect Aβ aggregation in a 

morphology specific fluorescent quenching manner. This utilises commercially 

available N-terminal labeled Aβ peptides (labeled with HiLyte Fluor 555 (Aβ555)) as a 

powerful tool to monitor continuously in real-time the Aβ aggregation process and to 

distinguish between Aβ morphologies (S. Quinn, University of St Andrews, unpublished 

data).  

 

 

5.1.2 ABAD enzyme activity assay as an in vitro tool for 

evaluating potential inhibitors of the ABAD-Aβ 

interaction 

One of the most reported methods used to investigate the function of ABAD is by 

measuring the catalytic activity of the oxidation and reduction of alcohols and ketones 

(He et al. 2001; Oppermann et al. 1999; Yan et al. 1999). Furthermore, the role of its 

co-factor NAD+ in these reactions allows the reaction rate to be measured by the 

production or consumption of NAD+ at 340 nm. (ε= 6220 M-1 cm-1) using a UV 

spectrophotometer (Muirhead 2011). As time increases, the NAD+ absorbance decreases 

and this change in absorbance over time is proportional to the rate of NAD+ 

consumption.  

In order to analyse the therapeutic effect of any potential inhibitors of the ABAD- Aβ 

interaction it is important to test directly the ABAD activity. If ABAD and Aβ are 

interacting then the ABAD activity decreases because the protein is no longer able to 

function normally. Therefore, by observing changes in the ABAD activity, it may be 
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possible to assess any potential inhibitors of the interaction (an inhibitor of the ABAD- 

Aβ interaction would be predicted to show an increase in ABAD activity when 

compared to the results from ABAD- Aβ tests alone). The nature of this assay, also 

allows chemically modified compounds to be tested and analysed for their effectiveness 

in blocking the ABAD- Aβ interaction; as the therapeutic effects increase the ABAD 

activity would also be expected to rise. Therefore in an inhibitor analogue series, with 

systematic chemical modifications, it is possible to determine which functional groups 

are key for achieving the inhibitory effect (structure activity relationship (SAR) 

analysis) using the ABAD enzyme activity assay. 

 

5.1.3 Frentizole analogue series 

Frentizole is an non toxic, immunosuppressant drug which is used clinically in a variety 

of applications including lupus erythematosus and rheumatoid arthritis (Scheetz et al. 

1977; Xie et al. 2006). Xie et al established frentizole as a potential inhibitor of the 

ABAD- Aβ interaction during an ELISA screen of biotinylated ABAD, with Aβ and 50 

commercially available chemicals that could potentially disrupt the ABAD- Aβ 

interaction. The commercially available chemicals were specifically chosen for their 

structural likeness to Congo red and thioflavin T (two compounds known to bind to 

amyloid) or their previously reported neuroprotective effects (Xie et al. 2006). 

Frentizole, a benzothiazole urea, was chosen due to its structural similarity to thioflavin 

T (shown in Figure 5.2).     
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Figure 5.2: The chemical structures of thioflavin T and frentizole 

 

Xie et al. reported an initial IC50 value= 230 µM for frentizole as an inhibitor of the 

ABAD- Aβ interaction, this was a slight improvement when compared to thioflavin T 

which has an IC50 value= 200 µM. Therefore, they designed 45 analogues based on 

frentizole to permit SAR analysis to be carried out. The variations in the analogues were 

designed to alter the aromatic rings and their linking groups. The SAR analysis revealed 

that the urea moiety was required for inhibition and that substitutions on the 

benzothiazole and phenylurea rings dramatically altered compound potency (Xie et al. 

2006). The substitutions that were favoured on the benzothiazole ring were small 

electron withdrawing groups, in particularly those compounds containing a chlorine and 

fluorine in this position were the most potent (Xie et al. 2006). Also, the addition of a 

hydroxyl group in the para position of the phenylurea rings dramatically increased the 

potency of the compound. The two compounds from the analogue series that proved to 

be the most potent inhibitors of the ABAD- Aβ interaction (under ELISA screening) 

were 5h and 5l; both compounds produced an IC50< 10 µM. The chemical structure of 

these compounds is shown in Figure 5.3. 
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Figure 5.3: The chemical structures of 5h and 5l, two potential inhibitors of the ABAD- Aβ 

interaction 

 

 

Since this finding was published in 2006, there have been no further publications 

regarding the use of frentizole as a potential inhibitor of the ABAD- Aβ interaction, and 

therefore, a therapeutic agent in the treatment of AD. As suggested in section 5.1.3, 

speculation would indicate that in its present form, the frentizole’s immunosuppressant 

action has more harmful side effects than positive therapeutic effects when testing 

progressed into animal models. If this is speculation is to be believed, then that does not 

mean that frentizole should be discarded as a potential therapeutic in AD. In fact, it 

would allow the development of a further frentizole analogue series to be synthesised, 

which would not only be beneficial to optimise the inhibitory effects observed on the 

ABAD- Aβ interaction, but it would also allow further synthetic modifications which 

may help to alleviate some of the unwanted side effects.   
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One such analogue series was designed by Dr Kamil Musilek (University of Hradec 

Kralove, Czech Republic). Dr Musilek has designed a series of 28 frentizole analogues, 

which are based on the findings published by Xie et al. In this analogue series (K684- 

K711), the substitutions on the benzothiazole urea ring are adapted from Xie et al. with 

either a fluorine or chlorine electron withdrawing group used. There are several 

systematic substitutions made on the phenylurea ring and these are shown in Figure 5.4. 

 

 

Figure 5.4: Schematic representation of the chemical substitution principle behind the K684- K711 

frentizole analogue series. Electron withdrawing groups chlorine and fluorine are substituted at position 

X in the benzothiazole ring. At positions R1-3 on the phenylurea ring schematic substitutions were used 

to design new analogues that would allow the series to be series to be scrutinised by SAR analysis.  

 

Chemical structures of the K684- K711 analogue series can be found on pages 175-177 

(Figure 5.5). These compounds have been found to be relatively insoluble and indeed 

must be dissolved in DMSO to create a 10 mM stock solution. Significantly, these 10 

mM stock solutions are not capable of being freely diluted in water, or typical 

laboratory assay buffers and will precipitate from solution rapidly if this is attempted. 
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The use of propylene glycol (PG (Sigma)) has long been established as a vehicle for 

water- insoluble drug administration (Bailey 1992; Doenicke et al. 1992; Wilson et al. 

2000). Therefore, by diluting the 10 mM stock solutions with the carrier solution PG, 

the compounds remain in solution.  
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Figure 5.5: Full chemical structures of the K684- K711 frentizole analogue series. 
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Figure 5.5 continued: Full chemical structures of the K684- K711 frentizole analogue series. 
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Figure 5.5 continued: Full chemical structures of the K684- K711 frentizole analogue series. 
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As these compounds are synthetically manufactured, Dr Musilek provided only 20 mg 

approximately of each analogue.  In order to establish assays to investigate the K684- 

K711 analogue series, the commercially available frentizole (Sigma) was also 

purchased. As frentizole was the molecular foundation for these analogues, and indeed a 

published inhibitor of the ABAD- Aβ interaction, this provided a readily available 

compound that could be used for assay method development, whilst preserving the 

limited quantity of the analogue series, until such assays were fully functioning. 

Frentizole was therefore prepared in the same fashion as the K674- K711 analogue 

series, i.e. frentizole was firstly dissolved as a 10 mM stock solution with DMSO, and 

then further diluted with propylene glycol (PG).   
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5.2  Chapter aims  

The aims of the work reported in this chapter were three- fold:  

Firstly, in order to evaluate the effects of compounds on the ABAD- Aβ interaction, in 

vitro assays were required to monitor the interaction. In particular, the ABAD enzyme 

activity assay required modification to accurately and reliably measure ABAD activity 

in the presence of the compounds. In addition, a newly developed, morphology specific 

single colour fluorescence assay for monitoring Aβ aggregation, also required some 

initial refinement to ensure that the assay was capable of reliably screening compounds 

to monitor their effects against Aβ aggregation. 

Secondly, once these assays were in place the K684-K711 analogue series could be 

screened against the various in vitro assays to establish which structural modifications 

are capable of producing the greatest inhibitory effects on the ABAD-Aβ interaction. 

SAR (structure activity relationship) analysis would then be used to determine if the 

compounds exhibit any structure- activity relationships.   

Finally, other assays that are capable of measuring the direct binding (thermal shift 

analysis and the Octet RED 384 system) would be employed to attempt to establish the 

kinetic parameters between the analogue and the ABAD- Aβ interaction.  

It was hoped that the work reported in this chapter would provide the groundwork in 

assay development, which would facilitate the analysis of not only the K684- K711 

analogue series, but also any other potential inhibitors of the ABAD-Aβ interaction in 

the future.   
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5.3 ABAD enzyme activity assay 

5.3.1 ABAD enzyme activity assay method development 

As discussed previously in section 5.1.2, it is possible to investigate the catalytic 

activity (the oxidation and reduction of alcohols and ketones) of ABAD, by measuring 

the fluorescence emission of ABAD’s co-factor (NADH) over time. As time increases, 

the NADH absorbance decreases, and this change in absorbance over time is 

proportional to the rate of NAD+ consumption by the enzyme (Muirhead 2011).  

It was anticipated that this activity assay could be used as a fast and effective screening 

method for analysing the ABAD activity in the presence of the K684- K711 analogue 

series. The ABAD enzyme activity assay parameters to measure in vitro ABAD activity 

using the FLUOstar plate reader had been previously established (Muirhead 2011). The 

assay conditions are detailed as follows: S-acetoacetyl-CoA substrate (120 µM), NAD+ 

(250 µM), ABAD (5 µg/mL) in assay buffer (50 mM NaH2PO4, 300 mM NaCl, pH7.4). 

The change in absorbance was measured at 340 nM over time (60 s). As the enzyme 

kinetic parameters had been previously calculated and the substrate concentration had 

been optimised, these conditions were kept unchanged. However, on closer inspection, 

the reported assay buffer appeared to cause the ABAD to precipitate out of solution. As 

any precipitation in the well of the plate could affect reproducibility and result in false 

positives or negative outcomes, the assay buffer was changed to 10 mM HEPES, 100 

mM NaCl, pH 7.5, a buffer in which ABAD is known to be experimentally stable over 

time (Powell et al. 2000). Initial tests to confirm that the enzyme kinetic parameters 

were similar to that of the ABAD in phosphate buffer were carried out and the specific 

activity of ABAD in the two buffers was similar (data not shown).   
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5.3.2 Method development of the ABAD enzyme activity assay 

in the presence of the K684-K711 analogue series 

In order to test the effects of the K684-K711 analogue series on ABAD enzyme activity, 

1 mM stocks of the compounds were produced as shown in section 5.1.3. It was 

anticipated that this activity assay would require further optimisation in order to 

accurately test the K684-K711 analogue series, due to the nature of the stock 

compounds.  

Firstly, some of the K684-K711 analogue series are coloured. This could potentially 

produce an auto-fluorescence that could be mistaken for a change in activity. In order to 

eliminate this likelihood, it was decided that the specific activity of each analogue 

would be tested in the absence of ABAD to provide an auto-fluorescence result. The 

average auto-fluorescence for each analogue would then be subtracted from the specific 

activity recorded in the corresponding ABAD-analogue experiment to give a true 

specific activity measurement. Colour observations for each analogue are shown in 

Table 5.1. 
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Table 5.1 Colour observations of the K684-K711 analogue series 

 

 

The ABAD activity assay measures the absorbance of NADH at 340 nM. The K684-

K711 analogue series requires the use of the vehicle propylene glycol (PG), to dilute the 

compounds and avoid precipitation. The PG is a very viscous solution, which could 

potentially interfere with the assay measurements. It was therefore necessary to measure 

the specific activity of ABAD in the presence of DMSO diluted with PG, against 

untreated ABAD, with a control experiment of no ABAD only DMSO and PG used. 

The assay was set up as described in section 2.3.2 however, in place of the compound, 

10% DMSO solution in PG was added. The findings from these experiments 

(summarised in Table 5.2) suggested that although the average specific activity of 

ABAD in the presence of DMSO and PG was slightly lower than that of the average 
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specific activity of untreated ABAD, this was not significant. However, the observed 

large standard error of the mean, between the replicate samples, suggested that the 

reproducibility of the assay was highly compromised in the ABAD experiment treated 

with DMSO and PG.  

 

Table 5.2: Analysis of ABAD in the presence of 10% DMSO in PG. The measured ABAD average 

specific activity (µmol min-1 mg-1) in the presence of the 10% DMSO and PG was slightly, but not 

significantly decreased when compared to the average specific activity ABAD with no DMSO or PG. 

However, the reproducibility of the assay was greatly compromised with large standard error of the mean 

values produced within the replicates of the ABAD plus DMSO and PG test.    

 

 

Before testing the specific activity of ABAD in the presence of the K684-K711 

analogue series, a random sample of the analogues (K684, K687, K690, K699 and 

K705) was chosen to test the assay viability. The analogues to be tested were selected 

because of the varieties in their colour (see table 5.1). During the plate set up, it was 

noticed that some precipitation formed in the wells of the samples. As the absorbance 

Sample  -dAbs  -dAbs pathlength dConc dConc dConc (V) SEM [ABAD]
specific 
activity

specific 
activity

specific 
activity SEM

s-1 min-1 cm
mol L-1 
min-1

mol L-1 
min-1

µmol L-1 
min-1

µmol L-1 
min-1 mg L-1

mol min-1 
mg-1

µmol min-

1 mg-1
µmol min-

1 mg-1
µmol min-1 

mg-1

5.27E-04 0.031645 0.456 1.12E-05 5 2.23E-06 2.2314
6.57E-04 0.039410 0.456 1.39E-05 5 2.78E-06 2.7790
6.14E-04 0.036847 0.456 1.30E-05 5 2.6E-06 2.5982
5.44E-04 0.032654 0.456 1.15E-05 5 2.3E-06 2.3025
5.32E-04 0.031913 0.456 1.13E-05 5 2.25E-06 2.2503
7.30E-04 0.043813 0.456 1.54E-05 5 3.09E-06 3.0894
6.79E-04 0.040723 0.456 1.44E-05 5 2.87E-06 2.8715
2.35E-04 0.014100 0.456 4.97E-06 5 9.94E-07 0.9942
1.52E-05 0.000914 0.456 3.22E-07 5 6.45E-08 0.0645
2.08E-04 0.012477 0.456 4.40E-06 5 8.8E-07 0.8798
9.31E-05 0.005587 0.456 1.97E-06 5 3.94E-07 0.3940
6.47E-05 0.003881 0.456 1.37E-06 5 2.74E-07 0.2737

2.353

0.865

11.507

2.015

ABAD 1.24E-05 12.389 0.640

1.15E-05

2.01E-06

ABAD 
PG + 

DMSO

NO 
ABAD

2.4778 0.128

2.3014 0.471

0.4030 0.173
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reading was set up to measure in the centre spot of the well, any precipitation in this 

area would produce results with huge discrepancies. Therefore, it was decided to use an 

orbital scanning method, whereby the absorbance would be measured in a circular 

fashion around the diameter of the well. By measuring the average specific activity of 

ABAD in the presence of analogues K684, K687, K690, K699 and K705 the original, 

absorbance spot method, was compared to the new orbital method. It was therefore 

possible to establish the best method for accurately measuring NADH absorbance by 

comparing the standard error of the mean (SEM) between the two trials (Table 5.3). In 

general the orbital scanning method produced more reliable results with lower SEM.  

 

Table 5.3: Analysis of ABAD (in the presence of frentizole analogues), measured under two 

conditions (orbital and non-orbital absorbance measurements) to determine the optimum technique 

for measuring the NAD+ absorbance in the ABAD activity assay. The NAD+ absorbance was 

measured using an orbital scanning method and a single spot method; by comparing the SEM values 

produced the two methods could be evaluated. The orbital scanning method was chosen to be used in 

future ABAD enzyme activity analysis of the K684-K711 analogue series. 
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5.3.3 ABAD enzyme activity analysis in the presence of the 

K684-K711 analogue series 

Having completed the necessary groundwork for the ABAD enzyme activity assay, it 

was now possible to evaluate all the K684-K711 analogue series compounds, by 

measuring the effects they had on ABAD enzyme activity. The assay was carried out as 

discussed previously in this chapter and also in section 2.3.2. The ABAD enzyme 

activity was calculated for each compound (with 6 replicates) and the auto-fluorescence 

of each compound was also measured in order to subtract the mean auto-fluorescence 

result from the ABAD activity recorded measurement. Figure 5.6 is a graph of average 

ABAD specific activity (µmol min-1 mg-1) for all the K684-K711 analogue series 

compounds plotted with their average auto-fluorescence (taken as the measurement of 

ABAD specific activity obtained when no ABAD is present). Control tests for this assay 

were ABAD in the absence of any compound, and a test with no ABAD and no 

compound. The ABAD specific activity data, auto-fluorescence data and the recorded 

ABAD specific activity minus the mean auto-fluorescence data for the K684-K711 

analogue series compounds, is shown in Table 5.4. Only the compounds, which appear 

to increase the ABAD activity, are shown in Table 5.4. 
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Figure 5.6: Evaluation of the K684-K711 analogue series. The average specific activity of ABAD in 

the presence of the K684-K711 analogue series (Black columns) and the average auto-fluorescence values 

for the K684-K711 analogue series taken as the measurement obtained when no ABAD was present (Blue 

columns). The control sample is described as the observed average ABAD specific activity when no 

compound is present, and also shown is the control sample where no ABAD and no compound are 

present. The commercially available compound, frentizole was also tested.  
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Table 5.4 The ABAD activity auto-fluorescence data and the recorded ABAD specific activity 

minus the mean auto-fluorescence data for the K684-K711 analogue series compounds.  

 

1.15709 0.50032 0.44926 1.72948 0.37239 1.54410
2.24162 0.83494 1.53379 1.20249 0.27251 1.01711
1.65903 0.63031 0.95120 0.44147 0.13375 0.25610
2.10842 0.90533 1.40059 2.15950 0.20004 1.97412
1.55899 0.83494 0.85116 2.20515 0.08020 2.01978
0.98337 0.54114 0.27555 3.95968 0.05338 3.77430
1.30223 0.41481 1.02558 2.81110 2.71668 1.25149
0.58270 0.10156 0.30605 0.73493 0.48210 -0.82469
0.32638 0.20646 0.04974 2.40583 0.80639 0.84621
0.28940 0.37250 0.01275 1.79661 0.25934 0.23699
1.22589 0.27080 0.94924 3.17663 2.50843 1.61701
0.40586 0.29377 0.12922 1.74828 2.58475 0.18867
0.27564 0.32115 0.08037 4.00522 0.34907 3.68845
0.94058 0.08671 0.74531 2.54878 0.10751 2.23201
0.43875 0.10255 0.24348 3.57497 0.08942 3.25821
0.18964 0.32115 -0.00563 1.99268 0.30388 1.67591
0.31909 0.08542 0.12382 1.76009 0.56867 1.44332
0.12659 0.25463 -0.06868 3.10500 0.48204 2.78824
0.40151 0.25129 0.29521 3.56862 1.70831 2.43311
0.80352 0.05396 0.69722 2.86090 0.48287 1.72539
3.13547 0.04050 3.02917 1.92489 1.23681 0.78937
1.75194 0.02514 1.64564 2.76551 0.57194 1.63000
0.34511 0.11891 0.23881 3.87062 1.62034 2.73511
1.14508 0.14801 1.03877 3.86838 1.19282 2.73286
0.58789 0.41042 0.26810 1.84326 0.70996 0.83384
1.18987 0.42017 0.87008 1.12798 0.15988 0.11856
0.65957 0.23752 0.33978 1.18984 0.64158 0.18041
0.43069 0.35135 0.11090 2.86157 0.38587 1.85214
0.38944 0.34776 0.06965 2.75508 2.07412 1.74565
0.75800 0.15151 0.43821 0.70338 2.08514 -0.30604
0.64834 0.64834 -0.06056 2.36175 0.16825 1.97706
0.63930 0.63930 -0.06960 3.24276 0.28289 2.85807
1.87307 1.02690 1.16417 2.51859 0.65505 2.13390
2.21990 0.99775 1.51100 0.86317 0.47062 0.47849
1.91607 0.46517 1.20717 1.41847 0.20701 1.03379
0.63178 0.47575 -0.07712 0.56782 0.52430 0.18313
3.18183 0.56453 3.07210 2.51438 0.61493 1.81227
3.67566 0.08614 3.56593 2.41428 0.60228 1.71217
0.90953 0.18494 0.79980 3.21393 0.47192 2.51182
0.85861 0.04352 0.74888 2.85012 0.92440 2.14801
3.07449 0.10542 2.96477 2.38931 0.93225 1.68720
2.89156 0.18187 2.78184 3.11909 0.66688 2.41698

702

705

706

Frent

686

687

688

689

690

691

693

698

701

Analogue #
ABAD specific 

activity (µmol min-
1 mg-1)

auto- 
fluorescence 

(µmol min-1 mg-
1)

Specific activity- 
mean auto- 

fluorescence (µmol 
min-1 mg-1)

Analogue #
ABAD specific 

activity (µmol min-
1 mg-1)

auto- 
fluorescence 

(µmol min-1 mg-
1)

Specific activity- 
mean auto- 

fluorescence (µmol 
min-1 mg-1)

685
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The compounds shown in Table 5.4 were subjected to statistical analysis, to determine if any of the 

observed compounds have significantly increased ABAD activity levels. Column statistics were used to 

display the SEM accurately and show that despite assay modifications there are still assay reproducibility 

issues (shown in Table 5.5) 

 

Table 5.5 Statistical analysis on the treated ABAD minus the mean auto fluorescence specific 

activity values for the K684-K711 analogue series compounds that appear to significantly increase 

ABAD activity.    
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One-way ANOVA, with Dunnet’s multiple comparison statistical analysis, was carried 

out on the ABAD specific activity (recorded after administration of the analogue) minus 

the mean auto fluorescence produced by the analogue, for the K684-K711 analogue 

series compounds that appear to significantly increase ABAD enzyme activity activity. 

From the statistical analysis 5 compounds were shown to significantly increase ABAD 

enzyme activity: K691, K693, K701, K702 and notably the known inhibitor ABAD-Aβ 

interaction inhibitor, frentizole. The one-way ANOVA data is displayed in Table 5.6. 

Data from this one-way ANOVA analysis is shown in graphical form in Figure 5.7.  

It is hoped that by identifying these four analogues that they can now be taken forward 

into further chemical modification trials, to produce another analogue series based on 

the SAR found between them. This significant finding was slightly marred by the high 

errors reported from the sample replicates of each analogue run in the activity assay. 

Although only 5 compounds were shown to significantly increase ABAD activity, it is 

thought that there may be other analogues in the series, which may produce a greater 

therapeutic effect, but did not appear significant in the statistical analysis due to these 

large errors between the sample replicates. These large errors are ultimately caused by 

make up of the analogues and the buffers used to dissolve them (as discussed in section 

5.1.3). It is hoped that by optimising the solubility of the analogues that this may 

improve the ability to measure the analogues more accurately. This is discussed further 

in chapter 6.3.      
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Table 5.6 One-way ANOVA, with Dunnet’s multiple comparison statistical analysis, on the treated 

ABAD protein minus the mean auto fluorescence specific activity values for the K684-K711 

analogue series compounds that appear to significantly increase ABAD activity. From the analysis 5 

compounds were shown to significantly increase ABAD enzyme activity: K691, K693, K701, K702 and 

the known inhibitor ABAD-Aβ interaction inhibitor, frentizole.    
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Figure 5.7: One way ANOVA statistic analysis carried out on K684-K711 analogue series to analyse 

if the compound significantly increased ABAD enzyme activity. A) ABAD average specific activity 

(µmol min-1 mg-1) in the presence of K684-K711 analogue series. B) Box plot analysis of the ABAD 

specific activity values plotted with the standard error mean to determine the range between the 

replicates. From the one way ANOVA analysis compounds K691, K693 K701, K702 and frentizole are 

found to have significantly increased ABAD activity.   
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5.4 Thermal shift analysis of the K684-711 analogue series as 

potential inhibitors of the ABAD- Aβ interaction 

Thermal shift analysis (TSA), (previously described in section 3.1.3) can be used as an 

initial screening method to identify binding partners of proteins. However, it is a 

technique that can also be implemented to establish inhibitors of protein interactions 

and therefore to categorise their inhibitory effects on the binding of proteins, by 

monitoring the change in a protein’s unfolding temperature (ΔTm) which occurs upon 

inhibitor binding. It was therefore anticipated that it should be possible to also use this 

technique to measure the effects of the K684- K711 analogue series, as potential 

inhibitors of the ABAD- Aβ interaction.  

Since the assay parameters for measuring small molecule binding partners to prevent 

the ABAD- Aβ interaction had already been established (Muirhead 2011), it was only 

necessary to determine if the DMSO and/or propylene glycol (PG), present to solubilise 

the K684- K711 analogue series, would have any negative affects on the assay. There 

are many negative effects that this buffer could produce, these include for example: the 

DMSO or PG may interact with the dye to mask any ΔTm produced during the assay, or 

that the ΔTm
 could not be measured due to the viscosity of the PG.  

The dissociation curve of the control test samples (Figure 5.8) plots the negative 

reciprocal of fluorescence as a function of temperature. The ΔTm therefore occurs at the 

lowest point on the curve (Muirhead 2011). The control test conditions were: 30 µM 

ABAD, 1 x SYPRO® orange dye, 2.5% (v/v) DMSO, 2.5 % (v/v) PG. The assay was 

carried out as described in section 2.3.4, and the observed baseline ΔTm was performed 

at 45°C for all replicates.  
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Figure 5.8: Thermal shift analysis control sample dissociation curve, showing the unfolding 

temperature (Tm) of native ABAD protein. This assay was carried out in triplicate, and each sample 

produced a Tm of 45 °C (as observed at the lowest point on the dissociation curve). It was also observed 

that although the triplicates unfold at the same temperature, there was a slight difference in the 

fluorescence output within the samples. The TSA assay control sample contains: ABAD protein (30 µM), 

1 x SYPRO® orange dye, 2.5% (v/v) DMSO, 2.5% (v/v) PG.  

 

Since the control test proved that the presence of DMSO and PG were not significantly 

interfering with the TSA, frentizole (prepared as described in section 5.1.3) was then 

analysed to assess the thermal shift assay’s capability to be used as a screening tool to 

measure the K684- K711 analogue series. A frentizole concentration of 25 µM was 

chosen, in order to maintain the same concentration used in the other in vitro assays. 

Figure 5.13 illustrates the dissociation curve of ABAD protein in the presence of 

frentizole.  
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Figure 5.9: The dissociation curve of ABAD protein in the presence of frentizole. The assay 

conditions for this experiment were: ABAD protein (30 µM), 1 x SYPRO® orange dye, 25 µM frentizole.  

 

Unfortunately, Figure 5.9 shows that the frentizole molecule had an effect on the ABAD 

protein; however, it was not possible to use TSA to measure this effect, because the 

dissociation curve that was produced was distorted and the reproducibility between the 

triplicates was greatly diminished. Therefore, in order to determine if these findings 

corresponded to the whole of the K684- K711 analogue series, or if these findings were 

purely associated with frentizole, compound K711 was selected to replace the frentizole 

compound. The dissociation curve of ABAD protein in the presence of compound K711 

is shown in Figure 5.10. 
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Figure 5.10: The dissociation curve of ABAD protein in the presence of compound K711. The assay 

conditions for this experiment were: ABAD protein (30 µM), 1 x SYPRO® orange dye, 25 µM K711.  

 

Again, unfortunately, when comparing the dissociation curves of both frentizole (Figure 

5.9) and compound K711 (Figure 5.10) the results are very similar. Both compounds 

produced an effect on the ABAD protein; however, in both cases this effect could not be 

measured using TSA because the dissociation curves were distorted. It was therefore 

decided that these findings were probably representative of the whole of the K684- 

K711 analogue series, and so no further TSA work should be carried out with this series 

of compounds until more about the interaction is known.  

 

 

 



Chapter 5: Results and Discussion: Frentizole analogues as potential ABAD- Aβ inhibitors 

 

 196 	
  
	
  

	
  

5.5 A direct binding assay to establish the kinetic parameters 

of the K684-K711 analogue series as potential inhibitors of 

the ABAD- Aβ interaction 

The Fortebio® Octet RED 384 system is a biomolecular interactions platform that is 

capable of determining and evaluating the affinity of small molecule binding to a 

therapeutic target. The fast, label- free analysis of the association and dissociation of a 

small molecule with the target protein of interest, results in the determination of kinetic 

constants including the association rate constant (ka), dissociation rate constant (kd), and 

equilibrium dissociation constant (KD) (Myszka 2004). It was therefore deemed 

appropriate to use the Octet RED 384 system to test the K684-K711 analogue series 

against the ABAD-Aβ interaction. 

In a typical Octet RED 384 small molecule binding experiment, a biotinylated protein 

target (in this instance; biotinylated ABAD protein (b-ABAD)) is immobilized onto a 

Super Streptavidin (SSA) biosensor surface, and this surface is exposed to a solution of 

the small molecule (in this instance; one of the K684-K711 analogues) in a microplate 

well. The association of the small molecule to the target protein on the biosensor is 

measured over time. The biosensor is moved to a well containing buffer to monitor the 

dissociation of the small molecule from the target protein. Rate constants are then 

calculated from the binding data, including on-rate (ka), off-rate (kd), and equilibrium 

dissociation constant (KD). This assay process, and the data expected from a typical 

small molecule binding experiment is shown in Figure 5.11.  
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Figure 5.11: A typical small molecule binding experiment using the Octet RED 384 system and the 

sensorgram and data achieved from the experiment. A) A typical assay is divided into 5 sections 1) a 

baseline buffer is achieved 2) The biotinylated protein is loaded onto the SSA sensor. The more detailed 

view of the BLI biosensor (shown at top of diagram A) shows that the instrument contains an optical 

layer, that emits white light down the biosensor, collects the light and then emits it back 3) After the 

protein is loaded a further baseline is made to confirm the protein has bound successfully to the SSA 

sensor. 4) The association of a small molecule. 5) The dissociation of the small molecule. B) A typical 

sensorgram reported after a small molecule binding assay. The curves shown are representative of a 

typical small molecule binding experiment, where the various colours would depict the use of a dilution 

series to test the effect of a small molecule and the target protein (Images from Fortebio® Octet 

literature). 
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The b-ABAD protein was produced as described in section 2.3.6. As the Octet RED 384 

system is a relatively new technique in the drug discovery field, primary testing of the 

b-ABAD protein with Aβ and also with its co-factor NAD+ was first used to confirm 

that the b-ABAD protein is functioning normally, and is still capable of binding known 

ABAD protein interacting molecules. Again frentizole was used as a test compound in 

order to validate the assay, before the K684-K711 analogue series were tested. This 

work was carried out in collaboration with Dr David Robinson (University of Dundee).  

The findings of the initial experiment to test the ability of b-ABAD protein to bind Aβ 

are shown in Figure 5.12. The nature of the sensogram suggests that the ABAD protein 

has become saturated with biotin and so indicating that the biotin tag has bound to 

multiple sites on the protein. This potentially translates into the b-ABAD protein 

attaching too quickly to the SSA and, more significantly, this indicates that the b-ABAD 

protein may have attached itself in a conformation that will not allow any binding of 

additional small molecules to occur.  
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Figure 5.12: Sensorgram for the loading of b-ABAD protein onto the SSA biosensor in the Octet 

RED 384 system. Biotinylated ABAD (b-ABAD) protein at 50 µg/ml binds to SSA biosensor. It was 

observed that the sensorgram saturated rapidly in the first 200 seconds, suggesting biotin molecules were 

bound to multiple sites on the protein. 

 

As the b-ABAD protein had been frozen after biotinylation, it was thought that this may 

have had an effect on the b-ABAD protein conformation. Therefore fresh b-ABAD 

protein was prepared before use in the assay. The previous experiment was then 

repeated to determine if the fresh b-ABAD protein would attach itself at the correct rate 

and conformation. Following the biotinylation of ABAD protein, the standard biotin 

assay buffer (10 mM HEPES, 100 mM NaCl, pH 7.5), was exchanged to enable the 

ABAD protein to return to the buffer that the protein had been previously found to be 

most stable in (10 mM Tris-HCl, 150 mM NaCl, pH7.5), in the hope that this would 

also aid with the correct attachment to the SSA sensor. Fortunately, these modifications 

were favourable and the b-ABAD protein attached itself to the SSA biosensor in the 

correct manner (shown in Figure 5.13).   
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Figure 5.13: Sensorgram for the repeated loading of b-ABAD protein onto the SSA biosensor in the 

Octet RED 384 system with both Tris and HEPES sample buffers. Biotinylated ABAD (b-ABAD) 

protein at 50ug/ml bound to the SSA biosensor in both the HEPES sample buffer (biosensor A1) and the 

Tris-HCl sample buffer (biosensor B1). It was observed that b-ABAD protein bound equally to the SSA 

biosensor in both sample buffers, and at an optimal response level of 6- 7 nM. The sample buffers used 

were: 10 mM HEPES, 100 mM NaCl, pH 7.5 and 10 mM Tris-HCl, 150 mM NaCl, pH7.5. 

 

Despite the b-ABAD protein attaching rapidly to the SSA it was necessary to determine 

if Aβ could bind to the immobilised b-ABAD protein.  A 5 point, 5 fold dilution series 

of Aβ was used to study the binding of Aβ and b-ABAD protein. A second blank SSA 

biosensor with no immobilised b-ABAD protein was used to determine if any non- 

specific binding was occurring. It was possible that non- specific binding could occur 

between Aβ and the SSA biosensor containing the immobilised b-ABAD protein, 

because when the b-ABAD protein attaches itself to the biosensor it does not encompass 

the entire biosensor area; therefore allowing space for Aβ to attach directly to the SSA 

biosensor. It is a vital to establish if there is any non- specific binding between Aβ and 

the SSA sensor, because Aβ is a very sticky molecule, prone to aggregation, and any 

non- specific binding between the SSA biosensor containing immobilised b-ABAD 
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protein would result in a false positive reading. The sensorgrams for this experiment are 

shown in Figure 5.14. 

  

 

Figure 5.14: Sensorgram for b-ABAD protein and Aβ binding experiments. The biosensor shown by 

the blue line is the SSA biosensor with immobilised b-ABAD protein (A1). The red line shows the blank 

control SSA biosensor with no protein present (A3). A high level of non- specific binding was observed 

between the Aβ and the control SSA sensor.  

 

 

In order to reduce the non- specific binding observed between the control SSA 

biosensor and Aβ, it was important to try to find a suitable inhibitor of Aβ binding. As 

albumin has been reported to prevent Aβ internalisation in neurons (Vega et al. 2009), 

0.1% (v/v) BSA (bovine serum albumin) was added to the sample buffer, and the 

experiment was repeated. This addition proved to be successful in preventing the non- 
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specific binding of Aβ to the control SSA sensor, however it also completely abolished 

the Aβ- b-ABAD protein binding (shown in Figure 5.15).  

 

 

Figure 5.15: Sensorgram for the repeat b-ABAD protein and Aβ binding experiments with the 

addition of 0.1% (v/v) BSA. The biosensor shown by the blue line is the SSA biosensor with 

immobilised b-ABAD (A1). The red line shows the blank control SSA biosensor with no protein present 

(A3). A decreased level of non- specific binding was observed between the Aβ and the control SSA 

sensor. However, no binding of Aβ was observed on the immobilised b-ABAD protein.  

 

As no binding was observed between the b-ABAD protein and the Aβ peptide, it is 

possible that by biotinylating the ABAD protein, the enzyme has become inactivated. 

Therefore, the in vitro enzyme activity assay (section 5.3) was used to confirm if b-

ABAD protein was still biologically active. The activity assay was performed as 

described in section 2.3.2 (in 6 replicate experiments), where the effects of samples 

labelled with b-ABAD protein were compared against unlabelled ABAD protein and the 
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control experiment where no ABAD protein was present. The specific activity data 

(µmol min-1 mg-1) from this experiment (shown in Table 5.7) revealed that the b-ABAD 

protein did indeed have 47% less activity than that of unlabelled ABAD protein. 

However, the b-ABAD protein was still deemed to be biologically active as the specific 

activity was 35% more when compared to the control sample with no ABAD present. 

 

Table 5.7: Analysis of labelled b-ABAD protein, to determine if the enzyme is still active after biotin 

labelling. b-ABAD protein, non- labelled ABAD protein and no ABAD present control experiments, 

were tested with the FLUOstar plate reader to detect changes in enzyme activity, and to therefore 

determine if the b-ABAD protein was still active following biotinylation. The average specific activity 

(µmol min-1 mg-1) of b-ABAD protein was 47% less than the unlabelled ABAD protein with the average 

specific activity of the enzyme falling to 0.156 µmol min-1 mg-1 compared to the average specific 

activity of unlabelled ABAD protein measured at 0.2923 µmol min-1 mg-1. However, the b-ABAD 

protein was still deemed to be active as the b-ABAD protein average specific activity was 35 % higher 

than that of the average specific activity (0.1157 µmol min-1 mg-1) of the control experiment where no 

ABAD was present.  

 

Sample Well  -dAbs  -dAbs pathlength dConc dConc dConc (V) SEM

s-1 min-1 cm
mol L-1 
min-1

mol L-1 
min-1

µmol L-1 
min-1

µmol L-1 
min-1

A1 1.02E-04 0.006109 0.456 2.15E-06 5 4.31E-07 0.4307
A2 1.12E-04 0.00673 0.456 2.37E-06 5 4.75E-07 0.4746
A3 7.07E-05 0.00424 0.456 1.49E-06 5 2.99E-07 0.2990
A4 3.22E-05 0.001933 0.456 6.82E-07 5 1.36E-07 0.1363
A5 6.43E-05 0.003858 0.456 1.36E-06 5 2.72E-07 0.2721
A6 3.34E-05 0.002004 0.456 7.07E-07 5 1.41E-07 0.1413
B1 3.87E-05 0.002319 0.456 8.18E-07 5 1.64E-07 0.1636
B2 2.44E-05 0.001465 0.456 5.16E-07 5 1.03E-07 0.1033
B3 4.87E-05 0.002923 0.456 1.03E-06 5 2.06E-07 0.2061
B4 3.57E-05 0.002144 0.456 7.56E-07 5 1.51E-07 0.1512
B5 7.22E-05 0.00433 0.456 1.53E-06 5 3.05E-07 0.3053
B6 1.56E-06 9.33E-05 0.456 3.29E-08 5 6.58E-09 0.0066
C1 3.82E-05 0.002292 0.456 8.08E-07 10 8.08E-08 0.0808
C2 5.12E-05 0.003071 0.456 1.08E-06 10 1.08E-07 0.1083
C3 6.03E-05 0.00362 0.456 1.28E-06 10 1.28E-07 0.1276
C4 6.49E-05 0.003896 0.456 1.37E-06 10 1.37E-07 0.1374
C5 5.96E-05 0.003575 0.456 1.26E-06 10 1.26E-07 0.1260
C6 5.38E-05 0.00323 0.456 1.14E-06 10 1.14E-07 0.11391.26E-06 1.258 0.068

0.1157 0.008

[ABAD] 
mg/L

specific 
activity 

mol/min/
mg

specific 
activity 

µmol/min/
mg

average 
specific 
activity 

µmol/min/
mg

SEM 
µmol/min/

mg

2.007 0.264

0.2923 0.058

9.16E-07

Non- 
labelled 
ABAD

BIOTIN 
ABAD

2.01E-06

0.431

7.88E-07 0.788 0.149

Control no 
ABAD

1.06E-06 1.056 0.136

0.1560 0.041

0.916 0.222

7.72E-07 0.772
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As the b-ABAD protein was still found to be active after biotinylation, and since there 

is very little published data on the use of frentizole as a potential inhibitor of the 

ABAD- Aβ interaction (Xie et al. 2006), it was decided to proceed further with this 

assay, but to remove the Aβ binding component of the experiment. By removing the Aβ 

peptide, the assay was no longer a small molecule inhibitor screen, but instead became 

an indicator purely of small molecule binding to ABAD. This type of experiment is still 

extremely useful, and if successful would provide vital information that could then be 

used in the structural development of future ABAD protein activity promoters and also 

ABAD-Aβ interaction inhibitors for the treatment of AD. 

Therefore, two further experiments were designed to test the ability of b-ABAD protein 

to bind its co-factor NAD+ and known ABAD-Aβ inhibitor, frentizole. In these 

experiments 6 point, 5 fold serial dilutions were used to obtain a top concentration of 

100 µM NAD+ and 10 µM frentizole. Unfortunately results showed that neither 

compound was capable of binding to the immobilised b-ABAD protein. Sensorgrams 

for these experiments are shown in (Figure 5.16). 

Despite the improvements made by applying freshly b-ABAD protein to the SSA 

biosensors, no binding of NAD+ or frentizole was observed on the sensorgrams. The 

most likely reason for this could be that the surface immobilisation of ABAD protein 

renders the protein inactive, possibly due to the orientation of ABAD on the biosensor 

surface, hindering access to the active site. Another possible explanation for the lack of 

b-ABAD protein binding, is that in order to biotinylate the protein, lysine residues are 

targeted, and there is a lysine residue (Lys 172) present in ABAD’s active site region 

which may have become biotinylated, thus preventing any other molecules from 

entering the active site. Also if this lysine has become biotinylated, then it may have 
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immobilised itself to the SSA biosensor and orchestrated an orientation that leaves the 

active site inaccessible to any potential binding partners.   

 

 

Figure 5.16: Expanded sensorgrams for the small molecule binding of NAD+ and frentizole with 

immobilised b-ABAD protein. In both A) (NAD+) and B) (frentizole) the sensorgrams have been 

expanded around the 0 nM baseline, indicating that in both cases there is no binding observed between 

the compounds and immobilised b-ABAD protein.   
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5.6 A morphology specific Aβ aggregation assay which can be 

used as a screening tool for evaluating potential ABAD-Aβ 

inhibitors 

As described previously in section 5.1.1, it has been found that there are biomarkers that 

are capable of detecting Aβ aggregation (Congo red, Thioflavin T) (Maezawa et al. 

2008). However, these compounds are not able to recognise the various aggregation 

states that ABAD can adopt. A morphology specific Aβ assay would aid in finding Aβ 

morphology specific inhibitors and in vivo imaging agents. In this instance, the 

morphology specific assay could be used to screen potential inhibitors of the ABAD-Aβ 

interaction and to assess if the potential inhibitors have different effects on the ABAD-

Aβ interaction in the various Aβ morphology conditions. This morphology sensitive 

quenching assay works on the principle of measuring in real time changes that occur in 

the fluorescence emission of the N-terminally Cy3 labelled Aβ aggregates, and where 

differences in the fluorescence quenching during the Aβ growth process indicate either 

inhibition or promotion of Aβ aggregation.  

Our collaborator Dr J.Carlos Penedo and his group (University of St Andrews), had 

previously developed such an assay. However, their assay had never been used to 

measure any potential Aβ interactions, or possible inhibitors of the interactions 

previously.  Therefore, before any potential inhibitors of the ABAD-Aβ interaction 

could be screened the assay required to be validated for the purpose of measuring how 

ABAD and Aβ interact under the various morphology changes. Thus, it was first 

necessary to determine how changes in ABAD concentration affected Aβ aggregation in 

all three aggregation conditions (HFIP induced aggregation, NaCl induced aggregation 

and pH6 induced aggregation).  
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First the HiLyte Fluor 555 (Aβ555) was monomerised as described in section 2.3.1 and 

then treated to form the various morphological states as described in section 2.3.7. For 

each type of aggregate 4 experiments were carried out (as described in section 2.3.7), 

where the ABAD was then added to the Aβ aggregates in a peptide to ABAD ratio of 

1:1, 2:1 and 100:1 and a control experiment where no ABAD was added to the Aβ 

aggregates. Fluorescence quenching data obtained during the Aβ growth pattern for 

each of the induced aggregation conditions, with the addition of ABAD (in varying 

concentrations) is used to determine the effect of the ABAD on Aβ aggregation and is 

shown in Figures 5.17-5.19.  
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Figure 5.17: Fluorescence quenching of HFIP induced Aβ aggregation, with the addition of 

different concentrations of ABAD protein, to monitor its effects in fibril like aggregation 

conditions.  A) Control sample test 0.89 µM Aβ555: no ABAD present, after the HFIP injection, Aβ 

continues to form aggregates over 80 minutes with a 30% quenching of Cy3 dye. B) 0.89 µM Aβ555: 1 

µM ABAD, after ABAD injection there is no observed quenching of the Cy3 dye. This is consistent with 

the Aβ aggregation being completely inhibited.  C) 0.89 µM Aβ555: 500 nM ABAD, after ABAD injection 

there is a partial quenching of the Cy3 dye observed at around 15%. This is consistent with the partial 

inhibition of Aβ aggregation. D) 0.89 µM Aβ555: 10 nM ABAD, after ABAD injection there is a 30% 

quenching of the Cy3 dye observed, similar to that of the control sample. This is consistent with the 

promotion of Aβ aggregation 
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Figure 5.18: Fluorescence quenching of NaCl induced Aβ aggregation, with the addition of different 

concentrations of ABAD protein, to monitor its effects in globular like aggregation conditions.  A) 

Control sample test 0.89 µM Aβ555: no ABAD present, Aβ continues to form aggregates over 80 minutes 

with an observed quenching of approximately 30%. B) 0.89 µM Aβ555: 1 µM ABAD, after ABAD 

injection (20minutes into assay) there is no quenching of Cy3 dye observed. This is consistent with the 

Aβ aggregation being completely inhibited.  C) 0.89 µM Aβ555: 500 nM ABAD, after ABAD injection 

there is a partial quenching of Cy3 dye observed at approximately 5%. This is consistent with the partial 

inhibition of Aβ aggregation. D) 0.89 µM Aβ555: 10 nM ABAD, after ABAD injection there is a 35% 

quenching of Cy3 dye observed, similar to that of the control sample. This is consistent with the 

promotion of Aβ aggregation. 
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Figure 5.19: Fluorescence quenching of pH6 induced Aβ aggregation, with the addition of different 

concentrations of ABAD protein, to monitor its effects in plaque like aggregation conditions.  A) 

Control sample test 0.89 µM Aβ555: no ABAD present, Aβ continues to form aggregates over 19 h with an 

observed 30% quenching. B) 0.89 µM Aβ555: 1 µM ABAD, after ABAD injection, there is an observed 

30% quenching of Cy3 dye. This is consistent with the control sample.  C) 0.89 µM Aβ555: 500 nM 

ABAD, after ABAD injection there is observed quenching of the Cy3 dye of approximately 35%. This is 

consistent with the promotion of Aβ aggregation. D) 0.89 µM Aβ555: 10 nM ABAD, after ABAD 

injection there is observed 40% quenching of the Cy3 dye. This is consistent with the promotion of Aβ 

aggregation. 

 

The ABAD produced similar effects in both the HFIP (globular structures) and NaCl 

(fibril structures) induced aggregation conditions, where the addition of 1 µM ABAD 

appeared to prevent the aggregation of Aβ: the addition of 500 nM ABAD appeared to 

partially inhibit the Aβ aggregation and the addition of 10 nM ABAD appeared to 
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promote the aggregation of Aβ. In the acidic pH6 conditions (plaque like structures) the 

addition of ABAD appeared to promote the aggregation of Aβ in all ABAD 

concentrations (Figure 5.20). 

 

 

Figure 5.20: The percentage quenching of Cy3 dye, in three different induced Aβ aggregation 

conditions, treated with three ABAD concentrations. The change in ABAD concentration produced 

similar results in both the HFIP and NaCl induced aggregation conditions; the addition of 1 µM ABAD 

and 500 nM ABAD inhibited the Aβ aggregation and the addition of 10 nM ABAD promoted the Aβ 

aggregation. At pH6 (plaque like structures) the addition of ABAD appeared to promote the aggregation 

in all ABAD concentrations. 

 

Having determined how varying concentrations of the ABAD protein effect the Aβ 

aggregation, it was now possible to progress this assay to evaluate potential inhibitors of 

the ABAD-Aβ interaction.  
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As described previously in section 5.1.3 the known inhibitor frentizole could be used for 

any method development tests and so to determine if the compounds could be screened 

using this assay. Due to the nature of the K684-K711 analogue series and the solubility 

issues previously described, it was important to determine if the assay buffer was going 

to interfere with the Cy3 dye and therefore prevent the compounds from being screened, 

or whether the compounds themselves were going to interact with the Cy3 dye and 

cause a quench in Cy3 emission. Fortunately, the buffer had no effect on the 

fluorescence emission of the Cy3 dye over the aggregation timescale. Similarly, 

although frentizole did initially quench the Cy3 dye (by approximately 1%) thereafter 

there was no observed effect on the fluorescence emission of the Cy3 dye (shown in 

Figure 5.21).   

 

 

Figure 5.21: The fluorescence emission spectrum of Cy3 dye in the presence of analogue buffer 

(DMSO and PG) and frentizole. A) The addition of DMSO and PG causes no change to the 

fluorescence emission spectrum of Cy3. B) The addition of frentizole initially quenched the Cy3 dye (by 

approximately 1%) thereafter there was no observed effect on the fluorescence emission of the Cy3 dye. 
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Further assay validation was required before the full K684-K711 analogue series could 

be analysed. However due to time constraints, it was not possible to evaluate this Aβ 

aggregation assay as a screening method for the K684-K711 compounds. However, the 

groundwork has now been established for this assay, and it is hoped that in the near 

future, that the work reported in this chapter will play a vital role in utilising this 

technique as a screening method to help validate potential ABAD-Aβ inhibitors (further 

discussion carried out in Chapter 6.3).    
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5.7 Conclusion and summary of results 

In summary, the specific activity of ABAD in the presence of the K684-K711 analogue 

series was measured and having subtracted the compound’s auto-fluorescence from the 

obtained results, the data was analysed using a one-way ANOVA analysis with 

Dunnet’s mulitiple comparison correction. The ABAD enzyme activity analysis 

produced 5 compounds which were shown to significantly increase ABAD activity. It is 

also worth noting that all the K684-K711 analogues produced an increase in ABAD 

activity, however the variation between the replicates of each compound in the assay 

was great, therefore influencing the statistical analysis results.  

It has been shown that a novel morphology sensitive fluorescence assay for amyloid 

aggregation can be used to measure potential inhibitors of the ABAD-Aβ interaction. 

Due to time constraints it has not been possible to measure the effects that the K684-

K711 analogue series have on Aβ aggregation, using this assay.   

Unfortunately, it was shown that due to the composition of the K684-K711 analogue 

series, and the solubility issues caused by their organic synthesis, the thermal shift 

analysis technique and the direct binding assay (Octet RED 384 system) could not be 

used to investigate the kinetic parameters of the K684- K711 analogue series inhibition 

against the ABAD-Aβ interaction. 

The conclusion and discussion of these results as well as future perspectives is 

described further in Chapter 6.   
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The work described in this thesis has laid the foundations for targeting two key 

interactions as a strategy for the treatment of Alzheimer’s disease. This research focused 

on two main aspects: firstly, the identification and development of new inhibitors of the 

ABAD- Aβ interaction in the treatment of Alzheimer’s disease, and establishing 

biophysical assays which could potentially be used as screening methods to test these 

inhibitors. And secondly, investigating CypD as a potential therapeutic target in 

Alzheimer’s disease.   

 

6.1 Elucidating and identifying potential small molecule 

inhibitors of the ABAD- Aβ interaction 

Previous work in the Gunn- Moore laboratory (carried out by Dr Kirsty Muirhead) 

identified 16 ‘hit’ small molecule binding partners of ABAD by carrying out thermal 

shift analysis (TSA) using 674 Maybridge fragment library compounds (Muirhead 

2011). This Maybridge fragment library was adapted by Prof Jim Naismith group 

(University of St Andrews) to allow it to be screened using two, one dimensional 

nuclear magnetic resonance (NMR) experiments (saturation transfer difference and 

WaterLOGSY) as a method of ‘hit’ validation. Using these two NMR experiments it 

was therefore possible to evaluate and confirm the thermal shift analysis results. These 

NMR experiments were run in parallel against the ABAD protein mixed with 

Maybridge fragments, creating a fast and reliable screening method. Only Maybridge 

fragments that were ‘hits’ in both NMR experiments were taken forward and classified 

as true ‘hit’ compounds when validated against the TSA results.  

The NMR analysis was highly successful and revealed 51 ‘hit’ small molecule binding 

partners of ABAD protein from the Maybridge fragment library. Of these 51 
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compounds, eight compounds (fragment numbers: 94,99, 136, 217, 221, 358, 390 and 

441) were classified as ‘hit molecules in both TSA and the two NMR experiments. 

Having effectively been identified from three different experiments, these compounds 

were then considered to be molecules which could eventually be potential inhibitors of 

the Aβ interaction. The structures of these fragments are shown in Figure 6.1.  

 

Figure 6.1: Molecular structure of the eight Maybridge fragments identified as ABAD binding 

partners in both TSA and NMR analysis. These fragments have been classified as ‘hit’ compounds 

having been shown to bind to ABAD in both thermal shift analysis (TSA) and two NMR experiments. 

The Maybridge fragment library identifier numbers are shown in red (Chemical names of the fragments 

are detailed in Figure 3.6). 

 

The variations observed between the compounds that are capable of binding to ABAD 

protein in the TSA assay and in the NMR experiments were quite large. This is normal 

in fragment based screening and emphasises the need to validate ‘hit’ compounds in 

more than one biophysical assay (Erlanson et al. 2004; Carr et al. 2005; Hajduk & 

Greer 2007). One suggestion for the variation in ‘hit’ compounds observed between 

assays could be explained by the size of the fragments. A fragment of molecular weight 

less than 300 daltons, does not effectively occupy the chemical space available in the 
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ABAD binding site, and could therefore appear as a positive ‘hit’ molecule in one assay 

condition, but may not adopt the same conformation and enter the binding site in the 

same fashion, within another assay and therefore produce a negative result indicating 

that no binding is observed.    

Future work using these ‘hit’ compounds would consist of firstly investigating the 

kinetic parameters of their interactions with ABAD. This could be through the use of 

isothermal titration calorimetry, surface plasmon resonance or utilising the Fortebio 

Octet RED 384 system. By measuring their effects against ABAD with the enzyme 

activity assay this would also allow the compounds to be ranked in order of how 

significantly they increase ABAD activity.   

As the compounds were tested in the presence of Aβ in the TSA, their ability to bind to 

ABAD in the presence of Aβ is not impaired. However, by applying the morphology 

sensitive aggregation assay to measure how the compounds effect Aβ aggregation 

induced by various aggregation conditions this will provide further information on the 

compounds ability to potentially inhibit the ABAD-Aβ interaction.  

As these ‘hit’ molecules are taken from the Maybridge fragment library and conform to 

the ‘rule of three’, the compounds are particularly small and are likely to be weak 

(millimolar) binding partners of ABAD protein, and thus would require future chemical 

modifications to grow the molecules to produce a more complex lead series of 

compounds. By establishing the kinetic parameters of the fragments’ interactions with 

ABAD and their effects against Aβ aggregation, this will allow the selection of key 

fragments which produce the greatest therapeutic effect to be taken on chemical 

modification. This modification could possibly take two forms, whereby compounds 

could either be grouped and combined as ‘building blocks’ to produce larger molecules 
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that would effectively sample the available ABAD binding site, or compounds would be 

analysed by a structural activity relationship (SAR) approach would be used. Using 

SAR analysis is only usually considered in a larger fragment screen where many 

compounds have been identified and could possibly be ranked in a structurally similar 

manner, however, it may be considered in this instance as three of the compounds have 

an indole group, with two other compounds contain the structurally similar benzofuran 

and benzothiophene groups. These structurally related groups could potentially form the 

basis for a chemical modification study that could determine the key groups involved in 

the fragment- ABAD interaction.  

Ultimately however, key structural information is required to progress these compounds 

further down the drug discovery pipeline. Irrespective of numerous attempts, and by 

exhausting many stochastic screens to test many crystallisation conditions, no ABAD- 

fragment diffracting co-crystals could be produced. Three optimisation trials were set 

up using the best crystals produced as a basis for the screen, however, it was not 

possible to obtain diffracting ABAD-fragment co-crystals from these screens either. It 

was thought that this issue could be resolved by first crystallising native ABAD protein 

and soaking in the fragment once diffracting, reproducible ABAD crystals were 

achieved, however, this method of crystallisation also failed as it was found to be 

impossible to crystallise ABAD by itself. This is supported by the three published 

ABAD structure papers, which have all crystallised ABAD in the presence of another 

molecule (Powell et al. 2000; Kissinger et al. 2004; Lustbader et al. 2004).  

A significant reason for the ABAD-fragment co-crystallography failing could have been 

the use of DMSO to dissolve the fragment compounds. Throughout my extensive 

experiments with ABAD protein it was observed that ABAD can be quite unstable, and 

will precipitate rapidly in a buffer that does not contain DTT, or glycerol. It is also 
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important to limit the concentration of DMSO used in the assay, as it was observed that 

ABAD precipitates rapidly in the presence of this solvent. 

The most successful conditions that proved to be the most effective for the native 

ABAD protein crystallography, were 0.77 M sodium citrate (unbuffered), 0.1 M sodium 

citrate (pH 5.5), 0.17 M magnesium acetate (From Sto19, well E3, site 2, shown in 

Figure 3.8). By altering or broadening these conditions this could prove to be an 

effective foundation for any future crystallographic work with ABAD.  

  

 

 

  



Chapter 6: Conclusions Discussion and Future Directions 

 

 222 	
  
	
  

	
  

6.2 Cyclophilin D as a possible therapeutic target in the 

treatment of Alzheimer’s disease 

In comparison to the on-going research being carried out on the ABAD-Aβ interaction, 

relatively little study is currently being carried out to investigate the use of CypD as a 

therapeutic target in AD. During times of oxidative stress, or in the presence of Aβ, this 

promotes the translocation of CypD to the inner mitochondrial membrane contributing 

to the opening of the mPTP, triggering apoptosis and necrosis. By targeting CypD and 

preventing this translocation this could be beneficial in AD (Du et al. 2008; Du et al. 

2011). The CypD protein studies presented in this work were not to investigate the 

CypD-Aβ interaction, but were to investigate another potential binding partner of CypD 

protein: ABAD protein, and the difficult task of trying validate the unpublished data 

experimental data from Dr Yimin Ren (formally of the Gunn-Moore group) who 

observed that CypD is capable of binding to ABAD using FRET (Förster resonance 

energy transfer) analysis. In order to confirm ABAD as a potential CypD binding 

partner it was necessary to use biophysical techniques to elucidate these possible 

interactions further. Two techniques specifically employed to investigate the CypD-

ABAD interaction were x-ray crystallography and isothermal titration calorimetry 

(ITC).  

The only CypD construct which had been previously crystallised successfully to date 

was a truncated mutant construct (ΔCypDK133I) which was missing 29 amino acids from 

its N-terminal region (Schlatter et al. 2005; Kajitani et al. 2008). This construct was a 

kind gift from the Fujihashi group (Kyoto University, Tokyo) and it was believed that as 

this construct had been crystallised previously, that it would be straightforward to firstly 

purify and then crystallise, however this was not the case.  
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The ΔCypDK133I construct is an untagged protein, which requires a more stringent 

purification method in order to remove all the contaminants. It was a lengthy protein 

purification process, which lasted approximately 4 days (double that of a His-tagged 

protein), and provided very little protein. The lack of pure CypD protein produced is 

most likely due to the length of the purification process, and that the protein was 

observed to become unstable and precipitate out of the purification buffer solution.  

Nevertheless, pure, soluble ΔCypDK133I protein was produced and taken forward into 

co-crystallographic trials with the ABAD protein, where diffracting crystals were 

achieved. However, once these crystals were re-solublised, they were found to only 

contain native ΔCypDK133I protein without any bound ABAD protein (this was also 

confirmed by solving the crystal structure by molecular replacement).  

The ΔCypDK133I construct was established by Schlatter et al. in 2005, who developed 

this construct by direct surface engineering, where many mutations were added to the 

surface of the truncated CypD construct, to determine which mutation proved to be the 

most effective in conferring crystallisability on the protein. By introducing mutations on 

a protein these can increase the stability of the crystal, improve the solubility and reduce 

the entropic barrier of crystallisation by reducing flexible loops and surface entropy 

reduction (Trevino et al. 2007). Unfortunately by introducing mutations in the protein it 

may also render its function inactive and leave it incapable of interacting with other 

molecules. In this instance this could be a plausible reason as to why ΔCypDK133I does 

not appear to interact with ABAD. It could also be possible that the binding site for the 

ABAD- CypD interaction is located in the truncated N-terminal region, or that this 

truncated region contains key amino acids that are required to hold the structure in the 

correct conformation for an interaction to occur. As this construct has been co-
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crystallised previously with a known inhibitor cyclosporine A (Kajitani et al. 2008), it 

also seems plausible that contrary to previously observed results, the ABAD protein 

may not be a binding partner of CypD. This theory was also supported by an isothermal 

titration calorimetry experiment (ITC), which again did not show the ΔCypDK133I 

protein binding to ABAD protein in the micromolar range. Due to the small yield of 

pure ΔCypDK133I protein obtained after purification, and the large amount of protein that 

an ITC experiment requires it was not possible to investigate if ΔCypDK133I protein was 

capable of binding ABAD protein in the weaker millimolar range. This would be a good 

origin for any ΔCypDK133I protein experiments that may take place in the future as it 

could potentially provide the solution that ΔCypDK133I protein does bind ABAD protein, 

but that it is a very weak protein interaction, or possibly a transient interaction in nature.  

As it was not possible to rule out why ΔCypDK133I protein did not bind ABAD protein, 

it was vital to establish if the ABAD protein was capable of binding to full length CypD 

protein. Eventually after a long period of method development involving several full 

length CypD constructs inserted in various purification vectors two full length GST-

tagged CypD constructs were produced (pGEX-6P-1 CypD and pGEX-6P-1 CypDK133I) 

that included a full length CypD construct containing the K133I mutation present in the 

truncated mutant CypD construct. These constructs were made utilising a GST fusion 

purification system, with a PreScission protease tag cleavage site. This system should 

have resulted in a large yield of pure CypD protein, however the recovery rate was 

much lower than anticipated at an average 50 mg. A possible reason for this could be 

that a large number of uncoupled GST monomers and dimers are produced after lysis. 

Changing the cell lysis method, perhaps to alternating between small sonication bursts 

and freezing, rather than the cell disrupter method currently in use may possibly reduce 

this degradation.  
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These DNA constructs were used to produce protein, that when purified, progressed 

into crystal trials; however as yet no good quality crystals have been made, and have 

therefore not progressed into any optimisation and diffraction trials. This is unsurprising 

as no full length CypD construct has been crystallised and published to date. This 

however is believed to be the first full length untagged CypD protein to be purified 

successfully and used in any biophysical assay. It is believed that previous reported 

studies have not cleaved the GST tag from the protein before terminating the 

purification (Du et al. 2008). As the GST tag is larger than the size of the CypD protein 

(26 kDa compared to 23 kDa, respectively), this could have a significant negative effect 

in the folding of the protein, and in the conformations which the protein is capable of 

adopting. But also, by retaining the GST tag, this may hold the protein in a 

conformation which not only keeps the CypD protein stable, but may also facilitate its 

ability to bind another protein.    

Further studies are therefore required to establish if CypD protein is capable of binding 

to ABAD protein. In light of the many failed crystallography trials that were set up, not 

only for investigating the CypD-ABAD interaction, but also investigating the ABAD-

Aβ interaction, it would be sensible to adopt another biophysical technique strategy 

when trying to learn more about these interaction. The use of the Fortebio Octet RED 

384 system would be ideal to use in this instance. The three CypD constructs could be 

biotinylated and bound to the SSA sensor, before ABAD protein was applied to 

establish if the two proteins could bind.  
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6.3 Assay development for investigating a frentizole based 

analogue series as potential inhibitors of the ABAD-Aβ 

interaction 

In 2006, it was established that frentizole, an immunosuppressant drug, was an inhibitor 

of the ABAD-Aβ interaction (Xie et al. 2006). Very little was known about how this 

compound disrupts the ABAD-Aβ interaction, simply because the identification was 

made by being structurally similar to an ELISA based screening assay and no further 

publications have succeeded it. However, Xie et al. did show that by modifying the 

compound to produce a novel benzothiazole urea moiety as a backbone for the 

compound, this resulted in a 30-fold increase in potency. This therefore established that 

by designing an analogue series based on frentizole that it was possible to increase 

potency and improve the therapeutic effect achieved. In theory, this may also reduce the 

immunosuppressive action which frentizole currently has. Research speculation has 

suggested that no further publications have been produced using this compound as an 

inhibitor of the ABAD-Aβ interaction due to its adverse immunosuppressive side effects 

(Prof Sir Mark Pepys FRS, personal communication). 

Dr Kamil Musilek (University of Hradec Kralove, Czech Republic) designed a series of 

28 frentizole based analogues which required further testing to establish if these 

compounds would inhibit the ABAD-Aβ interaction, and also if any of these analogues 

could be developed further into ‘drug like’ molecules. In order to evaluate these 

compounds at the molecular level, several assays were optimised and specifically 

developed for this purpose. 

The K684-K711 analogue series compounds proved to be a very difficult set of 

compounds to work with when developing reproducible assays to test their therapeutic 
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effects on the ABAD- Aβ interaction. The compounds were found to be insoluble in all 

buffers except DMSO and propylene glycol (PG), thus when optimising biophysical 

assays to measure their effects on the ABAD-Aβ interaction care was taken to reduce 

the overall percentage of DMSO within the assay to its lowest possible concentration as 

ABAD appears to denature and precipitate rapidly in this buffer (previously described 

in section 6.1). This in itself proved problematic, as only 20 mg of each synthesised 

analogue was provided, it was often difficult to maintain a high enough concentration of 

the compound to see a therapeutic effect in the assay, with a small enough percentage of 

DMSO present so that the ABAD protein remained active and could be measured 

effectively. The PG, although a useful vehicle in this scenario for reducing the 

concentration of DMSO, is a very viscous solution, which in turn could interfere with 

any fluorescent or absorbance measurements. Some of the compounds in the analogue 

series are also coloured, which may increase the auto-fluorescence values observed in 

an assay of that nature (Table 5.1). It is because of the reasons described above that the 

thermal shift analysis assay was unable to be used to measure the effects of the K684-

K711 analogue series as potential inhibitors of the ABAD- Aβ interaction.  

In order to improve the solubility issues of the K684-K711 analogue series, it may be 

possible to prepare the analogues as hydrochloride salts (substances currently used in 

medications to improve water and acid solubility), guanidines (could be used to prepare 

compounds containing an amine group) and carboxylic salts (could be used to prepare 

those compounds with a carboxyl group (–COOH), thus making the compound more 

polar with both hydrogen bond donors and acceptors) (Stahl 2008). In this instance, 

guanidines may not be the best option taken if the compounds were to be re-synthesised, 

because although they could improve the solubility issues of the K684-K711 analogue 
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series; guanidinium salts are a very powerful protein denaturant so may not allow the 

ABAD protein to remain active during the assay.   

The Fortebio Octet RED 384 assay could not be used to measure the effects of the 

K684-K711 analogue series on the ABAD-Aβ interaction, but for different reasons than 

those discussed above. In order to measure small molecule binding, this assay relies on 

the immobilisation of a biotinylated protein (b-ABAD) onto a superstreptavidin (SSA) 

sensor. When ABAD protein was biotinylated the ABAD specific enzyme activity fell 

by 47% in comparison to unlabelled ABAD. However, the b-ABAD was still active as 

its enzyme activity levels were still 35% higher than when compared to a control 

sample with no ABAD present. This suggests that the surface immobilisation of ABAD 

renders the protein inactive. The absence of b-ABAD binding to its co-factor NAD+ 

binding that it could possible that the biotin could be altering the ABAD conformation 

sufficiently to inhibit access to the binding site.  

Also, this assay failed because the Aβ peptide was capable of binding non- specifically 

to the SSA sensor. Therefore if any binding was observed, then it would not have been 

possible to determine whether the Aβ peptide was binding to the sensor, or to the b-

ABAD. It may be possible to revisit this assay at a later date and try immobilising 

biotinylated Aβ (b-Aβ) to the SSA sensor and then add the ABAD with the analogue 

series to see if the kinetic parameters of the interactions can be established this way, 

however, due to its sticky nature it seems unlikely that once the b-Aβ is bound onto the 

sensor, that any interaction it makes could be easily dissociated.    

The enzyme activity assay approach was used to measure the catalytic activity of 

ABAD, in the presence of the K684-K711 analogue series, as a measurement of its 

function. The principles of this assay involved measuring the reduction of S- 
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Acetoacetyl- CoA by monitoring the absorbance of its co-factor NAD+ at 340 nM over 

time (60 s). Again, this assay required substantial evaluation and development 

(potentially due to the solubility issues within the K684-K711 analogue series), but 

eventually it was possible to screen this series to determine their effects on ABAD 

activity. 

All of the K684-K711 compounds were found to increase ABAD activity, although the 

difficulty in accurately measuring the absorbance due to the compound solubility issues 

(as discussed in this chapter) and being able to reliably reproduce the data was hard to 

achieve and the variation between sample replicates was quite large. However after the 

analogues were subjected to statistic analysis using a one- way ANOVA test with 

Dunnet’s multiple comparison, four of the analogues (K691, K693, K701 and K703) 

were shown to significantly increase ABAD activity. The structures of these four 

analogues are shown in Figure 6.2.  
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Figure 6.2: The chemical structures of 4 compounds from the K684-K711 analogue series, which 

were found to significantly increase ABAD activity. On the right of the figure are the four compounds 

that were found to have significantly increased ABAD activity after statistical analysis with a one way 

ANOVA test with Dunnet’s multiple comparison. Blue box: indicates the basic design for the analogue 

series modifications, with changes applied to the R1-3 groups and to the chlorine atom are altered in a 

stepwise fashion.  

 

This series of analogues was designed in order to determine where the key functional 

groups were found within the basic benzothiazole urea backbone. A chlorine molecule 

appears to be the important electron withdrawing group favoured on the benzothiazole 

urea ring as this is consistently found in the structure of all four analogues. The 

hydroxyl group in the para position of the phenylurea ring is also quite conserved and is 

present in two analogues (K691 and K693) and the oxidised form of the hydroxyl 
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group; the carboxylic acid is found in the para position of compound K703. Future 

direction on this area of work may be the synthesis of another analogue series, based on 

these findings, which would focus on designing compounds that conform with the 

benzothiazole urea backbone, and contain a chlorine atom in the benziothiazole ring, 

and a hydroxyl, or a carboxylic acid group located in the para position of the phenylurea 

ring. Nevertheless, due to the variation between sample replicates within one 

compound, there may be other analogues in the K684-K711 analogue series which 

produce a greater increase in ABAD activity, but have not been found to significantly 

increase the results because of this variation. It is therefore vital, that any future work on 

these compounds will either address these solubility issues, or measure the analogues 

again in a different biophysical assay to validate these results. 

The novel morphology sensitive Aβ aggregation assay is one method that could be used 

as a screening tool to validate the ABAD activity analysis findings for the K684-K711 

analogue series. This Aβ aggregation assay would be capable of measuring the 

analogues’ ability to inhibit Aβ aggregation and thus its potential to become an inhibitor 

of the ABAD-Aβ interaction. The principle of this assay is to measure, in real time, 

changes that occur in the fluorescence emission of the N-terminally labelled Cy3 Aβ 

aggregates, and where differences in the fluorescence quenching during the Aβ growth 

process, indicate either promotion or inhibition of Aβ aggregation. The changes to the 

Aβ growth process are also carried out under three different induced Aβ aggregation 

conditions to mimic some of the more common Aβ morphologies that are found within 

cells: HFIP induced Aβ aggregation (to produce globular like structures), NaCl induced 

aggregation conditions (fibril like structures) and pH6 induced Aβ aggregation 

conditions (large plaque like structures).  
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 The method development for this novel morphologically sensitive assay revealed that 

when ABAD is present in both 1:1 Aβ peptide to ABAD protein ratios and 2:1 Aβ 

peptide to ABAD ratios in HFIP induced and NaCl induced Aβ aggregation conditions, 

there is no quenching of the Cy3 dye and this indicates that the Aβ aggregation is 

inhibited. Conversely, when the ABAD protein is present in low concentrations at an 

Aβ peptide to ABAD ratio of 100:1, in both HFIP and NaCl induced aggregation 

conditions, the Cy3 dye is quenched by approximately 30%, indicating that the ABAD 

protein is promoting aggregation. In the acidic pH 6 inducing conditions the ABAD 

protein appears to promote aggregation at all Aβ peptide to ABAD protein ratios. To 

some extent, this is consistent with what would occur inside the brain, as the pH 6 

induced Aβ aggregation conditions produce plaque like molecules, it is unlikely that the 

ABAD would have any effect on these aggregates as plaques are found extracellularly 

and ABAD is a mitochondrial protein. It is therefore more important to focus on the 

HFIP and the NaCl induced Aβ aggregation conditions for the purpose of this work, as 

they are more physiologically relevant. However a further use of this assay, in the 

future, would be to identify other potential Aβ binding compounds that may be 

morphology specific and bind only to one aggregation condition, and this is where the 

analysis of all three Aβ aggregation conditions would be useful.       

Unfortunately due to time constraints it was not possible to evaluate the K684-K711 

analogue series as potential inhibitors of the ABAD-Aβ interaction during the 

timeframe for the work presented in this thesis. This initial assay advancement has 

produced a screening tool for an otherwise troublesome set of compounds to reliably 

measure their effects on the ABAD-Aβ interaction in biophysical assays. It is also 

hoped that this assay may be used to investigate the Maybridge fragments that have 

been identified as potential inhibitors of the ABAD-Aβ interaction.      
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6.4 The overall outlook for targeting the ABAD-Aβ interaction 

and CypD as potential therapeutic targets in Alzheimer’s 

disease.  

The results reported in this work have laid the foundations for investigating two key 

interactions in Alzheimer’s disease. The groundwork has also been established for 

biophysical assays, which can be used as screening tools to help identify potential 

inhibitors of these interactions. Both the ABAD-Aβ interaction, and the blockade of 

CypD are known to be drug targets in the treatment of AD, and by elucidating the 

molecular mechanisms behind these interactions, through implementing biophysical 

assays, this will help in the identification and design of potential new therapeutic agents 

for the treatment of Alzheimer’s disease.  

With the number of AD cases rising yearly, due to an aging population, this places a 

great burden on the healthcare system, and the supporting charity foundations, to 

provide adequate care for AD sufferers. The root of this problem is that the current 

treatments do not treat the underlying causes behind the disease, instead they help to 

mask the symptoms of the disease and prolong the brains remaining function. The drug 

development process is long and costly (as shown in Figure 6.3), but by focussing 

research into developing treatments for the causative rather than the symptomatic 

pathway this could lead to new breakthroughs in the treatment of this debilitating 

disease. 
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Figure 6.2: A schematic of a drug discovery work program, undertaken to ultimately develop a 

drug candidate. This is the schematic work flow program detailing the drug discovery process, and 

highlighting the complex nature of the many techniques that are used to validate and elucidate an eventual 

drug candidate.   

 

Following the investigations herein, into further understanding the ABAD-Aβ 

interaction, and the two-pronged approach to identifying and developing potential 

inhibitors to disrupt this interaction, this work has built upon previously reported 

findings and the results from the work reported here represent budding advances 

towards the development of novel therapeutics against the ABAD-Aβ interaction for the 

treatment of AD.  

Although the targeting of CypD as a novel therapeutic in AD, is lagging slightly behind 

the ABAD-Aβ interaction on the drug discovery work program, it did eventually 
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produced some promising results, in that, three different constructs have been 

successfully expressed and purified, and taken into crystal trials. The substantial 

biophysical assay development carried out when investigating the ABAD-Aβ 

interaction will also aid significantly in the progress of identifying any potential 

inhibitors and binding partners of CypD that may produce therapeutic effects, and in the 

future could lead to the identification of an effective disease modifying drug in the 

treatment of AD.      
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A.1: Human ABAD DNA Sequence  

Accession number: NM_001037811.2 

 
Gene Sequence:  
atccccatcc cgtggagtgg ccggcgacaa gatggcagca gcgtgtcgga 
gcgtgaaggg cctggtggcg gtaataaccg gaggagcctc gggcctgggc 
ctggccacgg cggagcgact tgtggggcag ggagcctctg ctgtgcttct 
ggacctgccc aactcgggtg gggaggccca agccaagaag ttaggaaaca 
actgcgtttt cgccccagcc gacgtgacct ctgagaagga tgtgcaaaca 
gctctggctc tagcaaaagg aaagtttggc cgtgtggatg tagctgtcaa 
ctgtgcaggc atcgcggtgg ctagcaagac gtacaactta aagaagggcc 
agacccatac cttggaagac ttccagcgag ttcttgatgt gaatctcatg 
ggcaccttca atgtgatccg cctggtggct ggtgagatgg gccagaatga 
accagaccag ggaggccaac gtggggtcat catcaacact gccagtgtgg 
ctgccttcga gggtcaggtt ggacaagctg catactctgc ttccaagggg 
ggaatagtgg gcatgacact gcccattgct cgggatctgg ctcccatagg 
tctgtttggc accccactgc tgaccagcct cccagagaaa gtgtgcaact 
tcttggccag ccaagtgccc ttccctagcc gactgggtga ccctgctgag 
tatgctcacc tcgtacaggc catcatcgag aacccattcc tcaatggaga 
ggtcatccgg ctggatgggg ccattcgtat gcagccttga agggagaagg 
cagagaaaac acacgctcct ctgcccttcc tttccctggg gtactactct 
ccagcttggg aggaagccca gtagccattt tgtaactgcc taccagtcgc 
cctctgtgcc taataaagtc tctttttctc acagag  
 

A.2: Human ABAD Protein Sequence  

M A A A C R S V K G L V A V I T G G A S G L G L A T A
E R L V G Q G A S A V L L D L P N S G G E A Q A K K L
G N N C V F A P A D V T S E K D V Q T A L A L A K G K
F G R V D V A V N C A G I A V A S K T Y N L K K G Q T
H T L E D F Q R V L D V N L M G T F N V I R L V A G E
M G Q N E P D Q G G Q R G V I I N T A S V A A F E G Q
V G Q A A Y S A S K G G I V G M T L P I A R D L A P I
G I R V M T I A P G L F G T P L L T S L P E K V C N F
L A S Q V P F P S R L G D P A E Y A H L V Q A I I E N
P F L N G E V I R L D G A I R M Q P  
 

LU
ST

B
A

D
E

R
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Features : 
Nco1  : [973 : 968 - CCW] 
Xho1  : [163 : 157 - CCW] 
ABAD  : [967 : 185 - CCW] 
Sal1  : [184 : 179 - CCW] 
HindIII  : [178 : 173 - CCW] 
Not1  : [172 : 165 - CCW] 
T7  : [1133 : 1114 - CCW] 
ColE1 origin : [4646 : 4018 - CCW] 
F1 origin : [5664 : 6104 - CW] 
M13 origin : [6109 : 5654 - CCW] 
LacO  : [1114 : 1092 - CCW] 
LacI  : [1647 : 2603 - CW] 
KanR  : [4746 : 5558 - CW] 
6His  : [1033 : 1016 - CCW] 
6His  : [157 : 140 - CCW] 
TEV site : [994 : 974 - CCW] 
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A.3: ΔCypDK133I DNA Sequence 

Accession Number: NM_005038 

ΔCypDK133I sequence: (495 bp) 

gggaacccgc tcgtgtacct ggacgtggac gccaacggga agccgctcgg 
ccgcgtggtg ctggagctga aggcagatgt cgtcccaaag acagctgaga 
acttcagagc cctgtgcact ggtgagaagg gcttcggcta caaaggctcc 
accttccaca gggtgatccc ttccttcatg tgccaggcgg gcgacttcac 
caaccacaat ggcacaggcg ggaagtccat ctacggaagc cgctttcctg 
acgagaactt tacactgaag cacgtggggc caggtgtcct gtccatggct 
aatgctggtc ctaacaccaa cggctcccag ttcttcatct gcaccataaa 
gacagactgg ttggatggca agcatgttgt gttcggtcac gtcaaagagg 
gcatggacgt cgtgaagaaa atagaatctt tcggctctaa gagtgggagg 
acatccaaga agattgtcat cacagactgt ggccagttga gctaa 
 
 

 

A.4: ΔCypDK133I DNA Sequence 

 

M L A L R C G S R W L G L L S V P R S V P L R L P A A R A C 

S K G S G D P S S S S S S G N P L V Y L D V D A N G K P L G 

R V V L E L K A D V V P K T A E N F R A L C T G E K G F G Y 

K G S T F H R V I P S F M C Q A G D F T N H N G T G G K S I 

Y G S R F P D E N F T L K H V G P G V L S M A N A G P N T N 

G S Q F F I C T I K T D W L D G K H V V F G H V K E G M D V 

V K K I E S F G S K S G R T S K K I V I T D C G Q L S 
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Features: 

BamH1 : [203 : 198 - CCW]  

Nde1  : [703 : 698 - CCW] 
tCypD insert : [697 : 204 - CCW] 

T7  : [788 : 769 - CCW] 
ColE1 origin : [4297 : 3669 - CCW] 

F1 origin : [5448 : 5888 - CW] 
M13 origin : [5893 : 5438 - CCW] 

LacO  : [769 : 747 - CCW] 
AmpR  : [5108 : 4449 - CCW] 

Amp prom : [5376 : 5348 - CCW] 
lacI  : [1166 : 2257 - CW] 

6His  : [157 : 140 - CCW] 
K133I   : [260 : 258 - CCW] 
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A.5: Full length CypD DNA Sequence 

Accession Number: NM_005038 

Gene Sequence:  

1 ggccggtcag cgtcgctgcc ggtctccggc ggagacggac tctggagttt 
gggcggcccg ggcggccact aggtactctg atattccgta ctaaacacgt 
ctgcaagtca agatgtcgca cccgtccccc caagccaagc cctccaaccc 
cagtaaccct cgagtcttct ttgacgtgga catcggaggg gagcgagttg 
gtcgaattgt cttagaattg tttgcagata tcgtacccaa aactgcggaa 
aattttcgtg cactgtgtac aggagaaaaa ggcattggac acacgactgg       
gaaacctctc catttcaaag gatgcccttt tcatcgaatt attaagaaat 
ttatgattca gggtggagac ttctcaaatc agaatgggac aggtggagaa 
agtatttatg gtgaaaaatt tgaagatgaa aatttccatt acaagcatga 
tcgggagggt ttactgagca tggcaaatgc aggccgcaac acaaacggtt 
ctcagttttt tatcacaaca gttccaactc ctcatttgga tgggaaacat 
gtggtgtttg gccaagtaat taaaggaata ggagtggcaa ggatattgga       
aaatgtggaa gtgaaaggtg aaaaacctgc taaattgtgc gttattgcag 
aatgtggaga attgaaggaa ggagatgacg ggggaatatt cccaaaagat 
ggctctggcg acagtcatcc agatttccct gaggatgcgg atatagattt 
aaaagatgta gataaaattt tattaataac agaagactta aaaaacattg 
gaaatacttt tttcaaatcc cagaactggg agatggctat taaaaaatat 
gcagaagttt taagatacgt ggacagttca aaggctgtta ttgagacagc       
agatagagcc aagctgcaac ctatagcttt aagctgtgta ctgaatattg 
gtgcttgtaa actgaagatg tcaaattggc agggagcaat tgacagttgt 
ttagaggctc ttgaactaga cccatcaaat accaaagcat tgtaccgcag 
agctcaagga tggcaaggat taaaagaata tgatcaagca ttggctgatc 
ttaagaaagc tcaggggata gcaccagaag ataaagctat ccaggcagaa 
ttgctgaaag tcaaacaaaa gataaaggca cagaaagata aagagaaggc      
agtatatgca aaaatgtttg cttagaaagg attcagtttt gcttattgtg 
tgttgattgt ataaatgcaa taagaaaatg taaaggtttt tgtctatgaa 
tatgatccct aatgtgtttc ttttgacacc ttagttcctt actgtttaca 
gtttaggagt actgataggg gttcatgctt aataaacatg tcacaataca 
gtaagtaaag tggttttgtt tgtttctttg agatggagtc ttgctctgtc 
acccaggctg gagtgcggtg gcgcaatctc ggctcactgc atcctctgcc      
tcccgggttc aagcaattct cctgcctcag cttcccaagt agctgggatt 
acaggcacgt gccaccacgc ccagctaatt tttgtatttt tagtagagat 
ggggtttcac catattggtc acgtcacgtt ggtcttgaac tcctgacctt 
gtgatccacc ccgccttggc ctcccaaagt gctgggatta caggtgtgag 
ccaccgtgcc cggccaagta aaatgttttt taaaatggtt atgtgcatta 
ttcataaaaa ataatggtgt ccagtctttt taaacttgta aagacacatc      
ttattgaata aagagatgag agcttaagtt tgtaaaaaaa aaaaaaaaaa  
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A.6: Full length CypD Protein Sequence 

M L A L R C G S R W L G L L S V P R S V P L R L P A A R A C 

S K G S G D P S S S S S S G N P L V Y L D V D A N G K P L G 

R V V L E L K A D V V P K T A E N F R A L C T G E K G F G Y 

K G S T F H R V I P S F M C Q A G D F T N H N G T G G K S I 

Y G S R F P D E N F T L K H V G P G V L S M A N A G P N T N 

G S Q F F I C T I K T D W L D G K H V V F G H V K E G M D V 

V K K I E S F G S K S G R T S K K I V I T D C G Q L S 

 

 

A.7: Primers for CypD construction 

Sequence Primer Name 
CGTCATTGAGGGCATGGACG tCypD-F 
CGTCCATGCCCTCAATGACG tCypD-R 
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Features: 

CypD insert : [960 : 1583 - CW]      GST  : [258 : 911 - CW] 

Xho1  : [1633 : 1638 - CW]   Amp prom       : [1986 : 2014 - CW] 

Not1  : [1638 : 1645 - CW]   lac  : [5128 : 5157 - CW] 

BamH1 : [945 : 950 - CW]   tac  : [184 : 212 - CW] 

EcoR1  : [954 : 959 - CW]   PreScission : [918 : 938 - CW] 

M13-fwd : [5239 : 5222 - CCW]  M13-rev : [5190 : 5210 - CW] 

ColE1 origin : [3065 : 3693 - CW]   LacO  : [215 : 237 - CW] 

LacZ alpha : [5310 : 5378 - CW]   LacO  : [5162 : 5184 - CW] 

AmpR  : [2254 : 2913 - CW]    
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Features: 

CypD insert : [960 : 1583 - CW]      K133I  : [1482 : 1484 - CW] 

Xho1  : [1633 : 1638 - CW]   Amp prom       : [1986 : 2014 - CW] 

Not1  : [1638 : 1645 - CW]   lac  : [5128 : 5157 - CW] 

BamH1 : [945 : 950 - CW]   tac  : [184 : 212 - CW] 

EcoR1  : [954 : 959 - CW]   PreScission : [918 : 938 - CW] 

M13-fwd : [5239 : 5222 - CCW]  M13-rev : [5190 : 5210 - CW] 

ColE1 origin : [3065 : 3693 - CW]   LacO  : [215 : 237 - CW] 

LacZ alpha : [5310 : 5378 - CW]   LacO  : [5162 : 5184 - CW] 

AmpR  : [2254 : 2913 - CW]   GST  : [258 : 911 - CW] 
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Appendix B: Bacterial cell line descriptions 
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BL21 (DE3) 

• Genotype- F– ompT hsdSB (rB
-mB

-) gal dcm (DE3) 

• BL21 strains are most widely used hosts for protein expression from pET 

recombinants. 

• Are deficient of both lon and ompT proteases. 

• DE3= host is lysogen λDE3 therefore carries a chromosomal copy of the T7 

RNA polymerase gene under control of the lacUV5 promoter. 

• Induction by IPTG. 

• Can potentially have leaky expression of T7 polymerase, which leads to the 

production of potentially toxic proteins.  

 

BL21*™ (DE3) 

• Genotype- F- ompT hsdSB (rB
-mB

-) gal dcm rne131 (DE3) 

• DE3= host is lysogen λDE3 therefore carries a chromosomal copy of the T7 

RNA polymerase gene under control of the lacUV5 promoter. 

• Induction by IPTG 

• Mutated rne 131 gene which encodes a truncated RNase E enzyme that lacks the 

ability to degrade mRNA resulting in increase mRNA stability. 

• Deficient in both lon and ompT proteases.  

• Due to increase in stability of mRNAs, higher basal expression of heterogenous 

genes is noted in BL21* than other BL21 strains. Especially in low copy number 

pET (T7 based) plasmids.  

 

C43 (DE3)  

• Genotype- F-ompT gal hsdSB (rB
-mB

-) dcm lon (DE3) 

• Two uncharacterised mutations- could be helping to avoid uncoupling of 

transcription and translation and also affecting the folding and insertion into 

bacterial membrane.  

• From parental BL21 (DE3) strain 
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•  DE3= host is lysogen λDE3 therefore carries a chromosomal copy of the T7 

RNA polymerase gene under control of the lacUV5 promoter. 

• Induction by IPTG. 

• Effective for toxic and membrane proteins. 

 

BLR (DE3) 

• Gentotype- F– ompT hsdSB (rB
-mB

-) gal dcm (DE3) Δ(srl-recA)306::Tn10 (TetR) 

• recA- derivative of BL21 strain that improves plasmid monomer yields and may 

help to stabilise the target plasmids containing repetitive sequences (tandem 

repeats) or whose products may cause the loss of the DE3 prophage.  

• DE3= host is lysogen λDE3 therefore carries a chromosomal copy of the T7 

RNA polymerase gene under control of the lacUV5 promoter. 

• Induction by IPTG 

• Deficient in both lon and ompT proteases. 

 

HMS174 (DE3) 

• Genotype- F– recA1 hsdR (rK12
-mK12

+) (DE3) (RifR) 

• recA mutation in a K-12 background. 

• Like BLR may help to stabilise certain target genes whose products lose the 

DE3 prophage. 

• Rif resistant (rifampin). RIF kills bacteria by binding to RNA polymerase and 

blocking the elongation of the RNA transcript when it becomes 2 or 3 

nucleotides in length. Bacteria develop resistance to RIF at a high frequency. 

 

Rosetta™ (DE3)  

• Genotype- F- ompT hsdSB (rB
-mB

-) gal dcm (DE3) pRARE2 (CamR) 

• BL21 derivatives designed to enhance the expression of eukaryotic proteins that 

contain proteins rarely used in E. coli. Rosetta strain supplies tRNAs for codons 
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AUA, AGG, AGA, CUA, CCC and GGA on a compatible chloramphenicol- 

resistant plasmid pRARE to provide “universal” translation, where translation 

would be otherwise limited by the codon usage of E.coli. 

 

Tuner™ (DE3) 

• Genotype- F- ompT hsdSB (rB
-mB

-) gal dcm lacY1 (DE3) 

• lacZY deletion mutants of BL21 strain which enable adjustable levels of 

protein expression throughout all cells in a culture.  

•  lac permease (lacY) mutation allows uniform entry of IPTG into all cells in 

the population allowing IPTG induction to occur at a true concentration- 

dependent fashion that is exceptionally uniform throughout the culture.  

• By adjusting the IPTG concentration this means that expression can be 

regulated easily. A lower expression level may enhance the solubility and 

activity of the target protein.  

• Deficient in both lon and ompT proteases 

 

ORAGAMI (DE3) 

• Genotype- Δ(ara–leu)7697 ΔlacX74 ΔphoA PvuII phoR araD139 ahpC galE 

galK rpsLF'[lac+ lacI q pro] (DE3) gor522::Tn10 trxB (KanR, StrR, TetR)4 

• K12 derivative that has mutations in both the thioreductase (trxB) and the 

glutathione reductase (gor) genes. These mutations greatly enhance disulfide 

bond formation in the cytoplasm.  

• Compatible with Amp resistant plasmids. 

• Leu auxotroph 
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Appendix C: Crystallography Screens 
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Screen layout using The Hamilton STARline robot 

 

 

 

 

 

 

 

 

 

All 96 well crystal screens are laid out in this manner when using the Hamilton STARline robot. Subsequent screens described in this appendix 

are detailed by their sample number, which then by using this table it is possible to find the corresponding well number for the crystal condition.  

  

 i ii iii Iv v vi vii viii ix x xi xii 

A 1 9 17 25 33 41 49 57 65 73 81 89 

B 2 10 18 26 34 42 50 58 66 74 82 90 

C 3 11 19 27 35 43 51 59 67 75 83 91 

D 4 12 20 28 36 44 52 60 68 76 84 92 

E 5 13 21 29 37 45 53 61 69 77 85 93 

F 6 14 22 30 38 46 54 62 70 78 86 94 

G 7 15 23 31 39 47 55 63 71 79 87 95 

H 8 16 24 32 40 48 56 64 72 80 88 96 
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 StoPEG 1:  

	
  
	
  	
   	
  	
   	
  	
   	
  	
   Stock	
  

Conc	
  (M)	
   	
   	
   	
   	
  
	
  

Precipitant	
   %	
   Buffer	
   Conc	
  (M)	
   Salt	
  	
   Conc	
  (M)	
   Additive	
   %	
  
1	
   PEG10k	
   20.58	
   HEPES	
   0.1	
   8	
   Am-­‐Acetate	
   0.08	
   -­‐	
   0	
  
2	
   PEGMME5k	
   21.44	
   BICINE	
   0.1	
   9.5	
   K-­‐Thiocyanate	
   0.19	
   -­‐	
   0	
  
3	
   PEG8k	
   18.95	
   Na-­‐Cacod	
   0.1	
   6.5	
   K-­‐Nitrate	
   0.07	
   -­‐	
   0	
  
4	
   PEG6k	
   19.29	
   Tris-­‐Chloride	
   0.1	
   8	
   K-­‐Thiocyanate	
   0.25	
   -­‐	
   0	
  
5	
   PEGMME5k	
   17.77	
   Na-­‐Acetate	
   0.1	
   5	
   Na-­‐Bromide	
   0.1	
   DMSO	
   3.06	
  
6	
   PEG4k	
   20.29	
   MOPS	
   0.1	
   7	
   Mg-­‐Formate	
   0.11	
   -­‐	
   0	
  
7	
   PEGMME5k	
   20.64	
   BICINE	
   0.1	
   8.5	
   -­‐	
   0	
   BME	
   5.72	
  
8	
   PEG8k	
   12.6	
   HEPES	
   0.1	
   8	
   K-­‐Chloride	
   0.19	
   -­‐	
   0	
  
9	
   PEG400	
   34.19	
   MOPS	
   0.1	
   6.5	
   Ca-­‐Acetate	
   0.12	
   BOG	
   0.02	
  
10	
   PEGMME550	
   37.52	
   CHES	
   0.1	
   9	
   Mg-­‐Acetate	
   0.23	
   -­‐	
   0	
  
11	
   PEG8k	
   12.66	
   MOPS	
   0.1	
   6.5	
   Ca-­‐Chloride	
   0.14	
   -­‐	
   0	
  
12	
   PEG400	
   46.79	
   -­‐	
   0	
   0	
   Zn-­‐Chloride	
   0.11	
   -­‐	
   0	
  
13	
   PEG10k	
   19.3	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐Chloride	
   0.18	
   -­‐	
   0	
  
14	
   PEGMME2k	
   20.02	
   Na-­‐Cacod	
   0.1	
   7	
   Na-­‐Acetate	
   0.14	
   -­‐	
   0	
  
15	
   PEG400	
   50.02	
   BICINE	
   0.1	
   8.5	
   Am-­‐Sulfate	
   0.09	
   PEG400	
   1.56	
  
16	
   PEGMME2k	
   22.07	
   Na-­‐Cacod	
   0.1	
   7	
   Zn-­‐Acetate	
   0.11	
   -­‐	
   0	
  
17	
   PEG1.5k	
   25.96	
   MES	
   0.1	
   6	
   Na-­‐K-­‐Tartrate	
   0.07	
   BOG	
   0.04	
  
18	
   PEG6k	
   16.22	
   Na-­‐Citrate	
   0.1	
   4.5	
   Mg-­‐Formate	
   0.04	
   -­‐	
   0	
  
19	
   PEG3350	
   24.04	
   MES	
   0.1	
   6	
   Am-­‐Sulfate	
   0.3	
   -­‐	
   0	
  
20	
   PEG6k	
   18	
   Na-­‐Acetate	
   0.1	
   5	
   Zn-­‐Chloride	
   0.07	
   LDAO	
   0.09	
  
21	
   PEG4k	
   23.35	
   BisTris	
   0.1	
   6	
   Mg-­‐Sulfate	
   0.07	
   -­‐	
   0	
  
22	
   PEG8k	
   24.63	
   BICINE	
   0.1	
   8.5	
   Na-­‐Citrate	
   0.12	
   LDAO	
   0.05	
  
23	
   PEGMME550	
   29.77	
   Na-­‐Acetate	
   0.1	
   5	
   Ca-­‐Acetate	
   0.12	
   -­‐	
   0	
  
24	
   PEG3350	
   33.69	
   BICINE	
   0.1	
   9.5	
   Am-­‐Tartrate	
   0.03	
   -­‐	
   0	
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25	
   PEGMME5k	
   27.65	
   Na-­‐Citrate	
   0.1	
   5	
   -­‐	
   0	
   -­‐	
   0	
  
26	
   PEG1.5k	
   35.93	
   Na-­‐Citrate	
   0.1	
   4.5	
   Na-­‐Chloride	
   0.25	
   PEGMME350	
   0.56	
  
27	
   PEGMME550	
   45.62	
   CHES	
   0.1	
   9.5	
   Am-­‐Phosphate	
   0.09	
   -­‐	
   0	
  
28	
   PEGMME2k	
   31.4	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐Acetate	
   0.08	
   -­‐	
   0	
  
29	
   PEG8k	
   22.28	
   Na-­‐Citrate	
   0.1	
   5	
   -­‐	
   0	
   -­‐	
   0	
  
30	
   PEG10k	
   11.01	
   CHES	
   0.1	
   9	
   K-­‐Chloride	
   0.24	
   EDTA	
   8.55	
  
31	
   PEG1.5k	
   28.28	
   BICINE	
   0.1	
   9.5	
   Na-­‐K-­‐Tartrate	
   0.13	
   -­‐	
   0	
  
32	
   PEG4k	
   29.75	
   Na-­‐Citrate	
   0.1	
   5	
   -­‐	
   0	
   -­‐	
   0	
  
33	
   PEGMME5k	
   16.88	
   BICINE	
   0.1	
   9	
   Mg-­‐Chloride	
   0.11	
   -­‐	
   0	
  
34	
   PEG3350	
   30.84	
   BisTris	
   0.1	
   6.5	
   Ca-­‐Chloride	
   0.03	
   -­‐	
   0	
  
35	
   PEGMME550	
   23.63	
   Na-­‐Cacod	
   0.1	
   7	
   Na-­‐K-­‐Phosphate	
   0.12	
   Ethglycol	
   2.99	
  
36	
   PEG400	
   54.24	
   Tris-­‐Chloride	
   0.1	
   8.5	
   -­‐	
   0	
   EDTA	
   9.04	
  
37	
   PEGMME2k	
   23.27	
   BICINE	
   0.1	
   8.5	
   Am-­‐Tartrate	
   0.1	
   Methanol	
   3.6	
  
38	
   PEG1.5k	
   32.21	
   MES	
   0.1	
   6	
   -­‐	
   0	
   -­‐	
   0	
  
39	
   PEG3350	
   32.84	
   MOPS	
   0.1	
   7	
   Am-­‐Citrate	
   0.11	
   -­‐	
   0	
  
40	
   PEGMME2k	
   21.32	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Chloride	
   0.05	
   LDAO	
   0.09	
  
41	
   PEG1.5k	
   40.13	
   Na-­‐Acetate	
   0.1	
   5.5	
   Na-­‐Citrate	
   0.13	
   -­‐	
   0	
  
42	
   PEGMME5k	
   25.1	
   -­‐	
   0	
   0	
   Ca-­‐Chloride	
   0.11	
   -­‐	
   0	
  
43	
   PEGMME550	
   37.73	
   HEPES	
   0.1	
   7.5	
   Mg-­‐Chloride	
   0.12	
   -­‐	
   0	
  
44	
   PEG8k	
   22.73	
   -­‐	
   0	
   0	
   K-­‐Nitrate	
   0.1	
   MPD	
   2.41	
  
45	
   PEG10k	
   13.13	
   Tris-­‐Chloride	
   0.1	
   7.5	
   -­‐	
   0	
   Ethglycol	
   1.08	
  
46	
   PEG4k	
   18.03	
   Na-­‐Acetate	
   0.1	
   4.5	
   -­‐	
   0	
   Butanediol	
   2.79	
  
47	
   PEG3350	
   15.59	
   MOPS	
   0.1	
   7	
   -­‐	
   0	
   -­‐	
   0	
  
48	
   PEG4k	
   14.02	
   Na-­‐Acetate	
   0.1	
   5.5	
   -­‐	
   0	
   -­‐	
   0	
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49	
   PEG6k	
   20.75	
   MES	
   0.1	
   6	
   -­‐	
   0	
   -­‐	
   0	
  
50	
   PEG8k	
   15.15	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Na-­‐Acetate	
   0.04	
   -­‐	
   0	
  
51	
   PEG1.5k	
   31.05	
   -­‐	
   0	
   0	
   Na-­‐K-­‐Phosphate	
   0.25	
   Dioxane	
   3.83	
  
52	
   PEG8k	
   13.11	
   MES	
   0.1	
   6.5	
   Li-­‐Chloride	
   0.1	
   -­‐	
   0	
  
53	
   PEG400	
   44.73	
   MOPS	
   0.1	
   6.5	
   Am-­‐Tartrate	
   0.11	
   -­‐	
   0	
  
54	
   PEG8k	
   27.66	
   Na-­‐Citrate	
   0.1	
   5	
   -­‐	
   0	
   -­‐	
   0	
  
55	
   PEGMME5k	
   19.49	
   CHES	
   0.1	
   9.5	
   Am-­‐Citrate	
   0.1	
   -­‐	
   0	
  
56	
   PEG10k	
   14.68	
   CHES	
   0.1	
   9.5	
   -­‐	
   0	
   Hexanediol	
   2.46	
  
57	
   PEG6k	
   12.51	
   MES	
   0.1	
   6	
   Am-­‐Acetate	
   0.12	
   -­‐	
   0	
  
58	
   PEG400	
   44.9	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Ca-­‐Acetate	
   0.13	
   Methanol	
   2.44	
  
59	
   PEGMME2k	
   39.87	
   BisTris	
   0.1	
   6	
   K-­‐Chloride	
   0.17	
   -­‐	
   0	
  
60	
   PEG10k	
   13.18	
   HEPES	
   0.1	
   7.5	
   -­‐	
   0	
   -­‐	
   0	
  
61	
   PEG4k	
   15.59	
   Na-­‐Citrate	
   0.1	
   5	
   Li-­‐Sulfate	
   0.16	
   PEG400	
   3.39	
  
62	
   PEG1.5k	
   30.78	
   -­‐	
   0	
   0	
   Zn-­‐Chloride	
   0.09	
   -­‐	
   0	
  
63	
   PEG6k	
   16.58	
   Na-­‐Acetate	
   0.1	
   5.5	
   Li-­‐Chloride	
   0.2	
   -­‐	
   0	
  
64	
   PEG4k	
   20.22	
   HEPES	
   0.1	
   8	
   Li-­‐Sulfate	
   0.12	
   -­‐	
   0	
  
65	
   PEG1.5k	
   24.31	
   Tris-­‐Chloride	
   0.1	
   7.5	
   -­‐	
   0	
   -­‐	
   0	
  
66	
   PEG3350	
   33.83	
   Na-­‐Acetate	
   0.1	
   4.5	
   -­‐	
   0	
   -­‐	
   0	
  
67	
   PEGMME2k	
   32.33	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Zn-­‐Chloride	
   0.14	
   -­‐	
   0	
  
68	
   PEG10k	
   19.58	
   Tris-­‐Chloride	
   0.1	
   8	
   Na-­‐K-­‐Tartrate	
   0.14	
   -­‐	
   0	
  
69	
   PEGMME2k	
   19.42	
   -­‐	
   0	
   0	
   Ca-­‐Chloride	
   0.14	
   -­‐	
   0	
  
70	
   PEG400	
   54.58	
   HEPES	
   0.1	
   8	
   NONE	
   0	
   -­‐	
   0	
  
71	
   PEGMME550	
   40.72	
   Na-­‐Acetate	
   0.1	
   4.5	
   Li-­‐Chloride	
   0.21	
   -­‐	
   0	
  
72	
   PEGMME2k	
   25.94	
   HEPES	
   0.1	
   8	
   Zn-­‐Acetate	
   0.08	
   -­‐	
   0	
  

 
 
 
 



 
   Appendices 

 

  281 	
  
	
  

	
  

73	
   PEG10k	
   12.22	
   BICINE	
   0.1	
   8.5	
   NONE	
   0	
   Glycerol	
   2.07	
  
74	
   PEG3350	
   25.18	
   MOPS	
   0.1	
   7	
   Mg-­‐Sulfate	
   0.15	
   PEGDME250	
   3.47	
  
75	
   PEG8k	
   26.34	
   -­‐	
   0	
   0	
   Am-­‐Citrate	
   0.09	
   -­‐	
   0	
  
76	
   PEGMME2k	
   25.81	
   Na-­‐Citrate	
   0.1	
   5.5	
   -­‐	
   0	
   -­‐	
   0	
  
77	
   PEG4k	
   28	
   Tris-­‐Chloride	
   0.1	
   8	
   Na-­‐K-­‐Tartrate	
   0.08	
   -­‐	
   0	
  
78	
   PEGMME550	
   45.42	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Ca-­‐Chloride	
   0.04	
   -­‐	
   0	
  
79	
   PEGMME2k	
   28.52	
   MES	
   0.1	
   6.5	
   -­‐	
   0	
   -­‐	
   0	
  
80	
   PEG6k	
   12.41	
   BICINE	
   0.1	
   9	
   -­‐	
   0	
   -­‐	
   0	
  
81	
   PEG400	
   32.32	
   BICINE	
   0.1	
   9	
   Na-­‐Bromide	
   0.06	
   Dioxane	
   1.73	
  
82	
   PEG8k	
   16.13	
   MOPS	
   0.1	
   7	
   Ca-­‐Chloride	
   0.05	
   -­‐	
   0	
  
83	
   PEG3350	
   18.09	
   BICINE	
   0.1	
   9	
   -­‐	
   0	
   -­‐	
   0	
  
84	
   PEGMME550	
   22.83	
   BICINE	
   0.1	
   9	
   K-­‐Chloride	
   0.21	
   -­‐	
   0	
  
85	
   PEG1.5k	
   29.58	
   CHES	
   0.1	
   9.5	
   Mg-­‐Sulfate	
   0.24	
   BOG	
   0.07	
  
86	
   PEG6k	
   20.47	
   Tris-­‐Chloride	
   0.1	
   7.5	
   -­‐	
   0	
   -­‐	
   0	
  
87	
   PEG8k	
   19.51	
   HEPES	
   0.1	
   8	
   -­‐	
   0	
   -­‐	
   0	
  
88	
   PEG6k	
   24.43	
   Na-­‐Citrate	
   0.1	
   5.5	
   Am-­‐Phosphate	
   0.06	
   -­‐	
   0	
  
89	
   PEGMME550	
   45.33	
   Na-­‐Acetate	
   0.1	
   5	
   Mg-­‐Sulfate	
   0.18	
   -­‐	
   0	
  
90	
   PEGMME5k	
   19.33	
   Na-­‐Acetate	
   0.1	
   5.5	
   K-­‐Thiocyanate	
   0.26	
   PEGDME250	
   2.99	
  
91	
   PEG6k	
   22.82	
   Na-­‐Citrate	
   0.1	
   4.5	
   Mg-­‐Acetate	
   0.06	
   Butanediol	
   0.47	
  
92	
   PEG10k	
   17.88	
   Na-­‐Citrate	
   0.1	
   4.5	
   Na-­‐Bromide	
   0.06	
   -­‐	
   0	
  
93	
   PEGMME550	
   21.24	
   -­‐	
   0	
   0	
   Mg-­‐Chloride	
   0.15	
   -­‐	
   0	
  
94	
   PEG400	
   25.87	
   BICINE	
   0.1	
   9	
   Am-­‐Sulfate	
   0.22	
   -­‐	
   0	
  
95	
   PEG6k	
   27.53	
   -­‐	
   0	
   0	
   Li-­‐Chloride	
   0.14	
   -­‐	
   0	
  
96	
   PEG8k	
   25.89	
   Na-­‐Acetate	
   0.1	
   5.5	
   Zn-­‐Acetate	
   0.1	
   -­‐	
   0	
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StoPEG 2:  

	
   	
   	
   	
   	
  
Stock	
  

Conc	
  (M)	
   	
   	
   	
   	
  
	
  

Precipitant	
   %	
   Buffer	
   Conc	
  (M)	
   Salt	
  	
   Conc	
  (M)	
   Additive	
   %	
  
1	
   PEGMME5k	
   22.84	
   -­‐	
   0	
   0	
   Zn-­‐Chloride	
   0.15	
   -­‐	
   0	
  
2	
   PEG10k	
   11	
   MES	
   0.1	
   6.5	
   -­‐	
   0	
   EDTA	
   5.1	
  
3	
   PEG1.5k	
   27.31	
   BICINE	
   0.1	
   8.5	
   Mg-­‐Formate	
   0.15	
   -­‐	
   0	
  
4	
   PEG4k	
   27.56	
   BICINE	
   0.1	
   8.5	
   Na-­‐K-­‐Phosphate	
   0.15	
   -­‐	
   0	
  
5	
   PEGMME550	
   44.55	
   BisTris	
   0.1	
   6.5	
   Li-­‐Chloride	
   0.18	
   -­‐	
   0	
  
6	
   PEGMME2k	
   30.53	
   -­‐	
   0	
   0	
   Zn-­‐Acetate	
   0.12	
   -­‐	
   0	
  
7	
   PEG6k	
   13.88	
   Na-­‐Acetate	
   0.1	
   5	
   Li-­‐Chloride	
   0.22	
   -­‐	
   0	
  
8	
   PEG400	
   48.46	
   CHES	
   0.1	
   9.5	
   Mg-­‐Acetate	
   0.27	
   -­‐	
   0	
  
9	
   PEGMME550	
   41.15	
   CHES	
   0.1	
   9.5	
   Am-­‐Sulfate	
   0.19	
   -­‐	
   0	
  
10	
   PEG4k	
   26.19	
   -­‐	
   0	
   0	
   Li-­‐Sulfate	
   0.24	
   Ethglycol	
   2.56	
  
11	
   PEG10k	
   15.9	
   MES	
   0.1	
   6	
   Ca-­‐Acetate	
   0.04	
   -­‐	
   0	
  
12	
   PEG8k	
   27.8	
   BisTris	
   0.1	
   6	
   -­‐	
   0	
   -­‐	
   0	
  
13	
   PEGMME5k	
   14.47	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Zn-­‐Acetate	
   0.09	
   -­‐	
   0	
  
14	
   PEG1.5k	
   28.58	
   CHES	
   0.1	
   9	
   -­‐	
   0	
   Methanol	
   3.68	
  
15	
   PEG3350	
   18.71	
   MOPS	
   0.1	
   7	
   -­‐	
   0	
   -­‐	
   0	
  
16	
   PEG1.5k	
   36.32	
   Na-­‐Acetate	
   0.1	
   4.5	
   Ca-­‐Chloride	
   0.1	
   -­‐	
   0	
  
17	
   PEGMME550	
   32.66	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Mg-­‐Chloride	
   0.19	
   -­‐	
   0	
  
18	
   PEG6k	
   23.4	
   CHES	
   0.1	
   9	
   Na-­‐Bromide	
   0.22	
   CHAPS	
   0.1	
  
19	
   PEGMME550	
   35.12	
   MOPS	
   0.1	
   7	
   Am-­‐Phosphate	
   0.14	
   -­‐	
   0	
  
20	
   PEG6k	
   23.42	
   BICINE	
   0.1	
   8.5	
   K-­‐Thiocyanate	
   0.29	
   BOG	
   0.05	
  
21	
   PEG10k	
   14.72	
   Na-­‐Citrate	
   0.1	
   5	
   -­‐	
   0	
   -­‐	
   0	
  
22	
   PEG6k	
   27.15	
   MOPS	
   0.1	
   7	
   K-­‐Nitrate	
   0.13	
   -­‐	
   0	
  
23	
   PEGMME5k	
   14.55	
   BICINE	
   0.1	
   9	
   -­‐	
   0	
   -­‐	
   0	
  
24	
   PEG4k	
   20.58	
   BisTris	
   0.1	
   6.5	
   Am-­‐Tartrate	
   0.03	
   -­‐	
   0	
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25	
   PEG400	
   24.82	
   Na-­‐Citrate	
   0.1	
   5.5	
   -­‐	
   0	
   -­‐	
   0	
  
26	
   PEGMME2k	
   28	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Am-­‐Phosphate	
   0.15	
   -­‐	
   0	
  
27	
   PEG4k	
   16.96	
   Na-­‐Acetate	
   0.1	
   4.5	
   Zn-­‐Acetate	
   0.04	
   -­‐	
   0	
  
28	
   PEG3350	
   24.27	
   CHES	
   0.1	
   9	
   K-­‐Thiocyanate	
   0.18	
   Methanol	
   2.95	
  
29	
   PEG8k	
   22.1	
   Na-­‐Acetate	
   0.1	
   4.5	
   -­‐	
   0	
   MPD	
   2.46	
  
30	
   PEG10k	
   14.17	
   Na-­‐Cacod	
   0.1	
   6.5	
   Mg-­‐Acetate	
   0.06	
   DMSO	
   2.44	
  
31	
   PEG6k	
   21.09	
   Tris-­‐Chloride	
   0.1	
   8	
   Na-­‐Acetate	
   0.06	
   PEG400	
   0.85	
  
32	
   PEG8k	
   15.11	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Formate	
   0.05	
   -­‐	
   0	
  
33	
   PEG8k	
   16.23	
   Na-­‐Acetate	
   0.1	
   5	
   Mg-­‐Acetate	
   0.1	
   Glycerol	
   3.6	
  
34	
   PEG3350	
   28.41	
   -­‐	
   0	
   0	
   Mg-­‐Sulfate	
   0.18	
   -­‐	
   0	
  
35	
   PEGMME550	
   46.05	
   Na-­‐Citrate	
   0.1	
   4.5	
   -­‐	
   0	
   -­‐	
   0	
  
36	
   PEGMME2k	
   34.19	
   Na-­‐Cacod	
   0.1	
   7	
   -­‐	
   0	
   PEGDME250	
   3.45	
  
37	
   PEG10k	
   13.64	
   -­‐	
   0	
   0	
   Mg-­‐Acetate	
   0.09	
   PEG400	
   2.48	
  
38	
   PEG4k	
   23.22	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Mg-­‐Sulfate	
   0.22	
   -­‐	
   0	
  
39	
   PEG8k	
   15.8	
   BICINE	
   0.1	
   9	
   Mg-­‐Sulfate	
   0.23	
   -­‐	
   0	
  
40	
   PEG8k	
   22.76	
   BICINE	
   0.1	
   8.5	
   -­‐	
   0	
   -­‐	
   0	
  
41	
   PEGMME550	
   23.84	
   -­‐	
   0	
   0	
   Na-­‐Chloride	
   0.17	
   -­‐	
   0	
  
42	
   PEG400	
   34.24	
   -­‐	
   0	
   0	
   K-­‐Chloride	
   0.29	
   -­‐	
   0	
  
43	
   PEG3350	
   33.32	
   BICINE	
   0.1	
   9	
   -­‐	
   0	
   -­‐	
   0	
  
44	
   PEGMME2k	
   39.36	
   Tris-­‐Chloride	
   0.1	
   8	
   -­‐	
   0	
   -­‐	
   0	
  
45	
   PEGMME5k	
   24.06	
   Na-­‐Citrate	
   0.1	
   5.5	
   -­‐	
   0	
   -­‐	
   0	
  
46	
   PEGMME2k	
   39.83	
   MOPS	
   0.1	
   7	
   Na-­‐Citrate	
   0.07	
   -­‐	
   0	
  
47	
   PEG3350	
   29.57	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Am-­‐Acetate	
   0.06	
   -­‐	
   0	
  
48	
   PEGMME550	
   46.52	
   BisTris	
   0.1	
   6	
   Am-­‐Phosphate	
   0.15	
   -­‐	
   0	
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49	
   PEGMME5k	
   15.21	
   HEPES	
   0.1	
   8	
   -­‐	
   0	
   -­‐	
   0	
  
50	
   PEG1.5k	
   28.51	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Ca-­‐Acetate	
   0.04	
   -­‐	
   0	
  
51	
   PEG6k	
   26.38	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Ca-­‐Acetate	
   0.07	
   -­‐	
   0	
  
52	
   PEGMME2k	
   20.27	
   Tris-­‐Chloride	
   0.1	
   7.5	
   -­‐	
   0	
   EDTA	
   3	
  
53	
   PEG400	
   50.85	
   HEPES	
   0.1	
   7.5	
   Li-­‐Chloride	
   0.29	
   -­‐	
   0	
  
54	
   PEGMME2k	
   39.4	
   MES	
   0.1	
   6.5	
   Zn-­‐Chloride	
   0.1	
   -­‐	
   0	
  
55	
   PEG3350	
   22.74	
   CHES	
   0.1	
   9.5	
   Mg-­‐Chloride	
   0.07	
   -­‐	
   0	
  
56	
   PEG8k	
   14.92	
   -­‐	
   0	
   0	
   -­‐	
   0	
   -­‐	
   0	
  
57	
   PEG400	
   33.81	
   Na-­‐Citrate	
   0.1	
   5	
   Na-­‐K-­‐Tartrate	
   0.12	
   -­‐	
   0	
  
58	
   PEG4k	
   16.48	
   BICINE	
   0.1	
   9.5	
   Am-­‐Tartrate	
   0.13	
   -­‐	
   0	
  
59	
   PEG1.5k	
   22.34	
   Na-­‐Acetate	
   0.1	
   5.5	
   Zn-­‐Acetate	
   0.09	
   MPD	
   1.75	
  
60	
   PEG10k	
   13.5	
   Na-­‐Citrate	
   0.1	
   4.5	
   -­‐	
   0	
   -­‐	
   0	
  
61	
   PEG4k	
   25.47	
   BICINE	
   0.1	
   9.5	
   Am-­‐Citrate	
   0.08	
   PEGMME350	
   0.95	
  
62	
   PEG10k	
   18.89	
   Na-­‐Cacod	
   0.1	
   7	
   Ca-­‐Chloride	
   0.12	
   DMSO	
   1.07	
  
63	
   PEGMME2k	
   26.02	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Mg-­‐Formate	
   0.04	
   -­‐	
   0	
  
64	
   PEG3350	
   18.44	
   Na-­‐Acetate	
   0.1	
   5.5	
   Am-­‐Acetate	
   0.1	
   EDTA	
   3.76	
  
65	
   PEG400	
   40.48	
   Na-­‐Cacod	
   0.1	
   7	
   Am-­‐Citrate	
   0.07	
   -­‐	
   0	
  
66	
   PEG8k	
   16.57	
   BisTris	
   0.1	
   6.5	
   -­‐	
   0	
   -­‐	
   0	
  
67	
   PEG3350	
   15.59	
   Na-­‐Acetate	
   0.1	
   4.5	
   Mg-­‐Sulfate	
   0.29	
   Hexanediol	
   2.19	
  
68	
   PEG400	
   44.69	
   HEPES	
   0.1	
   8	
   Na-­‐Chloride	
   0.15	
   -­‐	
   0	
  
69	
   PEGMME550	
   41.38	
   BICINE	
   0.1	
   9	
   -­‐	
   0	
   -­‐	
   0	
  
70	
   PEG1.5k	
   35.74	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐Bromide	
   0.11	
   -­‐	
   0	
  
71	
   PEGMME2k	
   22.5	
   MOPS	
   0.1	
   7	
   Na-­‐Acetate	
   0.1	
   -­‐	
   0	
  
72	
   PEG1.5k	
   39.19	
   MES	
   0.1	
   6.5	
   Mg-­‐Sulfate	
   0.28	
   -­‐	
   0	
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73	
   PEGMME5k	
   25.92	
   NONE	
   0	
   0	
   Na-­‐K-­‐Phosphate	
   0.21	
   -­‐	
   0	
  
74	
   PEG1.5k	
   20.72	
   HEPES	
   0.1	
   8	
   Na-­‐Acetate	
   0.06	
   LDAO	
   0.03	
  
75	
   PEG400	
   46.14	
   BICINE	
   0.1	
   9.5	
   Na-­‐Citrate	
   0.15	
   -­‐	
   0	
  
76	
   PEGMME2k	
   32.03	
   BICINE	
   0.1	
   8.5	
   -­‐	
   0	
   -­‐	
   0	
  
77	
   PEG6k	
   21.04	
   Na-­‐Acetate	
   0.1	
   5	
   K-­‐Thiocyanate	
   0.18	
   CHAPS	
   0.08	
  
78	
   PEG8k	
   13.84	
   Na-­‐Acetate	
   0.1	
   4.5	
   Ca-­‐Chloride	
   0.1	
   -­‐	
   0	
  
79	
   PEG400	
   52.35	
   Na-­‐Citrate	
   0.1	
   4.5	
   Na-­‐Acetate	
   0.11	
   -­‐	
   0	
  
80	
   PEGMME2k	
   26.43	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Ca-­‐Chloride	
   0.06	
   Hexanediol	
   0.68	
  
81	
   PEG4k	
   27.07	
   BisTris	
   0.1	
   6	
   K-­‐Chloride	
   0.18	
   BOG	
   0.02	
  
82	
   PEG10k	
   16.18	
   Na-­‐Cacod	
   0.1	
   7	
   Am-­‐Sulfate	
   0.28	
   BME	
   2.73	
  
83	
   PEG8k	
   16.53	
   Na-­‐Cacod	
   0.1	
   6.5	
   Li-­‐Chloride	
   0.25	
   -­‐	
   0	
  
84	
   PEG4k	
   26.89	
   HEPES	
   0.1	
   8	
   Na-­‐K-­‐Tartrate	
   0.09	
   -­‐	
   0	
  
85	
   PEGMME550	
   32.77	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Am-­‐Citrate	
   0.04	
   Ethglycol	
   0.61	
  
86	
   PEG6k	
   19.24	
   MES	
   0.1	
   6	
   Ca-­‐Acetate	
   0.07	
   -­‐	
   0	
  
87	
   PEG400	
   28.08	
   CHES	
   0.1	
   9.5	
   -­‐	
   0	
   -­‐	
   0	
  
88	
   PEG8k	
   12.53	
   Na-­‐Citrate	
   0.1	
   5	
   Na-­‐K-­‐Phosphate	
   0.14	
   BME	
   6.6	
  
89	
   PEG400	
   34.17	
   Tris-­‐Chloride	
   0.1	
   8	
   Mg-­‐Chloride	
   0.11	
   Ethglycol	
   0.41	
  
90	
   PEG3350	
   19.86	
   MES	
   0.1	
   6	
   Zn-­‐Acetate	
   0.07	
   -­‐	
   0	
  
91	
   PEG10k	
   15.71	
   Na-­‐Citrate	
   0.1	
   5	
   K-­‐Nitrate	
   0.29	
   -­‐	
   0	
  
92	
   PEGMME2k	
   20.13	
   Na-­‐Acetate	
   0.1	
   5.5	
   K-­‐Nitrate	
   0.16	
   -­‐	
   0	
  
93	
   PEG400	
   51.12	
   HEPES	
   0.1	
   7.5	
   Mg-­‐Formate	
   0.04	
   -­‐	
   0	
  
94	
   PEGMME2k	
   38.36	
   MOPS	
   0.1	
   6.5	
   Mg-­‐Sulfate	
   0.27	
   -­‐	
   0	
  
95	
   PEGMME5k	
   16.68	
   -­‐	
   0	
   0	
   -­‐	
   0	
   -­‐	
   0	
  
96	
   PEG4k	
   23.73	
   MOPS	
   0.1	
   6.5	
   Na-­‐Acetate	
   0.07	
   -­‐	
   0	
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StoPEG 3: 

	
  
	
  	
   	
  	
   	
  	
   	
  	
   Stock	
  

Conc	
  (M)	
   	
   	
   	
   	
  
	
  

Precipitant	
   %	
   Buffer	
   Conc	
  (M)	
   Salt	
  	
   Conc	
  (M)	
   Additive	
   %	
  
1	
   PEG6k	
   15.56	
   BisTris	
   0.1	
   6.5	
   Zn-­‐Chloride	
   0.08	
   -­‐	
   0	
  
2	
   PEG3350	
   34.07	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Acetate	
   0.08	
   -­‐	
   0	
  
3	
   PEGMME5k	
   14.04	
   Na-­‐Acetate	
   0.1	
   5.5	
   Ca-­‐Chloride	
   0.04	
   -­‐	
   0	
  
4	
   PEG1.5k	
   36.52	
   -­‐	
   0	
   0	
   -­‐	
   0	
   BOG	
   0.06	
  
5	
   PEGMME550	
   37.36	
   BICINE	
   0.1	
   9	
   -­‐	
   0	
   -­‐	
   0	
  
6	
   PEG10k	
   17.7	
   Na-­‐Citrate	
   0.1	
   5	
   Am-­‐Sulfate	
   0.09	
   PEG400	
   1.8	
  
7	
   PEGMME550	
   35.13	
   MES	
   0.1	
   6	
   Li-­‐Chloride	
   0.28	
   -­‐	
   0	
  
8	
   PEG8k	
   15.01	
   -­‐	
   0	
   0	
   Mg-­‐Sulfate	
   0.22	
   -­‐	
   0	
  
9	
   PEG1.5k	
   32.14	
   CHES	
   0.1	
   9.5	
   -­‐	
   0	
   EDTA	
   6.68	
  
10	
   PEG8k	
   22	
   -­‐	
   0	
   0	
   -­‐	
   0	
   -­‐	
   0	
  
11	
   PEG10k	
   17.53	
   Na-­‐Citrate	
   0.1	
   4.5	
   K-­‐Chloride	
   0.15	
   Glycerol	
   1.51	
  
12	
   PEGMME550	
   26.64	
   Na-­‐Citrate	
   0.1	
   5	
   Am-­‐Acetate	
   0.08	
   -­‐	
   0	
  
13	
   PEG1.5k	
   24.76	
   Tris-­‐Chloride	
   0.1	
   8	
   K-­‐Chloride	
   0.3	
   -­‐	
   0	
  
14	
   PEG3350	
   20.26	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Zn-­‐Acetate	
   0.12	
   -­‐	
   0	
  
15	
   PEG4k	
   27.89	
   MES	
   0.1	
   6.5	
   -­‐	
   0	
   -­‐	
   0	
  
16	
   PEGMME2k	
   27.89	
   Tris-­‐Chloride	
   0.1	
   8	
   -­‐	
   0	
   -­‐	
   0	
  
17	
   PEG6k	
   20.68	
   Na-­‐Citrate	
   0.1	
   5	
   Am-­‐Citrate	
   0.06	
   PEGMME350	
   2.47	
  
18	
   PEG8k	
   23.21	
   Tris-­‐Chloride	
   0.1	
   7.5	
   -­‐	
   0	
   -­‐	
   0	
  
19	
   PEGMME550	
   42.96	
   BisTris	
   0.1	
   6	
   Li-­‐Sulfate	
   0.09	
   -­‐	
   0	
  
20	
   PEGMME2k	
   38.7	
   BICINE	
   0.1	
   9.5	
   -­‐	
   0	
   -­‐	
   0	
  
21	
   PEGMME550	
   39.89	
   MES	
   0.1	
   6	
   -­‐	
   0	
   -­‐	
   0	
  
22	
   PEG10k	
   17.42	
   HEPES	
   0.1	
   7.5	
   -­‐	
   0	
   -­‐	
   0	
  
23	
   PEG4k	
   17.68	
   Na-­‐Acetate	
   0.1	
   4.5	
   Zn-­‐Acetate	
   0.06	
   LDAO	
   0.08	
  
24	
   PEGMME2k	
   22.08	
   Na-­‐Acetate	
   0.1	
   5.5	
   K-­‐Thiocyanate	
   0.28	
   -­‐	
   0	
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25	
   PEG400	
   25.19	
   Na-­‐Citrate	
   0.1	
   4.5	
   Na-­‐Bromide	
   0.29	
   -­‐	
   0	
  
26	
   PEG4k	
   23.49	
   CHES	
   0.1	
   9	
   Li-­‐Chloride	
   0.3	
   -­‐	
   0	
  
27	
   PEG400	
   48.75	
   BICINE	
   0.1	
   8.5	
   Na-­‐Bromide	
   0.21	
   -­‐	
   0	
  
28	
   PEGMME5k	
   12.17	
   MOPS	
   0.1	
   7	
   -­‐	
   0	
   Methanol	
   1	
  
29	
   PEG400	
   52.24	
   HEPES	
   0.1	
   7.5	
   Ca-­‐Chloride	
   0.08	
   -­‐	
   0	
  
30	
   PEG1.5k	
   26.96	
   HEPES	
   0.1	
   8	
   Na-­‐K-­‐Tartrate	
   0.09	
   EDTA	
   2.87	
  
31	
   PEGMME550	
   36.98	
   Na-­‐Acetate	
   0.1	
   5.5	
   Am-­‐Acetate	
   0.06	
   -­‐	
   0	
  
32	
   PEG8k	
   23.74	
   -­‐	
   0	
   0	
   -­‐	
   0	
   -­‐	
   0	
  
33	
   PEGMME550	
   32.68	
   MOPS	
   0.1	
   7	
   K-­‐Chloride	
   0.06	
   -­‐	
   0	
  
34	
   PEG6k	
   19.83	
   MOPS	
   0.1	
   7	
   K-­‐Chloride	
   0.26	
   -­‐	
   0	
  
35	
   PEG400	
   38.5	
   Na-­‐Citrate	
   0.1	
   4.5	
   -­‐	
   0	
   -­‐	
   0	
  
36	
   PEG8k	
   14.39	
   Na-­‐Cacod	
   0.1	
   6.5	
   -­‐	
   0	
   -­‐	
   0	
  
37	
   PEG1.5k	
   41.65	
   HEPES	
   0.1	
   7.5	
   Na-­‐Acetate	
   0.15	
   -­‐	
   0	
  
38	
   PEGMME5k	
   19.99	
   MOPS	
   0.1	
   6.5	
   Am-­‐Phosphate	
   0.11	
   Dioxane	
   1.38	
  
39	
   PEG6k	
   14.72	
   Na-­‐Acetate	
   0.1	
   5.5	
   Ca-­‐Acetate	
   0.12	
   -­‐	
   0	
  
40	
   PEG3350	
   22.49	
   Na-­‐Citrate	
   0.1	
   5.5	
   Am-­‐Citrate	
   0.06	
   -­‐	
   0	
  
41	
   PEG4k	
   30.88	
   Tris-­‐Chloride	
   0.1	
   7.5	
   -­‐	
   0	
   -­‐	
   0	
  
42	
   PEGMME5k	
   22.75	
   BICINE	
   0.1	
   9.5	
   -­‐	
   0	
   -­‐	
   0	
  
43	
   PEG10k	
   11.17	
   NONE	
   0	
   0	
   Na-­‐Chloride	
   0.28	
   Hexanediol	
   3.19	
  
44	
   PEG1.5k	
   40.01	
   BICINE	
   0.1	
   8.5	
   Ca-­‐Acetate	
   0.04	
   -­‐	
   0	
  
45	
   PEGMME5k	
   22.06	
   MES	
   0.1	
   6	
   Ca-­‐Acetate	
   0.1	
   Hexanediol	
   1.92	
  
46	
   PEG10k	
   16.14	
   -­‐	
   0	
   0	
   K-­‐Nitrate	
   0.25	
   -­‐	
   0	
  
47	
   PEG8k	
   24.01	
   BICINE	
   0.1	
   8.5	
   Na-­‐K-­‐Phosphate	
   0.26	
   -­‐	
   0	
  
48	
   PEGMME550	
   44.2	
   CHES	
   0.1	
   9	
   Am-­‐Tartrate	
   0.15	
   -­‐	
   0	
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49	
   PEG1.5k	
   33.68	
   Tris-­‐Chloride	
   0.1	
   8	
   -­‐	
   0	
   -­‐	
   0	
  
50	
   PEG8k	
   16.85	
   Na-­‐Cacod	
   0.1	
   7	
   Mg-­‐Chloride	
   0.16	
   -­‐	
   0	
  
51	
   PEG3350	
   19.59	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐Citrate	
   0.06	
   BOG	
   0.07	
  
52	
   PEG400	
   29.94	
   MES	
   0.1	
   6.5	
   Zn-­‐Acetate	
   0.04	
   -­‐	
   0	
  
53	
   PEG3350	
   27.57	
   MES	
   0.1	
   6.5	
   Na-­‐Acetate	
   0.12	
   -­‐	
   0	
  
54	
   PEGMME2k	
   25.96	
   MES	
   0.1	
   6	
   Zn-­‐Acetate	
   0.07	
   -­‐	
   0	
  
55	
   PEG4k	
   30.59	
   Na-­‐Citrate	
   0.1	
   5	
   Mg-­‐Acetate	
   0.08	
   BME	
   1.48	
  
56	
   PEGMME5k	
   25.11	
   -­‐	
   0	
   0	
   Zn-­‐Chloride	
   0.08	
   -­‐	
   0	
  
57	
   PEGMME2k	
   24.38	
   MOPS	
   0.1	
   7	
   K-­‐Nitrate	
   0.12	
   CHAPS	
   0.02	
  
58	
   PEG3350	
   22.76	
   BICINE	
   0.1	
   8.5	
   -­‐	
   0	
   PEGDME250	
   2.9	
  
59	
   PEG4k	
   30.77	
   Na-­‐Citrate	
   0.1	
   4.5	
   Li-­‐Sulfate	
   0.14	
   -­‐	
   0	
  
60	
   PEG400	
   28.5	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐K-­‐Phosphate	
   0.26	
   -­‐	
   0	
  
61	
   PEG4k	
   23.58	
   -­‐	
   0	
   0	
   Zn-­‐Chloride	
   0.06	
   -­‐	
   0	
  
62	
   PEG8k	
   20.84	
   Na-­‐Cacod	
   0.1	
   7	
   Na-­‐Bromide	
   0.12	
   PEGMME350	
   1.2	
  
63	
   PEGMME2k	
   38.87	
   NONE	
   0	
   0	
   Li-­‐Chloride	
   0.18	
   -­‐	
   0	
  
64	
   PEGMME5k	
   13.85	
   HEPES	
   0.1	
   8	
   Am-­‐Phosphate	
   0.2	
   -­‐	
   0	
  
65	
   PEG10k	
   10.55	
   Tris-­‐Chloride	
   0.1	
   8.5	
   K-­‐Thiocyanate	
   0.08	
   -­‐	
   0	
  
66	
   PEG1.5k	
   21.34	
   Na-­‐Acetate	
   0.1	
   5	
   K-­‐Nitrate	
   0.2	
   -­‐	
   0	
  
67	
   PEG4k	
   13.54	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Am-­‐Citrate	
   0.05	
   -­‐	
   0	
  
68	
   PEG400	
   31.17	
   Tris-­‐Chloride	
   0.1	
   8	
   Am-­‐Acetate	
   0.1	
   -­‐	
   0	
  
69	
   PEG4k	
   25.3	
   Na-­‐Citrate	
   0.1	
   5.5	
   Am-­‐Phosphate	
   0.2	
   MPD	
   0.78	
  
70	
   PEG10k	
   15.04	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Mg-­‐Sulfate	
   0.29	
   -­‐	
   0	
  
71	
   PEG6k	
   27.23	
   -­‐	
   0	
   0	
   Mg-­‐Formate	
   0.15	
   -­‐	
   0	
  
72	
   PEGMME5k	
   12.42	
   BisTris	
   0.1	
   6	
   Mg-­‐Sulfate	
   0.28	
   -­‐	
   0	
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73	
   PEG400	
   29.56	
   -­‐	
   0	
   0	
   Na-­‐Acetate	
   0.14	
   -­‐	
   0	
  
74	
   PEGMME550	
   32.77	
   BICINE	
   0.1	
   9	
   Na-­‐K-­‐Tartrate	
   0.05	
   -­‐	
   0	
  
75	
   PEG3350	
   17.94	
   CHES	
   0.1	
   9.5	
   Mg-­‐Chloride	
   0.24	
   -­‐	
   0	
  
76	
   PEG1.5k	
   40.16	
   -­‐	
   0	
   0	
   Am-­‐Tartrate	
   0.13	
   -­‐	
   0	
  
77	
   PEGMME2k	
   23.76	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Formate	
   0.07	
   Butanediol	
   1.56	
  
78	
   PEG3350	
   33.19	
   MOPS	
   0.1	
   7	
   Ca-­‐Chloride	
   0.12	
   -­‐	
   0	
  
79	
   PEGMME5k	
   15.22	
   Na-­‐Citrate	
   0.1	
   5	
   -­‐	
   0	
   -­‐	
   0	
  
80	
   PEG3350	
   16.87	
   Na-­‐Acetate	
   0.1	
   5.5	
   Na-­‐Chloride	
   0.13	
   -­‐	
   0	
  
81	
   PEG1.5k	
   39.99	
   BICINE	
   0.1	
   9	
   Am-­‐Acetate	
   0.08	
   -­‐	
   0	
  
82	
   PEGMME5k	
   12.49	
   HEPES	
   0.1	
   7.5	
   Am-­‐Phosphate	
   0.23	
   -­‐	
   0	
  
83	
   PEG400	
   40.27	
   Tris-­‐Chloride	
   0.1	
   8	
   Ca-­‐Chloride	
   0.05	
   -­‐	
   0	
  
84	
   PEG6k	
   14.5	
   HEPES	
   0.1	
   7.5	
   K-­‐Thiocyanate	
   0.09	
   -­‐	
   0	
  
85	
   PEG8k	
   19.36	
   Tris-­‐Chloride	
   0.1	
   8.5	
   -­‐	
   0	
   BME	
   5	
  
86	
   PEG400	
   39.62	
   BICINE	
   0.1	
   8.5	
   Mg-­‐Formate	
   0.08	
   -­‐	
   0	
  
87	
   PEG4k	
   24.19	
   Na-­‐Acetate	
   0.1	
   5	
   Mg-­‐Chloride	
   0.25	
   -­‐	
   0	
  
88	
   PEG10k	
   11.53	
   MOPS	
   0.1	
   7	
   Li-­‐Sulfate	
   0.09	
   DMSO	
   0.56	
  
89	
   PEG3350	
   18.29	
   MOPS	
   0.1	
   6.5	
   Li-­‐Sulfate	
   0.22	
   -­‐	
   0	
  
90	
   PEGMME2k	
   33.71	
   Na-­‐Cacod	
   0.1	
   7	
   K-­‐Thiocyanate	
   0.18	
   -­‐	
   0	
  
91	
   PEGMME550	
   48.57	
   HEPES	
   0.1	
   8	
   Mg-­‐Chloride	
   0.13	
   DMSO	
   1.69	
  
92	
   PEGMME5k	
   22.51	
   Na-­‐Acetate	
   0.1	
   4.5	
   Ca-­‐Chloride	
   0.13	
   -­‐	
   0	
  
93	
   PEG10k	
   20.06	
   Na-­‐Citrate	
   0.1	
   4.5	
   -­‐	
   0	
   -­‐	
   0	
  
94	
   PEGMME5k	
   18.97	
   Na-­‐Acetate	
   0.1	
   4.5	
   Na-­‐K-­‐Phosphate	
   0.15	
   EDTA	
   1.79	
  
95	
   PEG6k	
   17.9	
   CHES	
   0.1	
   9	
   Na-­‐Chloride	
   0.18	
   -­‐	
   0	
  
96	
   PEG400	
   33.63	
   Na-­‐Acetate	
   0.1	
   5.5	
   -­‐	
   0	
   -­‐	
   0	
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Stochastic 17:  

	
  
	
  	
   	
  	
   	
  	
   	
  	
   Stock	
  

Conc	
  (M)	
   	
   	
   	
   	
  
	
  

Precipitant	
   %	
   Buffer	
   Conc	
  (M)	
   Salt	
  	
   Conc	
  (M)	
   Additive	
   %	
  
1	
   PEGMME550	
   31.16	
   Na-­‐Cacod	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
2	
   Na-­‐Formate	
   2	
   Na-­‐Acetate	
   0.1	
   5	
   Am-­‐Phosphate	
   0.07	
   NONE	
   0	
  
3	
   PEGMME2k	
   30.73	
   MES	
   0.1	
   6	
   NONE	
   0	
   NONE	
   0	
  
4	
   PEG400	
   42.04	
   BisTris	
   0.1	
   6	
   Am-­‐Phosphate	
   0.26	
   NONE	
   0	
  
5	
   PEG1.5k	
   29.11	
   Na-­‐Acetate	
   0.1	
   4.5	
   Ca-­‐Acetate	
   0.05	
   PEGDME250	
   0.76	
  
6	
   PEGMME5k	
   27.17	
   Na-­‐Cacod	
   0.1	
   7	
   Ca-­‐Chloride	
   0.14	
   NONE	
   0	
  
7	
   PEG4k	
   22.87	
   BisTris	
   0.1	
   6.5	
   Zn-­‐Chloride	
   0.12	
   BME	
   7.69	
  
8	
   Na-­‐Citrate	
   1.06	
   BICINE	
   0.1	
   9	
   Mg-­‐Acetate	
   0.22	
   NONE	
   0	
  
9	
   PEGMME2k	
   27.2	
   CHES	
   0.1	
   9.5	
   Am-­‐Phosphate	
   0.16	
   NONE	
   0	
  
10	
   Na-­‐Citrate	
   0.81	
   NONE	
   0	
   0	
   Mg-­‐Sulfate	
   0.29	
   NONE	
   0	
  
11	
   Na-­‐Malate	
   1.99	
   NONE	
   0	
   0	
   Na-­‐K-­‐Tartrate	
   0.03	
   DMSO	
   2.62	
  
12	
   PEG1.5k	
   25.25	
   BICINE	
   0.1	
   8.5	
   Na-­‐Citrate	
   0.14	
   NONE	
   0	
  
13	
   Na-­‐Tartrate	
   0.87	
   BisTris	
   0.1	
   6	
   NONE	
   0	
   PEG400	
   2.77	
  
14	
   Mg-­‐Sulfate	
   1.33	
   Tris-­‐Chloride	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
15	
   Na-­‐Tartrate	
   1.36	
   Na-­‐Citrate	
   0.1	
   4.5	
   Am-­‐Phosphate	
   0.23	
   NONE	
   0	
  
16	
   Isopropanol	
   10.72	
   NONE	
   0	
   0	
   Am-­‐Citrate	
   0.12	
   NONE	
   0	
  
17	
   Na-­‐Tartrate	
   0.99	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
18	
   MPD	
   50.55	
   Tris-­‐Chloride	
   0.1	
   8.5	
   NONE	
   0	
   PEGMME350	
   2.52	
  
19	
   PEGMME550	
   33.77	
   HEPES	
   0.1	
   8	
   Am-­‐Citrate	
   0.12	
   NONE	
   0	
  
20	
   PEG400	
   42.72	
   Tris-­‐Chloride	
   0.1	
   8	
   Zn-­‐Acetate	
   0.04	
   NONE	
   0	
  
21	
   Na-­‐Chloride	
   2.72	
   Na-­‐Acetate	
   0.1	
   5.5	
   Zn-­‐Acetate	
   0.05	
   BOG	
   0.03	
  
22	
   PEG400	
   50.15	
   Na-­‐Citrate	
   0.1	
   5	
   NONE	
   0	
   NONE	
   0	
  
23	
   PEGMME550	
   43.96	
   CHES	
   0.1	
   9	
   NONE	
   0	
   BOG	
   0.05	
  
24	
   PEG10k	
   9.09	
   BisTris	
   0.1	
   6	
   Zn-­‐Acetate	
   0.09	
   CHAPS	
   0.08	
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25	
   PEG10k	
   19.97	
   NONE	
   0	
   0	
   Am-­‐Tartrate	
   0.12	
   NONE	
   0	
  
26	
   Ethanol	
   6.86	
   NONE	
   0	
   0	
   Na-­‐Bromide	
   0.21	
   NONE	
   0	
  
27	
   PEG6k	
   23.33	
   HEPES	
   0.1	
   7.5	
   Zn-­‐Chloride	
   0.1	
   NONE	
   0	
  
28	
   PEGMME5k	
   17.22	
   NONE	
   0	
   0	
   Na-­‐K-­‐Tartrate	
   0.11	
   NONE	
   0	
  
29	
   PEG1.5k	
   29.43	
   Na-­‐Citrate	
   0.1	
   4.5	
   Mg-­‐Acetate	
   0.09	
   NONE	
   0	
  
30	
   Na-­‐Malonate	
   1.69	
   MOPS	
   0.1	
   7	
   Na-­‐Chloride	
   0.21	
   NONE	
   0	
  
31	
   Am-­‐Phosphate	
   2.34	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Na-­‐K-­‐Tartrate	
   0.09	
   NONE	
   0	
  
32	
   PEG1.5k	
   33.09	
   MES	
   0.1	
   6	
   Li-­‐Chloride	
   0.15	
   NONE	
   0	
  
33	
   PEG4k	
   18.49	
   Na-­‐Citrate	
   0.1	
   5.5	
   Li-­‐Sulfate	
   0.21	
   NONE	
   0	
  
34	
   Na-­‐K-­‐Phosphate	
   2.39	
   Na-­‐Acetate	
   0.1	
   5.5	
   Na-­‐K-­‐Phosphate	
   0.15	
   NONE	
   0	
  
35	
   PEG4k	
   28.02	
   HEPES	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
36	
   PEG10k	
   19.28	
   HEPES	
   0.1	
   7.5	
   Na-­‐Acetate	
   0.07	
   NONE	
   0	
  
37	
   PEGMME2k	
   29.7	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Acetate	
   0.23	
   NONE	
   0	
  
38	
   Na-­‐Citrate	
   0.75	
   MOPS	
   0.1	
   7	
   Li-­‐Chloride	
   0.14	
   NONE	
   0	
  
39	
   Na-­‐Acetate	
   2.38	
   Tris-­‐Chloride	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
40	
   PEG8k	
   19.88	
   CHES	
   0.1	
   9	
   NONE	
   0	
   NONE	
   0	
  
41	
   Na-­‐Malonate	
   2.63	
   BisTris	
   0.1	
   6	
   Na-­‐Chloride	
   0.24	
   NONE	
   0	
  
42	
   PEGMME2k	
   32.2	
   HEPES	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
43	
   PEG3350	
   23.08	
   Tris-­‐Chloride	
   0.1	
   8	
   Zn-­‐Acetate	
   0.05	
   MPD	
   0.96	
  
44	
   PEG8k	
   16.21	
   HEPES	
   0.1	
   8	
   Am-­‐Acetate	
   0.05	
   NONE	
   0	
  
45	
   Na-­‐K-­‐Phosphate	
   2.19	
   Na-­‐Cacod	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
46	
   Na-­‐Citrate	
   0.91	
   Na-­‐Citrate	
   0.1	
   5.5	
   Li-­‐Chloride	
   0.06	
   NONE	
   0	
  
47	
   PEG3350	
   29.44	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Zn-­‐Chloride	
   0.14	
   NONE	
   0	
  
48	
   PEG8k	
   18.37	
   Na-­‐Acetate	
   0.1	
   5	
   K-­‐Chloride	
   0.06	
   NONE	
   0	
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49	
   Na-­‐Formate	
   1.86	
   MOPS	
   0.1	
   6.5	
   Am-­‐Sulfate	
   0.17	
   NONE	
   0	
  
50	
   Mg-­‐Sulfate	
   1.44	
   CHES	
   0.1	
   9.5	
   Na-­‐Acetate	
   0.14	
   NONE	
   0	
  
51	
   PEG3350	
   34.73	
   MES	
   0.1	
   6	
   Na-­‐Chloride	
   0.21	
   PEGDME250	
   1.23	
  
52	
   Isopropanol	
   15.21	
   CHES	
   0.1	
   9.5	
   K-­‐Nitrate	
   0.29	
   NONE	
   0	
  
53	
   PEG4k	
   15.42	
   NONE	
   0	
   0	
   Am-­‐Citrate	
   0.09	
   NONE	
   0	
  
54	
   Am-­‐Sulfate	
   1.77	
   Na-­‐Cacod	
   0.1	
   6.5	
   Mg-­‐Sulfate	
   0.21	
   NONE	
   0	
  
55	
   Na-­‐Malate	
   2.31	
   BisTris	
   0.1	
   6.5	
   NONE	
   0	
   EDTA	
   2.24	
  
56	
   PEGMME5k	
   21.34	
   BICINE	
   0.1	
   9.5	
   NONE	
   0	
   NONE	
   0	
  
57	
   PEG3350	
   33.97	
   BisTris	
   0.1	
   6	
   Ca-­‐Acetate	
   0.06	
   NONE	
   0	
  
58	
   Isopropanol	
   19.61	
   Na-­‐Acetate	
   0.1	
   5	
   Ca-­‐Acetate	
   0.1	
   Glycerol	
   2.4	
  
59	
   Ethanol	
   15.61	
   Na-­‐Acetate	
   0.1	
   5.5	
   Mg-­‐Chloride	
   0.28	
   NONE	
   0	
  
60	
   PEG6k	
   18.3	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐Citrate	
   0.1	
   NONE	
   0	
  
61	
   Na-­‐Formate	
   2.24	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Formate	
   0.05	
   NONE	
   0	
  
62	
   Ethanol	
   14.2	
   Na-­‐Cacod	
   0.1	
   6.5	
   Am-­‐Sulfate	
   0.18	
   Dioxane	
   1.93	
  
63	
   PEG3350	
   28.82	
   NONE	
   0	
   0	
   NONE	
   0	
   Butanediol	
   1.21	
  
64	
   PEG8k	
   12.28	
   Na-­‐Acetate	
   0.1	
   4.5	
   Am-­‐Sulfate	
   0.23	
   NONE	
   0	
  
65	
   PEG3350	
   31.35	
   Na-­‐Citrate	
   0.1	
   5	
   Mg-­‐Sulfate	
   0.18	
   NONE	
   0	
  
66	
   PEGMME5k	
   12.86	
   MES	
   0.1	
   6.5	
   Mg-­‐Acetate	
   0.12	
   MPD	
   1.07	
  
67	
   Am-­‐Phosphate	
   1.91	
   Na-­‐Acetate	
   0.1	
   4.5	
   Am-­‐Tartrate	
   0.04	
   LDAO	
   0.05	
  
68	
   PEG10k	
   13.29	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Sulfate	
   0.11	
   NONE	
   0	
  
69	
   Na-­‐Formate	
   2.79	
   Na-­‐Citrate	
   0.1	
   4.5	
   Am-­‐Tartrate	
   0.09	
   NONE	
   0	
  
70	
   Am-­‐Phosphate	
   2.19	
   BICINE	
   0.1	
   8.5	
   NONE	
   0	
   NONE	
   0	
  
71	
   PEGMME550	
   39.83	
   Tris-­‐Chloride	
   0.1	
   8.5	
   K-­‐Thiocyanate	
   0.29	
   NONE	
   0	
  
72	
   PEG6k	
   23.07	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Formate	
   0.05	
   NONE	
   0	
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73	
   Na-­‐Chloride	
   2.29	
   NONE	
   0	
   0	
   Na-­‐Chloride	
   0.19	
   NONE	
   0	
  
74	
   Na-­‐Acetate	
   1.62	
   Na-­‐Cacod	
   0.1	
   6.5	
   Li-­‐Chloride	
   0.17	
   Glycerol	
   2.84	
  
75	
   Na-­‐K-­‐Phosphate	
   1.79	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Na-­‐K-­‐Phosphate	
   0.24	
   NONE	
   0	
  
76	
   PEG400	
   33.83	
   Na-­‐Acetate	
   0.1	
   4.5	
   NONE	
   0	
   NONE	
   0	
  
77	
   Na-­‐Tartrate	
   1.28	
   Na-­‐Citrate	
   0.1	
   4.5	
   Na-­‐K-­‐Phosphate	
   0.13	
   NONE	
   0	
  
78	
   PEGMME550	
   34.6	
   BisTris	
   0.1	
   6.5	
   Na-­‐Chloride	
   0.23	
   NONE	
   0	
  
79	
   PEG400	
   45.98	
   Tris-­‐Chloride	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
80	
   PEG6k	
   15.85	
   MES	
   0.1	
   6.5	
   Na-­‐Bromide	
   0.06	
   Hexanediol	
   2.67	
  
81	
   Na-­‐Acetate	
   2.04	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Ca-­‐Acetate	
   0.09	
   NONE	
   0	
  
82	
   PEG400	
   38.33	
   Na-­‐Cacod	
   0.1	
   7	
   Am-­‐Phosphate	
   0.15	
   BME	
   8.17	
  
83	
   Na-­‐Citrate	
   0.92	
   HEPES	
   0.1	
   7.5	
   Na-­‐Bromide	
   0.06	
   NONE	
   0	
  
84	
   Am-­‐Phosphate	
   2.32	
   Na-­‐Citrate	
   0.1	
   5	
   Na-­‐K-­‐Phosphate	
   0.17	
   NONE	
   0	
  
85	
   PEG10k	
   18.46	
   BICINE	
   0.1	
   9	
   Mg-­‐Acetate	
   0.18	
   NONE	
   0	
  
86	
   PEGMME2k	
   32.3	
   BICINE	
   0.1	
   9	
   Li-­‐Sulfate	
   0.13	
   Methanol	
   1.83	
  
87	
   PEG4k	
   20.66	
   Na-­‐Acetate	
   0.1	
   5.5	
   NONE	
   0	
   NONE	
   0	
  
88	
   Na-­‐Malonate	
   2.28	
   Na-­‐Cacod	
   0.1	
   7	
   Na-­‐Bromide	
   0.26	
   PEG400	
   3.12	
  
89	
   PEG3350	
   18.86	
   MOPS	
   0.1	
   7	
   Am-­‐Phosphate	
   0.19	
   NONE	
   0	
  
90	
   Na-­‐K-­‐Phosphate	
   2.75	
   Tris-­‐Chloride	
   0.1	
   8.5	
   NONE	
   0	
   NONE	
   0	
  
91	
   MPD	
   24.57	
   Tris-­‐Chloride	
   0.1	
   8	
   Am-­‐Acetate	
   0.05	
   NONE	
   0	
  
92	
   Am-­‐Sulfate	
   2.19	
   BisTris	
   0.1	
   6	
   Mg-­‐Chloride	
   0.3	
   Glycerol	
   2.11	
  
93	
   PEG8k	
   25.24	
   NONE	
   0	
   0	
   Ca-­‐Chloride	
   0.15	
   NONE	
   0	
  
94	
   PEGMME5k	
   15.87	
   NONE	
   0	
   0	
   Na-­‐K-­‐Phosphate	
   0.19	
   NONE	
   0	
  
95	
   Na-­‐Acetate	
   1.58	
   BICINE	
   0.1	
   8.5	
   Na-­‐Chloride	
   0.08	
   NONE	
   0	
  
96	
   PEGMME550	
   33.36	
   CHES	
   0.1	
   9	
   Am-­‐Sulfate	
   0.24	
   NONE	
   0	
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Stochastic 18: 

	
  
	
  	
   	
  	
   	
  	
   	
  	
   Stock	
  

Conc	
  (M)	
   	
   	
   	
   	
  
	
  

Precipitant	
   %	
   Buffer	
   Conc	
  (M)	
   Salt	
  	
   Conc	
  (M)	
   Additive	
   %	
  
1	
   PEG8k	
   27.84	
   NONE	
   0	
   0	
   Zn-­‐Chloride	
   0.03	
   NONE	
   0	
  
2	
   PEG6k	
   26.4	
   HEPES	
   0.1	
   7.5	
   Ca-­‐Acetate	
   0.09	
   Ethglycol	
   1.91	
  
3	
   PEGMME5k	
   19.98	
   Tris-­‐Chloride	
   0.1	
   8	
   Na-­‐Chloride	
   0.06	
   NONE	
   0	
  
4	
   Na-­‐Citrate	
   1.01	
   Na-­‐Citrate	
   0.1	
   5	
   NONE	
   0	
   NONE	
   0	
  
5	
   PEG10k	
   16.25	
   Na-­‐Cacod	
   0.1	
   7	
   Na-­‐K-­‐Phosphate	
   0.05	
   NONE	
   0	
  
6	
   PEG1.5k	
   38.87	
   NONE	
   0	
   0	
   Zn-­‐Acetate	
   0.08	
   NONE	
   0	
  
7	
   PEG400	
   52.81	
   HEPES	
   0.1	
   7.5	
   Na-­‐Bromide	
   0.09	
   Methanol	
   0.44	
  
8	
   PEGMME5k	
   22.47	
   MES	
   0.1	
   6	
   Zn-­‐Acetate	
   0.08	
   Methanol	
   0.89	
  
9	
   PEG3350	
   25.45	
   NONE	
   0	
   0	
   Zn-­‐Chloride	
   0.03	
   NONE	
   0	
  
10	
   PEGMME2k	
   31.76	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Ca-­‐Acetate	
   0.09	
   NONE	
   0	
  
11	
   Na-­‐Formate	
   1.79	
   Na-­‐Citrate	
   0.1	
   5.5	
   Mg-­‐Sulfate	
   0.28	
   NONE	
   0	
  
12	
   Na-­‐Chloride	
   2.26	
   Na-­‐Acetate	
   0.1	
   5	
   K-­‐Thiocyanate	
   0.11	
   PEGMME350	
   3.52	
  
13	
   PEG6k	
   27.24	
   CHES	
   0.1	
   9.5	
   Na-­‐Chloride	
   0.29	
   NONE	
   0	
  
14	
   Na-­‐Malonate	
   2.78	
   Tris-­‐Chloride	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
15	
   MPD	
   51.62	
   BICINE	
   0.1	
   9	
   NONE	
   0	
   NONE	
   0	
  
16	
   PEGMME2k	
   24.54	
   NONE	
   0	
   0	
   Na-­‐K-­‐Tartrate	
   0.09	
   NONE	
   0	
  
17	
   Na-­‐Acetate	
   2.7	
   MOPS	
   0.1	
   6.5	
   Na-­‐Acetate	
   0.08	
   NONE	
   0	
  
18	
   Ethanol	
   20.03	
   Na-­‐Citrate	
   0.1	
   5	
   Li-­‐Chloride	
   0.16	
   PEG400	
   1.62	
  
19	
   PEG4k	
   13.94	
   BICINE	
   0.1	
   8.5	
   NONE	
   0	
   PEGDME250	
   2.48	
  
20	
   Am-­‐Phosphate	
   2.27	
   MES	
   0.1	
   6.5	
   NONE	
   0	
   Butanediol	
   1.71	
  
21	
   Isopropanol	
   12.81	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Ca-­‐Chloride	
   0.11	
   NONE	
   0	
  
22	
   Na-­‐Malate	
   2	
   Tris-­‐Chloride	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
23	
   Na-­‐Citrate	
   0.86	
   Na-­‐Acetate	
   0.1	
   5.5	
   NONE	
   0	
   NONE	
   0	
  
24	
   PEGMME550	
   43.98	
   BICINE	
   0.1	
   9	
   Am-­‐Citrate	
   0.13	
   NONE	
   0	
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25	
   PEG10k	
   11.6	
   BICINE	
   0.1	
   9.5	
   Am-­‐Tartrate	
   0.04	
   NONE	
   0	
  
26	
   Na-­‐K-­‐Phosphate	
   1.8	
   NONE	
   0	
   0	
   Am-­‐Phosphate	
   0.2	
   NONE	
   0	
  
27	
   Mg-­‐Sulfate	
   1.37	
   Na-­‐Acetate	
   0.1	
   5	
   Na-­‐Citrate	
   0.09	
   NONE	
   0	
  
28	
   Na-­‐Malate	
   2.1	
   MOPS	
   0.1	
   6.5	
   NONE	
   0	
   PEG400	
   2.4	
  
29	
   PEG3350	
   28.21	
   MOPS	
   0.1	
   7	
   Na-­‐Citrate	
   0.07	
   NONE	
   0	
  
30	
   Na-­‐Tartrate	
   1.11	
   NONE	
   0	
   0	
   Am-­‐Citrate	
   0.13	
   BME	
   3.7	
  
31	
   PEGMME5k	
   18.13	
   Na-­‐Acetate	
   0.1	
   4.5	
   Ca-­‐Chloride	
   0.1	
   LDAO	
   0.06	
  
32	
   PEG1.5k	
   34.84	
   MES	
   0.1	
   6	
   Li-­‐Sulfate	
   0.25	
   NONE	
   0	
  
33	
   PEG4k	
   17.06	
   NONE	
   0	
   0	
   Zn-­‐Chloride	
   0.09	
   NONE	
   0	
  
34	
   Mg-­‐Sulfate	
   1.07	
   BICINE	
   0.1	
   9	
   NONE	
   0	
   NONE	
   0	
  
35	
   PEG400	
   39.6	
   CHES	
   0.1	
   9	
   Li-­‐Sulfate	
   0.29	
   PEG400	
   2.69	
  
36	
   Na-­‐Malonate	
   2.42	
   BICINE	
   0.1	
   9.5	
   NONE	
   0	
   NONE	
   0	
  
37	
   PEG4k	
   28.98	
   Na-­‐Acetate	
   0.1	
   5.5	
   Na-­‐K-­‐Phosphate	
   0.05	
   NONE	
   0	
  
38	
   PEGMME550	
   34.75	
   Na-­‐Acetate	
   0.1	
   5.5	
   Ca-­‐Acetate	
   0.03	
   NONE	
   0	
  
39	
   Na-­‐Malonate	
   2.13	
   Na-­‐Citrate	
   0.1	
   5	
   K-­‐Thiocyanate	
   0.22	
   NONE	
   0	
  
40	
   Na-­‐Malate	
   2.15	
   MOPS	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
41	
   Na-­‐K-­‐Phosphate	
   1.75	
   Na-­‐Cacod	
   0.1	
   6.5	
   Na-­‐K-­‐Phosphate	
   0.17	
   NONE	
   0	
  
42	
   Am-­‐Sulfate	
   1.93	
   BICINE	
   0.1	
   8.5	
   NONE	
   0	
   NONE	
   0	
  
43	
   Na-­‐Malate	
   2.41	
   Na-­‐Citrate	
   0.1	
   4.5	
   K-­‐Nitrate	
   0.19	
   NONE	
   0	
  
44	
   Am-­‐Phosphate	
   1.71	
   Tris-­‐Chloride	
   0.1	
   7.5	
   K-­‐Chloride	
   0.29	
   NONE	
   0	
  
45	
   PEG1.5k	
   30.77	
   Na-­‐Citrate	
   0.1	
   4.5	
   NONE	
   0	
   CHAPS	
   0.08	
  
46	
   PEG10k	
   16.23	
   Tris-­‐Chloride	
   0.1	
   8	
   Zn-­‐Acetate	
   0.05	
   NONE	
   0	
  
47	
   PEG3350	
   34.51	
   MOPS	
   0.1	
   6.5	
   Na-­‐K-­‐Tartrate	
   0.09	
   NONE	
   0	
  
48	
   MPD	
   53.86	
   NONE	
   0	
   0	
   Am-­‐Sulfate	
   0.15	
   DMSO	
   3.03	
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49	
   Ethanol	
   19.97	
   Tris-­‐Chloride	
   0.1	
   8	
   Mg-­‐Acetate	
   0.18	
   BOG	
   0.08	
  
50	
   PEG10k	
   16.62	
   MES	
   0.1	
   6	
   NONE	
   0	
   Dioxane	
   1.27	
  
51	
   PEG3350	
   26.98	
   BisTris	
   0.1	
   6	
   Zn-­‐Acetate	
   0.08	
   CHAPS	
   0.05	
  
52	
   Am-­‐Sulfate	
   2.45	
   BICINE	
   0.1	
   9	
   K-­‐Nitrate	
   0.23	
   PEGMME350	
   0.86	
  
53	
   MPD	
   39.45	
   CHES	
   0.1	
   9	
   NONE	
   0	
   NONE	
   0	
  
54	
   Na-­‐Malonate	
   2.44	
   Na-­‐Cacod	
   0.1	
   7	
   Am-­‐Tartrate	
   0.13	
   NONE	
   0	
  
55	
   PEG6k	
   26.52	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Am-­‐Citrate	
   0.1	
   NONE	
   0	
  
56	
   PEGMME5k	
   20.23	
   MES	
   0.1	
   6	
   Mg-­‐Formate	
   0.1	
   NONE	
   0	
  
57	
   Na-­‐Citrate	
   1.06	
   MES	
   0.1	
   6.5	
   Mg-­‐Sulfate	
   0.29	
   Hexanediol	
   2.19	
  
58	
   PEGMME5k	
   20.48	
   MOPS	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
59	
   PEG400	
   51.34	
   BICINE	
   0.1	
   8.5	
   Na-­‐Chloride	
   0.11	
   NONE	
   0	
  
60	
   PEGMME2k	
   22	
   Na-­‐Acetate	
   0.1	
   5.5	
   NONE	
   0	
   NONE	
   0	
  
61	
   Na-­‐Malonate	
   2.65	
   Tris-­‐Chloride	
   0.1	
   8.5	
   K-­‐Chloride	
   0.1	
   NONE	
   0	
  
62	
   PEGMME2k	
   34.75	
   NONE	
   0	
   0	
   Na-­‐Bromide	
   0.17	
   NONE	
   0	
  
63	
   PEG6k	
   19.04	
   Na-­‐Acetate	
   0.1	
   5	
   Li-­‐Chloride	
   0.11	
   NONE	
   0	
  
64	
   Na-­‐Malate	
   2.1	
   CHES	
   0.1	
   9.5	
   Am-­‐Sulfate	
   0.17	
   NONE	
   0	
  
65	
   PEG4k	
   27.08	
   Na-­‐Citrate	
   0.1	
   5	
   NONE	
   0	
   LDAO	
   0.01	
  
66	
   PEG8k	
   24.25	
   Tris-­‐Chloride	
   0.1	
   8	
   Am-­‐Phosphate	
   0.05	
   NONE	
   0	
  
67	
   Am-­‐Sulfate	
   1.62	
   Na-­‐Citrate	
   0.1	
   5	
   Am-­‐Acetate	
   0.14	
   Glycerol	
   2.93	
  
68	
   Na-­‐Chloride	
   3.38	
   BisTris	
   0.1	
   6	
   Ca-­‐Acetate	
   0.08	
   NONE	
   0	
  
69	
   MPD	
   52.95	
   Na-­‐Acetate	
   0.1	
   4.5	
   K-­‐Thiocyanate	
   0.28	
   PEGDME250	
   1.26	
  
70	
   PEGMME2k	
   31.82	
   Na-­‐Citrate	
   0.1	
   5.5	
   Am-­‐Acetate	
   0.1	
   PEGMME350	
   2.65	
  
71	
   PEG400	
   25.46	
   Na-­‐Acetate	
   0.1	
   4.5	
   K-­‐Nitrate	
   0.24	
   NONE	
   0	
  
72	
   Am-­‐Phosphate	
   1.95	
   Na-­‐Citrate	
   0.1	
   4.5	
   K-­‐Chloride	
   0.07	
   Ethglycol	
   3.23	
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73	
   PEGMME550	
   37.95	
   Na-­‐Citrate	
   0.1	
   5.5	
   Li-­‐Sulfate	
   0.26	
   LDAO	
   0.08	
  
74	
   PEG1.5k	
   37.75	
   MOPS	
   0.1	
   7	
   K-­‐Chloride	
   0.19	
   EDTA	
   6.29	
  
75	
   PEGMME550	
   21.61	
   HEPES	
   0.1	
   8	
   Mg-­‐Chloride	
   0.07	
   NONE	
   0	
  
76	
   Am-­‐Phosphate	
   2.21	
   Na-­‐Cacod	
   0.1	
   7	
   Am-­‐Acetate	
   0.1	
   NONE	
   0	
  
77	
   Na-­‐Acetate	
   2.44	
   Tris-­‐Chloride	
   0.1	
   7.5	
   K-­‐Thiocyanate	
   0.11	
   NONE	
   0	
  
78	
   PEGMME5k	
   18.71	
   CHES	
   0.1	
   9	
   Am-­‐Phosphate	
   0.27	
   NONE	
   0	
  
79	
   Na-­‐Formate	
   2.5	
   Na-­‐Cacod	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
80	
   PEG8k	
   19.65	
   BICINE	
   0.1	
   9.5	
   NONE	
   0	
   NONE	
   0	
  
81	
   Na-­‐Acetate	
   1.95	
   BisTris	
   0.1	
   6.5	
   NONE	
   0	
   NONE	
   0	
  
82	
   Na-­‐Malate	
   1.96	
   Na-­‐Cacod	
   0.1	
   7	
   Am-­‐Phosphate	
   0.09	
   NONE	
   0	
  
83	
   PEG400	
   25.33	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Mg-­‐Acetate	
   0.17	
   NONE	
   0	
  
84	
   Am-­‐Phosphate	
   1.71	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐Acetate	
   0.1	
   NONE	
   0	
  
85	
   Mg-­‐Sulfate	
   1.65	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Mg-­‐Chloride	
   0.16	
   NONE	
   0	
  
86	
   PEG6k	
   23.54	
   Tris-­‐Chloride	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
87	
   PEG8k	
   22.8	
   BisTris	
   0.1	
   6.5	
   NONE	
   0	
   NONE	
   0	
  
88	
   PEG10k	
   11.2	
   BICINE	
   0.1	
   9.5	
   Na-­‐Bromide	
   0.11	
   NONE	
   0	
  
89	
   Na-­‐Chloride	
   2.39	
   MOPS	
   0.1	
   6.5	
   Ca-­‐Chloride	
   0.07	
   NONE	
   0	
  
90	
   PEGMME5k	
   15.48	
   Tris-­‐Chloride	
   0.1	
   8	
   Am-­‐Phosphate	
   0.13	
   NONE	
   0	
  
91	
   Na-­‐K-­‐Phosphate	
   1.82	
   HEPES	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
92	
   PEG1.5k	
   30.26	
   Na-­‐Citrate	
   0.1	
   4.5	
   Am-­‐Sulfate	
   0.2	
   NONE	
   0	
  
93	
   Na-­‐Citrate	
   0.71	
   CHES	
   0.1	
   9	
   Na-­‐Chloride	
   0.23	
   NONE	
   0	
  
94	
   Na-­‐Chloride	
   2.71	
   HEPES	
   0.1	
   8	
   Ca-­‐Chloride	
   0.08	
   NONE	
   0	
  
95	
   Na-­‐Malonate	
   2.23	
   HEPES	
   0.1	
   7.5	
   K-­‐Chloride	
   0.3	
   NONE	
   0	
  
96	
   PEG1.5k	
   29.79	
   Na-­‐Acetate	
   0.1	
   5.5	
   NONE	
   0	
   NONE	
   0	
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Stochastic 19: 

	
  
	
  	
   	
  	
   	
  	
   	
  	
  

Stock	
  
Conc	
  (M)	
  

	
   	
   	
   	
  

	
  
Precipitant	
   %	
   Buffer	
   Conc	
  (M)	
   Salt	
  	
  

Conc	
  
(M)	
   Additive	
   %	
  

1	
   PEG400	
   30.7	
   MES	
   0.1	
   6	
   Na-­‐Chloride	
   0.25	
   NONE	
   0	
  
2	
   Na-­‐Chloride	
   2.8	
   BisTris	
   0.1	
   6	
   Zn-­‐Chloride	
   0.09	
   NONE	
   0	
  
3	
   PEG1.5k	
   27.57	
   NONE	
   0	
   0	
   Ca-­‐Chloride	
   0.14	
   NONE	
   0	
  
4	
   Na-­‐Malonate	
   1.86	
   Na-­‐Acetate	
   0.1	
   5	
   Am-­‐Sulfate	
   0.18	
   NONE	
   0	
  
5	
   PEG400	
   40.17	
   Na-­‐Citrate	
   0.1	
   5.5	
   Li-­‐Sulfate	
   0.1	
   NONE	
   0	
  
6	
   Na-­‐K-­‐Phosphate	
   2.73	
   BICINE	
   0.1	
   9.5	
   Na-­‐K-­‐Tartrate	
   0.07	
   NONE	
   0	
  
7	
   Isopropanol	
   9.89	
   HEPES	
   0.1	
   8	
   Ca-­‐Chloride	
   0.13	
   NONE	
   0	
  
8	
   Mg-­‐Sulfate	
   1.43	
   Tris-­‐Chloride	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
9	
   PEG1.5k	
   21.79	
   Tris-­‐Chloride	
   0.1	
   8.5	
   K-­‐Chloride	
   0.2	
   NONE	
   0	
  
10	
   Na-­‐K-­‐Phosphate	
   2.71	
   HEPES	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
11	
   Isopropanol	
   6.9	
   Na-­‐Citrate	
   0.1	
   4.5	
   Mg-­‐Chloride	
   0.11	
   NONE	
   0	
  
12	
   Ethanol	
   9.18	
   BisTris	
   0.1	
   6	
   Zn-­‐Chloride	
   0.14	
   PEGMME350	
   3.22	
  
13	
   Na-­‐Acetate	
   2.76	
   HEPES	
   0.1	
   7.5	
   Li-­‐Chloride	
   0.07	
   NONE	
   0	
  
14	
   MPD	
   35.21	
   CHES	
   0.1	
   9.5	
   Am-­‐Citrate	
   0.14	
   NONE	
   0	
  
15	
   Na-­‐Malate	
   2.1	
   Na-­‐Citrate	
   0.1	
   4.5	
   NONE	
   0	
   DMSO	
   2.4	
  
16	
   PEG6k	
   16.89	
   MOPS	
   0.1	
   7	
   Na-­‐K-­‐Tartrate	
   0.12	
   NONE	
   0	
  
17	
   PEG1.5k	
   35.16	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Zn-­‐Chloride	
   0.03	
   NONE	
   0	
  
18	
   PEG8k	
   20.93	
   Na-­‐Cacod	
   0.1	
   6.5	
   Zn-­‐Acetate	
   0.09	
   NONE	
   0	
  
19	
   PEG4k	
   16.24	
   MES	
   0.1	
   6	
   NONE	
   0	
   NONE	
   0	
  
20	
   Na-­‐Malonate	
   2.06	
   BICINE	
   0.1	
   9	
   K-­‐Thiocyanate	
   0.28	
   NONE	
   0	
  
21	
   Na-­‐Citrate	
   0.77	
   Na-­‐Citrate	
   0.1	
   5.5	
   Mg-­‐Acetate	
   0.17	
   NONE	
   0	
  
22	
   PEGMME2k	
   36.82	
   Na-­‐Cacod	
   0.1	
   7	
   Mg-­‐Chloride	
   0.09	
   NONE	
   0	
  
23	
   PEGMME550	
   28.8	
   CHES	
   0.1	
   9	
   NONE	
   0	
   LDAO	
   0.03	
  
24	
   PEGMME5k	
   24.8	
   Na-­‐Cacod	
   0.1	
   7	
   Na-­‐Citrate	
   0.13	
   NONE	
   0	
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25	
   PEGMME550	
   38.79	
   MES	
   0.1	
   6.5	
   Mg-­‐Formate	
   0.11	
   Butanediol	
   3.59	
  
26	
   PEG6k	
   23.59	
   BisTris	
   0.1	
   6	
   Mg-­‐Acetate	
   0.12	
   NONE	
   0	
  
27	
   PEG10k	
   11.67	
   MOPS	
   0.1	
   6.5	
   Am-­‐Tartrate	
   0.04	
   NONE	
   0	
  
28	
   Na-­‐K-­‐Phosphate	
   1.7	
   NONE	
   0	
   0	
   Na-­‐Bromide	
   0.2	
   Hexanediol	
   1.32	
  
29	
   PEG4k	
   17.94	
   NONE	
   0	
   0	
   Am-­‐Phosphate	
   0.15	
   NONE	
   0	
  
30	
   Na-­‐Citrate	
   1	
   BisTris	
   0.1	
   6.5	
   NONE	
   0	
   NONE	
   0	
  
31	
   PEGMME550	
   31.69	
   BisTris	
   0.1	
   6	
   Am-­‐Tartrate	
   0.05	
   Dioxane	
   3.24	
  
32	
   Na-­‐Malonate	
   2.38	
   Na-­‐Citrate	
   0.1	
   5	
   NONE	
   0	
   NONE	
   0	
  
33	
   PEG6k	
   15.1	
   Na-­‐Citrate	
   0.1	
   4.5	
   Am-­‐Acetate	
   0.03	
   PEG400	
   0.44	
  
34	
   PEG4k	
   30.26	
   Na-­‐Citrate	
   0.1	
   4.5	
   Mg-­‐Chloride	
   0.26	
   NONE	
   0	
  
35	
   Ethanol	
   10.53	
   Na-­‐Citrate	
   0.1	
   5	
   NONE	
   0	
   NONE	
   0	
  
36	
   Na-­‐Malate	
   1.63	
   BisTris	
   0.1	
   6.5	
   Am-­‐Citrate	
   0.08	
   MPD	
   3.05	
  
37	
   PEG400	
   50.05	
   Tris-­‐Chloride	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
38	
   PEGMME2k	
   38.14	
   Tris-­‐Chloride	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
39	
   PEG8k	
   12.66	
   BisTris	
   0.1	
   6.5	
   Na-­‐K-­‐Phosphate	
   0.1	
   Ethglycol	
   1.3	
  
40	
   Am-­‐Phosphate	
   2.16	
   HEPES	
   0.1	
   8	
   Na-­‐Citrate	
   0.04	
   NONE	
   0	
  
41	
   Na-­‐Formate	
   2.14	
   HEPES	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
42	
   PEG400	
   53.24	
   Na-­‐Acetate	
   0.1	
   4.5	
   Zn-­‐Acetate	
   0.06	
   NONE	
   0	
  
43	
   Am-­‐Phosphate	
   2.46	
   Na-­‐Citrate	
   0.1	
   5.5	
   NONE	
   0	
   Glycerol	
   2	
  
44	
   PEG8k	
   13.15	
   HEPES	
   0.1	
   8	
   Li-­‐Chloride	
   0.27	
   NONE	
   0	
  
45	
   Am-­‐Sulfate	
   2.49	
   Na-­‐Citrate	
   0.1	
   4.5	
   K-­‐Nitrate	
   0.13	
   DMSO	
   2.17	
  
46	
   PEGMME5k	
   24.93	
   Na-­‐Cacod	
   0.1	
   7	
   Zn-­‐Acetate	
   0.08	
   NONE	
   0	
  
47	
   PEGMME550	
   40.49	
   BisTris	
   0.1	
   6.5	
   Ca-­‐Acetate	
   0.1	
   NONE	
   0	
  
48	
   PEG8k	
   15.71	
   Na-­‐Acetate	
   0.1	
   5.5	
   Ca-­‐Chloride	
   0.11	
   NONE	
   0	
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49	
   Na-­‐Acetate	
   1.68	
   BICINE	
   0.1	
   8.5	
   Am-­‐Tartrate	
   0.13	
   NONE	
   0	
  
50	
   Na-­‐Formate	
   2.09	
   NONE	
   0	
   0	
   Ca-­‐Chloride	
   0.04	
   NONE	
   0	
  
51	
   PEG400	
   51.72	
   MES	
   0.1	
   6.5	
   NONE	
   0	
   PEGDME250	
   2.53	
  
52	
   PEGMME5k	
   24.92	
   MOPS	
   0.1	
   7	
   Mg-­‐Sulfate	
   0.17	
   NONE	
   0	
  
53	
   PEGMME550	
   37.38	
   BICINE	
   0.1	
   8.5	
   Zn-­‐Acetate	
   0.09	
   PEG400	
   3.49	
  
54	
   PEG3350	
   17.55	
   CHES	
   0.1	
   9	
   K-­‐Nitrate	
   0.21	
   NONE	
   0	
  
55	
   Mg-­‐Sulfate	
   1.71	
   BICINE	
   0.1	
   9.5	
   NONE	
   0	
   NONE	
   0	
  
56	
   Am-­‐Phosphate	
   1.85	
   Na-­‐Acetate	
   0.1	
   5	
   Na-­‐Bromide	
   0.05	
   Ethglycol	
   3.5	
  
57	
   Mg-­‐Sulfate	
   1.01	
   MES	
   0.1	
   6	
   NONE	
   0	
   NONE	
   0	
  
58	
   Am-­‐Sulfate	
   1.69	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Mg-­‐Acetate	
   0.1	
   NONE	
   0	
  
59	
   PEG6k	
   23.13	
   MES	
   0.1	
   6	
   Ca-­‐Acetate	
   0.05	
   NONE	
   0	
  
60	
   PEG10k	
   20.29	
   Na-­‐Citrate	
   0.1	
   4.5	
   NONE	
   0	
   NONE	
   0	
  
61	
   Isopropanol	
   7.95	
   BisTris	
   0.1	
   6	
   Na-­‐K-­‐Phosphate	
   0.12	
   CHAPS	
   0.02	
  
62	
   Na-­‐Acetate	
   1.99	
   NONE	
   0	
   0	
   Mg-­‐Sulfate	
   0.19	
   NONE	
   0	
  
63	
   PEG1.5k	
   25.99	
   Na-­‐Acetate	
   0.1	
   4.5	
   Na-­‐Chloride	
   0.07	
   NONE	
   0	
  
64	
   Na-­‐Malate	
   1.81	
   Na-­‐Acetate	
   0.1	
   4.5	
   NONE	
   0	
   BME	
   7.47	
  
65	
   Am-­‐Phosphate	
   2.38	
   Na-­‐Citrate	
   0.1	
   5	
   NONE	
   0	
   NONE	
   0	
  
66	
   Ethanol	
   14.05	
   Na-­‐Acetate	
   0.1	
   5	
   Zn-­‐Chloride	
   0.12	
   BME	
   6.39	
  
67	
   PEG3350	
   32.03	
   Na-­‐Acetate	
   0.1	
   5.5	
   Li-­‐Chloride	
   0.15	
   NONE	
   0	
  
68	
   PEGMME5k	
   14.19	
   CHES	
   0.1	
   9.5	
   Li-­‐Sulfate	
   0.23	
   Methanol	
   2.56	
  
69	
   Na-­‐Malonate	
   2.25	
   HEPES	
   0.1	
   8	
   NONE	
   0	
   BOG	
   0.02	
  
70	
   PEG3350	
   33.28	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
71	
   Ethanol	
   19.56	
   HEPES	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
72	
   Isopropanol	
   10.67	
   BICINE	
   0.1	
   9	
   NONE	
   0	
   EDTA	
   4.93	
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73	
   PEG6k	
   20.5	
   BisTris	
   0.1	
   6.5	
   Na-­‐K-­‐Tartrate	
   0.03	
   NONE	
   0	
  
74	
   PEG1.5k	
   28.66	
   Na-­‐Citrate	
   0.1	
   5	
   K-­‐Thiocyanate	
   0.11	
   NONE	
   0	
  
75	
   Na-­‐Citrate	
   1.01	
   BICINE	
   0.1	
   8.5	
   Am-­‐Phosphate	
   0.1	
   PEGDME250	
   1.43	
  
76	
   PEGMME550	
   22.93	
   Tris-­‐Chloride	
   0.1	
   8	
   Na-­‐K-­‐Phosphate	
   0.15	
   NONE	
   0	
  
77	
   Am-­‐Sulfate	
   2.36	
   Na-­‐Citrate	
   0.1	
   5.5	
   Am-­‐Phosphate	
   0.21	
   NONE	
   0	
  
78	
   PEGMME550	
   31.34	
   BICINE	
   0.1	
   9	
   Am-­‐Phosphate	
   0.17	
   NONE	
   0	
  
79	
   Na-­‐Malate	
   1.95	
   CHES	
   0.1	
   9.5	
   Na-­‐Chloride	
   0.16	
   NONE	
   0	
  
80	
   PEG3350	
   24.2	
   BICINE	
   0.1	
   8.5	
   Am-­‐Acetate	
   0.1	
   NONE	
   0	
  
81	
   PEG400	
   46.17	
   BICINE	
   0.1	
   9.5	
   Am-­‐Citrate	
   0.11	
   NONE	
   0	
  
82	
   PEG8k	
   15.6	
   Na-­‐Citrate	
   0.1	
   5.5	
   NONE	
   0	
   Methanol	
   0.51	
  
83	
   Na-­‐Acetate	
   1.48	
   Na-­‐Acetate	
   0.1	
   5.5	
   K-­‐Thiocyanate	
   0.24	
   LDAO	
   0.05	
  
84	
   Na-­‐K-­‐Phosphate	
   2.03	
   HEPES	
   0.1	
   7.5	
   Na-­‐Acetate	
   0.07	
   MPD	
   3	
  
85	
   PEG4k	
   15.24	
   NONE	
   0	
   0	
   Mg-­‐Formate	
   0.05	
   NONE	
   0	
  
86	
   Na-­‐Chloride	
   3.05	
   Tris-­‐Chloride	
   0.1	
   8.5	
   NONE	
   0	
   NONE	
   0	
  
87	
   PEG10k	
   13.69	
   Na-­‐Acetate	
   0.1	
   5	
   Li-­‐Sulfate	
   0.23	
   Dioxane	
   1.28	
  
88	
   PEG8k	
   15.81	
   HEPES	
   0.1	
   7.5	
   Am-­‐Sulfate	
   0.26	
   BOG	
   0.04	
  
89	
   Na-­‐Tartrate	
   0.95	
   Na-­‐Acetate	
   0.1	
   5	
   Am-­‐Sulfate	
   0.17	
   NONE	
   0	
  
90	
   MPD	
   47.24	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
91	
   PEG10k	
   12.48	
   CHES	
   0.1	
   9	
   Li-­‐Sulfate	
   0.08	
   NONE	
   0	
  
92	
   Na-­‐Formate	
   2.02	
   MOPS	
   0.1	
   7	
   Ca-­‐Acetate	
   0.06	
   NONE	
   0	
  
93	
   Mg-­‐Sulfate	
   1.5	
   NONE	
   0	
   0	
   Mg-­‐Formate	
   0.08	
   NONE	
   0	
  
94	
   PEGMME2k	
   39.05	
   Na-­‐Citrate	
   0.1	
   5	
   Na-­‐K-­‐Phosphate	
   0.26	
   NONE	
   0	
  
95	
   Ethanol	
   15.98	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Li-­‐Sulfate	
   0.06	
   NONE	
   0	
  
96	
   PEG8k	
   15.79	
   Na-­‐Citrate	
   0.1	
   5.5	
   Li-­‐Chloride	
   0.1	
   BME	
   2.32	
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Stochastic 20:  

	
  
	
  	
   	
  	
   	
  	
   	
  	
  

Stock	
  
Conc	
  (M)	
  

	
   	
   	
   	
  

	
  
Precipitant	
   %	
   Buffer	
  

Conc	
  
(M)	
   Salt	
  	
  

Conc	
  
(M)	
   Additive	
   %	
  

1	
   Na-­‐Acetate	
   2.43	
   NONE	
   0	
   0	
   Zn-­‐Acetate	
   0.11	
   LDAO	
   0.06	
  
2	
   Isopropanol	
   14.69	
   Na-­‐Acetate	
   0.1	
   5.5	
   Mg-­‐Acetate	
   0.29	
   NONE	
   0	
  
3	
   PEG3350	
   28.76	
   MES	
   0.1	
   6	
   Ca-­‐Chloride	
   0.04	
   NONE	
   0	
  
4	
   PEG4k	
   23.4	
   BICINE	
   0.1	
   9	
   Am-­‐Acetate	
   0.15	
   MPD	
   0.99	
  
5	
   PEGMME2k	
   22.78	
   MES	
   0.1	
   6	
   Li-­‐Sulfate	
   0.13	
   NONE	
   0	
  
6	
   Am-­‐Sulfate	
   2.46	
   Na-­‐Acetate	
   0.1	
   5	
   Na-­‐K-­‐Tartrate	
   0.07	
   NONE	
   0	
  
7	
   Am-­‐Phosphate	
   1.69	
   Na-­‐Acetate	
   0.1	
   5.5	
   Am-­‐Citrate	
   0.08	
   NONE	
   0	
  
8	
   Am-­‐Phosphate	
   2.34	
   CHES	
   0.1	
   9.5	
   Am-­‐Phosphate	
   0.11	
   NONE	
   0	
  
9	
   Na-­‐Malate	
   2.29	
   BICINE	
   0.1	
   9	
   Na-­‐Chloride	
   0.24	
   NONE	
   0	
  
10	
   Na-­‐Acetate	
   2.22	
   MES	
   0.1	
   6.5	
   Ca-­‐Acetate	
   0.11	
   NONE	
   0	
  
11	
   PEG3350	
   18.02	
   Na-­‐Acetate	
   0.1	
   5	
   Zn-­‐Chloride	
   0.05	
   NONE	
   0	
  
12	
   Na-­‐Chloride	
   2.73	
   MES	
   0.1	
   6	
   Ca-­‐Chloride	
   0.13	
   NONE	
   0	
  
13	
   Na-­‐Citrate	
   0.65	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐Bromide	
   0.06	
   NONE	
   0	
  
14	
   PEG4k	
   15.79	
   BisTris	
   0.1	
   6	
   Mg-­‐Sulfate	
   0.07	
   PEG400	
   2.02	
  
15	
   Mg-­‐Sulfate	
   1.13	
   Na-­‐Acetate	
   0.1	
   5	
   Mg-­‐Sulfate	
   0.2	
   CHAPS	
   0.05	
  
16	
   PEG8k	
   24.81	
   BisTris	
   0.1	
   6.5	
   Mg-­‐Formate	
   0.07	
   NONE	
   0	
  
17	
   PEGMME550	
   27.85	
   BICINE	
   0.1	
   9.5	
   NONE	
   0	
   NONE	
   0	
  
18	
   Na-­‐Tartrate	
   1	
   Na-­‐Citrate	
   0.1	
   5	
   Na-­‐Citrate	
   0.04	
   NONE	
   0	
  
19	
   Na-­‐Malate	
   2.2	
   BICINE	
   0.1	
   8.5	
   NONE	
   0	
   NONE	
   0	
  
20	
   PEG8k	
   23.16	
   NONE	
   0	
   0	
   Zn-­‐Acetate	
   0.08	
   NONE	
   0	
  
21	
   PEG6k	
   12.74	
   BICINE	
   0.1	
   8.5	
   Na-­‐Acetate	
   0.05	
   NONE	
   0	
  
22	
   Na-­‐Acetate	
   2.28	
   NONE	
   0	
   0	
   Li-­‐Chloride	
   0.16	
   NONE	
   0	
  
23	
   PEG4k	
   27.96	
   CHES	
   0.1	
   9	
   NONE	
   0	
   NONE	
   0	
  
24	
   PEGMME2k	
   36.65	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐Citrate	
   0.03	
   NONE	
   0	
  
25	
   PEG10k	
   18.27	
   CHES	
   0.1	
   9	
   Na-­‐Citrate	
   0.07	
   NONE	
   0	
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26	
   Na-­‐K-­‐Phosphate	
   2.69	
   HEPES	
   0.1	
   7.5	
   NONE	
   0	
   CHAPS	
   0.05	
  
27	
   PEGMME5k	
   25.6	
   BisTris	
   0.1	
   6	
   NONE	
   0	
   Butanediol	
   1.31	
  
28	
   PEGMME2k	
   35.07	
   Na-­‐Acetate	
   0.1	
   5	
   K-­‐Chloride	
   0.17	
   DMSO	
   0.85	
  
29	
   PEG6k	
   25.87	
   Na-­‐Cacod	
   0.1	
   6.5	
   Li-­‐Sulfate	
   0.08	
   NONE	
   0	
  
30	
   PEGMME2k	
   22.61	
   Na-­‐Acetate	
   0.1	
   4.5	
   Li-­‐Sulfate	
   0.25	
   NONE	
   0	
  
31	
   Na-­‐Malonate	
   2.54	
   BICINE	
   0.1	
   9.5	
   Na-­‐K-­‐Tartrate	
   0.07	
   NONE	
   0	
  
32	
   PEGMME5k	
   14.84	
   Na-­‐Acetate	
   0.1	
   5.5	
   Li-­‐Chloride	
   0.07	
   NONE	
   0	
  
33	
   Na-­‐Chloride	
   3.23	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Am-­‐Citrate	
   0.14	
   NONE	
   0	
  
34	
   PEGMME550	
   24.48	
   MOPS	
   0.1	
   7	
   Am-­‐Phosphate	
   0.24	
   NONE	
   0	
  
35	
   Mg-­‐Sulfate	
   1.71	
   HEPES	
   0.1	
   8	
   K-­‐Nitrate	
   0.18	
   NONE	
   0	
  
36	
   Ethanol	
   19.37	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Chloride	
   0.29	
   NONE	
   0	
  
37	
   PEGMME2k	
   34.16	
   Tris-­‐Chloride	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
38	
   PEG3350	
   21.72	
   Na-­‐Acetate	
   0.1	
   5	
   Zn-­‐Acetate	
   0.11	
   NONE	
   0	
  
39	
   Na-­‐Formate	
   1.61	
   Na-­‐Citrate	
   0.1	
   4.5	
   NONE	
   0	
   NONE	
   0	
  
40	
   Am-­‐Phosphate	
   2.69	
   BisTris	
   0.1	
   6	
   Am-­‐Sulfate	
   0.08	
   NONE	
   0	
  
41	
   PEGMME550	
   32	
   MOPS	
   0.1	
   7	
   Na-­‐K-­‐Phosphate	
   0.27	
   Glycerol	
   2.81	
  
42	
   MPD	
   53.13	
   MOPS	
   0.1	
   7	
   NONE	
   0	
   Methanol	
   0.8	
  
43	
   PEGMME5k	
   18.43	
   Na-­‐Citrate	
   0.1	
   4.5	
   NONE	
   0	
   PEGMME350	
   2.41	
  
44	
   Na-­‐Malate	
   2.34	
   Na-­‐Cacod	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
45	
   PEGMME5k	
   16.9	
   MOPS	
   0.1	
   6.5	
   Zn-­‐Acetate	
   0.08	
   NONE	
   0	
  
46	
   Na-­‐Formate	
   2.07	
   MES	
   0.1	
   6	
   Na-­‐Bromide	
   0.05	
   NONE	
   0	
  
47	
   Na-­‐Malate	
   2.06	
   CHES	
   0.1	
   9.5	
   NONE	
   0	
   NONE	
   0	
  
48	
   PEG1.5k	
   32.29	
   CHES	
   0.1	
   9.5	
   Na-­‐Bromide	
   0.08	
   Ethglycol	
   0.43	
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49	
   PEG8k	
   12.79	
   NONE	
   0	
   0	
   Ca-­‐Acetate	
   0.1	
   NONE	
   0	
  
50	
   PEG6k	
   18.59	
   BICINE	
   0.1	
   8.5	
   Am-­‐Tartrate	
   0.04	
   NONE	
   0	
  
51	
   PEG400	
   31.76	
   Tris-­‐Chloride	
   0.1	
   8.5	
   NONE	
   0	
   NONE	
   0	
  
52	
   PEGMME550	
   41	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Mg-­‐Acetate	
   0.14	
   NONE	
   0	
  
53	
   PEG4k	
   14.78	
   HEPES	
   0.1	
   8	
   Am-­‐Citrate	
   0.04	
   LDAO	
   0.01	
  
54	
   Am-­‐Sulfate	
   2.2	
   BisTris	
   0.1	
   6.5	
   NONE	
   0	
   NONE	
   0	
  
55	
   PEG3350	
   32.17	
   BisTris	
   0.1	
   6.5	
   Na-­‐Chloride	
   0.09	
   BME	
   7.84	
  
56	
   Isopropanol	
   11.97	
   Na-­‐Acetate	
   0.1	
   5	
   NONE	
   0	
   NONE	
   0	
  
57	
   Na-­‐Citrate	
   0.72	
   HEPES	
   0.1	
   7.5	
   Mg-­‐Formate	
   0.04	
   Ethglycol	
   2.91	
  
58	
   Na-­‐K-­‐Phosphate	
   1.88	
   HEPES	
   0.1	
   7.5	
   Am-­‐Phosphate	
   0.24	
   PEGDME250	
   3.99	
  
59	
   Na-­‐Tartrate	
   1.39	
   Na-­‐Acetate	
   0.1	
   4.5	
   NONE	
   0	
   NONE	
   0	
  
60	
   Isopropanol	
   16.29	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
61	
   PEG4k	
   14.16	
   Na-­‐Cacod	
   0.1	
   6.5	
   Zn-­‐Acetate	
   0.04	
   NONE	
   0	
  
62	
   PEG4k	
   21.75	
   Na-­‐Acetate	
   0.1	
   4.5	
   Li-­‐Chloride	
   0.08	
   NONE	
   0	
  
63	
   Na-­‐Citrate	
   1.11	
   HEPES	
   0.1	
   7.5	
   Na-­‐Citrate	
   0.07	
   NONE	
   0	
  
64	
   Na-­‐K-­‐Phosphate	
   2.02	
   MOPS	
   0.1	
   7	
   Na-­‐Bromide	
   0.22	
   NONE	
   0	
  
65	
   Na-­‐Formate	
   1.8	
   BisTris	
   0.1	
   6	
   Am-­‐Tartrate	
   0.13	
   NONE	
   0	
  
66	
   Mg-­‐Sulfate	
   1.44	
   CHES	
   0.1	
   9	
   Mg-­‐Acetate	
   0.2	
   NONE	
   0	
  
67	
   PEG3350	
   20.46	
   BICINE	
   0.1	
   9.5	
   K-­‐Thiocyanate	
   0.14	
   NONE	
   0	
  
68	
   PEG6k	
   19.61	
   MES	
   0.1	
   6	
   Am-­‐Acetate	
   0.11	
   NONE	
   0	
  
69	
   Na-­‐Citrate	
   0.99	
   NONE	
   0	
   0	
   Na-­‐Acetate	
   0.11	
   NONE	
   0	
  
70	
   PEG10k	
   11.28	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
71	
   Ethanol	
   5.25	
   Na-­‐Cacod	
   0.1	
   6.5	
   Mg-­‐Chloride	
   0.13	
   NONE	
   0	
  
72	
   PEG1.5k	
   23.21	
   BICINE	
   0.1	
   9	
   Mg-­‐Formate	
   0.05	
   BME	
   4.61	
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73	
   Na-­‐K-­‐Phosphate	
   2.67	
   Na-­‐Citrate	
   0.1	
   5.5	
   K-­‐Nitrate	
   0.06	
   NONE	
   0	
  
74	
   PEGMME5k	
   14.69	
   Na-­‐Cacod	
   0.1	
   7	
   Ca-­‐Acetate	
   0.07	
   NONE	
   0	
  
75	
   Na-­‐Chloride	
   3.17	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Na-­‐Chloride	
   0.09	
   NONE	
   0	
  
76	
   PEGMME550	
   47.31	
   Na-­‐Citrate	
   0.1	
   5.5	
   NONE	
   0	
   Hexanediol	
   3.65	
  
77	
   Isopropanol	
   17.35	
   NONE	
   0	
   0	
   Na-­‐K-­‐Tartrate	
   0.1	
   NONE	
   0	
  
78	
   PEG10k	
   9.3	
   BICINE	
   0.1	
   8.5	
   Li-­‐Sulfate	
   0.26	
   NONE	
   0	
  
79	
   PEGMME5k	
   25.06	
   Na-­‐Cacod	
   0.1	
   7	
   Am-­‐Tartrate	
   0.09	
   NONE	
   0	
  
80	
   PEGMME550	
   35.97	
   Tris-­‐Chloride	
   0.1	
   8	
   Mg-­‐Acetate	
   0.18	
   NONE	
   0	
  
81	
   PEG400	
   38.26	
   CHES	
   0.1	
   9	
   Na-­‐Bromide	
   0.13	
   NONE	
   0	
  
82	
   Na-­‐Malonate	
   1.89	
   Na-­‐Acetate	
   0.1	
   5.5	
   NONE	
   0	
   NONE	
   0	
  
83	
   Na-­‐Tartrate	
   0.9	
   BICINE	
   0.1	
   8.5	
   Na-­‐K-­‐Phosphate	
   0.05	
   NONE	
   0	
  
84	
   Na-­‐Chloride	
   2.83	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Zn-­‐Acetate	
   0.1	
   NONE	
   0	
  
85	
   Na-­‐Citrate	
   0.9	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Mg-­‐Chloride	
   0.27	
   NONE	
   0	
  
86	
   PEG1.5k	
   31.41	
   BisTris	
   0.1	
   6	
   Ca-­‐Chloride	
   0.06	
   NONE	
   0	
  
87	
   Ethanol	
   9.25	
   HEPES	
   0.1	
   7.5	
   Am-­‐Sulfate	
   0.13	
   BOG	
   0.03	
  
88	
   PEG4k	
   20.77	
   Tris-­‐Chloride	
   0.1	
   8	
   K-­‐Chloride	
   0.14	
   NONE	
   0	
  
89	
   Na-­‐Malate	
   2.24	
   Na-­‐Acetate	
   0.1	
   4.5	
   NONE	
   0	
   EDTA	
   4.35	
  
90	
   PEG10k	
   18.97	
   HEPES	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
91	
   PEGMME2k	
   31.99	
   NONE	
   0	
   0	
   Zn-­‐Chloride	
   0.06	
   Hexanediol	
   3.45	
  
92	
   PEG1.5k	
   20.74	
   Na-­‐Acetate	
   0.1	
   5.5	
   Na-­‐Chloride	
   0.29	
   NONE	
   0	
  
93	
   Na-­‐Citrate	
   0.89	
   Na-­‐Citrate	
   0.1	
   5	
   Am-­‐Acetate	
   0.12	
   NONE	
   0	
  
94	
   PEG400	
   29.8	
   CHES	
   0.1	
   9.5	
   NONE	
   0	
   NONE	
   0	
  
95	
   PEG3350	
   20.37	
   HEPES	
   0.1	
   8	
   Na-­‐Chloride	
   0.26	
   NONE	
   0	
  
96	
   Na-­‐Tartrate	
   1.05	
   Na-­‐Cacod	
   0.1	
   7	
   Am-­‐Citrate	
   0.13	
   DMSO	
   3.42	
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Stochastic 21: 

	
  
	
  	
   	
  	
   	
  	
   	
  	
  

Stock	
  
Conc	
  (M)	
  

	
   	
   	
   	
  

	
  
Precipitant	
   %	
   Buffer	
  

Conc	
  
(M)	
   Salt	
  	
  

Conc	
  
(M)	
   Additive	
   %	
  

1	
   PEG10k	
   13.14	
   MOPS	
   0.1	
   6.5	
   Li-­‐Sulfate	
   0.26	
   NONE	
   0	
  
2	
   PEG6k	
   23.19	
   BICINE	
   0.1	
   9	
   NONE	
   0	
   PEGDME250	
   2.05	
  
3	
   PEG8k	
   16.52	
   Na-­‐Cacodylate	
   0.1	
   6.5	
   NONE	
   0	
   NONE	
   0	
  
4	
   Na-­‐Tartrate	
   0.95	
   Na-­‐Cacodylate	
   0.1	
   7	
   K-­‐Chloride	
   0.13	
   NONE	
   0	
  
5	
   Na-­‐Malate	
   2.13	
   BICINE	
   0.1	
   8.5	
   Am-­‐Acetate	
   0.1	
   NONE	
   0	
  
6	
   PEG8k	
   27.31	
   MES	
   0.1	
   6.5	
   Na-­‐Acetate	
   0.11	
   NONE	
   0	
  
7	
   MPD	
   43.53	
   Na-­‐Cacod	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
8	
   PEG4k	
   16.09	
   CHES	
   0.1	
   9	
   Na-­‐Citrate	
   0.05	
   DMSO	
   2.51	
  
9	
   PEG6k	
   20.17	
   Na-­‐Citrate	
   0.1	
   5.5	
   Am-­‐Tartrate	
   0.11	
   NONE	
   0	
  
10	
   PEG3350	
   20.82	
   MOPS	
   0.1	
   7	
   NONE	
   0	
   CHAPS	
   0.13	
  
11	
   Na-­‐Tartrate	
   0.89	
   Na-­‐Acetate	
   0.1	
   5	
   K-­‐Nitrate	
   0.09	
   NONE	
   0	
  
12	
   Am-­‐Sulfate	
   2.47	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Chloride	
   0.21	
   NONE	
   0	
  
13	
   PEGMME2k	
   24.77	
   MOPS	
   0.1	
   7	
   Am-­‐Tartrate	
   0.07	
   NONE	
   0	
  
14	
   PEG1.5k	
   33.49	
   BICINE	
   0.1	
   9	
   Mg-­‐Chloride	
   0.1	
   NONE	
   0	
  
15	
   PEG6k	
   24.19	
   Na-­‐Citrate	
   0.1	
   5	
   NONE	
   0	
   NONE	
   0	
  
16	
   PEGMME550	
   26	
   BisTris	
   0.1	
   6.5	
   NONE	
   0	
   NONE	
   0	
  
17	
   PEGMME5k	
   24.16	
   MOPS	
   0.1	
   6.5	
   Zn-­‐Sulfate	
   0.09	
   NONE	
   0	
  
18	
   PEGMME550	
   26.05	
   Na-­‐Cacod	
   0.1	
   6.5	
   Na-­‐K-­‐Tartrate	
   0.12	
   LDAO	
   0.18	
  
19	
   Na-­‐K-­‐Phosphate	
   1.88	
   CHES	
   0.1	
   9.5	
   Am-­‐Citrate	
   0.11	
   NONE	
   0	
  
20	
   Na-­‐Acetate	
   1.5	
   NONE	
   0	
   0	
   Mg-­‐Sulfate	
   0.3	
   BOG	
   0.15	
  
21	
   Na-­‐Tartrate	
   1.18	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
22	
   PEG8k	
   23.75	
   CHES	
   0.1	
   9	
   Am-­‐Phosphate	
   0.2	
   NONE	
   0	
  
23	
   PEG10k	
   10.64	
   NONE	
   0	
   0	
   Mg-­‐Acetate	
   0.05	
   NONE	
   0	
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24	
   Na-­‐Chloride	
   3.24	
   BICINE	
   0.1	
   9.5	
   Na-­‐Chloride	
   0.19	
   NONE	
   0	
  
25	
   PEGMME550	
   26.05	
   MES	
   0.1	
   6	
   Zn-­‐Sulfate	
   0.14	
   NONE	
   0	
  
26	
   Na-­‐K-­‐Phosphate	
   2.18	
   NONE	
   0	
   0	
   K-­‐Nitrate	
   0.19	
   EDTA	
   8.28	
  
27	
   PEG400	
   30.62	
   Tris-­‐Chloride	
   0.1	
   8	
   Am-­‐Phosphate	
   0.27	
   PEGMME350	
   2.17	
  
28	
   Na-­‐Acetate	
   1.24	
   BICINE	
   0.1	
   9	
   Am-­‐Citrate	
   0.14	
   NONE	
   0	
  
29	
   Am-­‐Sulfate	
   2.45	
   Tris-­‐Chloride	
   0.1	
   8	
   Mg-­‐Acetate	
   0.29	
   NONE	
   0	
  
30	
   PEG8k	
   21.47	
   MES	
   0.1	
   6	
   NONE	
   0	
   Glycerol	
   1.74	
  
31	
   PEG4k	
   16.01	
   CHES	
   0.1	
   9	
   Zn-­‐Sulfate	
   0.03	
   PEGDME250	
   0.7	
  
32	
   Isopropanol	
   10.06	
   Na-­‐Acetate	
   0.1	
   5.5	
   NONE	
   0	
   NONE	
   0	
  
33	
   PEG6k	
   26.93	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
34	
   Isopropanol	
   20.46	
   MES	
   0.1	
   6	
   Li-­‐Sulfate	
   0.26	
   NONE	
   0	
  
35	
   MPD	
   31.64	
   BisTris	
   0.1	
   6	
   NONE	
   0	
   NONE	
   0	
  
36	
   Na-­‐Acetate	
   1.48	
   BisTris	
   0.1	
   6	
   Ca-­‐Acetate	
   0.08	
   NONE	
   0	
  
37	
   Na-­‐K-­‐Phosphate	
   2.71	
   Tris-­‐Chloride	
   0.1	
   8	
   NONE	
   0	
   BOG	
   0.18	
  
38	
   PEGMME5k	
   27.47	
   Na-­‐Cacod	
   0.1	
   7	
   Na-­‐Bromide	
   0.21	
   LDAO	
   0.1	
  
39	
   Isopropanol	
   12.88	
   BICINE	
   0.1	
   9	
   Ca-­‐Chloride	
   0.09	
   NONE	
   0	
  
40	
   PEG400	
   38.31	
   MOPS	
   0.1	
   7	
   Mg-­‐Acetate	
   0.3	
   NONE	
   0	
  
41	
   PEG8k	
   17.2	
   MOPS	
   0.1	
   6.5	
   Am-­‐Sulfate	
   0.26	
   NONE	
   0	
  
42	
   Na-­‐Formate	
   2.36	
   Na-­‐Citrate	
   0.1	
   5.5	
   Am-­‐Sulfate	
   0.16	
   NONE	
   0	
  
43	
   PEG4k	
   18.78	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Am-­‐Citrate	
   0.08	
   NONE	
   0	
  
44	
   Na-­‐Formate	
   2.28	
   Na-­‐Cacod	
   0.1	
   7	
   Na-­‐Chloride	
   0.2	
   NONE	
   0	
  
45	
   Am-­‐Phosphate	
   1.73	
   Na-­‐Citrate	
   0.1	
   5.5	
   K-­‐Chloride	
   0.12	
   NONE	
   0	
  
46	
   PEG4k	
   29.61	
   Na-­‐Acetate	
   0.1	
   5.5	
   Mg-­‐Sulfate	
   0.24	
   NONE	
   0	
  
47	
   Ethanol	
   8.85	
   MES	
   0.1	
   6	
   Na-­‐Acetate	
   0.03	
   NONE	
   0	
  
48	
   Na-­‐Acetate	
   1.72	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Na-­‐Acetate	
   0.09	
   NONE	
   0	
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48	
   Na-­‐Acetate	
   1.72	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Na-­‐Acetate	
   0.09	
   NONE	
   0	
  
49	
   Na-­‐Formate	
   1.94	
   Na-­‐Cacod	
   0.1	
   6.5	
   Na-­‐K-­‐Phosphate	
   0.22	
   NONE	
   0	
  
50	
   Na-­‐Formate	
   2.37	
   Na-­‐Citrate	
   0.1	
   5	
   Am-­‐Sulfate	
   0.08	
   NONE	
   0	
  
51	
   PEG4k	
   26.75	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Na-­‐Bromide	
   0.14	
   NONE	
   0	
  
52	
   Mg-­‐Sulfate	
   1.54	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Zn-­‐Acetate	
   0.03	
   BOG	
   0.06	
  
53	
   PEGMME550	
   33.55	
   BisTris	
   0.1	
   6	
   NONE	
   0	
   NONE	
   0	
  
54	
   PEG1.5k	
   26.68	
   BICINE	
   0.1	
   8.5	
   Am-­‐Tartrate	
   0.06	
   NONE	
   0	
  
55	
   Na-­‐Malate	
   1.94	
   MES	
   0.1	
   6	
   Am-­‐Phosphate	
   0.14	
   NONE	
   0	
  
56	
   PEG1.5k	
   30.47	
   MOPS	
   0.1	
   7	
   Am-­‐Citrate	
   0.12	
   Butanediol	
   1.31	
  
57	
   PEG1.5k	
   19.31	
   BICINE	
   0.1	
   9.5	
   Mg-­‐Acetate	
   0.07	
   NONE	
   0	
  
58	
   Am-­‐Sulfate	
   2.31	
   MES	
   0.1	
   6	
   NONE	
   0	
   NONE	
   0	
  
59	
   PEGMME5k	
   20.78	
   Na-­‐Acetate	
   0.1	
   5	
   Mg-­‐Acetate	
   0.25	
   NONE	
   0	
  
60	
   PEG3350	
   28.52	
   Na-­‐Citrate	
   0.1	
   5	
   Na-­‐Sulfate	
   0.09	
   NONE	
   0	
  
61	
   PEG8k	
   15.5	
   NONE	
   0	
   0	
   Mg-­‐Sulfate	
   0.23	
   LDAO	
   0.03	
  
62	
   Na-­‐Acetate	
   2.73	
   BICINE	
   0.1	
   9	
   Mg-­‐Sulfate	
   0.26	
   NONE	
   0	
  
63	
   Isopropanol	
   12.55	
   Na-­‐Acetate	
   0.1	
   5	
   NONE	
   0	
   CHAPS	
   0.07	
  
64	
   PEG400	
   36.95	
   HEPES	
   0.1	
   7.5	
   Ca-­‐Chloride	
   0.04	
   NONE	
   0	
  
65	
   Na-­‐Malonate	
   1.77	
   CHES	
   0.1	
   9	
   NONE	
   0	
   NONE	
   0	
  
66	
   Na-­‐Chloride	
   2.59	
   Tris-­‐Chloride	
   0.1	
   8	
   Am-­‐Citrate	
   0.03	
   NONE	
   0	
  
67	
   PEG10k	
   19.9	
   Tris-­‐Chloride	
   0.1	
   8	
   Li-­‐Chloride	
   0.17	
   NONE	
   0	
  
68	
   Isopropanol	
   5.83	
   MOPS	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
69	
   Am-­‐Sulfate	
   1.43	
   Na-­‐Acetate	
   0.1	
   5.5	
   K-­‐Nitrate	
   0.13	
   Glycerol	
   3.58	
  
70	
   Am-­‐Sulfate	
   1.41	
   BisTris	
   0.1	
   6	
   Am-­‐Acetate	
   0.13	
   BOG	
   0.02	
  
71	
   Isopropanol	
   11.62	
   Na-­‐Citrate	
   0.1	
   5.5	
   NONE	
   0	
   PEGDME250	
   2.84	
  
72	
   Na-­‐Citrate	
   1.11	
   CHES	
   0.1	
   9	
   Na-­‐Citrate	
   0.05	
   NONE	
   0	
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73	
   MPD	
   30.77	
   MES	
   0.1	
   6	
   Na-­‐Acetate	
   0.03	
   DMSO	
   1.98	
  
74	
   Na-­‐Acetate	
   1.85	
   CHES	
   0.1	
   9.5	
   Am-­‐Sulfate	
   0.09	
   NONE	
   0	
  
75	
   Na-­‐Citrate	
   1.09	
   MES	
   0.1	
   6	
   Am-­‐Tartrate	
   0.09	
   NONE	
   0	
  
76	
   Isopropanol	
   13.48	
   MOPS	
   0.1	
   7	
   Mg-­‐Acetate	
   0.25	
   NONE	
   0	
  
77	
   PEG1.5k	
   28.8	
   CHES	
   0.1	
   9.5	
   Na-­‐Bromide	
   0.29	
   BOG	
   0.1	
  
78	
   Na-­‐Citrate	
   1.1	
   Tris-­‐Chloride	
   0.1	
   8	
   Na-­‐Citrate	
   0.05	
   CHAPS	
   0.14	
  
79	
   Isopropanol	
   18.7	
   MOPS	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
80	
   PEGMME5k	
   15.65	
   CHES	
   0.1	
   9.5	
   Na-­‐Acetate	
   0.09	
   NONE	
   0	
  
81	
   Na-­‐Acetate	
   2.29	
   BICINE	
   0.1	
   9	
   Ca-­‐Acetate	
   0.06	
   NONE	
   0	
  
82	
   PEG8k	
   22.45	
   HEPES	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
83	
   PEG6k	
   23.04	
   Na-­‐Acetate	
   0.1	
   5	
   K-­‐Nitrate	
   0.09	
   BME	
   2.32	
  
84	
   PEG8k	
   16.23	
   Na-­‐Acetate	
   0.1	
   5.5	
   Mg-­‐Sulfate	
   0.12	
   NONE	
   0	
  
85	
   Na-­‐Tartrate	
   1.07	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Na-­‐Chloride	
   0.05	
   NONE	
   0	
  
86	
   PEG400	
   55.52	
   HEPES	
   0.1	
   7.5	
   Mg-­‐Chloride	
   0.25	
   NONE	
   0	
  
87	
   Isopropanol	
   8.66	
   HEPES	
   0.1	
   8	
   NONE	
   0	
   NONE	
   0	
  
88	
   Na-­‐Acetate	
   2.46	
   CHES	
   0.1	
   9.5	
   Am-­‐Acetate	
   0.09	
   NONE	
   0	
  
89	
   PEGMME2k	
   20.49	
   MOPS	
   0.1	
   7	
   Am-­‐Acetate	
   0.13	
   NONE	
   0	
  
90	
   Mg-­‐Sulfate	
   1.12	
   NONE	
   0	
   0	
   NONE	
   0	
   Ethglycol	
   0.56	
  
91	
   Na-­‐K-­‐Phosphate	
   2.5	
   Na-­‐Citrate	
   0.1	
   5.5	
   K-­‐Chloride	
   0.23	
   NONE	
   0	
  
92	
   PEGMME550	
   36.99	
   Na-­‐Acetate	
   0.1	
   4.5	
   Na-­‐Chloride	
   0.29	
   NONE	
   0	
  
93	
   PEG4k	
   30.96	
   Na-­‐Acetate	
   0.1	
   4.5	
   Li-­‐Sulfate	
   0.11	
   NONE	
   0	
  
94	
   MPD	
   41.39	
   NONE	
   0	
   0	
   Ca-­‐Chloride	
   0.08	
   NONE	
   0	
  
95	
   PEG1.5k	
   40.21	
   BICINE	
   0.1	
   8.5	
   Na-­‐K-­‐Tartrate	
   0.07	
   NONE	
   0	
  
96	
   Isopropanol	
   14.3	
   Na-­‐Citrate	
   0.1	
   5.5	
   K-­‐Nitrate	
   0.13	
   PEGDME250	
   0.49	
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Stochastic 22: 

	
  
	
  	
   	
  	
   	
  	
   	
  	
  

Stock	
  
Conc	
  (M)	
  

	
   	
   	
   	
  

	
  
Precipitant	
   %	
   Buffer	
   Conc	
  (M)	
   Salt	
  	
  

Conc	
  
(M)	
   Additive	
   %	
  

1	
   Na-­‐Malate	
   2.07	
   HEPES	
   0.1	
   7.5	
   NONE	
   0	
   NONE	
   0	
  
2	
   PEG6k	
   18.41	
   MOPS	
   0.1	
   6.5	
   Ca-­‐Acetate	
   0.08	
   PEG400	
   3.19	
  
3	
   Na-­‐Malonate	
   1.61	
   Tris-­‐Chloride	
   0.1	
   8	
   Am-­‐Citrate	
   0.06	
   NONE	
   0	
  
4	
   MPD	
   41.63	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Na-­‐Acetate	
   0.04	
   NONE	
   0	
  
5	
   PEG1.5k	
   26.8	
   Na-­‐Cacod	
   0.1	
   7	
   Zn-­‐Chloride	
   0.06	
   LDAO	
   0.14	
  
6	
   Na-­‐Malate	
   1.52	
   BisTris	
   0.1	
   6.5	
   Na-­‐K-­‐Phosphate	
   0.29	
   BOG	
   0.07	
  
7	
   Mg-­‐Sulfate	
   1.56	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Na-­‐Sulfate	
   0.12	
   NONE	
   0	
  
8	
   PEG6k	
   21.94	
   Tris-­‐Chloride	
   0.1	
   8	
   Na-­‐Chloride	
   0.06	
   NONE	
   0	
  
9	
   PEG4k	
   29.83	
   BICINE	
   0.1	
   8.5	
   Na-­‐Citrate	
   0.05	
   NONE	
   0	
  
10	
   Ethanol	
   14.96	
   MES	
   0.1	
   6	
   Mg-­‐Formate	
   0.12	
   NONE	
   0	
  
11	
   PEG4k	
   21.37	
   BICINE	
   0.1	
   8.5	
   K-­‐Chloride	
   0.09	
   NONE	
   0	
  
12	
   Na-­‐Citrate	
   0.86	
   BICINE	
   0.1	
   9	
   NONE	
   0	
   NONE	
   0	
  
13	
   PEG400	
   54.34	
   Na-­‐Cacod	
   0.1	
   7	
   Li-­‐Sulfate	
   0.09	
   NONE	
   0	
  
14	
   Isopropanol	
   10.38	
   NONE	
   0	
   0	
   Na-­‐Bromide	
   0.23	
   NONE	
   0	
  
15	
   Na-­‐Malate	
   1.64	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
16	
   Na-­‐Acetate	
   2.59	
   BisTris	
   0.1	
   6	
   NONE	
   0	
   PEGMME350	
   1.62	
  
17	
   PEGMME2k	
   39.74	
   CHES	
   0.1	
   9	
   Ca-­‐Chloride	
   0.09	
   NONE	
   0	
  
18	
   Isopropanol	
   13.86	
   Na-­‐Acetate	
   0.1	
   5.5	
   K-­‐Chloride	
   0.13	
   NONE	
   0	
  
19	
   PEG3350	
   17.06	
   Na-­‐Acetate	
   0.1	
   5.5	
   K-­‐Chloride	
   0.23	
   NONE	
   0	
  
20	
   Mg-­‐Sulfate	
   1.58	
   HEPES	
   0.1	
   8	
   Mg-­‐Chloride	
   0.08	
   NONE	
   0	
  
21	
   PEGMME2k	
   25.33	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Na-­‐Chloride	
   0.23	
   EDTA	
   7.24	
  
22	
   Na-­‐Formate	
   2.54	
   NONE	
   0	
   0	
   Na-­‐Citrate	
   0.05	
   NONE	
   0	
  
23	
   PEGMME550	
   33.78	
   MOPS	
   0.1	
   6.5	
   Mg-­‐Sulfate	
   0.19	
   NONE	
   0	
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24	
   PEG400	
   31.99	
   BICINE	
   0.1	
   9.5	
   Na-­‐Sulfate	
   0.28	
   DMSO	
   1.28	
  
 

25	
   Na-­‐Acetate	
   1.83	
   MOPS	
   0.1	
   7	
   Ca-­‐Acetate	
   0.07	
   NONE	
   0	
  
26	
   Na-­‐Malonate	
   2.67	
   MES	
   0.1	
   6.5	
   Na-­‐K-­‐Tartrate	
   0.1	
   NONE	
   0	
  
27	
   PEGMME5k	
   18.95	
   Na-­‐Cacod	
   0.1	
   6.5	
   Na-­‐Bromide	
   0.27	
   NONE	
   0	
  
28	
   Na-­‐Citrate	
   0.95	
   HEPES	
   0.1	
   8	
   Na-­‐Bromide	
   0.18	
   NONE	
   0	
  
29	
   PEG8k	
   20.8	
   BICINE	
   0.1	
   9	
   Am-­‐Acetate	
   0.08	
   NONE	
   0	
  
30	
   PEG3350	
   20.82	
   Na-­‐Cacod	
   0.1	
   7	
   Na-­‐Acetate	
   0.1	
   NONE	
   0	
  
31	
   Na-­‐Formate	
   2.79	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
32	
   MPD	
   36.59	
   BisTris	
   0.1	
   6	
   Am-­‐Sulfate	
   0.26	
   Ethglycol	
   1.74	
  
33	
   PEG400	
   34.58	
   Tris-­‐Chloride	
   0.1	
   8	
   Na-­‐K-­‐Tartrate	
   0.13	
   NONE	
   0	
  
34	
   Na-­‐Formate	
   2.7	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Am-­‐Sulfate	
   0.28	
   Dioxane	
   2.65	
  
35	
   Isopropanol	
   8.67	
   Na-­‐Cacod	
   0.1	
   7	
   NONE	
   0	
   Hexanediol	
   2.92	
  
36	
   Na-­‐Acetate	
   1.8	
   MOPS	
   0.1	
   6.5	
   Li-­‐Sulfate	
   0.07	
   NONE	
   0	
  
37	
   Na-­‐Malonate	
   2.31	
   Na-­‐Acetate	
   0.1	
   5.5	
   NONE	
   0	
   BME	
   7.83	
  
38	
   PEG4k	
   23.59	
   CHES	
   0.1	
   9	
   NONE	
   0	
   NONE	
   0	
  
39	
   PEG3350	
   30.06	
   Na-­‐Cacod	
   0.1	
   7	
   NONE	
   0	
   NONE	
   0	
  
40	
   PEGMME550	
   37.95	
   Na-­‐Citrate	
   0.1	
   5	
   Na-­‐Citrate	
   0.1	
   PEG400	
   2.3	
  
41	
   PEG4k	
   26.55	
   Na-­‐Citrate	
   0.1	
   5	
   Am-­‐Sulfate	
   0.09	
   BOG	
   0.08	
  
42	
   PEG10k	
   17.9	
   CHES	
   0.1	
   9.5	
   Na-­‐K-­‐Tartrate	
   0.07	
   PEGDME250	
   3.18	
  
43	
   PEG10k	
   18.25	
   Na-­‐Acetate	
   0.1	
   5	
   Na-­‐Bromide	
   0.21	
   LDAO	
   0.2	
  
44	
   PEGMME550	
   30.86	
   Na-­‐Cacod	
   0.1	
   7	
   Am-­‐Sulfate	
   0.25	
   NONE	
   0	
  
45	
   Na-­‐Malate	
   2.25	
   Na-­‐Acetate	
   0.1	
   4.5	
   K-­‐Nitrate	
   0.08	
   NONE	
   0	
  
46	
   PEGMME2k	
   30.4	
   NONE	
   0	
   0	
   Am-­‐Phosphate	
   0.13	
   NONE	
   0	
  
47	
   PEG1.5k	
   19.94	
   Tris-­‐Chloride	
   0.1	
   8	
   Na-­‐K-­‐Phosphate	
   0.06	
   NONE	
   0	
  
48	
   Mg-­‐Sulfate	
   1.01	
   CHES	
   0.1	
   9	
   Na-­‐Bromide	
   0.1	
   NONE	
   0	
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49	
   MPD	
   52.88	
   BisTris	
   0.1	
   6	
   Na-­‐Acetate	
   0.11	
   NONE	
   0	
  
50	
   Ethanol	
   12.03	
   BisTris	
   0.1	
   6	
   Na-­‐Chloride	
   0.13	
   CHAPS	
   0.12	
  
51	
   Na-­‐Citrate	
   0.61	
   Na-­‐Citrate	
   0.1	
   4.5	
   Na-­‐K-­‐Phosphate	
   0.14	
   PEGMME350	
   2.37	
  
52	
   Am-­‐Phosphate	
   1.92	
   MES	
   0.1	
   6.5	
   Am-­‐Acetate	
   0.04	
   NONE	
   0	
  
53	
   PEG10k	
   18.76	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Na-­‐K-­‐Phosphate	
   0.06	
   BOG	
   0.03	
  
54	
   PEGMME5k	
   22.06	
   MES	
   0.1	
   6	
   Am-­‐Phosphate	
   0.28	
   NONE	
   0	
  
55	
   PEG6k	
   15.14	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
56	
   Na-­‐K-­‐Phosphate	
   2.5	
   BisTris	
   0.1	
   6	
   NONE	
   0	
   NONE	
   0	
  
57	
   PEGMME550	
   27.32	
   BICINE	
   0.1	
   9	
   Na-­‐K-­‐Tartrate	
   0.14	
   NONE	
   0	
  
58	
   PEG400	
   29.87	
   Tris-­‐Chloride	
   0.1	
   8.5	
   Zn-­‐Acetate	
   0.08	
   NONE	
   0	
  
59	
   Na-­‐K-­‐Phosphate	
   2.61	
   NONE	
   0	
   0	
   NONE	
   0	
   NONE	
   0	
  
60	
   PEGMME2k	
   23.29	
   Na-­‐Citrate	
   0.1	
   4.5	
   K-­‐Nitrate	
   0.17	
   NONE	
   0	
  
61	
   Na-­‐K-­‐Phosphate	
   2.19	
   Na-­‐Citrate	
   0.1	
   5	
   NONE	
   0	
   NONE	
   0	
  
62	
   PEG1.5k	
   18.45	
   BisTris	
   0.1	
   6	
   Li-­‐Chloride	
   0.23	
   NONE	
   0	
  
63	
   PEG1.5k	
   31.89	
   Tris-­‐Chloride	
   0.1	
   8.5	
   NONE	
   0	
   Hexanediol	
   1.89	
  
64	
   PEG4k	
   17.92	
   Na-­‐Cacod	
   0.1	
   7	
   Li-­‐Chloride	
   0.23	
   Butanediol	
   3.63	
  
65	
   Na-­‐Acetate	
   1.88	
   Na-­‐Citrate	
   0.1	
   5	
   NONE	
   0	
   NONE	
   0	
  
66	
   PEG1.5k	
   30.85	
   MOPS	
   0.1	
   6.5	
   Am-­‐Phosphate	
   0.15	
   PEGDME250	
   2.03	
  
67	
   PEG3350	
   17.71	
   NONE	
   0	
   0	
   Na-­‐Chloride	
   0.15	
   NONE	
   0	
  
68	
   Na-­‐Chloride	
   2.16	
   NONE	
   0	
   0	
   Mg-­‐Chloride	
   0.18	
   NONE	
   0	
  
69	
   PEG10k	
   20.22	
   BICINE	
   0.1	
   8.5	
   NONE	
   0	
   Butanediol	
   2.84	
  
70	
   Isopropanol	
   6.34	
   BisTris	
   0.1	
   6	
   Na-­‐Bromide	
   0.21	
   NONE	
   0	
  
71	
   Am-­‐Sulfate	
   1.44	
   NONE	
   0	
   0	
   Am-­‐Citrate	
   0.05	
   NONE	
   0	
  
72	
   Am-­‐Sulfate	
   2.32	
   CHES	
   0.1	
   9.5	
   NONE	
   0	
   BME	
   5.97	
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73	
   PEG10k	
   9.74	
   Na-­‐Acetate	
   0.1	
   5.5	
   Am-­‐Tartrate	
   0.15	
   Hexanediol	
   1.74	
  
74	
   Na-­‐Citrate	
   0.77	
   Na-­‐Citrate	
   0.1	
   5.5	
   Na-­‐Citrate	
   0.11	
   Glycerol	
   1.4	
  
75	
   Na-­‐Formate	
   1.86	
   Na-­‐Acetate	
   0.1	
   5.5	
   Na-­‐K-­‐Phosphate	
   0.21	
   NONE	
   0	
  
76	
   Na-­‐Acetate	
   1.31	
   BICINE	
   0.1	
   8.5	
   NONE	
   0	
   NONE	
   0	
  
77	
   PEG10k	
   20.42	
   NONE	
   0	
   0	
   Na-­‐Chloride	
   0.06	
   NONE	
   0	
  
78	
   Isopropanol	
   16.37	
   Na-­‐Citrate	
   0.1	
   5	
   Am-­‐Phosphate	
   0.14	
   NONE	
   0	
  
79	
   PEG8k	
   13.49	
   Na-­‐Acetate	
   0.1	
   5.5	
   Li-­‐Sulfate	
   0.14	
   NONE	
   0	
  
80	
   Isopropanol	
   10.27	
   Na-­‐Acetate	
   0.1	
   5.5	
   Mg-­‐Formate	
   0.07	
   NONE	
   0	
  
81	
   Na-­‐Formate	
   2.32	
   CHES	
   0.1	
   9.5	
   NONE	
   0	
   NONE	
   0	
  
82	
   PEG4k	
   14.01	
   Tris-­‐Chloride	
   0.1	
   7.5	
   Na-­‐Sulfate	
   0.16	
   NONE	
   0	
  
83	
   Am-­‐Phosphate	
   1.87	
   Na-­‐Acetate	
   0.1	
   4.5	
   Am-­‐Citrate	
   0.11	
   NONE	
   0	
  
84	
   PEG400	
   55.67	
   Na-­‐Acetate	
   0.1	
   5	
   Am-­‐Acetate	
   0.03	
   NONE	
   0	
  
85	
   Isopropanol	
   9.44	
   Na-­‐Citrate	
   0.1	
   5	
   Mg-­‐Chloride	
   0.12	
   NONE	
   0	
  
86	
   Na-­‐Tartrate	
   1.05	
   BisTris	
   0.1	
   6	
   NONE	
   0	
   NONE	
   0	
  
87	
   Na-­‐Malonate	
   2.41	
   BICINE	
   0.1	
   8.5	
   Na-­‐K-­‐Tartrate	
   0.1	
   NONE	
   0	
  
88	
   PEG6k	
   25	
   BICINE	
   0.1	
   8.5	
   Na-­‐Chloride	
   0.09	
   NONE	
   0	
  
89	
   PEGMME2k	
   24.15	
   Na-­‐Acetate	
   0.1	
   5.5	
   NONE	
   0	
   NONE	
   0	
  
90	
   Na-­‐Acetate	
   2.54	
   BICINE	
   0.1	
   8.5	
   NONE	
   0	
   NONE	
   0	
  
91	
   PEGMME2k	
   29.45	
   Na-­‐Acetate	
   0.1	
   4.5	
   Am-­‐Phosphate	
   0.22	
   CHAPS	
   0.16	
  
92	
   PEG400	
   53.79	
   Na-­‐Citrate	
   0.1	
   4.5	
   Li-­‐Chloride	
   0.15	
   NONE	
   0	
  
93	
   Isopropanol	
   9.81	
   Na-­‐Citrate	
   0.1	
   5.5	
   NONE	
   0	
   NONE	
   0	
  
94	
   Na-­‐Formate	
   2.32	
   HEPES	
   0.1	
   7.5	
   Ca-­‐Chloride	
   0.03	
   NONE	
   0	
  
95	
   PEG4k	
   15.8	
   NONE	
   0	
   0	
   Zn-­‐Chloride	
   0.07	
   NONE	
   0	
  
96	
   Mg-­‐Sulfate	
   1.09	
   MOPS	
   0.1	
   7	
   Li-­‐Sulfate	
   0.23	
   NONE	
   0	
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JCSG and JMAC: 

These screens were purchased from Molecular Dimensions and were used as detailed in 

the manufactures guidelines. 

 

ABAD Opt 1 Screen: 

This screen was set up based on Stochastic screen 19, using  Sodium Citrate 

(unbuffered) as the precipitant, with varying buffers of sodium citrate pH 4.5/ 5/ 5.5, 

and Sodium Acetate pH 4.6/ 5. The salts used in this screen were: Magnesium Acetate, 

Magnesium Formate and Magnesium Chloride. No additives were added to this screen. 

 

ABAD Opt 2 Screen: 

This screen was optimized from StoPEGS 3, and so is set up partially under the same 

conditions with slight modifications to the use of additive BOG (2%). The main 

condition used to generate this screen was 24.01% PEG 8000, 0.1 M Bicine (pH 8.5), 

0.26 M Sodium Potassium Phosphate. 

 

ABAD Opt 3 Screen: 

This screen was set up to optimize conitions taken from Stochastic screen 22. The main 

conditions used were Buffer: BisTris (1M, pH 6/7), PEGMME 2000/5000 was the 

altered precipitant and salts used were Lithium Sulphate, Magnesium Sulphate and 

Magnesium Acetate 

No additives were added to this screen. 
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The consequences of mitochondrial amyloid β-peptide in Alzheimer’s
disease
Kirsty E. A. MUIRHEAD*1,2, Eva BORGER*2, Laura AITKEN*, Stuart J. CONWAY† and Frank J. GUNN-MOORE*1

*School of Biology, Bute Medical Building, University of St Andrews, Westburn Lane, St Andrews, Fife KY16 9TS, U.K., and †Department of Chemistry, Chemistry Research Laboratory,
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The Aβ (amyloid-β peptide) has long been associated with
Alzheimer’s disease, originally in the form of extracellular
plaques. However, in the present paper we review the growing
evidence for the role of soluble intracellular Aβ in the disease
progression, with particular reference to Aβ found within the
mitochondria. Once inside the cell, Aβ is able to interact with
a number of targets, including the mitochondrial proteins ABAD
(amyloid-binding alcohol dehydrogenase) and CypD (cyclophilin
D), which is a component of the mitochondrial permeability
transition pore. Interference with the normal functions of these

proteins results in disruption of cell homoeostasis and ultimately
cell death. The present review explores the possible mechanisms
by which cell death occurs, considering the evidence presented
on a molecular, cellular and in vivo level.

Key words: Alzheimer’s disease, amyloid-binding alcohol
dehydrogenase (ABAD), cyclophilin D (CypD), intracellular
amyloid-β peptide (Aβ), mitochondrial dysfunction, mitochon-
drial permeability transition pore.

INTRODUCTION

AD (Alzheimer’s disease) is the most common neurodegenerative
disease of the elderly. AD is clinically characterized by
progressive loss of declarative memory, which in turn impairs
functions such as memory, language, perceptual skills, attention,
orientation and problem-solving abilities. The loss of these brain
functions eventually results in the patient’s complete social
dependence and inevitable death. The main feature of the disease
progression is extensive death of neurons, starting in the entorhinal
cortex and hippocampus, before proceeding to other parts of
the brain cortex and subcortical grey matter. It is in these brain
regions where extracellular amyloid plaques, mainly consisting of
Aβ (amyloid-β peptide), and intracellular neurofibrillary tangles,
caused by aggregation of the hyper-phosphorylated microtubule-
associated protein tau, are found [1]. Since the first description of
the disease by Alois Alzheimer in the early 20th century, much
work has been done to identify the molecular basis of the disease
[2,3]. It is now clear that AD can either occur sporadically or
be an inherited disease caused by mutations in genes encoding
proteins involved in Aβ turnover. Sporadic AD occurs later in
life, generally after the age of 65, whereas familial AD tends to
have an earlier age of onset.

Aβ is produced from the transmembrane APP (amyloid
precursor protein) by the sequential actions of the aspartate

proteases β- and γ -secretase [4]. β-Secretase sheds the
N-terminal domain of APP, leaving a 99-residue fragment in
the membrane. This fragment is further cleaved by γ -secretase at
one of several sites within the transmembrane region to produce
the Aβ peptide and the AICD (APP intracellular domain), which
is released into the cytosol. The exact location of the γ -secretase
cleavage determines the final size of the Aβ peptide, which is
most commonly either 40 or 42 residues long, producing Aβ-(1–
40) or Aβ-(1–42), respectively. An alternative non-amyloidogenic
cleavage pathway exists in which α-secretase cleaves inside the
Aβ region of APP thus preventing production of the Aβ peptide
[4]. The mutations observed in familial (hereditary) AD generally
occur in one of the components of the amyloidogenic pathway
(i.e. APP, β-secretase or γ -secretase) and lead to the increased
production of Aβ, especially the more aggregation prone Aβ-(1–
42) [5,6]. In contrast, tau-pathology results in the formation of
intracellular neurofibrillary tangles and is considered by some to
be a process associated with the later stages of AD caused directly
or indirectly by the amyloid pathology [7,8].

A number of risk factors for the development of sporadic
late-onset AD have been identified. These include carrying the
ε4 allele of the ApoE (apolipoprotein E) gene [9] (recently
reviewed in [10]), mutations in the gene encoding the membrane
sorting receptor sortilin-1 [11,12] and increased levels of the
non-proteinogenic amino acid homocysteine [13,14]. It has been

Abbreviations used: ABAD, amyloid-binding alcohol dehydrogenase; ABAD-DP, ABAD decoy peptide; Aβ, amyloid-β peptide; AD, Alzheimer’s disease;
ANT, adenine nucleotide translocase; ApoE, apolipoprotein E; APP, amyloid precursor protein; APPm, mutant APP; BACE1, β-site APP-cleaving enzyme
1; CCS, Cu2+ chaperone of SOD1; Cdk5, cyclin-dependent kinase 5; CsA, cyclosporin A; CypA, cyclophilin A; CypD, cyclophilin D; Ep-I, endophilin
I; ER, endoplasmic reticulum; GFP, green fluorescent protein; HAD, 3-hydroxyacyl-CoA dehydrogenase; HADH II, human type II hydroxyacyl-CoA
dehydrogenase; HNE, 4-hydroxynonenal; Hsp60, heat-shock protein 60; HtrA2, HtrA serine peptidase 2; IDE, insulin-degrading enzyme; JNK, c-jun
N-terminal kinase; LDH, lactate dehydrogenase; MAM, mitochondria-associated membrane; MDA, malondialdehyde; MHBD, 2-methyl-3-hydroxybutyryl-
CoA dehydrogenase; mPTP, mitochondrial permeability transition pore; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NF-κB, nuclear factor-
κB; PD, Parkinson’s disease; PDK, phosophoinositide dependent kinase; Pen-2, presenilin-enhancer 2; PI3K, phosphoinositide 3-kinase; PreP, prolyl
endopeptidase; Prx-II, peroxiredoxin II; ROS, reactive oxygen species; SNP, single nucleotide polymorphism; SOD, superoxide dismutase; SPR, surface
plasmon resonance; Tg-APPm/ABAD, transgenic expression of both APPm and ABAD; TOM, translocase of outer mitochondrial membrane; TRX,
thioredoxin I; VDAC, voltage-dependent anion channel.
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Figure 1 APP and Aβ inside the cell

During protein synthesis, the APP is targeted to the ER and transported to the plasma membrane (PM) by vesicular transport through the Golgi apparatus (1). Amyloidogenic processing of APP
by the β- and γ -secretases at the plasma membrane produces the Aβ peptide. This cleavage has also been found to take place prior to exocytosis in the trans-Golgi network. Aβ can aggregate
extracellularly forming extracellular plaques, which are one of the hallmarks of AD (2). APP undergoes endocytosis and is normally recycled to the plasma membrane via recycling endosomes.
Aβ peptides can also enter the cell by endocytosis, but can also be produced from APP by β- and γ -secretase cleavage in endosomes. Accumulation of Aβ in endosomes, multivesicular bodies
and lysosomes disturbs the protein degradation machinery (3). Aβ can also compromise the integrity of endosomes and lysosomes and can be found in the cytosol, probably due to leakage out
of these compartments, disturbing cell signalling and causing oxidative stress by interaction with cytosolic proteins (4). Owing to its chimaeric targeting sequence, APP can also be transported to
mitochondria (mito) where it interacts with TOM and TIM (translocase of the inner membrane) proteins, disturbing mitochondrial protein import (5). Aβ can be imported into the mitochondria via
the mitochondrial import machinery, where it has been found associated with the inner mitochondrial membrane, disrupting processes of mitochondrial respiration and causing ROS (6). At the inner
mitochondrial membrane, Aβ can interact with CypD, which is involved in the formation of the mPTP (7). In the mitochondrial matrix, Aβ has been found to interact with the ABAD inhibiting its
actions. Mitochondrial peptidases have been found to be able to degrade Aβ in the mitochondrial matrix and possibly the intermembrane space (8).

suggested that these factors are indirectly associated with an
increased production of Aβ in neuronal cells. Very recently two
new genes, CLU [clusterin, also known as ApoJ (apolipoprotein
J)] and PICALM (phosphatidylinositol-binding clathrin assembly
lymphoid-myeloid leukaemia gene), have been linked to AD [15].
However, the detailed mechanisms and intracellular processes
resulting in the development of sporadic AD remain unclear.

There have been many excellent reviews of Aβ production and
the different forms and structures of this unusual peptide [4,16–
18]. Most of these reports have predominately been concerned
with extracellular production and accumulation of Aβ and with
how understanding this process is important in the prevention of
plaque formation as a potential therapy. In the present paper we
will discuss recent findings and implications of the accumulation
of Aβ inside cells. Recently it has been realized that the
presence of extracellular amyloid plaques is not a good indicator
of disease state and that increased levels of intracellular Aβ,
predominantly Aβ-(1–42), more accurately reflects the stage of
neurodegeneration [6,19]. As a result of this finding, a hypothesis
describing a ‘mitochondrial spiral’ of neurodegeneration in AD
has been proposed [20] and subsequently much experimental
work has substantiated the idea that mitochondria play a crucial
part in the disease progression [21,22]. The importance of this
new approach has been highlighted by the limited success of
vaccination trials against Aβ [23]. Although they have been shown
to clear extracellular Aβ, by their nature these approaches do not
clear the intracellular Aβ.

The present article summarizes the current understanding of
the intracellular location of Aβ and reviews the evidence for

its existence in mitochondria. We discuss how intracellular Aβ
might exert its neurotoxic function, with a focus on its known
intracellular binding partners. In particular, we will present
recent evidence for the interaction of Aβ with two mitochondrial
proteins, ABAD (amyloid-binding alcohol dehydrogenase) and
CypD (cyclophilin D), both of which have been implicated in
AD. The structure and function of ABAD and the consequences
of its interaction with Aβ are discussed. Finally, we address how
characterizing the interaction of Aβ with ABAD and CypD has
highlighted potential therapeutic targets for the treatment of AD.

SOURCE OF INTRACELLULAR Aβ

The presence of APP and Aβ peptides within neuronal and
non-neuronal cells has been reported by numerous researchers
(reviewed in [19], see Figure 1). Aβ immunoreactivity has been
located to the secretory pathways and cytosol of both neuronal and
non-neuronal cells [24,25], the outer membrane of multivesicular
bodies of cultured neurons [26,27], endosomes and lysosomes
[28,29] and the mitochondria of neuronal cell cultures and in both
the murine and human brain [30,31]. In all cases, the most studied
sites of Aβ production are within membranes, such as in the
plasma membrane [2,32], the secretory pathway [33] and
in the endosomal compartment [34,35], where APP and all
components of the cleavage machinery have been found.
However, due to the orientation of APP and the secretases, it
has been more difficult to explain the presence of Aβ peptides
in the cytosol. Aβ can integrate into lipid membranes at high
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concentrations [36], possibly leading to the observed loss of the
integrity of endosomes and lysosomes in the cell; subsequently
Aβ can then leak out of these compartments [24]. This possibility
is substantiated by the known membrane-disordering capabilities
of Aβ [37,38]. However, the mechanism that regulates the traf-
fic of Aβ in and through membranes, as well as its subsequent
significance for AD, still remains obscure.

SPECIES OF INTRACELLULAR Aβ

Studies on human brains revealed that the majority of intracellular
Aβ comprises the 42-residue peptide Aβ-(1–42) [39,40].
Immunohistochemical studies have shown that the levels of
intracellular immunoreactivity against Aβ-(1–42) are reduced in
more advanced stages of AD when plaque burden and cognitive
dysfunction become more prominent, pointing towards a role for
Aβ-(1–42) in the early stages of the disease [39]. Accordingly,
comparison of the effects of Aβ-(1–42) and Aβ-(1–40) in several
studies has revealed that the activation of intracellular signalling
events and ROS (reactive oxygen species) production is more
pronounced with Aβ-(1–42) or when APPm (mutant APP), which
produces higher levels of Aβ-(1–42), is expressed [41,42].

It appears that the detectable form of intracellular Aβ reflects
the state of neuropathology. In post-mortem human AD brains,
intracellular Aβ has mainly been described as aggregates in the
cell soma and perinuclear region, which do not stain with Congo
Red or other β-sheet-selective stains [39]. Zhang et al. [41] have
tested the toxicity of Aβ-(1–42) in different aggregation states
when microinjected into the cytosol. They found that the non-
fibrillized (monomers, dimers and oligomers) and fibrillized Aβ-
(1–42) are both toxic to neurons, whereas Aβ-(1–40) fibrils or
non-fibrillized peptides do not cause neuronal cell death. Again,
this result suggests that Aβ monomers and oligomers can be
neurotoxic before intracellular fibrils are formed.

Park et al. [43] have shown that there is accumulation of GFP
(green fluorescent protein)-tagged Aβ and the APP-C99 fragment
in undefined perinuclear aggregates in both H4 neuroglioma cells
and HEK (human embryonic kidney)-293 cells. They correlated
the formation of these aggregates with the recruitment and
attenuation of the proteosome and with apoptotic cell death. These
findings agree with the results of a study by Bückig et al. [25],
who observed perinuclear accumulation of Aβ which co-localized
with ubiquitin in CHO (Chinese-hamster ovary) K1 cells. Yoon
et al. [44] not only detected GFP-tagged Aβ in perinuclear
aggregates following transfection into H4 neuroglioma cells, but
also found SOD1 (superoxide dismutase 1) associated with the
aggregates, which they reported to interact selectively with Aβ.
Taken together, these results suggest a defined pathological
role for monomers or low-number oligomers of Aβ inside the
cell, whereas the observed perinuclear Aβ aggregates might be
indicative of later stages of neurotoxicity.

MITOCHONDRIAL Aβ

Mitochondrial Aβ was first described in detail by Lustbader
et al. in 2004 [45]. The study also confirmed the interaction of
Aβ with ABAD and showed, by immunoelectron microscopy,
that the proteins co-localize inside mitochondria from the human
AD brain. Subsequently, Caspersen et al. [46] also confirmed
that Aβ accumulates in the mitochondria of APPm-expressing
transgenic mice and in brains from AD patients, but to a lesser
extent in non-transgenic mice and brains from non-demented
subjects. Using immunoelectron microscopy and Western blot
analysis, they detected Aβ-(1–42) and Aβ-(1–40) in AD-affected
brain mitochondria co-localizing with the mitochondrial matrix

chaperone Hsp60 (heat shock protein 60), although Aβ-(1–42)
appeared to be the more abundant form [46]. Although it was
shown that Aβ peptides were in close proximity to Hsp60
by immunoelectron microscopy, the protease-protection assay
on whole mitochondria used in the study did not discriminate
between the matrix compartment and the intermembrane space or
the inner mitochondrial membrane [46]. Hence, the possibility
of an association with the inner mitochondrial membrane,
which has been found by other researchers using digitonin-
treated mitochondrial preparations [47] or mitoplasts produced
by osmotic shock [48], could not be ruled out. However, an
inner mitochondrial membrane location seems to be incompatible
with the interaction of Aβ with ABAD, which is located in the
mitochondrial matrix [45]. Thus it is currently unclear whether
Aβ accumulates inside the mitochondrial matrix in the AD-
affected brain or whether it is found exclusively in the membrane
compartment.

A possible reason why Aβ has not been detected in
the mitochondrial matrix might be its rapid degradation by
mitochondrial proteases, such as PreP (prolyl endopeptidase).
PreP is a thiol-sensitive metalloprotease that resides in the
mitochondrial matrix fraction and is able to rapidly degrade
different forms of Aβ [49]. Its sensitivity to oxidative inactivation
has been demonstrated in vitro [49], but so far deregulation or
dysfunction of PreP in AD have not been reported.

Another Aβ-degrading enzyme, IDE (insulin-degrading
enzyme), has been genetically linked to AD since 1998 [50,51].
Like PreP, IDE is an intra- and extracellular metalloprotease
belonging to the pitrilysin family of peptidases [49]. Inside
cells, IDE is located in the cytosol and the mitochondria, where
it degrades mitochondrial-targeting sequences cleaved by the
mitochondrial processing peptidase [52]. The relevance of IDE for
AD was confirmed by the finding that IDE and Aβ can interact in
vitro to form complexes that are stable to denaturing conditions, in
both rat and human AD-affected brains [53]. Moreover, nitrosative
stress was recently reported to compromise its enzyme activity in
a non-competitive manner by S-nitrosylation of essential cysteine
residues [54]. This post-translational modification has emerged
as an important factor in neurodegenerative processes [55,56]. It
is probable that IDE is able to degrade Aβ inside mitochondria
and that it is affected by oxidative and nitrosative stress brought
about by higher levels of Aβ during AD pathology. The possible
compensatory increase of IDE protein levels in AD-affected brain
regions seen in a transgenic mouse model [50] supports these
ideas. The up-regulation of this protein, which was only observed
after the occurrence of plaque pathology in an AD mouse model,
and an up-regulation of the peptidase neprilysin [50], suggests
that its contribution to very early events in disease pathogenesis is
not significant. Nevertheless, mis-sorting or malfunction of IDE
have to be taken into account as potential risk factors for the
progression of AD [57,58] or other neurodegenerative diseases.
Further investigation into the control of sorting and function of
intracellular IDE will shed light on this aspect of AD and elucidate
at which stage IDE is involved in the disease progression. In
summary, it is possible that Aβ in the mitochondrial matrix has
not been detected due to its rapid degradation.

HOW IS Aβ TRANSPORTED/PRODUCED INSIDE MITOCHONDRIA?

The origin of mitochondrial Aβ is still a matter of debate. There
is experimental evidence for both the local production and/or the
import of Aβ from the cytosol as possible explanations for its
occurrence.
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Localized Aβ synthesis

APP is targeted to mitochondria in cell-culture systems and
in human brain due to its chimaeric N-terminal targeting
sequence which causes the peptide to translocate to the ER
(endoplasmic reticulum) and mitochondria [30,47]. In earlier
studies, Anandatheerthavarada et al. [59] demonstrated that
sorting of other proteins with chimaeric targeting sequences,
to either the ER or mitochondria, can be regulated by
phosphorylation, but no such phosphorylation has been described
for the N-terminus of APP. Co-staining, immunoblotting and
immunoprecipitation experiments only detected APP in a
transmembrane-arrested form, in contact with the mitochondrial
translocases of the outer and inner membrane [30]; APP was
found in an N-in C-out orientation spanning the mitochondrial
intermembrane space with a C-terminal 73 kDa fragment facing
the cytosol, and the transport arrest was associated with
mitochondrial dysfunction [47]. The authors therefore proposed
that the acidic domain, spanning amino acids 220–290 of APP-
695, would hinder transfer [30]. A correlation between the amount
of membrane-arrested APP and the presence of the ApoE ε4 allele
in AD patients has been observed [47].

The components of the γ -secretase complex [nicastrin,
presenilin, APH-1 (anterior pharynx-defective homologue 1) and
PEN-2 (presenilin-enhancer 2 homologue)] have been detected
in mitochondria [60]. Dual targeting of nicastrin was proposed,
based on its amino acid sequence, and its targeting to mitochondria
was demonstrated by immunoelectron microscopy. The other
components of the γ -secretase complex were also shown to
be present in mitochondria by electron microscopy [60]. In
summary, the components necessary for the production of Aβ in
mitochondria, except the β-secretase, have been detected locally.
However, it has also been reported that the topology of APP
detected in mitochondria, with the Aβ region located in the
intermembrane space [30], would not be suitable for cleavage
by the γ -secretase complex, which is an intramembrane cleaving
protease [32,61].

Interestingly, another enzyme, HtrA2 (HtrA serine peptidase 2),
has been found to act on APP in the mitochondrial intermembrane
space and sheds the N-terminal portion of the protein. HtrA2
is a serine protease which was known to interact with Aβ and
APP-C100 fragments in cell cultures [62]. This protease is able
to cleave APP at amino acid 534 and produces a 161-residue
long C-terminal fragment, which includes the Aβ region of APP,
which is released into the cytosol of APP-transfected cells [63].
The significance of this cleavage for APP metabolism and Aβ
processing is not yet clear; it might represent a mechanism to
clear membrane-arrested APP from the mitochondria, as indicated
by the authors [63]. However, despite this C-terminal domain
cleavage, the N-terminal part of APP, with the acidic domain,
would still be arrested in the inner mitochondrial membrane,
disturbing mitochondrial protein transport and metabolism [30].
The role of the two fragments and their impact on mitochondrial
and cellular metabolism still remains to be elucidated.

Given the topological problems of Aβ production in the
mitochondrial membrane, one possible mechanism by which
it could accumulate is via cleavage in MAMs (mitochondria-
associated membranes). These membrane compartments
represent close contact points between the ER and mitochondria
[64], where lipids and membrane proteins are thought to be
exchanged directly between the organelles [65]. Presenilin 1 and
2 have been detected in this compartment [66], so it is possible
that APP can be cleaved while residing in the ER membrane
and that Aβ would subsequently be transported into mitochondria
[48]. Another possibility is the transfer of APP or β-site-

cleaved APP from the ER to the mitochondrial outer membrane,
alongside lipids that are also transferred through MAMs [65].
The APP could subsequently be cleaved by the γ -secretase
in the mitochondrial membrane [60,66], releasing Aβ on the
mitochondrial side. The mitochondrial proteins DLP1 (dynamin-
like protein, also known as Drp1) and Mfn1/2 (mitofusin 1/2) are
known to be involved in mitochondrial fission and fusion [67].
These proteins are thought to modulate the ER–mitochondrial
functional link at MAMs [67] and have been reported to be
down-regulated in an AD cell-culture model [68] and in post-
mortem human AD brains [68]. This down-regulation was
shown by immunohistochemistry to result in the redistribution
of mitochondria away from axons to the cell soma in human AD
hippocampus and to negatively affect dendritic spine formation in
primary mouse hippocampal neurons [68]. Further investigations
are clearly needed to address whether Aβ can be produced in the
mitochondrial membrane, whether cleavage might take place in
the MAM compartment and what the resulting implications are
for AD.

Direct import of Aβ

Aβ itself can be imported into mitochondria via the translocase
system and is consequently found within the mitochondrial cristae
associated with the inner mitochondrial membrane [48]. Hansson
Petersen et al. [48] demonstrated mitochondrial localization of Aβ
in mitochondrial preparations from in vivo human brain biopsies
from non-demented patients. Significantly, this result indicates
that Aβ is indeed present in mitochondria of the non-demented
human brain, albeit at lower levels. Subsequent import studies on
a human neuroblastoma cell line further revealed that Aβ can be
imported into mitochondria from outside the cell and that import
is independent of the mitochondrial membrane potential and
involves the TOM (translocase of outer mitochondrial membrane)
transporters TOM20, TOM40 and TOM70 [48].

Recent genetic studies on AD and non-demented human
brain samples revealed another interesting link between the
mitochondrial import machinery and AD [69,70]. In these studies,
SNPs (single nucleotide polymorphisms) in the TOM40 gene on
chromosome 19, which is directly proximal to the ApoE gene,
were linked to an increased risk for AD. In an initial study looking
at SNP haplotypes, the polymorphisms were not linked to a risk
of AD independently from the ApoE ε4 allele [70]. However, in
a later study comparing diplotypes of these polymorphisms, one
of these SNPs was found to contribute to a significantly increased
risk for AD [69]. Bekris et al. [71] also observed that these SNPs
were associated with the level of ApoE in the cerebrospinal fluid.
It is therefore possible that a SNP in the TOM40 gene might play a
role in increasing the risk of developing AD, and further research
is needed to clarify if this represents an independent risk factor
and how this risk is realized at the molecular level.

BINDING OF Aβ TO INTRACELLULAR PROTEINS

Having established that Aβ is present within cells, it is of interest
to consider its resulting intracellular action. The build-up of Aβ
within cells has been found to affect the expression or activation
of several signalling proteins within cells, such as the stress
kinases of the JNK (c-jun N-terminal kinase) pathway [72], NF-
κB (nuclear factor-κB) [73], the Ca2+-dependent metalloprotease
calpain [74], the pro-apoptotic Bcl-2 protein family member
Bim (Bcl-2-interacting mediator of cell death) [75], Akt/PI3K
(phosphoinositide 3-kinase) [76] and CREB (cAMP-response-
element-binding protein) [77]. Intracellular Aβ has also been
found to impair cellular metabolism by disturbing mitochondrial
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respiration [46,78]. Some of the intracellular effects, for example
the activation of the p65 subunit of NF-κB, are indirect and are
believed to be a result of the production of ROS [73]. Other
studies suggest direct interactions of mono- or oligomeric Aβ with
intracellular proteins. These specific interactions are probably
critical events in AD (see below); they might represent early steps
in the development of this disorder.

PDK (phosphoinositide-dependent kinase)

In a recent study, Lee et al. [76] investigated the effect of Aβ on
the expression and activity of PDK and its target, Akt, both in
vitro and in vivo. Involvement of the PDK/Akt kinase pathway
in AD had been suggested previously, when it was observed
that Akt expression levels were reduced in APPm-expressing cell
cultures and in lymphoblast cells from familial AD patients [79].
Additionally, it was known that overexpression of Akt in PC12
cell cultures attenuated the apoptotic effect of extracellular Aβ
[80]. Evidence also existed that the PI3K/Akt kinase pathway
can regulate levels of IDE [81], which might play a role in
the degradation of Aβ inside mitochondria [52] and in the
extracellular space [51], as described above.

Lee at al. [76] found decreased activation of Akt in human
AD brain compared with control aged brain when they assessed
the level of PDK-mediated phosphorylation. The in vitro
activity of Akt from Aβ-expressing myotube or neuroblastoma
cell cultures on a GSK (glycogen synthase kinase)-3 fusion
protein was selectively reduced when compared with controls.
PDK-dependent activation of Akt kinase activity in vitro was
also diminished in the presence of Aβ. However, no direct
binding studies with PDK, Akt and Aβ have been performed.
Co-immunoprecipitation experiments have demonstrated the
increased association of Aβ with Akt and PDK by Western
blotting. However, dissociation of Akt from PDK was observed
in preparations from AD-affected brain. The authors concluded
that Aβ selectively interferes with the interaction between PDK
and Akt, and therefore, Akt phosphorylation [76]. A detailed
description of the interaction between Aβ, PDK and Akt on
the biochemical level has so far not been provided, but this will
be an important step in understanding its molecular causes and
consequences. It is clear that Akt inhibition would inevitably
result in a lack of pro-survival signalling in the cell and contribute
to neurodegeneration. However, the question remains whether
these processes are specific for late stages of AD or also occur in
early phases of the disease.

SOD1

Yoon et al. [44] have demonstrated an interaction between
Aβ and Cu–Zn SOD1 in a human neuroglioma cell line
by co-immunoprecipitaion and co-localization. This interaction
resulted in the inhibition of in vitro SOD1 catalytic activity
and this effect was even stronger with a G93A mutant of
SOD1 [44], which is implicated in familial cases of amyotrophic
lateral sclerosis [81a]. At the same time, proteins involved
in other neurodegenerative diseases, such as α-synuclein or
its fragment NAC (non-Aβ component of AD amyloid) did
not co-immunoprecipitate with SOD1. Co-localization studies
revealed that GFP-tagged Aβ and SOD1 are eventually found
in aggregates in the perinuclear region of cells [44]. Similar
Aβ aggregates have recently been reported to attenuate the
actions of the proteasome and lead to mitochondrially induced
apoptosis in neuronal cells [63]. It is logical to conclude
that inhibition of a key antioxidant enzyme in the cell will
also lead to increased oxidative stress in the cell, which is

known to cause neurodegeneration and memory deficits [82,83].
However, at present, there has been no evidence for a direct
in vivo interaction of Aβ with SOD1. Despite this, the significance
of SOD1 in AD is supported by an earlier study, which showed that
the β-site cleavage enzyme BACE1 (β-site APP-cleaving enzyme
1) is able to bind Cu2+ and interact with CCS (Cu2+ chaperone of
SOD1) in cell cultures and normal rat brain. The authors suggested
that BACE1 levels could therefore control SOD1 activity by
competing for the limited pool of CCS in cells [84]. Additionally,
these findings link an enzyme involved in Aβ production with
SOD1 both in vitro and in vivo, and support the view that SOD1
could play an active role in the pathogenesis of AD.

It is also important to note that the manganese-dependent
mitochondrial superoxide dismutase, SOD2, has been implicated
in AD. Li et al. [85] found elevated Aβ levels and an increased
plaque burden in APPm-expressing mice when they lacked one
allele of the SOD2 gene. Two recent studies have also shown that
overexpression of SOD2 reduces oxidative stress and memory
deficits in a transgenic mouse model for AD [86,87]. However, no
direct interaction between Aβ and Mn–SOD2 has been reported.

Catalase

Another protein that was reported to directly interact with Aβ pep-
tides is the hydrogen peroxide-degrading enzyme, catalase. There
is in vitro evidence for an interaction between isolated catalase and
biotinylated Aβ, which inhibits the catalase’s enzymatic activity
[88,89]. Milton [88] characterized the binding of Aβ to catalase
and found that Aβ-(1–42) and Aβ-(25–35) bound to catalase
with a Kd of 3.3 +− 0.02 nM, whereas Aβ-(12–28) did not bind.
The author suggested that the inhibition of catalase activity was
caused by oxidation of the enzyme, as the effect of Aβ could be
relieved in the presence of ethanol or NADPH [88]. Moreover, the
cytotoxic effect of extracellular Aβ was enhanced when catalase
was inhibited by 3-aminotriazole. [90]. Applying an antisense
peptide approach, Milton et al. [91] later identified that amino
acids 400–409 of the human catalase protein can interact with Aβ.
When testing the Aβ-binding affinity of a peptide representing this
region, a Kd of 1.2 +− 0.1 nM was determined, which is similar to
the Kd identified for binding of Aβ to catalase. The peptide was
also able to protect from some of the adverse effects of Aβ on
a myeloma cell line [91]. Despite these results, it is not clear
whether inhibition of catalase by Aβ is relevant for physiological
and pathological processes in AD. Notably these studies used
concentrations of up to 20 μM Aβ and the aggregation state of
the different amyloid peptides is undefined. This concentration is
important, as it is known that different Aβ states (i.e. monomers,
oligomers or fibrils) can have different effects on cells and this also
turns out to be true for different concentrations of Aβ [73,77]. It
would be interesting to see whether catalase also interacts with Aβ
peptides in a cellular environment and at lower concentrations and
if binding of Aβ to antioxidant proteins, like SOD and catalase,
turns out to be a common theme.

ABAD

To date, the most characterized intracellular Aβ-binding protein
has been ABAD. ABAD was first identified as an Aβ-binding
protein in 1997 using a yeast two-hybrid screen [92] and later, in
a separate study, as the human analogue of a newly discovered
bovine hydroxyacyl-CoA dehydrogenase type II [93]. As ABAD
was originally identified within the ER [92,94], it was initially
termed ERAB (ER-associated amyloid-binding protein) [92].
However, it was identified later within mitochondria [92,94–
96] and it has been suggested that the distribution of ABAD in

c© The Authors Journal compilation c© 2010 Biochemical Society



260 K. E. A. Muirhead and others

Scheme 1 Reduction and oxidation of alcohols and ketones by ABAD

cells may be cell-line-dependent [96]. ABAD is also known by a
number of other names, including SCHAD (human brain short
chain L-3-hydroxyacyl-CoA dehydrogenase) [97,98], HSD10
(17β-hydroxysteroid dehydrogenase) [99,100] and HADH II
(human hydroxyacyl-CoA dehydrogenase type II) [101,102]. This
protein is expressed in all tissue types, particularly in the heart
and liver, and was also found to be expressed in all regions of the
brain [92].

Structure and function of ABAD

ABAD is a multifunctional enzyme catalysing the reduction of
aldehydes and ketones and oxidation of alcohols (Scheme 1)
and as such it is known to act on a broad range of structurally
diverse substrates, including simple alcohols [97,101,102],
steroids [95], hydroxysteroids [95,97,101] and 3-hydroxyacetyl-
CoA derivatives, such as acetoacetyl-CoA [95,101,102] and D-β-
hydroxybutyrate [101].

Table 1 lists the experimentally determined enzymatic
parameters for a range of these substrates. Unsurprisingly,
different substrates have different reaction rates with the enzyme,
indicating that although ABAD is able to catalyse reactions on
a number of different substrates, some have a higher turnover
than others. It can also be seen that widely ranging values for
enzyme activity have been reported for the same substrate, often
varying by several orders of magnitude. However, comparisons
between values obtained may be complicated due to the range
in conditions used during assays used to study activity. Despite
this, the results are still an indication of the potentially wide range
of roles that the enzyme is able to perform within the cell. It is,
however, important to note that an enzyme’s ability to metabolize
a particular substrate in vitro does not necessarily guarantee that
it does so in an in vivo environment. Given the mitochondrial
location of ABAD, one of its main functions is thought to be
in energy production and metabolic homoeostasis, notably the
third step of β-oxidation of fatty acids, utilizing its function as
an L-3-hydroxyacyl-CoA dehydrogenase [93,102]. This role may
be especially important in glucose-deficient environments, where
other energy sources become more significant. For example,
it has been found that the overexpression of ABAD in COS
cells increases the ability of the cell to utilize ketones, such
as D-β-hydroxybutyrate, in the absence of other energy sources
[103]. Similarly, transgenic mice overexpressing ABAD showed
increased utilization of D-β-hydroxybutyrate compared with
non-transgenic animals, indicating their better adaptability to
metabolic challenges [103].

A proposed alternative role to energy homoeostasis is in the
metabolism of hydroxysteroids, such as oestradiol [95]. The role
of ABAD in metabolizing sex steroids could be significant, as
it is documented that women are more likely to suffer from AD
than men [104], and that postmenopausal hormone replacement
therapy can prove beneficial in delaying the onset of the disease
[105]. ABAD has also been shown to oxidize steroid modulators
of the GABAA receptor (GABA is γ -aminobutyric acid) to give
inactive metabolites, and as such it has been suggested that these
compounds are better substrates for ABAD than the sex steroids
[106] (see Table 1).

ABAD is known to play a role in the degradation
pathway of isoleucine. In clinical cases of MHBD (2-methyl-3-
hydroxybutyryl-CoA dehydrogenase) deficiency, i.e. deficiency
of the enzyme catabolizing the penultimate step in isoleucine
degradation, two missense mutations within ABAD were
identified in patients presenting with MHBD deficiency; Arg130

was mutated to a cysteine residue in four patients and was
found to cause neurological deficits, loss of mental and motor
skills and psychomotor retardation, whereas a Leu122 to valine
substitution, identified in a single case, presented with only
psychomotor retardation [107]. The mutations were shown to
either fully (R130C) or greatly (L122V) inactivate the enzyme;
in addition, the R130C mutation was also thought to reduce the
enzyme’s stability, causing the lower protein levels observed in
these patients [107].

It has been proposed that in the absence of Aβ, ABAD
is able to play a cytoprotective role during periods of stress.
For example, in mouse models of ischaemic stress (stroke),
ABAD expression was found to be increased in both ABAD-
overexpressing and non-transgenic mice following 45 minutes
of transient middle cerebral artery occlusion. However, the
transgenic animals showed fewer effects of the stroke, including
fewer neurological deficits and increased ATP levels [103] and
were hence thought to be protected to some degree by the elevated
levels of ABAD. Conversely, ABAD levels were shown to be
decreased in the ventral midbrain of PD (Parkinson’s disease)
patients, as well as in the ventral midbrain of MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine)-treated mice, used as a model
of PD. However, MPTP-treated mice overexpressing ABAD were
protected against apoptosis and the loss of dopaminergic neurons
in this brain region, suggesting that this enzyme can protect against
neurodegeneration [108].

The crystal structure of ABAD is well documented, with several
structures of the enzyme published. These include structures in
complex with its co-factor NAD+ [102], a human mutant ver-
sion complexed with an inhibitor [99] and the human protein in
complex with Aβ [45]. From these structures, information on
the catalytic mechanism and its interaction with Aβ has been
deduced.

ABAD was found to form a homotetramer, both in solution
and in the crystal form, which was made up of four identical
single domain monomers of 27 kDa each. Tetramerization has
been shown, by molecular modelling, to stabilize the binding
interface region [109]. The conserved catalytic triad of Ser155,
Tyr168 and Lys172 is also found in the active site of other short-
chain dehydrogenase reductase enzymes [45,99]; mutation of
these residues to glycine inactivates the enzyme [101]. In the
reduction of a ketone to an alcohol, the hydrogen atom of Tyr168

is thought to co-ordinate to the carbonyl of the ketone substrate,
increasing the electrophilicity of the carbonyl carbon atom. It is
proposed that the ammonium group of Lys172 interacts with the
hydroxy group of Tyr168, increasing the acidity of this residue. The
hydride that effects reduction is donated to the activated carbonyl
by the NADH co-factor, leading, simultaneously, to deprotonation
of Tyr168 by the newly formed hydroxy group. The hydroxy group
of Ser155 is able to form a hydrogen bond with the deprotonated
tyrosine, stabilizing the resulting negative charge (Figure 2).

Structures of rat ABAD with either 3-ketobutyrate or 17β-
oestradiol showed that the two substrates bound in similar
positions within the active site [102]. These structures confirm the
close proximity of the presumed catalytic residues to the substrate
molecule. Liu et al. [110] have investigated the mechanism of the
related enzyme HAD (3-hydroxyacyl-CoA dehydrogenase) using
fluorinated substrates and have determined that the oxidation of
hydroxyacyl-CoA-linked substrates proceeds through an enolate
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Table 1 Experimentally derived enzyme activity parameters for ABAD with a range of substrates

Results are means +− S.D.; -, not determined.

Substrate Reference Co-factor Specific activity (μmol · min−1 · mg−1) V max (μmol · min−1 · mg−1) K m (μM) k cat (s−1)

S-Acetoacetyl-CoA [101] NADH - 430 +− 45 68 +− 20 190
[93] NADH - - 89 +− 5.4 37 +− 1.6
[94] NADH 1.1 - 22.7 -
[102] NADH - - 53 +− 9 11.1 +− 0.7

17β-Oestradiol [101] NAD+ - 23 +− 3 14 +− 6 10
[102] NAD+ - - 15 +− 7 0.00088 +− 0.0012
[95] NAD+ 0.0156 +− 0.0008 - 43 +− 2.1 0.011 +− 0.0002

Dihydroandrosterone [95] NAD+ 0.130 +− 0.0018 - 34 +− 2.4 0.093 +− 0.0028
Androsterone [95] NAD+ 0.0121 +− 0.0009 - 45 +− 9.3 0.011 +− 0.0013
Ethanol [101] NAD+ - 2.2 +− 0.4 1210 +− 260 1.0
1-Propanol [101] NAD+ - 4.2 +− 0.5 272000 +− 62000 1.9

[102] NAD+ - - 83200 +− 21100 0.0060 +− 0.0005
2-Propanol [101] NAD+ - 36 +− 2 150000 +− 17000 16

[102] NAD+ - - 156000 +− 18000 0.0179 +− 0.0008
[97] NAD+ - - 280000 +− 33000 0.036 +− 0.0023

β-Hydroxybutyryl-CoA [94] NAD+ 65.7 - 9.8 -
[103] NAD+ - 26.3 134 -

L-β-Hydroxybutyrate [103] NAD+ - 0.004 1600 -
D-β-Hydroxybutyrate [103] NAD+ - 0.004 4500 -

Figure 2 Representation of the catalytic core of ABAD

A PyMol representation of the X-ray crystal structure of rat ABAD bound to its co-factor and an
acetoacetic acid substrate. The three conserved active site residues, Ser155, Tyr168 and Lys172

(carbon atoms in yellow), the NAD+/NADH co-factor (carbon atoms in green) and the acetoacetic
acid substrate (carbon atoms in magenta) are represented as sticks. It can be seen that the ketone
oxygen of the substrate interacts with Tyr168 and is favourably oriented in order to receive or
donate a hydride to or from the co-factor. Nitrogen atoms, blue; oxygen atoms, red; phosphorus
atoms, orange.

intermediate, stabilized by Asn208 and Ser137, and that this enolate
formation is essential for the reaction to occur. Given the similarity
of the active-site residues, it is possible that oxidation of similar
substrates by ABAD might occur through a similar mechanism.

The crystal structure of rat ABAD indicated the presence of
an ‘active-site loop’ from residues 202–220, which encloses the
active site in the presence of substrate, preventing further access
by solvent molecules. Thr208 of this loop would therefore be able to
form a strong hydrogen bond with the substrate [102]. Molecular
modelling suggested that this loop is in an open conformation in
the absence of substrates, whereas the presence of NAD+ induces
the conformational change to a ‘closed’ position [109].

Compared with other HAD type I short-chain enzymes, both
rat [102] and human [45] ABAD were found to have two
significant insertions between residues 100–110 and 140–150.
A model of the expected binding of a CoA-linked substrate to
the active site suggests an interaction between the negatively
charged phosphate groups of CoA and a group of positively
charged residues within the 100–110 region (namely Lys99, His102,
Lys104 and Lys105) [99,102]. CoA-linked substrates were found to
be more efficiently oxidized than their non-CoA analogues [102].
The region connecting the proposed CoA-binding site and the
active site is lined with hydrophobic residues, which is consistent
with the binding of aliphatic chains. In contrast, few interactions
were observed outside the active site with 17β-oestradiol as the
substrate [102], corroborating the idea that sex steroids are not
the main substrates for ABAD.

ABAD–Aβ interaction

The initial identification of ABAD as an intracellular binding
partner of Aβ was based on a yeast two-hybrid screen [92], which
identified four positive clones (one from human brain and three
from HeLa cells), all of which had the same cDNA sequence.
Radiolabelled ligand-binding studies confirmed the interaction
of ABAD and Aβ and a Kd of 88 nM was determined [92].
Subsequently, a number of techniques have been employed to
demonstrate the interaction between ABAD and Aβ, including
ELISA [111], crystallography [45], SPR (surface plasmon
resonance) [45,112], co-immunoprecipitation [45,92, 95] and
immunocytochemistry followed by confocal microscopy [45].

Both Aβ-(1–40) and Aβ-(1–42) were found to inhibit the
activity of purified ABAD, with K i values of 1.2–1.6 μM for the
reduction of acetoacetyl-CoA, [94,101], 2.6 μM for the oxidation
of octanol [101] and 3.2 μM for the reduction of 17β-oestradiol
[101]. Studies by Oppermann et al. [94] showed that residues 13–
22 of Aβ were critical for inhibiting ABAD activity, a region that
is also characterized by its fibril-forming properties (residues 16–
20). It is interesting to note that inhibition of ABAD requires
micromolar concentrations of Aβ, whereas binding has been
shown to occur in the nanomolar range [92,112]. This result
implies that Aβ monomers alone are not sufficient to induce
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inhibition. Perhaps further aggregation of Aβ is necessary to alter
the conformation of the enzyme to an extent that its active site
is distorted or, more simply, that an aggregation of Aβ on the
surface sterically hinders access of substrate to the active site.

The crystal structure of ABAD in complex with Aβ lends
support to the first hypothesis that the enzyme shape is distorted
upon binding to Aβ [45]. Compared with other published ABAD
structures [99,102], the active site and NAD+-binding site were
shown to be highly distorted in the presence of Aβ and no
bound NAD+ co-factor was seen. Further studies using SPR
confirmed binding of ABAD and Aβ at nanomolar concentrations
and showed that a conformational change in ABAD occurs upon
binding of Aβ [112]. Saturation transfer difference NMR was
used to show that the presence of Aβ inhibited the binding of
NAD+ to ABAD in a concentration-dependent manner. Similarly,
the ability of Aβ to bind ABAD was reduced in the presence of
NAD+, suggesting that the binding of Aβ and NAD+ to ABAD
are competing [112]. These observations provide strong evidence
that Aβ has an influence on the physical structure of ABAD,
disrupting its activity.

Although no electron density for Aβ was observed in
the ABAD–Aβ crystal, SDS/PAGE confirmed its presence in the
complex, indicating that the Aβ present within the crystal is
in a disordered state. The region comprising residues 100–110
was also highly disordered [45], despite it being well ordered
in other known structures [99,102]. These observations led to
the hypothesis that this region, referred to as loop D, may
be the binding site for Aβ. It is possible that the lack of order in
the Aβ component of the complex is either due to high levels of
flexibility within the amino acid chain of Aβ or due to a disordered
aggregation of the peptide, which would fit with the aggregation
hypothesis. Mutagenesis studies showed that replacing residues
within the loop D region prevented the binding of Aβ to ABAD.
In particular, two groups of residues were highlighted as being
significant: the first group consisted of Ser98, Lys99, Thr100 and
Tyr101, and the second of Thr108, His109 and Thr110. Point mutations
to replace these residues with alanine residues, either individually
or in combination, resulted in the loss of ABAD–Aβ binding
[45]. The activity of related enzymes, such as the bacterial
3β/17β dehydrogenase and type I HADH, which have a similar
mechanism, but do not contain the insertion of loop D seen
in ABAD, is unaffected by Aβ [94], again providing support
for this region of the enzyme being the Aβ-binding region. In
addition, the energetics of the binding between ABAD and Aβ
were broken down into their enthalpic and entropic components,
revealing a large increase in entropy upon binding, overcoming
an unfavourable enthalpy change. Yan et al. [112] proposed that
this large increase in entropy is probably due to the displacement
of highly ordered water molecules from the protein surface upon
binding of Aβ to ABAD.

The interaction between ABAD and Aβ has also been
demonstrated in vivo using a number of techniques. Analysis
of human cerebral cortex samples using immunoprecipitation
revealed the enrichment of the ABAD–Aβ complex in AD brains,
and similar results were seen in mitochondria isolated from the
cerebral cortex of mice APPm-expressing or Tg-APPm/ABAD
(transgenic expression of both APPm and ABAD) mice [45]. These
results indicate that the interaction of ABAD and Aβ does occur
in physiologically relevant environments. Immunocytochemistry
was also used to show co-localization of ABAD and Aβ and
to verify the localization of ABAD in mitochondria by co-
localization with VDAC (voltage-dependent anion channel) [45].

In addition to the direct interaction between ABAD and Aβ,
it has been shown that Aβ can influence the expression of
ABAD. Indeed, transgenic mice overexpressing APPm, including

the triple transgenic model (expressing AD-linked mutations in
APP, presenilin 1 and tau), show increased ABAD expression in
the hippocampus when compared with non-transgenic littermates
[113,114]. This increased expression has also been observed in hu-
man AD brains, where comparison with age-matched controls re-
vealed elevated expression of ABAD in the temporal lobes of AD
brains, which was localized to neuronal cells [92]. Significantly,
when not associated with elevated Aβ, overexpression of ABAD
can have a positive outcome with regard to other stresses (see
above) [103,108]. However, under conditions when both ABAD
and Aβ are elevated the consequences of their interaction are
numerous and occur at the molecular, cellular and in vivo levels.

Consequences of ABAD–Aβ interaction

At the molecular level, as described above, the binding of Aβ
causes the inhibition of ABAD activity. However, overexpressing
a catalytically inactive form of ABAD in the presence of Aβ does
not enhance cytotoxicity in cell cultures compared with Aβ alone
[101]. This observation indicates that these cellular effects are not
simply based on the inactivation of ABAD, but are due to other
downstream effects mediated by the active enzyme once bound
with Aβ. This view is supported by the observed discrepancies in
the binding constants of Aβ and ABAD (in the nanomolar range)
and the K i values determined for the inhibition of ABAD by Aβ
(in the micromolar range) [101].

Another direct effect on the enzyme was reported when the
localization of ABAD was seen to change in the presence of Aβ.
Under normal conditions, ABAD was observed both in the ER
and in mitochondria. However, in the presence of Aβ (which
was either applied externally or produced from a transfected APP
plasmid), redistribution from the ER to the inner surface of the
plasma membrane was reported [92,101].

At the cellular level, it has been shown that overexpression of
ABAD in the presence of elevated Aβ has deleterious effects on
cell function and survival. Aβ was found to suppress the reduction
of MTT (dimethylthiazolyl diphenyltetrazolium) bromide and
increase DNA fragmentation and apoptosis in the neuroblastoma
SK-N-SH cell line, and these effects were minimized by the
addition of anti-ABAD antibodies [92]. Apoptosis and DNA
fragmentation were greatly enhanced in COS cells co-transfected
with plasmids expressing Aβ and ABAD [92], or APPm and
ABAD [101], compared with those transfected with Aβ or ABAD
alone. Conversely, this enhancement of toxicity was not seen in
cells transfected with mutant (inactive) ABAD in the presence of
Aβ, despite Aβ having a similar binding affinity for the mutant
and wild-type forms (Kd of 64.5 nM and 38.9 nM respectively)
[101]. Again, these results indicate that it is the combination of
increased ABAD activity and Aβ expression that is necessary for
toxicity.

It has been suggested that the interaction of ABAD with
Aβ may induce a toxic effect through the build-up of toxic
aldehydes. Increases in both HNE (4-hydroxynonenal) and MDA
(malondialdehyde) have been correlated with AD [115,116] and
a cytoprotective action of ABAD against these toxic aldehydes
has been demonstrated [117]. SH-SY5Y cells transfected with
ABAD and then treated with HNE for 24 hours showed an
improved survival compared with control cells. Similarly, HeLa
cells transfected with ABAD were able to catabolize HNE better
than control cells, an effect lost in the presence of Aβ-(1–42)
[117]. However, neuroblastoma cell cultures overexpressing both
ABAD and APP (either wild-type or APPm forms) were found to
exhibit enhanced production of MDA and HNE, compared with
those expressing ABAD or APPm alone. Transfection with mutant
(inactive) ABAD and APPm together did not produce this response
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[101]. It has therefore been proposed that a native function of
ABAD may be to remove toxic aldehydes such as HNE and MDA
and that this function is impaired in the presence of Aβ, resulting
in the disruption of normal cellular processes [117].

The toxic effect of overexpressing ABAD together with Aβ
has also been confirmed in an AD mouse model. Compared
with neurons from non-transgenic mice and mice overexpressing
ABAD or APPm alone, E18 cortical neurons cultured from
Tg-APPm/ABAD mice were found to exhibit higher levels
of hydrogen peroxide, decreased mitochondrial function and
increased cell death [118]. Mitochondrial dysfunction was
observed in vivo in Tg-APPm/ABAD mice, which had decreased
glucose utilization and ATP production at 9 months of age
[118]. These mice were also found to have deficits in spatial
and temporal memory compared with non-transgenic mice, with
impaired performance in the radial-arm water maze as early as
4–5 months of age [45]. These results again emphasize that it is
the combination of ABAD and Aβ that is necessary for effects to
be seen and that these effects occur early in the disease process.

Proteomic analysis of brains from Tg-APPm/ABAD mice
has identified increased expression of other proteins, hinting
at other downstream effects of the interaction of ABAD and
Aβ. Expression of Prx-II (peroxiredoxin II), an antioxidant
enzyme, was found to be increased in mice overexpressing
APPm and in Tg-APPm/ABAD mice. Further analysis of Tg-
APPm/ABAD mice brains and human AD brains by Western
blotting and immunocytochemistry showed increased expression
of Prx-II in the cerebral cortex. Transfection of cortical neurons
with Prx-II was found to reduce Aβ toxicity, suggesting that
its overexpression in AD is playing a protective role [119].
Interestingly, Prx-II has also been linked with PD, where it
was found to be phosphorylated by Cdk5 (cyclin-dependent
kinase 5), and hence inactivated in MPTP-induced models of
the disease [120]. Similarly, increased phosphorylation of Prx-II
was seen in the nigral neurons of human PD brains, whereas the
overall expression levels of Prx-II remained unchanged. As in AD
models, overexpression of Prx-II in the MPTP-induced in vitro
and in vivo models of PD was found to protect against neuronal
loss [120]. In light of these findings, the consequences of Prx-II
up-regulation in AD, its association with ABAD and potential
protective role still need to be investigated in more detail.

A second protein, Ep-I [endophilin I, also referred to as
SH3GL2 (SH3-domain GRB-like 2)], was also identified as
being up-regulated in Tg-APPm/ABAD mice compared with mice
expressing ABAD alone and non-transgenic littermates. Further
analysis showed that there was up-regulation of Ep-I in the hippo-
campus and cortex of Tg-APPm/ABAD mice and in the temporal
cortex of human AD brains [121]. Ep-I is a presynaptic protein
known for its involvement in synaptic vesicle biogenesis [122] and
it has previously been shown that its expression could also activate
JNK [123]. Increases in JNK activation have been observed in
AD patients [124] and AD mouse models [72], as well as in
Aβ-expressing cell culture models [125–127], although this had
been thought to be solely due to increases in ROS production.
Ren et al. [121] showed that an increase in Ep-I expression
could increase JNK activity with the subsequent death of primary
neuronal cell cultures. However, when neuronal cultures were
transfected with truncated Ep-I, lacking its SH3 domain, the
activation of JNK by Aβ was blocked and cell viability increased
[121]. Thus the increase in Ep-I expression shown in the AD
brain could be another mechanism for the activation of the
JNK signalling pathway. Notably, the reported increases in both
Prx-II and Ep-I were shown to be directly due to the binding of
ABAD and Aβ, as interfering with this binding in living organisms
resulted in the expression of these two proteins returning to

normal (see below), therefore emphasizing the importance of this
interaction in vivo.

From these studies, it can be seen that the interaction of Aβ with
ABAD has multiple effects at the molecular, cellular and whole
animal level. Indeed, when Aβ binds to ABAD the net effect
is to inhibit the ABAD enzyme activity. However, the precise
molecular mechanisms of how this occurs are yet to be deciphered;
what is known is that in the living brain this results in the activation
of genes which in AD appear to shift the balance of events,
with increasing Prx-II expression promoting neuronal survival
and increasing Ep-I expression promoting neuronal death.

CypD

Recently, a second major Aβ–protein interaction has been
found within mitochondria. CypD, a peptidylprolyl isomerase
F, is found in the mitochondrial matrix and translocates to the
inner mitochondrial membrane during the opening of the mPTP
(mitochondrial permeability transition pore) in times of oxidative
stress [128]. There are many excellent reviews on the mPTP
[129,130], but in brief, the mPTP plays a central role in both
necrotic and apoptotic neuronal cell death. Opening of the mPTP
collapses the membrane potential and possibly amplifies apoptotic
mechanisms by releasing proteins with apoptogenic potential
from the inner membrane space [131]. The mPTP is thought
to involve, at least, ANT (adenine nucleotide translocase) in the
inner membrane, VDAC in the outer membrane (although note
that recent studies have suggested the involvement of the mito-
chondrial phosphate carrier [129,132]) and CypD in the
mitochondrial matrix [129,131]. CypD associates with ANT and
potentially other targets on the inner mitochondrial membrane,
contributing to the opening of the mPTP. This association leads to
colloidosmotic swelling of the mitochondrial matrix, dissipation
of the inner membrane potential (�ψm) and/or generation of ROS.
Therefore CypD is considered to be part of the mPTP complex
as summarized in Figure 3. Oxidative and other cellular stresses
promote CypD translocation to the inner membrane [128,133,134]
and other studies provided substantial evidence that a genetic
deficiency in CypD protects against Ca2+- and oxidative stress-
induced cell death [135,136]. In addition to providing a pivotal
regulatory role in the mPTP opening [137], CypD has also been
shown to be involved in protein folding [138,139].

CypD–Aβ interaction

The observations that Aβ progressively accumulates in brain
mitochondria of AD patients led Du et al. [140] to
further investigate the mechanism underlying Aβ-mediated
mitochondrial dysfunction. In these studies, it was established
by SPR that CypD can bind Aβ [140]. Elevated CypD levels were
reported in human AD brains, as well as in an APPm-expressing
mouse model for AD [140]. The Kd for the interaction of CypD and
monomeric Aβ-(1–40) and Aβ-(1–42) was 1.7 μm and 164 nM
respectively, whereas interactions with oligomeric Aβ-(1–40) and
Aβ-(1–42) had a Kd of 227 nM and 4 nM, thus indicating that
the oligomeric forms of Aβ appear to have a greater affinity
for CypD and that Aβ-(1–42) has a greater affinity than Aβ-(1–
40). Co-localization of CypD and Aβ in the mitochondria was
also observed by confocal microscopy in the cerebral cortex of
both mice overexpressing APPm and in human AD brains, and
immunoprecipitation confirmed the enriched presence of CypD–
Aβ complexes in AD brains [140].

As with the ABAD and Aβ interaction, at present the exact
contact sites of the interaction between CypD and Aβ are
unknown, though recent molecular-docking experiments have
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Figure 3 Components of the mPTP

Probable components of the pore include ANT, PiC (mitochondrial phosphate carrier) and CypD at the inner mitochondrial membrane (IMM) together with Ca2+ and a pore-forming component,
e.g. VDAC, in the outer mitochondrial membrane (OMM). High concentrations of phosphates as well as ROS promote mPTP formation, whereas high levels of ADP or ATP inhibit mPTP formation.
Pore formation leads to the leakage of H+ and Ca2+ to the cytosol, disruption of the mitochondrial membrane potential and necrosis. Prolonged or repeated sub-lethal mPTP-formation is thought to
cause mitochondrial swelling, rupture of the outer mitochondrial membrane and apoptosis.

attempted to produce a model [141]. Singh et al. [141] also
predicted an interaction between ANT and Aβ, which together
with that of CypD has a possible functional impact on the mPTP
[141]. Whether these predictions prove true will only be known
when they are experimentally tested. To date, the crystal structure
of CypD has been published [142,143], but only in the pre-
sence of DMSO [143] or CsA (cyclosporin A), an inhibitor of
CypD [142]. Notably, in both cases a truncated mutant form
of CypD was used, starting at Cys29 and containing a single
point mutation (with Lys133 replaced by an isoleucine residue).
However, at present it is unknown whether these regions are an
important region for the interaction.

Consequences of CypD–Aβ interaction

CypD levels of expression are elevated in the aging human brain
and in an Aβ-rich environment [140]. The reported consequence
of the binding of CypD and Aβ is elevated levels of ROS, which in
turn induces mPTP opening and cell death [140,141]. Additionally
it is thought that this interaction enhances the translocation
of CypD from the matrix to the inner mitochondrial membrane
where CypD will interact with the mPTP, resulting in its opening
[140]. The interaction would lead to a build-up of Aβ in the inner
mitochondrial membrane, which in itself can cause changes in the
mitochondrial membrane potential, leading to cell death [141].

Much of these potential consequences of the interaction of Aβ
and CypD have been determined in studies of CypD-deficient
animals (Ppif−/−). Notably, the cortical mitochondria isolated
from a AD mouse model lacking CypD are resistant to both
Aβ and Ca2+-induced mitochondrial swelling and opening of
the mPTP, and display an increased calcium buffering capacity
and an attenuation of the generation of mitochondrial ROS.
Furthermore, CypD-deficient neurons are protected against Aβ-
and oxidative stress-induced cell death. Importantly, deficiency of
CypD greatly improved the learning and memory of a transgenic
APPm-expressing AD mouse model [140,144]. These animals
exhibited increased spatial and memory learning and alleviated

Aβ-mediated reduction of long-term potentiation at 12 [140] and
24 months, by which age the APPm-expressing mice are known to
display AD-like symptoms and synaptic dysfunction [144]. Thus
the CypD/Aβ-dependent activation of the mPTP directly links
to the cellular and synaptic perturbation relevant to the
pathogenesis of AD [140].

ARE INTRACELLULAR Aβ-BINDING SITES POSSIBLE THERAPEUTIC
TARGETS IN ALZHEIMER’S DISEASE?

Having described a number of intracellular binding partners for
Aβ, there is the obvious question of whether these sites are
relevant for therapeutic intervention in AD. At present there is
evidence that both ABAD and CypD are potential drug target
sites.

ABAD as a therapeutic target

It has been established that the interaction between ABAD and Aβ
can lead to harmful effects on cell viability along with subsequent
deleterious effects on the cognitive performance in transgenic AD
mouse models, thus reflecting the importance of these cellular
effects on disease progression. Therefore these studies indicate
that the ability to block this interaction could provide a potential
target for the treatment of AD.

Mutagenesis studies have shown that ABAD contains two
groups of residues that are particularly important for the binding
of Aβ (i.e. the Ser98, Lys99, Thr100 and Tyr101 group and the Thr108,
His109 and Thr110 group; both are found in Loop D as described
above). It was further reported the development of a ‘decoy
peptide’, ABAD-DP, which spanned these important amino acids
(residues 92–120), prevented the binding of Aβ to ABAD [45].
The use of this region as a discrete synthetic peptide in competitive
SPR-binding studies was able to prevent the binding of Aβ to
ABAD at micromolar concentrations, with a K i of 4.9 and 1.7 μM
for Aβ-(1–40) and Aβ-(1–42) respectively, and also attenuated
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cytotoxicity of Aβ towards primary neurons in a cell-based assay
[45].

Notably, the same region of ABAD had been independently
identified previously using an antisense peptide approach [91].
In this approach the antisense DNA strand was translated to give
the antisense peptide sequence, which was believed to contain
complementary binding surfaces to the peptide produced from the
coding DNA strand. This antisense sequence was then compared
with the Aβ sequence in order to reveal potential Aβ-binding
sites. As a result, a region similar to Aβ residues 16–20 was
identified within ABAD residues 99–108, which contained a Leu-
Val-Phe-Phe motif. This region of ABAD, again synthesized as a
discrete peptide, was found to bind biotinylated Aβ in an ELISA
binding-assay with a Kd of 107 nM and to increase the level of
neuronal cell survival in the presence of Aβ [91]. This Kd value
is in the same range as the Kd value observed by Yan et al. [92]
for the interaction of Aβ with the whole enzyme (88 nM) but is
much lower than the K i observed for the inhibition of the ABAD–
Aβ interaction found by Lustbader et al. [45], supporting the
hypothesis mentioned previously that oligomeric forms of Aβ are
the species interacting with and inhibiting the enzyme.

An effect of the ABAD-DP was also observed in cell culture
models. Addition of the Tat domain from HIV allowed the peptide
to cross cell membranes, where it was shown to be effective at
protecting cultured primary neurons (from wild-type, ABAD-
expressing and Tg-ABAD/APPm animals) from Aβ-mediated
toxicity. Mitochondrial stress resulting from Aβ treatment was
alleviated, as shown by reductions in cytochrome c release,
the production of ROS, DNA fragmentation and LDH (lactate
dehydrogenase) release [45]. A major problem with testing the
effects of the small ABAD-DP in cellular systems is its rapid
degradation by peptidases. In order to stabilize the peptide, in a
separate study it was therefore fused with TRX (thioredoxin I),
to give the ABAD-(92–120)–TRX peptide, and introduced into
PC12 cells using a lentiviral system. There the fusion peptide
was still found to protect cells against Aβ-induced toxicity [145].
Moreover, TRX is a scavenger of ROS and known to assist with
protein folding and stability [146,147], and so it was also noted
to complement the decoy peptide’s protective activity, probably
by scavenging ROS produced as a result of Aβ toxicity. ABAD-
(92–120)-TRX-transfected cells exhibited decreased apoptosis,
decreased LDH release and increased cell viability in response to
Aβ or hydrogen peroxide treatment compared with untransfected
cells or those transfected with TRX alone [145].

The decoy peptide has also been effective in whole animal
studies. Expression levels of protein biomarkers known to be
elevated in AD brains, such as Prx-II [119] and Ep-I [121],
have also shown a response to the disruption of the ABAD–
Aβ interaction using the decoy peptide. In these studies,
a peptide spanning residues 93–116 of ABAD was again
modified, this time to contain a Tat sequence for transport
across the cell membrane, along with a mitochondrial-targeting
sequence to direct the peptide to the site of ABAD–Aβ
complexes in the mitochondria. This Tat-mito-DP-(93–116)
peptide was introduced into transgenic APPm-expressing mice by
intraperitoneal injection, resulting in systemic application of the
peptide. Transgenic APPm mice were shown to have increased Prx-
II in the hippocampus, whereas mice treated with Tat-mito-DP
showed a significant reduction in Prx-II, comparable with the level
seen in non-transgenic mice [119]. Similarly, Tg-APPm/ABAD
mice, which exhibit elevated Ep-I expression compared with
wild-type littermates, showed a significant reduction in Ep-I,
which returned to basal levels [121]. Therefore this indicated
that disrupting the ABAD–Aβ interaction can prevent further
downstream effects seen in this AD mouse model. It has been

shown that by using these additional peptide sequences the decoy
peptide can enter the brain and as such it can be used to reverse
biochemical symptoms in mouse models of AD. Transgenic
mice expressing both APPm and the decoy peptide ABAD-(91–
119), as well as transgenic APPm-expressing mice systemically
treated with the decoy peptide by intraperitoneal injection, showed
improvements in the radial-arm water maze test compared with
untreated transgenic APPm-expressing mice [148].

Taken together, these experimental results consistently
underline the therapeutic value of interrupting the ABAD–Aβ
interaction. However, whereas small peptides have been shown
to inhibit the ABAD–Aβ interaction, the nature of peptides
limits their application as drugs due to their low bioavailability
and instability. There is therefore a need to develop alternative
small molecule inhibitors of the ABAD–Aβ interaction. This
has been initiated and screening of a commercially available
fragment library consisting of compounds that interact with Aβ
or have neuroprotective properties resulted in the development
of a series of benzothiole urea compounds, which are capable of
inhibiting the interaction at micromolar concentrations, as shown
by ELISA [111]. However, further studies into the cellular effects
of these compounds and their pharmacological properties will
be required for the development of new treatment strategies for
AD.

CypD as a therapeutic target

The results showing that CypD deficiency is able to ameliorate
Aβ toxicity in transgenic animals means that CypD can also
be considered as a potential drug target for AD, as it has
for other neurodegenerative disorders [140,149,150]. Indeed,
it has been reported that in the presence of CsA, a known
immunosuppressant and inhibitor of CypD [151], there is a
decrease in mPTP formation and that a CsA–CypD complex
is formed in mitochondria [152]. More directly it was shown
that CsA can block some of the Aβ-induced toxicity [140].
Another recent study also indicates that inhibition of CypD
is the basis for its neuroprotective properties in, for example,
ischaemia/reperfusion injury [150]. However, it has been noted
previously that CsA is a large, bulky compound with poor
solubility in water and relatively poor bioavailability, especially
in the brain [153], limiting the use of CsA as a drug molecule for
neurodegenerative disorders. It also has to be taken into account
that CsA exerts its function via several intracellular routes in
addition to the inhibition of CypD [154]. Specifically, in the
cytoplasm CsA binds to a complex of CypA (cyclophilin A) and
calcineurin and thus blocks the peptidyl prolyl isomerase activity
of CypA as well as the calcineurin phosphatase activity [155].
It was also noted that CypA can activate peroxiredoxins [156]
and CsA could therefore influence cellular peroxide levels. CsA
also blocks the JNK and p38 stress kinase signalling pathways,
independently from its inhibition of calcineurin signalling [157].
CsA has also been found to inhibit Ca2+ entry into mitochondria
by inhibition of the Ca2+-uniporter in the mitochondrial inner
membrane [158].

Considering these multilayered intracellular effects of CsA
and that it is currently used as an immunosuppressant, which
in itself would not be beneficial for a disease of the elderly, more
research is required to decipher the intracellular effects of CsA.
There is also a need for the identification of new modulators of
mPTP formation in order to clarify under what circumstances
each of them can act neuroprotectively, and at which stage their
administration might be useful in neurodegenerative diseases like
AD.
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Figure 4 Summary of the consequences of intracellular Aβ accumulation

ABAD is involved in metabolism under normal conditions. In AD, intracellular Aβ increases
and leads to the up-regulation of ABAD and CypD, as well as increases in intracellular Ca2+

levels. Binding of Aβ to ABAD inhibits its enzymatic activity and this interaction leads to the
up-regulation of Prx-II and Ep-I. Prx-II is an antioxidant protein that can protect cells from
cytotoxicity through the degradation of peroxides. Ep-I can activate JNK 1, 2 or 3 within the
cell. This is associated with mitochondrial dysfunction and cell death. CypD is involved in
the opening of the mPTP together with mitochondrial Ca2+, which is involved in mechanisms
of necrotic and apoptotic cell death. Among other processes, intracellular Ca2+ can activate
Ca2+-dependent kinases like calpain and, via the activation of the Cdk5, this could lead to the
inhibition of Prx-II by its phosphorylation on Thr89.

CONCLUSIONS

In conclusion, many studies have identified numerous receptor
proteins that can bind to extracellular Aβ in all its different
forms of both size and aggregation state. However, it is becoming
increasingly clear that before this build-up of extracellular Aβ
there are events that are occurring within cells. Of those described
in the present review, we have concentrated on two molecules
which have both been proven to bind directly to Aβ in the AD
brain, both of which are centred on the action of the mitochondria.
These studies have resulted in the identification of new signalling
events that are occurring both potentially in the early stages of
the disease and all the way through to its final stages (Figure 4).
Therefore it could be envisioned that modulators that interfere
with the interactions of Aβ with either CypD or ABAD could
be potential therapeutic targets of the disease; however this will
require imaginative new approaches. Recent possibilities could
include the use of new mitochondrial-targeting compounds [159]
or the use of novel compounds that prevent the mitochondrial
uptake of Aβ in neuronal cells [160]. What is certain is that there
are still many undiscovered events that are occurring due to the
rise of intracellular Aβ levels, whether that is the Aβ-(1–40) or
Aβ-(1–42) form, and the actual aggregation states at a particular
binding site are still largely unknown. As such, new knowledge
on these critical topics will result in the identification of potential
new drug targets. Although the development of selective drugs for
these targets may at first appear to be difficult, it is unlikely that
it will prove intractable, and ingenious solutions to these problems
will arise.
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Abstract
It is well established that the intracellular accumulation of Aβ (amyloid β-peptide) is associated with AD
(Alzheimer’s disease) and that this accumulation is toxic to neurons. The precise mechanism by which this
toxicity occurs is not well understood; however, identifying the causes of this toxicity is an essential step
towards developing treatments for AD. One intracellular location where the accumulation of Aβ can have a
major effect is within mitochondria, where mitochondrial proteins have been identified that act as binding
sites for Aβ, and when binding occurs, a toxic response results. At one of these identified sites, an enzyme
known as ABAD (amyloid-binding alcohol dehydrogenase), we have identified changes in gene expression
in the brain cortex, following Aβ accumulation within mitochondria. Specifically, we have identified two
proteins that are up-regulated not only in the brains of transgenic animal models of AD but also in those of
human sufferers. The increased expression of these proteins demonstrates the complex and counteracting
pathways that are activated in AD. Previous studies have identified approximate contact sites between
ABAD and Aβ; on basis of these observations, we have shown that by using a modified peptide approach
it is possible to reverse the expression of these two proteins in living transgenic animals and also to
recover mitochondrial and behavioural deficits. This indicates that the ABAD–Aβ interaction is potentially an
interesting target for therapeutic intervention. To explore this further we used a fluorescing substrate mimic
to measure the activity of ABAD within living cells, and in addition we have identified chemical fragments
that bind to ABAD, using a thermal shift assay.

Introduction
A link between mitochondrial dysfunction and neurode-
generative conditions, such as AD (Alzheimer’s disease),
has long been suggested to exist. Observations of altered
cerebral blood flow and bioenergetic deficits in dementia
patients, made using positron electron tomography [1,2],
initiated research into the function of mitochondria in
neurodegeneration as they are central to cellular energy
metabolism. Evidence of the pivotal role of metabolic
pathways and free-radical turnover in mitochondria in
normal aging and neurodegenerative diseases has since
accumulated [3,4]. For example, Parker et al. detected reduced
cytochrome c oxidase activity in platelets [5] and the brains
of AD patients [6], whereas Sayre et al. found increased
levels of 4-HNE (4-hydroxynonenal), a product of lipid
peroxidation, in AD brain tissue in comparison with controls
[7]. Due to the proximity of mitochondrial DNA to ROS

Key words: Alzheimer’s disease (AD), amyloid-binding alcohol dehydrogenase (ABAD),

cyclohexenyl amine naphthalene alcohol (CHANA), cyclophilin D (CypD), intracellular amyloid

β-peptide (intracellular Aβ), mitochondrial dysfunction.

Abbreviations used: Aβ, amyloid β-peptide; ABAD, amyloid-binding alcohol dehydrogenase;
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membrane; TRX, thioredoxin 1.
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(reactive oxygen species), which are naturally produced
in the electron transport chain, this DNA is thought to
accumulate mutations over time, which can lead to increasing
mitochondrial dysfunction and increased production of ROS
with age [8–10]. Key mitochondrial enzymes that are affected
by AD include cytochrome c oxidase [5,11], the pyruvate
dehydrogenase complex, α-ketoglutarate dehydrogenase and
isocitrate dehydrogenase [12,13].

Lustbader et al. [14] used immunoelectron microscopy
to show that mitochondrial Aβ (amyloid β-peptide) (both
the 1–40 and 1–42 forms) localizes inside the mitochondria
of Tg-mAPP [mAPP (mutant amyloid precursor protein)-
overexpressing transgenic] animals and, significantly, the
human AD brain. A further study showed that Aβ

accumulation in the mitochondria from Tg-mAPP mice and
the cerebral cortex of human AD brains is significantly higher
than that in non-transgenic mice and non-AD brains [15].
More recent studies indicate that mitochondrial dysfunction
and the accumulation of mitochondrial Aβ [and ABAD
(amyloid-binding alcohol dehydrogenase): see below] can
be observed in the early stages of AD in other commonly
used transgenic animal strains, including the popular triple
transgenic mouse model (human APPSWE, TauP301L and
PS1M146V [16]).

The origin of this mitochondrial Aβ is still under
debate and there is experimental evidence of the local
production (e.g. the presence of the γ -secretase complex
within mitochondria) and/or the import of Aβ from the

C©The Authors Journal compilation C©2011 Biochemical Society Biochem. Soc. Trans. (2011) 39, 868–873; doi:10.1042/BST0390868B
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cytosol via the TOM (translocase of outer mitochondrial
membrane) [17–19]. In addition to the ongoing efforts to
determine how Aβ occurs within mitochondria, the other
key question regards the action of Aβ once it is located
within mitochondria. The addition of Aβ to cell cultures
induces the dysfunction of mitochondrial respiration, ATP
depletion and production of ROS [20,21]; the exposure of
isolated mitochondria to Aβ reduces complex IV activity
[22] and induces the formation of the permeability transition
pore, which is linked to cell death [23]. In addition to
these organelle-level changes, in the last decade attention has
been increasingly focused on two mitochondrial proteins,
ABAD (amyloid binding alcohol dehydrogenase) and CypD
(cyclophilin D), both of which appear able to mediate the
toxicity of the Aβ peptide. The binding of both proteins to
Aβ (both the 1–40 and 1–42 forms) has been demonstrated at
nanomolar Aβ concentrations, and Aβ accumulation within
cells is known to result in an increase in the expression of
both these proteins [23–25].

CypD
CypD, a peptidylprolyl isomerase F, is found in the
mitochondrial matrix and it translocates to the inner
mitochondrial membrane during times of oxidative stress
where it is thought to play a role in the opening of the mPTP
(mitochondrial permeability transition pore) [26]. CypD is
considered to be a part of the mPTP as it associates with ANT
(adenine nucleotide translocase) and possibly other factors,
such as the VDAC (voltage-dependent anion channel) and the
PiC (mitochondrial phosphate carrier), to contribute to
the opening of the pore [27]. Using a variety of methods such
as immunoprecipitation, co-localization and SPR (surface
plasmon resonance) assays it was shown that CypD can
bind to Aβ at nanomolar concentrations of Aβ. However,
no direct contact sites have yet been identified [23]. Du et al.
[23] also reported that under Aβ-rich conditions in the aging
brain, CypD expression levels are increased and coincide
with increased levels of ROS production. Further studies
using Tg-mAPP mice deficient in the gene encoding CypD,
revealed that the interaction of CypD with Aβ can result
in cellular stress and cell death [23,25]. Notably, neurons
derived from CypD-deficient animals are resistant to Aβ-
induced opening of the mPTP and are thus protected against
Aβ- and oxidative stress-induced cell death. These animals
also exhibited significantly improved learning and memory
functions in comparison with transgenic mAPP mice with
normal expression of CypD [25].

ABAD
ABAD is the most characterized intracellular Aβ-binding
protein and it was first identified in 1997 using a yeast
two-hybrid screen [24]. It was originally identified within
the ER (endoplasmic reticulum) and was termed ERAB
(ER-associated amyloid-binding protein) [24]; however, later
studies confirmed its presence inside mitochondria [28]. The
action of this enzyme is primarily to catalyse the reduction

of aldehydes and ketones or the reverse reaction of oxidation
from alcohols for energy production. As described in more
detail by Muirhead et al. [29] ABAD acts on a range of
substrates, indicating the variety of functions it can have
within the cell. This variety of potential substrates correlates
with the finding that ABAD appears to act as a molecular
switch. In the presence of low levels of Aβ, ABAD can
exhibit neuroprotective effects, and its increased expression
is protective in animal models of Parkinsonism [30] and
metabolic stress [31]; however, as Aβ levels rise, it appears
that ABAD loses its ability to protect and that it enhances
Aβ toxicity [32]. X-ray crystallography studies of human
and rat ABAD have provided a clear representation of the
catalytic core of ABAD and enabled the identification of
key residues involved in substrate binding and interaction
with Aβ [33]. However, the precise identity of the residues
involved in the Aβ–ABAD interaction could not be identified
by means of crystallography, since loop D, the region that
is thought to bind Aβ, was disordered in the structure
[14]. Interaction with Aβ not only inhibits ABAD’s enzyme
function (though notably only at micromolar concentrations)
[28,34], but also causes severe mitochondrial dysfunction
and cellular toxicity [14,32], which cannot be attributed to
a loss of enzyme function alone. Proteomics studies on mice
overexpressing ABAD and mAPP revealed that in the living
brain the ABAD–Aβ interaction also affects the expression of
proteins. Proteins that were specifically identified were Ep-1
(endophilin-1) [35] and Prdx-2 (peroxiredoxin-2) [36], both
of which were found to be more abundant in human AD
brains in comparison with controls [35,36]. To date, the link
between these two proteins and mitochondrial dysfunction
remains unclear. However, evidence exists that increased
levels of Ep-1 can cause the activation of JNK (c-Jun-N-
terminal kinase) [35,37]. JNK is a stress kinase that has
been linked to Aβ production in neuronal cells [38,39],
whose action is associated with the early stages of AD [40].
Conversely, Prdx-2 is an antioxidant protein and an increase
in its expression can protect against Aβ-induced toxicity [36].
Thus the increased expression of these two proteins typifies
competing pathways that are activated in an AD afflicted
brain.

Another important metabolic function located in mi-
tochondria is Ca2 + homoeostasis. Evidence of disturbed
Ca2 + homoeostasis [41] and alterations in Ca2 + regulated
proteins, especially the neuronal proteinase calpain and its
targets, has been detected in human AD brains, in human
cortical neuron cultures in vitro [42,43] and in transgenic
mice [44]. Interestingly, a link between the calpain-regulated
Cdk5 (cyclin-dependent kinase 5) and Prdx-2 inactivation
by phosphorylation has been discovered in a model of
Parkinson’s disease [45]. In addition, Cdk5 had been earlier
identified as a candidate kinase for the mediation of neuronal
toxicity in AD [46–48]. The relevance of this pathway
to Prdx-2 function in AD has not been investigated so
far. Our own studies indicate that the phosphorylation of
Thr89 in Prdx-2 can regulate the observed protection against
Aβ-induced toxicity (E. Borger, unpublished work). More

C©The Authors Journal compilation C©2011 Biochemical Society



870 Biochemical Society Transactions (2011) Volume 39, part 4

recently a novel Ca2 + -binding protein, EFHD 2 (EF-hand
domain containing protein 2; swiprosin 1) was also linked
to one of the hallmarks of AD [49]. EFHD 2 is associated
with hyperphosphorylated tau protein in a mouse tauopathy
model and in human AD brains to a greater degree than it
is in control tissues [49]. Additionally, it was reported that
protein levels of EFHD 2 were found to have increased in
AD cases in comparison with those in controls [49], and our
own studies suggest that this is also the case in the Tg-mAPP
mouse model, which does not develop tauopathy (E. Borger,
unpublished work). The function of EFHD 2 in neuronal cells
is still unknown, but its association with two of AD hallmarks
points towards its potential importance in AD pathology.

Taken together, research on human dementia patients
and studies using animal as well as in vitro models for
AD have shown that all key functions of mitochondria are
affected in AD. A detrimental link between impaired brain
energy metabolism, ROS production and disturbed Ca2 +

homoeostasis has also been established in the case of other
neuropathological conditions such as delirium, ischaemia and
hypoglycaemia. Consequently, Blass [50,51] and Lin and Beal
[52] have proposed the role of a downward ‘mitochondrial
spiral’ in the development of neurodegenerative diseases, in
particularly with regard to AD.

Therapeutic targets and development of
assays
The proposed binding site of Aβ on ABAD, ‘loop D’,
was identified through a range of complimentary techniques
including X-ray crystallography and mutagenesis studies
[14]. It has been shown that a synthetic peptide consisting of
residues 92–120, which forms this loop, can be used as a DP
(decoy peptide), which competes with ABAD as a partner
that binds to Aβ. Using SPR, it was shown that this DP
was able to prevent the binding of Aβ to ABAD [14]. The
same region of ABAD, identified independently through an
antisense peptide approach, was found to bind biotinylated
Aβ with a Kd (dissociation constant) of 107 nM, using ELISA
[53]. Cellular studies of the DP effects, using a Tat-DP fusion
peptide to allow the peptide to cross the cell membrane, found
that the application of the peptide protected neurons (from
wild-type, Tg-ABAD and Tg-ABAD/mAPP mice) against
Aβ-induced toxicity [14]. Similarly, the introduction of DP-
TRX (thioredoxin 1; an enzyme introduced here in order
to stabilize the peptide) into cell cultures using a lentiviral
approach, revealed that DP-TRX-transfected cells showed
decreased apoptosis, decreased LDH (lactate dehydrogenase)
release and increased cell viability after treatment with Aβ in
comparison with controls [54]. Compelling evidence of the
effectiveness of the peptide was provided by in vivo studies
in transgenic animals, where a fusion peptide consisting of
amino acids 93–116 of loop D with a Tat sequence and
a mitochondrial-targeting sequence [Tat-mito-DP(93–116)]
was found to alter levels of AD biomarker proteins Prdx-
2 and Ep-1 [35,36]. Intraperitoneal injection of Tat-mito-
DP(93–116) into Tg-mAPP mice resulted in a reduction in

Prdx-2 levels in these mice to levels that were comparable with
those in non-transgenic mice [36]. Similarly, Ep-1 levels were
elevated in double transgenic ABAD/mAPP mice and
were found to return to basal levels when the mice
were treated with Tat-mito-DP(93–116) [35]. In addition,
behavioural studies revealed that treatment with the DP
improved short-term memory performance in transgenic
AD mouse models. Recently, Yao et al. demonstrated that
double transgenic mAPP/Tat-mito-DP(91–119) mice as well
as mAPP mice when systemically treated with the DP, showed
significant improvement in the radial-arm water maze test
of short-term memory performance in comparison with
untreated mAPP mice [55].

In order to develop therapeutic compounds that target the
Aβ–ABAD interaction, a robust method for monitoring
the activity of the desired drug target is required. The
use of purified ABAD protein to measure enzyme activity
in vitro is well documented [29]. Utilizing the absorption
of NADH at 340 nm, the rate of reduction in substrate can
be measured by means of spectroscopy. Recently, we and
our collaborators developed a cell-based assay that enables
the study of ABAD activity in intact living cells. The assay
uses a fluorescent ABAD substrate mimic, CHANA (cyclo-
hexenyl amine naphthalene alcohol), which is based on the
endogenous ABAD substrate oestradiol. CHANA is a non-
fluorescent substrate under assay conditions, whereas the
reaction product, CHANK (cyclohexenyl amine naphthalene
ketone) fluoresces in non-aqueous environments, e.g. in
cell membranes [56]. Due to these different photochemical
properties, the selective detection of the accumulation of
CHANK is possible. Thus the conversion of CHANA to
CHANK, and hence ABAD activity, can be monitored by
means of fluorescence microscopy. This novel approach has
recently been improved upon by the means of synthesis
of the individual stereoisomers of CHANA. ( − )-CHANA
was found to be selectively metabolized by ABAD, whereas
( + )-CHANA showed a much higher level of background
oxidation by other cellular dehydrogenases [57]. Thus, using
( − )-CHANA, we have laid the foundations for a cell-
based assay monitoring of ABAD activity. When using
( − )-CHANA, metabolism was seen to be substantially
diminished in cells treated with a known ABAD inhibitor,
AG18051 [33]. Importantly, it was also demonstrated that Aβ

can inhibit ABAD activity in living cells. Upon addition of
22 μM Aβ(1–42), HEK-293 cells (human embryonic kidney
cells) were shown to exhibit a significant decrease in ( − )-
CHANA metabolism of approximately 20%. It is hoped that
further development of this system will provide a robust
cell-based assay for use in the identification of potential
modulators of ABAD function [57].

The future
AD is a complex disease, and likewise it becomes more and
more apparent that the toxicity of the Aβ peptide is also
a complex process. Indeed, although many approaches to
explain AD pathology have centred on extracellular Aβ, there
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Figure 1 Consequences of mitochondrial Aβ

APP (amyloid precursor protein) can be transported to mitochondria, where it interacts with TOM and TIM (translocase of the

inner membrane), disturbing mitochondrial protein import (1). Aβ can be imported into mitochondria via TIM and TOM and

is found associated with the inner mitochondrial membrane, disrupting mitochondrial respiration and leading to an excess

production of ROS (2). Aβ has been found to interact with ABAD in the mitochondrial matrix, inhibiting enzyme activity (3).

The Aβ–ABAD interaction also leads to an up-regulation of AD biomarkers Ep-1 (4) and Prdx-2 (5). At the inner mitochondrial

membrane, Aβ can interact with CypD, which is involved in the formation of mPTP and Ca2 + -release from mitochondria

(6). Aβ can be found in the cytosol, disturbing cell signalling, protein degradation and causing ROS production, which leads

to an increase in cytosolic Ca2 + (7). Ca2 + -mediated Cdk5 activation has been found to inhibit Prdx-2’s antioxidant function.

has been lesser focus on the involvement of intracellular
species of Aβ. Our studies with our collaborators have
focused on these events (summarized in Figure 1). They
suggest that the one-drug and one-target approaches for
the treatment of AD are unlikely to constitute an effective
strategy of treatment of AD. Consequently, the treatment of
this disease will probably require a three-pronged approach,
targeting, for example: (i) the formation/clearance of Aβ

and that of hyperphosphorylated tau; (ii) the support and
stabilization of the remaining neuronal networks; and (iii)
protection of potential sensitive intracellular targets. The
integrity and function of mitochondria is one such sensitive
intracellular target, and though ABAD and CypD are not
classical drug targets they are important players in the
sequence of events resulting in mitochondrial dysfunction.
Therefore future approaches for the treatment of AD will

greatly benefit from an understanding of their involvement
in AD.
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Abstract

Current strategies for the treatment of Alzheimer’s disease (AD) involve tackling the

formation or clearance of the amyloid-beta peptide (Aβ) and/or hyper-phosphorylated tau, or 

the support and stabilization of the remaining neuronal networks. However, as we gain a

clearer idea of the large number of molecular mechanisms at work in this disease, it is

becoming clearer that the treatment of AD should take a combined approach of dealing with

several aspects of the pathology. The concept that we also need to protect specific sensitive

targets within the cell should also be considered. In particular the role of protecting the

function of a specific mitochondrial protein, amyloid binding alcohol dehydrogenase

(ABAD), will be the focus of this review. Mitochondrial dysfunction is a well-recognized fact

in the progression of AD, though until recently the mechanisms involved could only be

loosely labeled as changes in ‘metabolism’. The discovery that Aβ can be present within the 

mitochondria and specifically bind to ABAD, has opened up a new area of AD research. Here

we review the evidence that the prevention of Aβ binding to ABAD is a drug target for the 

treatment of AD.
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Introduction

The past decade has seen many advances in dementia research towards the development of

new innovative therapies for Alzheimer’s disease (AD). However, these efforts have yet to

lead to a major breakthrough in AD treatment. The AD research community still debates the

relative significance of tau and amyloid-beta (A) pathologies in the progression of this

disease and with regard to the latter whether this is intracellular or extracellular [1]. There is

also debate concerning the relative importance of “nature and nurture” with regard to active

research programs using genome wide analysis to identify genetic risk factors versus changes

in lifestyle [2]. The truth is likely to be a combination of all of these events. What is therefore

clear is that a future treatment for AD will not consist of a one-drug therapy, but will include

a combination of different approaches.

Despite the best efforts of the pharmaceutical industry, some in the science community

are now seeking a radical rethink in how drugs to treat this disease will be developed. In

particular, many new and recent attempts can become thwarted in the early stages of

development when trying to solve all the technical issues of target-based drug design in one

go [3]. Instead, methods such as lead-oriented synthesis of new compounds have recently

been suggested as more promising alternative routes [4]. This is accompanied by an

increasing number of authors stressing the importance of understanding the detailed

molecular mechanism of action of a potential new drug and of using appropriate phenotypic

assays in its validation and design [5]. It could be argued that we are only starting to

understand the molecular changes that are occurring within neurons in AD. However, we

would predict that future treatments will consist of targeting three aspects:

i) The formation or clearance of A and/or hyper-phosphorylated tau; though debate rages

on whether dismantling a protein aggregate would be a good thing, and as yet targeting

the production or synthesis of these toxic proteins has proven to be difficult [6-8] .

ii) The support and stabilization of the remaining neuronal networks. This includes the

current drug therapies such as cholinesterase inhibitors and memantine [9].

iii) The protection of specific sensitive targets. By identifying the particularly important

sensitive targets in AD, it may be possible to protect them against the toxicities of A

and/or tau.
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It is in regard to this last point which provides the setting of this review and in particular

leads to the role of protecting a specific mitochondrial protein (amyloid-binding alcohol

dehydrogenase (ABAD)) as an example of how the new criteria of drug-design can be

applied.

Mitochondrial dysfunction is a well-recognized fact in the progression of AD, though

until recently the mechanisms involved could be loosely labeled as changes in ‘metabolism’

[10]. It is now apparent that there are subtle and complex molecular factors at work in

mitochondria and of particular importance is the fact that the observed mitochondrial damage

is potentially reversible, as has been shown in various animal models [11-13]. It is also now

known that not all mitochondria are created equal and as such synaptic mitochondria have

been found to be more vulnerable to the stresses associated with AD pathology [14-18].

The function of mitochondria is to create energy and provide homeostasis and so

energy production and metabolism have been known for many years to be defective in AD

pathology [10, 19]. Changes in mitochondrial enzymes involved in the electron transport

chain and citric acid cycle have been previously noted by many groups [9, 20-22] and as such

these observations fit with the idea of mitochondrial dysfunction and oxidative stress as

central aspects of AD pathogenesis [23]. Accordingly, clinicians have used the metabolism of

glucose as a particular useful method of detecting specific metabolic changes in the brains of

AD patients [24, 25]. In addition, although administration of simple antioxidants, such as

vitamin E, in the management of AD has so far been unsuccessful [26], the development and

application of mitochondria-targeted antioxidant compounds has emerged as a promising

approach for the treatment of neurodegenerative diseases [13, 27]. However, until recently

what has not been so clear are the molecular mechanisms causing mitochondrial damage.

Recent research efforts have introduced the concept that the accumulation of Aβ 

inside the cells and specifically in mitochondria might be a likely explanation for the

observed mitochondrial damage in AD (reviewed in [28]). The accumulation of intracellular

A (of both A1-40) and A1-42)) has been shown several times [29-37] and indeed,

unlike extracellular plaques, has been shown to correlate with the disease progression [38,

39]. In 2004, it was published that A could be found inside mitochondria in both animal

models and significantly also in human AD sufferers [34]. This therefore begs the question

what is the intra-mitochondrial A doing? At present two molecular binding targets for Aβ 

have been identified within mitochondria, namely ABAD and cyclophilin D [15, 40]. What is

particularly significant about these two proteins, is that both show an increase in expression
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levels in AD and at the same time have been shown to bind A with nanomolar affinity [34,

37]. This is in contrast to the changes observed in other mitochondrial proteins involved in

metabolism which have been found to have reduced expression levels and activity in AD and

for which a specific interaction with Aβ has not been described.  

Amyloid binding alcohol dehydrogenase

It was the identification of an intracellular protein via originally a yeast two hybrid screen for

Aβ binding molecules, that opened up a new area of mitochondria focused AD research [41]. 

From this initial screen the mitochondrial protein ABAD has subsequently been shown to

bind A via a plethora of different techniques ranging from biophysical approaches (NMR,

SPR) through to immunoprecipitation experiments from both AD transgenic mice and human

AD brains [34, 42, 43], where ABAD expression levels have also been found to be up-

regulated [41]. Initial studies indicated that the binding of A could occur at nanomolar

affinity; however, it was not until micromolar levels of A were reached, that changes in

ABAD activity were also observed [44, 45]. ABAD contains a Rossman fold [46] for the

binding of nucleotides and it has been shown to be able to catalyze, with the help of

NAD+/NADH, the reduction of aldehydes and ketones and oxidation of alcohols for energy

production utilizing different substrates. As reviewed by Muirhead et al. [47], these substrates

range from simple alcohols and amino acid metabolites [48] through to fatty acid metabolites

and steroids [28]. Of interest, deficient turnover of one of these substrates, isoleucine, due to

inherited point mutations in ABAD, is associated with neurological abnormalities [48].

ABAD activity can be manipulated in two ways, under conditions of stress (it

increases) [49] or in the presence of A (it decreases) [34, 50]. With regard to the latter, the

change in activity due to the binding of A to ABAD has been previously presented as a

rather digital response, that is, as A binds to ABAD it switches its activity off with respect to

a number of simple substrates [44, 45]. However, recent data from our laboratories suggests

that this rather digital view may be an over simplification (FGM, unpublished data). An up-

regulation of ABAD has been suggested to have protective effects in models of Parkinsonism

[51] and metabolic stress [49]. However, in AD models, it has been shown that the presence

of active ABAD [34, 52], but not an inactive mutant of the enzyme [45], can in fact enhance

mitochondrial dysfunction and oxidative stress in vitro [34, 41] and in vivo [34, 52] (Figure

1). Moreover, studies have now identified additional consequences of A binding to ABAD

in living organisms. Specifically, there are a number of genes that are switched on and appear
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to be controlled by the binding of A to ABAD. Examples include the antioxidant protein

peroxiredoxin-2 [53] and the presynaptic endocytic protein endophilin-1 (also referred to as

endophilin A1) [54], both of which have been found to be up-regulated in the human AD

brain as well [53, 54]. Other proteins have also been shown to be increased such as creatine

kinase B, and heat shock protein 70 (FGM and SDY unpublished data) both of which have

now been linked by other groups to AD progression [55-57]. The ability to control the

expression of an array of other proteins could suggest that it is not a simple question of

switching off activity, but potentially that the binding of A to ABAD causes the enzyme to

change its ability to utilize certain substrates, which in turn would affect other proteins

directly or indirectly. It has been challenging to pin point the exact in vivo substrates of

ABAD in the brain, though our recent work suggests that there are indeed subtle changes in

lipid metabolism in response to altered ABAD activity in cells (FGM and SDY unpublished

data).

Consequences of ABAD and A binding.

A number of molecular and cellular changes occur after ABAD and A interact within the

mitochondria [28], but as mentioned above, in living organisms it can result in protein

expression changes in the brain. The two best described proteins, peroxiredoxin-2 and

endophilin-1, are examples of the complexity of the biochemical pathways that become

activated in AD and both can be linked to synaptic activity (Figure 1).

Peroxiredoxin-2 is known to be an antioxidant protein, which has the ability to

prevent A induced toxicity [53]. Its expression has also been shown to be elevated in both

transgenic AD animals and the post-mortem human brain [53]. Peroxiredoxin-2 has further

been linked to the mechanisms at work in the parkinsonian brain [58-60]. However, it would

appear that it is not a simple question of just elevated levels of this protein, as it has been

shown that there is a critical residue that can be phosphorylated (Thr89) which would lead to

the inactivation of the enzyme’s activity [59]. This is thought to be the case in the

parkinsonian brain [59], but it remains to be seen whether this is the case in the AD brain,

too. Indeed, one of the kinases known to phosphorylate this residue in peroxiredoxin-2 is

CDK5 [59], which in turn has been shown to have elevated levels of activity in the AD brain

[61, 62], thus suggesting peroxiredoxin-2 may indeed be phosphorylated and therefore

inactivated in AD. In addition, peroxiredoxin-2 activity can also be controlled directly by



7

oxidation [63], for example induced by the administration of the dopaminergic toxin 6-

hydroxydopamine [58] or S-nitrosylation [60]. Therefore it appears that the actual state of

post-translational modification of this protein in the brain affected by Parkinson’s disease or

AD, may be an important aspect.

The second protein that has been shown to be elevated in the AD brain in response to

ABAD binding to A is endophilin-1. This is a member of a family of proteins which

together have an expanding number of functions, ranging from synaptic vesicle endocytosis,

mitochondrial function and receptor trafficking [64]. Specifically, this family of proteins was

predicted to be involved in neurodegenerative diseases [65] prior to them now being shown to

be involved in AD [54], Parkinson’s disease [66], spinocerebellar ataxia 2 [67], and

Huntington’s disease [64]. In the case of AD, it was the family member endophilin-1 that has

been directly shown to be involved. Initially, it was shown that increased levels of

endophilin-1 can be linked to increased activation levels of the stress kinase c-Jun N-terminal

kinase (JNK) in both HEK293 cells [68] and primary cortical neurons [54] and increased

JNK-activity has been known to be a feature of AD pathology [69]. The activation by

endophilin-1 occurs potentially through a germinal center like kinase (GLK)-mediated

pathway [68]. GLK is part of the germinal center kinases family and their activation is

thought to be via the binding of SH2/SH3 adapter binding proteins which are associated with

membranes [70]. Endophilin-1 fulfills both of these criteria by affecting lipid membrane

curvature for synaptic vesicle formation and by containing a C-terminal SH3 domain [65].

With this in mind, it is interesting to note that endophilin-1 as well as peroxiredoxin-2 have

been identified in the same vesicle complexes as the scaffold protein Sunday driver/JNK-

interacting protein 3 (JIP3) by immunoprecipitation studies on synaptosomes from the mouse

cortex [71]. The recruitment and activation of GLK can lead to the activation of the MAP3K,

MEKK1 [72]. Previous findings indicated that MEKK1 interacts with inactive MKK4 to

form a MEKK1-MKK4 complex. Active MEKK1 can phosphorylate and activate MKK4

(and/or MKK7), resulting in its dissociation from the complex. The free and active MKK4

then specifically interacts with JNK. Once activated, JNK can translocate to the nucleus or

other target sites to phosphorylate downstream effectors, thereby affecting important aspects

of neuronal function such as neurite outgrowth, mitochondrial function, synaptic plasticity

and apoptosis (all reviewed in [69]). This suggests that through recruiting GLK via its SH3-

domain, endophilin-1 might be able to co-localize important components of the JNK-

signaling cascade and facilitate its activation. This might further be influenced by the
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presence of peroxiredoxin-2 [71], which has also been implicated in the activation of JNK-

signaling in a cancer cell model [73].

However, it is possible that endophilin-1 may have another direct effect on synaptic

signaling as it can lead to the increased probability of glutamate release [74]. This implies

that an elevated level of endophilin-1 at the synapse can interfere with normal

neurotransmitter signaling. Indeed, it is possible to speculate that an increase in endophilin-1

may have different effects in different locations, as endophilin-1 has been found both in the

pre-synaptic neuron [75-77] but also the post-synaptic density [78], where it has recently

been given a role in dendritic development [79]. In either case, the relative presence or

absence of other signaling molecules will determine which pathways endophilin-1 can

influence inside the cell. In addition, the function of endophilin-1 has also been found to be

affected by local levels of calcium [80], which are known to be disturbed in AD [81]. This

coupled with the recent discovery that pre-synaptic mitochondria expressing ABAD and A

are more sensitive than their soma compatriots [14] implies, that spatial localization of these

events could be of paramount importance as they may also influence endophilin-1 function

through altered ABAD activity affecting lipid metabolism or mitochondrial dysfunction and

calcium homeostasis. Therefore, the interaction of ABAD and A within mitochondria is able

to elevate endophilin-1 protein [54] and mRNA expression levels (Yan, unpublished results).

How this occurs is unknown, but it is likely to have far-reaching consequences for synaptic

function (Figure 2).

Evidence that ABAD is a drug target.

The specific up-regulation of ABAD in human AD and interaction with Aβ [34, 41] which 

caused mitochondrial dysfunction [52] and other cellular effects also present in the human

AD brain [53, 54], suggested that the ABAD-Aβ interaction might be a potential drug target. 

Using the knowledge gained from understanding how ABAD and Abind to each other, a

series of publications have now further validated this view. The crystal structure of ABAD

with A bound produced an insight into their interaction. Unfortunately, the exact contact

sites could not be established due to distortion of the crystal structure in this area [34], but it

was found that a region called loop D encompassing residues 92 to 120 was the region of

ABAD that could bind Aβ and this could be confirmed by various biophysical experiments 

[34, 82]. However, the most convincing data that this interaction was significant, came from
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the ability of a peptide based on the sequence of this region to work as a decoy in vivo

(Figure 2). Initial experiments showed that modifying the decoy peptide by addition of

peptide sequences from the cell-membrane transduction domain of the human

immunodeficiency virus-1 (HIV-1) tat protein [83, 84], enabled the ABAD decoy peptides

(ABAD-DP) to cross cell membranes and prevent Aβ toxicity in neuronal cultures [34, 85]. 

Others showed that linking this peptide region with thioredoxin 1 and then expressing the

chimeric protein in cell cultures, also protected against Aβ toxicity [85]. It was then the 

ability of using modified decoy peptides in living organisms that introduced the fascinating

possibility that the ABAD and A interaction could be a drug target. Adding a mitochondrial

targeting sequence to the decoy peptide facilitated its localization in mitochondria after

intraperitoneal injection and transport through the blood brain barrier. It was then possible to

show in 6 month old transgenic animals expressing elevated levels of ABAD and Athat

the observed increases in the expression levels of peroxiredoxin-2 and endophilin-1, could be

reversed [53, 54]. Even more significant was the finding that using the same approach, it was

possible to reverse the behavioral changes in these animals as well [11]. Another important

aspect of these studies was, that the reversal of behavioral changes could be achieved by both

purified peptide injected intraperitoneally and also in a transgenic animal model expressing

the ABAD region 92-120 [11]. This approach also showed an additional potentially

protectiveeffect as the level of mitochondrial Aβ was reduced in the treated animals which 

correlated with an increase in the Aβ-degrading enzyme PreP (presequence peptidase) [11].  

Therefore, in keeping with the requirements for a suitable drug target (“ligandability”

and “druggability”) recently reviewed by Hann et al [86], it has been shown by both

biochemical and physiological determinates that preventing A binding to ABAD can be

achieved (ligandability) and has a significant positive effect (druggability). However the

question remains whether it is possible to design drugs around such a complex target.

Approaches: blood brain barriers, cellular assays and peptides

As indicated above, ABAD is a sensitive site in AD that can be protected from its interaction

with Aβ, which could be beneficial in AD treatment. Classically, protein-protein interactions 

have been avoided as therapeutic targets because of perceived difficulties in developing

compounds [87]. To overcome the perceived problems, then it is necessary to be imaginative.



10

For example, crossing the blood brain barrier is a perennial problem when dealing

with small molecules; however, the studies above have shown that intraperitoneally injected

peptides are capable of crossing the blood brain barrier and targeting the correct site in animal

models [11, 53, 54]. Other recent imaginative work has shown that other approaches can have

the same capability. A study in mice revealed, that modified retroviruses showed an increased

efficiency of gaining access to the central nervous system when mannitol was peritoneally

injected before intravenous administration of the viruses [88]. Another recent breakthrough

has been the use of targeted exosomes, again injected intravenously, which allowed biological

relevant compounds (in this case siRNA) encapsulated in these membranes, to be

successfully delivered into the brain [89]. Therefore there may be new horizons for getting

compounds across the blood brain barrier.

For good reasons, the development of small molecules as drugs is the standard

method in academia [3]. However, coupled to this approach has been the classical method of

devising a high throughput in vitro enzyme assay, but this approach has recently been one of

the pitfalls for the pharmaceutical industry, and so there has been a push to develop more cell

based phenotypic assays [5]. For ABAD and A the ability of the tested compounds to

prevent this interaction has been monitored at the cellular level by measuring the protection

provided by them in terms of for example preserving mitochondrial integrity, cytochrome C

release and respiration [12, 34, 85]. More direct methods may also be possible with the

advent of the first generation of ABAD targeted substrate mimics such as the fluorogenic

cyclohexenylamine naphthalene alcohol (CHANA)-(-) [47, 90], which, under specific

conditions, could be used to measure the prevention of A induced inhibition of ABAD

activity in living cells as a read out for compound testing.

Use of the loop D of ABAD has proven to be successful as described above, but in

drug terms a 40 amino acid peptide (20 amino acids from ABAD, approximately 20 amino

acids from targeting sequences) would be thought of as too large a molecule to become a

drug. However, it could be thought of as a template. At present the minimal size of the loop D

ABAD and its constituent parts that provide protection is not known. In addition, it might be

possible to design smaller mitochondrial targeting peptides [91], and also modify the amino

acids as simple peptide isosteres and heterocyclic peptide isosteres to increase rigidity of the

peptidomimetic, or the use of cyclic peptides which increase cellular stability. Indeed, there

are examples of modified peptides that have been produced to act on mitochondrial proteins

such as antamanide, a 10 amino acid cyclic peptide that targets cyclophilin D [92].
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However, small molecule compounds that prevent A binding to ABAD can also be

considered as possible. For example, frentizole was identified by an ELISA-based screening

assay, as a novel inhibitor of the ABAD-Aβ interaction, and was subsequently modified with 

the production of a novel benzothiazole urea, resulting in a 30-fold improvement in potency

[42]. This compound was found to have potential undesirable immunosuppressive qualities

[42]; however, this approach indicated that it might be possible to develop pharmacologically

active and medically useful compounds targeting ABAD. Fragment-based drug discovery has

been a popular strategy for this used in academia as well as pharmaceutical industry [3]. Two

commonly employed screening technologies in this field are thermal shift analysis and

saturated transfer difference NMR spectroscopy [93-95], which can identify compounds with

millimolar affinity for the target. By grouping compounds, for example using structure

activity relation (SAR) analysis, improved affinities for the target can then be achieved [93,

96]. Alternatively, fragments can also be combined, in order to effectively sample the

available chemical space as proposed by Hann et al. [86].

Thus, though the ABAD-A interaction is not a classical site for drug therapy, the

biology dictates that this interaction may be a future target (Figure 3). At the very least, the

work that was inspired from the original yeast two hybrid screen has shown that it is possible

to identify not just new drug targets but also novel biological pathways and events that occur

in neurodegenerative diseases such as AD.

Conclusion

Multiple lines of evidence indicate that mitochondrial dysfunction is an early pathological

feature of AD. Aβ can directly and indirectly interfere with mitochondria by affecting 

mitochondrial energy metabolism, oxidative stress, calcium homeostasis and mitochondrial

dynamics in axons and the synapse, eventually leading to neuronal injury and cognitive

impairment. Therefore, the mitochondria are a very important target in the pathogenesis of

AD. Given the role of ABAD in Aβ-induced synaptic pathology, the development of small 

molecules that inhibit the interaction of ABAD with Aβ, as outlined in this review, is a novel 

innovative therapeutic strategy for the management of AD.
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Figure 1: Working Hypothesis. Interaction of ABAD with Aβ enhances 

generation/accumulation of free radicals and impairs mitochondrial respiratory function. This

leads to synaptic dysfunction and aggravates cognitive dysfunction.

Figure 2: Synaptic dysfunction caused by the ABAD-Aβ interaction. Binding of Aβ affects 

the enzymatic function of ABAD, thereby causing unfavorable changes in lipid metabolism

and mitochondrial respiration. This ultimately leads to increased reactive oxygen species

(ROS) production and impaired calcium (Ca2+) retention and provokes the up-regulation of

peroxiredoxin-2 (Prx-2) and endophilin-1 (Ep-1). 1) Prx-2 is able to degrade ROS but its

function can be affected by elevated Ca2+ leading to its phosphorylation and inactivation and

the accumulation of ROS. 2) Ep-1 plays a role in glutamatergic (glut) synaptic transmission

by functioning in synaptic vesicle endocytosis, which is directly regulated by Ca2+ binding to

Ep-1 [80]. Ep-1 can also be involved in 3) JNK-activation as well as 4) signaling events in

the post-synapse leading to dendritogenesis. The correct balance of all of these events in the

synapse, which is disturbed by the ABAD-Aβ interaction, is of crucial importance for 

synaptic plasticity and memory formation.

Figure 3: The ABAD decoy peptide approach. Left: Levels of Aβ are elevated in the AD 

mouse model (and the human AD brain), increasing its binding to loop D in ABAD.

Endophilin-1 and peroxiredoxin-2 expression levels are increased in the AD mouse model as

a result of the ABAD-Aβ interaction, which also causes neuronal cellular stress (increased 

ROS production, impaired metabolism, resulting in reduced plasma membrane integrity and

LDH-release and apoptosis). Right: Administration of modified peptides based to the loop D

amino acid sequence of ABAD are able to disrupt the ABAD-Aβ interaction in the AD mouse 

model in vivo, decrease the expression of endophilin-1 and peroxiredoxin-2 and restore

cellular function and memory performance.
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