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Abstract
A three step route to single diastereoisomers of the vicinal trifluoromethyl motif is described. The route starts from either syn- or

anti-α,β-epoxy alcohols and takes a direct approach in that each of the three steps introduces a fluorine atom in a regio- and stereo-

specific manner. Starting from either the syn- or the anti-α,β-epoxy alcohol, stereospecific reactions generate two separate diaste-

reoisomeric series of this motif. The route is a significant improvement on an earlier six step strategy.
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Introduction
Selective fluorination is an important strategy for the design of

performance molecules in medicinal chemistry programmes and

in organic materials [1,2].  To date arylfluorines have domi-

nated this agenda. However molecules where the C–F bond is a

constituent of a stereogenic centre are gaining in prominence,

particularly as  new reagents  and more versatile  asymmetric

methods facilitate their syntheses [3,4]. The fluorine atom is

small, with a steric impact only a little larger than hydrogen,

and it is a weak hydrogen bond acceptor [4]. However the C–F

bond  is  polar  and  thus  interactions  with  nearby  functional

groups are largely a result of dipolar interactions rather than

hydrogen  bonding  or  sterics.  We  have  focused  a  recent

synthetic effort on the assembly of multivicinal fluorine motifs

where  contiguous  fluorines  have  been  placed  along  alkane

chains [5]. It emerges that different diastereoisomers of other-

wise constitutionally identical isomers have very different prop-

erties  and conformations  as  a  consequence of  the  preferred

alignments of the C–F bonds, and thus the specific stereogenic

relationship between the vicinal fluorines alters the properties of

the compounds in a very specific manner [6-10]. Earlier contri-

butions in this area outlined a synthetic approach to the vicinal

trifluoro motif as shown in Scheme 1 [11,12]. However this

method had some limitations and particularly the final step was

susceptible to competing elimination, resulting in poor yields.

The route also required six steps to insert  the three fluorine

atoms, with a poor overall yield. A more practical route to this

class of compounds is required if these vicinal trifluoro motifs

are to be applied usefully.

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Scheme 1: Previous six step route to the vicinal all-syn-trifluoro motif.

Scheme 2: Novel three step successive fluorination strategy from α,β-epoxy alcohols to different diastereoisomeric series (a and b) of the vicinal
trifluoro motif.

A three step strategy, as illustrated in Scheme 2, starting from

diastereoisomeric syn- or anti-α,β-epoxy alcohols A was envis-

aged, each step incorporating a fluorine atom in a stereospe-

cific manner. Conversion of the free hydroxyl group to fluorine

would generate α-fluoro-epoxides B. Epoxide ring opening with

an HF source could then provide difluoroalcohols C. Insertion

of the third fluorine would reasonably be achieved by fluorina-

tion of  the  free  hydroxyl  group of  C  to  generate  D.  Such a

strategy offers a three step route to the vicinal trifluoroalkane

motif and would avoid the use of TBAF, reducing the risk of

elimination reactions competing with fluorine substitution, a

problematic aspect of the last step in the earlier route shown in

Scheme 1.

It was attractive to incorporate a peripheral tosyl group into the

developing  trifluoro  moiety.  The  tosyl  group  was  recently

shown to be compatible with Deoxo-Fluor® mediated deshy-

droxyfluorination  reactions  [7]  and  this  would  allow  the

prepared trifluoroalkyl motifs to be appended to more complex

structural architectures in due course.

Results and Discussion
The chemistry was initiated from allylic alcohol 2 which can

readily be prepared in enantiomerically pure form by hydro-

lytic kinetic resolution of vinyl epoxide 1 following Jacobsen’s

protocol [13] (Scheme 3).

Diol 2 was converted to tosyl ester 3 in a regioselective manner

following the procedure of Marinelli [14]. The tosyl ester 3 was

then  submitted  to  two  cross-metathesis  reactions  using  the

Grubbs II catalyst and with an excess of either hexene or allyl

benzene  (5  equiv)  to  form  allylic  alcohols  (S)-4  and  (S)-5
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Scheme 3: Synthesis approach to the requisite α,β-epoxy alcohols 6b and 7b.

Figure 1: X-ray structure (CCDC 750307) and stereochemistry of α,β-epoxy alcohol 7b.

respectively [15]. The excess of alkene favours the cross meta-

thesis reaction and the products were obtained in good yields

predominantly as the (E)-isomer. It was not possible to separate

the minor (Z)-isomer at this stage, however isomer separation

was more readily achieved after the subsequent epoxidation

step. Thus (S)-4 and (S)-5 were subjected to epoxidation reac-

tions following Sharpless’ methodology [16]. The anti-epoxy

alcohols were easily generated, however it proved more diffi-

cult  to  prepare  the  syn-epoxides  cleanly.  Treatment  with

titanium isopropoxide (Ti(OiPr)4) and D-diisopropyl tartrate

(D-DIPT) favoured formation of the anti-α,β-epoxy alcohols. In

the case of 4, epoxide 6b was obtained in 80% yield and in 97:3

dr. For 5, the resulting epoxide 7b was generated as the only

observable diastereoisomer. Epoxide (2R,3R,4R)-7b was recrys-

tallised from diethyl ether to afford a suitable crystal for X-ray

structure analysis  which confirmed its  relative and absolute

configuration (Figure 1).

Generation of the syn-α,β-epoxy alcohols Aa was more challen-

ging. This stereoisomer will ultimately deliver the all-syn Da

trifluoro motif (Scheme 1). Epoxidation of (S)-5 with L-DIPT

showed poor stereoselectivity and under optimised conditions

the resultant α,β-epoxy-alcohols 7a and 7b were obtained in a

3:1 ratio. Epoxidation reactions with m-CPBA and Ti(OiPr)4

gave diastereomeric ratios of between 2:1 and 3:1, thus L-DIPT

showed only a modest improvement in the stereoselectivity.

These diastereoisomers were not easily separated by chromato-

graphy, however the absolute and relative stereochemistry of

the crystalline threo-isomer (2R,3S,4S)-7a was confirmed by

X-ray structure analysis as shown in Figure 2.



Beilstein Journal of Organic Chemistry 2009, 5, No. 61.

Page 4 of
(page number not for citation purposes)

9

Figure 2: X-ray structure (CCDC 750306) and stereochemistry of α,β-epoxy alcohol 7a.

Scheme 4: Three step sequential fluorination from α,β-epoxy alcohols to eg. the vicinyltrifluoro tosylate 11.

With  a  strategy  to  access  both  stereoisomeric  series  of  the

allylic alcohol epoxides A in place, the fluorination reactions

were then explored.

The fluorination of the anti-isomers 6b and 7b was attempted

using  Deoxo-Fluor®  [17].  α,β-Epoxy-alcohol  7b  reacted

smoothly  with  Deoxo-Fluor®  at  40  °C  (Scheme 4)  to  give

fluoroepoxide (2S,3S,4R)-8b in 83% yield and with a 97:3 dr.

Epoxide ring opening of 8b was then explored with HF/pyridine

and this reaction proved to be both regio- and stereo-selective

[18,19]. When the reaction was carried out at 0 °C the resultant

difluoro alcohol 10  was obtained in 36% yield,  whereas the

yield improved as the temperature was lowered (47% at −35 °C

and 56% at −60 °C). Epoxide ring opening was stereospecific,

and  the  (2S,3S,4S)-difluoro  alcohol  10  was  obtained  as  the

major diastereoisomer in a 97:3 ratio. The third fluorine atom

was inserted in a smooth reaction by treatment of 10 again with

Deoxo-Fluor® to generate (2S,3R,4S)-11. The sequence illus-

trated in Scheme 4 validated the three step fluorination protocol

for this diastereoisomeric series.

Reaction  of  α,β-epoxy  alcohol  7b  with  Deoxo-Fluor®  also

proceeded smoothly generating fluoro epoxide (2S,3S,4R)-9b in

95% yield and as a single stereoisomer. However when 9b was

treated with HF/pyridine [19,20] there was no evidence that the

expected difluoro alcohol 12b had formed (Scheme 5). Instead

the fluorinated tetrahydrofuran 14 was isolated as a crystalline

product in 33% yield and its structure and stereochemistry were

established  by  X-ray  structure  analysis  (Scheme 5).  This

deviant reaction was surprising not only because there was no

trace of the analogous cyclisation product after treatment of 8b

with HF/pyridine, but also because cyclisation had occurred

with retention of configuration at C4. One explanation for this

outcome is that the reaction proceeds via  a bicyclic phenox-

onium intermediate 13 generated after HF promoted epoxide

ring opening. Fluoride ion triggered tosyl cleavage generates a
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Scheme 5: Unexpected cyclisation of 9b to furan 14 with HF·pyridine. An X-ray structure of 14 (CCDC 750309) reveals that the cyclisation proceeds
with a retention of configuration.

Scheme 6: Epoxide ring opening of 9b with 3HF·Et3N required forcing conditions. The structure and stereochemistry 12b (CCDC 750308) and 16
(CCDC 750310) was established by X-ray analysis.

sufficiently nucleophilic oxygen, to promote cation quenching

and formation of the cyclic ether. This process would involve

two configurational inversions at C4 giving overall retention.

Epoxide ring opening of the threo  isomer 9b  was eventually

achieved, however this required much more forcing conditions

using  3HF·Et3N in  toluene  at  120  °C,  and  generated  three

products 12b, 15 and 16, two of which arose by fluoride ion

displacement  of  the  tosyl  group to  generate  a  fluoromethyl

group (Scheme 6). Interestingly there was no evidence for the

formation of 14 with this less acidic reagent.

Compounds 12b and 16 were isolated in 23% and 25% yields

respectively, and the stereochemistry of each was established by

X-ray structure analysis. Epoxide ring opening occurred in each

case in a regio- and stereo-selective manner with the expected

inversion of configuration, and thus there was no evidence for

the involvement of  an intermediate phenoxonium ion under
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Scheme 7: Three step sequential fluorination from α,β-epoxy alcohol 7b to vicinal trifluoro tosylate 17b.

Table 1: Reaction of α,β-epoxy alcohol 7a and 7b under various fluorination conditions. Ratios determined by 19F NMR.

Conditions 9a 9b 18

Deoxo-Fluor®, DCM 1 1.43 0.56
Deoxo-Fluor®, toluene 1 1.41 0.53

DAST, DCM 1 1.64 0.66
Deoxo-Fluor®, THF 1 1.29 0.44

these conditions. The ring opening reaction of 9b was explored

under  a  variety  of  conditions  and  the  best  conversion  and

selectivity was obtained using chloroform at 100 °C in a sealed

autoclave with a Teflon inner layer (12b 58%, 15 2% and 16

4%). For the final  step of the sequence shown in Scheme 7,

difluoro alcohol 12b reacted smoothly with Deoxo-Fluor® to

generate trifluoroalkane 17b which could be isolated in 78%

yield.

Fluorination of epoxy alcohol 7b  by the three step protocol

(44% overall yield), illustrates a second substrate of this diaste-

reoisomeric  series,  and demonstrates  a  reasonably  efficient

protocol to the vicinal trifluoro motif, much improved over the

original six step sequence [11,12].

Fluorination of the threo-α,β-epoxy alcohol 7a  proved more

challenging because of a propensity to give isomeric fluorina-

tion products. Due to the difficulty in purifying the diastereoiso-

merically pure epoxide a deshydroxyfluorination reaction on a

1:1 mixture of 7a : 7b was explored. Grée and co-workers have

also  noticed  that  erythro-epoxy  alcohols  react  relatively

smoothly but that threo-epoxy alcohols are prone to rearrange-

ment [21,22]. Thus the mixture of 7a and 7b was treated with

Deoxo-Fluor® or DAST under a variety of conditions and the

outcomes are summarised in Table 1.

With this inseparable mixture of 9a and 9b (1:1.3 ratio) in hand,

a reaction to explore the introduction of the second fluorine was

carried out as illustrated in Scheme 8. Accordingly the mixture

was treated with 3HF·Et3N in chloroform at 100 °C and this

generated 12a among other products.

Separation of (2S,3R,4R)-12a was achieved from the product

mixture by chromatography (preparative TLC) in 33%. Finally,

treatment of 12a with Deoxo-Fluor® gave the desired all-syn-

trifluoro  alkane  (2S,3S,4R)-17a  as  a  single  enantiomer  in

moderate 57% yield. In general the vicinal trifluoro compounds

were stable and showed no tendency to degrade over time.
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Scheme 8: Epoxide ring opening with 3HF·Et3N and synthesis of the all-syn vicinal trifluoro tosylate 17a.

Conclusion
In summary a direct three step route has been developed from

α,β-epoxy alcohols  for  the synthesis  of  the vicinal  trifluoro

motif where a fluorine atom is introduced in each step. Two

different diastereoisomeric series (a and b) of the trifluoro motif

were explored.  The diastereoisomeric series Db  (Scheme 2)

could  be  prepared  in  a  relatively  straightforward  manner,

however the diastereoisomeric series Da (Scheme 2), where all

three fluorines are syn with respect to an extended alkyl chain,

proved to be more challenging. This is due to a greater diffi-

culty in obtaining diastereoisomerically pure syn-α,β-epoxy

alcohols, and also a greater propensity to side product forma-

tion during the first two fluorination reactions. Nonetheless the

methods provide a direct route to this largely unexplored motif,

and in the cases exemplified the synthesis delivers a product

carrying a terminal tosyl ester, which should allow the vicinal

trifluoro motif to be incorporated into larger molecular architec-

tures.

Experimental
Selected  experimental  data  is  presented.  Full  details  are  in

Supporting  Information.

(2S,3R,4S)-2,3,4-Trifluorooctyl 4-methylben-
zenesulfonate (11)
Deoxo-Fluor® (55 μL of solution 50% in THF, 0.15 mmol) was

added to a solution of 10 (25 mg, 0.07 mmol) in DCM (3 mL),

and the reaction was heated at 40 °C for 1 h. The reaction was

then cooled to RT and was quenched by the addition of silica

gel. DCM was then removed under reduced pressure and the

product was purified over silica (hexane 8/EtOAc 2) and was

recovered as a colourless oil (12 mg, 48%).

[α]D
20 = −2.7 (c = 1, CHCl3). 1H NMR (CDCl3, 400 MHz): δ

(ppm) 7.81 (d, 2 H, J = 8.3 Hz, CH ar); 7.36 (d, 2 H, J = 8.3 Hz,

CH ar); 4.86 (m, 1 H, J = 45.5 Hz, FCH); 4.74–4.37 (m, 3H, 2 ×

FCH + O2SOCHaHb); 4.27 (dddd, 1 H, J = 2.6, 4.2, 11.9, 29.6

Hz,  O2SOCHaHb);  2.46  (s,  3  H,  CH3);  1.94–1.84  (m,  1  H,

CHaHb); 1.70–1.58 (m, 1 H, CHaHb); 1.49–1.33 (m, 4 H, 2 ×

CH2); 0.92 (t, 3 H, J = 7.4 Hz, CH3). 13C NMR (CDCl3, 100

MHz): 145.3 (C ar); 132.3 (C ar); 130.0 (CH ar); 128.0 (CH ar);

89.8 (ddd, J = 178.3, 18.7, 1.9 Hz, CF); 88.3 (ddd, J = 181.7,

18.6, 29.1 Hz, CF); 85.7 (ddd, J  = 179.0, 30.4, 5.6 Hz, CF);

67.4 (d, J = 19.8 Hz, C-CH2); 29.6 (dd, J = 21.1, 4.6 Hz, CH2);

27.0 (d, J = 5.0 Hz, CH2); 22.3 (CH2); 21.6 (CH3); 13.8 (CH3).
19F NMR (CDCl3,  376 MHz): −199.82 to −200.12 (m, 1 F);

−201.04 to −201.38 (m, 1 F), −214.61 to −214.89 (m, 1 F). 19F

{1H} NMR (CDCl3, 376 MHz): −199.9 (dd, 1 F, J = 15.9, 3.2

Hz); −201.2 (dd, 1 F, J = 9.5, 3.2 Hz); −214.7 (dd, 1 F, J = 9.5,

15.9  Hz).  νmax/cm−1  1363,  1275,  1179,  897,  758,  749.  m/z

(ES+) = 361.01 (MNa+, 100%); HRMS (ES+) found 361.1047

for C15H22F2NaO4S, requires 361.1061.

(2S,3R,4S)-2,3,4-Trifluoro-5-phenylpentyl
4-methylbenzenesulfonate (17b)
Deoxo-Fluor® (50% in THF, 175 μL, 0.47 mmol) was added to

a solution of 12b (58 mg, 0.16 mmol) in DCM (3 mL) at RT.

The reaction mixture was then heated at 40 °C for 1 h, and the

reaction was quenched by the addition of silica gel. Solvents

were removed under reduced pressure,  and the product  was

purified  over  silica  (hexane  5  /DCM  3  /Et2O  1).  The  title

compound was  recovered as  a  colourless  oil  (45 mg,  78%).

[α]D
20 = −2.8 (c = 0.7, CDCl3). 1H NMR (CDCl3, 300 MHz): δ

(ppm) 7.78 (d, 2 H, J = 8.4 Hz, CH ar); 7.35 (d, 2 H, J = 8.4 Hz,

CH ar); 7.31–7.21 (m, 5 H, CH ar); 4.88 (m, 1 H, J = 45.9 Hz,
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HCF); 4.73–4.38 (m, 2 H, 2 × HCF); 4.42 (ddd, 1 H, J = 1.9,

12.1, 23.4 Hz, SO3CHaHb); 4.26 (ddd, 1 H, J = 4.5, 12.1, 28.9

Hz,  SO3CHaHb);  3.21  (ddd,  1  H,  J  =  7.5,  13.8,  22.2  Hz,

CHaHbPh); 3.01 (ddd, 1 H, J = 6.8, 13.8, 21.1 Hz, CHaHbPh);

2.46 (s, 3 H, CH3). 13C NMR (CDCl3, 75 MHz): 145.2 (C ar);

135.1 (C  ar);  132.3 (C  ar);  129.9 (2 CH ar);  129.3 (CH ar);

128.9 (CH ar); 128.0 (CH ar); 127.2 (CH ar); 90.1 (ddd, J =

181.8, 20.0, 2.3 Hz, CF); 87.0 (ddd, J = 183.0, 29.7, 18.1 Hz,

CF); 86.0 (ddd, J = 179.5, 30.7, 5.5 Hz, CF); 67.4 (d, J = 19.7

Hz, CH2); 36.3 (dd, J = 22.5, 5.2 Hz, CH2); 21.7 (CH3). 19F

NMR  (CDCl3,  376  MHz):  −198.80  to  −199.23  (m,  1  F);

−200.27 to −200.69 (m, 1 F), −215.48 to −215.78 (m, 1 F). 19F

{1H} NMR (CDCl3, 376 MHz): −198.61 (dd, 1 F, J = 9.6, 2.8

Hz); −200.03 (dd, 1 F, J = 15.4, 2.8 Hz); −215.18 (dd, 1 F, J =

9.6, 15.4 Hz). νmax/cm−1 1365, 1261, 1267, 1208, 1190, 1177,

1151, 749. m/z (ES+) = 394.95 (MNa+, 100%); HRMS (ES+)

found 395.0906 for C18H19F3NaO3S, requires 395.0905.

(2S,3S,4R)-2,3,4-Trifluoro-5-phenylpentyl
4-methylbenzenesulfonate (17a)
Deoxo-Fluor® (50% in THF, 15 μL, 0.05 mmol) was added to a

solution of 12a (7 mg, 0.02 mmol) in DCM (1 mL) at RT. The

reaction mixture was then heated at 40 °C for 1 h and the reac-

tion was quenched by the addition of silica gel. Solvents were

removed  under  reduced  pressure  and  17a  was  purified  by

preparative TLC (hexane 7/Et2O 3) and recovered as a colour-

less oil (4 mg, 57%).

[α]D
20 = +1.75 (c = 0.4, CDCl3). 1H NMR (CDCl3, 300 MHz):

δ (ppm) 7.74 (d, 2 H, J = 8.3 Hz, H ar); 7.37–7.22 (m, 7 H, H

ar);  5.06–4.43  (m,  3  H,  3  ×  HCF);  4.73–4.38  (m,  2  H,  2  ×

HCF); 4.35 (brd, 1 H, J = 3.8 Hz, SO3CHaHb); 4.27 (brd, 1 H,

J = 3.8 Hz, SO3CHaHb); 3.15–2.97 (m, 2 H, CH2Ph); 2.45 (s, 3

H, CH3). 13C NMR (CDCl3, 75 MHz): 130.1 (CH ar); 129.3

(CH ar);  128.9 (CH ar);  128.0 (CH ar);  127.3 (CH ar);  21.7

(CH3).  Quaternary  carbons  and  carbons  coupled  bound  to

fluorine were not observed, even with an extended number of

scans (12000 scans). 19F NMR (CDCl3, 376 MHz): −195.84 to

−196.29 (m, 1 F);  −201.07 to −201.51 (m, 1 F),  −212.23 to

−212.63 (m, 1 F). 19F {1H} NMR (CDCl3, 376 MHz): −196.1

(d, 1 F, J = 10.8 Hz); −201.29 (d, 1 F, J = 13.6 Hz); −212.43

(dd, 1 F, J = 10.8, 13.6 Hz). νmax/cm−1 1360, 1269, 1208, 1190,

1146,  983,  910,  740.  m/z  (ES+)  =  394.96  (MNa+,  100%);

HRMS (ES+) found 395.0903 for C18H19F3NaO3S, requires

395.0905.

Supporting Information
Supporting Information File 1
Experimental methods and full characterisation and spectral

data of all prepared compounds.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-5-61-S1.doc]
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