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Abstract

A numerical method that employs a combination of contour advection and pseudo-

spectral techniques is used to investigate instability in internal solitary waves with

trapped cores. A three-layer configuration for the background stratification in which

the top two layers are linearly stratified and the lower layer is homogeneous is considered

throughout. The strength of the stratification in the very top layer is chosen to be

sufficient so that waves of depression with trapped cores can be generated. The flow

is assumed to satisfy the Dubriel-Jacotin-Long equation both inside and outside of

the core region. The Brunt-Väisälä frequency is modelled such that it varies from a

constant value outside of the core to zero inside the core over a sharp but continuous

transition length. This results in a stagnant core in which the vorticity is zero and the

density is homogeneous and approximately equal to that at the core boundary. The

time dependent simulations show that instability occurs on the boundary of the core.

The instability takes the form of Kelvin-Helmholtz billows. If the instability in the

vorticity field is energetic enough disturbance in the buoyancy field is also seen and fluid
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exchange takes place across the core boundary. Occurrence of the Kelvin-Helmholtz

billows is attributed to the sharp change in the vorticity field at the boundary between

the core and the pycnocline. The numerical scheme is not limited by small Richardson

number unlike the other alternatives currently available in the literature which appear

to be.

Keywords: Internal Solitary Waves, Trapped Cores.

I. INTRODUCTION

Internal solitary waves (ISWs) are ubiquitous features in the Earth’s atmosphere and ocean.1–4

In the open ocean, typically, the waves are highly nonlinear and may attain very large am-

plitudes.5–7 It is well known that at such large amplitudes, ISWs of depression (elevation)

may exhibit trapped cores if the density gradient at the surface (bottom) of the water col-

umn is finite (and waves are supported in which the local horizontal fluid velocity exceeds

the wave speed). As well as in the ocean,8, 9 waves of this type have been observed in the

atmosphere,10–12 the laboratory,13, 14 and in theoretical studies.15–25 Despite this a physically

consistent theory for waves with trapped cores remains elusive and there is debate in the

literature as to how ISWs with trapped cores should be modelled.

The most common approach has been to model the flow, both inside and outside of the

core region, using the Dubriel-Jacotin-Long26, 27 (DJL) equation

∇2η +
N2(Y )

c2
η = 0,

where η(x, y) is the departure of a streamline from its background vertical position, Y = y−η,

N is the background Brunt-Väisälä frequency and c is the wave speed. In such models the

manner in which the Brunt-Väisälä frequency is extended in the core region is arbitrary

since by definition no streamlines in the core connect upstream of the wave. The majority
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of models have assumed that the Brunt-Väisälä frequency in the core region takes the same

value as that at the core boundary, i.e. the stratification is simply extended into the core

region. This idea goes back to Davis & Acrivos15 and examples of it can be found in Brown

& Christie17 and Fructus & Grue.22 However, models of this form lead to solutions in which

the core density is statically unstable and hence are physically unrealizable (both Brown

& Christie17 and Fructus & Grue22 note this). Motivated by field observations, King et

al.
24 assume that the Brunt-Väisälä frequency varies from a constant outside of the core

to zero inside the core over a sharp but continuous transition length. This results in a

stagnant (zero vorticity) core in the wave frame of reference, of constant density where the

density closely matches that on the core boundary. Using a fully nonlinear time dependent

code, King et al.
24 show that the stagnant core model, at an amplitude just after core

formation, is essentially stable. Small-scale disturbances are seen along the core boundary

and are attributed to numerical fringing. In this paper, a wider parameter space than in

King et al.
24 is considered and it is shown that the small-scale disturbances seen in King et

al.
24 are more likely to be due to Kelvin-Helmholtz instability on the core boundary than

numerical fringing. It is shown, therefore, that the steady state solutions of King et al.,24

are weakly unstable or unstable (the degree of instability essentially being dependent on the

wave amplitude).

Assuming that the DJL equation holds within the core region is mathematically accept-

able but has no physical justification, Derzho & Grimshaw16 suggest an alternative is to

model the flow within the core using a vorticity-streamfunction relation and to match it

to the flow outside the core through a pressure continuity condition at the core bound-

ary. Derzho & Grimshaw16 originally did this for a linear background stratification and

recently Helfrich & White23 extended the model for an arbitrary stratification. In Derzho

& Grimshaw,16 the core is shown to have zero vorticity to leading order. This was subse-

quently confirmed numerically by Aigner et al.
18 In principle, the vorticity-streamfunction
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relation and the density in the core are arbitrary. To make progress, Helfrich & White23

concentrated on the simplest assumption, namely, that the core had zero vorticity and the

density in the core was equal to that at the core boundary. Evolution of their model, at an

amplitude just after core formation, resulted in small disturbances being seen on the core

boundary. With time the wave restablized and took approximately the same form as the

initial (steady state) wave. At higher amplitudes, however, Kelvin-Helmholtz instability was

seen along the core boundary which did not diminish with time. Without exception, all

steady state models of ISWs with trapped cores in the literature, that are evolved through

time-dependent simulations result in weakly unstable or unstable waves.18, 19, 23–25

In the laboratory, both Grue et al.
13 and Carr et al.

14 have observed unstable ISWs

with trapped cores. Grue et al.
13 observed trapped cores in which small vortices took place

in the leading part of the wave. In Carr et al.
14 larger amplitudes than in Grue et al.

13

were considered and in addition to observing small scale vortices, shear instability was seen.

No laboratory evidence of stable (mode one) ISWs with trapped cores has been presented.

Hence all numerical and laboratory studies to date seem to suggest that ISWs with trapped

cores are inherently unstable. Unfortunately, it is not possible to check this conjecture from

presently available field data8–12 due to a lack of resolution in the core measurements.

Waves with trapped cores provide a very effective transport mechanism and are thought

to play an important role in cross-shore larvae transport.28, 29 In addition, unstable ISWs

with trapped cores are expected to be an important source of mixing, turbulence, and re-

distribution of potential energy in the water column. To understand the behavior of unstable

ISWs with trapped cores, it is imperative that the evolutionary processes which lead to

breaking and the subsequent generation of turbulence be better understood. In this paper

the unstable evolution of an ISW initially given via the steady state model of King et al.
24

is investigated. Results are compared with those from the stagnant core model of Helfrich &

White23 and it is found that the two models are qualitatively equivalent. Note that the model
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presented in Helfrich & White23 uses the variational formulation proposed by Turkington et

al.
30 to find a solution to the DJL equation and as such appears to be limited by small

Richardson number.20 The model considered here provides an alternative (but qualitatively

similar) means of modelling ISWs with trapped cores that is not limited by small Richardson

numbers. Note that recently, Lamb & Farmer31 have computed ISWs using a method based

on Turkington et al.’s30 formulation that does not appear to be limited by small Richardson

number.

The paper is laid out at follows. In Sec. II the governing equations are given, in Sec. III

the numerical method is explained and in Sec. IV numerical results are presented including

a comparison with the stagnant core model of Helfrich & White.23 Finally in Sec. V some

conclusions are made.

II. GOVERNING EQUATIONS

To model the time dependent motion of an ISW the inviscid, incompressible, Oberbeck-

Boussinesq equations in two dimensions are used:

ρ0 (ut + u · ∇u) = −∇p− ρgj, (1)

ρt + u · ∇ρ = 0, (2)

∇ · u = 0, (3)

where ρ0 is a convenient constant reference density, u = (u, v) is the fluid velocity vector, t

denotes time, ∇ = (∂/∂x, ∂/∂y) is the gradient operator, p is the fluid pressure, ρ is the fluid

density, g is the acceleration due to gravity and j is the unit vector in the vertical direction.

Buoyancy and vorticity are introduced as b = −g(ρ− ρ0)/ρ0 and ζ = vx − uy, respectively.

Then taking the curl of the momentum equation (1) and rewriting (1) and (2) in terms of
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Figure 1: A schematic diagram of the computational domain (not to scale).

vorticity and buoyancy gives

ζt + u · ∇ζ = bx, (4)

bt + u · ∇b = 0, (5)

∇ · u = 0. (6)

To study the evolution of an ISW satisfying (4)-(6) two numerical schemes are employed.

The first, which is outlined in detail in King et al.
24 and briefly in Sec. III B, is an iterative

procedure which finds a steady state solution. The second, which is outlined in detail in

Dritschel & Fontane32 and briefly in Sec. III D, is the Combined Lagrangian Advection

Method (CLAM) which takes a steady state solution as input and evolves it with time.

III. NUMERICAL METHOD

A. Numerical Setup

A schematic diagram of the computational domain is given in figure 1. The domain is

chosen to be 2π periodic in the horizontal x direction and bounded above and below by rigid

boundaries at y = 0 and y = Ly. The aspect ratio of the domain, Ly/2π, is chosen to be 0.1

throughout the paper. This ensures that the domain is long compared to the length of the

waves. Note that an aspect ratio of 0.05 was also investigated and entirely analogous results
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were found. A three layer stratification is considered in which the thicknesses of the top,

middle and bottom layers are denoted by h1, h2 and h3 respectively. Attention is restricted

to modelling ISWs of depression, i.e. h3 > (h1 + h2). Waves of elevation can be obtained by

symmetry for h3 < (h1 + h2). The domain is chosen so that the ISW is located in the center

of the domain as shown. The maximum displacement of the interface between the middle

and bottom layers is denoted by a2. The undisturbed Brunt-Väisälä frequency, N , is defined

by

N2(Y ) =
db̄

dY
= −

g

ρ0

dρ̄

dY
, (7)

where Y is an isopycnal coordinate used to denote y in the far field and bars denote back-

ground (undisturbed) variables. The undisturbed Brunt-Väisälä frequency is assumed to be

zero in the bottom layer (N3 = 0), unity in the middle layer (N2 = 1), a given constant in

the top layer (N1) and to have a smooth transition between these values such that

N2(Y ) =
N2

1

2
+

1

2
erf

(

Y − h3
δ

)

+
N2

1 − 1

2
erf

(

Y − (h2 + h3)

δ

)

,

where erf denotes the error function and δ represents a distance over which the profile is

smoothed. Throughout the paper, a value of two y grid lengths is chosen for δ and a resolution

of (nx, ny) = (1024, 128), where nx and ny are the number of grid points in the horizontal

and vertical directions is used. Justification of these choices and the effect of varying δ or

(nx, ny) in a similar configuration is given in King et al.
24 and Carr et al.35

B. The steady state solver

To find a steady state solution, the numerical scheme of King et al.
24 is employed. Following

Yih36 and Grue et al.
13 it was shown in King et al.

24 that (1) (or equivalently (4)) can be
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rewritten as the so called Dubriel-Jacotin-Long (DJL) equation26, 27

ζ = ∇2ψ = −
N2(Y )

c2
ψ, (8)

where ψ(x, y) is the streamfunction, defined such that u = −ψy, and v = ψx. Solutions of (8)

for a given N2(Y ) are computed using an iterative procedure. First, a uniform computational

grid is set up within the domain. The background buoyancy field, b̄(Y ), is then found by

integrating a given profile of N2(Y ) with respect to Y . The iterative solution procedure is

then started with a guess for ψ. A weakly nonlinear solitary wave solution is used for this

purpose which is known to be accurate at small wave amplitudes. The wave amplitude is

defined as A = ηrms = ψrms/c, where η is the (downward) streamline displacement and rms

denotes the root-mean-square value. By using the wave speed cwnl from the weakly nonlinear

solution,24 an initial amplitude A0 = ψrms/cwnl is found. This initial guess is then corrected

by solving

Y = y +
ψ(x, y)

c
, (9)

for the isopycnal coordinate Y followed by (8) for ζ at each point in the domain (using the

previous guess for ψ in the right hand side of (8)). Spectral inversion of ∇2ψ = ζ provides

an updated value for ψ, and

c =
ψrms

A
, (10)

provides an updated value for c. This process is then repeated, by solving (9), (8), and (10)

until ψ converges.24 Subsequent states are found for higher amplitudes by increasing A in

increments of δA = 0.002.

Using the variational formulation proposed by Turkington et al.,30 Lamb20 showed that

solutions of (8) can be found for increasing wave amplitude (and speed) until the solution

ends in one of three outcomes, namely, (i) a low Richardson number shear instability limit,
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(ii) a flat-top wave, or conjugate state limit or (iii) a breaking limit defined by the presence

of incipient overturning (u = c). The numerical scheme outlined above does not appear to be

limited by low Richardson numbers.24 The focus of this paper is to use the model presented

in King et al.
24 on ISWs that are limited by incipient overturning. A necessary condition

for incipient overturning in waves of depression (or elevation) is that N2 is non-zero at the

top (or bottom) of the fluid column.17, 22–24 It is well known that closed streamlines (or core

regions) occur in such flows.

C. Closed streamline regions

The numerical scheme outlined in Sec. III B relies on the existence of a streamline connecting

any point within the domain to the upstream edge of the domain. This is problematic in

cases where closed streamlines are present in the flow. To solve this problem King et al.
24

followed previous authors17, 22 and extended the definition of Y by allowing Y to exceed the

domain height Ly for closed streamlines. The way in which N2 should be defined for values

of Y in this region is open to debate. Brown & Christie17 and Fructus & Grue22 (following

an idea that goes back to Davis & Acrivos15) let

N2(Y ) = N2(Ly), for Y > Ly. (11)

This leads to a core region of the flow containing a density field that is statically unstable

and is therefore physically unrealizable (both Brown & Christie17 and Fructus & Grue22 note

this).

Field observations in the atmosphere and the ocean8–12 suggest that ISWs with trapped

cores (closed streamlines) have constant density within the core. Motivated by this King et
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al.
24 suggested a different extension for N2 namely

N2(Y ) = N2(Ly) exp(−((Y − Ly)/10
−9Ly)

2), for Y > Ly. (12)

In this case, N2 varies from N2(Ly) to zero (constant density) over a sharp but continuous

transition length in the core region. This results in the core region having a constant density

approximately equal to that at the top of the domain. Brown & Christie,17 Fructus &

Grue22 and King et al.
24 all assumed that the DJL equation (8) holds in the core region and

the vorticity field in the core is given directly from the respective definitions of N2 in that

region. The model given by (11) results in a core with constant non-zero vorticity and a

statically unstable density field while (12) results in a stagnant core in which the vorticity is

zero and the density is homogeneous and approximately equal to that at the core boundary.

However, there is no physical justification for using the DJL equation (8) in the core region

(refs17, 22, 24 all point this out). An alternative approach is to model the flow within the core

using a vorticity-streamfunction relation and to match it to the flow outside the core through

a pressure continuity condition at the core boundary. Derzho & Grimshaw16 originally did

this for a linear background stratification and recently Helfrich & White23 extended the

model for an arbitrary stratification. In principle, the vorticity-streamfunction relation and

the density in the core are arbitrary. To make progress, in the majority of their analysis,

Helfrich & White,23 made the simplest assumption, namely, that the core has zero vorticity

and the density in the core is equal to that at the core boundary. King et al.
24 presented

a third alternative to modeling the core which resulted in the vorticity being a non-zero

constant in the core. Evolution of this mathematical steady state resulted in an unsteady

wave with a rotating core. King et al.
24 also presented the evolution of steady states which

were modeled using the DJL equation in the core region with N2 either of the form (11)

(non-zero vorticity in core region) or (12) (zero vorticity in core region). The model given by

10



(12) (zero vorticity in core region) was substantially more stable than the approach given by

(11) (non-zero vorticity in core region) and the alternative constant vorticity rotating core

model. Hence in this paper the zero vorticity stagnant core model (12) is focused upon and

a comparison with the model of Helfrich & White23 is given in Sec. IV.

D. The unsteady solver

To study the evolution of a steady state satisfying (4)-(6) the numerical procedure outlined

in Dritschel & Fontane32 is utilized. A hyperdiffusive vorticity term ν6∇
6ζ (with diffusion

coefficient ν6 = 2−54) is added to the right hand side of (4) in order to stabilize the solution.

The unsteady simulations are then carried out using CLAM, an algorithm which uses a

combination of contour advection37 and pseudo-spectral techniques in order to integrate

(5) forward in time. This provides an accurate source term for the right hand side of (4),

which is solved using a pseudo-spectral method. Temporal integration is performed using a

fourth order Runge-Kutta integration scheme. Further details of the method can be found

in Dritschel & Scott,33 Fontane & Dritschel34 and Dritschel & Fontane.32

IV. NUMERICAL RESULTS

A. Steady State Core Characteristics

In this section results from the steady state code are presented. Attention will focus upon

cases in which the Brunt-Väisälä frequency in the top layer N1 is finite so that a region

with closed streamlines can occur in the top of the domain. Closed streamline regions are

modeled via equation (12).

In figure 2, a plot of wave amplitude versus wave speed for varying lower layer thickness

is given. The undisturbed background stratification is such that the Brunt-Väisälä frequency
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Figure 2: The wave amplitude a2/Ly versus the wave speed c/
√

g∗Ly for N1 = 1 and
h3/(h1 + h2) = 2.33 (⋄), 3 (∗), 4 (×), 5.66 (+).

in the top layer N1 is equal to the Brunt-Väisälä frequency in the middle layer N2 = 1. The

specific case of N1 = 1 = N2 is chosen so that comparison with Helfrich & White23 can be

made. If N1 = 1 = N2 then equation (7) implies that

∆ρ = −
ρ0∆y

g
,

where ∆ρ is the change in density over the top two layers and ∆y = h1+h2. In this case the

reduced gravity g∗ = g∆ρ/ρ0 = ∆y and wave speed can be non-dimensionalised by
√

g∗Ly

in keeping with Helfrich & White.23 As expected, figure 2 shows that the wave amplitude

increases with increasing wave speed and moreover comparison with figure 8 of Helfrich &

White23 shows that the conjugate limit is reached at high amplitudes.

In figure 3, (a) the core height, (b) the half core length, (c) the difference in the root-

mean-square of the buoyancy field in the positive and negative halves of the computational
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Figure 3: (a) Core height hc/Ly, (b) half core length Lc±/Ly, (c) difference in the root mean
square of the buoyancy field in the positive and negative halves of the computational domain
|b+rms−b

−

rms| and (d) minimum Richardson number in the computational domain Rimin versus
the wave speed c/

√

g∗Ly for the same data set as in figure 2.

domain and (d) the minimum Richardson number (Rimin = min(by/ζ
2)) in the computational

domain versus wave speed are given respectively, for the same data set as in figure 2 once a

core is present (u > c). In figure 3 (b) two lengths are displayed, namely Lc±, where a plus or

minus sign indicate the length in the positive and negative halves of the domain respectively

(see figure 1). Markers indicate Lc+ and dots indicate Lc−. Note that little or no difference

can be seen by eye between Lc+ and Lc− until the conjugate limit is approached. At this

stage, most noticeably for h3/(h1 + h2) = 4 (×) and 5.66 (+), dots do not directly lie over

marker centers. Similarly, figure 3 (c) shows that the difference in the root-mean-square of the

buoyancy field in the positive and negative halves of the computational domain is negligible

until the wave speed c/
√

g∗Ly is at a value corresponding to the large amplitude states that

approach the conjugate limit, c.f. figure 2. It is interesting to note that asymmetry was

seen in the full computational data set investigated as soon as a core was present. However,

the extent of the asymmetry was negligible (of the order of a numerical grid size) until the

conjugate limit was approached at which point the asymmetry became more pronounced.

Figures 2, 3 (a) and 3 (b) can be compared with figure 8 of Helfrich & White.23 Al-
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though an exact quantitative comparison cannot be made (as an exact match between the

ambient density stratifications has not been made) excellent qualitative agreement can be

seen between the model presented here and the stagnant core model of Helfrich & White23

(solid line in their figure 8). Note that the stagnant core model of Helfrich & White,23 which

follows Turkington et al.,30 was unable to reach the conjugate state limit. The reason for

the failure of the numerical code was unclear but thought to be due to the emergence of

low Richardson numbers.23 Figure 3 (d) (and later on figure 14) indicate that the model

presented here is not limited by low Richardson number. Helfrich & White23 do not note

any asymmetry in their steady states. However, the asymmetry seen in the model presented

here is negligible until conjugate states are approached so the fact that Helfrich & White23

do not note any asymmetry is not surprising.

For completeness, figure 4 is included to show how (a) the wave amplitude, (b) the core

height and (c) the core half length vary with wave speed when the layer thicknesses in the

background stratification are held constant and the Brunt-Väisälä frequency in the top layer

N1 is varied. In these cases the wave speed is non-dimensionalised by the linear long wave

speed c0, as non-dimensionalisation by
√

g∗Ly is not possible since ∆ρ is not constant over

the top two layers. For reference, the data set marked by a cross (×) in figure 4 is for the

same undisturbed background stratification as the data set marked by a cross (×) in figures

2 and 3. Figure 4 shows that for a given wave speed, as the strength of the Brunt-Väisälä

frequency in the top layer (N1) increases the wave amplitude and core dimensions decrease.

B. Unsteady behavior

In this section, the evolution of a steady state ISW taken from the data set marked by a

cross (×) in Sec. IV A is presented. Recall that in this case the undisturbed background

stratification is such that N1 = 1 = N2, N3 = 0, and h3/(h1 + h2) = 4. In all figures the

wave propagates from left to right and successive plots are at times t = 0, 25, 50, 75 and 100,
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Figure 4: (a) Wave amplitude a2/Ly, (b) core height hc/Ly and (c) core half length Lc±/Ly

versus the wave speed c/c0 for h2/(h1 + h2) = 0.25, h3/(h1 + h2) = 4 and N1 = 0.5 (⋄), 0.75
(∗), 1 (×), 1.25 (+).

unless stated otherwise, with time increasing downwards. In figures 5 and 6, the evolution of

the buoyancy field b and the vorticity field ζ for a wave of amplitude a2/Ly = 0.175 are given

respectively. This is the smallest amplitude at which a core forms for the given stratification.

The buoyancy field appears to be stable throughout the simulation while the vorticity field

exhibits a very small disturbance close to the rear stagnation point at the top of the domain

(see panels at t = 50, 75 and 100). To aid visualization a zoomed image of the vorticity field

in the core region is presented in figure 7. Note that the core region (where the vorticity is

set to zero via equation (12)) can clearly be seen in the first panel (t = 0) of all vorticity

plots. The corresponding buoyancy plots are given in the same aspect ratio so that direct

comparison can be made if need be.

Figures 8 and 9 show the evolution of the buoyancy field b and the vorticity field ζ ,

respectively, for a wave at a larger amplitude of a2/Ly = 0.319. Note that the colour scale

for vorticity in figure 9 is different from that in figures 6 and 7. The buoyancy field appears to

be stable throughout the simulation while the vorticity field exhibits small-scale disturbances
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Figure 5: Sequence showing the evolution of the buoyancy field, b, for an ISW with, a2/Ly =
0.175, N1 = 1 = N2, N3 = 0, and h3/(h1 + h2) = 4. Successive plots are at times t =
0, 25, 50, 75, 100 with time increasing downwards. (x, y/Ly) ∈ [−1.5, 1.5] × [0.4, 1.0]. See
complementary online movie 1.
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Figure 6: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as in
figure 5. See complementary online movie 2.
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Figure 7: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as in
figure 6 over a zoomed in region (x, y/Ly) ∈ [−0.3, 0.3]× [0.8, 1.0]. See complementary online
movie 3.
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Figure 8: Sequence showing the evolution of the buoyancy field, b, for an ISW with, a2/Ly =
0.319. All other variables are the same as in figure 5. See complementary online movie 4.
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Figure 9: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as in
figure 8. See complementary online movie 5.
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on the interface between the core and the pycnocline in the rear of the wave (see panel at

t = 50). The disturbances appear to take the form of small Kelvin-Helmholtz billows by

t = 75 and the subsequent behavior of these billows at the rear stagnation point can be seen

in the panel at t = 100.

Finally, figures 10 and 11 show the evolution of the buoyancy field b and the vorticity

field ζ , respectively, for a wave at a yet larger amplitude of a2/Ly = 0.38. At this amplitude

the wave is much broader and flatter than in the smaller amplitude cases (figures 5 to 9).

This is expected since the conjugate limit is approached at this amplitude (see the data set

marked by a cross (×) in figure 2 at a2/Ly = 0.38). In this case very small disturbances in

the buoyancy field occur but are difficult to see over the range of buoyancy values displayed

in figure 10. Figure 12 displays b ∈ [0.9, 0.13] and disturbance along the interface between

the core and pycnocline region in the tail of the wave can be seen (see panels at t = 50, 75

and 100 in figure 12). The vorticity field (figure 11) shows coherent Kelvin-Helmholtz billows

forming on the interface between the core and the pycnocline just ahead of the wave trough

(see panel at t = 50). The billows subsequently grow (t = 75) and on interaction with the

rear stagnation point at the top of the domain start to become more energetic (t = 100).

Note that at this stage the billows loose coherency. Some are swept downstream of the wave

along the top of the domain while others are swept upstream along the core boundary. To aid

visualization a zoomed image of the vorticity field, for t = 50, 63, 75, 88 and 100 is presented

in figure 13. Note that the colour scale for vorticity in figures 11 and 13 is different from

that in figures 6, 7 and 9.

The evolution of the buoyancy and vorticity fields presented in figures 5 to 13 is typical

of what was seen in all cases investigated. As soon as a core is formed instability in the

vorticity field, albeit small, is seen close to the rear stagnation point (unstable streamlines

at the rear stagnation point were noted in King et al.
24 as being generic, see their figure

13). For higher amplitude states, instability in the vorticity field takes the form of Kelvin-
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Figure 10: Sequence showing the evolution of the buoyancy field, b, for an ISW with, a2/Ly =
0.38. All other variables are the same as in figure 5. See complementary online movie 6.
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Figure 11: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as in
figure 10. See complementary online movie 7.
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Figure 12: Sequence showing the evolution of the buoyancy field, b, for the same ISW as in
figure 10 but for a limited range of b ∈ [0.09, 0.13]. See complementary online movie 8.
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Figure 13: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as in
figure 10 over a zoomed in region (x, y/Ly) ∈ [−1.5, 0.0] × [0.4, 1.0]. Successive plots are
at times t = 50, 63, 75, 88, 100 with time increasing downwards. See complementary online
movie 9.
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Helmholtz billows on the interface between the core and the pycnocline. The billows are

coherent and subsequently grow. At the rear stagnation point the billows typically lose

coherency and some are swept downstream of the wave while others are carried upstream

tracing the boundary between the core and the pycnocline, see figure 13. If the instability in

the vorticity field is energetic enough, disturbances in the buoyancy field can be seen also, see

figure 12. This suggests that in such instances, fluid from outside of the core can be entrained

into the core region and vice versa. Occurrence of Kelvin-Helmholtz billows is due to the

sharp change in the vorticity field at the boundary between the core and the pycnocline, see

equation (12) and figure 14 below. At yet higher amplitudes the waves broaden and flatten

and a series of Kelvin-Helmholtz billows occur on the interface between the core and the

pycnocline akin to Kelvin-Helmholtz billows in parallel shear flow.

In figure 14 contour plots of the Richardson number (Ri = by/ζ
2)in the initial state wave

for the three waves that were allowed to evolve in figures 5 to 13 are given. The area inside

the closed solid white line has Ri < 0.25 and the area above the upper solid white line

indicates the core region. For visualization purposes values of Ri ≥ 1 are all set to a value

equal to 1. The region in which Ri < 0.25 sits directly below the core boundary and has

a length equal to that of the core boundary. This generic picture was seen for all waves

investigated in which a core was present and is in agreement with figure 7 of Helfrich &

White23 and figures 23 and 24 of Carr et al.14 (model (11)).

In Helfrich & White23 it was found that the time-dependent evolution of their stagnant

core model, for a wave with c/
√

g∗Ly = 0.4 and a2/Ly ≈ 0.2 (see their figures 8(a), 9 and 10)

produced a wave that exhibited instability in the core region. The instability originated along

the core boundary and took the form of Kelvin-Helmholtz billows. However, the instability

was weak and with time the flow restabilized and the resulting wave was only slightly different

from the initial wave. Instability was seen in both the density and the velocity fields. In

the model presented here, little or no disturbance was seen in the buoyancy field for waves
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Figure 14: Contour plots of the Richardson number from a steady state ISW which has an
undisturbed background stratification identical to that used in figures 5 to 13. Successive
plots are at wave amplitudes of a2/Ly = 0.175, a2/Ly = 0.319 and a2/Ly = 0.38 (corre-
sponding to figures 5, 8 and 10 respectively). The area inside the closed solid white line has
Ri < 0.25. (x, y/Ly) ∈ [−1.5, 1.5]× [0.4, 1.0].
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at small (a2/Ly = 0.175) or moderate (a2/Ly = 0.319) amplitudes, see figures 5 and 8

respectively. In particular, note that despite being at a higher amplitude than the wave

reported in Helfrich & White,23 figure 8 appears to be much more stable than the evolution

of the density field presented in figure 9 of Helfrich & White.23 Evolution of the vorticity

field (figure 9) shows good qualitative agreement with Helfrich & White23 but in the model

presented here it was found that, in general, once instability was initiated in the wave,

the wave did not restabilize. These differences may be due to the way in which diffusion

is handled in the two different numerical schemes. Helfrich & White23 employ a finite-

volume, second-order projection method which is expected to be more diffusive than the

CLAM algorithm employed here (see Dritschel & Fontane32 as well as Fontane & Dritschel34

for detailed comparisons which, in particular address issues of dissipation). In figure 17

of Helfrich & White,23 the evolution of the largest stagnant-core solution they could find

was presented (a2/Ly ≈ 0.363). In this case the wave was again initially unstable to shear

instability localized along the core boundary but unlike in the smaller amplitude case the

instability did not weaken. In contrast, the instability grew in strength resulting in the wave

speed and size diminishing with time. Comparison of their wave with figures 10, 11 and

12 (a2/Ly = 0.38) again shows good qualitative agreement (in the early stages), though

the instability seen here is not as energetic as in Helfrich & White.23 Note that in the

computations investigated, the wave speed and size did not diminish with time even in

the most unstable cases considered. However, in these cases the simulation duration was

restricted because a periodic computational domain was used and as soon as any instability

reached the downstream edge of the domain the simulation had to be terminated. Note also

that an exact match with the initial stratification in Helfrich & White23 was not made and

a strict quantitative comparison of the two therefore cannot be made.

In King et al.
24 it was claimed that the steady state given by equation (12) was stable

when allowed to evolve except for some small-scale disturbance which was attributed to
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numerical fringing. In this paper a much wider parameter space has been investigated and

in particular much larger amplitudes have been considered. The results imply that the small-

scale disturbance seen in King et al.
24 is in fact due to shear instability across the transition

region from the core to the pycnocline rather than numerical fringing. In addition, the

results presented here show that the steady state solutions presented in King et al.
24 when

introduced in the fully nonlinear time dependent numerical code result in a weakly unstable

or unstable wave. Figures 5 to 9 clearly show that although the evolution of the buoyancy

field is stable at small to moderate amplitudes, the evolution of the vorticity field is not.

Moreover, at higher amplitudes, figures 10 to 13, show that both the buoyancy and vorticity

fields are weakly unstable or unstable.

Soontiens et al.
25 also noted that in ISWs with trapped cores the density field was

typically more stable than the velocity field. They presented a model for trapped core waves

in the presence of a background shear flow. When a background shear was present they found

that waves with vortex cores could persit for long times in time-dependent simulations and

agree well with solutions of steady theory. However, in the absence of background shear

they found streamline overturning in the core and the time-dependent simulations yielded

unsteady cores which did not match the steady results very well. They found that over very

long times, the majority of fluid in the breaking region was flushed out downstream of the

wave resulting in a core region that was essentially homogeneous in density but in which the

velocity field did not stabilize.

V. CONCLUSION

A fully nonlinear time dependent simulation was used to investigate the steady state model

presented in King et al.24 for ISWs that exhibit trapped cores. To achieve this, a background

stratification was chosen such that the Brunt-Väisälä frequency in the top layer was non
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zero. The counterpart case, in which the Brunt-Väisälä frequency in the top layer is zero, is

fundamentally different and investigation is found in Carr et al.35 The steady state model24

assumes that the DJL equation is satisfied both inside and outside of the core region and

that the core region is stagnant (zero vorticity) in a frame of reference moving with the wave

and of a homogeneous density which matches the density in the ambient fluid at the core

boundary. The time dependent simulations showed that the model produced waves with

trapped cores that exhibit Kelvin-Helmholtz billows on the interface between the core and

the pycnocline. If the instability was energetic enough then disturbance in the buoyancy

field could be seen as well as in the vorticity field. In general the buoyancy field was much

more stable than the vorticity field and the occurrence of the Kelvin-Helmholtz billows was

attributed to the sharp change in the vorticity field at the boundary between the core and

the pycnocline. The qualitative behavior of the unsteady ISWs was very like that in the

stagnant core model presented by Helfrich & White.23

In Helfrich & White23 a vorticity-streamfunction relation was assumed to hold in the

core region while elsewhere the DJL equation was employed. A pressure matching condition

was imposed along the core boundary to match the two different flow regimes. The results

presented here show that the DJL model of King et al.,24 while having no physically justifi-

cation in the core region, essentially produces waves with a similar time dependent behavior

to those generated by the pressure matching model of Helfrich & White.23 The model of

Helfrich & White23 appears to be limited by small Richardson numbers whereas the model of

King et al.
24 does not. Hence, it can be argued that the model of King et al.

24 is a sensible

alternative to Helfrich & White23 at small Richardson numbers.

In the higher amplitude cases investigated, if the instability in the vorticity field was

energetic enough, disturbances in the buoyancy field were also seen (see figures 10, 11 and

12). This suggests that in such instances, exchange of fluid can occur across the core bound-

ary. A similar observation was made in the laboratory by Carr et al.14 Therein, ISWs with
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unstable trapped cores were generated using a lock release method. The water column in

the main section of the tank was seeded with tracer particles for flow visualization while

that behind the lock was left unseeded. The unstable core (in the subsequently generated

wave) contained tracer particles. This suggests that ambient fluid must have been entrained

into the core region during wave propagation. It is unclear whether entrainment is due to

the wave generation mechanism, if it is a characteristic of the wave propagation itself or if

it is a combination of the two. Helfrich & White23 modelled the lock release system of Carr

et al.
14 and found that the ensuing instability was significantly different to their stagnant

core model. Hence a comparison of laboratory observations with the results presented here

should be made with caution. However, entrainment of ambient fluid into the core appears

to take place in (i) the model presented here, (ii) the model of Helfrich & White23 and (iii)

the laboratory observations of Carr et al.
14 Exchange of fluid between the core and ambi-

ent surroundings has significant implications in the field for mass and momentum transfer.

Hence, a further laboratory study has begun in which detailed density measurements are

taken in the core region in the hope that they may improve our physical understanding of

the processes involved.

As far as the authors are aware there are no field observations of ISWs exhibiting insta-

bility exactly like that presented here. This is not surprising, as recent numerical31, 35 and

laboratory14 studies have shown that the onset and type of instability in an ISW is sensitive

to the ambient stratification. The background stratification investigated here is idealized and

does not incorporate any background flow which is inevitable in field observations. Moreover,

a lack of resolution in presently available field data8–12 makes it difficult to determine the

exact nature of instability in ISWs with trapped cores. There is a pressing need for more

detailed field studies to resolve some of the issues discussed above.
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List of Figures

Figure 1: A schematic diagram of the computational domain (not to scale).

Figure 2: The wave amplitude a2/Ly versus the wave speed c/
√

g∗Ly for N1 = 1 and

h3/(h1 + h2) = 2.33 (⋄), 3 (∗), 4 (×), 5.66 (+).

Figure 3: (a) Core height hc/Ly, (b) half core length Lc±/Ly, (c) difference in the root

mean square of the buoyancy field in the positive and negative halves of the computational

domain |b+rms − b−rms| and (d) minimum Richardson number in the computational domain

Rimin versus the wave speed c/
√

g∗Ly for the same data set as in figure 2.

Figure 4:(a) Wave amplitude a2/Ly, (b) core height hc/Ly and (c) core half length Lc±/Ly

versus the wave speed c/c0 for h2/(h1 + h2) = 0.25, h3/(h1 + h2) = 4 and N1 = 0.5 (⋄), 0.75

(∗), 1 (×), 1.25 (+).

Figure 5: Sequence showing the evolution of the buoyancy field, b, for an ISW with,

a2/Ly = 0.175, N1 = 1 = N2, N3 = 0, and h3/(h1 + h2) = 4. Successive plots are at times

t = 0, 25, 50, 75, 100 with time increasing downwards. (x, y/Ly) ∈ [−1.5, 1.5]× [0.4, 1.0]. See

complementary online movie 1.

Figure 6: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as

in figure 5. See complementary online movie 2.

Figure 7: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as

in figure 6 over a zoomed in region (x, y/Ly) ∈ [−0.3, 0.3] × [0.8, 1.0]. See complementary
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online movie 3.

Figure 8: Sequence showing the evolution of the buoyancy field, b, for an ISW with,

a2/Ly = 0.319. All other variables are the same as in figure 5. See complementary on-

line movie 4.

Figure 9: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as

in figure 8. See complementary online movie 5.

Figure 10: Sequence showing the evolution of the buoyancy field, b, for an ISW with,

a2/Ly = 0.38. All other variables are the same as in figure 5. See complementary on-

line movie 6.

Figure 11: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as

in figure 10. See complementary online movie 7.

Figure 12: Sequence showing the evolution of the buoyancy field, b, for the same ISW

as in figure 10 but for a limited range of b ∈ [0.09, 0.13]. See complementary online movie 8.

Figure 13: Sequence showing the evolution of the vorticity field, ζ , for the same ISW as

in figure 10 over a zoomed in region (x, y/Ly) ∈ [−1.5, 0.0]× [0.4, 1.0]. Successive plots are

at times t = 50, 63, 75, 88, 100 with time increasing downwards. See complementary online

movie 9.

Figure 14: Contour plots of the Richardson number from a steady state ISW which has

an undisturbed background stratification identical to that used in figures 5 to 13. Successive
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plots are at wave amplitudes of a2/Ly = 0.175, a2/Ly = 0.319 and a2/Ly = 0.38 (corre-

sponding to figures 5, 8 and 10 respectively). The area inside the closed solid white line has

Ri < 0.25. (x, y/Ly) ∈ [−1.5, 1.5]× [0.4, 1.0].
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