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Abstract

The tumour suppressor p53 protein plays a central role in the DNA damage response/check-

point pathways leading to DNA repair, cell cycle arrest, apoptosis and senescence. The

activation of p53-mediated pathways is primarily facilitated by the binding of tetrameric

p53 to two ’half-sites’, each consisting of a decameric p53 response element (RE). Functional

REs are directly adjacent or separated by a small number of 1-13 ’spacer’ base pairs (bp).

The p53 RE is detected by exact or inexact matches to the palindromic sequence represented

by the regular expression [AG][AG][AG]C[AT][TA]G[TC][TC][TC] or a position weight mat-

rix (PWM). The use of matrix-based and regular expression pattern-matching techniques,

however, leads to an overwhelming number of false positives. A more specific model, which

combines multiple factors known to influence p53-dependent transcription, is required for

accurate detection of the binding sites.

In this thesis, we present a logistic regression based model which integrates sequence

information and epigenetic information to predict human p53 binding sites. Sequence

information includes the PWM score and the spacer length between the two half-sites of the

observed binding site. To integrate epigenetic information, we analyzed the surrounding

region of the binding site for the presence of mono- and trimethylation patterns of histone

H3 lysine 4 (H3K4). Our model showed a high level of performance on both a high-

resolution data set of functional p53 binding sites from the experimental literature (ChIP

data) and the whole human genome. Comparing our model with a simpler sequence-only

model, we demonstrated that the prediction accuracy of the sequence-only model could be

improved by incorporating epigenetic information, such as the two histone modification

marks H3K4me1 and H3K4me3.
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Chapter 1

Introduction

With the accumulation of large amounts of human genomic sequence data through signific-

ant improvements in high-throughput sequencing technology, bioinformatics is becoming

increasingly important and useful for modern biological research. A very important, but

challenging application of bioinformatics is the genome-wide identification of transcription

factor binding sites. The comprehensive mapping of transcription factor binding sites is

of great importance to better understand the complex mechanisms which regulate gene

expression.

1.1 Regulation of eukaryotic transcription

The process of gene expression in eukaryotes involves several stages, including the two major

processes of transcription and translation. During transcription, the genetic information in

DNA is transferred to RNA. The process of transcription consists of the three main steps:

initiation, elongation and termination. Transcription initiation begins with the binding of

RNA polymerase, a key enzyme essential for carrying out transcription, to the DNA at

a gene promoter. The appropriate DNA binding of the enzyme is achieved by specific

proteins which form a multi-component complex called transcription initiation complex

with the RNA polymerase. In eukaryotes, there are three types of RNA polymerases (RNA

polymerase I, RNA polymerase II and RNA polymerase III) which activate the transcription

of distinct classes of RNAs in the nucleus. RNA polymerase I is critical for the transcriptional

activation of the genes coding for the 28S, 18S and 5.8S ribosomal RNAs (rRNAs). The

genes which code for transfer RNAs and the 5S rRNA are transcribed by RNA polymerase

III. RNA polymerase II, the most extensively studied enzyme of the three types, transcribes

various small nuclear RNA genes and all the genes coding proteins (Latchman, 2008c).

During elongation, the RNA polymerase attached to the promoter moves along the DNA,
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unwinds the double-stranded DNA and begins to synthesize the RNA transcript by using

one of two single-stranded DNA as a template until the termination sequence is reached. In

the final step of termination, the complex of RNA polymerase dissociates and releases the

synthesized RNA transcript from the template DNA.

The immediate RNA transcript produced from the DNA, called the primary transcript,

must undergo post-transcriptional modifications, such as 5’ capping, 3’ polyadenylation

and RNA splicing, to form a mature messenger RNA (mRNA) molecule. The process of

5’ capping happens shortly after the start of transcription and involves the addition of a

7-methylguanosine residue to the 5’ end of the transcript which is essential to protect the 5’

end from attack by 5’-exonucleases and thus to stabilize the transcript. After transcription,

the initial RNA product is modified by polyadenylating its 3’ end. A poly-A tail consisting of

up to 250 adenine nucleotides is added at the 3’ end to protect the transcript from enzymatic

degradation. Furthermore, internal non-coding sequences, called introns, are removed and

the remaining exons are joined together to form the mature, functional mRNA molecule

during the splicing process. Transported to the cytoplasm, the mRNA is then translated

into the final protein.

Although the genome is the same within each cell, there are many different types of

cells in the human body. The set of activated and inactivated genes is different in every

cell. The expression of genes in a particular cell type or in response to a particular signal is

controlled by regulatory mechanisms involving transcription factors and their DNA binding

sequences, chromatin structure and histone modifications. Gene expression is known to be

regulated at any stage from RNA synthesis and RNA translation to protein degradation and

the various processes and factors involved in the regulation are interconnected (Lackner

and Bähler, 2008). A particularly extensively studied area in gene expression control is that

of the regulation at the level of transcription.

1.1.1 Transcription factors

The transcription process is controlled by trans-regulatory proteins called transcription

factors. Many transcription factors are able to bind to DNA and influence the rate of

transcription either positively (activator) or negatively (repressor). There are three major

types of transcription factors: basal factors, also called general transcription factors, activat-

ors/repressors and coactivators/corepressors (Lewin, 2004). General transcription factors,

such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH, are essential to form the transcription

initiation complex with RNA polymerase II (Campbell and Farrell, 2007). The stability
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and activity of the complex can be regulated by the binding of other proteins to sites in

the promoter or in regions further away from the transcriptional start site. Proteins which

positively influence the transcription by increasing the rate of transcription so that more

RNA transcripts are synthesized are called activators. In contrast, proteins exerting an

inhibitory effect on transcript are known as repressors. Several mechanisms have been

identified by which transcription factors achieve their role as a repressor. A repressor may

interfere with the action of a positively acting factor by preventing it binding to DNA and

activating gene expresssion. Other mechanisms involve direct repression by regulating the

transcription initiation complex with the RNA polymerase. In many cases, this requires

specific coregulators acting as coactivators or corepressors which serve to link the activator

or repressor protein to the complex to either stimulate or inhibit transcription.

1.1.2 DNA sequence elements involved in transcription and its regulation

Transcription factors recognize their DNA binding sites by short conserved sequence ele-

ments called motifs. A typical eukaryotic gene consists of multiple distinct cis-acting

elements which are essential for the basic process of transcription or involved in transcrip-

tion regulation. Such control elements have been observed in promoters, upstream of

promoters, and even in regions which are at a great distance away from the transcriptional

start site of genes.

Core elements in the promoter region (Smale and Kadonaga, 2003) bind the general

transcription factors and RNA polymerase II. One of the best characterized core promoter

element is the AT-rich TATA box (Lifton et al., 1978) found in many eukaryotic genes. The

TATA box is located approximately 25-30 bp upstream of the transcription start site and

binds the TATA box binding protein (TBP), a component of TFIID (Burley and Roeder, 1996).

It determines the location at which the general transcription factors together with RNA

polymerase II assemble to form the initiation complex. In genes lacking the TATA box, this

function is assigned to the initiator element (Inr).

Further control elements called upstream promoter elements (UPE) have been found

upstream of the core elements. UPEs, such as the GC (Sp1) box and the CAAT box, can

modulate the activity of a promoter in conjunction with other regulatory elements which

are also located close to the promoter.

A variety of sequence elements have been observed in enhancers located upstream,

downstream or within a gene. Enhancers contain multiple binding sites for transcription

factors which interact together to form a functional multi-protein complex known as the
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enhanceosome. The enhanceosome may mediate the binding of other proteins which are

required to loose the tightly packed chromatin structure to facilitate the binding of several

activators to their binding sites. Activators bound at distal enhancers can increase the activity

of a promoter by direct interaction with components of the initiation complex through DNA

looping. In some cases, the activator does not directly interact with the proteins at the

promoter. A cofactor is required which acts as a bridge so that the activator can regulate

the activity of the promoter. In contrast to enhancers, there are sequences called silencers

which act in a negative manner to inhibit promoter function and thus decrease the rate

of transcription. Silencers contain binding sites for repressors which inhibit transcription

by altering chromatin structure or by directly interacting with the proteins bound at the

promoter to negatively influence promoter activity. In some cases, the activity of enhancers

or silencers has to be limited so that only a certain gene is affected and not the genes in

adjacent regions. This is achieved by regulatory elements called insulators.

Figure 1.1 Structure of a typical eukaryotic gene with its regulatory elements. (a) Linear

representation of a gene structure. (b) Interaction of transcription factors with the

initiation complex via DNA looping. The TATA box binding protein (TBP) binds

to the TATA box and forms a multi-protein complex called transcription initiation

complex with the RNA polymerase and general transcription factors. Activators

(A) and repressors (R) can influence transcription initiation of a particular gene by

binding to enhancers and silencers, respectively, and interacting with the initiation

complex.
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1.1.3 Epigenetic factors

The ability of the DNA sequence elements to regulate gene expression together with their

associated proteins depends on their accessibility. The chromatin structure plays a critical

role in the transcription and regulation of genes. In eukaryotic cells, the DNA is wrapped

twice around a complex of eight proteins called histones ((H2A ·H2B)2(H3 ·H4)2) forming

nucleosomes which are bundled into chromatin fibres. The binding affinity of a DNA

binding protein to its binding sites can be affected by the chromatin architecture of the

binding site. To make the DNA region accessible to the regulatory protein, alterations

in chromatin structure by chromatin remodelling factors, such as the SWI/SNF complex,

are required (Latchman, 2008a). In addition to the chromatin remodelling factors, histone

modifications mediating chromatin changes play an important role in the regulation of

gene expression. Histones are subject to multiple post-translational modifications, such as

acetylation, methylation, phosphorylation and ubiquitination which can interact with each

other. Acetylation of histone H3 on lysine residues (Roh et al., 2005) and phosphorylation

of serine residues (Nowak and Corces, 2004) have been shown to produce a more open

chromatin structure and thus to be critical for gene activation. Methylation of lysine residues,

however, can produce both a more open or a more closed chromatin structure (Martin and

Zhang, 2005).

1.2 Focus on p53

The gene encoding p53 (TP53) was initially described as an oncogene in 1979 (Deleo et al.,

1979; Kress et al., 1979; Lane and Crawford, 1979; Linzer and Levine, 1979; Melero et al.,

1979; Smith et al., 1979). In the late 80’s, Bert Vogelstein et al. observed in human tumours

that TP53 was mutated or lost and demonstrated that p53 might function as a tumour

suppressor (Baker et al., 1989).

In its role as a transcription factor, the tumour suppressor p53 exerts its function by

binding to DNA and activating expression of specific genes which are critical to inhibit

the growth and proliferation of damaged cells. Many of these genes have been revealed to

be involved in the regulation of cell cycle progression and in the distinct processes of cell

death. In more than half of the human tumours, TP53 has been found to be mutated causing

single residue changes (missense mutation) in the DNA binding domain of the protein with

resultant alteration in p53 function (Sigal and Rotter, 2000).

5



Chapter 1 Introduction

1.2.1 Structural features of p53

The human p53 protein with a length of 393 amino acids consists of three main functional

regions: the amino-(N)-terminal region, the central core and the carboxyl-(C)-terminal

region.

Proline-rich

domain
DNA-binding domain

Oligomerization

domain

NLS
NLS             1 – 44                       58 – 101                                      102 – 292                                                           NES

NLS

NLS
(316 – 324) (340 – 351) (380 – 386)

(370 – 376)

325 - 356

N-terminal region Central core C-terminal region

Transactivation 

domain

Figure 1.2 Functional domains of human p53. Numbering below the functional domains

indicates residue number on human p53. Residue numbers were obtained from the

p53 Knowledgebase (http://p53.bii.a-star.edu.sg/aboutp53/protseq/index.

php).

The acidic amino-(N)-terminal region contains the transactivation domain and a proline-

rich domain. The transactivation domain plays a critical role in transcriptional activation

and regulation of p53. It is essential for post-translational modifications and interactions

with numerous transcription factors, acetyltransferases, such as p300 and CBP, and the

MDM2 ubiquitin ligase, a negative regulator of p53 (Espinosa and Emerson, 2001; Gu et al.,

1997; Stommel and Wahl, 2004). The proline-rich domain has been shown to be important

for efficient growth suppression which may be resulted from apoptosis (Baptiste et al., 2002;

Bergamaschi et al., 2006; Millau et al., 2009; Sakamuro et al., 1997; Venot et al., 1998; Walker

and Levine, 1996; Zhu et al., 1999). Furthermore, a negative regulatory domain has been

identified within the proline-rich domain which negatively influences the sequence-specific

DNA binding ability of p53 (Müller-Tiemann et al., 1998).

The sequence-specific DNA binding domain in the central core is essential for DNA

binding of p53 and interacts with various proteins, such as the apoptosis stimulating p53

proteins (ASPPs) and the family members p63 and p73 (Flores et al., 2002; Patel et al.,

2008; Samuels-Lev et al., 2001). It represents the region of p53 most affected by missense

mutations.

The carboxyl-(C)-terminal region is able to bind DNA non-specifically (Bayle et al., 1995;

Wang et al., 1993). It contains three nuclear localization signals (NLS), the oligomerization

domain with a nuclear export signal (NES) and a negative regulatory domain at the very
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end of the region. The nuclear localization signals are essential for the migration of p53 into

the cell nucleus and the oligomerization domain for both dimer and tetramer formation of

the protein.

1.2.2 Activation of p53 and cellular response

The activity of p53 is restrained under normal conditions. In unstressed cells, p53 is usually

a protein with a short half-life of several minutes and is present at low levels. A carefully

controlled balance between protein synthesis and degradation is required to keep the levels

of p53 low. This is achieved by several distinct positive and negative autoregulatory feedback

loops. Each of the loops creates a circuit in which p53-induced proteins regulate the activity

and stability of the p53 protein in a positive (positive feedback loop) or negative manner

(negative feedback loop) (Harris and Levine, 2005). Most of the known feedback loops

act through the MDM2 ubiquitin ligase, a p53-responsive gene product which inhibits

the transcriptional activity of p53. Bound to the transactivation domain of p53, MDM2

ubiquitylates several Lys residues at the C-terminus to trigger degradation of p53 by

proteasomes (Rodriguez et al., 2000).

A wide range of cellular stresses, including DNA damage, oncogene activation, hypoxia,

nutrient deprivation, nucleotide imbalances, ROS level and heat shock, lead to the induction

and activation of p53 (Lavin and Gueven, 2006; Levine et al., 2006; Meek, 1999; Millau

et al., 2009; Miyakoda et al., 2002) through multiple mechanisms involving post-translational

modifications of the protein (Figure 1.3). Once the cell senses stress, signal mediators, such as

ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia mutated and Rad3-related)

and Chk2 (checkpoint kinase 2) activate and stabilize the p53 protein by phosphorylating

residues in the N-terminal transactivation domain of p53 (Jenkins et al., 2012). N-terminal

phosphorylations have been shown to mediate the dissociation of MDM2-p53 complex

causing an increase in p53 levels. Stress-induced phosphorylations have also been observed

in the C-terminal region of p53. These phosphorylations have been shown to increase the

sequence-specific DNA binding of p53. The p53 protein can be further stabilized through

acetylation and methylation of C-terminal lysine residues by several acetyltransferases,

such as CBP, p300 and PCAF, and the lysine-specific methyltransferase Set9, respectively.

Once activated, the tetrameric p53 protein binds to its DNA response elements and recruits

various cofactors such as histone modifying enzymes, chromatin remodeling factors and

components of the transcription initiation complex (Beckerman and Prives, 2010) to regulate

the transcription of its target genes. The p53 protein is known to transactivate genes which
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encode proteins involved in DNA repair, cell-cycle arrest, apoptosis and senescence. But the

list of target genes and functions regulated by p53 increases regularly as more information

becomes available (Vousden, 2002).

1.2.3 Transcriptional Regulation by p53 activity

The activation of p53-mediated pathways is usually facilitated by the binding of tetrameric

p53 to two ’half-sites’, each consisting of a decameric p53 response element (p53 RE).

The p53 binding motif can be described by the palindromic regular expression pattern

[AG][AG][AG]C[AT][TA]G[TC][TC][TC] (El-Deiry et al., 1992), where ’[AG]’, for example,

matches the two bases ’A’ and ’G’. Functional REs are likely to be either directly adjacent or

separated by a small number of ’spacer’ base pairs (bp). The length of the spacer region

varies from 1 to 13 bp.

Many factors are known to influence p53-dependent transcription. In addition to the p53

REs, the sequence specific binding of p53 to its DNA binding sites can be affected by various

trans-acting factors which play their roles in promoting post-translational modifications of

p53. The p53 protein and its associated proteins are subject to numerous post-translational

modifications. Post-translational modifications, such as phosphorylation, methylation and

acetylation, have been shown to influence the stability and DNA binding affinity of p53

(Bode and Dong, 2004; Chuikov et al., 2004; Gu et al., 2004; Luo et al., 2004; Riley et al., 2008;

Vousden, 2002). In response to UV-induced DNA damage, the histone acetyltransferase

pCAF, for example, associated with the p300/CBP protein, acetylates the C-terminal residues

of p53 to activate sequence-specific DNA binding of p53 (Chan and Thangue, 2001; Liu

et al., 1999; Pawlak and Deckert, 2007). Some of the post-translational modifications are

critical for optimal protein-protein interactions with other cellular factors associated with

p53. N-terminal phosphorylations of Ser15, Thr18 and Ser20 in p53 have been reported to

increase the association of p53 with p300/CBP (Dornan et al., 2003; Dumaz and Meek, 1999;

Finlan and Hupp, 2004; Lambert et al., 1998) and additionally to block the interaction of

p53 with the negative regulator MDM2 (Böttger et al., 1999; Chehab et al., 1999; Craig et al.,

1999; Dumaz et al., 2001, 1999; Meek and Anderson, 2009; Sakaguchi et al., 2000; Schon et al.,

2002; Shieh et al., 1997; Unger et al., 1999).

Another important factor which is known to have an influence on the transcriptional

activity of p53 is the chromatin architecture encompassing p53 target genes. Specific

histone modifying enyzmes recruited by p53 mediate post-translational modifications of

histone tails (histone modifications), such as phosphorylation, acetylation, methylation and
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1  Cell stress the 15 p53 cluster sites that are present in Supplementary 
information S1 (table) and S2 (table) and the number of 
half-sites found in each (p53 REs with more than two 
half-sites are referred to as cluster sites). We should note 
that the p53-target list found in Supplementary informa-
tion S1 (table) and S2 (table) is probably not exhaustive, 
and is likely to grow as additional experimental evidence 
is acquired (see below).

The p53 consensus motif

Two different groups first identified a p53 consensus 
sequence in the DNA to which the p53 protein bound 
with high affinity and specificity3,4. The sequence was 
degenerate and was composed of 5 -RRRCWWGYYY-3 , 
where R is a purine, Y a pyrimidine, W is either A or T 
(adenine or thymine), G is guanine and C is cytosine3,4. 
The p53-binding site in the genomes of many organisms 
is composed of a half-site RRRCWWGYYY followed by 
a spacer, usually composed of 0–21 base pairs, which is 
then followed by a second half-site RRRCWWGYYY 
sequence (FIG. 2a). By labelling each quarter-site RRRCW 
as  and WGYYY as , the first discovered p53 
consensus sequence can be graphically represented as 

 spacer . This configuration of the 
four quarter-sites is often referred to at the head-to-head 
(HH) orientation. The two other possible orientations 
of the quarter-sites are tail-to-tail (TT,  spacer 

) and head-to-tail (HT,  spacer 
). (TH is not used because the complementary 

strand would contain an HT-orientated site.)
In almost all natural p53-binding sites, the two 

half-sites share the same quarter-site orientations. 
Experiments have shown that the tetramer p53 protein 
can bind all three (HH, TT and HT) quarter-site ori-
entations with equally high affinity4. However, only a 
few of the experimentally validated p53-binding sites 
in this analysis do not have the head-to-head (HH) 
orientation. Owing to allowed insertions and deletions 
relative to the consensus sequence, half-sites can vary 
in size between 8 and 12 base pairs, although most have 
10. As mentioned above, some p53 REs have more than 
two half-sites, and as such are referred to as cluster sites. 
Various experiments have shown that the level of bind-
ing affinity and subsequent transactivation increases 
linearly with the number of adjacent half-sites5–7. Finally, 
some genes contain multiple p53-binding sites in dif-
ferent locations within the gene and promoter region, 
and each p53 RE can contribute to the p53 response. 
For example, a  cluster site is 
present in the promoter of CDKN1A (cyclin-depend-
ent kinase inhibitor-1A, also known as p21) 900 base 
pairs 3  to a canonical  spacer  site, 
and both of these sites contribute to the induction of 
CDKN1A transcription after a p53 stress response8–10.

Functions of p53-regulated genes

The mechanisms of p53-pathway activation and the 
cellular outcomes produced by p53-activated genes are 
presented in FIG. 1. Many proteins are involved in the 
p53 pathway in order to respond to stress signals and to 
produce the proper response.

Figure 1 | Mechanisms of p53 activation and regulation of downstream targets.  
Step 1: Cells undergo stress, which can eventually lead to cancer. Step 2: Signal mediator 

proteins activate p53 by phosphorylating certain residues or inhibiting ubiquitylation by 

MDM2 (double minute-2). Step 3: Both processes increase the half-life of p53 by 

inhibiting ubiquitylation. The increased half-life, from minutes to hours, quickly leads to 

higher levels of p53. Step 4: Further p53 modifications by acetyltransferases (CBP, p300, 

PCAF) and methyltransferases (SET9) can further stabilize the p53 protein and increase 

site-specific DNA binding. Step 5: The deacetylase HDAC2 can inhibit p53 binding to 

DNA by deacetylating the protein. Step 6: The p53 tetramer binds to a p53 response 

element (RE) to regulate transcription of a nearby gene. Step 7: p53 also recruits 

cofactors such as histone acetyltransferases (HATs) and TATA-binding protein-associated 

factors (TAFs). Step 8: In this example, p53 mediates transactivation of its target gene, but 

p53 can also mediate transcriptional repression. Step 9: The p53 protein transactivates 

many genes, the protein products of which are involved in various pathways. Step 10: The 

most important pathways involved in tumour suppression that are activated by p53 lead 

to DNA repair, cell-cycle arrest, senescence and apoptosis. ATM, ataxia telangiectasia 

mutated; BAX, BCL2-associated X protein; BBC3, BCL2-binding component-3; BIRC5, 

survivin; CDKN1A, cyclin-dependent kinase inhibitor-1A; CHK2, checkpoint kinase-2; 

DDB2, damage-specific DNA-binding protein-2; DDIT4, DNA-damage-inducible 

transcript-4; FAS, TNF receptor subfamily, member 6; GADD45 , growth arrest and 

DNA-damage inducible ; p14ARF; SFN, stratifin; TP53I3, tumour protein p53-inducible 

protein-3; TRIM22, tripartite motif containing-22.
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Figure 1.3 Activation of the p53 pathway (source taken from Riley et al. (2008)).
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Chapter 1 Introduction

ubiquitination. These histone modifications have been reported to affect gene expression

(Zhang and Reinberg, 2001). A correlation between histone methylation and gene activation

has been detected by An et al. (2004). The two histone arginine methyltransferases CARM1

and PRMT1 which methylate Arg2, Arg17 and Arg26 of histone H3 and Arg3 of histone H4

have been shown to act as coactivators by directly interacting with p53 and its associated

cofactor p300 (Fingerman and Briggs, 2004).

1.3 Experimental approaches to identifying TFBSs

Significant progress has been made in the development and improvement of high-throughput

methods which enable genome-wide mapping of protein-DNA interactions in living cells

(in vivo). A commonly used technique to identify and analyze protein-DNA interactions

for DNA binding proteins is chromatin immunoprecipitation (ChIP) (Latchman, 2008b).

The ChIP technique uses formaldehyde to cross-link protein to specific DNA sequence

elements. After chromatin isolation and DNA fragmentation by sonication, the protein-

bound fragments are immunoprecipitated using an antibody which targets the protein of

interest. The cross-linking of the protein and DNA complexes is reversed so that the DNA

can be separated from the proteins and purified. The isolated DNA can then be amplified

and quantified by PCR.

The DNA enriched by ChIP can be analyzed and characterized in a number of ways. In

ChIP-on-chip (Lee et al., 2006), chromatin immunoprecipitaion is combined with DNA mi-

croarrays allowing the mapping of all the binding sites for a particular protein in regions of

the genome which are covered by the array. The enriched DNA fragments are fluorescently

labeled and hybridized over the DNA microarray which contains single-stranded DNA

sequences (probes) from the genomic portion of interest. The labeled fragments are hybrid-

ized to complementary probes and the hybridization can be determined by illuminating

the microarray with fluorescent light and measuring the light intensity and color of each

DNA fragment bound to the array. Initially used in yeasts (Blat and Kleckner, 1999; Hearnes

et al., 2005; Ren et al., 2000), the ChIP-on-chip method now has broad application to various

organisms, including higher organisms such as mammals. ChIP-on-chip is commonly

used to determine and characterize transcription factor binding sites. Smeenk et al. (2008)

and Kaneshiro et al. (2007) used a ChIP-on-chip approach to identify human p53 binding

sites. Lupien et al. (2008) combined chromatin immunoprecipitation and DNA microarray

to perform positional analyses of human FoxA1. In some cases, the method is used to

10



1.4 Computational approaches to predicting binding sites

investigate the distributions of histone modifications. Heintzman et al. (2007), for example,

described the chromatin architecture along a 30-Mb portion of the human genome (Encode

consortium) using ChIP-on-chip. They found that active promoter and enhancer regions

were characterized by specific patterns of histone modifications. Based on this information,

Heintzman et al. (2007) developed a model to predict regulatory regions in the human

genome.

Alternatively, in addition to DNA microarrays, ChIP can be combined with massively

parallel sequencing technology (ChIP-seq). The ChIP-seq method has several advantages

over ChIP-on-chip. ChIP-seq is a more cost-effective method and enables the precise

mapping of protein-DNA interactions on a genome-wide scale (Ho et al., 2011). Recently,

Shen et al. (2012) created a map of the cis-regulatory sequences identified in the mouse

genome of different tissues and cell types based on ChIP-seq data. The authors performed

ChIP-seq experiments to identify regions of the mouse genome bound by RNA polymerase II

(polII) and the insulator-binding protein CCCTC-binding factor (CTCF) and to determine the

localization of histone H3 lysine 4 monomethylation (H3K4me1), H3 lysine 4 trimethylation

(H3K4me3) and H3 lysine 27 acetylation (H3K27ac) in different tissues and cell types.

Several thousand binding sites for the human SRF, GABP and NRSF proteins were identified

by Valouev et al. (2008) with ChIP-seq. The generated ChIP-seq data was used to evaluate

their developed ChIP-seq data analysis method called QuEST (quantitative enrichment of

sequence tags). A special form of ChIP-seq was used by Wei et al. (2006) who combined

chromatin immunoprecipitation with the paired-end ditag sequencing strategy (ChIP-PET)

to identify p53 binding sites in the human genome. Mapping transcription factor binding

regions by the ChIP-PET method is a useful way of increasing the DNA sequencing efficiency

while reducing the costs. In ChIP-PET, short sequences from both ends of the enriched ChIP

DNA fragment are concatenated (PETs), sequenced and mapped to the genome to define the

boundaries of each ChIP fragment. By identifying overlapping PET sequences, the binding

sites for the particular DNA binding protein can be determined. The ChIP-PET method will

be described in more detail later in Chapter 2.

1.4 Computational approaches to predicting binding sites

Experimentally derived data from high-througput methods such as ChIP can be used for

computational prediction of transcription factor binding sites. Various attempts in the field

of computational biology have been made to design practical strategies for predicting such

11
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binding sites.

A wide range of computational methods identify binding sites of transcription factors by

searching for common short nucleotide sequence patterns called motifs. Most of them use a

position frequency matrix (PFM) or a position weight matrix (PWM), also known as position

specific scoring matrix (PSSM), to represent the motif (Table 1.1). The PFM is derived from

a multiple alignment of experimentally verified binding sites and contains the absolute or

relative frequencies of observed nucleotides for each position in the alignment. The PWM

represents a log-odds normalized version of PFM. The PWMs of many transcription factor

binding sites are available in the TRANSFAC (Matys et al., 2003) and JASPAR (Sandelin

et al., 2004) databases. There are a number of motif finding tools which are based on

PWM. NestedMICA (Down and Hubbard, 2005), for example, is a motif finding tool which

identifies significantly over-represented motif patterns in a set of sequences by optimizing

a probabilistic matrix. Other well known methods for discovering motifs include MEME

(Bailey and Elkan, 1994), AlignACE (Roth et al., 1998), CONSENSUS (Hertz and Stormo,

1999), BioProspector (Liu et al., 2001), MotifSampler (Thijs et al., 2001), MDScan (Liu et al.,

2002), DWE (Smith et al., 2005) and MUSA (Mendes et al., 2006). A more complex model

is described by Fu et al. (2009) who extended the PWM based search by some additional

features, including conventional features such as transcription factor binding site sequence

specificity and state transition probability, evolutionary features, structural and epigenetic

features. The model called DISCOVER was developed for motif discovery in metazoan

genomes.

Other methods successively use hidden Markov models (HMMs) to identify motifs in

genomic sequences. Levkovitz et al. (2010) developed a model called DEMON which is

based on HMM to detect enriched transcription factor binding sites in promoter sequences.

Using DEMON, a strong enrichment of the binding sites for RUNX3 was observed in

pancreatic adenocarcinoma (PAC) related genes, suggesting a possible role of RUNX3 as

a potential target in pancreatic cancer biology. Riley et al. (2009) and Huang and Li (2005)

developed computational methods based on profile HMMs to identify target genes of the

p53 protein. Riley et al. (2009) showed that their model called p53HMM had better predictive

abilities than PWMs.

Schneider (1997) and Lyakhov et al. (2008) used information theory to identify tran-

scription factor binding sites. Information theory is generally used to measure overall

sequence conservation in sets of nucleotide or protein sequences (Pierce, 1980; Shannon,

1948). The individual information (Ri) technique described by Schneider (1997) allows
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Table 1.1 Position frequency matrix (PFM) and position weight matrix (PWM). If we assume

equal background frequencies for each of the four nucleotides (0.25), the PWM

value for nucleotide A in position 1 is given by the logarithm of the ratio ((relat-

ive frequency of A in position 1)/(background frequency of A)) called log odds,

log2(0.41/0.25) = 0.71. For example, suppose our sequence of interest is ATACATG-

GCC. The PWM score of the decameric sequence can be determined by summing

the log odds scores of the corresponding nucleotides (framed in (c)). Sequence

ATACATGGCC has a total PWM score of 5.42. The higher the PWM score, the more

likely the sequence of interest represents a binding site.

(a) Count matrix
1 2 3 4 5 6 7 8 9 10

A 720 274 1064 14 1263 227 48 154 246 243

C 52 60 7 1700 42 41 30 759 834 691

G 726 1214 627 9 58 106 1664 27 69 268

T 260 210 60 35 395 1384 16 818 609 564

(b) PFM
1 2 3 4 5 6 7 8 9 10

A 0.41 0.16 0.61 0.01 0.72 0.13 0.03 0.09 0.14 0.14

C 0.03 0.03 0.00 0.97 0.02 0.02 0.02 0.43 0.47 0.39

G 0.41 0.69 0.36 0.00 0.03 0.06 0.95 0.02 0.04 0.15

T 0.15 0.12 0.03 0.02 0.23 0.79 0.00 0.46 0.35 0.32

(c) PWM with equal background frequencies (0.25) for each nucleotide

1 2 3 4 5 6 7 8 9 10

A 0.71 -0.64 0.78 -4.64 1.53 -0.94 -3.06 -1.47 -0.84 -0.84

C -3.06 -3.06 -5.97 1.96 -3.64 -3.64 -3.64 0.78 0.91 0.64

G 0.71 1.46 0.53 -5.61 -3.06 -2.06 1.93 -3.64 -2.64 -0.74

T -0.74 -1.06 -3.06 -3.64 -0.12 1.66 -4.78 0.88 0.49 0.36
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investigating individual sequence conservations. An individual information weight matrix

is first generated from the PFM of aligned sequences. The weight matrix can then be used

to determine the information content of each individual sequence in the alignment which

is measured in bits. All individual information contents are added together and divided

by the number of aligned sequences to calculate the overall information content of the

sequences. Binding sites can now be identified by comparing their individual information

contents to the determined overall information content. The individual information method

was used by Schneider (1997) to measure individual information distributions for E. coli

ribosome binding sites, bacterial Fi binding sites and human splice acceptor and donor

binding sites and by Lyakhov et al. (2008) to identify p53 binding sites from sequences near

the transcriptional start sites in human chromosomes 1 and 2.

Another widely used approach integrates comparative genomics. Horvath et al. (2007)

examined evolutionary conservation of experimentally verified human p53 binding sites

across mouse, rabbit, rat and dog. Many of them were not significantly conserved across

the four mammalian species. For a number of p53 binding sites, however, they observed

differences in evolutionary conservation among p53 response elements and p53 related

pathways. Xie et al. (2005) searched for conserved regulatory motifs in promoter regions and

3’ UTRs of protein coding genes. Using a comparative genomics approach across human,

mouse, rat and dog genomes, they successively found 174 candidate motifs in promoter

regions and 106 motifs, which are likely to be involved in post-transcriptional regulation, in

3’ UTRs.

Works on machine learning algorithms such as support vector machine (SVM) approaches

for the prediction of transcription factor binding sites have been published by Sinha et al.

(2007) and Jiang et al. (2007). Sinha et al. (2007) examined the flanking regions of exper-

imentally verified human p53 binding sites for occurrences of functional motifs of other

transcription factors to develop a SVM classifier based on this information for detecting p53

binding sites. Jiang et al. (2007) described a SVM based model called OSCAR which integ-

rated multiple factors to identify regulatory motifs, such as information about positional

preferences of the binding sites relative to the transcriptional start sites of the relevant genes

and about occurrences of other motifs in their flanking regions. Their model was tested on

binding sites of GATA and NHF transcription factor families.

Like OSCAR, there are several other approaches which integrate multiple information

sources for the prediction of transcription factor binding sites. Ernst et al. (2010) described a

logistic regression based method with 29 input features which was combined with motif
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information for certain transcription factors. Based on 29 features, including, amongst other

things, the distance to nearest transcriptional start site, information on conservation and

levels of histone modifications, the logistic regression based model was used to determine

the so-called general binding preference (GBP) score for a specific base location in the human

genome. In addition, the motif score for the base in the specific location was determined

using PWM and a zero-order background model. For a binding site of a specific length, an

average GBP score was first determined over each base position in the binding site. This

average score combined with the motif score associated with the base at a specific position

represents the combined score for the particular base position in the binding site. To score

the entire binding site region, either the maximum or the average value of the combined

score over each base position was taken. Testing on new experimentally derived sequences,

the method by Ernst et al. (2010) accurately predicted true binding sites. Won et al. (2010)

developed a HMM based model called Chromia which combined sequence information

with ChIP-seq signals of histone modifications at promoter and enhancer regions to detect

functional sequence patterns.
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1.5 Outline of the thesis

The thesis describes the analysis of human transcription factor binding sites for the p53

tumour suppressor. Central to the focus of our research is the prediction of these sites by

integrating multiple features which are known to affect the DNA binding specificity and

function of p53.

The first step in building a model for the prediction of transcription factor binding sites

involves data collection. To develop a highly sophisticated prediction model, we used

functional binding sites from two published ChIP data for the p53 protein (Smeenk et al.,

2008; Wei et al., 2006). Chapter 2 extensively deals with these ChIP-based binding sites.

Specific procedures for collecting and preparing the data are discussed and some exploratory

analysis results are demonstrated. In our work, we performed various analyses, including

basic analyses examining the positional distributions and spacer lengths between the two

half-sites of the binding sites and Gene Ontology (GO) and KEGG pathway enrichment

analyses to examine their possible biological roles.

Having explored the data, we turn our attention to the main work of the thesis which is

presented in Chapter 3. Chapter 3 introduces our prediction model with detailed coverage

of its building and application. It describes a multiple logistic regression approach which

combines sequence information with epigenetic information to produce a reliable model for

predicting human p53 binding sites.

In Chapter 4, we present a practical application of our combined evidence model which

is based on logistic regression. A genome-wide analysis was performed using our model

to identify all possible p53 binding sites in the whole human genome. The binding sites

predicted by our model were extensively examined and compared with some experimental

binding data published in the literature.

We compared our model to a more simple model which predicts the binding sites by

searching for the specific p53 motif. The sequence-only model, described in Chapter 5, is

applied on a genome-wide scale and its results analyzed and compared to those obtained

from the logistic regression based model.

Finally, Chapter 6, briefly summarizes the contributions we made in this research work

and discusses future directions and next steps to be undertaken which will lead to a better

understanding of the process by which p53 recognizes its DNA binding sites.
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Data set

To develop and test a more specific model for the prediction of DNA binding sites preferred

by p53, we obtained functional p53 binding sites from the experimental literature (Smeenk

et al., 2008; Wei et al., 2006) which used the chromatin immunoprecipitaion (ChIP) technique.

In this chapter, our main focus will be on these binding site data. We will first give details

about the sources of the binding sites and explain them briefly. We will then present the

procedures and methods which were carried out to collect the required data and finally

examine and characterize them by exploratory analysis.

2.1 Introduction

ChIP data were obtained from two different studies. The first study by Wei et al. (2006) used

ChIP in combination with a paired-end ditag (ChIP-PET) sequencing strategy (Fullwood

et al., 2009; Hudson and Snyder, 2006) to map binding sites of p53. The binding site regions

were identified in HCT116 human colon cancer cells with treatment of 5-fluorouracil which

is known to stabilize the p53 protein (Sun et al., 2007). In the PET sequencing method,

short sequences of length 36 bp, called tags or PETs, were extracted from cloned ChIP DNA

fragments. A PET consisted of two ends, the 5’ and 3’ ends, of the DNA fragment, each

having a length of 18 bp. The PETs were concatenated together to form longer PET sequences

and cloned into a plasmid vector to construct the final PET libraries. The concatenated PETs

were then sequenced for mapping. By using PETs which provided information about both

ends of the ChIP DNA fragments, the location of the binding regions could be identified.

The ChIP DNA fragments represented by PETs, which resulted from the same enriched

binding region, were expected to overlap with each other, while those from background

regions were randomly spread over the genome (PET singletons). From a set of 65572

unqiue ChIP DNA fragments (PETs) including PET singletons, 4302 were enriched for p53
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binding by the ChIP-PET experiment. Among the 4302 PETs, 2886 were assigned to the

PET clusters with two overlapping PETs (PET-2) and 1416 to the clusters with three or more

overlapping PETs (PET-3+). 1451 and 327 distinct PET-2 and PET-3+ clusters were identified,

each representing a p53 binding site region. A PET-13 cluster was presented within the

PET-3+ clusters which matched the promoter region of the cyclin-dependent kinase inhibitor

1A (CDKN1A), a well known p53 target gene. In addition to CDKN1A, the PET-3+ clusters

could be mapped to many other known p53 targets providing strong evidence that the 327

PET-3+ clusters represented high-confidence p53 binding sites.

In contrast, Smeenk et al. (2008) performed ChIP combined with whole genome tiling

arrays (ChIP-on-chip) in human osteosarcoma U2OS cells (see Chapter 1 for a brief descrip-

tion of the ChIP-on-chip technique). The U2OS cells were treated with Actinomycin D to

activate p53-dependent transcription (Choong et al., 2009). In this study, a total number of

1546 p53 binding sites were identified by ChIP-on-chip.

2.2 Methods

2.2.1 Data collection

In addition to the two ChIP-based binding data sets, we retrieved the sequences of numerous

validated p53 binding sites (Horvath et al., 2007) which differed from the known p53

consensus sequence shown in Figure 2.1. These binding sites with consensus-poor REs

were required to be present in our data set to avoid problems related to complete or quasi-

complete separation in the later step when we defined our prediction model based on binary

logistic regression (see Chapter 4). The sequences used in the study by Horvath et al. (2007)

along with their coordinates from the human genome assembly hg17 were extracted from

the supplementary material of the referred publication. For the ChIP-PET data set by Wei

et al. (2006), we extracted the hg17 coordinates of all the PET-3+ clusters with three or more

overlappinng DNA fragments and obtained the DNA sequences by using human genome

data downloaded from the Ensembl ftp site (Ensembl release 35, November 2005). The

genome-wide ChIP-on-chip binding data were received directly from Smeenk’s group upon

request. Since these data were based on NCBI36 coordinates (corresponding to UCSC’s

release number hg18), we first BLASTed each binding sequence against the human genome

assembly hg17 to get coordinates from the same build of the human genome as for the

other binding sites. We used the ’blastall’ function from the NCBI’s standalone command

line ’blast’ package (Altschul et al., 1990) and performed ’blastn’ search for DNA sequences

18



2.2 Methods

using our own database which contained the human genome data downloaded from the

Ensembl ftp site (Ensembl release 35, November 2005). The sequence data were fetched

using the Ensembl Perl API (Ensembl release 35, November 2005).

If there are 300 binding sites in the genome (Smeenk et al., 2008), then theoretically there

is the possibility for the data sets to capture all of them, because each data set contains

more than 300 regions. However, things do not work like that, because any method will

have some false negatives. Comparison of both data sets obtained from ChIP-on-chip and

ChIP-PET experiments, respectively, revealed appreciable agreement for the enriched p53

targets (38% for Wei data set), but also a notable number of targets that were uniquely

identified by one of the experiments. This observation arises from the fact that cellular

proteins that interact with p53 and genes regulated by p53 are likely to vary in different

cell types and with different stimuli (Han and Kulesz-Martin, 1992). In addition to that,

ChIP-on-chip and ChIP-PET technologies have been observed to show different abilities to

identify transcription factor binding regions for targets with low signals (Euskirchen et al.,

2007; Smeenk et al., 2008). Strategies for improving the performances of both methods are

given by Euskirchen et al. (2007). In order to avoid redundancy, we deleted the 124 sites

from the published Smeenk data set that were also present in the Wei data set.
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Figure 2.1 Sequence logo of the TRANSFAC PFM M01651 for p53, visualized using the

seqLogo Bioconductor package in R (www.bioconductor.org/packages/release/

bioc/html/seqLogo.html)

To determine the locations of the binding sites bound by p53 we scanned the ChIP

sequences with FIMO (Grant et al., 2011), a motif-based sequence analysis tool available
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from the MEME Suite motif finding tools (Bailey et al., 2009), using the M01651 motif

(Figure 2.1) for p53 derived from the TRANSFAC (Matys et al., 2003) database. In order to

allow spacing between the two half-sites in the p53 binding sites we divided the 20-mer

TRANSFAC motif which was presented as a position frequency matrix (PFM) into two

decamer half-sites. Occurrences of each individual decamer half-site were identified for both

strands by running FIMO. Two decamer half-sites were joined together to a full binding

site if they were directly adjacent or separated by a spacer of at most 13 base pairs (bp).

The score of a full site was determined as the sum of the individual scores for the half-site

occurrences. The full site with the highest score was selected to represent the p53 binding

site in the ChIP sequence.

2.2.2 Exploratory data analysis

To analyze the functional annotation of the extracted p53 binding sites, we assigned the

binding sites to their nearest genes by using the Ensembl Perl API (Ensembl release 35,

November 2005).

Definition 1. (Nearest gene) A gene is defined as a nearest gene of a binding site, if it is a protein

coding gene, which lies within a distance of at most 150 kb up- or downstream to the binding site.

5' 3'

150 kb upstream 150 kb downstream

If a binding site was located within the transcribed region of a gene, that gene was considered

as the nearest gene of the binding site. If there was no such gene, we took one up- and one

downstream genes, which overlapped the 150 kb flaking region at both the 5’ and 3’ ends of

the binding site (the closer the better).

We analyzed the locations of the p53 binding sites in the human genome relative to

Ensembl genes. All annotated single-exon genes, likely to be pseudogenes were excluded

from the analysis. Locations of the binding sites were divided into intragenic (all introns

and exons except the first exon and intron), TSS flanking (first intron, first exon and 5 kb

upstream of TSS), 5 kb downstream (5 kb downstream of last exon), 5-25 kb downstream,

5-25 kb upstream and intergenic regions. This type of classification was also used by Smeenk

et al. (2008) with the exception that the 5-25 kb downstream and the 5-25 kb upstream

regions were merged together and treated as one classification group. The observed counts

across the six genomic regions were then compared with the counts expected by chance by
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using a G-test.

Definition 2. (G-statistic) A G-statistic is also called a likelihood ratio test or a log-likelihood test.

The observed value of G can be calculated as follows:

G = 2lnL = 2
c

∑ Ocln(
Oc

Ec
), c ∈ C,

where Oc and Ec are the observed and expected counts of the classification group c, respectively. The

observed value of G is compared with a χ2-distribution with |C| − 1 degrees of freedom to compute

the probability of getting that G value. (Sokal and Rohlf, 1995)

Table 2.1 Gene Ontology (GO) evidence codes and their reliability (Lee and Marcotte, 2009).

Evidence code Description Reliability

TAS Traceable Author Statement High

IDA Inferred from Direct Assay High

IMP Inferred from Mutant Phenotype High

IGI Inferred from Genetic Interaction High

IPI Inferred from Physical Interaction High

ISS Inferred from Sequence or Structural Similarity Low

IEP Inferred from Expression Pattern Low

NAS Non-traceable Author Statement Low

IEA Inferred from Electronic Annotation Low

To characterize the functions of the binding sites, we performed Gene Ontology (GO)

(Ashburner et al., 2000) and gene enrichment analyses of the Kyoto Encyclopedia of Genes

and Genomes (KEGG) (Kanehisa et al., 2012) pathways on the list of their nearby genes

with the web-based functional annotaion tool provided by DAVID (Huang et al., 2009a,b),

the Database for Annotation, Visualisation and Integrated Discovery. For a given gene list,

DAVID identified significantly enriched Gene Ontology (GO) terms associated with the

genes in the list. In general, GO terms are categorized into biological process, molecular

function and cellular component terms. Each GO term is associated with an evidence code

which gives information on the source of the evidence and its reliability (Table 2.1). DAVID

uses all GO evidence codes. The current version does not provide any options which allow

filtering specific evidence codes.
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Chapter 2 Data set

2.3 Results

A total of 1757 functional p53 binding sites were gathered from the experimental literature.

Table 2.2 Binding sites of the p53 protein used in this study.

Total number of p53 binding sites Published study

1422 (Smeenk et al., 2008)

327 (Wei et al., 2006)

8 (Horvath et al., 2007)

These binding sites were used as positive data for training and testing our prediction model

in the later steps.
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Figure 2.2 Number of p53 targets in Wei’s PET clusters. Among the 13 different PET clusters

the PET-3 cluster is the largest one with 158 (out of 327) targets. Clusters with only

one p53 target are PET-11, PET-13, PET-16 and PET-18.

2.3.1 Exploratory data analysis

As shown in Figure 2.3, the majority of the p53 binding sites (69%) did not have a spacer

between the two half-sites. For the remaining binding sites, the spacer lengths varied from 1

to 13 bp, whereas 1 bp and 10 bp spacers were found to be more frequent than others. This

result was consistent with recent studies which examined the influence of spacers between

the two half sites in the p53 binding site. An increase in the spacer length from 1 bp to 4

bp was reported to inhibit p53-mediated transcription, while a 10 bp spacing enhanced the

transcriptional activity of p53 (Vukojevic et al., 2010).
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Figure 2.3 The spacer lengths between the two decameric half-sites of the 1757 p53 binding

sites.
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Figure 2.4 Distribution of the 1757 p53 binding sites in intragenic, TSS flanking, 5 kb down-

stream, 5-25 kb downstream, 5-25 kb upstream and intergenic regions relative to

Ensembl genes (outer ring) compared to the genome-wide proportions of the six

regions of interest (inner ring). Significantly enriched or under-represented regions

(G-test, P<0.05) are marked with an asterisk (*).

The binding sites were distributed all over the genome (Figure 2.4). Out of 1757, 839

binding sites were found within a gene (intragenic) or near the transcriptional start site

(TSS) of a gene (TSS flanking region). 54 sites were located within a distance of 5 kb

downstream of a gene, 124 within 5-25 kb downstream, 120 within 5-25 kb upstream and
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620 in intergenic regions. Comparing the observed counts across the six genomic regions

with the counts we would expect by chance, we found that the result obtained by using

the G-test was highly significant (G=167.19, d f =5, P≈0). Individual G-tests applied for

testing each genomic region identified a number of significantly enriched regions for the p53

binding sites. The binding sites were significantly over-representated in intragenic (G=6.69,

d f =1, P=9.72×10−3), TSS flanking (G=75.16, d f =1, P≈0), 5 kb downstream (G=8.89, d f =1,

P=2.87×10−3) and 5-25 kb upstream (G=11.17, d f =1, P=8.31×10−4) regions. Statistically

significant under-representation was observed for the intergenic region (G=134.42, d f =1,

P≈0).

Functional annotation and enrichment analysis
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Figure 2.5 Biological process terms in the ’Gene Ontology FAT’ annotation category found to

be highly significantly enriched (P<0.0001) in our list of 1047 (out of 1509) genes.

In total, 1718 unique nearby genes were identified for 1533 (out of 1757) binding sites. To

annotate the genes using GO terms we used DAVID and explored enriched GO terms and

KEGG pathways in the given gene list. As a summary from the GO analysis using the

’GO FAT’ annotation categories, significantly enriched terms (with low P values) associated

with our gene list in the biological process and molecular function categories are shown
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in Figures 2.5 and 2.6. A list of enriched cellular component GO terms can be found in

Appendix C. The order of the displayed GO terms is from less significant to more significant

(from top to bottom). The most statistically significant term can therefore be found at the

bottom. All biological process and molecular function GO terms presented here have P

values of less than 0.0001 and less than 0.05, respectively. DAVID uses a modified version

of the Fisher’s Exact test (EASE score) to compute the P values. The ’GO FAT’ annotation

category provided by DAVID represents a subset of the standard set of GO terms excluding

the broadest (non-informative) terms so that more specific terms can be presented more

clearly. The annotation category considers the top five levels from the full tree and filters

out all ’higher’ GO terms.
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Figure 2.6 Molecular function terms in the ’Gene Ontology FAT’ annotation category found to

be highly significantly enriched (P<0.05) in our list of 1002 (out of 1509) genes.

We found numerous highly enriched GO terms related to the well-known anti-cancer

functions of p53, such as apoptosis, the programmed cell death and cell cycle arrest. In

addition, many of the 1047 genes involved in the biological process GO Fat annotation

category were shown to be stress response genes and related to many various regulation

processes (Figure 2.5). Among the molecular function terms, ’calmodulin binding’ was
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found to be the most statistically significant term (Figure 2.6). The most numerous term

was ’ATP’ binding. This finding is consistent with the fact that p53 can interact with ATP

which has been shown to trigger changes in the configuration of p53 (Brain and Jenkins,

1994; Warnock and Raines, 2004).

The results of the KEGG pathway analysis involving 451 genes are shown in Figure 2.7.

Pathways with P<0.05 were considered to be statistically significant. Not surprisingly, the

most statistically significant pathway was represented by ’p53 signaling pathway’ and the

most numerous pathway by ’pathways in cancer’.
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Figure 2.7 Enriched KEGG pathways (P<0.05) associated with 451 genes from our gene list.

KEGG is a database resource comprising various fields of genomes, enzymatic

pathways, and biological chemicals.

2.4 Discussion

To create a set of positive samples (positive data set), we collected 1757 human p53 binding

sites from the experimental literature (Horvath et al., 2007; Smeenk et al., 2008; Wei et al.,

2006). The majority of the functional p53 binding sites consisted of two adjacent half-sites.

Among the binding sites which contained a spacer region, spacer lengths of size 1 bp and

10 bp were observed more frequently than other spacers. The spacer separating the two

decameric half-sites has been shown to play a critical role in regulating the DNA binding

affinity and transactivation property of the p53 protein (Riley et al., 2008; Vukojevic et al.,

2010). Several studies have suggested that optimal interactions with the p53 protein can
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be established with adjacent half-sites of the binding site or half-sites separated by a 10 bp

spacer (which corresponds to one turn of the helix) (Cook et al., 1995; Wang et al., 1995).

The analysis of the functional p53 binding sites by gene region revealed that more than half

(52%) of the binding sites were located in intragenic or TSS flanking regions. In addition,

a significant portion was found distal to a transcription start site. These distant binding

sites with their bound proteins have been shown to interact with the promoter and the

transcription initiation complex through DNA looping (Riley et al., 2008).

A number of studies have suggested that p53 binding sites may be grouped on the basis

of the activated pathway, such as apoptosis and cell cycle related control mechanisms.

Distinct sequence conservation patterns have been observed among the p53 binding sites of

apoptosis- and cell cycle-regulating genes (Horvath et al., 2007; Qian et al., 2002). Based

on these observations, we performed clustering on the 1688 unique decameric half-sites

of our 1757 positive binding sites to discover meaningful sequence patterns which might

be biologically important (Appendix A). Some decamers may be more associated with

particular stress response processes. For example, the p53 protein is known to be modified

by phosphorylation which has been shown to subtly alter the sequence specificity of p53.

Our hypothesis was that genes involved in those processes should be more likely to have

both decamers within the same cluster, on the grounds that p53 would probably have both

members of the dimer phosphorylated in the same way. To test the hypothesis that divergent

sites might be biologically very different from the others, we clustered the decameric half-

sites into subgroups of sites which were similar in sequence with Ward’s (Ward, 1963)

and unweighted pair group method with arithmetic mean (UPGMA) (Sokal and Michener,

1958) methods. The Ward’s method gave nice balanced groups whereas the UPGMA

method produced highly unbalanced groups which were essentially unusable (Figure A.1).

Reasonable results were obtained by the Ward’s method. Performing clustering analysis

using the Ward’s method, we could find distinct sequence patterns which were related to

specific cellular processes. In contrast, the UPGMA clustering generated non-significant

results.
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Chapter 3 Prediction model

In this chapter, we will introduce our prediction model which is based on logistic re-

gression. Logistic regression is one of many techniques which can be used to predict p53

binding sites. Other useful approaches are weight matrix-based methods, Markov chain

models, hidden Markov models (HMMs), support vector machines (SVMs) and information

theory, for which many attempts have been made. For detailed information, please see

Chapter 1.

3.1 Introduction

3.1.1 Binary logistic regression

Logistic regression is a statistical method widely used in social and natural sciences. It is

the most important model for categorical response data (Agresti, 2002). A logistic regression

model which has two possible outcomes is called binary logistic regression model. For

categorical response variables with more than two possible outcomes we refer to nominal

or ordinal (ordered outcomes) logistic regression models. A special case of binary logistic

regression is multiple logistic regression. Multiple logistic regression refers to methods

for analyzing the relationship between a binary response variable and multiple predictor

variables which can be categorical and/or continuous.

Definition 3. (Multiple logistic regression model) For a binary response variable y and n

independent predictor variables x = x1, ..., xn, let P(y = 1) represent the probability that an event

occurs given the n predictors with

P(y = 1) =
exp(β0 + β1x1 + ... + βnxn)

1 + exp(β0 + β1x1 + ... + βnxn)
,

where β0, β1, ..., βn are the parameters of the model.

The multiple logistic regression model is

logit[P(y = 1)] = log[
P(y = 1)

1− P(y = 1)
] = β0 + β1x1 + ... + βnxn.

The formula for the logistic regression model uses the log of the odds ratio, log[ P(y=1)
1−P(y=1) ], called the

logistic transformation or logit (Agresti, 2002; Agresti and Finlay, 2007).

Let a be the logistic transformation with a = β0 + β1x1 + ... + βnxn. P achieves its minimum

value at lima→−∞
exp(a)

1+exp(a) = 0 and its maximum value at lima→+∞
exp(a)

1+exp(a) = 1 (Larose, 2006).
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Definition 4. (Likelihood function) Let X be the observed data. The likelihood function of the

parameters β = β0, β1, ..., βn is defined as

L(β|X) =
m

∏
i=1

P(y = 1|xi)
yi(1− P(y = 1|xi))

1−yi ,

where P(y = 1|xi) is the probability of the i-th observation where the response variable is positive

(y = 1) and 1− P(y = 1|xi) the probability of the i-th observation where the response is negative

(y = 0) (Larose, 2006).

The parameters β = β0, β1, ..., βn are estimated using maximum likelihood (Eliason, 1993).

The optimal values of the model parameters are those that maximize the likelihood L(β|X)

of observing the data X. The likelihood tends to become too small to be represented by any

calculator or computer. Thus, we generally work with the log of the likelihood. Taking the

natural logarithm, the log-likelihood function is

ln(L(β|X)) =
m

∑
i=1

yiln(P(y = 1|xi)) + (1− yi)ln(1− P(y = 1|xi)).

3.1.2 Complete and quasi-complete separation in logistic regression

There may be situations where the outcome variable y separates the predictor x or a

combination of predictors completely. In the following example data,

x = x1 ... -3.8 -2.1 -1.4 0.8 1.4 2.2 4.9 ... xm

y = 0 ... 0 0 0 1 1 1 1 ... 1

there is just one predictor variable x. The greatest x value for the observations with y = 0

(negative response) is less than the smallest x value for the observations with y = 1 (positive

response). There is a problem of complete separation of data points involving x. We say

that the dependent variable y separates the independent variable x completely or x predicts

y perfectly. In situations of quasi-complete separation, the greatest x for the observations

with negative response is equal to or less than the smallest x for the observed values with

positive response. When we run a logistic regression model on our example data,

P(y = 1) =
exp((x− a)b)

1 + exp((x− a)b)
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a perfect fit occurs, if we make b as large as possible, i.e. infinite, for a = 0. The larger b,

which is the coefficient for x, the larger the likelihood. The maximum likelihood estimate

does not exist here. The ’glm’ function in R will produce the warning message ”glm.fit:

fitted probabilities numerically 0 or 1 occurred” due to extremely large and extremely small

logits which are mapped to high probabilities near one and to low probabilities near zero,

respectively.

One good technique for dealing with the problem of complete and quasi-complete

separation in logistic regression is Firth logistic regression (Firth, 1993). Firth logistic

regression uses a penalized likelihood estimation procedure which penalizes very large

coefficients running to infinity. A detailed description of the penalized likelihood estimation

procedure can be found in Heinze and Ploner (2003). In R, we can use the ’logistf’ package

to perform Firth logistic regression (Heinze and Schemper, 2002).

3.2 Methods

3.2.1 Data set: training and testing data sets

We split our positive set of 1757 p53 binding sites (Chapter 2) into training and testing sets.

Half of the binding sites from each study were randomly taken as positive training sites and

the remaining other half were used as positive testing set. In addition, we generated the same

proportion of negative sites for training and testing. Since p53 binding sites are assumed

to be rare in coding exons (Riley et al., 2008), we generated the negative sites by randomly

selecting repeat-free regions from protein coding exons (that is translated into protein) of

the human genome. We used the Ensembl Perl API (Ensembl release 35, November 2005) to

retrieve the data from the human Ensembl Core database ’homo_sapiens_core_35_35h’. The

length of spacers between the two half-sites of the negative sequences was chosen randomly

and allowed to be up to 13 bp long.

3.2.2 Individual predictors used for building the prediction model

To predict p53 binding sites we used a number of potential factors which have been reported

to influence p53-dependent transactivation. Our predictor variables included the individual

match scores of the two decamer half-sites representing a full binding site, as well as the

combined score of the full site, spacer length between the two half-sites, overlap with

predicted enhancers and overlap with histone modification sites, such as Lys4 mono-, di-,

32



3.2 Methods

and trimethyl H3 sites. Because of the binary nature of the response variable which we

defined as

Y =

 0, if given site is not a p53 binding site;

1, if given site is a p53 binding site,

logistic regression was chosen as our prediction method.

Histone modification ChIP-seq data for H3K4me1, H3K4me2 and H3K4me3 in the HMEC,

HUVEC, NHEK and NHLF cell lines and for H3K4me2 and H3K4me3 in the HEPG2 cell

were obtained from the ENCODE/Broad Institute available at the UCSC Genome Browser

(http://genome.ucsc.edu) (Fujita et al., 2011; Kent et al., 2002). All five cell lines are known

to express wild-type p53. The coordinates of the 36589 enhancers recently predicted via

chromatin signatures by Heintzman et al. (Heintzman et al., 2007) were downloaded from

the Ren Lab web site. Since our p53 binding data used hg17 coordinates, the hg18 data of

histone modifications, as well as those of the enhancers were converted to hg17 coordinates

using the LiftOver tool accessible from the UCSC Genome Browser web site.

Using the training samples, including positive and negative sites, we collected data for the

predictor variables listed in Table 3.1. We determined the motif scores decamer1_score.cont, de-

camer2_score.cont and pair_score.cont by using the M01651 motif for p53 from the TRANSFAC

database within the TRANSFAC Suite (Figure 2.1) as described in Chapter 2. The score of

the full site (pair_score.cont) was computed by the sum of the two individual half-site scores

(decamer1_score.cont and decamer2_score.cont). The three score variables can be encoded either

as continuous or binary predictors. We tested both encodings and chose between them

based on their ability to improve prediction accuracy. To determine the in_enhancer and

in_XH3K4me1, in_XH3K4me2 and in_XH3K4me3 predictors for the different cell lines we

examined overlaps with any predicted enhancers and searched for H3K4me1, H3K4me2

and H3K4me3 signals at the training sites.

Table 3.1 Response and predictor variables included in the training models. The response

variable is represented by p53_bs_status.

Description Coding Variable name

Status of being a Binary: p53_bs_status

p53 binding site 0: is not a p53 binding site

1: is a p53 binding site

Continued on next page
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Table 3.1 – continued from previous page

Description Coding Variable name

FIMO score for the a) Continuous: a) decamer1_score.cont

occurrence of the first floating point numbers

decamer motif b) Binary: b) decamer1_score.positive

0: negative score

1: positive score

FIMO score for the a) Continuous: a) decamer2_score.cont

occurrence of the second floating point numbers

decamer motif b) Binary: b) decamer2_score.positive

0: negative score

1: positive score

Maximum score for the a) Continuous: a) pair_score.cont

occurrence of a floating point numbers

decamer-decamer pair b) Binary: b) pair_score.positive

which is the sum of the 0: negative score

two decamer scores 1: positive score

Length of the spacer Continuous: integers spacer.cont

region between two

decamer half-sites

Overlaps with Binary: in_enhancer

enhancer site 0: does not overlap

any enhancer site

1: overlaps an enhancer

Overlaps with Binary: in_HmecH3K4me1

H3K4me1 site 0: does not overlap

in HMEC cell line any H3K4me1 site

in HMEC cell line

1: overlaps a H3K4me1 site

in HMEC cell line

Overlaps with Binary: in_HmecH3K4me2

H3K4me2 site 0: does not overlap

Continued on next page
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Table 3.1 – continued from previous page

Description Coding Variable name

in HMEC cell line any H3K4me2 site

in HMEC cell line

1: overlaps a H3K4me2 site

in HMEC cell line

Overlaps with Binary: in_HmecH3K4me3

H3K4me3 site 0: does not overlap

in HMEC cell line any H3K4me3 site

in HMEC cell line

1: overlaps a H3K4me3 site

in HMEC cell line

Overlaps with Binary: in_NhlfH3K4me1

H3K4me1 site 0: does not overlap

in NHLF cell line any H3K4me1 site

in NHLF cell line

1: overlaps a H3K4me1 site

in NHLF cell line

Overlaps with Binary: in_NhlfH3K4me2

H3K4me2 site 0: does not overlap

in NHLF cell line any H3K4me2 site

in NHLF cell line

1: overlaps a H3K4me2 site

in NHLF cell line

Overlaps with Binary: in_NhlfH3K4me3

H3K4me3 site 0: does not overlap

in NHLF cell line any H3K4me3 site

in NHLF cell line

1: overlaps a H3K4me3 site

in NHLF cell line

Overlaps with Binary: in_NhekH3K4me1

H3K4me1 site 0: does not overlap

Continued on next page

35



Chapter 3 Prediction model

Table 3.1 – continued from previous page

Description Coding Variable name

in NHEK cell line any H3K4me1 site

in NHEK cell line

1: overlaps a H3K4me1 site

in NHEK cell line

Overlaps with Binary: in_NhekH3K4me2

H3K4me2 site 0: does not overlap

in NHEK cell line any H3K4me2 site

in NHEK cell line

1: overlaps a H3K4me2 site

in NHEK cell line

Overlaps with Binary: in_NhekH3K4me3

H3K4me3 site 0: does not overlap

in NHEK cell line any H3K4me3 site

in NHEK cell line

1: overlaps a H3K4me3 site

in NHEK cell line

Overlaps with Binary: in_HuvecH3K4me1

H3K4me1 site 0: does not overlap

in HUVEC cell line any H3K4me1 site

in HUVEC cell line

1: overlaps a H3K4me1 site

in HUVEC cell line

Overlaps with Binary: in_HuvecH3K4me2

H3K4me2 site 0: does not overlap

in HUVEC cell line any H3K4me2 site

in HUVEC cell line

1: overlaps a H3K4me2 site

in HUVEC cell line

Overlaps with Binary: in_HuvecH3K4me3

H3K4me3 site 0: does not overlap

Continued on next page
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Table 3.1 – continued from previous page

Description Coding Variable name

in HUVEC cell line any H3K4me3 site

in HUVEC cell line

1: overlaps a H3K4me3 site

in HUVEC cell line

Overlaps with Binary: in_Hepg2H3K4me2

H3K4me2 site 0: does not overlap

in HEPG2 cell line any H3K4me2 site

in HEPG2 cell line

1: overlaps a H3K4me2 site

in HEPG2 cell line

Overlaps with Binary: in_Hepg2H3K4me3

H3K4me3 site 0: does not overlap

in HEPG2 cell line any H3K4me3 site

in HEPG2 cell line

1: overlaps a H3K4me3 site

in HEPG2 cell line

3.2.3 Model selection procedure

Given our data set, we were interested in finding a model that was complex enough to

fit our data well, and that was simple to interpret at the same time. We first performed

separate univariate analyses to identify important predictor variables. We fitted logistic

regression models with one independent predictor variable and investigated their fits.

Based on the results obtained from the univariate analyses, we fitted a multiple logistic

regression model using all the important predictor variables. Beginning from a complex

model, we sequentially removed predictors by comparing the Akaike information criteria

(AIC) (Akaike, 1973) and the area under the curve (AUC) values until no improvement

was observed. This procedure is known as ’backward elimination’. We used the standard

’glm’ (generalized linear model) function in R with ’family=binomial’, as well as the ’logistf’

function in the logistf package to perform Firth logistic regression.
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Definition 5. (Akaike Information Criterion (AIC)) The Akaike’s information criterion (Akaike,

1973) judges the adequacy of a model. The model which minimizes AIC is generally considered as an

optimal model (Kadane and Lazar, 2004). AIC is defined as

AIC = −2((argmaxβln(L(β|X)))− N),

where argmaxβln(L(β|X)) is the maximized log likelihood and N the number of parameters in the

model (Agresti, 2002). As the equation shows, AIC penalizes models with many parameters.

3.2.4 Performance analysis using ROC curve
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Figure 3.1 ROC curve of the sensitivity (y-axis) versus 1-specificity (x-axis) for hypothetical

data along with a diagonal reference line (sensitivity=1-specificity).

To investigate the predictive ability of the logistic regression model, we performed a receiver

operating characteristic (ROC) curve analysis. The ROC curve shown in Figure 3.1 is a

plot of the sensitivity (true positive rate) of the model prediction against the complement

of its specificity, 1-specificity (false positive rate), for a series of cut-off points. The closer

the curve comes to the upper left corner (sensitivity of 1, specificity of 1), the higher is the

overall accuracy of the model (Zweig and Campbell, 1993). In Figure 3.2, the sensitivity

and specificity for a hypothetical model are plotted for a range of different cut-off points.

The minimized difference threshold (MDT) is the point where sensitivity and specificity are

equal. The sum of sensitivity and specificity is maximized at the maximized sum threshold

(MST). The two threshold criteria of MDT and MST are commonly used to determine

optimal cut-off values.
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3.2 Methods

Definition 6. (True Positives (TP), False Positives (FP), True Negatives (TN) and False

Negatives (FN) (Tompa et al., 2005)) Suppose we have a data set with positive (y = 1) and

negative (y = 0) observations. For a given cut-off point, the number of positive observations correctly

classified as positive is called TP, and FN when those positives are classified as negative. TN is

then the number of negative observations correctly classified as negative and FP the number of the

negative observations classified as positive. The different counts can be organized into the following

classification table called confusion matrix:

Observation

Prediction 1 0 Total

1 TP FP TP+FP

0 FN TN FN+TN

Total TP+FN FP+TN m=TP+FN+FP+TN

where m is the total number of observations.

Definition 7. (Sensitivity, specificity, precision and accuracy (Sinha et al., 2007; Tompa

et al., 2005)) The sensitivity is the proportion of positive observations correctly predicted as positive

Sensitivity =
TP

TP + FN

and the specificity is the proportion of negative observations correctly predicted as negative

Speci f icity =
TN

TN + FP
.

The precision, also known as the positive predictive value, and the accuracy can be determined as

follows:

Precision =
TP

TP + FP

Accuracy =
TP + TN

TP + FN + FP + TN
.

Definition 8. (Area under the ROC curve (AUC) (Vittinghoff et al., 2011)) The ROC curve

defined as

ROC = {(1− Specificity(c), Sensitivity(c))}, c ∈ [0, 1],

with cut-off c can be summarized by the AUC. The AUC is a single number ranging from zero

to one which can be used to evaluate and to compare the performance of models. A good model is

characterized by an AUC close to 1.
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Figure 3.2 (1) Sensitivity and specificity for all possible cut-off points for a hypothetical model.

The point where the two curves cross is called the minimzed difference threshold

(MDT). The MDT represents the cut-off value at which sensitivity and specificity

are equal. (2) The sum of sensitivity and specificity for different cut-off points. The

highest point of the curve is called the maximized sum threshold (MST) and is the

point on the ROC curve closest to the upper left corner. This is the cut-off point

which maximizes the sum of sensitivity and specificity.

3.3 Results

Splitting the positive set of p53 binding sites
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Figure 3.3 Positive training and testing sets. When randomly splitting the positive set of p53

binding sites, we made sure that each study was presented in the same proportion

in the training and testing sets. In the end, 879 binding sites were selected as

positive training and 878 as positive testing sites.
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3.3 Results

In total, we gathered 1758 sites for training and 1756 sites for testing including positive and

negative sites.

3.3.1 Simple logistic regression for each predictor

Continuous vs. binary score predictors

Table 3.2 Descriptive statistics for the continuous decamer1_score.cont, decamer2_score.cont and

pair_score.cont by p53_bs_status.

Predictor p53_bs_status Min. 1st Qu. Median Mean 3rd Qu. Max

decamer1_score.cont 0 -41.08 -23.88 -18.30 -18.04 -12.91 9.03

1 -16.81 6.15 9.03 8.39 11.36 14.52

decamer2_score.cont 0 -42.00 -23.4 -18.29 -17.66 -12.44 11.82

1 -10.11 5.69 8.75 7.98 10.99 14.52

pair_score.cont 0 -72.57 -42.87 -36.13 -35.69 -28.04 2.17

1 -6.66 13.14 17.41 16.37 20.30 28.10

The first independent variable to examine was the continuous decamer1_score.cont predictor.

When looking at the scatterplot of the independent decamer1_score.cont variable and the re-

sponse variable p53_bs_status given in Figure 3.4, the positive training sites (p53_bs_status=1)

had considerably higher scores than the negative training sites (p53_bs_status=0) whose

scores were mostly negative. Table 3.2 shows that only 25% of the positive training sites had

scores smaller than 6.15, and 75% of the negative training sites fell below the value of -12.91.

To explore the relationship between decamer1_score.cont and p53_bs_status, we fitted a

simple logistic regression model with the continuous decamer1_score.cont predictor. The

logistic regression model linear in decamer1_score.cont as shown in Figure 3.4 resembled the

lowess curve, indicating that a linear model was appropriate.

The continuous decamer1_score.cont predictor was statistically significant in the linear

model (Table 3.3). To evaluate the overall fit of the logistic regression model, we looked at

the null deviance (2437.11) and the residual deviance (201.13). We used the likelihood ratio

test to compare the single-predictor logistic regression model to a null model with just an

intercept (R2 statistic). The χ2 of 2235.98 (2437.11− 201.13) with 1 degree of freedom yielded

a P value close to zero. The logistic regression model as a whole fitted our data significantly

better than the null model. The residual deviance was 201.13 on d f =1756 indicating that the

41



Chapter 3 Prediction model

fitted values were not significantly different from the observed values (P ≈ 1).
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Figure 3.4 Scatterplot of decamer1_score.cont and p53_bs_status for the training sites with the

single-predictor logistic regression model linear in decamer1_score.cont and a lowess

curve displayed on a probability scale. The scatterplot clarifies the binary nature

of the response variable p53_bs_status. All data points fall on one of the two

horizontal lines representing the presence of p53 binding sites (p53_bs_status=1)

and the absence of p53 binding sites (p53_bs_status=0).

Table 3.3 Logistic regression for decamer1_score.cont predictor

Predictor Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.9702 0.1911 5.08 3.82e-07 ***

decamer1_score.cont 0.6118 0.0512 11.95 < 2e-16 ***

(Intercept) -3.4317 0.1920 -17.87 <2e-16 ***

decamer1_score.positive[T.TRUE] 7.6131 0.3391 22.45 <2e-16 ***

When evaluating the overall performance of the binary decamer1_score.positive predictor,

the χ2 of 2053.12 (2437.11-383.99) on 1 degree of freedom with a P value close to zero told us

that the logistic regression model as a whole fitted significantly better than the null model

(Table 3.3). Furthermore, the residual deviance of 383.99 on d f =1756 (P≈1) indicated that

the fitted values were not significantly different from the observed values.

Comparing the two logistic regression models based on AIC and AUC, the model with

the continuous decamer1_score.cont predictor was to be preferred to the one with the binary

decamer1_score.positive variable due to its smaller AIC and greater AUC values (Table 3.7).
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3.3 Results

Similar to decamer1_score.cont, the decamer2_score.cont predictor showed a strong effect on

the outcome variable p53_bs_status.
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Figure 3.5 Scatterplot of decamer2_score.cont and p53_bs_status for the training sites with the

single-predictor logistic regression models linear in decamer2_score.cont and a lowess

curve displayed on a probability scale.

As shown in Figure 3.5, a linear term for the decamer2_score.cont predictor was appropriate

when fitting a single-predictor logistic regression model to our data. The continuous

decamer2_score.cont predictor was statistically significant (Table 3.4) and the logistic regression

model as a whole fitted significantly better than the null model. When we performed a

χ2-test using the difference in deviance residuals between our logistic regression model and

the null model, we obtained a χ2 of 2179.66 with 1 degree of freedom, yielding a small P

value which was very close to zero.

Replacing the decamer2_score.cont predictor by the binary decamer2_score.positive variable,

an increase in AIC and a decrease in AUC were observed (Table 3.7). Thus, a continuous

version for the decamer2_score predictor was preferred.

Table 3.4 Logistic regression for decamer2_score predictor.

Predictor Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1388 0.1726 6.60 4.15e-11 ***

decamer2_score.cont 0.5597 0.0429 13.06 < 2e-16 ***

(Intercept) -2.7703 0.1403 -19.75 <2e-16 ***

decamer2_score.positive[T.TRUE] 6.6524 0.2823 23.56 <2e-16 ***
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Chapter 3 Prediction model

We next analyzed the pair_score predictor. To determine the correct structural form of the

continuous pair_score.cont predictor, we fitted two simple logistic regression models, one

which was linear and another one which was quadratic in pair_score.cont (Figure 3.6).
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Figure 3.6 Scatterplot of pair_score.cont and p53_bs_status for the training sites with the single-

predictor logistic regression model linear and quadratic in pair_score.cont and a

lowess curve displayed on a probability scale.

As shown in Table 3.7, adding a quadratic term did not decrease the AIC. In addition, the

pair_score.cont predictor was statistically significant, whereas the quadratic term was not

(Table 3.5). Thus, only the linear term for pair_score.cont should be used in the model.

Table 3.5 Logistic regression for pair_score predictor

Predictor Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.4215 0.5165 2.75 0.00592 **

pair_score.cont 0.5830 0.1133 5.14 2.7e-07 ***

(Intercept) 1.3073 0.5663 2.31 0.021 *

pair_score.cont 0.5991 0.1242 4.82 1.41e-06 ***

I(pair_score.cont^2) 0.0057 0.0114 0.50 0.620

(Intercept) -5.3891 0.5011 -10.75 <2e-16 ***

pair_score.positive[T.TRUE] 11.0647 0.7652 14.46 <2e-16 ***

When running the univariate logistic regression model using the standard ’glm’ function

in R, we obtained a warning saying ”fitted probabilities numerically 0 or 1 occurred”.

This normally means that a perfect fit is possible within the parametrization of the model.
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3.3 Results

Table 3.6 Table of pair_score.cont by p53_bs_status.

p53_bs_status <0 ≥ 0

0 876 3

1 4 875

Here, in our case, however, this message seemed to be a warning about very small fitted

probabilities. As shown in Table 3.6, there was no evidence that a problem of complete or

quasi-complete separation occured. In addition, the parameter estimate for pair_score.cont, as

well as the standard errors for the parameter estimation were not too large to worry about

(Table 3.5). For more information on complete separation, see Subsection 3.1.2.

When we fitted a logistic regression model of p53_bs_status on pair_score.positive which

was presented as a binary predictor, R didn’t report a warning. The predictor was reported

to be significant. The AIC was 95.20, and thus larger than the AIC for the model with the

continuous pair_score.cont predictor (Table 3.7). The χ2 of 2345.91 on 1 degree of freedom

with a P value close to zero showed that the logistic regression model as a whole fitted

significantly better than the null model. And the residual deviance of 91.195 on d f =1756

showed that the fitted values were not significantly different from the observed values (P≈1).

Table 3.7 Simple logistic regression models of the score predictors with their AIC and AUC

values.

Predictor AIC AUC

decamer1_score.cont 205.13 0.9973591

decamer1_score.positive 387.99 0.976678

decamer2_score.cont 261.45 0.9956196

decamer2_score.positive 580.85 0.9596132

pair_score.cont 34.11 0.9999573

pair_score.cont+I(pair_score.cont2) 35.95 0.9999573

pair_score.positive 95.20 0.9960182

Since pair_score.cont represented the sum of the two predictors decamer1_score.cont and

decamer2_score.cont, it was worth examining correlation between the predictors. The correla-
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Chapter 3 Prediction model

tion between pair_score.cont with either decamer1_score.cont or decamer2_score.cont was quite

high (Table 3.8). The two continuous predictors decamer1_score.cont and decamer2_score.cont

were highly correlated, too. It was advisable not to use three of them at the same time in

the model. Based on the findings, the predictor which best represented motif match was the

continuous pair_score.cont predictor (Table 3.7).

Table 3.8 Correlations between the decamer1_score.cont, decamer2_score.cont and pair_score.cont’

predictors.

decamer1_score decamer2_score pair_score

decamer1_score 1

decamer2_score 0.80 1

pair_score 0.95 0.95 1
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Figure 3.7 Spacer length distribution of the training sites by p53_bs_status.

As shown in Figure 3.7, the majority of the positive training sites (p53_bs_status=1) did not

have a spacer between the two half-sites. For the remaining positive training sites, the length

of spacers varied from 1 to our upper limit of 13 bp, whereas 1 bp and 10 bp spacers were

present more frequently than others.

We fitted several simple logistic regression models to examine different structural forms

(linear, quadratic and cubic) for the spacer.cont predictor (Figure 3.8). When we compared
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the different parametric forms by using AIC and AUC, the quadratic or the cubic forms

for spacer.cont seemed to be appropriate in the logistic regression models (Table 3.9). The

continuous spacer.cont predictor was statistically significant in the three models. The χ2 of

623.10 with d f =2 for the quadratic model and the χ2 of 717.30 with d f =3 for the cubic model

yielded both a P value close to zero. This indicated that the logistic regression models

quadratic and cubic in spacer.cont as a whole fitted significantly better than the null model.

Furthermore, the fitted values were not significantly different from the observed values for

both models (P(χ2
1755) > 1814 = 0.16; P(χ2

1754) > 1719.8 = 0.72).
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Figure 3.8 Scatterplot of spacer.cont and p53_bs_status for the training sites with the single-

predictor logistic regression models linear, quadratic and cubic in spacer.cont and a

lowess curve displayed on a probability scale.

Table 3.9 Logistic regression for the spacer.cont predictors.

Predictor Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0075 0.0739 13.64 <2e-16 ***

spacer.cont -0.2480 0.0136 -18.21 <2e-16 ***

(Intercept) 1.5502 0.0925 16.77 <2e-16 ***

spacer.cont -0.8376 0.0468 -17.89 <2e-16 ***

I(spacer.cont^2) 0.0532 0.0038 13.82 <2e-16 ***

(Intercept) 1.8867 0.1081 17.45 <2e-16 ***

spacer.cont -1.7679 0.1129 -15.66 <2e-16 ***

I(spacer.cont^2) 0.2663 0.0232 11.50 <2e-16 ***

I(spacer.cont^3) -0.0116 0.0012 -9.39 <2e-16 ***
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Binary in_enhancer predictor
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Figure 3.9 Absolute frequencies of overlaps with enhancers by p53_bs_status.

Investigating the in_enhancer predictor by p53_bs_status, the majority of the training sites did

not overlap a predicted enhancer (Figure 3.9). However, the difference between observed

(positive training) and expected (negative training) counts of sites which did overlap an

enhancer and which did not was statistically significant (G=408.31, d f =1, P≈0). We fitted a

Table 3.10 Logistic regression models for the binary in_enhancer predictor.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2042 0.0512 -3.99 6.61e-05 ***

in_enhancer[T.1] 2.0627 0.2061 10.01 < 2e-16 ***

Null deviance: 2437.1 on 1757 degrees of freedom

Residual deviance: 2293.1 on 1756 degrees of freedom

AIC: 2297.1

AUC: 0.589306

simple logistic regression of p53_bs_status on the binary in_enhancer predictor. As reported

in Table 3.10, the P value for the coefficient of the predictor variable was strongly significant

(P<2×10−16). The odds of those p53 binding sites overlapping any known enhancer was 6.41

(P(y = 1|1)(1− P(y = 1|1)) = 186/29), while the odds of those p53 binding sites which did

not overlap an enhancer was 0.815 (P(y = 1|0)(1− P(y = 1|0)) = 693/850). The resulting

odds ratio of 7.8669 (6.41/0.815) indicated that the odds of sites overlapping an enhancer
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are p53 binding sites were nearly 8 times the odds of sites which do not overlap an enhancer.

The probability of sites which did overlap an enhancer are p53 binding sites was 0.8651

(186/(186 + 29)), and thus larger than the overall proportion of p53 binding sites in the data

set which is 0.5. The estimated probability could also be determined by using the equation

from Definition 3 in Subsection 3.1.1:

P =
exp(−0.2042 + 2.0627(1))

1 + exp(−0.2042 + 2.0627(1))
= 0.8651.

The probability of sites not overlapping an enhancer are p53 binding sites was 0.4491

(693/(693 + 850) or exp(−0.2042)/(1 + exp(−0.2042))). The corresponding likelihood ratio

of 1.9263 (0.8651/0.4491) indicated that sites overlapping an enhancer were nearly 2 times

more likely to be p53 binding sites than for those which did not overlap an enhancer.

The logistic regression model as a whole for the in_enhancer predictor fitted our data

significantly better than the null model with just an intercept. The χ2 of 144 with 1 degree

of freedom yieled a P value which was very close to zero. The residual deviance of 2293.1

on 1756 degrees of freedom, however, indicated that the fitted values were significantly

different from the observed values (P=1.110223×10−16). The in_enhancer predictor alone was

not able to make a significant contribution to the model for the prediction of p53 binding

sites. There was room for improvement in the model.

Binary in_H3K4me1, in_H3K4me2 and in_H3K4me3 predictors

The difference between observed (positive training) and expected (negative training) counts

of sites which do and do not overlap histone Lys4 methylation regions was highly statist-

ically significant at the conventional 0.05 level for most of the in_H3K4me1, in_H3K4me2

and in_H3K4me3 predictors according to the G-tests. The G-tests for the in_HuvecH3K4me2

and in_NhlfH3K4me3 predictors, however, resulted in G=1.33, df=1, P= 0.25 and G=2.58,

df=1, P=0.11, respectively. For those two out of the 14 predictors shown in Figure 3.10, no

significant results were obtained. This observation is consistent with the results reported

by logistic regression. As shown in Table 3.12 and Table 3.13, the two single predictor

logistic regression models with in_HuvecH3K4me2 and in_NhlfH3K4me3, respectively, had

a poor fit (see R2 statistic). The small χ2 values and the resulting P values larger than

0.05 indicated that the models as a whole did not fit the data significantly better than the

null model. In addition, when we used the AIC and AUC values for model comparison,

the logistic regression models with in_HuvecH3K4me2 and in_NhlfH3K4me3 had the largest

AIC (AIC(in_HuvecH3K4me2)=2440.4; AIC(in_NhlfH3K4me3)=2439.8) and the lowest AUC
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(AUC(in_HuvecH3K4me2)=0.51; AUC(in_NhlfH3K4me3)=0.51) values.

Figure 3.10 Absolute frequencies of observations in_H3K4me1, in_H3K4me2 and in_H3K4me3

for the cell lines ’HMEC’, ’NHLF’, ’NHEK’, ’HUVEC’ and ’HEPG2’ classified by

p53_bs_status.

In general, the differences between observed and fitted values were statistically significant

for most of the 14 models indicating a very poor fit to the data. The binary in_H3K4me1,

in_H3K4me2 and in_H3K4me3 predictors alone did not seem to be sufficient to explain the

observed outcome and to correctly predict p53 binding sites. The only exception to this was

the model with the in_HmecH3K4me1 predictor. The χ2 of 666.9 on 1 degree of freedom with

a P value close to zero showed that the logistic regression model based on in_HmecH3K4me1

as a whole fitted significantly better than the null model. And the residual deviance of

1770.2 on 1756 degrees of freedom indicated that the fitted values were not significantly

different from the observed values (P(χ2
1756) > 1770.2 = 0.4012). However, here as well,

there was room for improvement in the model.
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Table 3.11 Results of the logistic regression models for the binary in_H3K4me1 predictors.

Cell line AIC AUC Deviance χ2 test R2 statistic

HMEC 1774.2 0.79 P(χ2
1756) > 1770.2 = 0.40 P(χ2

1) > 666.9 ≈ 0

NHLF 2368.2 0.60 P(χ2
1756) > 2364.2 ≈ 0 P(χ2

1) > 72.9 ≈ 0

NHEK 1979.1 0.75 P(χ2
1756) > 1975.1 = 1.00× 10−4 P(χ2

1) > 462 ≈ 0

HUVEC 2422.3 0.55 P(χ2
1756) > 2418.3 ≈ 0 P(χ2

1) > 18.8 = 1.45× 10−5

Table 3.12 Results of the logistic regression models for the binary in_H3K4me2 predictors.

Cell line AIC AUC Deviance χ2 test R2 statistic

HMEC 1946.2 0.76 P(χ2
1756) > 1942.2 = 1.00× 10−3 P(χ2

1) > 494.9 ≈ 0

NHLF 2415.9 0.55 P(χ2
1756) > 2411.9 ≈ 0 P(χ2

1) > 25.2 = 5.17× 10−7

NHEK 2225.4 0.67 P(χ2
1756) > 2221.4 = 1.92× 10−13 P(χ2

1) > 215.7 ≈ 0

HUVEC 2440.4 0.51 P(χ2
1756) > 2436.4 ≈ 0 P(χ2

1) > 0.7 = 0.40

HEPG2 2425.2 0.54 P(χ2
1756) > 2421.2 ≈ 0 P(χ2

1) > 15.9 = 6.68× 10−5

Table 3.13 Results of the logistic regression models for the binary in_H3K4me3 predictors.

Cell line AIC AUC Deviance χ2 test R2 statistic

HMEC 2422.8 0.54 P(χ2
1756) > 2418.8 ≈ 0 P(χ2

1) > 18.3 = 1.45× 10−5

NHLF 2439.8 0.51 P(χ2
1756) > 2435.8 ≈ 0 P(χ2

1) > 1.3 = 0.25

NHEK 2428.4 0.54 P(χ2
1756) > 2424.4 ≈ 0 P(χ2

1) > 12.7 = 4.0× 10−4

HUVEC 2435.6 0.52 P(χ2
1756) > 2431.6 ≈ 0 P(χ2

1) > 5.5 = 1.9× 10−2

HEPG2 2435.4 0.52 P(χ2
1756) > 2431.4 ≈ 0 P(χ2

1) > 5.7 = 1.7× 10−2
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3.3.2 Model selection using backward elimination

Table 3.14 Predictor names and their abbreviations. For simplicity, we abbreviated the names

of the predictors. These abbreviations are used in the tables which present the

multiple logistic regression models.

Predictor Abbr. Predictor Abbr.

decamer1_score.cont D1.c in_NhlfH3K4me1 Nhl1

decamer1_score.positive D1.p in_NhlfH3K4me2 Nhl2

decamer2_score.cont D2.c in_NhlfH3K4me3 Nhl3

decamer2_score.positive D2.p in_NhekH3K4me1 Nhe1

pair_score.cont P.c in_NhekH3K4me2 Nhe2

pair_score.positive P.p in_NhekH3K4me3 Nhe3

spacer.cont S.c in_HuvecH3K4me1 Hu1

in_enhancer E in_HuvecH3K4me2 Hu2

in_HmecH3K4me1 Hm1 in_HuvecH3K4me3 Hu3

in_HmecH3K4me2 Hm2 in_Hepg2H3K4me2 He2

in_HmecH3K4me3 Hm3 in_Hepg2H3K4me3 He3

GLM models

We first built multiple logistic regression models using the standard ’glm’ function in R. We

started by fitting a full model containing 17 predictor variables to predict p53 binding sites

(Model 1 shown in Table 3.15). In addition, quadratic and cubic terms for the continuous

spacer.cont predictor were added to the full model. We used the binary pair_score.positive

instead of the continuous pair_score.cont due to convergence problems reported by R. Other

multiple logistic regression models with the highly correlated continuous decamer1_score.cont

and decamer2_score.cont predictors were tested separately and compared to the models that

included pair_score.cont. Models including pair_score.cont showed a better performance in

terms of AIC and AUC.

Due to lack of significance for individual effects in the full model, we dropped those

predictors with the largest P values for which their removal had a significant effect on the

model. The likelihood-ratio statistic comparing the full model (model 1) to the reduced

model 2 which did not include the in_HmecH3K4me2, in_HmecH3K4me3, in_NhekH3K4me3
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and in_HuvecH3K4me2 predictors equaled 0.12 (d f = 4) indicating that the four predictors

were not necessary (P = 9.98× 10−1) and did not significantly improve the fit in terms of

increasing the likelihood or decreasing the deviance.

Table 3.15 Results of fitting several logistic regression models using the standard glm function.

A list of explanation of used abbreviations for the predictors can be found in Table

3.14.

Model Predictors AIC AUC

1 P.p + S.c + I(S.c2) + I(S.c3) + E 99.46 0.999492

+Hm1 + Hm2 + Hm3 + Nhl1 + Nhl2 + Nhl3

+Nhe1 + Nhe2 + Nhe3 + Hu1 + Hu2 + Hu3

+He2 + He3

2 P.p + S.c + I(S.c2) + I(S.c3) + E 91.57 0.9995011

+Hm1 + Nhl1 + Nhl2 + Nhl3 + Nhe1 + Nhe2

+Hu1 + Hu3 + He2 + He3

3 P.p + S.c + I(S.c2) + I(S.c3) + Hm1 82.09 0.9994978

+Nhl1 + Nhl2 + Nhl3 + He2 + He3

4 P.p + S.c + I(S.c2) + I(S.c3) + Hm1 79.29 0.9993574

+Nhl2

5 P.p + S.c + I(S.c2) + Hm1 + Nhl2 78.87 0.9992772

6.1 P.p + S.c + I(S.c2) + Hm1 79.02 0.9988358

6.2 P.p + S.c + I(S.c2) + Nhl2 79.51 0.9992526

We next considered a model which removed in_enhancer, in_NhekH3K4me1, in_NhekH3K4me2,

in_HuvecH3K4me1 and in_HuvecH3K4me3 (model 3). The likelihood ratio test comparing

model 2 to the reduced model 3 resulted in an increased deviance of 0.52 on d f =5 with

P=0.99. The reduced model 3 was significantly better than model 2. Model 4, which in

comparison to model 5 did not include in_NhlfH3K4me1, in_NhlfH3K4me3, in_Hepg2H3K4me2

and in_Hepg2H3K4me3 had an increased deviance of 5.20 on d f =4 resulting in P=0.27. The

next likelihood ratio test comparing model 4 and model 5 suggested that the cubic term

I(spacer.cont3) included in model 4, but not in model 5 is unnecessary (deviance.difference =

1.58, d f =1, P=0.21). It was possible to further reduce the model by dropping in_NhlfH3K4me2

(model 6.1) or by removing in_HmecH3K4me1 (model 6.2). In both cases, the removal was
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highly significant. Further simplification resulted in a significantly poorer fit and was

therefore not recommended. We also analyzed models with all types of interaction terms

between the predictors, but none of them were found to be significant.

Model 5, model 6.1 and model 6.2, seemed reasonable for a good prediction model

of p53 binding sites. Comparing the three models using AIC, AIC was smallest for

model 5 which included pair_score.positive, spacer.cont, I(spacer.cont2), in_HmecH3K4me1

and in_NhlfH3K4me2. Thus, based on AIC, model 5 would be the model which rates best.

Logistf models

Based on the results obtained from the univariate analyses, AIC was smallest for the single

predictor logistic regression model with pair_score.cont (AIC = 34.11). This demonstrates

strong evidence of an effect of pair_score.cont on predicting p53 binding sites. The continuous

predictor seems to be an extremely good predictor. Since the standard ’glm’ function in R

reported convergence problems that may have been caused by complete or quasi-complete

separation of data points when using pair_score.cont in combination with other predictor

variables, we used the ’logistf’ function included in Heinze’s ’logistf’ package to perform

Firth logistic regression (Heinze and Schemper, 2002). Unlike ’glm’, the ’logistf’ function

does not report an AIC statistic, but a likelihood ratio test statistic. Thus, AIC cannot be

used to compare models.

Table 3.16 shows the results of the multiple logistic regression models fitted by the ’logistf’

function. We started with a full model with 17 predictor variables, including a quadratic

term for pair_score.cont. We next dropped all predictor variables whose estimated coefficients

resulted in large P values. When we compared the reduced model 2 to the full model

(model 1), the AUC value was smaller for the full model, even though much more predictors

were included in the full model indicating that the reduced model was the preferred model.

Continuing the simplification process, we resulted in models 3, 4 and 5 with slightly different

AUC values.

Among the five models listed in Table 3.16 which all as a whole fitted well to our data (see

likelihood ratio test statistics), the AUC was largest for model 2. However, the other three

models, model 3, model 4 and model 5, do also seem reasonable, because the difference

in AUC was very minimal. Model 1 is not preferable due to a deep lack of significance for

individual effects.
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Table 3.16 Results of fitting several logistic regression models using the ’logistf’ function. A

list of explanation of used abbreviations for the predictors can be found in Table

3.14.

Model Predictors AUC Likelihood ratio test

(test statistic,df,P value)

1 P.c + S.c 0.9999961 (2333.19,18,P≈0)

+I(S.c2) + E

+Hm1 + Hm2

+Hm3 + Nhl1

+Nhl2 + Nhl3

+Nhe1 + Nhe2

+Nhe3 + Hu1

+Hu2 + Hu3

+He2 + He3

2 P.c + S.c 0.9999974 (2379.46,7,P≈0)

+I(S.c2) + Nhl1

+Nhe1 + Nhe3

+Hu3

3 P.c + S.c 0.9999871 (2380.69,6,P≈0)

+I(S.c2) + Nhe1

+Nhe3 + Hu3

4 P.c + S.c 0.9999832 (2383.30,5,P≈0)

+I(S.c2) + Nhe1

+Nhe3

5 P.c + S.c 0.9999819 (2387.52,4,P≈0)

+I(S.c2) + Nhe1

3.3.3 Performance analysis on the training data

The seven top models we selected as potential models for predicting p53 binding sites were:

glm.model5, glm.model6.1, glm.model6.2, logistf.model2, logistf.model3, logistf.model4 and

logistf.model5.

We evaluated the prediction ability of the chosen models to discriminate p53 binding sites

from non-p53 binding sites by determining specific performing measures, such as sensitivity

and specificity, and using ROC curve analysis based on the training data set. Figure 3.11
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shows the sum of sensitivity and specificity at various cut-off points (left plot) and the ROC

curve (right plot) for model ’glm.model5’. The cut-off value which provided the largest sum

of sensitivity and specificity was MST=0.1074 with a sensitivity of 0.9954 and a specificity of

0.9966. The corresponding confusion (classification) matrix for MST as probability cut-off

was:

observation

prediction 1 0

1 875 3

0 4 876

with TP=875, FP=3, FN=4 and TN=876. The value for the area under the ROC curve (AUC)

on the right plot was reported to be AUC=0.9993.
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Figure 3.11 (glm.model5) (1) The sum of sensitivity and specificity for different cut-off points.

The highest point of the curve is called MST. The MST of the ’glm’ model is

equal to 0.1074 resulting in a sum of 1.9920, where the values for sensitivity

and specificity are 0.9954 and 0.9966, respectively. (2) ROC curve when plotting

sensitivity against 1-specificity. The area under the ROC curve is called AUC.

For model ’glm.model6.1’, the value of MST was reported to be 0.0789 resulting in the

same sensitivity and specificity of 0.9954 and 0.9966 as model ’glm.model5’ (Figure 3.12).

The corresponding confusion matrix was the same, too. The AUC of 0.9988, however, was

smaller than that of the previous model.
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Figure 3.12 (glm.model6.1) (1) The sum of sensitivity and specificity for different cut-off

points. The highest point of the curve is called MST. The MST of the ’glm’ model

is equal to 0.0789 resulting in a sum of 1.9920, where the values for sensitivity

and specificity are 0.9954 and 0.9966, respectively. (2) ROC curve when plotting

sensitivity against 1-specificity.
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Figure 3.13 (glm.model6.2) (1) The sum of sensitivity and specificity for different cut-off

points. The highest point of the curve is called MST. The MST of the ’glm’ model

is equal to 0.0793 resulting in a sum of 1.9920, where the values for sensitivity

and specificity are 0.9954 and 0.9966, respectively. (2) ROC curve when plotting

sensitivity against 1-specificity.

The value of MST for model ’glm.model6.2’ was MST=0.0793 yielding the same confusion

matrix, and thus the same sensitivity and specificity as for the other ’glm’ models. The
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reported AUC of 0.9993 was larger than ’glm.model6.1’, but slightly less than ’glm.model5’.
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Figure 3.14 (logistf.model2) (1) The sum of sensitivity and specificity for different cut-off

points. The highest point of the curve is called MST. The MST of the ’logistf’

model is equal to 0.6088 resulting in a sum of 1.9989, where the values for

sensitivity and specificity are 0.9989 and 1, respectively. (2) ROC curve when

plotting sensitivity against 1-specificity.

As shown in Figure 3.14, the MST of the ’logistf.model2’ model (MST=0.6088) was much

greater than in the ’glm’ models. Using a cut-off which was equal to the MST, we obtained

the following confusion matrix:

observation

prediction 1 0

1 878 0

0 1 879.

Due to false positive fraction of zero the resulted value for specificity was equal to 1. The

sensitivity was 0.9989. Adding both measures together, we obtained a sum of 1.9989. The

area under the ROC curve was reported to be equal to AUC=0.9999974 which was much

greater than those of the glm models.
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Figure 3.15 (logistf.model3) (1) The sum of sensitivity and specificity for different cut-off

points. The highest point of the curve is called MST. The MST of the ’logistf’

model is equal to 0.4259 resulting in a sum of 1.9966, where the values for

sensitivity and specificity are 0.9989 and 0.9977, respectively. (2) ROC curve when

plotting sensitivity against 1-specificity.

Figure 3.15 shows the performance result of model ’logistf.model3’. The MST of the

model was equal to 0.4259 which produced the confusion matrix

observation

prediction 1 0

1 878 2

0 1 877.

The corresponding values for sensitivity and specificity were 0.9989 and 0.9977, respectively

and the sum of both measures was 1.9966.

The logistf model ’logistf.model4’ had two MST values, MST1=0.4014 and MST2=0.7882.

MST1 produced the confusion matrix

observation

prediction 1 0

1 878 3

0 1 876.

with sensitivity=0.9989 and specificity=0.9966, and MST2 created the confusion matrix
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observation

prediction 1 0

1 875 0

0 4 879

sensitivity=0.9954 and specificity=1. For both MST values, we obtained a sum of sensitivity

and specificity which was equal to 1.9954.
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Figure 3.16 (logistf.model4) (1) The sum of sensitivity and specificity for different cut-off

points. The points indicated by the two arrows on the plot represent the place

where the sum of sensitivity and specificity is maximized. The values for the two

MST values are MST1=0.4014 and MST2=0.7882, both resulting in a sum of 1.9954.

MST1 results in a sensitivity of 0.9989 and a specificity of 0.9966 and MST2 in a

sensitivity of 0.9954 and a specificity of 1. (2) ROC curve when plotting sensitivity

against 1-specificity.

Model ’logistf.model5’ also reported two MST values (MST1=0.2861, MST2=0.7911). The

corresponding confusion matrices were

observation

prediction 1 0

1 879 4

0 0 875

with sensitivity=1 and specificity=0.9954 for MST1 and
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observation

prediction 1 0

1 875 0

0 4 879

sensitivity=0.9954 and specificity=1 for MST2 resulting in a sum of 1.9954.
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Figure 3.17 (logistf.model5) (1) The sum of sensitivity and specificity for different cut-off

points. The points indicated by the two arrows on the plot represent the place

where the sum of sensitivity and specificity is maximized. The values for the

two MST values are MST1=0.2861 and MST2=0.7911, both resulting in a sum of

1.9954. MST1 results in a sensitivity of 1 and a specificity of 0.9954 and MST2 in a

sensitivity of 0.9954 and a specificity of 1. (2) ROC curve when plotting sensitivity

against 1-specificity.

3.3.4 Model evaluation using the testing data

Among the seven models, ’glm.model5’, ’glm.model6.1’, ’glm.model6.2’, ’logistf.model2’,

’logistf.model3’, ’logistf.model4’ and ’logistf.model5’, the logistf model ’logistf.model2’

produced the largest sum of sensitivity and specificity for the maximized sum threshold

(MST) and the highest AUC associated with our training data. According to those two

measures, ’logistf.model2’ was deemed the best. Thus, we chose the combined evidence

’logistf.model2’ model as our prediction model.

We evaluated the ’logistf.model2’ model on the testing set with the MST from the previous

subsection which gave the best sensitivity (0.999) and specificity (1) for detecting p53 binding

sites in the training set. Using a probability threshold of 0.6088, we obatined the following
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confusion matrix:

observation

prediction 1 0

1 873 6

0 5 872.

The values of 0.994 and 0.993 for the sensitivity and specificity were slightly less than those

for the training set, but still high enough to produce a good prediction. We also plotted

ROC curves based on the training and testing data sets (Figure 3.18). The AUC for the

testing data was reported to be equal to AUC=0.9994 (Table 3.17).

Table 3.17 Comparison of performance of the combined evidence ’logistf.model2’ model for

the training and testing data. We used a probability threshold of 0.60879375 to

distinguish between p53 and non-p53 binding sites.

Data set Accuracy Precision Sensitivity Specificity AUC

Training set 0.9994 1 0.9989 1 0.9999

Testing set 0.9937 0.9932 0.9943 0.9932 0.9994

1-specificity 1-specificity
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Figure 3.18 ROC curves of the combined evidence ’logistf.model2’ model for training and

testing data sets. The second graph on the right hand side is an enlarged version

of the highlighted region in the first graph.
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3.4 Discussion

Using the training data, the ’logistf.model2’ model was the best performing model in terms

of AUC, sensitivity and specificity. It is important to mention, however, that the differences

in AUC and the other statistical measures were very minimal. The difference in AUC, for

example, is roughly between one one-thousandth and one one-hundred-thousandth.

When we compare the ’glm’ models with the ’logistf’ models, the main difference between

them is that the ’glm’ models have to use a binary predictor variable for the pair score,

while the same predictor in the ’logistf’ models is treated as continuous. With independent

variables that are all categorical in the model, only a limited choice of combinations exists for

the set of predictor values. This also is the case for our ’glm’ models despite the continuous

spacer.cont variable which, however, is a value between zero and thirteen. 112 (2× 14× 2× 2)

combinations are possible for ’glm.model5’ and 56 (2× 14× 2) for the models ’glm.model6.1’

and ’glm.model6.2’, respectively. The fact that there is only a limited number of possible

combinations may be a problem for our next genome-wide analysis. In large genomes like

human, there will be many random sequences that match the p53 consensus binding motif.

We need to select an optimal cut-off value (above which a sequence is considered as a p53

binding site) such that we can minimize the number of such false positives. Using our ’glm’

models, the set of sites classified as p53 binding sites cannot be reduced any further when

a particular cut-off point is reached. It is questionable whether that cut-off value will be

strict enough to differentiate true p53 binding sites from random ones. The ’logistf’ models

therefore seem to be the better models for the genome-wide prediction of p53 binding sites.

Having a closer look at the best performing model ’logistf.model2’, the corresponding

logistic regression equation with the estimated coefficients is defined as

logit[P(y = 1)] = 3.9932 + 0.8391[pair_score.cont]

−1.5315[spacer.cont] + 0.1039[spacer.cont2]

+3.6782[in_NhlfH3K4me1] + 5.6133[in_NhekH3K4me1]

−7.0282[in_NhekH3K4me3] + 5.9039[in_HuvecH3K4me3].

A negative coefficient for the spacer.cont seems to make sense, because the majority of

our positive training sites had been reported to have no spacers between the two half-

sites. According to the above equation, the existence of spacers will be penalized. Mono-

methylation of histone H3 lysine 4 is known to be associated with enhancers (Heintzman

et al., 2009). Trimethylation, however, has been reported to be strongly associated with

transcription start sites and not with p53 in any meaningful way. For this reason, the
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coefficients for in_NhlfH3K4me1 and in_NhekH3K4me1 are positive, whilst in_NhekH3K4me3

has a negative coefficient. The positive coefficient for in_HuvecH3K4me3 is hardly to explain.

It can be meaningful to have two different cell lines in our logistic regression model due to

their different life histories. There will be some sites which are not accessible in a particular

cell line. In that case, the methylation data in that cell line will only be reliable to some

extent.
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Our combined evidence model showed a very good performance in accurately predicting

human p53 binding sites using the testing data set. In order to test whether our model was

capable of dealing with large and more complex data sets, we performed a genome-wide

analysis by using human whole genome data. This chapter will demonstrate how well the

model can deal with this challenging strategy and especially how well it can distinguish

potential p53 binding sites from genome background. In this chapter, we will analyze the

predicted binding sites in detail by examining their functional characteristics and compare

them to predictions from other studies.

4.1 Introduction

We were interested in predicting p53 binding sites through genome-wide performance using

our prediction model ’logistf.model2’. According to Smeenk et al. (2008), the number of

p53 binding sites in the human genome is estimated to be between 300 and 3000. Hoh et al.

(2002) identified about 300 p53 targets by using the p53MH algorithm which is based on

discrete discriminant analyis. Cawley et al. (2004) performed ChIP-on-chip experiments to

map the binding sites for p53 in vivo on human chromosomes 21 and 22. A total number of

48 high confidence p53 binding sites were observed along chromosomes 21 and 22 which

would correspond approximately to 1600 binding sites when extrapolating to the whole

genome.

Functionally important regions of the genome have been determined and predicted by

experimental and computational approaches. Two general approaches have been undertaken

to experimentally identify and validate p53 binding sites and potential p53 target genes (Cui

et al., 2011). The first approach used by Riley et al. (2008) focuses on a specific target gene

and checks whether the gene meets certain criteria that it needs to fulfill to be a potential

p53 responsive gene. Riley et al. (2008) (1) tested the presence of a p53 RE in the DNA

near or within the gene of interest, (2) searched for evidence that the gene was up- or

down-regulated in response to wild-type p53, analyzed and validated the corresponding

p53 RE (3) by using a luciferase reporter assay and (4) chromatin immuoprecipitation with

a p53-specific antibody. This way, 129 genes and 160 p53 REs were identified which met

at least three of the four criteria. The second experimental approach is genome-scale ChIP

analysis. Wei et al. (2006) mapped p53 targets in the human genome by using chromatin

immunoprecipitation with the paired-end ditag (ChIP-PET) and found 542 targets with

high confidence of being involved in p53 interaction. Smeenk et al. (2008) identified
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and characterized 1546 p53 binding sites using a genome-wide ChIP method which was

performed in combination with DNA microarrays (ChIP-on-chip).

Modulation of the p53 transcriptional activity is mainly achieved by direct DNA-binding

of p53 to their REs generally located within a few thousand base pairs of the target gene’s

transcriptional start site (TSS) (Horvath et al., 2007; Laptenko and Prives, 2006). Several

studies using ChIP experiments have indicated that p53 binding sites also exist in intergenic

(regions outside genes and promoters) and intragenic (regions within a gene) regions

(Hearnes et al., 2005; Riley et al., 2008; Wei et al., 2006). Kaneshiro et al. (2007) reported

that more than 80% of their detected p53 binding sites in the human ENCODE regions

were intergenic (52%) or intragenic (29%) binding sites with 2% located in exons, 3% in

first introns and 24% in other introns. More than half (60%) of the 1546 p53 binding sites

identified by Smeenk et al. (2008) were mapped to intragenic or intergenic regions. Although

many of the binding sites were located far away from the proximal promoter region of their

target genes, Smeenk et al. (2008) showed that those sites could function as transcriptional

enhancers. The long distance interaction between enhancer and target gene is mediated by

DNA looping which brings distal transcription factor bound DNA binding sites close to the

transcription start site to strongly affect transcription (Riley et al., 2008).

4.2 Methods

4.2.1 Applying our prediction model to the whole human genome data

Human genome data were downloaded from the Ensembl ftp site (Ensembl release 35,

November 2005). For each possible pair of decameric sites in the human genome separated

by a spacer of 0-13 bp, we estimated the probability of being a p53 binding site based on its

observed values of the predictor variables.

Due to the large genome size, memory usage became a huge problem when running FIMO.

Using Perl, we therefore had to split the genomic sequences into smaller sub-sequences of

length 1 mega base pairs (Mb) with an overlapping area of 50 bp before we could run FIMO

to compute the values for the pair_score.cont predictor. We scanned every sub-sequence

with FIMO to determine the match scores of all possible decameric sequences to the two

half-site motifs of the TRANSFAC M01651 matrix. The P value threshold was set at 1 to

obtain the score for all possible decamers of the human genome. The score of a full site,

as well as the values for the in_NhlfH3K4me1, in_NhekH3K4me1, in_NhekH3K4me3 and the

in_HuvecH3K4me3 predictors were determined the same way as described in Chapter 3.
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Our prediction model was finally used to estimate the probabilites of all possible pairs of

decameric half-sites based on the observed predictor values.

4.2.2 Di�erentiating p53 binding sites from random sites

Given the set of all possible pairs of decameric sites in the human genome with their

estimated probabilities, we were required to choose a cut-off value for the predicted outcome

probability above which a site was classified as a p53 binding site. As mentioned in Section

4.1, there are between 300 and 3000 p53 binding sites estimated in the human genome. Based

on this information we chose two optimal cut-off values that resulted in approximately 3000

and 300 sites, respectively.

4.3 Results

Two very stringent probability cut-off values were determined which gave the minimum and

maximum estimated number of p53 binding sites in the human genome. The first cut-off

value of 0.999999999998377 classified 2999 sites as potential p53 binding sites which might

partially overlap with each other. The stricter cut-off value of 0.999999999999964 yielded 305

p53 binding sites.

4.3.1 Overlap with genome-wide ChIP data for p53

We compared our predictions with published ChIP-seq (Smeenk et al., 2008) and ChIP-PET

(Wei et al., 2006) data. Of the 1545 binding targets identified by Smeenk et al. (2008), 300

(69) showed overlaps with any of our 2999 (305) predicted sites. A better result could be

achieved with the ChIP-PET data from Wei et al. (2006). 129 (51) out of the 327 PET-3+

clusters (clusters with three or more overlapping DNA fragments) overlapped with any of

our 2999 (305) predictions. In order to avoid "testing on training data", we distinguished the

ChIP-PET data from training data and data that were not used in the training set. Among

the 163 PET-3+ clusters that were not included in the training data set, 67 (25) were predicted

by the combined evidence model. In particular, the three targets with high confidence of

p53 interaction within the PET-11+ clusters, including the highest ranked target in the

PET-18+ cluster, were all predicted by our model with the less stringent cut-off value for

2999 predictions (Table 4.1). The 100% overlap for the PET-11, PET-12 and PET-18 clusters,

however, needs to be considered with care. The result would be unstable and would be

challenged if more targets were present in the corresponding PET clusters.
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Table 4.1 Overlapping results between our 2999/305 predictions and Wei’s p53 targets that

were not included in the training data set. A large amount of the high confidence

targets that were identified by Wei et al. (2006) overlapped with our predicted sites.

For the PET-10+ clusters (clusters with ten or more overlapping DNA fragments),

for instance, the overlap to our 2999 predictions was approximately 0.80 (4 out of 5

were predicted).

Number of Number of Number of Combined Combined

PETs per PET clusters PET clusters evidence model- evidence model-

PET cluster not used Comprehensive Stringent

for set of set of

training 2999 sites 305 sites

3 158 83 27 (32.53%) 8 (9.64%)

4 63 31 14 (45.16%) 4 (12.90%)

5 37 18 6 (33.33%) 2 (11.11%)

6 28 13 8 (61.54%) 5 (38.46%)

7 13 6 5 (83.33%) 3 (50.00%)

8 10 5 2 (40.00%) 1 (20.00%)

9 7 2 1 (50.00%) 1 (50.00%)

10 5 2 1 (50.00%) 0 (0%)

11 1 1 1 (100.00%) 0 (0%)

12 2 1 1 (100.00%) 1 (100.00%)

13 1 0 0 (-) 0 (-)

16 1 0 0 (-) 0 (-)

18 1 1 1 (100.00%) 0 (0%)

4.3.2 Characteristics of the predicted p53 binding sites

We identified the localization of our predictions in the human genome relative to Ensembl

genes the same way as described in Chapter 2. The binding sites were grouped into the six

categories: intragenic (all introns and exons except the first exon and intron), TSS flanking

(first intron, first exon and 5 kb upstream of TSS), 5 kb downstream (5 kb downstream of

last exon), 5-25 kb downstream, 5-25 kb upstream and intergenic regions. A distinction

between protein coding region and untranslated region (UTR) was not made. The protein

coding region was considered as an intragenic region, whereas the UTR belonged to the

TSS flanking region.
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Figure 4.1 Distribution of the predicted p53 binding sites by ’logistf.model2’ in intragenic, TSS

flanking, 5 kb downstream, 5-25 kb downstream, 5-25 kb upstream and intergenic

regions relative to Ensembl genes (outer ring) in comparison to the genome-wide

proportions of the six regions of interest (inner ring). Significantly enriched or

under-represented regions (G-test, P<0.05) are marked with an asterisk (*). Over-

representation was observed among the 2999 binding sites in intragenic, TSS

flanking, 5 kb downstream and 5-25 kb upstream regions. Under-represented

binding sites were found in intergenic regions. Binding sites of the 305 predictions

were statistically enriched in TSS flanking and 5 kb downstream regions and

under-represented in intergenic regions.

The predicted p53 binding sites lay throughout the human genome. More than half of

the 2999 (305) binding sites were found within or near a gene (Figure 4.1). Out of 2999

(305), 1055 (93) binding sites were in intragenic regions and 678 (67) sites were mapped

to TSS flanking regions. 91 (12) of our predictions were located within a distance of 5

kb downstream of a gene, 199 (26) within 5-25 kb downstream, 196 (19) within 5-25 kb

upstream regions and 780 (88) in intergenic regions.

A G-test analysis showed that the difference in proportions across the six regions between

observed and expected sites was highly significant for the sets of 2999 (G=767.97, d f =5,

P≈0) and 305 (G=64.95, d f =5, P=1.15×10−12) predictions. Individual G-tests applied for

testing each of the six regions identified several significantly enriched and under-represented
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regions for the predictions. The p53 binding sites among the 2999 predictions were signific-

antly over-represented in intragenic (G=96.32, d f =1, P≈0), TSS flanking (G=328.14, d f =1,

P≈0), 5 kb downstream (G=14.15, d f =1, P=1.68×10−4) and 5-25 kb upstream (G=13.63,

d f =1, P=2.22×10−4) regions and under-represented in intergenic (G=663.39, d f =1, P≈0)

regions. For the 305 binding sites, significant enrichment was observed for the TSS flanking

(G=30.08, d f =1, P=4.14×10−8) and 5 kb downstream regions (G=4.56, d f =1, P=0.03). Under-

representation was reported for the intergenic regions (G=50.61, d f =1, P=1.12×10−12).
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Figure 4.2 Spacer length distribution of the predicted p53 binding sites by the combined

evidence ’logistf.model2’ model based on logistic regression.

Investigating the length of spacers between the half-sites of the combined evidence

predictions, we observed that more than half of the predicted sites had no spacer (Figure

4.2).
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4.3.3 Functional annotation of the detected p53 binding sites

Using the Ensembl Perl API (Ensembl release 35, November 2005), the predicted p53

binding sites were assigned to their nearest genes as described in Chapter 2. The 2999

(305) predictions with their 3969 (545) unique genes were functionally analyzed using Gene

Ontology (GO) categories. For given gene lists, we used DAVID to identify statistically

enriched GO terms associated with the genes in the input lists.
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phosphorus metabolic process 
positive regulation of molecular function 
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Figure 4.3 Biological process terms in the ’GO FAT’ annotation category significant at

P<1×10−5 for 2467 involved genes. The most statistically significant term is shown

at the bottom.

Figure 4.3 shows the biological process GO terms for the ’GO FAT’ annotation category

which were strongly enriched in the gene list of the 2999 predictions. 2467 genes were

associated with GO terms of biological process. We observed an enrichment of the biological

GO terms ’regulation of apoptosis’, ’regulation of cell death’ and ’regulation of programmed

cell death’. In addition, numerous metabolism related GO terms, such as ’phosphate

metabolic process’ and ’phosphorus metabolic process’, were also found to be statistically

enriched. Statistically significant GO molecular function terms associated with our gene

list are presented in Figure 4.4. The number of genes involved in the molecular function

category was 2383. The most significant group of molecular function was the ’protein kinase

activity’.
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Figure 4.4 Molecular function terms in the ’GO FAT’ annotation category significant at

P<1×10−3 for 2383 involved genes.
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Figure 4.5 Cellular component terms in the ’GO FAT’ annotation category significant at

P<1×10−3 for 2324 involved genes.
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These observations obtained from the statistically significant biological process and molecu-

lar function GO terms were in broad accordance with the results from our positive data set

(Chapter 2). 2324 genes were associated with GO terms of cellular component. The most

statistically significant cellular component term was ’vesicle’ and the most numerous one

was ’cytosol’ (Figure 4.5).
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Figure 4.6 KEGG pathways significant at P<0.05 for 1037 involved genes.
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Figure 4.7 Sequence logo for the 2999 predicted p53 binding sites visualized using WebLogo.
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Figure 4.8 Sequence logo for the 305 predicted p53 binding sites visualized using WebLogo.

Performing an analysis for KEGG pathway participation of our 2999 predicted p53 binding
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sites, many genes of them were significantly enriched in cancer-related pathways with the

most significant KEGG pathway ’pathways in cancer’ (Figure 4.6). The GO enrichment and

KEGG pathway analyses of sets of genes of the 2999 and 305 (Subsection C.2.1) combined

evidence predictions showed promising results.

Our combined evidence model seems to be reliable and able to predict high probability

p53 binding sites. This finding can be confirmed by the two sequence logos presented in

Figure 4.7 and Figure 4.8 which were generated with WebLogo (Crooks et al., 2004; Schneider

and Stephens, 1990) (http://weblogo.berkeley.edu/). Both sequence logos resemble the

consensus sequence for human p53 binding sites ([AG][AG][AG]C[AT][TA]G[TC][TC][TC]

(El-Deiry et al., 1992)).

4.4 Discussion

In order to make practical use of our model, we performed the combined evidence model

to the entire human genome to predict p53 binding sites. Performance on a test data set

(unseen data) that is limited to a few thousand sequences is not informative enough to

fully ensure that the model has acceptable predictive power. A genome-wide application,

however, is much more challenging and will help measure the performance of a model

more accurately. A standard sequence-based discovery of functional transcription factor

binding sites that performs well on bacteria and yeast sequence data, will have problems

with sequences from higher eukaryotic systems, such as humans and mouse, due to their

large genome size and would result in many false positive binding sites (MacIsaac and

Fraenkel, 2006). A genome-wide analysis is therefore important to carry out and can also be

used to identify novel binding sites.

We built a simple and easily interpretable model based on logistic regression which

integrates sequence information and epigenetic information. Our prediction model was

able to predict potential p53 binding sites from the whole human genome whose estimated

probabilities were all above a stringent cut-off point. The characteristics of the predicted

binding sites were mostly in accordance with previous studies of human p53 binding sites

identified by ChIP experiments (Smeenk et al., 2008; Wei et al., 2006). Using our combined

evidence model on the whole human genome, we were able to make a good prediction

on human p53 binding sites. The GO enrichment and KEGG pathway analyses, as well as

the resulting sequence logo showed promising results. Taking a detailed look at the two

sequence logos in Figures 4.7 and 4.8, we observe that the central ’CWWG’ nucleotides
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known to be the most conserved positions within the half-sites of the human p53 binding

sites (Riley et al., 2008) are clearly presented among the sets of our combined evidence

predictions. Despite the promising findings, our computationally predicted binding sites

do not necessarily represent actual p53 binding sites. Thus, our predictions require further

experimental investigations to provide strong evidence that these are indeed binding sites

bound by p53 in vivo. In addition, special considerations need to be taken into account

which include the involvement of specific cellular factors known to interact with p53 by

examining the flanking regions of the potential binding sites and chromatin state which

have been shown to control access of transcription factors to their binding sites.
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Chapter 5 Comparison with a sequence-only model

5.1 Introduction

The transcription function of p53 is mainly regulated through direct sequence-specific

binding to the p53 response elements (REs) in DNA (Menendez et al., 2009; Riley et al.,

2008). Most transcription factors have preferred sequence motifs on the DNA to which

they bind. Many computational methods therefore predict transcription factor binding sites

based on their regulatory motifs. There are different ways of representing such a motif.

One simple way is the pattern-based model which uses a consensus sequence of preferred

nucleotides. A motif M of length l is presented as

M = a1a2 . . . al ai ∈ ΣDNA = {A, C, G, T} ∀i ∈ {1, . . . , l}.

Sinha and Tompa (2000) improved the simple pattern-based model by extending the alphabet

Σ to symbols ’R’ (purine), ’Y’ (pyrimidine), ’S’ (strong), ’W’ (weak) and the wildcard character

’N’ for spacers within the motif. A motif by Sinha and Tompa is, thus, a length-l sequence

over ΣDNA = {A, C, G, T, R, Y, S, W, N}. Some motif finding algorithms which use the

pattern-based model are, for example, PROJECTION, PatternBranching, Voting, MITRA,

MULTIPROFILER and cWINNOWER (Buhler and Tompa, 2002; Chin and Leung, 2005;

Eskin and Pevzner, 2002; Keich and Pevzner, 2002; Liang, 2003; Rajasekaran, 2006).

The most common model of describing a motif is the matrix representation. The motif is

represented by a position frequency matrix (PFM) or a position weight matrix (PWM), also

known as a position-specific score matrix (PSSM), which contains log odds weights of every

nucleotide a at each position in the motif of length l:

M = (ai,j)|Σ|xl , 0 ≤ i, j < l and a ∈ Σ.

The computational tools, such as MEME, GLAM, ProfileBranching, MITRA-PSSM and

CONSENSUS are all based on probabilistic models to discover transcription factor binding

sites (Bailey et al., 2009; Eskin, 2004; Frith et al., 2004; Hertz and Stormo, 1999; Price et al.,

2003; Timothy and Elkan, 1995). The FIMO tool, for example, which is part of the MEME

Suite software searches a biological sequence database for occurrences of motifs represented

as probability matrices (in MEME format) provided by the user.

Further representations which are commonly used are regular grammars and tree data

structures (Rigoutsos and Floratos, 1998; Sagot, 1998).
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5.2 Methods

The sequence-only model scans sequences with a probabilistic matrix to score and predict

p53 binding sites.

5.2.1 Scoring DNA sequences

We used FIMO (Grant et al., 2011) from the MEME Suite motif finding tools (Bailey et al.,

2009) and the TRANSFAC p53 binding site motif (matrix accession M01651) to score

DNA sequences. The two individual decamer1_score.cont and decamer2_score.cont scores for

determining the total pair_score.cont score were calculated as described earlier in Chapter 3.

The higher the total score, the more likely it was that a given site was a p53 binding site.

5.2.2 Process of training and testing

In the training step, every site in the training data was scored using FIMO. An optimal

threshold score was specified that defined a p53 binding site based on the training set which

gave the best performance results in terms of specificity and sensitivity.

In the testing step, we measured the performance of the sequence-only model on the

basis of the testing sites using the threshold from the training process. If the total score of

a testing site was greater than the threshold score, the testing site was predicted as a p53

binding site (Figure 5.1).

PWM1 PWM2

decamer1_score.cont = 13.49 decamer2_score.cont = 2.06

pair_score.cont = 15.55

> threshold

GAGCAGGCATAGGCATGTCC

+

yes nop53 binding site !

Figure 5.1 Predicting p53 binding sites using the sequence-only model for an example input

20-mer.
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5.2.3 Applying the sequence-only model to the whole human genome data

To perform a genome-wide analyis, the sequences in the whole human genome were scanned.

We identified sequences which were most likely to be p53 binding sites on the basis of the

sequence-only model by considering and scoring every possible pair of decameric half-sites

which were either directly adjacent or separated by a spacer region of length 1-13 bp using

FIMO (see also Chapter 4). Given the set of all possible pairs of decamers from the human

genome with their total scores, we selected two threshold scores that gave the minimum

(300) and maximum (3000) number of estimated binding sites, respectively.

5.3 Results

5.3.1 Prediction accuracy using training and testing data sets

Figure 5.2 shows the two ROC curves of the sequence-only and combined evidence models

along with a diagonal reference line based on the training sites. Since the two ROC curves

show intersections, it is difficult to say which is better. A zoom in on the grey square

rectangle in the plot on the left hand side, however, suggests that the combined evidence

model is the better model in terms of its ability to correctly classify and predict observations.

Indeed, the sequence-only model had an AUC of 0.9999573, which was slightly less than

that of combined evidence model (AUC=0.9999974).
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Figure 5.2 ROC curves of the sequence-only and the combined evidence models for the

training data set. The second graph on the right hand side is an enlarged version

of the highlighted region in the first graph.
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The training data set was used to find the optimal threshold value for the scores (of the

motif matches) of the binding sites. All sites with a score above this value would then be

classified as p53 binding sites. One possible strategy for choosing the best suitable threshold

is to determine the minimized difference threshold (MDT) which is the point on the curve

shown in the first plot of Figure 5.3 where sensitivity and specificity are equal (see also

Figure 3.2 in Chapter 3). We determined a value of MDT=-1.455 and both the sensitivity

and specificity were equal to 0.997 at that point. Using the MDT as a score threshold, we

obtained the following confusion matrix for the training data set.

observation

prediction 1 0

1 876 3

0 3 876

Another useful value is the maximized sum threshold (MST) representing the cut-off value

that maximizes the sum of sensitivity and specificity (see Figure 3.2 of Chapter 3). The

value of the score threshold MST was reported to be −3.873 with a sensitivity of 0.999 and

a specificity of 0.997 (Figure 5.3). The corresponding confusion matrix for the sequence-only

model and the training set was

observation

prediction 1 0

1 878 3

0 1 876 .

With the MST we could get a slightly better performance result in terms of sensitivity and

specificity. We therefore chose the MST as the score cut-off.

Using a threshold of −3.873 the sequence-only model was evaluated on the testing set.

observation

prediction 1 0

1 875 4

0 3 874

The values of 0.997 and 0.995 for the sensitivity and specificity, respectively were less than

those for the training set, but slightly better than those for the combined-evidence model on

the basis of the testing set (Figure 5.1).
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Figure 5.3 (a) The sensitivity and specificity for the sequence-only model using the training

data. Both curves cross at MDT=-1.455 corresponding to a sensitivity and specificity

of 0.997. (b) The sum of sensitivity and specificity for different cut-off points. The

point indicated by the arrow on the plot represents the place where the sum of

sensitivity and specificity is maximized (MST). MST has a score threshold of -3.870

corresponding to a sensitivity of 0.999 and a specificity of 0.997.

Table 5.1 Comparison of performance of the sequence-only and combined evidence models.

We used a score threshold of −3.873 and a probability threshold of 0.610 for the

sequence-only and combined evidence models, respectively.

Method Accuracy Precision Sensitivity Specificity

Training set

Sequence-only model 0.998 0.997 0.999 0.997

Combined evidence model 0.999 1 0.999 1

Testing set

Sequence-only model 0.996 0.995 0.997 0.995

Combined evidence model 0.994 0.993 0.994 0.993

5.3.2 Genome-wide prediction

For the genome-wide analysis, we redetermined the score threshold. Two stringent score

cut-off values were determined which gave the minimum and maximum estimated number

of p53 binding sites in the human genome as in Chapter 4 for the genome-wide predictions

by our combined evidence model. The first cut-off value we selected for the motif match

82



5.3 Results

score was 21.690 corresponding to 2998 binding sites. The second cut-off value of 24.758

classified 305 sites as potential p53 binding sites.

Overlap with genome-wide ChIP data for p53

The 2998 (305) predicted sites obtained from the sequence-only model were compared with

published ChIP data (Smeenk et al., 2008; Wei et al., 2006). Of the 1545 p53 binding targets

identified by Smeenk et al. (2008), 195 (29) overlapped with any of the 2998 (305) predicted

sites.

Table 5.2 Overlapping results between the sequence-only/combined evidence predictions

and Wei’s p53 targets that were not included in the training data set. Fractions of

non-training PET clusters predicted by the combined evidence and sequence-only

models that were statistically significantly different from each other are marked with

an asterisk (*) for the comprehensive sets and with a sharp (#) for the stringent sets.

Number Number Number Combined Combined Sequence- Sequence-

of of of PET evidence evidence only only

PETs PET clusters model - model - model - model -

per clusters not used Comprehensive Stringent Comprehensive Stringent

PET for set of set of set of set of

cluster training 2999 sites 305 sites 2998 sites 305 sites

>2 327 163 67 (41.10%) 25 (15.34%) 62 (38.04%) 19 (11.66%)

>3 169 80 40 (50.00%) 17 (21.25%) 47 (58.75%) 17 (21.25%)

>4 106 49 26 (53.06%) 13 (26.53%) 30 (61.22%) 13 (26.53%)

>5 69 31 20 (64.52%) 11 (35.48%) 22 (70.97%) 10 (32.26%)

>6 41 18 12 (66.67%) 6 (33.33%) 13 (72.22%) 9 (50.00%)

>7 # 28 12 7 (58.33%) 3 (25.00%) 9 (75.00%) 7 (58.33%)

>8 18 7 5 (71.43%) 2 (28.57%) 4 (57.14%) 3 (42.86%)

>9 11 5 4 (80.00%) 1 (20.00%) 3 (60.00%) 3 (60.00%)

>10 * 6 3 3 (100.00%) 1 (33.33%) 1 (33.33%) 1 (33.33%)

>11 5 2 2 (100.00%) 1 (50.00%) 1 (50.00%) 1 (50.00%)

>12 * 3 1 1 (100.00%) 0 (0%) 0 (0%) 0 (0%)

Among Wei’s PET-3+ clusters, 140 (43) sites out of 327 overlapped with our 2998 (305)

sequence-only predictions. Of the 163 PET-3+ clusters that were not included in the training

data set, 62 (19) were predicted by the sequence-only model (Table 5.2). In comparison,
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more overlapping binding sites were observed for our predictions based on combined

evidence (see Chapter 4). The number of Smeenk’s targets which overlapped with our 2999

(305) predictions was 300 (69). The number of Wei’s PET-3+ clusters overlapping our 2999

combined evidence predictions was 129 (51) for the entire data set and 67 (25) for the data

set excluding PET clusters that were used for training.

To test whether the fraction of PET-3+, PET-4+, ..., PET-13+ clusters covered by a prediction

that were not included in the training data set was the same for the combined evidence and

sequence only predictions, we applied individual exact binomial tests using R. Significantly

different fractions of non-training PET clusters that were identified by combined evidence

and sequence-only predictions were observed for PET-11+ (exact binomial test, P=0.03704)

and PET-13+ clusters (exact binomial test, P=2.2×10−16) when using the less stringent

cut-off value (comprehensive set of predictions). For the PET-11+ and PET-13+ clusters, the

combined evidence model showed a better performance in predicting p53 targets compared

to the sequence-only model. For the stringent set, the fraction of PET-8+ clusters predicted

by the combined evidence model significantly differed from the fraction of PET-8+ clusters

predicted by the sequence-only model (exact binomial test, P=0.03542). Significantly more

PET-8+ clusters were predicted by the sequence-only model with the more stringent cut-off

value.

Characteristics of the sequence-only predictions

When analyzing the locations of the seqeuence-only predictions relative to Ensembl genes, a

large amount of the predictions were found to be located in intergenic regions (Figure 5.4).

In detail, out of 2998 (305), 1254 (142) predicted sites were mapped to intergenic, 872 (71) to

intragenic and 378 (30) to TSS flanking regions. 99 (11) sites were located in 5 kb downstream

of a gene, 225 (30) and 170 (21) within 5-25 kb downstream and 5-25 kb upstream regions,

respectively. We compared the observed counts across the six genomic regions with the

counts expected by chance by using G-tests. The G-test analyses showed a very strongly

significant difference between the observed and expected data for the 2998 predictions

(G=76.84, d f =5, P=3.89×10−15) and a significant difference for the 305 predictions (G=13.78,

d f =5, P=0.02). Individual G-tests reported significant enrichment of the 2998 predicted

binding sites in intragenic (G=4.52, d f =1, P=0.03), TSS flanking (G=5.61, d f =1, P=0.02) , 5 kb

downstream (G=19.73, d f =1, P=8.93×10−6) and 5-25 kb downstream (G=9.20, d f =1, P<0.01)

regions. Significant under-representation was observed in intergenic regions (G=60.04, d f =1,

P=9.33×10−15).
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Figure 5.4 Distribution of the sequence-only predictions in intragenic, TSS flanking, 5 kb

downstream, 5-25 kb downstream, 5-25 kb upstream and intergenic regions relative

to Ensembl genes (outer ring) in comparison to the genome-wide proportions of

the six regions of interest (inner ring). Significantly enriched or under-represented

regions are marked with an asterisk (*).
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Figure 5.5 G-test of independence to compare the genomic location distributions between

the positive training and sequence-only prediction sets. The genomic location

distribution of the binding sites was different for the positive training and the

sequence-only prediction data at the 5% significance level. Significantly different

regions between the two data sets are marked with an asterisk (*).
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For the 305 predictions, binding sites were only significantly enriched in 5-25 kb downstream

regions (G=6.74, d f =1, P=0.01).

We performed a G-test of independence to test whether the genomic location distribution

of the binding sites was significantly different for the positive training set of 879 p53 binding

sites and the sequence-only prediction set (Figure 5.5). The G-test showed statistically

significant differences between the two data sets (2998 sites: G=18.19, d f =5, P<0.01; 305 sites:

G=23.04, d f =5, P<0.001). Individual G-tests reported significant differences in TSS flanking

(G=14.96, d f =1, P<0.001) and intergenic regions (G=7.00, d f =1, P<0.01) for the positive

training sites and 2998 sequence-only predictions and in intragenic (G=5.22, d f =1, P=0.02),

TSS flanking (G=11.87, d f =1, P<0.001) and intergenic regions (G=8.81, d f =1, P<0.01) for the

positive training and 305 prediction sets.

Sequence-only predictions
Combined evidence predictions
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Figure 5.6 Spacer length distribution of the predictions based on the sequence-only model in

comparison to the combined evidence predictions.

The binding sites predicted by only using sequence information showed a different

distribution of spacer lengths compared to the combined evidence predictions. The sequence-

86



5.3 Results

only predictions were not predominantly spacerless. Furthermore, the absolute counts in

the different spacer length categories were relatively similar for the set of 2998 predictions

(Figure 5.6).

Functional annotation of the sequence-only predictions

4618 (356) nearby genes were identified for the 2998 (305) binding sites predicted by the

sequence-only model. To analyze GO and KEGG pathway enrichment, we used the func-

tional annotation tool provided by DAVID. 3287 genes were involved in the GO enrichment

analysis, of which 2256 were associated with GO terms of biological process, 2195 with GO

terms of molecular function and 2122 genes were assicated with GO cellular component

terms.
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Figure 5.7 Significantly enriched (P<1×10−5) biological process terms in the ’GO FAT’ for the

2998 sequence-only predictions.
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Figure 5.8 Significantly enriched (P<1×10−3) molecular function terms in the ’GO FAT’ for

the 2998 sequence-only predictions.
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Figure 5.9 Significantly enriched (P<1×10−3) cellular component terms in the ’GO FAT’ for

the 2998 sequence-only predictions.
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Figure 5.10 Significantly enriched (P<0.05) KEGG pathways for the 2998 sequence-only pre-

dictions.

Figure 5.7, Figure 5.8 and Figure 5.9 present highly statistically significant GO terms found

in the biological process (P<1×10−5), the molecular function (P<1×10−3) and the cellular

component (P<1×10−3) ’GO FAT’ annotation categories which were associated with our

gene list of the 2998 predictions. Enriched GO terms for the 305 predictions are listed in

Appendix C). The most statistically significant GO term of biological process was ’axon

guidance’ and the most numerous one was represented by ’neuron differentiation’. Unlike

the positive p53 binding sites and the combined evidence predictions, we observed that

here, the common biological process terms related to the p53 pathway, such as ’regulation

of apoptosis’, ’regulation of cell death’ and ’regulation of programmed cell death’, were

not found among the top enriched GO terms. The ’calcium ion binding’ was the most

statististically significant and the most numerous GO molecular function term associated

with the genes of the 2998 predictions. Interestingly, we did not observe the common GO
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terms related to kinase activity among the top ranked terms. The most statistically significant

and the most numerous GO cellular component terms were related to ’plasma membrane’.

The KEGG pathway analysis revealed ’Type II diabetes mellitus’ as the most statistically

significant KEGG pathway and ’calcium signaling pathway’ as the most numerous pathway.

Figure 5.11 and Figure 5.12 show the sequence logos for the predicted p53 binding sites,

both generated from the sequence-only predictions. We can well recognize the core sequence

’CATG’ pattern, which is not surprising, because the model we used to make our prediction

was based on sequence information only.
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Figure 5.11 Sequence logo for the 2998 predicted p53 binding sites by the sequence-only

model, visualized using WebLogo.
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Figure 5.12 Sequence logo for the 305 predicted p53 binding sites by the sequence-only model,

visualized using WebLogo.

5.4 Discussion

We observed a very good performance of the sequence-only model on the basis of the

testing set. This was not surprising, but expected, because in Chapter 3, the pair_score.cont

variable had already been reported to be an extremely good predictor for the discovery of

p53 binding sites. The majority of the positive training sites were characterized by positive

scores, while most of the negative training sites had negative scores (see Table 3.6).
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Chapter 5 Comparison with a sequence-only model

To fully ensure that the sequence-only model had acceptable predictive power as the

combined evidence model had, we used the simple model to examine the entire human

genome. On complex systems such as humans, there is a large amount of uninformative

background DNA which makes the motif discovery very difficult and challenging. We

therefore expected a large number of false-positives with the sequence-only model. Indeed,

the sequence-only model seemed to perform less successfully on the whole genome than

on the training and testing data. Although the simple model was able to find some of the

p53 binding sites which had been identified by Wei et al. (2006) and Smeenk et al. (2008),

no overlapping was observed for the high-confidence Wei’s targets in the PET-12+ clusters.

Furthermore, the distribution of the spacer lengths in the sequence-only predicted sites

was not what we expected to see. A majority of the predicted sites had spacers between

their two half-sites which was not consistent with previous studies suggesting that most

functional p53 binding sites had no spacer between the half-sites. The gene enrichment

analyses using GO also failed to provide any clear confirmation that the predictions were

indeed functional p53 binding sites.

Obviously, unlike the combined evidence model, the sequence-only model was less

successful in the genome-wide prediction of potential p53 binding sites. The comparison

analysis between the two models showed that using epigenetic information, such as Lys4

methylation of H3, improved the performance of sequence-only prediction. Epigenetic

information is therefore an important and useful factor for the prediction of p53 binding

sites.
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Chapter 6

Discussion

With the remarkable progress in the development and improvement of ChIP techniques

(ChIP-on-chip and ChIP-seq), significant findings have been made in the field of epigenetic

research. Various ChIP experiments have provided strong evidence showing the important

role of chromatin states, such as histone modifications (Barski et al., 2007; Guccione et al.,

2006; Heintzman et al., 2009; Wang et al., 2008) and nucleosome positioning (He et al., 2010),

in the regulation of gene expression. Post-translational modifications of histone tails, such

as acetylation, methylation, phosphorylation and ubiquitination, can regulate transcription

by causing structural and functional changes in chromatin to modulate the accessibility of

DNA to regulatory proteins (Pawlak and Deckert, 2007).

In recent years, several strategies have been developed to identify transcriptional sequence

elements on the basis of chromatin signatures (Cuellar-Partida et al., 2012; Heintzman et al.,

2007; Shen et al., 2012; Won et al., 2010), but only a few of them were evaluated on p53

binding sites (Ernst et al., 2010). Promoter regions of active genes have been shown to be

generally marked by histone acetylation and methylation state of the lysine 4 (Lys4) residue

of histone H3 in mammalian systems (Barski et al., 2007; Bernstein et al., 2005; Kim et al.,

2005; Roh et al., 2005, 2006; Wang et al., 2008). Heintzman et al. (2007) reported high levels

of trimethylated H3K4 and depletion of H3K4 monomethylation in active promoters and

found that enhancers were marked by monomethylated H3K4, but not trimethylation of

H3K4. In contrast, dimethylation of H3K4 has been shown to be associated with enhancers

by Bernstein et al. (2005) and Barski et al. (2007), whereas Barski et al. (2007) reported that

enhancers were marked by all three methylation states (mono-, di- and trimethylation) of

H3K4.
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Chapter 6 Discussion

6.1 Summary of contributions

In this thesis, I present a computational model which integrates sequence information and

epigenetic information to predict p53 binding sites in the human genome on the basis of

multiple logistic regression. Using p53 binding sites from high-resolution ChIP data, such

as ChIP-PET (Wei et al., 2006) and ChIP-on-chip (Smeenk et al., 2008), the model was trained

to learn and identify the features of the binding sites which could explain the binding

specificity of the p53 protein. Starting with an initial complex model based on logistic

regression and multiple features, including mono-, di- and trimethylation states of H3K4

(H3K4me1, H3K4me2 and H3K4me3) from multiple cell lines, the overlap information with

known enhancers and the PWM score of a binding site as well as the spacer length between

the two half-sites within a binding site, the variables which seemed to have the largest effect

on the prediction of p53 binding sites, individually or in combinations, were selected by

the model selection procedure. Our final prediction model, which does not include the

two initial feature variables H3K4me2 state and the overlap information with enhancers,

produced very high degrees of sensitivity and specificity when testing on the test data,

demonstrating a great level of prediction accuracy (Chapter 3). Furthermore, our model

provided evidence showing the importance of mono- and trimethylations of H3K4 for the

DNA binding of p53.

In contrast to many studies which test their computational models on data sets whose sizes

are limited to thousands of sequences, we used our model to scan the whole human genome

for potential binding sites specific for p53. The results obtained from the genome-wide

analysis confirmed the ability of our model to predict p53 binding sites. The characteristics

of the detected binding sites were consistent to a great extent with previous studies (Smeenk

et al., 2008; Wei et al., 2006). The comparison analysis with a simple model, which only used

the PWM score of a binding site for the identification, demonstrated that the epigenetic

information we used in our logistic regression based model helped improve the prediction

of p53 binding sites. The good performance of the sequence-only model on the testing set

could not be confirmed by the genome-wide analysis (Chapter 5).

The importance of histone modification information for finding regions of likely tran-

scription factor binding sites has also been stressed by Ernst et al. (2010). Their method,

which combines the so-called general binding preference (GBP) score resulted from a logistic

regression based model with 29 features for the transcription factor binding prediction

with a PWM based search, is presented in detail in Chapter 1. Of the 29 features, the one
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6.2 Future directions

combining 20 histone modification levels has been shown to be the most informative feature.

The GBP score demonstrated a powerful approach for the prediction of transcription factor

binding sites. Only one (Wei et al., 2006) of the 14 tested data sets with experimentally

derived binding sites of various transcription factors showed a bad performance. The GBP

failed to correctly predict p53 binding sites (AUC = 0.57). However, in combination with the

PWM score a better performance result could be achieved (AUC = 0.80). Comparing their

AUC value of 0.80 with that of our prediction model when using the testing set (AUC = 0.99),

our model obtained a better performance accuracy on the basis of AUC.

6.2 Future directions

Based on the obtained results, our model offers a promising start in gaining insights into

how the tumour suppressor p53 protein recognizes and binds to specific DNA sequences.

It is important to note that our computationally predicted p53 binding sites described

in Chapter 4 do not necessarily represent actual p53 binding sites. Further experimental

investigations are required to test the binding specificity of the predicted binding sites. The

first step should be to test by ChIP for the sequences in question.

DNA binding is the starting point to study gene expression. To know how genes

are expressed and regulated, multiple factors have to be explored, including several cis-

acting elements, such as the regulatory DNA sequence motifs or response elements, and

trans-acting factors, such as activators, cofactors, transcription factors, protein-protein

interactions, post-translational modifications and epigenetic factors (chromatin environment).

To incorporate epigenetic information into our prediction, we used the histone mono-

and trimethylation patterns of H3K4. In addition to histone methylations, H3 lysine

27 acetylation (H3K27ac) is becoming an increasingly important factor for identifying

enhancers. In recent years, several studies have determined the genomic locations of

the histone modification signal H3K27ac in mammalian systems (Creyghton et al., 2010;

Heintzman et al., 2009; Rada-Iglesias et al., 2011; Shen et al., 2012). H3K27ac has been shown

to be a useful mark for enhancer regions, especially for distinguishing between active and

inactive enhancers which are only marked by H3K4me1 (Creyghton et al., 2010). We expect

that more patterns of histone modification, which are associated with enhancer regions, such

as H3K27ac, will help further improve our prediction model. In particular for the genome-

wide analysis, better and more accurate performance is expected to be obtained with our

model if H3K27ac signals are incorporated. Since the p53 protein is known to interact with
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various transcription factors and mediate the recruitment of additional factors required

for p53-dependent transcriptional activation, it will be interesting to examine the flanking

regions of p53 to find the binding sites of the p53-related proteins. Smeenk et al. (2008)

identified the response elements of eight different transcription factors (Krüppel-like factors

(KLF), Sp1/Sp3, the group of basic helix-loop-helix (bHLH) proteins, AP1, AP2, MZF1, CP2

and ETS2) which were significantly enriched in the regions surrounding their predicted

p53 binding sites. Many of these transcription factors are known to affect p53 stability

and activity. A further improvement may be achieved by using comparative genomics

which represents a useful way of distinguishing functional binding sites (true positives)

from false binding sites (false positives) across a whole genome. The resulting p53 binding

sites predicted by a model, which takes into account all the factors known to influence p53

function, can then be analyzed in more detail. An interesting task would be to discover

restricted sets of p53-related genes which contribute to a specific p53-induced response,

such as apoptosis, DNA repair, cell-cycle arrest and senescence, which in turn may be stress-

and cell-specific.

A high-performing model for predicting p53 binding sites can then be generalized to any

transcription factor with the correct PWM for the specific sequence motif. With the improved

(but not perfect) model which integrates all the information and data necessary for a good

prediction of transcription factor binding sites, we will yield a better understanding of the

process by which a transcription factor recognizes its DNA binding sites and gain new

insights into the complex regulatory mechanisms mediated by the interaction of various

transcription factors with their DNA binding sequences.
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Appendix A

Cluster analysis of decameric half-sites

based on sequence similarity

20 
Height Height 

1 2 3 4 5 6 7 

(2) UPGMA method (1) Ward‘s method 
 

30 40 50 60 70 80 90 100 

Figure A.1 Dendrograms obtained by cluster analyses of the 1688 unique decamers of the 1757

p53 binding sites using the Hamming distance with (1) Ward’s method and (2)

UPGMA. The dendrogram lists all decamers and reports at what level of similarity

any two clusters were joined. The horizontal axis (x-axis) shows the fusion level,

i.e. the similarity measure at which clusters were merged. The vertical axis (y-axis)

specifies the decameric half-site samples and shows how the different clusters are

formed.
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Appendix A Cluster analysis of decameric half-sites based on sequence similarity

Clustering is a commonly used method which finds structure in a data by grouping

similar objects into classes or categories. Dissimilar objects are put into different clusters

(Fielding, 2007).

We performed clustering on the 1688 unique decameric half-sites found in our 1757

positive binding sites to find meaningful sequence patterns which might be biologically

important. In addition, we were interested in finding out whether the pairings of half-sites

in the p53 binding sites were not arbitary. We used the Hamming distance and hierarchical

clustering to cluster the decamers into subgroups of sites which were similar in sequence

using the ’hclust’ function in R (R version 2.14.1).

The Hamming distance (Hamming, 1950) is a distance function suitable for categorical

data. For binary data, the Hamming distance is defined as the number of different bits

between two binary vectors (Tan et al., 2006). It is similar to the simple matching coefficient

which can be calculated by dividing the Hamming distance (number of different bits) by

the number of bits. The Hamming distance is also often used for analyzing similarity of

biological sequences (Federico and Pisanti, 2009). The Hamming distance between two

sequences of equal length is the number of positions that differ.

Definition 9. (Hamming distance) Given two sequences s1 and s2 of equal length l, the Hamming

distance dH : Σl × Σl 7→N0 between those two sequences is the number of positions for which the

corresponding characters are not equal (Gogol-Döring and Reinert, 2009):

dH(s1, s2) := |{i ∈ {1, ..., l} | s1[i] 6= s2[i]}|.

A.1 Clustering using Hamming distance and Ward's method

The results of the cluster analysis on the 1688 unique decamers using the Hamming distance

measure and the Ward’s (Ward, 1963) and UPGMA (Sokal and Michener, 1958) methods

are shown by a dendrogram (Figure A.1). Here, we will only present the results obtained

by the cluster analysis with the Ward’s method, because the UPGMA method generated

highly unbalanced groups which gave non-significant results. In theory, the Ward’s method

assumes a Euclidean space. The Hamming distance, however, is a distance measure for

non-Euclidean spaces. Nevertheless, a number of studies have carried out a hierarchial

cluster analysis using Ward’s method with Hamming distance as the distance measure

(Poage et al., 2010). We transformed our distance matrix to a Euclidean matrix by using

the ’lingoes’ function from the ’ade4’ package in R as suggested in the R help mailing list

archive (https://stat.ethz.ch/pipermail/r-help/2008-September/173843.html).
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Appendix A Cluster analysis of decameric half-sites based on sequence similarity

When drawing a line vertically across the dendrogram to divide the data into an appro-

priate set of reasonably distinct clusters, the first intersection passes through two horizontal

lines, suggesting the presence of two major clusters (k=2). The next grouping would result

in three major clusters (k=3). Further divisions are possible, but would result in clusters

which are less unique. Here, we present a cluster solution with two distinct clusters (k=2)

which produced significant results.

Table A.1 Ward cluster group composition 2 distinct clusters (k=2).

Cluster Number of decamers

1 1290

2 398

A.1.1 Cluster solution with two di�erent clusters (k=2)

In our cluster analysis, the decameric sites were placed in two clusters. Cluster 1 was the

larger cluster with 1290 and cluster 2 the smaller one with 398 unique members (Table A.1).

Among the 1757 positive binding sites, the majority were composed of half-sites from cluster

1 (Table A.2).

(2) Cluster 2

(1) Cluster 1

Figure A.2 Sequence logo for (1) cluster 1 containing 1290 unique decamers and (2) cluster 2

containing 398 unique decamers.
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Appendix A Cluster analysis of decameric half-sites based on sequence similarity

Table A.2 Observed (O) and expected (E) counts of cluster pairings within the p53 binding

sites formed by Ward’s method with k=2.

Pairing O E O/E Oln(O/E)

cl11 1036.00 1004.50 1.03 31.99

cl12 282.00 324.00 0.87 -39.15

cl21 303.00 324.00 0.94 -20.30

cl22 136.00 104.50 1.30 35.83

Total 1757.00 1757.00 lnL=8.36

To test whether the observed pairings of clusters in the data set departed from null

(random) expectations, we used a G-test which was based on the ratio of observed to

expected counts. For the expected counts of cluster pairings, we determined the expected

counts of each cluster group on the basis of our 1757 positive sites (intrinsic hypothesis).

Definition 10. (Expected frequency of a cluster) Given a data set of n p53 binding sites, the

total number of decameric half-sites in the data set is equal to 2n. If there are k distinct clusters, the

expected frequency of a specific cluster x is

f̃x =
nx

2n
, x ∈ {1, ..., k},

where nx is the number of cluster x occurred in the data set.

Definition 11. (Expected count of a cluster pair) The following calculation is based on the

product rule of probability. Let n be the number of binding sites (cluster pairs) in a data set. The

expected count of a cluster pair is

Eij = f̃if̃jn,

where f̃i and f̃ j are the expected frequencies of clusters i and j, respectively.

The G-test for goodness of fit investigating whether the observed data differed from the

expected values resulted in G=16.72 adjusted by William’s correction. Comparing our result

with a χ2-distribution with d f =3 degrees of freedom, we found that the observed value of G

from our sample was statistically significant (P<0.001). Thus, the observed values for cluster

pairings showed significant deviation from the expected ones. Applying individual G-tests

for the four categories (cl11, cl12, cl21, cl22), p53 binding sites were found to be significantly
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enriched in cl12 (G=6.91, d f =1, P<0.01) and cl22 (G=9.26, d f =1, P<0.01).

(4)

(3)

(2)

(1)

Figure A.3 Sequence logos for (1) 1036 p53 binding sites consisting of half-sites, both from

cluster 1, (2) 282 p53 binding sites consisting of pairs of clusters 1 and 2, (3) 303

p53 binding sites consisting of pairs of clusters 2 and 1 and (4) 136 p53 binding

sites consisting of half-sites, both from cluster 2.

GO enrichment analyses using DAVID revealed that the p53 binding sites representing

cl22 sites were mainly related to cell death processes and apoptosis (Figure A.7). The

most statistically significant GO term in the biological process FAT annotation category

was ’induction of apoptosis’ and the most numerous terms were ’regulation of cell death’,

’regulation of programmed cell death’ and ’regulation of apoptosis’.

In contrast, the p53 binding sites from the cl12 category seemed to be mainly involved in

DNA damage response/checkpoint processes which do not lead to cell death (Figure A.5).

Among the biological GO terms, we found that ’DNA repair’, ’regulation of cell cycle’, ’cell

cycle checkpoint’ and many other GO terms related to metabolism were strongly enriched.
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extracellular structure organization 
regulation of cell development 

enzyme linked receptor protein signaling pathway 
transmembrane receptor protein tyrosine kinase … 

positive regulation of cell proliferation 
positive regulation of cell cycle 

vasculature development 
regulation of cell proliferation 

regulation of epithelial cell proliferation 
blood vessel development 

regulation of nervous system development 
intracellular signaling cascade 

regulation of neuron differentiation 
cellular response to stress 

neuron projection morphogenesis 
cell morphogenesis involved in differentiation 

regulation of neurogenesis 
myeloid cell homeostasis 

cell morphogenesis involved in neuron differentiation 
negative regulation of apoptosis 

blood vessel morphogenesis 
negative regulation of programmed cell death 

negative regulation of cell death 
neuron differentiation 

regulation of phosphate metabolic process 
regulation of phosphorus metabolic process 

heart development 

Figure A.4 Biological process terms in the ’GO FAT’ annotation category found to be highly

significantly enriched (P<0.001) in our list of 663 (out of 938) genes of the 1036 cl11

binding sites. The horizontal axis (x-axis) shows the gene counts (number of genes

involved in the analyzed GO FAT annotation category).
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regulation of cell proliferation 

positive regulation of molecular function 
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Figure A.5 Biological process terms in the ’GO FAT’ annotation category found to be highly

significantly enriched (P<0.01) in our list of 183 (out of 272) genes of the 282 cl12

binding sites. The horizontal axis (x-axis) shows the gene counts (number of genes

involved in the analyzed GO FAT annotation category).
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regulation of cell proliferation 

negative regulation of cell proliferation 

metal ion transport 

positive regulation of cell differentiation 

potassium ion transport 

monovalent inorganic cation transport 

Figure A.6 Biological process terms in the ’GO FAT’ annotation category found to be highly

significantly enriched (P<0.01) in our list of 222 (out of 312) genes of the 303 cl21

binding sites. The horizontal axis (x-axis) shows the gene counts (number of genes

involved in the analyzed GO FAT annotation category).
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Figure A.7 Biological process terms in the ’GO FAT’ annotation category found to be highly

significantly enriched (P<0.01) in our list of 97 (out of 139) genes of the 136 cl22

binding sites. The horizontal axis (x-axis) shows the gene counts (number of genes

involved in the analyzed GO FAT annotation category).
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Appendix B

Genomic location analysis

The following calculations were made for the G-test. Here, we use the following abbrevi-

ations: f for ’observed count’, E for ’expected probability’ and e for ’expected count’.

Genomic region Size (bp) E

Intragenic region 815470630 27

TSS flanking region 342582384 11

5kb downstream 67670618 2

5-25kb downstream 178570332 6

5-25kb upstream 164015357 5

Intergenic region 1508472566 49

Total 3076781887 100

B.1 1757 p53 binding sites

Region f E e (f /e) f ln(f /e)

Intragenic region 523.00 27.00 474.39 1.10 51.02

TSS flanking region 316.00 11.00 193.27 1.64 155.36

5kb downstream 54.00 2.00 35.14 1.54 23.20

5-25kb downstream 124.00 6.00 105.42 1.18 20.13

5-25kb upstream 120.00 5.00 87.85 1.37 37.42

Intergenic region 620.00 49.00 860.93 0.72 -203.54

Total 1757.00 100.00 1757.00 lnL=83.59
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Region f E e (f /e) f ln(f /e)

Intragenic region 523.00 27.00 474.39 1.10 51.02

Other regions 1234.00 73.00 1282.61 0.96 -47.68

Total 1757.00 100.00 1757.00 lnL=3.34

Region f E e (f /e) f ln(f /e)

TSS flanking region 316.00 11.00 193.27 1.64 155.36

Other regions 1441.00 89.00 1563.73 0.92 -117.78

Total 1757.00 100.00 1757.00 lnL=37.58

Region f E e (f /e) f ln(f /e)

5kb downstream 54.00 2.00 35.14 1.54 23.20

Other regions 1703.00 98.00 1721.86 0.99 -18.76

Total 1757.00 100.00 1757.00 lnL=4.44

Region f E e (f /e) f ln(f /e)

5-25kb downstream 124.00 6.00 105.42 1.18 20.13

Other regions 1633.00 94.00 1651.58 0.99 -18.48

Total 1757.00 100.00 1757.00 lnL=1.65

Region f E e (f /e) f ln(f /e)

5-25kb upstream 120.00 5.00 87.85 1.37 37.42

Other regions 1637.00 95.00 1669.15 0.98 -31.84

Total 1757.00 100.00 1757.00 lnL=5.58

Region f E e (f /e) f ln(f /e)

Intergenic region 620.00 49.00 860.93 0.72 -203.54

Other regions 1137.00 51.00 896.07 1.27 270.75

Total 1757.00 100.00 1757.00 lnL=67.21
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B.2 Combined evidence predictions

B.2.1 2999 combined evidence predictions

Region f E e (f /e) f ln(f /e)

Intragenic region 1055.00 27.00 809.73 1.30 279.15

TSS flanking region 678.00 11.00 329.89 2.06 488.42

5kb downstream 91.00 2.00 59.98 1.52 37.93

5-25kb downstream 199.00 6.00 179.94 1.11 20.04

5-25kb upstream 196.00 5.00 149.95 1.31 52.49

Intergenic region 780.00 49.00 1469.51 0.53 -494.04

Total 2999.00 100.00 2999.00 lnL=383.99

Region f E e (f /e) f ln(f /e)

Intragenic region 1055.00 27.00 809.73 1.30 279.15

Other regions 1944.00 73.00 2189.27 0.89 -230.99

Total 2999.00 100.00 2999.00 lnL=48.16

TSS flanking region 678.00 11.00 329.89 2.06 488.42

Other regions 2321.00 89.00 2669.11 0.87 -324.35

Total 2999.00 100.00 2999.00 lnL=164.07

5kb downstream 91.00 2.00 59.98 1.52 37.93

Other regions 2908.00 98.00 2939.02 0.99 -30.86

Total 2999.00 100.00 2999.00 lnL=7.08

5-25kb downstream 199.00 6.00 179.94 1.11 20.04

Other regions 2800.00 94.00 2819.06 0.99 -19.00

Total 2999.00 100.00 2999.00 lnL=1.04

5-25kb upstream 196.00 5.00 149.95 1.31 52.49

Other regions 2803.00 95.00 2849.05 0.98 -45.68

Total 2999.00 100.00 2999.00 lnL=6.82

Intergenic region 780.00 49.00 1469.51 0.53 -494.04

Other regions 2219.00 51.00 1529.49 1.45 825.74

Total 2999.00 100.00 2999.00 lnL=331.69
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B.2.2 305 combined evidence predictions

Region f E e (f /e) f ln(f /e)

Intragenic region 93.00 27.00 82.35 1.13 11.31

TSS flanking region 67.00 11.00 33.55 2.00 46.34

5kb downstream 12.00 2.00 6.10 1.97 8.12

5-25kb downstream 26.00 6.00 18.30 1.42 9.13

5-25kb upstream 19.00 5.00 15.25 1.25 4.18

Intergenic region 88.00 49.00 149.45 0.59 -46.61

Total 305.00 100.00 305.00 lnL=32.47

Region f E e (f /e) f ln(f /e)

Intragenic region 93.00 27.00 82.35 1.13 11.31

Other regions 212.00 73.00 222.65 0.95 -10.39

Total 305.00 100.00 305.00 lnL=0.92

TSS flanking region 67.00 11.00 33.55 2.00 46.34

Other regions 238.00 89.00 271.45 0.88 -31.30

Total 305.00 100.00 305.00 lnL=15.04

5kb downstream 12.00 2.00 6.10 1.97 8.12

Other regions 293.00 98.00 298.90 0.98 -5.84

Total 305.00 100.00 305.00 lnL=2.28

5-25kb downstream 26.00 6.00 18.30 1.42 9.13

Other regions 279.00 94.00 286.70 0.97 -7.60

Total 305.00 100.00 305.00 lnL=1.54

5-25kb upstream 19.00 5.00 15.25 1.25 4.18

Other regions 286.00 95.00 289.75 0.99 -3.73

Total 305.00 100.00 305.00 lnL=0.45

Intergenic region 88.00 49.00 148.96 0.59 -46.32

Other regions 216.00 51.00 155.04 1.39 71.62

Total 304.00 100.00 304.00 lnL=25.31
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B.3 Sequence-only predictions

B.3.1 2998 sequence-only predictions

Region f E e (f /e) f ln(f /e)

Intragenic region 872.00 27.00 809.73 1.08 64.61

TSS flanking region 378.00 11.00 329.89 1.15 51.46

5kb downstream 99.00 2.00 59.98 1.65 49.61

5-25kb downstream 225.00 6.00 179.94 1.25 50.28

5-25kb upstream 170.00 5.00 149.95 1.13 21.33

Intergenic region 1254.00 49.00 1469.51 0.85 -198.87

Total 2998.00 100.00 2999.00 lnL=38.42

Region f E e (f /e) f ln(f /e)

Intragenic region 872.00 27.00 809.73 1.08 64.61

Other regions 2126.00 73.00 2189.27 0.97 -62.35

Total 2998.00 100.00 2999.00 lnL=2.26

TSS flanking region 378.00 11.00 329.89 1.15 51.46

Other regions 2620.00 89.00 2669.11 0.98 -48.66

Total 2998.00 100.00 2999.00 lnL=2.80

5kb downstream 99.00 2.00 59.98 1.65 49.61

Other regions 2899.00 98.00 2939.02 0.99 -39.75

Total 2998.00 100.00 2999.00 lnL=9.86

5-25kb downstream 225.00 6.00 179.94 1.25 50.28

Other regions 2773.00 94.00 2819.06 0.98 -45.68

Total 2998.00 100.00 2999.00 lnL=4.60

5-25kb upstream 170.00 5.00 149.95 1.13 21.33

Other regions 2828.00 95.00 2849.05 0.99 -20.97

Total 2998.00 100.00 2999.00 lnL=0.36

Intergenic region 1254.00 49.00 1469.51 0.85 -198.87

Other regions 1744.00 51.00 1529.49 1.14 228.89

Total 2998.00 100.00 2999.00 lnL=30.02
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B.3.2 305 sequence-only predictions

Region f E e (f /e) f ln(f /e)

Intragenic region 71.00 27.00 82.35 0.86 -10.53

TSS flanking region 30.00 11.00 33.55 0.89 -3.36

5kb downstream 11.00 2.00 6.10 1.80 6.49

5-25kb downstream 30.00 6.00 18.30 1.64 14.83

5-25kb upstream 21.00 5.00 15.25 1.38 6.72

Intergenic region 142.00 49.00 149.45 0.95 -7.26

Total 305.00 100.00 305.00 lnL=6.89

Region f E e (f /e) f ln(f /e)

Intragenic region 71.00 27.00 82.35 0.86 -10.53

Other regions 234.00 73.00 222.65 1.05 11.63

Total 305.00 100.00 305.00 lnL=1.11

TSS flanking region 30.00 11.00 33.55 0.89 -3.36

Other regions 275.00 89.00 271.45 1.01 3.57

Total 305.00 100.00 305.00 lnL=0.22

5kb downstream 11.00 2.00 6.10 1.80 6.49

Other regions 294.00 98.00 298.90 0.98 -4.86

Total 305.00 100.00 305.00 lnL=1.63

5-25kb downstream 30.00 6.00 18.30 1.64 14.83

Other regions 275.00 94.00 286.70 0.96 -11.46

Total 305.00 100.00 305.00 lnL=3.37

5-25kb upstream 21.00 5.00 15.25 1.38 6.72

Other regions 284.00 95.00 289.75 0.98 -5.69

Total 305.00 100.00 305.00 lnL=1.03

Intergenic region 142.00 49.00 149.45 0.95 -7.26

Other regions 163.00 51.00 155.55 1.05 7.63

Total 305.00 100.00 305.00 lnL=0.36
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Appendix C

Gene Ontology and KEGG pathway

enrichment analyses

C.1 1757 positive p53 binding sites
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Figure C.1 Statistically enriched (P<0.014) cellular component terms in the ’GO FAT’ an-

notation category. The most statistically significant GO term is displayed at the

bottom.

109



Appendix C Gene Ontology and KEGG pathway enrichment analyses

Number of genes 
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Figure C.2 Statistically enriched (0.014<P<0.05) cellular component terms in the ’GO FAT’

annotation category. The most statistically significant GO term is displayed at the

bottom.

Table C.1 and Table C.2 present statistically significant (P<0.05) cellular component GO

terms which were associated with our 1757 positive binding sites. 987 genes were involved in

the cellular component ’GO FAT’ annotation category. The most statistically significant and

the most numerous GO terms in the cellular component ontology were ’plasma membrane

part’ and ’plasma membrane’, respectively.

C.2 Combined evidence predictions

C.2.1 305 predicted p53 binding sites by genome-wide analysis

545 nearby genes were identified for the 305 human p53 binding sites predicted by our

combined evidence model. The total number of genes involved in the GO enrichment

analyses by DAVID was 483, of which 339, 329 and 313 were associated with particular GO

terms of biological process, molecular function and cellular component, respectively. 158

genes were involved in the KEGG pathway analysis.
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Figure C.3 339 genes of the 305 combined evidence predictions were involved in the biological

process ’GO FAT’ annotation category. Strongly enriched (P<1×10−3) GO terms

of biological process are presented with the most statistically significant term

’regulation of apoptosis’ at the bottom.
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Figure C.4 Functional enrichment analysis associated with GO molecular function terms from

the ’GO FAT’ annotation category involving 329 genes. The statistically significant

(P<0.05) GO terms are listed in order from most significant to less significant with

the most statistically significant term ’palmitoyl-CoA hydrolase activity’ at the

bottom.
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Figure C.5 313 genes of the 305 combined evidence predictions were involved in the cellular

component ’GO FAT’ annotation category. Strongly enriched (P<0.05) GO terms

of cellular component are presented with the most statistically significant term

’cytosol’ at the bottom.
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Figure C.6 158 genes of the 305 combined evidence predictions were associated with a particu-

lar KEGG pathway. Statistically significant (P<0.05) pathways are presented with

’ErbB signaling pathway’ as the most significant KEGG pathway associated with

our gene list.

C.3 Sequence-only predictions

C.3.1 305 predicted p53 binding sites by genome-wide analysis

423 nearby genes were identified for the 305 human p53 binding sites predicted by the

simple sequence-only model. The total number of genes involved in the GO enrichment

analyses by DAVID was 356, of which 329, 225 and 217 were associated with particular GO

terms of biological process, molecular function and cellular component, respectively. 98

genes were involved in the KEGG pathway analysis.
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Figure C.7 329 genes of the 305 sequence-only predictions were involved in the biological

process ’GO FAT’ annotation category. Strongly enriched (P<0.01) GO terms of

biological process are presented with the most statistically significant term ’negative

regulation of osteoblast differentiation’ at the bottom.
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Figure C.8 Functional enrichment analysis associated with GO molecular function terms from

the ’GO FAT’ annotation category involving 225 genes. The statistically significant

(P<0.05) GO terms are listed in order from most significant to less significant with

the most statistically significant term ’actin binding’ at the bottom.
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Figure C.9 217 genes of the 305 sequence-only predictions were involved in the cellular

component ’GO FAT’ annotation category. Strongly enriched (P<0.05) GO terms of

cellular component are presented with the most statistically significant term ’actin

cytoskeleton’ at the bottom.
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0 1 2 3 4 5 6 7 8 9 

p53 signaling pathway 

Long-term potentiation 

Calcium signaling pathway 

Number of genes 

Figure C.10 98 genes of the 305 sequence-only predictions were associated with a particular

KEGG pathway. Statistically significant (P<0.05) pathways are presented with

’p53 signaling pathway’ as the most significant KEGG pathway associated with

our gene list.
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