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Abstract

Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell
penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an
unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and
TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of
parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change
in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been
established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the
motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and
compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified
TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely
accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any
species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their
associated light chains.
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Introduction

Toxoplasma gondii is a protozoan parasite of the Phylum

Apicomplexa. This phylum contains over 5,000 species, many of

which are of significant medical or veterinary importance,

including Plasmodium spp., the causative agents of malaria,

Cryptosporidium spp., the causative agents of the diarrheal disease

cryptosporidiosis, and Eimeria spp., which cause losses in the US

poultry industry exceeding $600 million annually.

Like most apicomplexans, T. gondii is an obligate intracellular

parasite. Host cell invasion is a parasite-driven, multistep process

that is necessary for parasite survival (reviewed in [1]). Prior to

invasion, parasites glide along the surface of the host cell to be

invaded, extending and retracting a tubulin-based cytoskeletal

structure, the conoid, at their extreme apical tip [2]. Invasion is

initiated by proteins released onto the parasite surface from apical

secretory organelles known as the micronemes; these proteins

mediate intimate and irreversible attachment to the host cell [3,4].

At least one microneme protein also interacts with proteins

secreted by a second set of apical organelles, the rhoptries, to form

a ring-shaped zone of tight contact between the host cell plasma

membrane (PM) and the PM of the internalizing parasite [5,6]. As

the parasite penetrates through this junction and into the host cell,

it becomes enveloped by a parasitophorous vacuole membrane

(PVM) that is derived primarily from the host cell PM [7]. In the

final step of invasion, the PVM pinches off from the host cell PM

to surround the fully internalized parasite.

Both gliding motility and host cell penetration are driven by the

same unconventional Class XIV myosin motor protein, TgMyoA

[8]. TgMyoA is a 93kDa protein consisting of a head domain,

which contains only 23–34% identity to other myosin heavy

chains, and a short neck/tail domain [9]. Although TgMyoA lacks

a number of generally well conserved sequence features, such as a

pair of cysteine residues in the converter domain and a glycine

residue that acts as the ‘‘pivot-point’’ for the lever arm in most

other myosin heavy chains [10,11], it has a step size of 5.3nm and

moves towards the plus-end of actin filaments at approximately

5 mm/s, a velocity comparable to skeletal muscle myosin [10].

The short neck/tail domain of TgMyoA binds a single,

calmodulin-like myosin light chain, TgMLC1 [10]. These two
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proteins associate with two additional proteins, TgGAP45 and

TgGAP50, to form the myosin motor complex ([12,13]; see

Fig. 1A). TgGAP45 contains predicted palmitoylation and

myristoylation sites and functions in motor complex assembly

[14,15], while TgGAP50 is a transmembrane protein that is

thought to anchor the motor complex into the inner membrane

complex (IMC) (Fig. 1A; [13,14]). The motor complex is firmly

immobilized in the IMC within cholesterol-enriched microdo-

mains [16]. Short actin filaments located between the parasite PM

and the IMC are connected to ligands on the host cell surface

through a number of bridging proteins, including TgMIC2 and

aldolase ([17]; Fig. 1A); these proteins, together with the myosin

motor complex, are collectively referred to as the glideosome

[12,13]. During invasion, when TgMyoA anchored into the IMC

undergoes its power stroke, the parasite is driven through the ring-

shaped junction and into the host cell.

The components of the myosin motor complex are highly

conserved across apicomplexan parasites [13,18], and myosin-based

motility is essential not only for invasion but also for penetrating

biological barriers and disseminating through tissues during infection

[8,18,19]. While the components of the motor complex have been

well characterized, nothing is currently known about how the activity

of the complex is regulated to generate the different speeds and types

of motility that the parasite is capable of [20]. Myosin regulation in

other systems can occur through heavy chain phosphorylation, which

can alter the actin-activated ATPase activity of the myosin, its

localization in the cell or its assembly with other myosin subunits

(reviewed in [21,22]). Myosin light chains also play a major role in

regulating the ATPase activity and stability of myosin motor proteins

[23]. The effect of a particular light chain on myosin function is

regulated by calcium binding to the light chain and/or phosphor-

ylation of the light chain by myosin light chain kinases, whose

activities are themselves regulated by intracellular calcium levels and

a variety of other signaling pathways [24]. The myosin light chain of

P. falciparum (named MTIP, for myosinA tail domain-interacting

protein) was recently shown to be phosphorylated [25], but whether

or how the myosin light chains of apicomplexan parasites contribute

to the regulation of Class XIV myosin motor function is unknown.

In a recent high-throughput screen, we identified 24 novel

small-molecule inhibitors and six enhancers of T. gondii invasion

[26]. Surprisingly, 21 out of the 24 invasion inhibitors inhibited

parasite motility and all six enhancers of invasion enhanced

parasite motility. This led us to hypothesize that some of these

small molecules exert their effects by altering the composition or

function of the T. gondii myosin motor complex. We show here that

treatment of parasites with one of the motility inhibitors results in a

posttranslational modification to TgMLC1. Furthermore, we show

that motor complexes containing the altered form of TgMLC1

have reduced mechanical activity in an in vitro motility assay. This

change in TgMyoA motor activity likely accounts for the motility

defects seen in the parasite after compound treatment and

provides the first evidence, in any apicomplexan parasite, for the

modulation of Class XIV myosin activity by myosin light chain(s).

Results

A small-molecule inhibitor of T. gondii invasion and
motility alters the electrophoretic mobility of TgMLC1

To test whether any of the inhibitors or enhancers of parasite

motility identified in our screen affect the composition of the

myosin motor complex, 35S-labeled extracellular parasites were

treated with each of the small molecules and the proteins of the

motor complex were isolated by co-immunoprecipitation with an

anti-TgGAP45 antibody, resolved by SDS-PAGE and visualized

by autoradiography. In all cases, the four major components of the

motor complex (TgMyoA, TgGAP50, TgGAP45 and TgMLC1)

were recovered (Fig. 1B). While 26 of the 27 compounds tested

had no apparent effect on motor complex composition, treatment

with one of the motility inhibitors (referred to previously as

Inhibitor 24 [26]), resulted in the association of a prominent new

30kDa protein with the motor complex (Fig. 1B, red arrow). We

have named this motility inhibitor tachypleginA (‘‘tachy’’ for

tachyzoite, ‘‘plegin’’ from the Greek-derived suffix ‘‘plegia’’, for

paralysis).

The motor complex-associated proteins were then resolved by

2D gel electrophoresis. TgGAP45, which is multiply phosphory-

lated [15], resolves as a prominent charge train (Fig. 1C, upper

panels, black arrow). TgMLC1 from DMSO-treated parasites runs

as two distinct spots (Fig. 1C, blue arrow), the more minor and

acidic of which is phosphorylated (ATH, BAB and GEW,

unpublished data). After treatment with tachypleginA, a new
35S-labeled spot is apparent immediately under the TgMLC1 spots

(Fig. 1C, upper panels, red arrow). Western blotting with an

antibody against TgMLC1 identified this new motor complex-

associated protein as a modified form of TgMLC1 (Fig. 1C, lower

panels), a result subsequently confirmed by mass spectrometry (see

below).

The TgMLC1 modification occurs within five minutes of

compound treatment in both extracellular (Fig. 2A) and

intracellular (data not shown) parasites. The modification does

not reverse to any significant extent, even two to four hours after

compound washout (Fig. 2B and data not shown). TachypleginA is

only able to induce the mobility shift when added to intact

parasites, not to parasite lysates or isolated motor complexes

(Fig. 2C). Strikingly, only ,50% of the TgMLC1 is modified in

response to tachypleginA (Figs. 1B & C, 2A–C), even after multiple

treatments and extended treatment times.

A collection of analogs of tachypleginA was generated using

parallel synthesis techniques, and each analog was tested for its

effect on invasion, motility and the TgMLC1 electrophoretic

mobility shift. While the majority of the analogs tested did not

score as inhibitors in the invasion assay (data not shown), we

identified two analogs (tachypleginA-2 and tachypleginA-3; Fig.

S1 and Text S1) that inhibited parasite invasion and motility and

Author Summary

Toxoplasma gondii and related parasites within the Phylum
Apicomplexa are collectively responsible for a great deal of
human disease and death worldwide. The ability of
apicomplexan parasites to invade cells of their hosts,
disseminate through tissues and cause disease depends
critically on parasite motility. Motility is driven by a
complex of proteins that is well conserved within the
phylum; however, very little is known about how the
unconventional myosin motor protein at the heart of this
motility machinery is regulated. T. gondii serves as a
powerful model system for studying apicomplexan motile
mechanisms. We show here that a recently identified
pharmacological inhibitor of T. gondii motility induces a
posttranslational modification of TgMLC1, a protein that
binds to the myosin motor protein, TgMyoA. The
compound-induced modification of TgMLC1 is associated
with a decrease in TgMyoA mechanical activity. These data
provide the first glimpse into how TgMyoA is regulated
and how a change in the activity of the T. gondii myosin
motor complex can affect the motility and infectivity of
this important human pathogen.

T. gondii MLC1 and Motility
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reproducibly induced the TgMLC1 mobility shift. It was difficult

to establish structure-activity relationships among these analogs

due to the semi-quantitative nature of the in vivo assays [27] and

problems with compound stability and solubility. However, we did

not identify any analogs that induced the modification of

TgMLC1 without also inhibiting motility and invasion, consistent

with the hypothesis that the observed block in these processes

results from the modification of TgMLC1.

Mapping the site of modification
An epitope-tagged copy of TgMLC1 (Myc-TgMLC1) was

expressed in the parasites and shown to be modifiable by

tachypleginA treatment (Fig. S2). As a first step towards identifying

the site of modification, Myc-TgMLC1 truncation mutants were

generated by deletion of 79 amino acids from the N-terminus or

20 amino acids from the C-terminus (Fig. 3A). Parasites stably

expressing these truncations could not be generated, and

insufficient protein was isolated from transiently expressing

parasites for analysis of the electrophoretic mobility of the

truncated proteins in response to tachypleginA. Immunofluores-

cence analysis of individual, transiently expressing parasites

showed that while both full length TgMLC1 and Myc-

TgMLC11–193 localize to the parasite periphery, Myc-

TgMLC180–213 is distributed throughout the cytosol (Fig. S3),

suggesting that amino acids 1–79 of TgMLC1 are necessary for

proper localization.

Based on these preliminary truncation data, different N-terminal

fragments of TgMLC1 were fused to yellow fluorescent protein

(YFP) and the localization and ability of the fusion proteins to

undergo an electrophoretic mobility shift in response to tachyple-

ginA treatment were determined. A fusion protein containing

amino acids 1–79 of TgMLC1 (TgMLC11–79YFP) was found to

Figure 1. Treatment of parasites with tachypleginA induces a shift in the electrophoretic mobility of TgMLC1. (A) Current model for
how the T. gondii myosin motor complex drives parasite motility. TgMyoA, TgMLC1 and TgGAP45 are anchored to the IMC via transmembrane
protein TgGAP50. Short actin filaments located between the parasite plasma membrane and the IMC are connected to ligands on the host cell
surface through bridging proteins TgMIC2 and aldolase. See text for further details. Adapted from [49]. (B) 35S-labeled extracellular parasites were
treated for 15 minutes in medium containing: (a) DMSO; (b) 100 mM Inhibitor 22 (ref [26]); (c) 100 mM tachypleginA (structure shown in inset); or (d)
100 mM Enhancer 5 (ref [26]). Myosin motor complexes were isolated from the treated parasites by anti-TgGAP45 immunoprecipitation, and the
immunoprecipitated proteins were resolved and visualized by SDS-PAGE / autoradiography. Treatment with tachypleginA results in an extra 30kDa
protein associating with the myosin motor complex (red arrow). Numbers on the left indicate molecular mass in kDa. Asterisk indicates a degradation
product of TgGAP45 [14]. (C) Myosin motor complexes were isolated from DMSO- and tachypleginA-treated, 35S-labeled extracellular parasites by
anti-TgGAP45 immunoprecipitation. Proteins were resolved by 2D gel electrophoresis and visualized by autoradiography (upper panel) followed by
western blotting with anti-TgMLC1 (lower panel). The 30kDa protein that appears after compound treatment is recognized by the anti-TgMLC1
antibody (red arrow), indicating that a modified form of TgMLC1 associates with the myosin motor complex after tachypleginA treatment.
Unmodified TgMLC1 is indicated with a blue arrow and TgGAP45 is indicated with a black arrow. Although the phosphorylated form of TgMLC1 was
below the limit of detection by western blotting after tachypleginA treatment in this particular experiment, this was not usually the case (e.g., see Fig.
S2). Numbers on the top indicate the pH gradient used for isoelectric focusing, and numbers on the right indicate molecular mass in kDa.
doi:10.1371/journal.ppat.1000720.g001

T. gondii MLC1 and Motility
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largely colocalize with the IMC marker IMC1 (Fig. 3C), confirming

that the N-terminal 79 amino acids are sufficient for TgMLC1

localization to the parasite periphery. Importantly, TgMLC1
1–79YFP also undergoes an electrophoretic mobility shift in response

to tachypleginA (Fig. 3B), suggesting that the site(s) of modification

lie(s) within these first 79 amino acids. Further truncations within

these first 79 amino acids were uninformative, as TgMLC140–79YFP

and TgMLC160–79YFP localized to the cytosol, and neither

underwent an electrophoretic mobility shift in response to

tachypleginA treatment (data not shown).

Figure 2. The effect of tachypleginA on TgMLC1 is rapid, irreversible and only occurs in intact parasites. (A) Extracellular parasites were
treated with 100 mM tachypleginA or an equivalent amount of DMSO for times ranging from 5 to 120 minutes. Parasite proteins were resolved by
SDS-PAGE and TgMLC1 was visualized by anti-TgMLC1 western blot. The unmodified and modified forms of TgMLC1 are indicated with blue and red
arrows, respectively. (B) Intracellular parasites were treated with 100 mM tachypleginA or an equivalent amount of DMSO for 15 minutes. The
compound was removed and parasites were incubated at 37uC in compound-free media for the times indicated. Parasite proteins were resolved by
SDS-PAGE and visualized by anti-TgMLC1 western blot. The unmodified and modified forms of TgMLC1 are indicated with blue and red arrows,
respectively. (C) 35S-labeled extracellular parasites were treated with 100 mM tachypleginA or an equivalent amount of DMSO for 20 minutes at 25uC
and motor complexes were isolated by anti-TgGAP45 immunoprecipitation (left panel). Alternatively, motor complexes were isolated from 35S-
labeled extracellular parasites and treated with DMSO or 100 mM tachypleginA for 20 minutes at 25uC (right panel). Proteins were resolved by SDS-
PAGE and visualized by autoradiography. The unmodified and modified forms of TgMLC1 are indicated with blue and red arrows, respectively.
Numbers on the left indicate molecular mass in kDa.
doi:10.1371/journal.ppat.1000720.g002

Figure 3. Amino acids 1–79 of TgMLC1 are sufficient for the tachypleginA-induced mobility shift. (A) Schematic of the TgMLC1
truncation mutants generated. (B) Parasites transiently expressing TgMLC11–79YFP were treated with 100 mM tachypleginA or an equivalent amount
of DMSO. Proteins were resolved by SDS-PAGE and visualized by anti-GFP western blot. The unmodified and modified forms of TgMLC11–79YFP are
indicated with blue and red arrows, respectively. Asterisk (*) indicates a protein that is non-specifically recognized by the anti-GFP antibody. (C) Dual
label immunofluorescence of intracellular parasites expressing TgMLC11–79YFP, using antibodies against TgIMC1 and GFP. TgMLC11–79YFP largely
colocalizes with TgIMC1, indicating that the first 79 amino acids of TgMLC1 are sufficient for peripheral localization.
doi:10.1371/journal.ppat.1000720.g003

T. gondii MLC1 and Motility
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Next, we used a quantitative mass spectrometry approach (Stable

Isotope Labeling by Amino Acids in Culture, or SILAC [28]) to

map the site of modification by searching for predicted tryptic

peptides within the first 79 amino acids of both the upper and the

lower, compound-induced forms of TgMLC1. Any peptide detected

at its expected mass in one of the TgMLC1 forms but not the other

could potentially contain the site of modification. Parasites were

cultured for four days in either ‘‘heavy’’ medium (i.e., medium

containing 13C6-, 15N4-arginine and 13C6-, 15N2 -lysine) or ‘‘light’’

medium (containing only natural amino acids). A four-day culture

labels parasite proteins in the heavy sample to near completion, but

still leaves a small portion of the proteins unlabeled, which was

important for quantitation (see below). The parasites cultured in

heavy media were treated with tachypleginA and the parasites

cultured in light media with an equivalent amount of DMSO. The

myosin motor complexes from each population were then isolated

and run together on the same 2D gel. The upper spot on such a 2D

gel should contain a mixture of both heavy and light TgMLC1 while

the lower spot should contain primarily heavy TgMLC1 (and

smaller amounts of light TgMLC1, since the labeling was not driven

to completion). The upper and lower spots were excised from the

gel, digested with trypsin and subjected to liquid chromatography-

tandem mass spectrometry (LC-MS/MS). Since heavy and light

peptides of the same sequence have identical chromatographic

profiles but different masses, the relative abundance of each peptide

in its heavy and light forms can be readily determined. Owing to the

natural abundance of 13C, each peptide is observed as a cluster of

peaks with the light cluster spaced apart from the heavy cluster,

consistent with the mass and number of heavy arginine and lysine

residues found in each peptide.

Multiple TgMLC1 peptides were identified from each spot. The

five most readily identified peptides in the upper spot revealed

similar light to heavy ratios, with the light peptide averaging 1.25

times more than the heavy peptide (Fig. 4B). When the relative

abundances of these same peptides were examined in the lower

spot, four of the five showed a consistent but very different ratio

from the peptides in the upper spot with an average light:heavy

ratio of 0.16 (Fig. 4A,B). The fifth peptide (V46GEYDGA-

CESPSCR59), however, showed the same ratio as that observed

in the upper spot. Furthermore, uncharacteristic of the other four

peptides, this fifth peptide was chosen by the instrument for

fragmentation six times fewer in the lower spot compared to the

upper spot, suggesting it was more abundant in the upper spot.

This suggestion was further supported when the relative

abundances of the peptide in the upper and lower spots were

compared to the relative abundance of a polydimethylcyclosilox-

ane background ion (Si(CH3)2O)6
+) that is commonly used as an

internal calibrant for mass spectrometry [29]. Using this

background ion as a reference, we estimated that the peptide

V46GEYDGACESPSCR59 was approximately 225-fold more

abundant in the upper form than in the lower form (Fig. S5).

Together, these data provide strong evidence that the trace

amount of this peptide detected in the lower form was in fact a

contaminant from the upper form. Thus, while the unmodified

form of the peptide V46GEYDGACESPSCR59 can be readily

detected in the upper TgMLC1 spot, it is effectively undetectable

in the lower compound-induced spot at its predicted (unmodified)

mass and therefore likely contains the site of compound-induced

modification. These data also suggest that compound treatment

induces the modification of this peptide, rather than removal of a

modification already present on the upper form of TgMLC1.

In an attempt to identify the precise site of modification, we

conducted LC-MS/MS analysis on the lower, compound-induced

spot of TgMLC1. Differential Sequest searches were performed

for potential phosphorylation of the peptide V46GEYDGA-

CESPSCR59 on serine, or tyrosine, as well as acetylation or

mono-, di-, and tri-methylation of arginine. Only the unmodified

peptide V46GEYDGACESPSCR59 (alkylated during the reaction

with iodoacetamide prior to resolution by 2D gel electrophoresis)

was identified, which, given the SILAC data described above, was

presumably due to trace contamination from the upper spot.

Given the many different posttranslational modifications that can

occur on cysteine [30], the data were also subjected to a series of

Sequest searches that permitted dynamic modification of Cys53

and/or Cys58 with mass values from 1 to 353 (the mass of

tachypleginA). Again, only trace contamination of unmodified

peptide was detected. Further analytical work will be required to

determine the precise site and nature of the modification, but these

data suggest either an uncommon posttranslational modification

or one that renders the peptide difficult to analyze by LC-MS/MS.

The effect of tachypleginA on myosin motor complex
function

To determine if the TgMLC1 modification affects TgMyoA

activity, parasites stably expressing FLAG-tagged TgMLC1

(FLAG-TgMLC1-WT) were generated. Highly enriched myosin

motor complexes could then be isolated from DMSO- and

tachypleginA-treated parasites by anti-FLAG affinity chromatog-

raphy (Fig. 5A). The concentration of TgMyoA in each

preparation was determined by comparing the fluorescence

intensity of the TgMyoA band to that of protein standards in

SYPRO Ruby-stained gels (Fig. S6).

The motion-generating capacity of the myosin motor complex

was measured in an in vitro motility assay, in which isolated motor

complexes were adsorbed to the surface of a nitrocellulose-coated

glass coverslip and the velocity with which these motor complexes

moved fluorescently labeled chicken skeletal muscle actin filaments

was determined (Videos S1 & S2; see also refs. [10,31,32]). When

adsorbed at low densities to the coverslip (,10 mg/ml TgMyoA),

complexes from tachypleginA-treated parasites were found to

displace actin filaments with a significantly lower velocity than

those from untreated control parasites (Fig. 5B). As the motor

density increased, the difference in velocities became progressively

smaller, and by 15 mg/ml TgMyoA the velocities of actin filament

displacement by control and tachypleginA-treated motor com-

plexes were statistically indistinguishable (Fig. 5B).

Maximal actin filament velocity (Vmax) in the motility assay is

achieved when at least one myosin head is strongly bound to the

actin filament and generating motion at every point in time [33].

The fraction of myosin’s catalytic cycle that the motor is strongly

bound to actin is defined as its duty ratio [34]. Therefore, myosins

having low duty ratios (#5%) require higher densities of myosin

on the motility surface to achieve continuous actin filament

movement at Vmax. The observation that, at low densities,

TgMyoA from tachypleginA-treated parasites generates lower

filament velocities than the same concentration of TgMyoA from

control parasites suggests that the population of TgMyoA in the

tachypleginA-treated samples has a lower duty ratio than TgMyoA

from the DMSO-treated samples, thus requiring more TgMyoA to

achieve Vmax.

The TgMyoA duty ratio was determined by calculating the

number of myosin molecules on the motility surface that are

available to interact with a given actin filament and plotting this

number against the measured displacement velocity associated with

that filament (see Materials and Methods; [33]). The data were fit to

the equation: V = (a6Vmax)6[12(12f)n], where f is the duty ratio,

n is the number of myosin heads, and a is an efficiency factor for

coupling myosin-generated motion to actin filament movement at

T. gondii MLC1 and Motility
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low myosin densities [33,35]. Based on these fits (Fig. 5C), TgMyoA

is characterized by an extremely low duty ratio of 0.7760.07% (best

fit 6 standard error). Treatment with tachypleginA decreases the

duty ratio of the population by more than 60%, to 0.2760.02%.

Discussion

TachypleginA is a recently identified inhibitor of T. gondii

motility and invasion [26]. We show here that treatment of

parasites with tachypleginA results in a modification to TgMLC1

that alters its electrophoretic mobility. Early attempts to identify

the nature of the modification ruled out changes in phosphory-

lation state, N- or C-terminal proteolysis and differential splicing

(data not shown). Truncation analysis showed that the residue(s)

responsible for the mobility shift lie(s) within the first 79 residues of

the protein. Subsequent quantitative proteomic analysis identified

V46GEYDGACESPSCR59 as the likely modified peptide. No

common posttranslational modifications on specific residues within

this peptide could be identified. We are continuing to pursue the

nature of the modification but anticipate that it may either be a

novel type of posttranslational modification, or that the modified

peptide is selectively lost during sample preparation or does not

ionize or fragment well for mass spectrometry analysis.

It is difficult to predict how a posttranslational modification

within the peptide V46GEYDGACESPSCR59 of TgMLC1 could

cause a change in TgMyoA motor activity. Immunoprecipitation

experiments showed that the four main components of the

glideosome remain associated after tachypleginA treatment

(Fig. 1A and data not shown), indicating that drug treatment has

no appreciable effect on motor complex stability. Furthermore,

Figure 4. TachypleginA promotes the apparent posttranslational modification of TgMLC1 peptide V46GEYDGACESPSCR59. TgMLC1
from tachypleginA- and DMSO-treated parasites was isolated by immunoaffinity chromatography and 2D gel electrophoresis, and subject to LC-MS/
MS (see text for details). (A) The averaged light and heavy isotopic envelopes for one peptide (A190AEYFTSDQIDYR202) from the upper TgMLC1 spot
(left panel) and lower, tachypleginA-induced spot (right panel). SILAC ratios were generated by comparing the relative abundances of the
monoisotopic light and heavy peaks (filled and open stars, respectively). The dashed lines indicate the average relative abundances of the light vs.
heavy monoisotopic peaks of the peptides listed in Fig. 4B (average abundance of heavy peaks set to 100; error bars indicate the standard deviation
from the mean). (B) The SILAC ratios (light:heavy) for the five most readily identifiable peptides in the upper and lower spots. The average SILAC
light:heavy ratio for the upper spot (1.25) was calculated using the SILAC ratios of all five listed peptides, whereas the average for the lower spot
(0.16*) was calculated omitting the data for peptide V46GEYDGACESPSCR59 as its SILAC ratio (1.16, boxed) suggested it was a contaminant from the
upper spot. M* indicates an oxidized methionine residue. C# indicates a carbamidomethyl cysteine residue generated by alkylation with
iodoacetamide prior to running the 2D gels. See Fig. S4 for the low energy CID MS/MS spectrum of V46GEYDGACESPSCR59 and Fig. S5 for a semi-
quantitative measurement of the relative amount of this peptide present in the upper and lower spots.
doi:10.1371/journal.ppat.1000720.g004
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actin cosedimentation assays performed in the absence of ATP,

i.e., conditions under which myosin binds strongly to actin, show

that all of the detectable TgMLC1 in the parasite pellets with actin

after treatment with either DMSO or tachypleginA, indicating

that the binding of TgMLC1 to TgMyoA is not disrupted by

compound treatment (data not shown). TgMLC1 and its homologs

in other apicomplexan parasites contain a 70–82 amino acid N-

terminal extension (70 aa in TgMLC1) that is not found in most

other calmodulin-like myosin light chains. While the crystal

structure of Plasmodium yoelii MyoAtail bound to P. falciparum myosin

light chain (PfMTIP) lacking the majority of its N-terminal

extension (amino acids 1–62) has been solved [36], the structures

of full length PfMTIP and TgMLC1 have not. It is therefore not

known how the N-terminal extensions of these light chains are

oriented in relation to MyoA. Essential light chain from fast

skeletal muscle (ELC1) contains a 40 amino acid lysine-rich N-

terminal extension compared to ELC3, and this positively charged

N-terminal extension interacts with the negatively charged C-

terminus of actin [37]. TgMLC1 contains three lysine residues

near its N-terminus, so it is possible that TgMLC1 modulates

myosin motor complex activity through a similar direct interaction

with actin. Experiments are currently underway to test this

hypothesis; if correct, the tachypleginA-induced modification

could disrupt this interaction.

Figure 5. TachypleginA treatment causes a decrease in the motor activity of the TgMyoA motor complex. (A) Affinity-purified myosin
motor complexes from DMSO- and tachypleginA-treated parasites, resolved by SDS-PAGE and visualized by silver stain. The unmodified and modified
forms of TgMLC1 are indicated with blue and red arrowheads, respectively. Numbers on the left indicate molecular mass in kDa. (B) Mean actin
filament displacement velocities at different TgMyoA concentrations. Red symbols indicate motor complexes isolated from tachypleginA-treated
parasites; blue symbols indicate motor complexes isolated from DMSO-treated parasites. Squares and circles indicate data from two independent
experiments, error bars denote standard error of the mean, and green arrowheads indicate samples shown in Supplemental Videos S1 and S2. Each
data point from the DMSO-treated samples was compared to the corresponding data point from the tachypleginA-treated sample that was most
similar in TgMyoA concentration, using an independent two-tailed t-test. At all low (,10 mg/ml) TgMyoA concentrations, motor complexes isolated
from tachypleginA-treated parasites displaced actin filaments at a significantly slower velocity than motor complexes isolated from DMSO-treated
parasites (p,0.001). In contrast, at higher TgMyoA concentrations (.15 mg/ml), no statistically significant differences in displacement velocity were
observed. The data were fit by nonlinear regression to a simple hyperbola. (C) Actin filament velocity (V/Vmax) was plotted as a function of the
number of myosin heads capable of interacting with the actin filament. The calculated duty ratios (see Methods) were significantly different for
TgMyoA from untreated and tachypleginA-treated parasites (0.7760.07% [best fit 6 standard error; 95% confidence interval 6.3–9.1%] and
0.2760.02% [95% confidence interval 2.3–3.1%], respectively).
doi:10.1371/journal.ppat.1000720.g005
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It is not understood why only half of the TgMLC1 becomes

modified after compound treatment. The ratio of

TgMyoA:TgMLC1:TgGAP45:TgGAP50 in the myosin motor

complex is thought to be 1:1:1:1 [14]. However, if individual motor

complexes were to stably associate with one another, the factor

responsible for the modification might have access to some but not all

of the TgMLC1 molecules. When Myc-tagged TgMLC1 was

expressed in parasites (which also express untagged, endogenous

TgMLC1), affinity purification of myosin motor complexes by anti-

Myc immunoprecipitation brought down Myc-tagged, but not

untagged TgMLC1 (data not shown), suggesting that individual

motor complexes do not physically associate with each other.

Alternatively, the compound might be compartmentalized within the

parasite or the efficiency with which TgMLC1 becomes modified

could be influenced by other posttranslational modifications. The

phosphorylated form of TgMLC1 does not shift downward in

response to tachypleginA (e.g., Figs. 1C & S2), suggesting that the

unphosphorylated form of TgMLC1 is indeed preferentially

modified. Further work will be required to identify all the

posttranslational modifications present on TgMLC1 and to deter-

mine whether some combination of pre-existing modifications is

responsible for the observation that the stoichiometry of modification

never reaches 100%. It is intriguing to note that when amino acids 1–

79 of TgMLC1 were fused to YFP, the electrophoretic mobility shift

occurred to near completion in the presence of compound (Fig. 3B).

This could indicate that the C-terminus of the protein serves an

autoinhibitory function, blocking the modification; the extent of the

autoinhibition could depend on other posttranslational modifications.

Regardless of the reason for the substoichiometric modification of

TgMLC1, given that the myosin motor complexes isolated from

tachypleginA-treated parasites and analyzed in the in vitro motility

assays contained a roughly 1:1 ratio of modified:unmodified

TgMLC1, it is likely that the modification has an even more

profound effect on TgMyoA function than described here. Indeed,

the decrease in calculated duty ratio for the ensemble of myosin

motor complexes after tachypleginA treatment could reflect the

mechanical capacity of a heterogeneous population of motor

complexes, half of which behave like wild-type complexes while the

other half (with a modified TgMLC1) do not contribute

substantially to actin filament movement. This simple scenario

could account for the apparent reduction in duty ratio by effectively

reducing the number of active motors on the motility surface.

TachypleginA does not alter the electrophoretic mobility of

TgMLC1 when added to cell extracts or isolated myosin motor

complexes, nor does it affect TgMyoA activity when added directly to

the in vitro motility assay. It is possible that tachypleginA or a metabolic

product of tachypleginA binds directly to TgMLC1 in intact parasites

to cause the electrophoretic mobility shift, and that some parasite factor

required for this to occur is disrupted or lost during parasite extraction.

Alternatively, TgMLC1 may not be the direct target of the compound,

but rather becomes modified in intact parasites as a downstream

consequence of tachypleginA interacting with some other target(s)

within the parasite. In support of this hypothesis, we have shown that

tachypleginA also inhibits microneme secretion [26]. Since microneme

secretion does not require a functional myosin motor complex [8]), this

observation suggests that tachypleginA perturbs more than one

signaling pathway within the parasite. Disruption of these other

pathways may contribute to the inhibition of invasion and motility in

the presence of tachypleginA. Attempts to identify the direct target of

tachypleginA are currently underway, and are likely to provide new

insights into the signaling pathways that control parasite motility and

microneme secretion.

Studies of myosin motor complex function and regulation are

important for two reasons. From a biophysical viewpoint, many

questions remain about how the Class XIV myosins, which have a

number of unusual features compared to other myosins [9,10],

generate the force required to propel the parasites during gliding

motility and invasion. Secondly, because Class XIV myosins are

found in apicomplexans and their close phylogenetic relatives, but

not in humans (see [38] for review), and are essential for parasite

survival [8], they represent potential new drug targets. We have

shown here that the machinery that regulates TgMyoA function is

susceptible to pharmacological perturbation (see also [39]). A

better understanding of how Class XIV myosins function and how

they are regulated by their associated light chains may lead to new

chemotherapeutic approaches to the treatment of disease caused

by T. gondii and other apicomplexan parasites.

Materials and Methods

Cell culture
Parasites were maintained by continuous passage in human

foreskin fibroblasts (HFFs) in Dulbecco’s Modified Eagle’s Media

(DMEM) containing 1% (v/v) heat inactivated fetal bovine serum

(FBS), 1% (v/v) penicillin/streptomycin mix (Invitrogen, Carlsbad

CA) and 1% (v/v) 10 mM HEPES pH 7.0 (Invitrogen) as

previously described [40].

Compound storage and use
All small-molecule inhibitors were either purchased from

ChemBridge Corporation (San Diego CA) or synthesized as

described and stored at 220uC. Compound stock solutions were

dissolved to a concentration of 40 mM in high quality DMSO and

stored in the dark at 220uC. Unless otherwise noted, compounds

were diluted to a concentration of 100 mM in Hanks Balanced Salt

Solution immediately before use. Invasion and motility assays were

performed as previously described [26].

Western blotting
Protein samples were boiled in 1X SDS-PAGE sample buffer in

the presence of 1.25% (v/v) b-mercaptoethanol for five minutes.

Proteins were either visualized directly by staining with silver [41],

Colloidal Coomassie Blue or SYPRO Ruby (Bio-Rad, Hercules

CA), or transferred to nitrocellulose or PVDF [42]. For western

blot analysis, membranes were blocked with 5% (w/v) dry milk in

Tris-buffered saline containing 0.1% (v/v) Tween (TBS-T) for one

hour to overnight. Blots were incubated with primary antibody for

one hour and secondary antibody conjugated to horseradish

peroxidase for 30 minutes, agitating at 25uC. Anti-TgMLC1

antibody was diluted 1:2,000. Anti-GFP (Invitrogen) and anti-Myc

monoclonal antibody 9E10 (Developmental Studies Hybridoma

Bank, Iowa City IA) were diluted 1:1,000.

2D gel electrophoresis
Protein pellets were resuspended in lysis buffer (10 mM Tris

pH 7.4 containing 0.5% (v/v) protease inhibitor mix (Sigma

Catalog # P8340, St. Louis MO) and 50 mg/ml RNase/DNase),

followed by four freeze/thaw cycles in liquid nitrogen. SDS buffer

(0.3% (w/v) SDS and 200 mM DTT) was added to samples,

which were then sonicated in a water bath sonicator (Branson,

Danbury CT) for 20 minutes at 25uC, incubated at 55uC for 10

minutes and incubated at 25uC for two hours. Octyl buffer (9.9M

urea, 4% (w/v) octyl-b-D-glucopyranoside, 100 mM DTT) was

added to samples and incubated at 25uC for one hour. Ampholytes

(GE Healthcare, Piscataway NJ) and bromophenol blue were

added to a final concentration of 0.5% (v/v) and 0.01% (v/v),

respectively. Insoluble proteins were pelleted at 15,0006g for 30

minutes at 25uC. Soluble proteins were infiltrated into either 11 or
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18 cm Immobiline DryStrip Gels (GE Healthcare) overnight and

proteins were resolved as per manufacturer’s instructions. The

strips were then washed for 10 minutes in equilibration buffer

(50 mM Tris pH 8, 6 M urea, 30% glycerol, 2% SDS) containing

1% DTT, followed by a second wash in equilibration buffer

containing 1.25% iodoacetamide, and resolved by SDS-PAGE.

35S-labeling and immunoprecipitation
Parasites were metabolically labeled with [35S] methionine-cysteine

(Perkin Elmer, Waltham MA) for 20 to 24 hours as previously

described [43] and extracted in IP lysis buffer (1% (v/v) TX-100,

50 mM Tris-Cl pH 8, 150 mM NaCl, 5 mM EDTA) with 1:100

protease inhibitors on ice for 10 minutes. Extracts were clarified at

13,0006g for 30 minutes at 4uC. Protein extracts were incubated with

a 1:1,000 dilution of anti-TgGAP45 [14] for 60 minutes at 4uC,

followed by an additional 60 minute incubation with protein A or G

conjugated to Sepharose (Zymed, San Francisco CA). The beads were

washed with 60 volumes of IP lysis buffer. Proteins were eluted from

the beads for 1D gel electrophoresis by boiling for five minutes in 1X

SDS-PAGE sample buffer with or without reducing agent. Proteins

were eluted for 2D gel electrophoresis (15 minutes at 25uC) in 1.2 mM

Tris-Cl pH 7.4, 0.024% (w/v) SDS, 8 M urea, 3.2% (w/v) octyl-b-D-

glucopyranoside, 80 mM DTT. Ampholytes and bromophenol blue

were added to a final concentration of 0.5% (v/v) and 0.01% (v/v),

respectively. Insoluble proteins were pelleted at 15,0006g for 30

minutes at 25uC.

Effect of tachypleginA on isolated myosin motor
complexes

35S-labeled myosin motor complexes were isolated by anti-

TgGAP45 immunoprecipitation as described above. Protein A

agarose beads with attached motor complexes were incubated in

DMSO or 100 mM tachypleginA for 20 minutes at 25uC. Proteins

were eluted from the beads with 1X SDS-PAGE sample buffer,

resolved by SDS-PAGE and visualized by autoradiography.

Cloning FLAG- and Myc-tagged TgMLC1
Total tachyzoite RNA was extracted using TRI reagent (Sigma)

according to the manufacturer’s instructions. The SuperScript

first-strand synthesis system (Invitrogen) was used to generate

oligo(dT)-primed first-strand cDNA from 5 mg RNA. The

sequence of all primers used to create TgMLC1 constructs are

listed in Table S1. Myc-tagged and FLAG-tagged TgMLC1 were

amplified from total parasite cDNA using primer sets Myc-

TgMLC1 59/TgMLC1 39 A or FLAG-TgMLC1 59/TgMLC1 39

A. TgMLC1 PCR products were cloned in the TOPO TA vector

(Invitrogen) as per manufacturer’s instructions. TgMLC1 was

subsequently subcloned from the TOPO TA vector into the T.

gondii expression vector, TUBIMC1YFP/sagCAT [44].

Cloning TgMLC1 truncation mutants
To clone Myc-TgMLC11–193 and Myc-TgMLC180–213 expres-

sion constructs, the Myc-TgMLC1 TOPO plasmid was used as a

template for PCR with primers Myc-TgMLC1 59/TgMLC1 aa

193 39 and Myc-TgMLC1 aa 80 59/TgMLC1 39 A, respectively.

PCR products were cloned in the TOPO TA vector and

subcloned using BglII and AvrII restriction sites into TUBIM-

C1YFP/sagCAT. To clone TgMLC11–79YFP, TgMLC140–79YFP

and TgMLC160–79YFP, Myc-TgMLC1 TOPO was used as a

template to amplify aa1–79, aa40–79 and aa60–79 of TgMLC1

using primers TgMLC1 59 B/TgMLC1 79 39, TgMLC1aa40 59/

TgMLC1 79 39 and TgMLC1 aa60 59/TgMLC1 79 39,

respectively. PCR products were cloned in the TOPO TA vector

and subcloned using BglII and AvrII restriction sites into

TUBIMC1YFP/sagCAT.

Immunofluoresence microscopy
Intracellular parasites were grown on confluent HFF monolayers

for approximately 24 hours. Cells were fixed with 2% (v/v)

formaldehyde diluted in PBS for 15 minutes at 25uC. Cells were

permeabilized with 0.25% (v/v) TX-100 diluted in PBS for 10

minutes at 25uC. Primary and secondary antibodies were diluted in

PBS containing 0.5% (w/v) BSA, filtered through a 0.22 mm filter

and incubated with cells for 15 minutes at 25uC. Anti-IMC1 and anti-

GFP antibodies were diluted 1:1,000. Secondary antibodies conju-

gated to either Alexa 488 or 546 (Invitrogen) were diluted 1:500.

Myosin motor complex isolation for in vitro motility
assays

5286109 extracellular parasites were treated with DMSO or

100 mM tachypleginA and extracted in 3 ml FLAG lysis buffer

(10 mM imidazole pH 7, 300 mM NaCl, 1 mM EGTA, 5 mM

MgCl2, 1% (v/v) TX-100, 2 mM ATP, 2 mM DTT and 1:100

protease inhibitor cocktail) on ice for 10 minutes. Protein extracts

were clarified at 10,0006g for 30 minutes. Before use, FLAG

affinity resin (Sigma) was equilibrated in 0.1M glycine pH 3.5 and

washed with FLAG lysis buffer as per manufacturer’s instructions.

Protein extracts and approximately 400 ml FLAG affinity resin

were agitated for two hours at 4uC. Resins were extensively

washed with FLAG wash buffer (10 mM imidazole pH 7,

300 mM NaCl, 1 mM EDTA, 1 mM ATP, 1 mM DTT, 1%

(v/v) TX-100 and 1:500 protease inhibitors) to remove any

unbound proteins, and FLAG-TgMLC1 and its associated

proteins were eluted from the resin using 100 ml 0.2 mg/ml

FLAG peptide (Sigma) in FLAG wash buffer, agitating for 10

minutes. Remaining protein bound to the beads was eluted with a

second wash of 50 ml of 0.2 mg/ml FLAG peptide. Eluates were

combined and either stored on ice or diluted with 1/3 volume

100% (v/v) glycerol and stored at -20uC and used for functional

assays within 48 hours. Isolated myosin motor complexes were

resolved by SDS-PAGE along with protein standards (Phosphor-

ylase b 94kDa; Albumin 67kDa; Ovalbumin 43kDa; Carbonic

anhydrase 30kDa; Trypsin inhibitor 20.1kDa and a-lactalbumin

14.4kDa (Pharmacia LKB, Piscataway, NJ)) of known concentra-

tion. Gels were stained with SYPRO Ruby (Bio-Rad) as per

manufacturer’s instructions and imaged using a Bio-Rad FX-

imager. The fluorescence intensity of the protein standards was

compared to the fluorescence intensity of TgMyoA to determine

the amount of myosin isolated from both DMSO- and

tachypleginA-treated parasites.

TgMyoA in vitro motility assays
Isolated myosin motor complexes were added to flow cells [33]

and incubated for two minutes to allow protein to adhere to

nitrocellulose-coated coverslips, followed by the addition of

0.5 mg/ml BSA in Actin Buffer (25 mM KCl, 25 mM imidazole,

1 mM EGTA, 4 mM MgCl2, 10 mM DTT, pH 7.4) to block any

unoccupied sites. The flow cells were then washed with Actin

Buffer three times, twice infused with TRITC-phalloidin labeled

chicken skeletal muscle actin filaments [33] in Actin Buffer

containing an oxygen scavenger system (0.1 mg/ml glucose

oxidase, 0.018 mg/ml catalase, 2.3 mg/ml glucose), and incubat-

ed for 30 seconds. Finally, flow cells were washed with Actin Buffer

containing 0.5% (v/v) methylcellulose and 1 mM ATP. Myosin

activity was monitored by video microscopy and actin filament

velocities were determined as previously described [31,33]. For
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each myosin concentration at least 19 filaments (mean 42, range

19–82) from five different areas of the coverslip were tracked at

one frame per second until the filament exited the field or stopped

moving for two or more frames. Stationary filaments as well as

those that were undergoing reptation (i.e., exhibiting random

motion parallel to the filament’s long axis) were excluded from the

analysis.

To determine the TgMyoA duty ratio, the amount of myosin

capable of interacting with a given length of actin filament was

determined based on the concentration of TgMyoA added to the

coverslip and surface area of the coverslip as previously described

[33]. Actin filament lengths were measured as previously described

[31], thus allowing the number of myosin heads capable of

interacting with any given actin filament to be estimated. Duty

ratios were determined by fitting data to the equation V =

(a6Vmax)6[12(12f)n] where V is the measured actin filament

velocity, f is duty ratio, n is the number of myosin heads capable of

interacting with the actin filament, and a is an ‘‘efficiency factor,’’

which is a parameter of the fit [33,45]. Data from a total of 195

(control) and 235 (tachypleginA) filaments were used to generate

the fits shown in Fig. 5C. The absolute duty ratios obtained from

the fits assume that all heads on the motility surface are functional.

This may not be the case if the number of functional heads is less

such that the duty ratios are underestimates. Since there is no a

priori reason to assume that the DMSO- and tachypleginA-treated

preparations would bind differentially to the motility surface, any

differences in the duty ratios between the control and compound-

treated samples are assumed to reflect true relative differences.

Data were analyzed using GraphPad Prism v.5.01 software.

Isolation of TgMLC1 for mass spectrometry analysis
For SILAC experiments cells were grown essentially as

described [28]. Briefly, infected HFF cells were cultured at 37uC
and 5% CO2 for four days in DMEM deficient in L-arginine and

L-lysine (prepared by Cambridge Isotope Laboratories, Inc.

Andover, MA) supplemented with 10% dialyzed fetal bovine

serum (HyClone, Logan, UT); 50 units/ml penicillin and 50 mg/

ml streptomycin (Invitrogen, Carlsbad, CA); and either 146 mg/l

unlabeled L-lysine and 84 mg/l unlabeled L-arginine (‘‘light’’), or

146 mg/l 13C6-, 15N2-L-lysine and 84 mg/l 13C6-, 15N4-L-

arginine (‘‘heavy’’, Cambridge Isotope Laboratories, Inc., And-

over, MA). Both heavy and light media were also supplemented

with 30–40 mg/l of unlabeled L-proline. Heavy parasites were

treated with tachypleginA and light parasites were treated with

DMSO for 20 minutes at 25uC. Parasites were extracted in FLAG

lysis buffer and myosin motor complexes were purified using

FLAG affinity resin as described above. Heavy and light motor

complexes were combined and precipitated with 10 volumes of

acetone at 220uC overnight. Proteins were pelleted at 10,0006g

for 30 minutes at 4uC, incubated in 90% acetone at 220uC for 30

minutes and pelleted as before. Pellets were allowed to dry at 25uC
and then solubilized for 2D gel electrophoresis as described above.

Gels were stained with Colloidal Coomassie Blue and spots were

excised and subjected to in-gel tryptic digestion as described

previously [46]. Mass measurements were made in an LTQ-

Orbitrap hybrid mass spectrometer (Thermo Fisher Scientific, San

Jose, CA) which was set up with a liquid chromatography interface

essentially as described [47]. Analysis of samples employed a

precursor MS1 scan in the Orbitrap at 30,000 resolution, followed

by 10 MS/MS scans in the LTQ linear ion trap on the most

abundant ions identified in the precursor scan. Dynamic exclusion

was set at 30 seconds with a repeat count of 3. Initial Sequest

analysis of tandem mass spectra was conducted using the

TgMLC1 amino acid sequence, requiring no enzyme specificity,

allowing a 30ppm window around the precursor mass, and

allowing differential mass additions of 15.99491 for methionine,

10.00827 for arginine and 8.01420 for lysine. A static increase of

57.02146 was set on cysteines for carbamidomethylation. Quan-

tification of SILAC data was done manually as described [48]. For

the non-SILAC sample analysis Sequest searches of tandem mass

spectra obtained in the LTQ linear ion trap were conducted with a

2Da mass tolerance of the precursor and differential modification

of cysteine from 1–353 (i.e., 353 searches were performed, with the

differential modification of cysteine increasing incrementally by

one Da each search). Differential searches were also performed for

potential phosphorylation, acetylation and mono-, di-, and tri-

methylation of peptide V46GEYDGACESPSCR59.

Supporting Information

Figure S1 Identification of two analogs of tachypleginA that

induce the TgMLC1 electrophoretic mobility shift. Structures of

tachypleginA, A-2 and A-3 (left) and demonstration by anti-

TgMLC1 western blot (right) that all three compounds induce a

similar electrophoretic mobility shift of TgMLC1 at 100 mM.

Unmodified and modified forms of TgMLC1 are indicated by blue

and red arrowheads, respectively. All three compounds inhibit

parasite motility and invasion at 100 mM (data not shown).

Found at: doi:10.1371/journal.ppat.1000720.s001 (0.13 MB TIF)

Figure S2 Myc-tagged TgMLC1 undergoes the electrophoretic

mobility shift in response to tachypleginA treatment. Myc-

TgMLC1-WT expressing parasites were treated with 100 mM

tachypleginA or an equivalent amount of DMSO, extracted,

resolved by 2D gel electrophoresis and analyzed by western blot.

Myc-TgMLC1-WT (green brackets) and endogenous TgMLC1

(blue brackets) are both modified by tachypleginA.

Found at: doi:10.1371/journal.ppat.1000720.s002 (0.33 MB TIF)

Figure S3 Localization of TgMLC1 truncation mutants. Dual

immunofluorescence labeling of parasites expressing Myc-

TgMLC1-WT, Myc-TgMLC180–213 and Myc-TgMLC11–193 with

antibodies against TgGAP45 (red) and the Myc epitope tag

(green). Myc-TgMLC1-WT and Myc-TgMLC11–193 localize to

the parasite periphery, whereas Myc-TgMLC180–213 localizes to

the cytosol.

Found at: doi:10.1371/journal.ppat.1000720.s003 (0.51 MB TIF)

Figure S4 MS/MS spectrum of the peptide V46GEYDGA-

CESPSCR59. Low energy collision-induced dissociation MS/MS

spectrum for the doubly-charged ion of the V46GEYDGA-

CESPSCR59 peptide. This spectrum was observed multiple times

in both heavy and light forms during the same chromatographic

time that quantitative mass spectrometry (SILAC) measurements

were taken on the precursor ions (see Fig. 4). C# indicates a

carbamidomethyl cysteine residue generated by alkylation with

iodoacetamide prior to running the 2D gels.

Found at: doi:10.1371/journal.ppat.1000720.s004 (0.75 MB TIF)

Figure S5 Estimation of the relative abundance of peptide

V46GEYDGACESPSCR59 in the two forms of TgMLC1. Using

Xcalibur software (Thermo Scientific), the relative abundance of

V46GEYDGACESPSCR59 in the upper and lower forms of

TgMLC1 was semi-quantitatively compared to the relative

abundance of a dominant background ion, [(Si(CH3)2O)6 + H+]+

(monoisotopic mass = 445.12). The relative abundance of

V46GEYDGACESPSCR59 to the background ion in the upper

spot was approximately 225 times greater than that in the lower

spot (i.e., the monoisotopic peak of the light V46GEYDGA-

CESPSCR59 peptide in the lower spot had to be raised 225 times

in value to achieve the same signal observed in the upper spot).
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C# indicates a carbamidomethyl cysteine residue generated by

alkylation with iodoacetamide prior to running the 2D gels.

Found at: doi:10.1371/journal.ppat.1000720.s005 (0.39 MB TIF)

Figure S6 Determination of the TgMyoA concentration in

purified motor complex preparations. The concentration of

TgMyoA recovered from FLAG-TgMLC1 expressing parasites

treated with either DMSO or 100 mM tachypleginA was

determined by staining the SDS-PAGE-resolved preparations

with SYPRO Ruby and comparing the fluorescence intensity of

the TgMyoA band with known amounts of four protein standards

(see Materials and Methods). Numbers on the left indicate

molecular mass in kDa and numbers above lanes 1–7 indicate

the amount of each standard (in mg) loaded in that lane.

Found at: doi:10.1371/journal.ppat.1000720.s006 (0.40 MB TIF)

Text S1 Supplemental methods and references

Found at: doi:10.1371/journal.ppat.1000720.s007 (0.30 MB PDF)

Table S1 TgMLC1 primer sequences.

Found at: doi:10.1371/journal.ppat.1000720.s008 (0.05 MB PDF)

Video S1 In vitro motility of purified TgMyoA motor complexes

from tachypleginA-treated parasites. FLAG-TgMLC1-expressing

parasites were treated for 15 minutes at 24uC with 100 mM

tachypleginA (final DMSO concentration, 0.25% (vol:vol)).

Myosin motor complexes were isolated from the treated parasites

by anti-FLAG affinity chromatography and adsorbed to nitrocel-

lulose-coated coverslips at a TgMyoA concentration of 8.6 mg/ml.

TRITC-phalloidin-labeled actin filaments were added to the

immobilized motor complexes, and actin filament displacement

was captured by videomicroscopy as described in Materials and

Methods. Filament displacement is shown in real time; scale

bars = 5 mm.

Found at: doi:10.1371/journal.ppat.1000720.s009 (7.8 MB ZIP)

Video S2 In vitro motility of purified TgMyoA motor complexes

from control parasites. FLAG-TgMLC1-expressing parasites were

treated for 15 minutes at 24uC with an amount of DMSO

equivalent to that used in Video S1 (0.25% (vol:vol)). Myosin

motor complexes were isolated from the treated parasites by anti-

FLAG affinity chromatography and adsorbed to nitrocellulose-

coated coverslips at a TgMyoA concentration of 7.4 mg/ml.

TRITC-phalloidin-labeled actin filaments were added to the

immobilized motor complexes, and actin filament displacement

was captured by videomicroscopy as described in Materials and

Methods. Filament displacement is shown in real time; scale

bars = 5 mm.

Found at: doi:10.1371/journal.ppat.1000720.s010 (7.7 MB ZIP)
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18. Matuschewski K, Schüler H (2008) Actin/Myosin-Based Gliding Motility in

Apicomplexan Parasites. Subcell Biochem 47: 110–120.

19. Sibley LD (2004) Intracellular parasite invasion strategies. Science 304:

248–253.

20. Hakansson S, Morisaki H, Heuser J, Sibley LD (1999) Time-lapse video

microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic

mechanism of cell locomotion. Mol Biol Cell 10: 3539–3547.

21. Redowicz MJ (2001) Regulation of nonmuscle myosins by heavy chain

phosphorylation. J Muscle Res Cell Motil 22: 163–173.

22. Brzeska H, Korn ED (1996) Regulation of class I and class II myosins by heavy

chain phosphorylation. J Biol Chem 271: 16983–16986.

23. Trybus KM (1994) Role of myosin light chains. J Muscle Res Cell Motil 15:

587–594.

24. Kamm KE, Stull JT (2001) Dedicated myosin light chain kinases with diverse

cellular functions. J Biol Chem 276: 4527–4530.

25. Green JL, Rees-Channer RR, Howell SA, Martin SR, Knuepfer E, et al. (2008)

The motor complex of Plasmodium falciparum: phosphorylation by a calcium-

dependent protein kinase. J Biol Chem 283: 30980–30989.

26. Carey KL, Westwood NJ, Mitchison TJ, Ward GE (2004) A small-molecule

approach to studying invasive mechanisms of Toxoplasma gondii. Proc Natl Acad

Sci U S A 101: 7433–7438.

27. Mital J, Ward GE (2008) Current and emerging approaches to studying invasion

in apicomplexan parasites. Subcell Biochem 47: 1–32.

28. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino

acids in cell culture (SILAC). Nat Protoc 1: 2650–2660.

29. Haas W, Faherty BK, Gerber SA, Elias JE, Beausoleil SA, et al. (2006)

Optimization and use of peptide mass measurement accuracy in shotgun

proteomics. Mol Cell Proteomics 5: 1326–1337.

T. gondii MLC1 and Motility

PLoS Pathogens | www.plospathogens.org 11 January 2010 | Volume 6 | Issue 1 | e1000720



30. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Protein posttranslational

modifications: the chemistry of proteome diversifications. Angew Chem Int Ed
Engl 44: 7342–7372.

31. Work SS, Warshaw DM (1992) Computer-assisted tracking of actin filament

motility. Anal Biochem 202: 275–285.
32. Green JL, Martin SR, Fielden J, Ksagoni A, Grainger M, et al. (2006) The

MTIP-myosin A complex in blood stage malaria parasites. J Mol Biol 355:
933–941.

33. Harris DE, Warshaw DM (1993) Smooth and skeletal muscle myosin

both exhibit low duty cycles at zero load in vitro. J Biol Chem 268: 14764–
14768.

34. De La Cruz EM, Ostap EM (2004) Relating biochemistry and function in the
myosin superfamily. Curr Opin Cell Biol 16: 61–67.

35. Walcott S, Fagnant PM, Trybus KM, Warshaw DM (2009) Smooth muscle
heavy meromyosin phosphorylated on one of its two heads supports force and

motion. J Biol Chem 284: 18244–18251.

36. Bosch J, Turley S, Roach CM, Daly TM, Bergman LW, et al. (2007) The closed
MTIP-myosin A-tail complex from the malaria parasite invasion machinery.

J Mol Biol 372: 77–88.
37. Andreev OA, Saraswat LD, Lowey S, Slaughter C, Borejdo J (1999) Interaction

of the N-terminus of chicken skeletal essential light chain 1 with F-actin.

Biochemistry 38: 2480–2485.
38. Heintzelman MB (2006) Cellular and molecular mechanics of gliding

locomotion in eukaryotes. Int Rev Cytol 251: 79–129.
39. Dobrowolski JM, Carruthers VB, Sibley LD (1997) Participation of myosin in

gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 26:
163–173.

40. Roos DS, Donald RG, Morrissette NS, Moulton AL (1994) Molecular tools for

genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol
45: 27–63.

41. Carey KL, Donahue CG, Ward GE (2000) Identification and molecular

characterization of GRA8, a novel, proline-rich, dense granule protein of

Toxoplasma gondii. Mol Biochem Parasitol 105: 25–37.

42. Wichroski MJ, Melton JA, Donahue CG, Tweten RK, Ward GE (2002)

Clostridium septicum alpha-toxin is active against the parasitic protozoan

Toxoplasma gondii and targets members of the SAG family of glycosylpho-

sphatidylinositol-anchored surface proteins. Infect Immun 70: 4353–4361.

43. Carey KL, Jongco AM, Kim K, Ward GE (2004) The Toxoplasma gondii rhoptry

protein ROP4 is secreted into the parasitophorous vacuole and becomes

phosphorylated in infected cells. Eukaryot Cell 3: 1320–1330.

44. Hu K, Mann T, Striepen B, Beckers CJ, Roos DS, et al. (2002) Daughter cell

assembly in the protozoan parasite Toxoplasma gondii. Mol Biol Cell 13: 593–606.

45. Uyeda TQ, Kron SJ, Spudich JA (1990) Myosin step size. Estimation from slow

sliding movement of actin over low densities of heavy meromyosin. J Mol Biol

214: 699–710.

46. Ballif BA, Cao Z, Schwartz D, Carraway KL, Gygi SP (2006) Identification of

14-3-3epsilon substrates from embryonic murine brain. J Proteome Res 5:

2372–2379.

47. Ballif BA, Carey GR, Sunyaev SR, Gygi SP (2008) Large-scale identification and

evolution indexing of tyrosine phosphorylation sites from murine brain.

J Proteome Res 7: 311–318.

48. Ballif BA, Roux PP, Gerber SA, MacKeigan JP, Blenis J, et al. (2005)

Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-

signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc

Natl Acad Sci U S A 102: 667–672.

49. Pfefferkorn ER (1990) Cell biology of Toxoplasma gondii. In: Wyler DJ, ed.

Modern Parasite Biology: Cellular, Immunological, and Molecular Aspects, W.

H. Freeman and Company.

T. gondii MLC1 and Motility

PLoS Pathogens | www.plospathogens.org 12 January 2010 | Volume 6 | Issue 1 | e1000720


