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Because most species in an ecological assemblage are rare, much of the

species richness we value is due to taxa with few individuals or a restricted

distribution. It has been apparent since the time of ecological pioneers such

as Bates and Darwin that tropical systems have disproportionately large

numbers of rare species, yet the distribution and abundance patterns of

these species remain largely unknown. Here, we examine the diversity of

freshwater fish in a series of lakes in the Amazonian várzea, and relate rela-

tive abundance, both as numbers of individuals and as biomass, to the

occurrence of species in space and time. We find a bimodal relationship of

occurrence that distinguishes temporally and spatially persistent species

from those that are infrequent in both space and time. Logistic regression

reveals that information on occurrence helps distinguish those species that

are rare in this locality but abundant elsewhere, from those that are rare

throughout the region. These results form a link between different

approaches used to evaluate commonness and rarity. In doing so, they pro-

vide a tool for identifying species of high conservation priority in poorly

documented but species rich localities.
1. Introduction
In 1863, Bates [1] noted that while the density of butterflies in the Amazon was

similar to that in UK, the number of species represented by those individuals

was vastly greater. Growing concern about the state of the world’s biological

diversity, much of which is found in tropical regions, underlines the need to

learn more about the structure of these diverse assemblages, the majority of

which are poorly documented [2,3]. However, we do know that much of this

unknown diversity will be comprised of rare taxa. The universal pattern in

species abundance distributions is that both rare and common species are

found in every community [4], with the fraction of rare species increasing in

rich habitats. Indeed, surveys of tropical arthropod assemblages routinely

find that many species are present in a sample only as singletons or represented

by a few individuals [5,6]. This preponderance of rare species raises particular

problems from a conservation standpoint. Because rarity is thought to increase

the risk of extinction, either through demographic stochasticity or because

species that occupy a restricted habitat are vulnerable if it is modified, being

rare is a factor than can be taken into account in decisions to list threatened

species [7] or in developing local management plans. On the other hand, if

most species are rare it is difficult to know which ones to prioritize. Moreover,

while average local abundance tends to be higher for species that occur in

many sites [8–10], species that are rare in one locality are not necessarily

scarce everywhere because their abundance may be depressed as a result of

local conditions (e.g. unsuitable habitat) [11] or through random chance.
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Figure 1. Study area (with sampled lakes numbered 1 – 5).
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An important challenge, therefore, for researchers and con-

servationists working in species rich but poorly

documented localities, is to distinguish species that are rare

throughout their range from those that just happen to be

rare in a particular site.

To address this issue, we need to learn more about the

structure of tropical assemblages—particularly those that

have been relatively little studied. While a comprehensive

evaluation of tropical biodiversity would be an immense

and impracticable task [12,13], we do know that different

types of diversity pattern(s) are linked [14–17]. McGill [16],

for instance, points out that extent and abundance tend to

covary, meaning that there will typically be some species

that are common in terms of range size, occupancy and abun-

dance, and others that are rare by the same metrics. He dubs

this the ‘common is common’ pattern. By the same token,

information on different aspects of rarity could help dis-

tinguish species that have low abundance in the region as a

whole—the ‘rare throughout’ species—from those that

happen to be rare in a particular locality or habitat—the

‘rare locally’ species.

Here, we examine the diversity of fish in lakes within

the Amazonian flooded forest (várzea) to ask how the

pattern of species occurrence, in space and in time, is

linked to the relative abundance of species. Occurrence is a

measure of the number of sites or samples that a species

is present in [17]. A bimodal or U-shaped relationship of

species occurrence is often seen if the quadrats used to

sample an assemblage are divided into bins, representing

species that are progressively more widespread [16,18].

Interestingly, a similar bimodal pattern of species occur-

rence appears if data are accumulated at the same place

through time [19]. Given the extent to which autocorrela-

tion influences spatial patterns of biodiversity [16], it seems

likely that species that occur frequently in space are the

same as those that are persistent through time. We therefore

predict that if we track species simultaneously over space

and time, we will detect a mode of species infrequent

in both space and time, and a second mode of species
that are prevalent in both space and time. This pattern will

be strongest at local scales, where behaviour and ecology

promote clumping of individuals. Species abundance distri-

butions on the other hand tend to be unimodal (but see

[20])—often resembling a lognormal. However, Preston [21]

asserted that species abundance and species occurrence

distributions are different expressions of the same underlying

pattern. We therefore argue that species abundance distri-

butions can be deconstructed to reveal ordered groupings

of species that are increasingly persistent in space or

time. Finally, we propose that species that occur in the

‘persistent’ mode, yet have low numerical abundance, are

more likely to be in the ‘rare locally’ than in the ‘rare through-

out’ category. We suggest that these ‘signatures’ of rarity can

be a useful aid to researchers characterizing the diversity of

rich assemblages and to managers charged with conserving

these systems.

We test these ideas using data collected during an

intensive survey of fish communities in five small lakes

(figure 1) sampled monthly for 18 months. This highly seaso-

nal habitat is inundated for around 6 months per year [22].

Very few of the fish species found here have had their

conservation status formally evaluated (see the electronic

supplementary material, S1).
2. Material and methods
(a) Site description
This study was carried out at the Mamirauá Sustainable Devel-

opment Reserve (MSDR), in the Brazilian Central Amazon

floodplain (figure 1), a wetland site of international importance

recognized under the UN Ramsar Convention [23]. Mamirauá

Reserve is the largest protected area of flooded forests—known

as várzea—in Brazil. The reserve’s 1 124 000 ha are completely

flooded for 3 to 6 months every year during the flooding

pulse. During this time, the water level varies by more than

10 m [22]. Four seasons can be identified, based on water level

monitoring since 1990 [17]. These are (i) the cheia, or high

http://rspb.royalsocietypublishing.org/
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water season, from May until mid-July; (ii) the vazante or fall-

ing water season from mid-July to September; (iii) the seca
or low water season in the months of September, October and

November; and (iv) and the enchente or rising water season

from December to April.

The mosaic of forests [24] and water bodies, lakes and chan-

nels, at Mamirauá is typical of the várzea environment (figure 1).

These water bodies support a large fish fauna [25], with diverse

communities in each of the major aquatic habitats present [26].

Floating meadows form an important aquatic habitat at

Mamirauá Reserve [26,27] and vary in extent as the water level

rises and falls [28]. Although these meadows can be highly

diverse, they are usually dominated by a small number of

plant species. The more abundant grass and macrophyte species

found at Mamirauá are the Poaceae Paspalum repens (among

other Paspalum species), Echinochloa polystachia, the Potenderia-

ceae Eichornia crassipes, the Araceae Pistia stratiotes, the

Azollaceae Azolla spp. and the Salviniaceae Salvinia minima [26].

(b) Sampling
Five lakes in Mamirauá Reserve (lakes Araçazinho, Juruá

Grande, Juruazinho, Pagão and Tracajá; figure 1) were sampled

monthly in the period from September 2003 to March 2005.

The lakes are inundated during the high water season, but

during the dry season, it is possible to calculate lake size; this

varied from 11.1 to 102.3 ha. Each sample was made up of five

sample units. These units consisted of 16 m2 of vegetation

which was separated from the larger blocks of floating meadows,

surrounded by a seine net (multifilament; 2 mm mesh size, 30 m

long and 6 m wide), and then lifted into a boat. All plants were

removed from the net and returned to the sample site. All fish

were then collected and transported to the field laboratory in

buckets where they were identified, measured and weighted.

Whenever possible, fish were returned alive to the local water

bodies, but when identification was not possible in the field,

they were humanely killed and taken to the laboratory at Tefé,

the nearest town in Amazonas State. In such cases, fish speci-

mens were preserved in a 10 per cent formalin solution for

transportation, and transferred to a 70 per cent alcohol solution

in the laboratory. Total effort, which was consistent throughout,

was 400 m2 of floating meadow per month across all five lakes.

Fish were identified using the literature including [29–32] and

the fish collection at Mamirauá Institute.

(c) Data analysis
In line with [33], we defined species as rare if they had less than

1 per cent of the total number of individuals overall. This gave

20 common species and 145 rare species and coincided with an

inflection point in the rank abundance plot of the assemblage

(figure 2). Rare species were then assigned to the categories

‘rare locally’ (i.e. those rare in these samples and thus in the float-

ing meadow habitat in lakes, but frequently encountered

elsewhere in the reserve) and ‘rare throughout’ (i.e. rare in the

other aquatic habitats present in the reserve). To do this, we

assembled data that had been collected during extensive routine

surveys in six other habitat types within the reserve. These habi-

tats were: open water; banks and margins; flooded forest;

floating meadow within channels; forest temporary pools; and

submerged dead trees. We were able to extract information on

both the presence and relative abundance of 142 out of our 145

rare species in each of the other habitats (three species were

excluded from the analysis owing to incomplete information).

We used these independent data on the distribution and abun-

dance of the species elsewhere in the reserve to distinguish

between the two types of rare fish in our lake floating meadow

fish. To explore how our conclusions are influenced by the way

the distinction between ‘rare locally’ and ‘rare throughout’ is
reached, we repeated this categorization four times using differ-

ent criteria. The definitions of ‘rare locally’ adopted were

(i) present in at least two other habitat types (n ¼ 63 ‘rare locally’

species); (ii) present in at least three other habitat types (n ¼ 41

‘rare locally’ species); (iii) present in at least two other habitat

types OR � 0.5 per cent of total abundance when present any-

where (n ¼ 74 ‘rare locally’ species); (iv) present in at least two

other habitat types OR � 1 per cent of total abundance when pre-

sent anywhere (n ¼ 69 ‘rare locally’ species). For more details, see

electronic supplementary material, S2.

Logistic regression was used to ask whether information on

persistence can be used to deduce a fish’s rarity status, in other

words to help distinguish between species that are ‘rare locally’

and those that are ‘rare throughout’. Here, the response variable

was status (‘rare locally’ or ‘rare throughout’) while the predictor

variables were body size (log10 mean wet weight in grams), and

persistence (either the number of lakes (1–5) or the number of

seasons (1–4) a species was detected in). Because researchers

will typically have either spatial or temporal data rather than

both, lake number and season number were analysed separately.

Lake number and season were treated as factors. We repeated the

analysis for each of our four definitions of ‘rare locally’ species.

Analyses were conducted in R [34].
3. Results
Sampling yielded greater than 20 000 individual fish belong-

ing to 165 species in 99 genera and in 29 families. The

distribution of biomass (figure 3) follows a typical lognormal

distribution. Dominant species (with total biomass greater

than 10 000 g) include the cichlids Cichla monochulus (peacock

cichlid), Cichlasoma amazonarum (Amazon cichlid), Mesonauta
insignis (flag cichlid) and Pterophyllum scalare (angelfish).
The distribution of numerical abundance, on the other

hand (figure 3), resembles a truncated lognormal with an

excess of species in the low abundance classes. Thirty-seven

species are represented only as singletons, whereas numeri-

cally abundant species (n . 1000) include both cichlids

(Mesonauta insignis, Cichlasoma amazonarum) and characids

(e.g. Pygocentrus nattereri (red-bellied piranha), Mylossoma
duriventre (silver dollar), Moenkhausia intermedia (scissortail

tetra) and Ctenobrycon spilurus (silver tetra)). For a list of

species, see electronic supplementary material, S1.

Figure 4 reveals two distinct modes of occurrence, one of

species found in a single season and lake, the other of species

http://rspb.royalsocietypublishing.org/
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present in most lakes and most seasons. When these occur-

rence patterns are superimposed on the overall species

abundance distributions (figure 3), it is clear that for both

abundance currencies there is an ordered sequence of occur-

rence with increasingly persistent species progressively

dominating the larger abundance classes.

The logistic regression analysis indicates that the less fre-

quently a rare species is detected in either space or time, the

more likely it is to be ‘rare throughout’ the region. The analy-

sis treated space (number of lakes) and time (number of

seasons) as categorical values; their overall effect is shown

in table 1. Table 1 also indicates that the different methods

used to distinguish the ‘rare locally’ and ‘rare throughout’

species lead to similar conclusions indicating that local
information on the occurrence of a species in either space

or time is a robust indicator of its status. The details of the

individual logistic regressions are provided in the electronic

supplementary material, S3, which also graphs the predicted

probabilities. From these graphs, it is clear that both the lake

effect and season effect are stronger for species with larger

body sizes. The distribution of body size is shown in the

electronic supplementary material, S4. There is no interac-

tion between body size and numbers of seasons or lakes.

Overall, it appears that fish that are present in only one or

two seasons, or fewer than four lakes, are the most likely

to fall into the regionally rare group (see the electronic

supplementary material, S3).
4. Discussion
These results reveal, as expected, that many species of fish in

this rich Amazonian system are rare, in terms of both numeri-

cal abundance and biomass. However, while the relative

abundances of these species take the classic graded form

from rare to common, resembling a typical ‘lognormal’ pat-

tern (which is truncated in the case of numerical

abundance), species occurrences fall into two clusters: a

group of species that are infrequent in both space and time,

and a group that is persistent in space and time. We can

draw on this information to help distinguish between those

species, which, while rare in terms of abundance in this habi-

tat type and lake system, are common elsewhere, and those

that are rare throughout. Because temporal and spatial occur-

rence are linked, information on either can be used to deduce

species status.

This ability to pinpoint species that may be of particular

conservation concern [7], and to discriminate between low

abundance taxa is important, particularly in areas rich in bio-

logical diversity. Comprehensive surveys of diverse but little-

studied systems require unrealistic inputs of time and

http://rspb.royalsocietypublishing.org/


Table 1. Wald test of the overall effect of space and time when predicting the probability that a species is ‘rare throughout’ rather than ‘rare locally’. The
predictor values of interest here are the number of lakes or the number of seasons a species was present in during the investigation of lake floating meadow
habitat; lake number and season number are treated as factors (see text for more details). The analysis, which is repeated for each of the definitions of ‘rare
locally’ (see electronic supplementary material, S2), uses the aod package in R [35]. Full details of the logistic regression analyses are provided in electronic
supplementary material, S3.

definition of ‘rare locally’ space (lakes) time (seasons)

two habitats; n ¼ 63 ‘rare locally’ species x2 ¼ 12.3, d.f. ¼ 4, p ¼ 0.015 x2 ¼ 13.7, d.f. ¼ 3, p ¼ 0.003

three habitats; n ¼ 41 ‘rare locally’ species x2 ¼ 8.8, d.f. ¼ 4, p ¼ 0.067 x2 ¼ 10.0, d.f. ¼ 3, p ¼ 0.018

two habitats or �0.5%; n ¼ 74 ‘rare locally’ species x2 ¼ 14.3, d.f. ¼ 4, p ¼ 0.007 x2 ¼ 11.9, d.f. ¼ 3, p ¼ 0.008

two habitats or �1%; n ¼ 69 ‘rare locally’ species x2 ¼ 14.8, d.f. ¼ 4, p ¼ 0.005 x2 ¼ 14.1, d.f. ¼ 3, p ¼ 0.003
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resources [2]. Indeed, H.W. Bates’s inventory of insects in the

environs of Mamirauá, over 150 years ago, while far from

complete, remains the best there is [12]. As we have shown,

it is possible to make inferences about the status of species,

and the likelihood that they are regionally rare, from small-

scale surveys and using the types of data that field research-

ers typically gather. While this information could aid

managers assessing species, particularly in the absence of

more detailed data on range and local population size [36],

the approach we have outlined here is potentially useful in

other contexts too. For example, microbial communities are

as yet very incompletely surveyed, and one of the biggest

challenges facing researchers working in this area is charac-

terizing the ‘rare biosphere’ [37]. Information on both

occurrence (in space and/or time) and abundance could be

used to distinguish transiently rare microbial taxa from

those that are globally rare. Microbial systems, in the same

way as the aquatic communities that inhabit the várzea,

experience high levels of spatial and temporal turnover.

When turnover is reduced, we would expect to see a lower

‘rare’ mode and a larger ‘common’ mode of occurrence,

but that the overall patterns would be conserved [19]. Turn-

over will also influence the degree of spatial and temporal

autocorrelation in a system [16].

Our findings have other implications. For example, the

occurrence data reveal how a species abundance distribution

is constructed by overlays of species that are increasingly per-

sistent in time, and in space. Species abundance distributions

are one of the oldest methods of examining diversity data,

and provide a clear means of describing and comparing com-

munities [4,38]. However, there is still considerable debate

about why species abundance distributions take the form

they do, and how they are shaped by the currency used to

measure abundance [39]. Deconstructing species abundance

distributions provides a means of examining the mechanisms

that underpin them [4]. Our results show that species are

ordered by occurrence with infrequent species predominant

at the rare end of the distribution. Interestingly, we found

that this pattern is the same for both numerical abundance,

and biomass, and whether the distributions are assembled

using temporal or spatial data. This knowledge will aid

attempts to predict species abundances from occurrence

data [40].

Although infrequent and persistent species are ordered in

the same way in species abundance distributions that use the

alternative currencies of numerical abundance and biomass,

the form of these distributions differs. When biomass is

plotted, the distribution is unimodal and close to a textbook
representation of a lognormal distribution. By contrast,

when abundance is measured as numbers of individuals,

the distribution is asymmetric with an excess of species in

the low abundance classes. This pattern is similar to the

one that Connolly et al. [41] detected when assessing the

diversity of marine fish and corals. Connolly and co-workers

argued that it is only at very large scales (ca 10 000 km) that

lognormal distributions of numerical abundance are fully

unveiled. At the scale of the local community, differences in

the shape of the species abundance distributions of biomass

and numerical abundance can be explained by body size

and the utilization of the spatial niche [42]. Resource allo-

cations will primarily involve the persistent taxa—species

that are usually present and generally more abundant.

However, we suggest that the structural complexity of the

floating meadow habitat [43,44] enables rare species to

persist and this, combined with the cyclical inundation

regime, contributes to high turnover that underpins the

diversity of this system.

The observed separation of infrequent and persistent

species resonates with Hanski’s [45] core-satellite hypothesis.

However, the core-satellite hypothesis predicts relatively

rapid shifts in abundance so that a rare species may become

a core one, and vice versa [46]. Our data imply that temporal

and spatial rarity are linked, though the relatively short-term

nature of the sampling does not provide a definitive test

of this. Nonetheless, other investigations, where species

have been tracked through decades, suggest that core species

maintain their abundance and rank through time [47–49].

To date, most emphasis has been on spatial patterns of

biological diversity. Growing concern about the fate of the

world’s biota underlines the need to understand and measure

how ecological communities change through time [50].

Although temporal and spatial data can have different

characteristics (such as the extent to which datasets are

bounded) ‘space for time’ substitution is a tool used to inter-

pret biodiversity patterns [51]. Our results illustrate how this

substitution can work and underline the links between

different patterns of diversity [16].
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