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The removal of chemically damaged DNA bases such as 3-methyladenine

(3-MeA) is an essential process in all living organisms and is catalyzed by the

enzyme 3-MeA DNA glycosylase I. A key question is how the enzyme

selectively recognizes the alkylated 3-MeA over the much more abundant

adenine. The crystal structures of native and Y16F-mutant 3-MeA DNA

glycosylase I from Staphylococcus aureus in complex with 3-MeA are reported

to 1.8 and 2.2 Å resolution, respectively. Isothermal titration calorimetry shows

that protonation of 3-MeA decreases its binding affinity, confirming previous

fluorescence studies that show that charge–charge recognition is not critical

for the selection of 3-MeA over adenine. It is hypothesized that the hydrogen-

bonding pattern of Glu38 and Tyr16 of 3-MeA DNA glycosylase I with a

particular tautomer unique to 3-MeA contributes to recognition and selection.

1. Introduction

Bacterial 3-methyladenine DNA glycosylase I (TAG; Forsyth et al.,

2002; Ji et al., 2001) is ubiquitous in eubacteria (Supplementary

Fig. S11; Drohat et al., 2002) but shows no sequence or structural

similarity to mammalian 3-methyladenine DNA glycosylase (AAG;

Lau et al., 2000). TAG belongs to the alkylpurine DNA glycosylase

superfamily and hydrolyzes the N9–C10 glycosylic bond between a

3-methyladenosine (3-MeA) nucleobase lesion and the deoxyribose

ring (Riazuddin & Lindahl, 1978; Bjelland et al., 1993; Fig. 1a).

3-Methylation of adenine does not influence base pairing (Sedgwick

et al., 2007); rather, the methyl group blocks replication by interfering

with the interactions of DNA polymerase (Sedgwick et al., 2007;

Engelward et al., 1996). Like the 8-oxoguanylate DNA glycosylases

MutM and hOGG1 (Banerjee et al., 2005, 2006; Banerjee & Verdine,

2006; Blainey et al., 2006), TAG is thought to slide along the duplex

until it encounters a lesion. TAG binds flipped-out 3-MeA and then

cleaves the damaged base from the ribose. TAG from Staphylococcus

aureus shares around 40% amino-acid sequence identity with the

structurally characterized TAG enzymes from Salmonella typhi (Metz

et al., 2007) and Escherichia coli (Drohat et al., 2002). The crystal

structure of the S. typhi enzyme complexed with 3-MeA and abasic

DNA (Metz et al., 2007) and an NMR structure of the E. coli enzyme

complexed with 3-MeA (Cao et al., 2003) have been reported. Two

absolutely conserved residues, Tyr16 and Glu38, were identified to

form hydrogen bonds with 3-MeA and Trp46 stacks with 3-MeA (Cao

et al., 2003; Metz et al., 2007). The methyl group does not appear to

make extensive contacts. The crystal structure of the apo S. aureus

enzyme has been reported (Oke et al., 2010). We wished to probe

the basis of the discrimination between adenine and 3-MeA in the

S. aureus enzyme.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: GX5204).
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2. Materials and methods

2.1. Protein production

Native and mutant protein were purified as described by Oke et al.

(2010). Y16F and E38Q mutations were introduced using Quik-

Change (Stratagene); primers are listed in Table 1.

Fluorescence binding measurements were performed as described

by Cao et al. (2003) and Drohat et al. (2002). 2 mM TAG was titrated

with 10–650 mM 3-MeA or adenine in 20 mM phosphate buffer pH

7.8 and 5.8; Figs. 2a and 2b). Isothermal titration calorimetry (ITC)

experiments were carried out using a VP-ITC device (MicroCal)

in the same buffer. 5 mM 3-MeA or 1.5 mM adenine solution was

injected at 298 K into a sample cell containing �1.4 ml protein

solution at 30–40 mM. Each titration consisted of a first 1 ml injection

followed by up to 25 subsequent 10 ml injections or 48 subsequent 5 ml

injections of the ligand as indicated. Calorimetric data were analyzed

using the MicroCal ORIGIN software, fixing the stoichiometry as

N = 1 (Figs. 2c and 2d; Supplementary Table S1).

2.2. Crystallization

Sitting-drop vapour-diffusion crystallization trials (1 ml protein

solution plus 1 ml precipitant solution) were set up using a Cartesian

Honeybee nanodrop crystallization robot which was integrated in a

Hamilton-Thermo Rhombix system. The 3-MeA complexes of native

and Y16F TAG were obtained by incubating TAG with 10 mM

3-MeA for 6 h before crystallization at 277 K. The complex crystals

grew using a precipitant solution consisting of 0.1 M Tris–HCl pH 8.5,

1.8 M ammonium sulfate, 0.2 M Li2SO4 at 293 K as thin plates and

grew to full size (0.2 � 0.2 � < 0.05 mm) in two to three weeks.

Cryoprotectant solution was made by supplementing the crystal-

lization precipitant solution with 20% glycerol. Crystals were mounted
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Figure 1
(a) The reaction catalyzed by TAG. (b) TAG is mainly �-helical; a structural zinc
ion (grey sphere) is a found in all homologues of the enzyme. 3-MeA is shown in
stick representation, with C atoms coloured yellow, N atoms coloured blue and O
atoms coloured red. (c) Difference Fo � Fc electron density contoured at 3� for
3-MeA in the active site of TAG. (d) Difference Fo� Fc electron density contoured
at 3� for 3-MeA in the active site of Y16F-mutant TAG; C atoms are coloured pink.
3-MeA binds in a different orientation in the Y16F mutant.

Table 1
Macromolecule-production information.

The following primers were used to create the mutations: Y16F, 50-GTACTAAAGATC-
CAGTCTACTTAAACTTTCATGATCATGTATGGG-30 and 50-CCCATACATGATC-
ATGAAAGTTTAAGTAGACTGGATCTTTAGTAC-30 ; E38Q, 50-GCAAGGCATTG-
TTTAAACTTTTAGCATTACAGTCACAACATGCTGGG-30 and 50-CCCAGCATG-
TTGTGACTGTAATGCTAAAAGTTTAAACAATGCCTTGC-30 . Mutation sites are
shown in bold.

Source organism S. aureus strain MSSA476
Expression vector pHis-TEV
Expression host E. coli
Complete amino-acid sequence

of the construct produced
GAMNECAFGTKDPVYLNYHDHVWGQPLYDSK-

ALFKLLALESQHAGLSWLTILKKKEAYEEAF-
YDFEPEKVAQMTAQDIDR LMTFPNIVHHRK-
KLEAIVNQAQGYLKIEQAYGSFSKFLWSYVN-
GKPKDLQYEHASDRITVDDTATQLSKDLKQ-
YGFKFLGPVTVFSFLEAAGLYDAHLKDCPSK-
PKHN

Table 2
Data-collection and processing statistics.

Values in parentheses are for the last shell.

Protein Native, 3-MeA complex Y16F, 3-MeA complex

Diffraction source ESRF beamline ID14-2 Rotating anode
Wavelength (Å) 0.933 1.54
Temperature (K) 100 100
Detector ADSC Quantum 4 CCD Saturn CCD
Crystal-to-detector distance (mm) 203 55
Rotation range per image (�) 0.2 0.5
Total rotation range (�) 108 180
Exposure time per image (s) 5 5
Space group C2 C2
Unit-cell parameters

a, b, c (Å) 73.00, 78.59, 179.81 72.3, 78.8, 179.3
�, �, � (�) 90, 90.56, 90 90, 90.5, 90

Mosaicity (�) 0.3 0.56
Resolution range (Å) 29.60–1.80 (1.85–1.80) 50–2.2 (2.28–2.20)
Total No. of reflections 341926 118143
No. of unique reflections 92544 (5876) 47714 (3209)
Completeness (%) 98.4 (91.6) 95.5 (89.1)
Redundancy 3.7 (3.1) 2.6 (2.3)
hI/�(I)i 17.50 (3.9) 28.2 (10.9)
Rr.i.m.† 0.059 (0.292) 0.04 (0.11)
Overall B factor from

Wilson plot (Å2)
18 24.2

† Estimated Rr.i.m. = Rmerge[N/(N � 1)]1/2, where N is the data multiplicity.
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Figure 2
(a) Measurement of the binding of 3-MeA to S. aureus TAG using intrinsic fluorescence quenching at pH 5.8 (Kd = 165 mM) and pH 7.8 (Kd = 78 mM); the results are similar
to those previously reported for the E. coli enzyme (Cao et al., 2003). (b) Fluorescence quenching of 3-MeA with E38Q-mutant S. aureus TAG at pH 5.8 and 7.8. The small
reduction in the binding constant was inconsistent with structural and previous functional data (Cao et al., 2003). This indicated that the fluorescence was unreliable for the
S. aureus enzyme. (c) ITC measurement of the binding of 3-MeA to S. aureus TAG at pH 7.8 (Kd = 220 mM) and pH 5.8 (Kd = 470 mM). Adenosine does not bind. (d) ITC
measurement of the binding of 3-MeA to Y16F-mutant (Kd = 1.2 mM; left) and E38Q-mutant (no binding; right) S. aureus TAG at pH 7.8. 1 cal = 4.186 kJ.
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Figure 3
(a) Structure of the 3-MeA–TAG complex (C atoms, yellow; N atoms, blue; O atoms, red) showing the key interactions. The apo structure is shown with C atoms in white. (b)
Structure of the 3-MeA–Y16F TAG complex (C atoms shown in pink); the 3-MeA ring adopts a different orientation in the mutant. The 3-MeA in the native protein is also
shown. (c) The most common tautomer of 3-MeA could be recognized by a specific hydrogen-bond arrangement of Tyr16 and Glu38. The predominant tautomer of
protonated 3-MeA and adenosine would not match this hydrogen-bonding arrangement. (d) DNA damage leads to formation of the positively charged tautomer that is
optimal for recognition by TAG; in addition, the highly electron-deficient ring would interact favourably with the TAG active site.



in Hampton Research cryoloops and rapidly cooled to 100 K prior to

data collection.

2.3. Data collection and processing

Data for the native TAG–3-MeA complex were collected from a

single crystal using 0.2� oscillations at a wavelength of 0.933 Å (ESRF

beamline ID14-2) and were reduced using XDS (Kabsch, 2010). Data

were collected from a single crystal of the Y16F TAG–3-MeA

complex using an in-house Rigaku MicroMax-007 HF rotating-anode

generator and Saturn 944 CCD detector. Data were reduced using

HKL-2000 (Otwinowski & Minor, 1997) and POINTLESS (Evans,

2006; Potterton et al., 2003; Winn et al., 2011). Full details are given in

Table 2. The E38Q mutant was also crystallized, but as no 3-MeA was

located in the active site the structure is not described here; however,

the structure has been deposited (PDB entry 4ai4).

2.4. Structure solution and refinement

The structures were solved with Phaser (McCoy et al., 2007) using

the native apo structure (Oke et al., 2010; PDB entry 2jg6) as a search

model. As the complex crystals grew in a different space group to

the native crystals, a new free set of reflections was assigned for

refinement. All structures were refined with REFMAC v.5.6.0117

(Murshudov et al., 2011); manual intervention employed Coot

(Emsley & Cowtan, 2004). 3-MeA was added to the models when the

Fo � Fc density was clear (Figs. 1c and 1d). MolProbity (Chen et al.,

2010) was used for structure validation and Ramachandran analysis.

TLS parameters were used in refinement. TLS groups were assigned

using the TLSMD server (Painter & Merritt, 2006). Details of the

refinement are given in Table 3.

3. Results and discussion

The structure of the S. aureus TAG–3-MeA complex was determined

to 1.8 Å resolution and that of the Y16F TAG–3-MeA complex to

2.22 Å resolution. The structure of the native 3-MeA complex is very

similar to the crystal structure of the S. typhi TAG–3-MeA–abasic

DNA complex (Metz et al., 2007) and the NMR structure of the E. coli

TAG–3-MeA complex (Cao et al., 2003). Relative to apo TAG (Oke

et al., 2010), Glu38 has rotated to make 2.7 Å contacts with the

exocyclic N atom and N7 of 3-MeA. Tyr16 moves to make a 2.8 Å

contact with the exocyclic N atom of 3-MeA (Fig. 3a). Trp46 stacks

with the bound purine ring of 3-MeA, while Phe6, Tyr13 and Tyr21

make edge-on contacts. His41 rotates 80� to create space for 3-MeA

to bind. The Y16F-mutant complex revealed that 3-MeA adopts a

different orientation, although it preserves a bidentate hydrogen

bond to Glu38 and a stacking interaction with Trp46 (Fig. 3b). This

conformation is unlikely to be physiologically relevant, as it would

require a very different orientation of the DNA to that observed in

the S. typhi complex (Metz et al., 2007). Using a fluorescence assay, we

measured 3-MeA binding (Fig. 2a), obtaining a similar result at pH

7.8 (Kd = 78 mM) to that for the E. coli enzyme at pH 7.5 (Kd = 42 mM;

Cao et al., 2003). However, the assay is flawed for the S. aureus

enzyme as the E38Q mutant gave the same result as for the native

protein (Fig. 2b), which is physically unreasonable. ITC (Figs. 2c and

2d) showed clear differences between the native and mutant S. aureus

enzymes (Y16F, Kd = 1.2 mM; E38Q, no binding) and gave Kd values

of 220 mM at pH 7.8 and 471 mM at pH 5.8 for the native enzyme. We

did not detect adenine binding.

3-Methyldeoxyadenosine is positively charged in DNA, whilst

deoxyadenosine is neutral; simple charge–charge recognition was

therefore the original explanation for the specificity of TAG (Labahn

et al., 1996; Lau et al., 2000; Hollis et al., 2000). However, it has been

shown that E. coli TAG binds 3-MeA but not adenine and binds

protonated 3-MeA (pH 5.7) more weakly than neutral 3-MeA (pH

7.5) (Cao et al., 2003; Drohat et al., 2002), establishing that charge–

charge recognition is not the sole explanation (Cao et al., 2003). We

suggest that a particular hydrogen-bond pattern contributes to the

selection of a specific but favoured (Sharma & Lee, 2002) neutral

tautomer of 3-MeA (Fig. 3c) that is not available to adenosine

(Fig. 3c) and that is disfavoured for protonated 3-MeA (Fig. 3c). Our

hypothesis implies that there is an energetic penalty in reorganizing

the hydrogen-bond network around Tyr16 to avoid a van der Waals

clash (Fig. 3c). In DNA, 3-methyldeoxyadenosine can adopt a

tautomer that has the same hydrogen arrangement as neutral 3-MeA

and has positive charge (Fig. 3d), which is favoured at the active site

(Metz et al., 2007). A clash of H atoms was observed between the

amide of His136 and the amino group of adenine in human AAG and

is used to preferentially select the damaged purine base (O’Brien &

Ellenberger, 2004). Higher resolution data or neutron diffraction are

required to further test the hypothesis for the TAG enzyme.

The work was funded by the BBSRC SPoRT initiative (BB_BBS/B/

14426).
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Table 3
Structure refinement.

Values in parentheses are for the last shell.
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Native, 3-MeA complex
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