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Abstract
Cyclododecane adopts a square-like structure with corner and edge CH2 groups. In this study erythro- and threo-1,2-difluorocyclo-

dodecanes were prepared to explore whether the two vicinal C–F bonds, with different relative configurations, preferably locate at

corner/edge or edge/edge locations. Conformational analysis comparing the diastereoisomers was explored by using a combination

of 19F{1H} NMR spectroscopy, computational studies and, in the case of the threo isomer, X-ray structural analysis. In the lowest

energy conformers for both diastereoisomers the vicinal C–F bonds are located corner/edge, rather than edge/edge. These struc-

tures avoid placing a C–F bond endo into the ring, and appear to benefit from C–CHF–C angle widening, which relaxes 1,4-H,H

transannular interactions.
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Introduction
The conformation of cyclododecane (1) in the solid state was

first reported by Dunitz and Shearer in 1960 [1,2]. They showed

that cyclododecane has a square topology, which can be classi-

fied as a [3333] type structure [3,4]. Their conclusion was

derived from X-ray diffraction data, which could not fully

resolve the structure due to a high level of disorder, but the

diffraction data was used as the basis of a further computa-

tional analysis, and the structure in Figure 1 emerged as their

consensus structure [5,6]. The structure is tensioned by transan-

nular interactions in which there are four endo hydrogens, one

on each edge pointing into the ring on the top face, and four

more endo hydrogens pointing into the ring on the lower face.

Each set of hydrogens forms a square, and they are spaced at

van der Waals contact distances (~2.1–2.2 Å) to their contacted

neighbours, situated at 1,4-positions on adjacent edges of the

ring. This structure has two distinct types of methylene group,

those located at corners of the ring and those at edges.

Recently we prepared and explored the conformation of

cyclododecane ring systems carrying either one or two difluoro-

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:do1@st-andrews.ac.uk
http://dx.doi.org/10.3762%2Fbjoc.8.143


Beilstein J. Org. Chem. 2012, 8, 1271–1278.

1272

Figure 2: Crystal structures of (a) 1,1,4,4- (b) 1,1,7,7- and (c) 1,1,6,6-tetrafluorocyclododecanes (2–4) , illustrating the corner preference of the CF2
groups. Structures 2 and 3 adopt a [3333] conformation, whereas 4 adopts a distorted [4332] conformation. Fluorine atoms are presented in green [7].

Figure 1: The Dunitz and Shearer structure of cyclododecane (1) [1,2].
There are four endo hydrogens above and four below the plane of the
ring, which are tensioned as they are within van der Waals contact
distances. Thus the ring adopts a [3333] square-type structure.
(Reproduced with permission from [1]; Copyright © 1960 Verlag GmbH
& Co KGaA, Weinheim).

methylene (CF2) groups in place of methylenes (CH2) [7]. The

study revealed that the CF2 groups always occupied corner

positions. This was deduced by a combination of 19F NMR,

X-ray structure analysis and theory studies. Two reasons

emerged for this. Firstly, if a C–F bond did project into the ring

(endo), then the increased size of the fluorine atom relative to

hydrogen increases the transannular 1,4-H,F relative to 1,4-H,H

strain, by placing a fluorine in the square of hydrogen atoms on

the top (or bottom) face of the ring. Secondly, the electronega-

tivity of the fluorines within the CF2 group has the effect of

distorting the sp3 geometry and widening the tetrahedral

C–CF2–C angle from around 113° to about 116–118° [7-9].

This angle widening has the effect of lengthening/relaxing the

1,4-H,H transannular contacts between the transverse endo

hydrogens, thus leading to a lower-energy ring structure. As a

consequence of these two effects, the preference for a corner

over an edge location is very strong, and thus when the CF2

groups are spaced 1,4 to each other or 1,7 to each other within

the ring, they occupy adjacent and opposite corners of the ring,

respectively, and form stable ring systems. This is illustrated in

the X-ray structures in Figure 2. However when the CF2 groups

were placed 1,6 to each other, a deliberate mismatch with

respect to corner locations, the ring structure then became a

distorted [4332] ring system, which is a structure that is more

achievable than placing a CF2 group at an edge position of a

[3333] ring system.

In this study we separated the geminal fluorine atom of the CF2

group to generate vicinal fluorines in order to explore the con-

formational preference of the erythro- and threo- diastereoiso-

mers of 1,2-difluorocyclododecanes 5a and 5b (Figure 3).

Figure 3: Erythro- and threo-1,2-difluorocyclododecanes (5a and 5b).
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Scheme 1: Synthetic routes to erythro- (5a) and threo-1,2-difluorocyclododecane (5b).

In the case of erythro- and threo-1,2-difluorocyclododecanes

(5a and 5b, respectively) it may be expected that the threo

isomer 5b will adopt a conformation whereby the vicinal fluor-

ines occupy a central edge/edge location, such that both C–F

bonds project exo to the ring, and do not increase the torsional

strain. Also for the threo isomer 5b, the C–F bonds may benefit

from hyperconjugative interactions with the anti-periplanar

C–H bonds, similar to that found in 1,2-difluoroethane in the

well know gauche effect [10,11]. On the other hand, the erythro

stereoisomer 5a would have a C–F bond projecting into the ring

in an endo manner, if the vicinal fluorines were edge/edge

located, and thus it is anticipated that the erythro isomer 5a will

adopt a corner/edge location for the C–F bonds rather than an

edge/edge location.

In order to test these hypotheses it was necessary to prepare

different the diastereoisomers, erythro- and threo-1,2-difluoro-

cyclododecane, and then subject them to conformational

analysis by 19F NMR and X-ray structural analyses. A compu-

tational study was also carried out to explore the relative ener-

gies of the candidate edge/edge and edge/corner conformers.

Results and Discussion
Synthesis
The synthetic route to erythro- (5a) and threo-1,2-difluoro-

cyclododecanes (5b) is shown in Scheme 1. A (1:9) mixture of

cis- and trans-epoxides was treated with triethylamine trihydro-

fluoride [12]. This afforded diastereoisomeric fluorohydrins 7a

and 7b, which could be readily separated by chromatography.

Each fluorohydrin was then treated with triflic anhydride

Figure 4: X-ray crystal structure of threo-1,2-difluorocyclododecane
(5b) showing corner angles and representative transannular contact
distances.

[13,14], to generate the corresponding triflates 8a and 8b. Treat-

ment of 8a and 8b with tetrabutylammonium fluoride (TBAF)

in THF was stereospecific and independently generated the

erythro- or threo-1,2-difluorocyclododecanes 5a and 5b. These

compounds were white solids. In the case of the threo isomer

only, a suitable crystal was grown such that an X-ray structure

could be solved. The resultant structure, which confirmed the

threo stereochemistry, is shown in Figure 4. Notably one of the

C–F bonds occupies a corner location, inconsistent with our
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Figure 5: Variable-temperature 19F{1H} NMR of erythro- (5a) and threo-1,2-difluorocyclododecane (5b).

preconceived expectation of a edge/edge conformation. This

corner/edge conformation appears to be favoured in the solid

state over the edge/edge conformation. Also the C–CHF–C

angle of 117.0° indicates a small rehybridisation tendency

towards a wider angle, observed more dramatically with the

CF2 group [7-9], and with concomitant release of angle strain.

Variable-temperature (VT) 19F NMR
Low-temperature (CD2Cl2, 180 K) 19F{1H} NMR experiments

were carried out on both the erythro and threo isomers. The

spectra are shown in Figure 5. In each case at room tempera-

ture there is a single fluorine resonance; however, on lowering

of the temperature the fluorine signal resolves into an

AB-system, indicating nonequivalent fluorine environments

and, thus, corner/edge locations of the C–F bonds in each case.

Vicinal edge/edge conformations would result in the magnetic

equivalence of the fluorine atoms, but this is not observed. Both

isomers 5a and 5b display a single resonance at room tempera-

ture (25 °C), indicating rapid ring interconversion on the NMR

timescale. Rate constants for the ring interconversions

were determined by complete lineshape analysis of the
19F NMR spectra recorded across the temperature range

180–295 K.

Fitting the experimental data to the Eyring equation [15]

allowed determination of the activation parameters (see Table 1

and Supporting Information File 1).

Table 1: The activation parameters of erythro- (5a) and threo- (5b)
1,2-difluorocyclododecanes.

isomer ΔG#

kcal·mol−1
ΔH#

kcal·mol−1
ΔS#

kcal·mol−1K−1

erythro 5a 10.5 ± 1.5 13.5 ± 0.6 10.0 ± 2.7
threo 5b 9.47 ± 1.1 6.57 ± 0.3 −9.73 ± 2.9

The overall free energy change (ΔG#) is similar in each case

and both the erythro 5a and threo 5b stereoisomers have con-

formational energy barriers ~2–3 kcal·mol−1 higher than
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Figure 6: Calculated relative energies of the conformations of the erythro (5a) and threo (5b) stereoisomers of 1,2-difluorocyclododecane.

cyclododecane itself (7.3 kcal·mol−1) indicating that fluorine

introduces some conformational stability. The enthalpy differ-

ence (ΔH#) is significant between the isomers. The theory

calculations described below suggest that the erythro isomer 5a

is more stable than the threo isomer 5b in the ground state, thus

this is most probably the major contributor to the enthalpy

difference. The opposite sign in entropy (ΔS#) for each isomer

makes a relatively small contribution to the overall free energy;

however, the positive value for the erythro isomer is perhaps

unexpected for progression towards a transition state. This may

arise as a result of desolvation for this isomer.

Computational study
In order to explore conformer energies further, a theoretical

study MP2/6-311+G(2d,p)//B3LYP/6-311+G(2d,p)+ZPE) [16]

was carried out to assess relative ground-state energies of

candidate conformers. The structures and relative energies for

the erythro 5a and threo 5b isomers are shown in Figure 6.

These data indicate that the corner/edge conformers are more

stable than the alternative edge/edge conformers for each

stereoisomer. This is consistent with the conclusions from the

experimental VT 19F NMR study.

For the erythro stereoisomer 5a, three conformers I–III were

considered. Conformers I and II each have a fluorine pointing

into the ring (endo), and thus there is an increase in transan-

nular ring strain, raising the energy of these conformers by 2.81

and 3.72 kcal·mol−1 respectively above conformer III, the

lowest in energy. For the threo stereoisomer 5b, four

conformers, IV–VII were considered. Conformers IV and V,

which have two and one endo fluorine, respectively, are highest

in energy. In particular, conformer IV with two endo fluorines

has a ground-state energy of 6.65 kcal·mol−1, the highest of all

of those examined, illustrating the additive and negative impact

of placing fluorines into endo orientations. Conformers VI and

VII are lower in energy. It was anticipated at the outset that

conformer VI may be the most favoured for the threo isomer;

however, this does not appear to be the case, although the

energy difference between the lowest-energy corner/edge

conformer VII and edge/edge conformer VI is relatively small

at VI − VII = 0.7 kcal·mol−1. This theoretical observation is

supported by the VT 19F{1H} NMR study, which indicates

nonequivalent fluorines consistent with a corner location. Also

the structure of conformer VII is almost identical to that

obtained experimentally by X-ray structure analysis (Figure 4).
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Table 2: The corner C–C–C angles for conformers VI and VII of the threo isomer 5b. The C–CHF–C angle (115.62°) is the largest; however some
C–CH2–C angles are clearly strained at ~115.0°.

threo 5b top left corner [°] top right corner [°] bottom left corner [°] bottom right corner [°]

VI 113.42 (CH2) 113.41 (CH2) 115.16 (CH2) 115.21 (CH2)
VII 115.62 (CHF) 113.91 (CH2) 115.09 (CH2) 114.32 (CH2)

It is not immediately obvious why threo 5b conformer VII is

favoured (lower in energy) over conformer VI, although the

energy difference is small (~0.7 kcal·mol−1). It is noteworthy

that the fluorine atoms are a little closer in intramolecular dis-

tance in VII (F···F 2.68Å) compared to VI (F···F 2.75Å), and

thus electrostatic repulsion does not appear to be the discrimin-

ating factor. One origin for this preference, which emerges from

the theoretical study, may be the widening of the C−CHF−C

angle (115.62°) in VII. The introduction of fluorine alters the

hybridisation at carbon [5], and this should relieve angular

strain in these tensioned ring systems relative to a strained

C−CH2−C angle of ~115° (see Table 2).

Conclusion
The erythro (5a) and threo (5b) isomers of 1,2-difluorocyclodo-

decane were synthesised, and their preferred conformers were

explored experimentally by 19F NMR, and X-ray structure

analysis. A computational study was also carried out to estab-

lish favoured conformations and their relative ground-state

energies. A particular focus of the study examined whether the

vicinal C–F bonds prefer to adopt corner/edge or edge/edge

locations of the [3333] ring system. For each diastereoisomer it

emerged that one of the C–F bonds adopts a corner location.

The second orientates exo to the ring. When the C–F bond

projects endo into the ring, the energy of the system is raised by

between 2.0–3.0 kcal·mol−1 and is disfavoured. In the case of

the threo isomer 5b, the outcome was less easy to predict, as an

edge/edge structure can be achieved with both C–F bonds exo to

the ring, and with each C–F bond benefiting from antiperi-

planar C–H/C–F hyperconjugative interactions. However it

would appear that the corner/edge structure is still favoured for

the threo isomer 5b, as the C–C–C bond angles of ~115°, which

occur in these tensioned ring systems, are inherently less

strained, due to rehybridisation/angle widening, if they carry a

central fluorine atom.

Experimental
Preparation of 7a and 7b: Commercially available 1,2-epoxy-

cyclododecane (6) (5 mmol, 0.91 g, 9:1 trans/cis) and

Et3N·3HF (4.0 g, 25 mmol) was added to a Teflon-coated

reactor and stirred at 160 °C for 24 h. After cooling down, the

reaction mixture was quenched with sat. NaHCO3 solution

(50 mL) and extracted into diethyl ether (3 × 20 mL). The

organic layers were combined and dried (MgSO4), and then

concentrated under vacuum. Purification over silica gel, eluting

with hexane and diethyl ether (90:10), yielded trans-2-fluoro-

cyclododecanol (7a) (91 mg, 9%) and cis-2-fluorocyclodo-

decanol (7b) (420 mg, 41%) as a white crystalline solid.

7a: mp 64–65 °C; 1H NMR (400 MHz, CDCl3) δH 4.56 (ddt, J

= 49.4, 8.7, 4.2 Hz, CHF), 3.94–3.86 (m, 1H, CHOH), 2.27 (t, J

= 3.5 Hz, 1H, CHOH) and 1.92–0.84 (m, 20H, 10 × CH2);
13C NMR (100 MHz, CDCl3) δC 95.3 (d, J = 166 Hz, CHF),

71.4 (d, J = 18 Hz, CHOH), 28.7 (d, J = 5.5 Hz, CH2), 27.8 (d,

J = 21 Hz, CH2), 24.0 (d, J = 1.6 Hz, 2 × CH2), 23.7 (d, J =

2.8 Hz, 2 × CH2), 22.6 (d, J = 2.9 Hz, 2 × CH2), 20.6 (CH2),

20.4 (d, J = 2.8 Hz, CH2); {1H}19F NMR (376 MHz, CDCl3)

δF −194.0 (CHF); LRMS–ESI (m/z): [M + Na]+ calcd for

C12H23OFNa, 225.16; found, 225.06.
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7b: mp 84–86 °C; 1H NMR (400 MHz, CDCl3) δH 4.70 (dtd, J

= 47.3, 6.0, 1.7 Hz, 1H, CHF), 3.99–3.88 (m, 1H, CHOH), 1.81

(d, J = 5.4 Hz, 1H, CHOH) and 1.83–1.33 (m, 20H, 10 × CH2);
13C NMR (75 MHz, CDCl3) δC 95.4 (d, J = 168 Hz, CHF),

71.6 (d, J = 20 Hz, CHOH), 28.3 (d, J = 7 Hz, CH2), 25.2 (d, J

= 21 Hz, CH2), 24.6 (CH2), 24.3 (CH2), 23.8 (CH2), 23.6

(CH2), 21.7 (2 × CH2), 21.4 (d, J = 5 Hz, CH2), 21.3 (CH2);

{1H}19F NMR (376 MHz, CDCl3) δF −191.1 (CHF);

LRMS–ESI (m/z): [M + Na]+ calcd for C12H23OFNa, 225.16;

found, 225.07.

Erythro isomer 5a: To a solution of 7a (0.11 g, 0.5 mmol) in

DCM (5 mL) at 0 °C was added pyridine (80 µL, 1 mmol,

2 equiv) and Tf2O (130 µL, 0.7 mmol, 1.4 equiv). The resulting

mixture was stirred for 1 h and the solvent was removed under

vacuum. The residue containing the trans-fluorotriflate 8a was

dissolved in THF (3 mL), and TBAF solution (1 mL, 1 M in

THF, 1 mmol) was added dropwise. The reaction mixture was

stirred at rt for 48 h and monitored by 19F NMR. Purification

over silica gel, eluting with 1% diethyl ether in cyclohexane

yielded erythro-difluorocyclododecane 5a (21 mg, 21%) as a

white solid: mp 57 °C; 1H NMR (400 MHz, CDCl3) δH

4.81–4.64 (tdd, J = 48.3, 24.1, 6.3 Hz, 2H, 2 × CHF), 1.80–1.73

(m, 4H, 2 × CH2), 1.44–1.33 (m, 16H, 8 × CH2); 13C NMR

(75 MHz, CDCl3) δC 92.5 (dd, J = 174, 20 Hz, 2 × CHF), 26.9

(2 × CH2), 25.6 (dd, J = 21, 6 Hz, CH2), 24.0 (4 × CH2), 21.6

(2 × CH2), 21.0 (CH2), 20.9 (CH2); {1H}19F NMR (376 MHz,

CDCl3) δF −191.0 (CF); HRMS–ESI (m/z): [M + Na]+ exact

mass calcd for C12H22F2Na, 227.1587; found, 227.1591.

Threo isomer 5b: Similar to the erythro compound, 5b was

obtained from cis-7b in 25% as a white solid: mp 61 °C;
1H NMR (400 MHz, CDCl3) δH 4.81–4.64 (m, 2H, 2 × CHF),

2.10–1.23 (m, 20H, 10 × CH2); 13C NMR (100 MHz, CD2Cl2)

δC 92.4 (dd, J = 176, 19 Hz, 2 × CHF), 29.7 (CH2), 27.8 (dd, J

= 15, 12 Hz, 2 × CH2), 24.0 (2 × CH2), 23.7 (2 × CH2), 22.5

(2 × CH2), 20.4 (CH2); {1H}19F NMR (376 MHz, CDCl3) δF

−193.6 (CF); HRMS–ESI (m/z): [M + Na]+ exact mass calcd for

C12H22F2Na, 227.1587; found, 227.1595.

Supporting Information
The Supporting Information contains NMR spectra and

results of the differential scanning calorimetry,

variable-temperature NMR, and computational studies.

Supporting Information File 1
Additional data.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-8-143-S1.pdf]
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