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Abstract

Palladium complexes of bis(di-tert-butyl phosphinomethyl)benzene (DTBPMB) show
remarkably high activity as alkene methoxycarbonylation catalysts, in addition to
numerous other catalytic conversions, and are currently being commercialised by Lucite
in ethene methoxycarbonylation to methyl propanoate. Any large-scale exploitation of
this catalyst system for heavier products, however, is likely to be hindered by catalyst-
product separation problems common to homogeneous catal ysts; hence modification of

this catalyst system to allow facile product separation was investigated.

Tethering of DTBPMB residues onto polystyrene via Suzuki-type coupling of suitable
precursors onto bromopolystyrene and boronic acid functionalised polystyrene resins
was investigated and the phosphine was successfully immobilised. Phosphination of the
resins was not complete however and as such there is concern that other phosphine
residues may be present which do not exhibit a bidentate binding motif. The synthesis
of a potassium sulfonate derivative of DTBPMB (KBPMBS) was successful and
immobilisation of this onto ion exchange resins was also investigated. Some
preliminary results from studies into 1-octene methoxycarbonylation using palladium
complexes of these resins were obtained.

Supporting of this diphosphine onto silica via a sol-gel co-condensation methodology
was also investigated; the synthesis of a suitably functionalised precursor containing a
sulfonamide linkage was successful via protection of the diphosphine using borane.
Although formation of the silica support was successful, attempts to deprotect the
phosphine-borane resulted in cleavage of the ligand from the support. An alternative
route to this supported ligand was attempted and others discussed. Synthesis of a
suitable sol-gel precursor via alkene hydrosilation was also attempted and is discussed.
Supporting of the sulfonated phosphine, KBPMBS onto silica functionalised with
imidazolium tethered residues was also investigated, although complete leaching of the

phosphine from the support by methanol washing was observed.
Immobilisation of the synthesised KBPMBS ligand in an ionic liquid (IL) phase was

investigated. Complex formation and catal ytic activity were demonstrated and a positive

effect on conversion was observed upon addition of carbon dioxide to the system;



possibly due to the increased CO solubility within the IL phase. Efficient product
separation from the IL-immobilised catalyst system was demonstrated, both by organic
extraction and using supercritical carbon dioxide flow. However, poor catalyst stability
under these conditions appears to present a barrier to recycling this system, with loss of

conversion observed on catalyst recycling.

Other attempts to immobilise the DTBPMB ligand are discussed and reduction of the
sulfide derivative of DTBPMB was demonstrated using hexachlorodisilane, which
could be used as a general synthetic strategy for protecting highly electron rich
phosphines.

It is possible that increasing the bulk of the DTBPMB ligand may increase catalyst
stability and result in catalyst systems with higher turnover numbers. Therefore
syntheses of bulky ligands based on the DTBPMB backbone were investigated. 1,2,4,5-
tetrakis(di(tert-butyl)phosphinomethyl)benzene was successfully synthesised although
palladium complexes of this showed no activity in catalytic methoxycarbonylation.
Attempts to synthesise a related biphenyl-based tetraphosphine is also discussed,
although isolation of this in a pure form was not achieved. Routes toward tetraphenyl
and dimethyl-diphenyl functionalised derivatives of DTBPMB have also been explored,
although only a monophosphine was isolated due to difficulties in obtaining an
intermediate di(chloromethyl) precursor in both synthetic pathways, although this now

appears to have been overcome.
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1. Introduction

1.1 Homogeneous and Heterogeneous Catalyst Systems

A catalyst is a chemical substance that increases the rate of a reaction by accessing a
more kinetically accessible route to a product without itself being consumed in the
reaction. Effective catalysts are highly attractive to industry, not only allowing milder
pressures and reaction temperatures to be used but also alowing the product distribution
to be directed towards a desired product. As a result, over 80 % of al industria
chemical processes are catalytic and it has been estimated by the North American
Catalysis Society that a massive 35 % of worldwide GDP depends on catalysis; and still
the catalyst market isincreasing at a rate of 5 % per annum. (2006)*

Catalytic reactions are often classified by whether or not the compounds present in the
system are in the same phase as the cata ytic species. When this is the case, the system
is described as homogeneous, otherwise it is a heterogeneous catalyst system. In Table

1-1, some of the main aspects of these two catalyst systems are compared.

Homogeneous Heter ogeneous
Active centres All metal atoms Surface atoms only
Concentration Small High
Diffusion Problems Rarely present Present
Catalyst Structure Known Poorly defined
Stoichiometry Known Unknown
M odification Scope High Low
Reaction Conditions Mild Severe
Catalyst Separation Difficult Easy
Application Limited Wide

Table 1-1 - Comparison of homogeneous and heter ogeneous catalyst systems’




1.1.1 Comparison

Heterogeneous catalysts are often metals or metal oxide materials, whereas
homogeneous catalysts tend to be metals that are complexed by a variety of ligands.
Comparison of the two catalyst systems highlights several advantages of homogeneous
over heterogeneous systems.> Homogeneous catalysts are generally more active than
their heterogeneous counterparts, having all of their active centres available for
catalysis; whereas only surface atoms are generally active in the heterogeneous case.
This results in greater catalytic efficiency, alowing lower catalyst loadings and milder
conditions compared to heterogeneous systems. These properties result in practical
advantages for industrial applications, such as lower process temperatures and

pressures.

The complete dissolution of a homogeneous catalyst and reagents significantly reduces
diffusion problems that can sometimes be problematic for heterogeneous systems,
although gas transport to a homogeneous catalyst can sometimes present problems. The
surface-only reactivity of heterogeneous catalysts makes them susceptible to poisoning,
something which is less problematic with homogeneous systems. The well-defined
structure of homogeneous catal ysts has allowed them to be more fully characterised and
allows an extensive mechanistic understanding of their catalytic processes, allowing
catalytic cycles to be drawn up to describe the processes occurring.® This mechanistic
understanding has allowed to an extent “catalyst designing”, where the electronic and
steric properties of a catalyst can be tuned in order to increase its efficiency or

selectivity.



1.1.2 Limitations of Homogeneous Catalysis

Homogeneous catalysts are not without their problems, the catalysts may be based
around expensive precious metals that are complexed to often elaborate ligands, making
them particularly expensive to synthesise. The catalysts can be fairly sensitive,
particularly to temperature - sometimes leading to unacceptably short catalyst lifetimes
and low thermal stability.

Very often, the most significant barrier to more widespread use of homogeneous
catalysts in industry is a lack of an efficient and economic catalyst separation method.
The separation of solid-supported or suspended heterogeneous catalysts is, in contrast
often trivial, simply requiring filtration of the catalyst to recover. For a homogeneous
catalyst system to compete on economics, the high cost of the catalyst needs to be
counteracted by a highly efficient catalyst / product separation technique, leading to
minimal loss of the catalyst.

Occasionally such separation can be achieved by distillation of the reaction products.
Chemistry where this is possible however is somewhat limited as the reaction products
must be particularly volatile as the moderate thermal stability of many homogeneous
catalysts can be restrictive on the temperatures that can be used. Even when this is
possible, the additional cost of such a distillation can be high and will need to be
considered in any overall process costing.

Despite these limitations, there are some maor industrial processes that employ
homogeneous catalysts. One of the first large-scale homogeneous processes devel oped
was akene hydroformylation (largely propene) known as the Oxo process. The bulk
aldehyde produced here is a useful intermediate to many industrially important

chemicals such as alcohols, acids, amines and esters.

Earlier processes, such as those operated by Ruhrchemie and BASF used cobalt
hydridocarbonyl which was separated by thermal decomposition. A process developed
by Shell however utilises the catalyst [HCo(CO)s(PR3)] where R is an akyl.* Here the
catalyst is sufficiently thermally stable to alow separation by distillation. More recently
developed processes use rhodium / triphenylphosphine such as the, “Low pressure oxo
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process’ developed and commercialised by Union Carbide / Davy Powergas / Johnson
Matthey and independently by Celanese and BASF.? In this a more active yet more
expensive catalyst system and again separation is effected by distillation. Due to
catalyst stability it is more ideally suited to ethylene feedstock, though is just

economically viable with propene.

1.2 Lucite and Methyl Methacrylate Production

Lucite International (Lucite) is the largest worldwide manufacturer of methyl
methacrylate (MMA). The magority of their sales are of the MMA monomer, although
an increasingly significant part of their business comes from downstream products
based on polymethyl methacrylate (PMMA) such as products for injection moulding,
liquid crystal display backing materials, adhesives, coatings and trade named products
such as Plexiglas™, Perspex™ and Lucite™.

In 1999, the worldwide production capacity for methyl methacrylate was 2.4 x 10°
tonnes annually, of which Lucite (then known as Ineos Acrylics) owned 540,000 tonnes
(2000 figures).® The company hence has about a 25 % share in the globa acrylics
market and has been working to build on this with the development of a more efficient
process for MMA manufacture using methanol, ethylene and carbon monoxide
feedstocks. This new process, nhow dubbed the “apha process’ is estimated to give
around a 20 % cost saving compared with the conventional acetone-cyanohydrin
(ACH) routeto MMA.”

1.2.1 The ACH Process

Up until recently, acetone cyanohydrin (ACH) has been the exclusive feedstock for all
industrial manufacture of methacrylic acid derivatives. This process was first used for
industrial manufacture in 1937 by Rohm and Haas and ICl. Manufacture of acetone
cyanohydrin involves addition of hydrogen cyanide to acetone using aliquid-phase base
as catalyst such as an alkali metal hydroxide at temperatures below 40 °C.° (Figure 1-1)
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Figure 1-1 - Acetone cyanohydrin from hydrogen cyanide and acetone

This mild process produces ACH at a selectivity of 92-99 % (based on HCN). In the
case of MMA manufacture the nitrile group of ACH then undergoes an acid catalysed
hydration via an amide intermediate. This conversion is effected using 98 % sulfuric
acid at 80-140°C, forming the methacrylic acid amide sulfate. This is then converted to
MMA and ammonium bisulfate by reaction with methanol at either 80 °C or at 100-150
°C under pressure. (Figure 1-2)

HO CN HO CONH, H,S0,
>< TS0+ RO
+CHZOH 0
> + NH,HSO,

Figure 1-2 - M ethyl methacrylate manufacture from acetone cyanohydrin

This process has an overal selectivity to MMA of about 77 %, based on acetone.
Process improvements have been developed over the years and this classica
methodology is still competitive, accounting for around 80 % of worldwide production
capacity (2000 figures).®

Although this process is economically competitive when a cheap source of HCN is
available, it is far from ideal. The large scale use of mineral acid and liquid phase base
as well as the massive production and subsequent disposal of unwanted ammonium
bisulfate has a significant environmental impact; 1.2 Tonnes of ammonium bisulfate co-

product are produced for every tonne of MMA 2



The removal of these reagents and the unwanted side-product in a more atom-efficient
process would hence lead to a process with a much lessened environmental impact and
likely economic gain and hence has been an active area of research for numerous
companiesincluding BASF, MGC, Elf and Shell aswell as Lucite.®

1.2.2 The Alpha Process

An dternative route to MMA has been developed at Lucite over recent years and has
been recently termed the ‘alpha’ process.” It essentially consists of two reactive stages
followed by a series of separation steps to obtain MMA. The first stage takes methanol,
ethylene and carbon monoxide (CO) in a methoxycarbonylation reaction over a
palladium-based homogeneous catalyst system to give methyl propanoate (MeP). The
reaction is highly active and selective towards the desired product to the extent that the

product stream essentially requires no purification. (Figure 1-3)
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Figure 1-3 - M ethyl propanoate from methoxycar bonylation of ethene

MeP is then combined with formaldehyde (obtained from methanol using the formalin
process) in the gas phase over afixed bed heterogeneous catalyst to give MMA. Thisis
performed at 320 °C and 2 bar giving a selectivity to MMA of 95 %. Methanol is also
added during the reaction and the water content is kept to a minimum to minimise the
production of methacrylic acid. This is then taken through a series of somewhat
complicated purification stagesto give the fina product.

It is the former, homogenous catalyst system that is the focus of this project and so isto

be a major subject of discussion here.



1.3 Methoxycarbonylation of Alkenes

1.3.1 Catalysts Reported in the Literature

Early methoxycarbonylation catalysts were based on cobat and nickel carbonyl
compounds. More recent literature on this area however has concentrated largely on
Pd-based carbonylation catalysts and to a lesser extent Pt, Rh and Ru, due to the better
performance of these catalysts under more mild conditions. As well as the interest in
ethylene methoxycarbonylation for MMA production, styrene methoxycarbonylation
has a significant contribution in the literature due to its interest in routes to the drug
ibuprofen.

1.3.2 Catalysis With DTBPMB / Palladium

Complexation of 1-2 bis(di-tert-butylphosphinomethyl)benzene (DTBPMB) with a
suitable palladium precursor such as tris(dibenzylideneacetone)dipalladium (Pd.dbas)
forms a species in which only one diphosphine ligand is bound in a cis coordination to
the palladium centre. (Figure 1-4, species 1) This is presumably due to the high steric
bulk of the tert-butyl groups of the ligand. Addition of a weakly coordinating Bransted
acid, such as a sulfonic acid, produces the palladium hydride species (Figure 1-4,
species 2), which is considered to be the catal ytically active species.
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Figure 1-4 - Complexation of diphosphineto palladium and for mation of palladium hydride

In general, bidentate complexes are highly active in the copolymerisation of CO and
ethene, giving perfectly aternating polyketone product. (Figure 1-5) In fact there has
been considerable interest in such catalytic systems for the production of this desirable
material.” Monophosphine ligands, such as triphenylphosphine, give the monomeric

methyl propanoate product with high selectivity.’® Intermediate reactivity is observed



when hemilabile P,O or P,S diphosphine ligands are used, where unsaturated
oligoketones are observed.™
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Palladium catalyst / methyl propanoate
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Figure 1-5 - Possible products from ethylene/ CO / methanol reaction over palladium catalysts

Complexes of DTBPMB however break this generalisation, giving exceptional
selectivity to the methyl propanoate (MeP) monomer. When methanesulfonic acid
(MSA) is used as the proton donor, the catalyst system has been reported to give a
selectivity towards MeP of 99.98 % at a rate of consumption of 50, 000 mol of ethene
per mol of palladium per hour (turnover frequency; TOF) under mild conditions (80 °C,
10 atm.) in batch reactions.*?

The system aso offers high stability, achieving total turnover numbers (total number of
moles of product per mole of catalyst before unacceptable loss in activity; TON) in
excess of 100,000. In contrast, catalysis with triphenylphosphine complexes achieved a
modest 1,800 turnovers under these conditions. Due to these desirable properties, the
use of this catalyst system for methyl propanoate synthesis has hence been patented by

Lucite.®®

The presence of the highly electron donating and bulky tert-butyl groups and the semi-
rigid 4-carbon backbone of the diphosphine are thought to be important in effecting the
observed catalysis. When this cis coordinating diphosphine is used, the steric bulk of the
phosphine groups increases the rate of methanolysis, leading to monomer; whereas less
bulky phosphines such as 1,3-bis(diphenylphosphino)propane (DPPP) prefer to
coordinate further alkene, leading to polymerisation.* The high stability of the system
may also be attributed to the ligand; the large steric bulk would disfavour metal cluster
formation and the highly electron donating ability of the phosphorous means the ligand



remains fully protonated under catalytic conditions. Phosphine quaternisation therefore
IS not a deactivating process for this system as protonated DTBPMB is aso able to bind

to the palladium centre.

Exchange of the tert-butyl groups with less electron donating and / or less bulky groups,
such as phenyl or iso-propyl has a dramatic effect on the catalysis, giving reduced
activity and a selectivity to MeP of around 20 %, with largely polymeric and oligomeric
ketone products instead. (Figure 1-6, complexes 4-7)

1 R=R'=Bu, X=H 5 R=R'=Cy,X=H
2 R=R'='Bu, X=NO, 6 R=R'=Ph,X=H
3 R=R'='Bu, X = OCH, 7 R= Bu,R'=CyX=H

4 R=R'=Pr,X=H

Catalyst | TOF | Selectivity to MeP (%)’ | P-Pd-P biteangle ()"
1 12,000 | 99.9 103.9

2 11,500 | 99.9

3 11, 800 | 99.9

4 200 |20 104.3

5 200 |25 103.9

6 400 |20 104.6

7 500 |30

Figure 1-6 - Catalytic results from DTBPMB derivatives 1-7
(i) By GC; remainder oligomers and polymers, (ii) Where determined by X ray crystallography

Interestingly, substitution of the phenyl ring with electron withdrawing or donating
groups such as NO, or OMe has very little effect on the catalytic properties. (Figure 1-6,
complexes 2 and 3 respectively). In addition, studies on methoxycarbonylation of vinyl
acetate using 1,2-bis(di-tert-butyl phosphinomethyl)napthalene and 2,3-bis(di-tert-
butyl phosphinomethyl)napthalene at room temperature (3 hours) showed no difference
in ester selectivity - only a reduction in conversion compared to DTBPMB,* hence

suggesting only areduction in rate for these napthyl derivatives.
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1.4 Mechanism of Catalysis
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Figure 1-7 - Suggested mechanismsfor ethene methoxycarbonylation

Two mechanisms have been proposed for ethene methoxycarbonylation by DTBPMB.
They differ in whether the palladium complex initiates the catalytic cycle as either a
hydride or a methoxide and are hence termed the “hydride cycle” or the “ carbomethoxy
cycle” respectively. (Figure 1-7, cycles A and B respectively) There have been severa
reports that have attempted to address which of these mechanisms operate in D