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Abstract

In this thesis we discuss various topics from Combinatorial Semigroup
Theory: automaton semigroups; finiteness conditions and their preserva-
tion under certain semigroup theoretic notions of index; Markov semi-
groups; word-hyperbolic semigroups; decision problems for finitely pre-
sented and one-relator monoids.

First, in order to show that general ideas from Combinatorial Semi-
group Theory can apply to uncountable semigroups, at the beginning of
the thesis we discuss semigroups with Bergman’s property.

We prove that an automaton semigroup generated by a Cayley ma-
chine of a finite semigroup S is itself finite if and only if S is aperiodic,
which yields a new characterisation of finite aperiodic monoids. Using
this, we derive some further results about Cayley automaton semigroups.

We investigate how various semigroup finiteness conditions, linked to
the notion of ideal, are preserved under finite Rees and Green indices. We
obtain a surprising result that J = D is preserved by supersemigroups of
finite Green index, but it is not preserved by subsemigroups of finite Rees
index even in the finitely generated case. We also consider the question
of preservation of hopficity for finite Rees index. We prove that in general
hopficity is preserved neither by finite Rees index subsemigroups, nor by
finite Rees index extensions. However, under finite generation assump-
tion, hopficity is preserved by finite Rees index extensions. Still, there is
an example of a finitely generated hopfian semigroup with a non-hopfian
subsemigroup of finite Rees index.

We prove also that monoids presented by confluent context-free monadic
rewriting systems are word-hyperbolic, and provide an example of such a
monoid, which does not admit a word-hyperbolic structure with unique-
ness. This answers in the negative a question of Duncan & Gilman.

We initiate in this thesis a study of Markov semigroups. We investi-
gate how the property of being Markov is preserved under finite Rees and
Green indices.

For various semigroup properties P we examine whether P , ¬P are
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Markov properties, and whether P is decidable for finitely presented and
one-relator monoids.
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Chapter 1

Introduction

In rough terms, Combinatorial Semigroup Theory studies finitely gener-
ated semigroups, and the ways to present all their elements. Basically, this
branch of Mathematics appears quite naturally if one asks oneself:

How knowing some abstract semigroup can I convey this semigroup to another
person?

Of course, if one thinks, say, about a matrix semigroup, or a semigroup of
mappings of a set into itself, then it is possible to give a realisation of that
semigroup via matrices or mappings respectively. But what if one does
not know for sure if the semigroup can be realised by some ‘convenient’
means? One of the most natural ways then is to find a generating set for
the semigroup, consider the set of all words over this set, and try to ex-
plain to another person all instances when one word is equal to another. If
one succeeds in this, then the other person can reconstruct the semigroup
uniquely. This idea leads to the notion of the semigroup presentation – cen-
tral in Combinatorial Semigroup Theory, which we are now to define.

1.1 Presentations

Let A be some alphabet. Denote by A+ and A∗ the free semigroup and
the free monoid over A. By a presentation we simply mean a pair 〈A : R〉,
where R ⊆ A∗ × A∗ is a set of relations.

Definition 1.1.1. LetA be a set andR ⊆ A+×A+. We say that a semigroup
S is given by the presentation Sg〈A : R〉, if S is isomorphic to A+/ρ, where
ρ is the minimal congruence onA+ containingR. (One defines the monoid
presentation Mon〈A : R〉 analogously.)

There is an easy way to understand when two words u and v from A+

are equal in S = Sg〈A : R〉: u =S v if and only if there exists a chain
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u = x0 ∼ x1 ∼ · · · ∼ xp = v, where p ≥ 0, xi ∈ A+, and x ∼ y for x, y ∈ A+

by definition means that x and y allow decompositions (as words) x = sαt
and y = sβt such that either (α, β) ∈ R or (β, α) ∈ R. The proof of this can
be found in any standard text, we provide here the reference [51].

Hence, basically Definition 1.1.1 means that the relations R which hold
in S are the building blocks for all the possible relations which hold in S.

So, in principle it is possible that one having a semigroup, can convey
to another person the semigroup by means of a presentation. But how can
that other person work with the received presentation? One of the efficient
methods to do so is to look at the presentation as at the correspondent
rewriting system.

1.2 Rewriting Systems

A (string) rewriting system is simply a pair (A,R), where A is an alphabet
and R ⊆ A∗ × A∗. Each pair (l, r) ∈ R is called a rewriting rule. Then
the reduction →R is defined as follows: u →R v if u = xly and v = xry
for some x, y ∈ A∗ and (l, r) ∈ R; and →∗

R denotes the reflexive transitive
closure of →R. A word w ∈ A∗ is called reducible with respect to R if it
contains a subword l for some (l, r) ∈ R; otherwise w is called irreducible.

The rewriting system (A,R) is noetherian, or terminating, if there is no
infinite chain w1 →R w2 →R w3 →R · · · . (A,R) is confluent if whenever
w →∗

R u and w →∗
R v, there exists w′ such that u →∗

R w′ and v →∗
R w′.

Confluent noetherian systems are called complete.

The importance of complete rewriting systems (A,R) is in the fact that
the irreducibles of this system form the set of normal forms for the monoid
Mon〈A : R〉. It is quite obvious to see that every finitely generated monoid
admits a complete rewriting system. Indeed, one just needs to fix an order
on the generators and then rewrite every word w to the minimum word
u in the correspondent shortlex order with w = u in the semigroup. Of
course, one normally gets an infinite rewriting system in this way, and
such systems would be of low practical use.

Also, having a rewriting system defining the monoid, there is a com-
pletion procedure of the system – the so-called Knuth-Bendix procedure.
This procedure will not always terminate, i.e. it is possible that using this
procedure, starting on a finite rewriting system, we will not be able to find
a finite complete rewriting system. Nonetheless, using the mere princi-
ple of the completion procedure, sometimes it is possible to find infinite
though convenient rewriting systems for the monoids under considera-
tion. All this makes rewriting systems a powerful tool to study finitely
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generated monoids. Since later in the text we will heavily use the ma-
chinery of rewriting systems, we give some more definitions we will use
throughout: The rewriting system (A,R) is

1. length-reducing if |r| < |l| for all (l, r) ∈ R;

2. special if r = 1 – the emptyword for all (l, r) ∈ R;

3. monadic if r ∈ A ∪ {1} for all (l, r) ∈ R.

A good reference to read about rewriting systems is [9].

1.3 Rees and Green Indices

Some of the first results in Combinatorial Group Theory are the so-called
Reidemeister–Schreier-type results. They deal with (group) finiteness con-
ditions – the properties of groups which hold for all finite groups. These
results are concerned with the following question: is a finiteness condi-
tion P preserved by finite index subgroups and finite index extensions? In
particular, from the results of Reidemeister and Schreier (see [52]) it fol-
lows that finite generation, finite presentability and solubility of the word
problem are preserved both by finite index subgroups and supergroups.

Another strand of results in Combinatorial Group Theory related to the
notion of index are various theorems, which in effect give us certain char-
acterisations when a finitely generated group has a certain nice property,
i.e. of the following type: ‘A group has property P if and only if it has
a subgroup of finite index with property Q’. The examples of such state-
ments are the celebrated Gromov’s Growth Theorem and Muller–Schupp
Theorem (we choose these as examples since the properties P from them
are closely related to the topics we will discuss in the thesis).

The first theorem refers to the notion of the (word) growth. Let A be
a finite generating set for a group G. Let an be the number of elements
in A ∪ · · · ∪ An. Then an is an increasing sequence. It is quite easy to see
that the growth rate of this sequence does not change when one changes
A to another finite generating set for G, and this is what is known as the
(word) growth rate of G. It had been known for a while that every nilpotent
finitely generated group has polynomial growth, until Gromov proved a
remarkable theorem stating that actually polynomial growth implies vir-
tual nilpotency:

Theorem 1.3.1 (Gromov, [36]). A finitely generated group has polynomial growth
if and only if it has a nilpotent subgroup of finite index.
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Another remarkable theorem, involving quite a lot of various branches
of Mathematics, which also gives us a characterisation of a nice property
for finitely generated groups, is the following:

Theorem 1.3.2 (Muller & Schupp, [66]). A finitely generated group has context-
free word problem if and only if it has a free subgroup of finite index.

In order to prove analogous results in Combinatorial Semigroup The-
ory, one naturally asks what could be a suitable notion of index for semi-
groups? Depending on the problem we have in mind to solve, there ap-
peared several notions of index for semigroups. For instance, Grigorchuk [34]
invented a certain notion of index to prove an analog of Gromov’s Growth
Theorem for cancellative semigroups, but the analog of Reidemeister–Schreier
Theorem is no longer true for this index. Or, say, there exists a notion of the
so-called syntactic index introduced by Ruškuc and Thomas [76], which
applied to groups becomes the ‘normal’ group index, but which fails to
provide Reidemeister–Schreier-type results for general semigroups.

In this thesis we will concentrate on two successful definitions of in-
dex for semigroups which enable us to prove Reidemeister–Schreier-type
results. The first one is very easy to define:

Definition 1.3.3. Let T be a subsemigroup of a semigroup S. The Rees
index of T in S is |S \ T |+ 1.

The first mention of Rees index in the literature is due to Jura [47]. Even
though admitting a subsemigroup of finite Rees index is a fairly restrictive
property, it has provided a fertile ground for research, and has thrown up
a few surprises. In [75] it is proved that the main combinatorial finite-
ness conditions, such as finite generation, presentability, and solvability
of the word problem, are all preserved both under finite Rees subsemi-
groups and extensions. The proof for finite presentability is surprisingly
complicated, and to date no fundamentally simpler proof has been found.
The related question of the existence of finite complete rewriting system
has been settled only very recently, see [84]. Some related cohomological
finiteness conditions are considered in [57] and [83], residual finiteness is
treated in [76]. Some surprising behaviour in relation to the ideal structure
we will encounter in Chapter 4.

Notwithstanding all the mentioned results about finite Rees index, and
that it does appear very often in Semigroup Theory, Rees index still does
not generalise the group index. To cure this situation, Gray and Ruškuc
propose in [33] the so-called Green index. To define it, we need to explain
what the Green relations are – a fundamental notion in Semigroup Theory.
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Definition 1.3.4. Let S be a semigroup. Let 1 be a newly adjoined element
to S which represents the identity and makes the set S1 = S ∪ {1} become
the monoid in which the multiplication extends that in S. The Green re-
lations R,L and J in S are binary relations on S defined as follows: for
a, b ∈ S

aRb ⇐⇒ aS1 = bS1

aLb ⇐⇒ S1a = S1b

aJ b ⇐⇒ S1aS1 = S1bS1.

Define also H = R∩ L and D = R ◦ L.

One can show that all the five defined relations are indeed equivalence
relations, that D = R ◦ L = L ◦ R, and D ⊆ J see [45]. The R-class
containing a ∈ S will be denoted by Ra. Similarly, one defines La, Ha, Da

and Ja.
The importance of Green relations in Semigroup Theory is in the fact

that in some sense they endow the semigroup with a coordinate system:
one can decompose the semigroup into D-classes and in each D-class work
according to the arguably the most fundamental statement in Semigroup
Theory:

Theorem 1.3.5 (Green’s Lemma, [45]). Let S be a semigroup and a, b ∈ S.

1. If aRb and s, s′ ∈ S1 are such that as = b and bs′ = a, then the mappings

ρs : x 7→ xs and ρs′ : x 7→ xs′

are mutually inverse bijections from La onto Lb and vice versa. Moreover,
for any x ∈ La one has xRxρs, i.e. ρs moves an element x ∈ La within the
R-class containing x.

2. If aLb and s, s′ ∈ S1 are such that sa = b and s′b = a, then the mappings

λs : x 7→ sx and λs′ : x 7→ s′x

are mutually inverse bijections from Ra onto Rb and vice versa. Moreover,
for any x ∈ Ra one has xLxλs, i.e. λs moves an element x ∈ Ra within the
L-class containing x.

We are now ready to define Green index. For this we require the fol-
lowing:
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Definition 1.3.6. Let T be a subsemigroup of a semigroup S. For u, v ∈ S
define:

uRTv ⇐⇒ uT 1 = vT 1

uLTv ⇐⇒ T 1u = T 1v,

and HT = RT ∩ LT .

This definition was introduced by Wallace [82]. Gray and Ruškuc prove
in [33] that each of RT , LT and HT is an equivalence relation on S; and call
their equivalence classes by the (T -)relative R-, L-, and H-classes, respec-
tively. Furthermore, they prove that these relations respect T , in the sense
that each RT -, LT -, and HT -class lies either wholly in T or wholly in S \ T .
This prompted Gray and Ruškuc to make the following definition:

Definition 1.3.7. Let T be a subsemigroup in a semigroup S. The Green
index of T in S is |(S \ T )/HT |+ 1.

The authors of [33] also show that relative Green relations behave sim-
ilarly to the Green relations:

Proposition 1.3.8 ([33, Proposition 4]). Let T be a subsemigroup in a semi-
group S.

1. The relation RT is a left congruence on S, and LT is a right congruence.

2. For each relative HT -class H either H2∩H = ∅, or H2∩H = H in which
case H is a subgroup of S.

3. RT and LT commute, so we may define DT = RT ◦ LT = LT ◦ RT .

4. Let u, v ∈ S be such that uRTv, and let p, q ∈ T 1 such that up = v and
vq = v. Then the mapping ρp given by x 7→ xp is an RT -class preserving
bijection from LT

u to LT
v while the mapping ρq given by x 7→ xq is an RT -

class preserving bijection from LT
v to LT

u , and is the inverse of the mapping
ρp.

But the most important feature of the Green index is that it generalises
the group index in the following sense:

Proposition 1.3.9. A subgroup H of a group G has finite (group) index in G if
and only if H has finite Green index in G. (Note, however, that in this situation
the group and Green indices of H in G may differ.)
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As one would expect, many finiteness conditions are preserved when
passing to subsemigroups or extensions of finite Green index: finite gen-
eration, solubility of word problem, being finite. The papers [13] and [33]
have largely been devoted to proving results of this type for finiteness
conditions shared by groups and semigroups, thus reinforcing the role of
Green index as a common generalisation of group and Rees indices.

1.4 Further Notation, Notions and Facts

In this section we collect some further general information we will need
later on.

For a semigroup S, a subset I ⊆ S is called a right ideal if IS ⊆ I .
Left ideals and (two-sided) ideals are defined analogously. In particular, aRb
means exactly that the right ideals generated by a and b coincide: aS1 =
bS1. This enables one to define the order on R-classes of S:

Ra ≤ Rb ⇐⇒ aS1 ⊆ bS1.

One defines the orders on the sets of all L-classes and J -classes in a similar
fashion. A semigroup S is said to have a property minR if there are no
infinite chains Ra1 > Ra2 > Ra3 > · · · . Obviously, minR and similarly
defined minL and minJ are finiteness conditions.

Another important notion related to ideals is the notion of stability:

Definition 1.4.1. [51, Proposition 3.7] A J -class J of a semigroup S is said
to be right stable if it satisfies one (and hence all) of the following equivalent
conditions:

(i) The set of all R-classes in J has a minimal element.

(ii) There exists q ∈ J satisfying the following property: qJ qx if and
only if qRqx for all x ∈ S.

(iii) Every q ∈ J satisfies the property stated in (ii).

(iv) Every R-class in J is minimal in the set of R-classes in J .

We say that the whole semigroup S is right stable if every J -class of S is
right stable. The notion of left stability is defined dually. A J -class or a
semigroup are said to be (two-sided) stable if they are both left and right
stable.
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Roughly speaking, this definition means that if in the set of all R-
classes, contained within a fixed J -class, there is a minimal element, then
every of the considered R-classes is minimal and so all of these R-classes
are pairwise incomparable. Thus, a J -class J is right stable if and only if
all the R-classes contained in J are pairwise incomparable.

It is clear that stability is a finiteness condition, and that minR implies
right stability. Also note that stability implies the finiteness condition J =
D, see [51]. A convenient way to realise what is stability in algebraic sense
is due to

Lemma 1.4.2 ([51, Proposition 3.10]). Let S be a semigroup. Then S is right
stable if and only if Ra ≤ Rba implies Ra = Rba for all a, b ∈ S.

An element a of a semigroup S is said to be regular in S if a ∈ aSa. A
semigroup is called regular if all its elements are regular. An inverse semi-
group is a regular semigroup in which every two idempotents commute.
A useful fact is that if at least one element in a D-class is regular, then all
the elements from this D-class are regular, see [45].

By a deterministic automaton we will mean a 5-tuple A = (Q,A, δ, q0, F ),
where Q is a finite set of states, A is a finite set of symbols, F ⊆ Q is a set
of final states, q0 ∈ Q is the initial state, and δ : Q × A → Q is a transition
function. Feeding an automaton with a word w ∈ A∗, it enters the state
q0 and reads the first letter of w, say a. Then it moves to the state δ(q0, a)
and starts reading the word w′, where w = aw′. The automaton proceeds
reading the letters of w, and after |w| steps moves to some state q ∈ Q. We
say that A accepts w if q ∈ F , otherwise we say that A rejects w. The set
of all words accepted by A is denoted by L(A) and is called the language
accepted by A. The languages accepted by automata are called regular lan-
guages and they can be characterised by Kleene’s Theorem as exactly those
which admit regular expressions, see [43] for more details. For every regu-
lar language it is possible to find the so-called minimal, or trim automaton
which accepts the language. Roughly speaking, such minimal automata
do not have surplus states, see [43] for details.

Finally, a context-free grammar is quadruple Γ = (N, T, P, S) where N is
a finite set of non-terminal symbols, T is a finite set of terminal symbols,
S ∈ N is the start symbol, and P is a finite set of productions. We assume
that N and T are disjoint. Each production is of the form A ⇒ α, where
α ∈ (N ∪ T )∗. As with rewriting systems, for α, β ∈ (N ∪ T )∗ we write
α ⇒ β if α = γAδ and β = γπδ, where γ, δ, π ∈ (N ∪ T )∗ and A ⇒ π is a
production from P . If β can be reached from α by a finite number of suc-
cessive applications of ⇒, we will write α ⇒∗ β. The language accepted
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by Γ is L(Γ) = {w ∈ T ∗ : S ⇒∗ w}. The languages accepted by context-
free grammars are called context-free languages. Every regular language is
context-free. More information about context-free languages can be found
in [43].

To read more about general Semigroup Theory we refer the reader to
the standard texts [18, 19, 38, 45]. We also would suggest to read the the-
ses [10] and [74] which have a similar spirit to the current one.

1.5 Structure of the Thesis

We start with Chapter 2 where we show that the typical ideas of Combi-
natorial Semigroup Theory apply to uncountable semigroups. We discuss
there the finiteness condition of the Bergman’s property and provide vari-
ous examples of semigroups which have or do not have this property. In
the process we invent some machinery, e.g. length functions, and using
them prove that certain algebraic versions of cofinality are preserved by
finite Rees index subsemigroups and extensions.

Next we move to Chapter 3 where we study the class of automaton
semigroups generated by the Cayley automaton machines. The latter ob-
jects appeared in the 1960s, and we use a relatively modern machinery of
wreath recursions to yield various characterisation theorems. One of them
involves the class of all finite aperiodic semigroups.

In Chapter 4 we investigate the preservation under finite Green and
Rees indices of the following finite conditions: stability, J = D, having
finitely many ideals, minR, minJ , and π-regularity. In particular we obtain
a surprising result that J = D is preserved by finite Green index exten-
sions, but there is a finitely presented semigroup with J = D and with a
subsemigroup of Rees index 2 in which J = D does not hold any longer.

Chapter 5 deals with hopficity. We prove that hopficity in general is not
preserved by finite Rees index subsemigroups and extensions. Then we
prove that under the finite generation assumption, hopficity is preserved
by finite Rees index extensions, but still we find a finitely generated hop-
fian semigroup with a non-hopfian subsemigroup of Rees index 2.

In Chapter 6 we prove that monoids presented by confluent context-
free monadic rewriting systems are word-hyperbolic. We also show that
the monoid Mon〈a, b, c, d : abncnd = 1 n ≥ 1〉 does not admit a word-
hyperbolic structure with uniqueness, thus answering a question of Dun-
can & Gilman of whether every word-hyperbolic monoid admits a word-
hyperbolic structure with uniqueness.

In Chapter 7 we study the finiteness condition of the property of being
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Markov, closely related to the notion of hyperbolicity for groups. We show
the interaction of the property of being Markov with various notions of hy-
perbolicity for semigroups, and investigate how markovicity is preserved
under Rees and Green indices.

In the final Chapter 8 for various semigroup properties P we investi-
gate whether P and ¬P are Markov properties, and whether P is decid-
able for finitely presented and one-relator monoids. All our results are
collected in a single table.

We close the thesis with Chapter 9 consisting of the open problems
suggested by the research we provide in the text.
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Chapter 2

The Bergman Property for Semigroups

In this chapter, we study the Bergman property for semigroups and the
associated notions of cofinality and strong cofinality. A large part of the
chapter is devoted to determining when the Bergman property, and the
values of the cofinality and strong cofinality, can be passed from semi-
groups to subsemigroups and vice versa.

The results of this chapter were obtained in collaboration with James
Mitchell and Nik Ruškuc and appeared in [59].

2.1 Introduction

In this chapter, we will consider the notion of Bergman’s property for
semigroups. This property has already been studied by several authors
for groups, and we begin by discussing Bergman’s property and related
notions in this context.

Let G be a group. If U is a (group) generating set for G, then

G =
∞⋃

i=1

(U ∪ U−1)i

where (U ∪U−1)i = {u1u2 · · · ui : u1, u2, . . . , ui ∈ U ∪U−1 }. It is not always
true that for a group G and a generating set U for G that

G =

j
⋃

i=1

(U ∪ U−1)i

for some j ∈ N. For example, the free group FG(X) on any set X does
not satisfy this property. A group G is group Cayley bounded with respect
to a subset U if there exists n ∈ N such that G = V ∪ · · · ∪ V n where
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V = U ∪ U−1. In other words, the minimum distance between any two el-
ements in the Cayley graph of G with respect to U is at most n. So, the free
group FG(X) is not group Cayley bounded with respect to X but is group
Cayley bounded with respect to itself. More surprisingly, there are exam-
ples of non-finitely generated groups G that are group Cayley bounded
with respect to every generating set. One of the first examples of such a
group was provided by Bergman in [8] where it was shown that the sym-
metric group Sym(Ω) is group Cayley bounded with respect to every gen-
erating set for all sets Ω. Consequently, a group is said to have the group
Bergman property if it is Cayley bounded with respect to every generating
set. Droste and Göbel [22] give sufficient conditions for a permutation
group to have the group Bergman property. Examples of groups satisfy-
ing their conditions are: the symmetric groups, and the homeomorphism
groups of Cantor’s discontinuum C, the rationals Q, and the irrationals
I. Other notable examples of groups satisfying the group Bergman prop-
erty are: the infinite cartesian power of any finite perfect group, the full
groups of measure-preserving and ergodic transformations on the unit in-
terval [23], ω1-existentially closed groups [20], and the groups of measure-
preserving homeomorphisms of the Cantor space or Lipschitz homeomor-
phisms of the Baire space, and certain closed oligomorphic subgroups of
Sym(N) [48].

A semigroup S is said to be semigroup Cayley bounded with respect to a
generating set U if S = U ∪U2∪· · ·∪Un for some n ∈ N. We will say that a
semigroup S has the semigroup Bergman property if it is semigroup Cayley
bounded with respect to every generating set.

Note that we must make separate definition of these notions for semi-
groups because the definition for groups involve inverses. The fact that
the definitions of these two properties for semigroups and groups are not
the same, accounts for the use of the word ‘group’ in the definitions above.

After making these definitions it is most natural to ask the following
questions. Are there natural examples of semigroups that satisfy the semi-
group Bergman property? In particular, do the semigroup theoretic ana-
logues of the symmetric group satisfy the semigroup Bergman property?
Groups are natural examples of semigroups, so how does the semigroup
Bergman property compare with the group Bergman property? In this
chapter we attempt to answer these questions.

If a group satisfies the semigroup Bergman property, then it certainly
satisfies the group Bergman property. It is not known if the converse is
true or not. However, the majority of the groups that are known to satisfy
the group Bergman property, such as those groups mentioned above, also
satisfy the semigroup Bergman property; for more details see Corollary
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2.2.5.

To answer the first of the questions above, let us introduce the full trans-
formation semigroup of all self-maps of a set Ω, denoted by Self(Ω). Every
semigroup can be embedded into a full transformation semigroup Self(Ω)
for some set Ω. As such Self(Ω) plays an analogous role in semigroup
theory as that played by Sym(Ω) in group theory. Other counterparts of
Self(Ω) and Sym(Ω) are SymInv(Ω), Part(Ω), and Bin(Ω) the semigroups
of all injective partial self-maps (the so-called symmetric inverse semigroup),
partial self-maps, and binary relations, respectively, on Ω.

Most notable among the semigroups that we will show to satisfy the
semigroup Bergman property are: Self(Ω), SymInv(Ω), Bin(Ω), Part(Ω),
semigroups of continuous functions on the rationals Q, irrationals I, Can-
tor’s discontinuum, and the finitary power semigroup of SymInv(Ω) (see
Section 2.4). Equally notable for not satisfying the semigroup Bergman
property are: the Baer-Levi semigroup on N, the finitary power semi-
groups of Self(Ω), Bin(Ω), Part(Ω), and the semigroup of bounded self-
maps of Q (see Section 2.5). The techniques used in resolving these specific
examples are based on the more general results in Sections 2.2 and 2.3.

2.2 Cofinality and Strong Cofinality

We require the following notions analogous to those with the same names
introduced by Macpherson and Neumann [54] and Droste and Göbel [22].

First of all, we will identify any cardinal λ with the least ordinal with
cardinality equal to λ. Hence, we may follow the usual convention that λ
is the collection of all ordinals less than λ.

A sequence of sets (Ui)i<λ, for some cardinal λ, such that Ui ⊆ Uj for
all i ≤ j < λ is called a chain. Let S be a non-finitely generated semi-
group. Then the cofinality of S is the least cardinal λ such that there exists
a chain of proper subsemigroups (Ui)i<λ of S where S =

⋃

i<λ Ui. We will
denote the cofinality of S by cf(S) and refer to subsemigroups (Ui)i<cf(S)

satisfying the above property as a cofinal chain for S. Obviously, the above
definition of cofinality cannot be applied to finitely generated semigroups.
The strong cofinality of S is the least cardinal λ such that there exists a chain
of proper subsets (Ui)i<λ of S where for all i < λ there exists j < λ such
that UiUi ⊆ Uj and S =

⋃

i<λ Ui. The strong cofinality of S is denoted by
scf(S) and a strong cofinal chain is defined analogously to a cofinal chain. It
is clear that scf(S) ≤ cf(S).

The following technical lemma shows that the notions of cofinality and
strong cofinality used here, when applied to a group, are equivalent to
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those used in [8], [22], and [54]. Lemma 2.2.1 and Corollary 2.2.5 follow
by similar arguments as those given on page 435 and in the proofs of The-
orems 5 and 6 in [8]. We include the proofs of these results for the sake of
completeness.

Lemma 2.2.1. Let G be a non-finitely generated group. Then

(i) cf(G) is the least cardinal of a cofinal chain of subgroups for G;

(ii) scf(G) is the least cardinal λ of a strong cofinal chain (Ui)i<λ for G satisfying
Ui = U−1

i for all i < λ.

Proof. To prove Part (i), let λ be the least cardinal of a cofinal chain of
subgroups for G and let κ = cf(G). By definition, cf(G) = κ ≤ λ. To prove
that the converse inequality holds, note that there exists a chain of proper
subsemigroups (Vi)i<κ of G where G =

⋃

i<κ Vi. Hence

G = G−1 =
⋃

i<κ

V −1
i

and so
G = G ∩G−1 =

⋃

i<κ

Vi ∩ V
−1
i .

Although there may be i < κ such that Vi ∩ V
−1
i = ∅, after some point all

the terms in (Vi ∩ V −1
i )i<κ are nonempty. Thus we may assume without

loss of generality that all the terms in (Vi ∩ V
−1
i )i<κ are nonempty. Hence

(Vi∩V
−1
i )i<κ is a chain of proper subgroups ofG and the proof is complete.

The proof of part (ii) is analogous and omitted.

The following proposition relates cofinality, strong cofinality and the
semigroup Bergman property. The proposition is analogous to [22, Propo-
sition 2.2] and although the proof is similar we include it for completeness.

Proposition 2.2.2. Let S be a non-finitely generated semigroup. Then

(i) scf(S) > ℵ0 if and only if S has the semigroup Bergman property and
cf(S) > ℵ0;

(ii) if scf(S) > ℵ0, then scf(S) = cf(S).

Proof. Part (i). (⇒) Since cf(S) ≥ scf(S) it follows immediately that cf(S) >
ℵ0. Let U be any generating set for S and let Vi = U ∪ U2 ∪ · · · ∪ U i. Then
(Vi)i∈N is a chain of proper subsets of S such that ViVi ⊆ V2i. Since U
is a generating set for S, it also follows that S =

⋃

i∈N Vi. Hence, since
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scf(S) > ℵ0, not all the subsets Vi can be proper and so there exists j ∈ N

such that S = Vj and so S is Cayley bounded with respect to U .
(⇐) Seeking a contradiction, assume that scf(S) = ℵ0 and (Ui)i∈N is a

strong cofinal chain for S. Then S =
⋃

i∈N Ui and so certainly S =
⋃

i∈N〈Ui〉.
Since cf(S) > ℵ0 it follows that 〈 Ur 〉 = S for some r ∈ N. Hence since S
has the semigroup Bergman property S = Ur ∪ U

2
r ∪ · · · ∪ Un

r for some n.
But (Ui)i∈N is a strong cofinal chain and so Ur ∪U

2
r ∪ · · ·∪Un

r ⊆ Uj for some
j. Thus S ⊆ Uj , a contradiction.

Part (ii). Let scf(S) = κ and let (Ui)i<κ be a strong cofinal chain for S.
Without loss of generality assume that UiUi ⊆ Ui+1 for all i < κ. If I is the
set of all limit ordinals less than κ, then for any i ∈ I , Vi =

⋃

j<i Uj is a
proper subsemigroup of S. Thus

scf(S) ≤ cf(S) ≤ |I| ≤ κ = scf(S)

giving equality throughout.

The following lemma will be used later in the chapter as it gives a con-
venient way of proving that a semigroup has uncountable strong cofinal-
ity. The idea behind it is taken from [8] and [49]; we include a proof for
completeness.

Lemma 2.2.3. Let S be a non-finitely generated semigroup. Then scf(S) > ℵ0 if
and only if every function Φ : S → N satisfying

(st)Φ ≤ (s)Φ + (t)Φ + kΦ, (2.1)

for all s, t ∈ S and some constant kΦ ∈ {0, 1, 2, . . .}, is bounded above.

Proof. (⇒) Let Φ : S → N be any function satisfying (2.1) and let

Un = { s ∈ S : (s)Φ ≤ n }.

Then S =
⋃

n∈N Un and UmUn ⊆ Um+n+kΦ . Hence, since scf(S) > ℵ0, we
have that S = Un for some n. Thus n is the required upper bound for Φ.

(⇐) By Proposition 2.2.2(i), it suffices to prove that cf(S) > ℵ0 and S
has the semigroup Bergman property. Seeking a contradiction, assume
that cf(S) = ℵ0. Then there exists a cofinal chain (Sn)n∈N for S. Define
Φ : S → N by

(s)Φ = min{ n : s ∈ Sn }.

The function Φ satisfies (2.1) with kΦ = 0 but is unbounded above, a con-
tradiction. Hence cf(S) > ℵ0.
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Again in order to produce a contradiction, assume that there exists a
generating set U for S such that S is not Cayley bounded with respect to
U . As in the previous paragraph, define Φ : S → N by

(s)Φ = min{ n : s ∈ Un }.

Again, Φ satisfies (2.1) with kΦ = 0 but is unbounded above, a contradic-
tion. Thus S satisfies the semigroup Bergman property and the proof is
complete.

The following notion and the subsequent lemma yield a convenient
method for proving that a semigroup has uncountable strong cofinality. A
semigroup S is called strongly distorted if there exists a sequence (an)n∈N
of natural numbers and NS ∈ N such that for all sequences (sn)n∈N of
elements from S there exist t1, t2, . . . , tNS

∈ S such that each sn can be
written as a product of length at most an in the letters t1, . . . , tNS

. The
following lemma was suggested to us by Y. de Cornulier and a similar
result appears in Khelif [49, Theorem 6].

Lemma 2.2.4. If S is non-finitely generated and strongly distorted, then scf(S) >
ℵ0.

Proof. Let Φ : S −→ N be any function satisfying (2.1) and seeking a con-
tradiction assume that Φ is unbounded above. Let (an)n∈N and NS ∈ N be
as given in the definition of a strongly distorted semigroup S and assume
without loss of generality that (an)n∈N is strictly increasing. Then there ex-
ist s1, s2, . . . ∈ S such that (sn)Φ > a2n for all n. Since S is strongly distorted
there exist t1, . . . , tNS

∈ S such that each sn can be written as a product of
length at most an in the letters t1, . . . , tNS

. But ifM = max{(t1)Φ, . . . , (tNS
)Φ},

then
(sn)Φ ≤ an · kΦ + an ·M < a2n

for all sufficiently large n, a contradiction. Thus Φ is bounded above and
so, by Lemma 2.2.3, scf(S) > ℵ0.

In light of Proposition 2.2.2 we observe that for a non-finitely generated
semigroup S there are four possibilities:

(i) cf(S) = scf(S) > ℵ0 and so S satisfies the semigroup Bergman prop-
erty;

(ii) cf(S) > ℵ0 = scf(S) and so S does not satisfy the semigroup Bergman
property;

(iii) cf(S) = scf(S) = ℵ0 and S satisfies the semigroup Bergman property;
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(iv) cf(S) = scf(S) = ℵ0 and S does not satisfy the semigroup Bergman
property.

Of course, the next question is: are there examples of semigroups that
satisfy each of these four cases? Finding an example that satisfies case
(iv) is routine. For example, the free semigroup on an infinite set X has
countable cofinality and does not satisfy the semigroup Bergman property.
The next corollary relates the group and semigroup Bergman properties,
and consequently provides several examples of semigroups that satisfy
case (i) above.

Corollary 2.2.5. If a group G has scf(G) > ℵ0, then G satisfies both the group
and semigroup Bergman properties.

In particular, Sym(Ω), the homeomorphism groups of C, Q, and I, and the
infinite cartesian power of any finite perfect group satisfy both the group and
semigroup Bergman properties.

Proof. Since scf(G) > ℵ0 it follows from Propostion 2.2.2(i) that G satisfies
the semigroup Bergman property. Now, by Lemma 2.2.1 the least cardinal
of a cofinal chain of subgroups for G is greater than ℵ0. Hence by [22,
Proposition 2.2] G satisfies the group Bergman property.

By Lemma 2.2.1 and Droste and Göbel [22] it follows that scf(G) > ℵ0

when G is any of the groups Sym(Ω) or the homeomorphism groups of C,
Q, or I. Again by Lemma 2.2.1 and de Cornulier [20], the infinite cartesian
power G of any finite perfect group satisfies scf(G) > ℵ0.

The following example stems from [22] and provides a semigroup sat-
isfying case (ii) above.

Example 2.2.6. Let BSym(Q) denote the group of all permutations f ∈
Sym(Q) where there exists k ∈ N such that |x − (x)f | < k for all x ∈ Q,
called the bounded permutation group on Q. Droste and Göbel [22] proved
that the least cardinal of a cofinal chain of subgroups for BSym(Q) is un-
countable but that BSym(Q) does not satisfy the group Bergman prop-
erty. By [22, Proposition 2.2] and Lemma 2.2.1, cf(BSym(Q)) > ℵ0 and
scf(BSym(Q)) = ℵ0. Thus by Proposition 2.2.2(i), BSym(Q) does not sat-
isfy the semigroup Bergman property. So, BSym(Q) is an example of a
(semi)group that satisfies case (ii) above.

It remains to find an example of semigroup satisfying case (iii). Khelif
[49] provided an example of a group G where the least cardinal of a co-
final chain of subgroups for G is ℵ0 and that satisfies the group Bergman
property. Using the same reasoning as in Example 2.2.6 we deduce that
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Khelif’s group satisfies (iii). However, Khelif’s construction is somewhat
too complicated to include here. Moreover it is straightforward to directly
construct examples of semigroups, that are not groups, with countable co-
finality and that satisfy the semigroup Bergman property.

The following examples are trivial but are included for the sake of com-
pleteness.

Example 2.2.7. A semigroup S of left zeros satisfies xy = x for all x, y ∈ S.
The unique generating set for such a semigroup S is S itself. Therefore
every semigroup of left zeros has the semigroup Bergman property. If S
is infinite, then S is not finitely generated. Hence if (the generating set) S
is partitioned into S1, S2, . . ., then (〈 S1, . . . , Si 〉)i∈N = (S1 ∪ · · · ∪ Si)i∈N is a
cofinal chain for S. Hence cf(S) = ℵ0.

Example 2.2.8. A rectangular band R is the direct product I ×Λ of arbitrary
sets I and Λ with multiplication (i, λ)(j, µ) = (i, µ). Every generating set
for R must for all i ∈ I and µ ∈ Λ contain elements of the form (i, λ) and
(j, µ) for some λ ∈ Λ and j ∈ I . Therefore if R = 〈 U 〉, then R = U2 and
R has the semigroup Bergman property. Moreover, if R is infinite, then, as
in Example 2.2.7, cf(R) = ℵ0.

An element s of an arbitrary semigroup S is indecomposable if s 6= xy
for all x, y ∈ S. The indecomposable elements of S must be contained in
every generating set. If S is Cayley bounded with respect to a generating
set consisting of indecomposable elements, then S satisfies the semigroup
Bergman property.

Example 2.2.9. Let S be the semigroup defined by the presentation

Sg〈A : abc = ab (a, b, c ∈ A)〉

for some infinite set of generators A. Then every element in A is inde-
composable in S and S = A ∪ A2. Hence S has the semigroup Bergman
property and cf(S) = ℵ0, as in Example 2.2.7.

Example 2.2.10. Let S be the set N×N with componentwise addition. Then
the set

({1} × N) ∪ (N× {1})

is a generating set for S consisting of indecomposable elements. Therefore
S has the semigroup Bergman property and cf(S) = ℵ0, as in Example
2.2.7.

Example 2.5.7 is a further semigroup having uncountable cofinality
and not having the semigroup Bergman property. However, this exam-
ple relies on results from Section 2.4 and so cannot be included here.
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2.3 Subsemigroups, ideals, and homomorphic images

In this section we give the main tools that will provide a method to find the
cofinality and strong cofinality of the semigroup Self(Ω) of all self-maps of
any infinite set Ω, and several other fundamental semigroups.

Theorem 2.3.1. Let S be a non-finitely generated semigroup that is Cayley bounded
with respect to the union of a subsemigroup T and a finite set F . Then cf(T ) ≤
cf(S) and scf(T ) ≤ scf(S).

Proof. We will prove the theorem for strong cofinality. The proof for cofi-
nality follows by an analogous argument.

Let λ = scf(S) and (Si)i<λ be a strong cofinal chain for S. Set Ti = Si∩T
for all i < λ. We will prove that Ti ( T for all i. Assuming the contrary,
there exists i < λ such that Ti = T . Since S is Cayley bounded with respect
to T ∪F , there exists n ∈ N such that S = (T ∪F )∪ (T ∪F )2∪· · ·∪ (T ∪F )n.
The set F is finite and so there exists j < λ such that F ⊆ Sj . Thus T ∪F =
Ti∪F is a subset of Smax(i,j). Since (Si)i<λ is a strong cofinal chain, it follows
that S = Sm for some m > max(i, j), a contradiction. So, we have shown
that for all i < λ, the set Ti is properly contained in T .

To conclude, TiTi = (Si ∩T )(Si ∩T ) ⊆ SiSi ∩T ⊆ Sk ∩T = Tk, for some
k > i. Therefore scf(T ) ≤ λ.

Theorem 2.3.2. Let T be a subsemigroup of finite Rees index in a non-finitely
generated semigroup S. Then cf(T ) = cf(S) and scf(T ) = scf(S).

Furthermore, if T satisfies the semigroup Bergman property, then S does also.

Although Theorem 2.3.2 is similar to Theorem 2.3.1 it is somewhat
harder to prove. The proof of Theorem 2.3.2 requires Lemma 2.2.3 and
the following technical lemma.

Lemma 2.3.3. Let T be a subsemigroup of a non-finitely generated semigroup S
with S \ T finite and T ∩ 〈 S \ T 〉 6= ∅. Then T ∩ 〈 S \ T 〉 is finitely generated.

Proof. It is shown in [47] that if U is a finitely generated semigroup and
V ≤ U with U \ V finite, then V is finitely generated also.

So, T ∩ 〈 S \ T 〉 = 〈 S \ T 〉 \ (S \ T ) ≤ 〈 S \ T 〉. By assumption, S \ T is
finite and so T ∩ 〈 S \ T 〉 has finite complement in 〈 S \ T 〉 and 〈 S \ T 〉 is
finitely generated. Thus T ∩ 〈 S \ T 〉 is finitely generated.

Equipped with Lemmas 2.2.3 and 2.3.3 we can now give the proof of
Theorem 2.3.2.
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Proof of Theorem 2.3.2. Recall that T is a subsemigroup of a non-finitely
generated semigroup S with S \ T finite. Assume without loss of gen-
erality that S has an identity 1S and that 1S ∈ S \ T . Note that T is not
finitely generated, otherwise S would be finitely generated. The proof has
three parts.

Part 1: cf(T)=cf(S).

The cofinality of T is at most the cofinality of S by Theorem 2.3.1; that
is,

cf(T ) ≤ cf(S).

It remains to prove the opposite inequality: cf(T ) ≥ cf(S). Let cf(T ) = λ
and let (Ti)i<λ be a cofinal chain for T . From this cofinal chain, we will
construct a chain with length λ of proper subsemigroups of S whose union
is S.

The first step is to give an alternate cofinal chain (Ui)i<λ for T that in-
volves S \ T . Define

Ui = { t ∈ T : (∀x, y ∈ S \ T ) (xty ∈ Ti ∪ (S \ T )) }.

To prove that (Ui)i<λ is a chain, let i ≤ j and let t ∈ Ui. Then xty ∈
Ti ≤ Tj whenever xty ∈ T , x, y ∈ S \ T . Thus Ui is contained in Uj and so
(Ui)i<λ is a chain. Next we prove that the union of the sets Ui, i < λ, equals
T . Let t ∈ T . Then there are only finitely many products xty in T where
x, y ∈ S \ T . Hence there exists i < λ such that all these products are in Ti.
Hence t ∈ Ui and so

⋃

i<λ Ui = T .
It remains to prove that Ui is a proper subsemigroup of T for all i < λ.

Let i < λ, s, t ∈ Ui, and x, y ∈ S\T such that xsty ∈ T . Of course such x and
y exist since 1S ∈ S \ T . If either xs or ty ∈ S \ T , then (xs)ty = xs(ty) ∈ T
and so xsty ∈ Ti. On the other hand, if xs, ty ∈ T , then xs1S, 1Sty ∈ T
and so xs1S, 1Sty ∈ Ti. But Ti is a subsemigroup and so xsty ∈ Ti. Thus
st ∈ Ui and Ui is a subsemigroup. If x = y = 1S and t ∈ Ui, then xty ∈ T
and so t = xty ∈ Ti. Hence Ui is contained in Ti and as such is a proper
subsemigroup of T .

Now, let us construct a cofinal chain for S using the chain (Ui)i<λ. Let
Si, i < λ, be the subsemigroup of S generated by Ui and S \ T ; that is,
Si = 〈Ui, S\T 〉. Clearly, (Si)i<λ is a chain and

⋃

i<λ Si = S. So, to prove that
(Si)i<λ is a cofinal chain for S it suffices to show that every Si is properly
contained in S. We will do this by showing that Si∩T ≤ Ti for allN < i < λ
for some N .

By Lemma 2.3.3, T ∩ 〈 S \ T 〉 is finitely generated and so there exists
N < λ such that for all i > N we have T∩〈S\T 〉 ⊆ Ui. If t ∈ Si∩T for some
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i > N , then there exist w1, w2, . . . , wk+1 ∈ 〈 S \ T 〉 and u1, u2, . . . , uk ∈ Ui

such that
t = w1u1w2u2 · · · ukwk+1, (2.2)

and 2k+1 is the least length of such a product. Ifwj ∈ 〈S\T 〉∩T , then, since
i > N , wj ∈ Ui and the product (2.2) could be shortened. So, we conclude
that w1, w2, . . . , wk+1 ∈ S \ T . Consider the products wmum, wnunwn+1 ∈ S
where 1 ≤ m,n ≤ k. If either product lies in S \ T , then again (2.2) could
be shortened. Hence wmum, wnunwn+1 ∈ T , and by the definition of Ui,
wmum, wnunwn+1 ∈ Ti. But Ti is a subsemigroup of T and so t ∈ Ti.

We conclude that Si ∩ T ≤ Ti and so if S = Si for some i, then T =
S ∩ T = Si ∩ T ≤ Ti < T , a contradiction. Hence Si is a proper subsemi-
group of S. We have shown that cf(T ) ≥ cf(S) and this part of the proof is
concluded.

Part 2: scf(T)=scf(S).

If scf(S) = ℵ0, then by Theorem 2.3.1 we have ℵ0 ≤ scf(T ) ≤ scf(S) =
ℵ0, giving equality throughout. Assume that scf(S) > ℵ0. Then if scf(T ) >
ℵ0, we could deduce that scf(T ) = cf(T ) = cf(S) = scf(S), by Proposition
2.2.2(ii) and the first part of the theorem. So, we are left with the task of
proving that scf(T ) > ℵ0.

Let Ψ : T → N be any function satisfying

(st)Ψ ≤ (s)Ψ + (t)Ψ + kΨ

for all s, t ∈ T and for some constant kΨ ∈ {0, 1, 2, . . .}. By Lemma 2.2.3, it
suffices to prove that Ψ is bounded. We proceed in a similar fashion as in
the proof of the previous part of the theorem. That is, we define Φ : T → N

using Ψ and subsequently define Υ : S → N satisfying (2.1). Let Φ : T → N

be defined by

(t)Φ = max{ (xty)Ψ : x, y ∈ S \ T, xty ∈ T }.

Note that Φ is well-defined since the set { (xty)Ψ : x, y ∈ S \ T, xty ∈ T }
is non-empty and finite. To prove that Φ satisfies (2.1) let s, t ∈ T . Then

(st)Φ = max{ (x · st · y)Ψ : x, y ∈ S \ T, x · st · y ∈ T }.

The set { (x · st · y)Ψ : x, y ∈ S \ T, x · st · y ∈ T } is the union of the
following three sets

A = { (xs · t · y)Ψ : x, y ∈ S \ T, xs · t · y ∈ T, xs ∈ S \ T },
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B = { (x · s · ty)Ψ : x, y ∈ S \ T, x · s · ty ∈ T, ty ∈ S \ T },

C = { (xs · ty)Ψ : x, y ∈ S \ T, xs · ty ∈ T, xs, ty ∈ T }.

So,

(st)Φ ≤ max{maxA, maxB, maxC }

≤ max{(t)Φ, (s)Φ, (s)Φ + (t)Φ + kΨ} = (s)Φ + (t)Φ + kΨ,

and Φ satisfies (2.1).
As the final step in the proof, define Υ : S → N by

(s)Υ =

{

(s)Φ if s ∈ T

1 if s ∈ S \ T.

Note that (t)Υ = (t)Φ ≥ (t)Ψ for all t ∈ T . So, to prove that Ψ is bounded
it suffices to prove that Υ satisfies (2.1). Let s, t ∈ S. Then there are four
cases to consider.

Firstly, if s, t ∈ T , then Υ trivially satisfies (2.1) with constant kΨ since
Φ does.

Secondly, let
M = max{ (st)Υ : s, t ∈ S \ T }.

Then for all s, t ∈ S \ T we have that if st ∈ S \ T , then (st)Υ = 1 <
(s)Υ+ (t)Υ+M . On the other hand, if st ∈ T , then (st)Υ = (st)Φ ≤M . In
either case,

(st)Υ ≤ (s)Υ + (t)Υ +M.

Thirdly, let s ∈ S \ T and t ∈ T . If st ∈ S \ T , then (st)Υ = 1 ≤
(s)Υ + (t)Υ. Otherwise, (st)Υ = (st)Φ = (x · st · y)Ψ for some x, y ∈ S \ T
with x · st · y ∈ T , from the definitions of Φ and Υ. Let

P = { (us · t · v)Ψ : us, u, v ∈ S \ T, ustv ∈ T }

Q = { (us · t · v)Ψ : us ∈ T, u, v ∈ S \ T, ustv ∈ T }.

Then max{P} ≤ (t)Φ = (t)Υ from the definition and for all (us · t · v)Ψ ∈ Q

(us · t · v)Ψ ≤ (us · t)Φ ≤ (us)Φ + (t)Φ + kΨ ≤M + (t)Φ + kΨ.

This implies that max{Q} ≤M + (t)Φ + kΨ =M + (t)Υ + kΨ. Hence

(st)Υ ≤ max{ P,Q } ≤ (t)Υ +M + kΨ ≤ (s)Υ + (t)Υ +M + kΨ.

Finally, if s ∈ T and t ∈ S\T , then (st)Υ ≤ (s)Υ+(t)Υ+M+kΨ follows
by symmetry.
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Therefore Υ satisfies (2.1) with constant M + kΨ, and the proof of this
part of the theorem is complete.

Part 3: if T satisfies the semigroup Bergman property, then S does also.

Let U be any generating set for S. We must prove that S is Cayley
bounded with respect to U . Since S \ T is finite, there exists m ∈ N such
that S \ T ⊆ U ∪ U2 ∪ · · · ∪ Um = V . Obviously V generates S. By the
Schreier Theorem for semigroups [17, Theorem 3.1] or [47], the set

X = { xvy : x, y ∈ S \ T, v ∈ V, xv, xvy ∈ T }

generates T . Clearly X ⊆ V ∪ V 2 ∪ V 3. But T satisfies the semigroup
Bergman property and so T = X ∪X2 ∪ · · · ∪Xn for some n ∈ N. Thus

S = (S \ T ) ∪ T = V ∪ V 2 ∪ · · · ∪ V 3n = U ∪ U2 ∪ · · · ∪ U3mn,

as required.

In light of Theorems 2.3.1 and 2.3.2, it is natural to ask: do the equali-
ties cf(S) = cf(T ) and scf(S) = scf(T ) hold when S is a non-finitely gen-
erated semigroup that is Cayley bounded with respect to the union of a
subsemigroup T and a finite set F ? Perhaps the simplest case not covered
by Theorem 2.3.2, is when S = (T ∪ F )2. We will show in Examples 2.5.4
and 2.5.5 that the conclusions of Theorem 2.3.2 no longer hold even for
this simple case.

The other question we should ask is: if T is a subsemigroup of S such
that S \ T is finite and S has the semigroup Bergman property, then does
T have the semigroup Bergman property too? Unfortunately, we do not
know the answer to this question.

It was noted by Bergman in [8] that the group Bergman property is
preserved by homomorphisms. However, as the following lemma demon-
strates this is no longer true for the semigroup Bergman property.

Lemma 2.3.4. Let S be a semigroup. Then there exists a semigroup T such that
S is a homomorphic image of T and T satisfies the semigroup Bergman property.

Proof. The presentation

Sg〈A : asat = ast (s, t ∈ S)〉

derived from the Cayley table of S where A = { as : s ∈ S }, defines a
semigroup isomorphic to S. Let T be the semigroup defined by the pre-
sentation

Sg〈A : asatau = astau (s, t, u ∈ S)〉.
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The semigroup S satisfies the relations in the presentation for T . Thus S is
a homomorphic image of T .

Now, the setA consists of indecomposable elements in T and so, by the
comments preceding Example 2.2.9, every generating set for T contains A.
But A ∪ A2 = T and so T satisfies the semigroup Bergman property.

Although not all homomorphisms preserve the semigroup Bergman
property, one distinguished type does. A Rees quotient of a semigroup S
by an ideal I is the quotient of S by the congruence with (at most) one
non-singleton class I × I , denoted S/I .

Lemma 2.3.5. Let S be a semigroup and I an ideal of S. Then

(i) if S has semigroup Bergman property, then so does the Rees quotient S/I ;

(ii) if I and S/I have the semigroup Bergman property, then so does S.

Proof. Part (i). Let U = V ∪ {0} be any generating set for S/I where V ⊆
S \ I . Since I is an ideal, V ∪ I generates S. But S satisfies the semigroup
Bergman property and so S = (V ∪ I) ∪ (V ∪ I)2 ∪ · · · ∪ (V ∪ I)n for some
n. Thus S/I = (V ∪ {0}) ∪ (V ∪ {0})2 ∪ · · · ∪ (V ∪ {0})n, as required.

Part (ii). Let U be any generating set for S. Then 〈 U \ I, 0 〉 = S/I and so
S \ I ⊆ (U \ I) ∪ (U \ I)2 ∪ · · · ∪ (U \ I)n for some n.

Assume, without loss of generality, that S \ I contains an identity for
S. By [17, Theorem 3.1], the set

V = { xuy : x, y ∈ S \ I, u ∈ U, xu, xuy ∈ I }

generates I ; Thus I = V ∪ V 2 ∪ · · · ∪ V m for some m.

To conclude, V ⊆ (S \ I)U(S \ I) ⊆ U ∪ U2 ∪ · · · ∪ U3n. It follows that

S = (S \ I) ∪ I ⊆ U ∪ U2 ∪ · · · ∪ U3mn,

as required.

The converse of Lemma 2.3.5(i) obviously does not hold (if I = S, then
S/I has the semigroup Bergman property). Example 2.5.6 shows that the
converse of Lemma 2.3.5(ii) also does not hold.
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2.4 Positive Examples

In this section we apply the results of the previous sections to prove that
various standard semigroups satisfy the semigroup Bergman property. In
Section 2.5, we provide some negative examples, that is, natural semi-
groups that do not satisfy the Bergman property.

Theorem 2.4.1. Let Ω be an infinite set and let S be any of Self(Ω), SymInv(Ω),
Part(Ω) or Bin(Ω). Then scf(S) > |Ω| and so S satisfies the semigroup Bergman
property.

Proof. By [54, Theorem 1.1] and Lemma 2.2.1, cf(Sym(Ω)) > |Ω|. Hence, by
Proposition 2.2.2(i) and since Sym(Ω) satisfies the Bergman property [8],
scf(Sym(Ω)) > ℵ0. It follows, by Proposition 2.2.2(ii), that scf(Sym(Ω)) =
cf(Sym(Ω)) > |Ω| ≥ ℵ0.

It follows by [39, Proposition 1.7 and Theorem 4.5] and [4, Theorem 3.4]
that there exist f, g ∈ S such that f Sym(Ω)g = S. Thus, S = (Sym(Ω) ∪
{f, g})3. Hence, by Theorem 2.3.1, scf(S) ≥ scf(Sym(Ω)) > |Ω| ≥ ℵ0. In
particular, by Proposition 2.2.2(i), S satisfies the semigroup Bergman prop-
erty.

An alternative proof can be obtained using Lemma 2.2.4. It follows
from the way how the main results were proved in [79], and from the
proof of [39, Proposition 4.2] that for all sequences (fn)n∈N of elements
from S there exist f, g ∈ S such that every fn is a product of f and g with
length bounded by a linear function. Hence S is strongly distorted and so,
by Lemma 2.2.4, scf(S) > ℵ0.

Mesyan [63, Proposition 4] proved that cf(Self(Ω)) > ℵ0 using an ele-
mentary diagonal argument, and an alternative proof of Theorem 2.4.1 can
be obtained using a similar argument. In Galvin [29] it was shown that the
symmetric group on an infinite set is strongly distorted. Hence Bergman’s
original theorem follows immediately by Lemma 2.2.4.

It was proved in [5] and [65] that the semigroups, appearing in the
following theorem are strongly distorted, so the proof of our next result
follows immediately from Lemma 2.2.4.

Theorem 2.4.2. Let S be one of the following semigroups: the linear functions of
an infinite dimensional vector space, the endomorphism semigroup of the random
graph, the continuous functions on the unit interval [0, 1], the Lebesgue, or Borel
measurable functions on [0, 1], the order endomorphisms of [0, 1], or the Lipschitz
functions on [0, 1]. Then scf(S) > ℵ0 and S has the Bergman property.
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Next, following de Cornulier [11, Theorem 3.1], we consider a further
class of semigroups that satisfy the semigroup Bergman property. The no-
tions of algebraically and existentially closed groups were introduced by
Scott [78] in 1950 and an extensive analysis can be found in [40]. Neumann
considered these notions for semigroups in [68]. Analogous notions have
been considered in the more general context of model theory.

Let S be the class of all semigroups and let κ be an infinite cardinal.
Then S ∈ S is κ-algebraically closed in S if every set E of equations, with
|E| < κ and coefficients from S, that is solvable in some T ∈ S contain-
ing S, already has a solution in S. The analogous notions for groups and
inverse semigroups can be obtained by replacing every occurrence of S in
the preceding sentences with the class of all groups G or the class of all
inverse semigroups I. Recall that a semigroup S is inverse if for all x ∈ S
there exists a unique x−1 such that xx−1x = x and x−1xx−1 = x−1. Note
that equations over G or I can include inverses of coefficients and vari-
ables.

Theorem 2.4.3. Let S be an ω1-algebraically closed semigroup, inverse semi-
group, or group where ω1 denotes the first uncountable cardinal. Then scf(S) >
ℵ0 and S has the semigroup Bergman property.

Proof. We will prove that S is strongly distorted.
Let f1, f2, . . . ∈ S and assume without loss of generality that S is a sub-

semigroup of T = Self(Ω), SymInv(Ω), or Sym(Ω), respectively, for some
infinite set Ω. As in the proof of Theorem 2.4.1, by the way how the the-
orems [29, Theorem 3.3] and [39, Proposition 4.2] were proved, and by
the main results in [79], it follows that there exist f, g ∈ T such that ev-
ery fn is a product of f and g with length bounded by a linear function.
Since S is an ω1-algebraically closed semigroup, it follows that there exist
f ′, g′ ∈ S such that every fn is a product of f ′ and g′ with length bounded
by a linear function. Hence S is strongly distorted and so by Lemma 2.2.4,
scf(S) > ℵ0.

Theorem 2.4.4. Let CQ, CI and CC denote the semigroups of all continuous func-
tions from the rationals Q to Q, from the irrationals I to I, and from the Cantor’s
discontinuum C to C, respectively, and let S ∈ {CQ, CI, CC}. Then scf(S) > ℵ0

and so S satisfies the semigroup Bergman property.

In order to prove Theorem 2.4.4 we require the following straightfor-
ward lemma.

Lemma 2.4.5. Let p ∈ R ∪ {−∞} and q ∈ R with p < q. Then there exists an
order preserving piecewise linear bijection from Q to Q ∩ (p, q).
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Proof of Theorem 2.4.4. We will prove the theorem in the case that S = CQ.
The proofs in the other two cases are analogous.

Seeking a contradiction, assume that (Ui)i∈N∪{0} is a strong cofinal chain
for CQ. Let p ∈ R \Q be arbitrary but fixed. Then define Σ0 = (−∞, p) ∩Q

and for n ≥ 1 define

Σn = (p+ n−
1

2
, p+ n) ∩Q.

Let CΣn
denote the semigroup of continuous functions on Σn. Then we

will prove that

Un|Σn
= { f ∈ CΣn

: f = g|Σn
, g ∈ Un } 6= CΣn

for all n ∈ N ∪ {0}.
Assume otherwise, that is, there exists n ∈ N ∪ {0} such that Un|Σn

=
CΣn

. Then for some n ≥ 0, by Lemma 2.4.5, there exists an order preserving
continuous bijection f : Q → Σn. Since f is piecewise linear, f−1 is also
an order preserving continuous bijection, and so f−1 can be extended to
g ∈ CQ. Thus fUng = CQ and so there exists m ≥ n such that CQ = Um, a
contradiction.

Therefore for all n ≥ 0 there exists fn ∈ CΣn
such that fn 6∈ Un|Σn

. Let
f ∈ CQ be any extension of the function defined by x 7→ xfn for all x ∈ Σn

and for all n. Then f 6∈
⋃

n∈N∪{0} Un, a contradiction.

The finitary power semigroup of a semigroup S is the set of all finite sub-
sets of S with multiplication X · Y = { xy : x ∈ X & y ∈ Y }. We will
denote this semigroup by P(S).

The following theorem was initially motivated by the search for an ex-
ample with the properties of the semigroup given in Example 2.5.5, as
discussed after the proof of Theorem 2.3.2. Although very similar, of the
four semigroups S appearing in Theorem 2.4.1, somewhat unexpectedly,
only one has the property that P(S) has the semigroup Bergman property
and the other three do not, see Theorem 2.5.2.

Theorem 2.4.6. Let Ω be an infinite set. Then P(SymInv(Ω)) satisfies the semi-
group Bergman property.

We will prove Theorem 2.4.6 in a series of lemmas. Although the next
lemma is straightforward we state it explicitly because of its usefulness.

Lemma 2.4.7. Let T be a subsemigroup of S and scf(T ) > ℵ0. Then for any
generating set U of S we have T ⊆ U ∪ U2 ∪ · · · ∪ Un for some n ∈ N.
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Proof. Let Vi = U ∪ U2 ∪ · · · ∪ U i. Since S =
⋃

i∈N Vi, we have that T =
⋃

i∈N Vi ∩ T . It is clear that Vi ⊆ Vi+1 and that V 2
i ⊆ V2i. Hence Vn ∩ T = T

for some n, from the assumption that scf(T ) > ℵ0. Therefore T ⊆ Vn, as
required.

The following notion was first defined in [26]. Let S be a semigroup.
Then a product X1X2 · · ·Xr in P(S) is said to be without surplus elements if
for all i ∈ {1, . . . , r} and for all x ∈ Xi

X1X2 · · ·Xr 6= X1 · · ·Xi−1(Xi \ {x})Xi+1 · · ·Xr.

Lemma 2.4.8. LetX ∈ P(S) such thatX = Y1Y2 · · ·Yr for some Y1, Y2, . . . , Yr ∈
P(S). Then there exist Z1, Z2, . . . , Zr ∈ P(S) such that Zi ⊆ Yi, |Zi| ≤ |X|,
and X = Z1Z2 · · ·Zr is without surplus elements.

Moreover, if |Zi| = |X| for some i, then |Zj| = 1 for all j 6= i.

For a proof see [26, Lemma 3.1].
The following lemma is similar to Lemma 2.4.8 but is more specific to

our considerations.

Lemma 2.4.9. Let X ∈ P(Sym(Ω)) such that X = Y1Y2 · · ·Yr is without
surplus elements for some Y1, Y2, . . . , Yr ∈ P(SymInv(Ω)). Then there exist
Z1, Z2, . . . , Zr ∈ P(Sym(Ω)) with |Zi| = |Yi| for all i and X = Z1Z2 · · ·Zr.

Proof. Let y1 ∈ Y1, y2 ∈ Y2, . . . , yr ∈ Yr be some fixed elements. Then
y1y2 · · · yr ∈ Sym(Ω). The sets Ω1,Ω2, . . . ,Ωr+1 are defined by Ω1 = Ω and
Ωi = (Ω)y1y2 · · · yi−1. Then Ωr+1 = Ω. From the definition of Ωi, the restric-
tion yi|Ωi

is a bijection from Ωi to Ωi+1.
Take now arbitrary zi ∈ Yi. Then zi|Ωi

is a bijection from Ωi to Ωi+1 also.
Otherwise y1y2 · · · yi−1ziyi+1 · · · yr 6∈ Sym(Ω), a contradiction. Hence

z1z2 · · · zr = z1|Ω1
z2|Ω2

· · · zr|Ωr
.

Note that if zi 6= ti ∈ Yi, then zi|Ωi
6= ti|Ωi

since Y1Y2 · · ·Yr is without surplus
elements.

So, if gi : Ω → Ωi, 2 ≤ i ≤ r, is a bijection and g1 = gr+1 is the identity,
then

z1z2 · · · zr = (g1 · z1|Ω1
· g−1

2 )(g2 · z2|Ω2
· g−1

3 ) · · · (gr · zr|Ωr
· g−1

r+1).

Now, gi · zi|Ωi
· g−1

i+1 ∈ Sym(Ω) for all i. So, let Zi = { gi · zi|Ωi
· g−1

i+1 : zi ∈ Yi }.
It remains to show that |Zi| = |Yi| for all i. In fact, if zi 6= ti ∈ Yi, then
zi|Ωi

6= ti|Ωi
and so gi · zi|Ωi

· g−1
i+1 6= gi · ti|Ωi

· g−1
i+1.
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An element X ∈ P(Sym(Ω)) is said to be power indecomposable if it
cannot be given as a product of finite sets Y and Z from Sym(Ω) where
|Y |, |Z| < |X|. In [28, Lemma 2] it is shown that a set X ∈ P(Sym(Ω)) is
power indecomposable if and only if X satisfies

(i) x 6= yz−1t for all distinct x, y, z, t ∈ X ;

(ii) x 6= yz−1y for all distinct x, y, z ∈ X .

Moreover, in [28, Lemma 3] it is proved that for all n ∈ N there exists a set
satisfying conditions (i) and (ii) with size n.

Proof of Theorem 2.4.6. We will prove that P(SymInv(Ω) has the semigroup
Bergman property. Let U be any generating set for P(SymInv(Ω)). We will
start by showing that it suffices to prove that there exists n ∈ N such that

P(Sym(Ω)) ⊆ U ∪ U2 ∪ · · · ∪ Un. (2.3)

Of course, there exist subsemigroups of P(SymInv(Ω)) isomorphic to
SymInv(Ω) and Sym(Ω), i.e. those consisting of singletons. For the sake of
simplicity we will denote these subsemigroups by SymInv(Ω) and Sym(Ω),
respectively.

If Ω is an infinite set, then a subset Σ is called a moiety if |Σ| = |Ω \
Σ| = |Ω|. Let Σ be a moiety in Ω and f : Ω → Σ be bijective. Then,
by [39, Theorem 4.5], it follows that {f} Sym(Ω){f−1} = SymInv(Ω). So,
we deduce that {f}P(Sym(Ω)){f−1} = P(SymInv(Ω)). By Theorem 2.4.1,
scf(SymInv(Ω)) > ℵ0, and so by Lemma 2.4.7 there exists m ∈ N such that

SymInv(Ω) ⊆ U ∪ U2 ∪ · · · ∪ Um. (2.4)

In particular, {f}, {f−1} ∈ U∪U2∪· · ·∪Um.Hence to prove that P(SymInv(Ω))
is Cayley bounded with respect to U it suffices to prove that (2.3) holds for
some n.

Let V denote the power indecomposable elements in P(Sym(Ω)). We
now prove that P(Sym(Ω)) ⊆ {f}V{f−1}. Let X = {x1, x2, . . . , xt} ∈
P(Sym(Ω)) be arbitrary. Then there exist y1, y2, . . . , yt ∈ Sym(Σ) such that
xi = fyif

−1 for all i. As mentioned in the comments just before the proof,
by [28, Lemma 3] there exists a set {z1, z2, . . . , zt} ∈ P(Sym(Ω \ Σ)) that
does satisfy conditions (i) and (ii). Let vi ∈ Sym(Ω) be defined by

(α)vi =

{

(α)yi α ∈ Σ

(α)zi α ∈ Ω \ Σ.

39



Then V = {v1, v2, . . . , vt} satisfies conditions (i) and (ii) and so V ∈ V. It
follows that X = fV f−1 ∈ {f}V{f−1} and so P(Sym(Ω)) ⊆ {f}V{f−1} as
required.

Finally, we will prove that V ⊆ SymInv(Ω)U SymInv(Ω). Let V ∈ V.
Then there exist U1, U2, . . . , Ur ∈ U such that V = U1U2 · · ·Ur for some r.
Then by Lemma 2.4.8 there exist X1, X2, . . . , Xr such that Xi ⊆ Ui, |Xi| ≤
|V | and V = X1X2 · · ·Xr is without surplus elements and if |Xi| = |V |
for some i, then |Xj| = 1 for all j 6= i. Hence by Lemma 2.4.9 there exist
Y1, Y2, . . . , Yr ∈ P(Sym(Ω)) such that V = Y1Y2 · · ·Yr and |Yi| = |Xi| for all
i. But V ∈ V and so there exists i such that |Yi| = |V |. Thus |Xi| = |V | and
|Xj| = 1 for all j 6= i. So,

V ⊆ X1 · · ·Xi−1UiXi+1 · · ·Xr ⊆ U1U2 . . . Ur = V.

Hence V = X1 · · ·Xi−1UiXi+1 · · ·Xr ∈ SymInv(Ω)U SymInv(Ω). Therefore

P(Sym(Ω)) ⊆ {f}V{f−1} ⊆ SymInv(Ω)U SymInv(Ω) ⊆ U∪U2∪· · ·∪U2m+1.

Thus (2.3) is satisfied with n = 2m+ 1, as required.

It is natural to ask if it is possible to construct new semigroups with the
semigroup Bergman property from semigroups that are known to have
the property. It is known [20] that the infinite cartesian power of infinitely
many copies of a finite group G has the group Bergman property if and
only if G is perfect. If G, in the previous sentence, is replaced with an in-
finite group, then no such necessary and sufficient conditions are known.
In fact, very little is known even for specific examples of infinite groups,
see [20]. The situation for semigroups is perhaps even worse. However,
as our final positive example shows, the cartesian product of at most |Ω|
copies of Self(Ω) has the semigroup Bergman property.

Theorem 2.4.10. Let Ω be an infinite set, let S be any of Self(Ω), SymInv(Ω),
Part(Ω) or Bin(Ω), and let T denote the cartesian product Πi∈IS where I is an
index set. Then

(i) if Ω is countable, then scf(T ) > ℵ0 and so T satisfies the semigroup Bergman
property;

(ii) if |I| ≤ |Ω|, then scf(T ) > ℵ0 and so T satisfies the semigroup Bergman
property.

Proof. Part (i). Let Si be a semigroup of transformations or binary rela-
tions isomorphic to S acting on a set Ωi. Then we may assume with-
out loss of generality that T = Πi∈ISi. Then, as in the proof of Theo-
rem 2.4.1, for all i ∈ I there exist fi, gi ∈ Si such that fi Sym(Ωi)gi = Si.
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Hence (fi)i∈IΠi∈I Sym(Ωi)(gi)i∈I = T and so, by Theorem 2.3.1, scf(T ) ≥
scf(Πi∈I Sym(Ωi)). Finally, it was shown in [22, Lemma 3.5] that

scf(Πi∈I Sym(Ωi)) > ℵ0,

and so the proof is complete.
Part (ii). We will prove that scf(T ) ≥ scf(S) by showing that T is Cayley

bounded with respect to a finite set and a subsemigroup isomorphic to S.
Let Ωi with |Ωi| = |Ω|, i ∈ I , partition Ω and let fi : Ω → Ωi be arbitrary
bijections for all i ∈ I . If gi ∈ S, then there exists hi : Ωi → Ω such that
gi = fihi. So,

(gi)i∈I = (fihi)i∈I = (fi)i∈I(h)i∈I ,

where h ∈ S satisfies (α)h = (α)hi whenever α ∈ Ωi. Thus T is the product
of the fixed element (fi)i∈I in T and the subsemigroup U consisting of all
constant sequences of elements from S. That is, T = (fi)i∈IU . Hence,
by Theorem 2.3.1, scf(T ) ≥ scf(U). Now, U ∼= S and so scf(U) > ℵ0, as
required.

2.5 Negative Examples

In this section we apply the results of the previous sections to prove that
various standard semigroups do not satisfy the semigroup Bergman prop-
erty. If f ∈ Self(Ω), then denote the image (or range) of f by im(f).

Theorem 2.5.1. Let BL(N) denote the so-called Baer-Levi semigroup of injective
mappings f in Self(N) such that N\ im(f) is infinite. Then cf(BL(N)) = ℵ0 and
BL(N) does not satisfy the semigroup Bergman property.

Proof. Let Sn = { f ∈ BL(N) : {1, 2, . . . , n} 6⊆ im(f) }. Then (Sn)n∈N forms
a cofinal chain for BL(N) and so cf(BL(N)) = ℵ0.

It remains to prove that BL(N) does not satisfy the semigroup Bergman
property. We start by making a simple observation that will be used many
times in the rest of the proof. Let Σ,Γ be infinite subsets of N where N \ Γ
is infinite. Then any injection f : Σ → Γ can be extended to an element of
BL(N).

We will give a generating setU for BL(N) such that BL(N) is not Cayley
bounded with respect to U . Let p1, p2, . . . denote the prime numbers in
ascending order. Then for every n ∈ N let fn ∈ BL(N) such that

ifn =

{

i i < n or i = pmn for some m > 1

n i = pn.
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Note that since pn ≥ n + 1 for all n we may assume that n + 1 6∈ im(fn).
Define

Un = { f ∈ BL(N) : n 6∈ im(f) and if = i when i < n }.

Then set
U =

⋃

n∈N

Un ∪ {f1, f2, . . .}.

The semigroup BL(N) can be given as the union of the sets

Vn = { f ∈ BL(N) : n 6∈ im(f) and {1, 2, . . . , n− 1} ⊆ im(f) },

where V1 = { f ∈ BL(N) : 1 6∈ im(f) }.
We will prove that U is a generating set for BL(N) by showing that

Vn ⊆ U2n−1 for all n using induction. The base case when n = 1 follows
from the fact that V1 = U1 ⊆ U . Assume that n ≥ 1. Then the inductive hy-
pothesis states that Vn ⊆ U2n−1. Let f ∈ Vn+1 and let im(f) \ {1, 2, . . . , n} =
{x1, x2, . . .}. Then define g : N → N by

ig =







pj+1
n if = xj

pn if = n

if if < n

and let h ∈ BL(N) be any mapping satisfying n+ 1 6∈ im(h) and

ih =

{

i i < n+ 1

xj i = pj+1
n

.

Then g ∈ Vn and h ∈ Un+1. Moreover, gfnh = f and so f ∈ VnU
2 ⊆ U2n+1.

Hence Vn+1 ⊆ U2n+1 and U is a generating set for BL(N).
It remains to prove that BL(N) is not Cayley bounded with respect to

U . Let n ∈ N and gn ∈ BL(N) be any element satisfying (2k)gn = k for all
k ≤ n. We will prove that if

gn = u1u2 · · · um

where u1, u2, . . . , um ∈ U and m is the least length of such a product, then
m ≥ n. It suffices to prove that the elements f1, f2, . . . , fn occur in the
product u1u2 · · · um.

To start, let F(1,2,...,r) denote the pointwise stabilizer of {1, 2, . . . , r} in
BL(N). That is, f ∈ F(1,2,...,r) implies that if = i for all 1 ≤ i ≤ r. Note that

U \

[
r⋃

i=1

Ui ∪ {f1, f2, . . . , fr}

]

⊆ F(1,2,...,r)
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and that Ur is a left ideal in F(1,2,...,r−1) (U1 is a left ideal in F(∅) = BL(N)).
The mapping gn is not an element of F(1) since 2gn = 1 and gn is injec-

tive. Hence there exists j ∈ {1, 2, . . . ,m} such that uj ∈ {f1} ∪ U1. Assume
that i1 is the largest such number j. Now, either ui1 ∈ U1 or ui1 = f1. In the
former, since U1 is a left ideal in BL(N), we have that u1 · · · ui1 ∈ U1 and so
i1 = 1 since m is the least length of product as defined above. It follows
that u2, u3, . . . , um ∈ F(1) and so 1 6∈ im(gn), a contradiction. Thus ui1 = f1.

So, 2 6∈ im(u1 · · · ui1) and ui1+1, . . . , um ∈ U \ [{f1} ∪ U1] ⊆ F(1). If
ui1+1, . . . , um ∈ U \ [{f1, f2}∪U1 ∪U2] ⊆ F(1,2), then 2 6∈ im(gn), a contradic-
tion. Hence there exists j ∈ {i1 + 1, i1 + 2, . . . ,m} such that uj ∈ {f2} ∪ U2.
Assume that i2 is the largest such j. As above, either ui2 ∈ U2 or ui2 = f2. In
the former, since U2 is a left ideal in F(1), as before, ui1+1 · · · ui2 ∈ U2 and so
i2 = i1 + 1. Hence ui1+2, . . . , um ∈ F(1,2) and so 2 6∈ im(gn), a contradiction.
Thus ui2 = f2.

Repeating this process n times we deduce that f1, f2, . . . , fn occur in the
product u1u2 · · · um, as required.

Theorem 2.5.2. Let Ω be an infinite set and let S ∈ {Self(Ω),Part(Ω),Bin(Ω)}.
Then P(S) does not satisfy the semigroup Bergman property.

Proof. We will prove the theorem in the case that S = Self(Ω). Let U de-
note the set of all finite subsets of Self(Ω) with at most 2 elements. It was
shown in [27, Proposition 5.7.3 and Example 5.7.4] and [73] that the set U
generates P(Self(Ω)). However for completeness we include a short proof
of this fact and show that P(Self(Ω)) is not Cayley bounded with respect
to U .

Let {f1, f2, . . . , fn} ∈ P(Self(Ω)) be arbitrary. Then using induction
we show that {f1, f2, . . . , fn} ∈ 〈 U 〉. If n = 1 or 2, then by definition
{f1, f2, . . . , fn} ∈ 〈U 〉. Otherwise, if n > 2, the inductive hypothesis states
that every n − 1 element subset of Self(Ω) lies in 〈 U 〉. Let Ω1,Ω2, . . . ,Ωn

be any disjoint subsets of Ω satisfying |Ω| = |Ω1| = |Ω2| = · · · = |Ωn| and
let g1 : Ω → Ω1, g2 : Ω → Ω2, . . . , gn : Ω → Ωn be bijections. It suffices to
prove that {g1, g2, . . . , gn} ∈ 〈 U 〉, since there exists r ∈ Self(Ω) such that
{g1, g2, . . . , gn} · {r} = {f1, f2, . . . , fn}.

Let Σ ⊆ Ω be a moiety and let f : Ω → Σ and g : Ω → Ω \ Σ be
arbitrary bijections. Then there exist {h1, h2, . . . , hn−1} ∈ P(Self(Ω)) such
that fhi = gi and ghi = gi+1 for all 1 ≤ i ≤ n− 1. Thus

{f, g} · {h1, h2, . . . , hn−1} = {g1, g2, . . . , gn}.

The proof is concluded by observing that any 2n-element subset in
P(Self(Ω)) is the product of at least n subsets in U .

43



The proofs in the remaining two cases follow by analogous arguments.

The following theorem and its proof are analogues of [22, Theorem
3.6]; however the proof is somewhat more straightforward in the case pre-
sented here.

Theorem 2.5.3. Let BSelf(Q) denote the subsemigroup of Self(Q) of elements
f such that there exists k ∈ N such that |x − xf | ≤ k for all x ∈ Q. Then
cf(BSelf(Q)) > ℵ0 and BSelf(Q) does not satisfy the semigroup Bergman prop-
erty.

Proof. Throughout the proof we will use the usual notation to denote ra-
tional intervals, i.e. [a, b] = { c ∈ Q : a ≤ c ≤ b } and likewise for (a, b),
[a, b), and (a, b]. We begin by showing that BSelf(Q) does not satisfy the
Bergman property.

Let U be the set of all elements f in BSelf(Q) such that |x− xf | ≤ 1 for
all x ∈ Q. We will prove that U is a generating set for BSelf(Q).

With this aim in mind, let f ∈ BSelf(Q) such that |x− xf | ≤ k for some
k. We will find g, h ∈ BSelf(Q) such that f = gh, |x − xg| ≤ (2/3)k, and
|x − xh| ≤ (2/3)k. The image of f is infinite and countable and so we can
enumerate the elements of im(f) as x1, x2, . . .. Obviously, xmf

−1∩xnf
−1 =

∅ if m 6= n, and xnf
−1 ⊆ [xn − k, xn + k].

Choose y1 ∈ [x1− (2/3)k, x1− (1/3)k], z1 ∈ [x1+(1/3)k, x1+(2/3)k] and
for n > 1 choose

yn ∈ [xn − (2/3)k, xn − (1/3)k] \ {y1, z1, y2, z2, . . . , yn−1, zn−1}

and

zn ∈ [xn + (1/3)k, xn + (2/3)k] \ {y1, z1, y2, z2, . . . , yn−1, zn−1}.

Using the chosen elements yn and zn define a function g : Q → {y1, z1, y2, z2 . . .}
by

xg =

{

yn x ∈ xnf
−1 ∩ [xn − k, xn]

zn x ∈ xnf
−1 ∩ [xn, xn + k].

Define h : Q → Q by

xh =

{

xn x ∈ {yn, zn}

x x 6∈ {y1, z1, y2, z2 . . .}.

Hence we have shown that if f ∈ BSelf(Q) such that |x − xf | ≤ k, then
there exist g, h ∈ BSelf(Q) such that f = gh, |x−xg| ≤ (2/3)k, and |x−xh| ≤
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(2/3)k. We may repeat this process for g and h and subsequently their
factors and their factors’ factors and so on, until f is given as a product of
elements of U . Therefore we have shown that the set U generates BSelf(Q).
It is obvious that BSelf(Q) is not Cayley bounded with respect to U and so
BSelf(Q) does not satisfy the semigroup Bergman property.

It remains to prove that cf(BSelf(Q)) > ℵ0. Let

G = { f ∈ BSelf(Q) : [4n, 4n+ 4)f ⊆ [4n, 4n+ 4) for all n ∈ Z }

and

H = { f ∈ BSelf(Q) : [4n+ 2, 4n+ 6)f ⊆ [4n+ 2, 4n+ 6) for all n ∈ Z }.

It is straightforward to verify that

G ∼= H ∼=
∏

i∈Z

Self([0, 4)).

We will now prove that U ⊆ GH . Let f ∈ U and im(f) = {x1, x2, . . .}.
The proof follows a similar argument to that used to show that 〈 U 〉 =
BSelf(Q). Let n ≥ 1. We will define elements yn, zn ∈ Q, n ∈ N, and
functions

gn : {x1, x2, . . . , xn}f
−1 → {y1, z1, y2, z2, . . . , yn, zn}

that depend on xn and extend gn−1 and hn−1. There are three cases to
consider.

If xn ∈ [4k, 4k + 1), then xnf
−1 ⊆ [4k − 1, 4k + 2) since f ∈ U . Elements

of G take [4k, 4k + 2) to [4k, 4k + 4) and [4k − 1, 4k) to [4k − 4, 4k). Hence
choose

yn ∈ [4k, 4k + 2) \ {y1, z1, y2, z2, . . . , yn−1, zn−1}

and
zn ∈ [4k − 1, 4k) \ {y1, z1, y2, z2, . . . , yn−1, zn−1}.

Define gn by

xgn =







xgn−1 x 6∈ xnf
−1

yn x ∈ xnf
−1 ∩ [4k, 4k + 2)

zn x ∈ xnf
−1 ∩ [4k − 1, 4k).

If xn ∈ [4k + i, 4k + i+ 1) where i = 1 or 2, then choose

yn, zn ∈ [4k + i, 4k + i+ 1) \ {y1, z1, y2, z2, . . . , yn−1, zn−1}
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and define gn by

xgn =

{

xgn−1 x 6∈ xnf
−1

yn x ∈ xnf
−1.

If xn ∈ [4k + 3, 4k + 4), then xnf
−1 ⊆ [4k + 2, 4k + 5). Choose

yn ∈ [4k + 4, 4k + 5) \ {y1, z1, y2, z2, . . . , yn−1, zn−1}

and
zn ∈ [4k + 2, 4k + 4) \ {y1, z1, y2, z2, . . . , yn−1, zn−1}.

Define gn by

xgn =







xgn−1 x 6∈ xnf
−1

yn x ∈ xnf
−1 ∩ [4k + 4, 4k + 5)

zn x ∈ xnf
−1 ∩ [4k + 2, 4k + 4).

Finally, define

hn : {y1, z1, y2, z2, . . . , yn, zn} → {x1, x2, . . . , xn}

by
xhn = xn if x ∈ {yn, zn}.

Repeating the previous procedure ad infinitum produces two functions
g : Q → {y1, z1, y2, z2, . . .} ∈ G and h : Q → Q ∈ H where f = gh, as
required.

If (Sn)n∈N is a cofinal chain for BSelf(Q), then (Sn ∩ G)n∈N is a chain
of subsemigroups whose union is G. We showed in Theorem 2.4.10 that
cf(

∏

i∈Z Self([0, 4))) > ℵ0. Thus there existsM ∈ N such thatG ⊆ SM . Like-
wise, there exists N such that H ⊆ SN . Assume without loss of generality
that N > M . We proved in the previous paragraph that U ⊆ G.H ⊆ SN .
But then BSelf(Q) = 〈 U 〉 = SN , a contradiction. Hence cf(BSelf(Q)) > ℵ0

and the proof is complete.

We stated in Section 2.3 that it is possible to find a non-finitely gen-
erated semigroup S with subsemigroup T and finite set F such that S =
(T ∪ F )2, cf(S) > cf(T ), scf(S) > scf(T ), and S satisfies the semigroup
Bergman property but T does not. Using Theorems 2.4.1 and 2.5.1 we can
now state this example explicitly.

Example 2.5.4. Let S = SymInv(N) and T be the Baer-Levi semigroup
BL(N). Obviously T ≤ S. It is easy to verify that for any bijection f from a
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moiety X in N to N we have Tf = S. Thus if F = {f}, then (T ∪ F )2 = S.
Moreover, we showed in Theorems 2.4.1 and 2.5.1 that

cf(S) ≥ scf(S) > ℵ0 = cf(T ) ≥ scf(T ),

and so S satisfies the semigroup Bergman property and T does not, as
required.

The following example shows that it is not true that if T ≤ S, T satisfies
the semigroup Bergman property and (T ∪ F )2 = S, then S satisfies the
semigroup Bergman property.

Example 2.5.5. Let Ω be an infinite set, S = P(Part(Ω)), and T = P(SymInv(Ω)).
Then partition Ω into moieties Ωα indexed by α ∈ Ω and let f ∈ Part(Ω)
be the unique function satisfying (Ωα)f = α. Then it is straightforward
to verify that SymInv(Ω).f = Part(Ω) and so T.f = S. However, in The-
orems 2.4.6 and 2.5.2 we showed that T = P(SymInv(Ω)) does satisfy the
semigroup Bergman property but S = P(Part(Ω)) does not.

Recall that Lemma 2.3.5(ii) states that if S is a semigroup, I an ideal
of S, and I and S/I satisfy the semigroup Bergman property, then S does
also. The next example shows that there exists a semigroup satisfying the
semigroup Bergman property that contains an ideal that does not satisfy
it. Thus proving that the converse of Lemma 2.3.5(ii) does not hold.

Example 2.5.6. The union S of Sym(N) and BL(N) forms a subsemigroup
of Self(N) and I = BL(N) is an ideal in S. In fact, for all f ∈ I we have
that f. Sym(N) = I . Thus if (Sn)n∈N is a strong cofinal chain for S, then
since scf(Sym(N)) > ℵ0 there exists M ∈ N such that Sym(N) ⊆ SM . But
then there exists f ∈ SM+1 ∩ I , and so S ⊆ SN for some N , a contradiction.
Therefore scf(S) > ℵ0 and S has the semigroup Bergman property but by
Theorem 2.5.1, I does not have the semigroup Bergman property.

The following examples have uncountable cofinality but do not satisfy
the semigroup Bergman property.

Example 2.5.7. LetX be an infinite set and let S be the semi-direct product
X∗ ⋊ Self(X) where Self(X) acts on free semigroup X∗ (with empty word
1) by extending every mapping from X to X to an endomorphism of X∗.
We will prove that cf(S) > ℵ0. Assume otherwise. Then there exists a
cofinal chain (Sn)n∈N. Since {1}×Self(X) ∼= Self(X) it follows that cf({1}×
Self(X)) > ℵ0. Hence we deduce that there exists N ∈ N such that {1} ×
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Self(X) ⊆ SN . Without loss of generality there exists (x, 1X) ∈ SN for some
x ∈ X . If y ∈ X \ {x} and σ the transposition that swaps x and y, then

(y, 1X) = (1, σ)(x, 1X)(1, σ) ∈ SN .

Thus X∗ × {1X} ⊆ SN and so S ⊆ SN , a contradiction.
It remains to prove that S does not satisfy the semigroup Bergman

property. The set U = { (x, τ) : x ∈ X ∪ {1}, τ ∈ Self(X) } generates
S and S is not Cayley bounded with respect to U .
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Chapter 3

Cayley Automaton Semigroups

In this chapter we characterize when a Cayley automaton semigroup is
finite, is free, is a left zero semigroup, is a right zero semigroup, is a group,
or is trivial. We also introduce dual Cayley automaton semigroups and
discuss when they are finite.

The results of this chapter appeared in [58].

3.1 Introduction and Main Results

In the 1960s, Krohn and Rhodes proposed a construction called the Cayley
machine of a finite semigroup [6]. The construction is as follows: Let S be a
finite semigroup. Consider the right Cayley graph of S with respect to the
generating set S. Turn it into a transducer automaton C(S) by letting the
output symbol on the arc leading from s and labeled by t to be st:

s st

t | st

So, the states and letters of C(S) are elements of S and when the state s
reads the letter t, it moves to the state st and outputs the letter st. Hence
every state from C(S) can be viewed as a transformation on the set of all
infinite sequences S∞.

To put our setting formally, let us explain how the automaton C(S)
works. Let S = {s1, . . . , sn} be the list of elements of our finite semigroup
S. In order to avoid confusion, we will denote the states in C(S) by an
overline: s is a symbol, and s is a state. The elements from S∞ are simply
the sequences α1α2 · · · , where αi ∈ S for all i ≥ 1. Then, for s ∈ S, the state
s acts on α1α2 · · · as follows: s acts on α1, changes it state to sα1 and then
the new state acts on the sequence α2α3 · · · :

(α1α2 · · · )
s = (sα1)(α2α3 · · · )

sα1 .
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(Note that we act by s on the right.) Now one can recursively define what
does it mean for the state s to act on α1α2 · · · , and the result of such an
action is a sequence from S∞. Thus, s can be viewed as the corresponding
mapping from S∞ to S∞. Now, let C(S) be the semigroup generated by
all the mappings from S∞ to S∞ corresponding to the states s for all s ∈
S. This is what is known as the automaton semigroup generated by the
automaton C(S), see [67] for more details. We will name the semigroups
C(S) by Cayley automaton semigroups.

Let us explain now a convenient way to realise what are C(S).
First of all, consider the rooted |S|-ary tree. We will call this tree by

S-tree. Label the nodes of the first level of tree by s1, . . . , sn (in arbitrary
order). The nodes from the second level, which are the children of si, are
labelled by sis1, . . . , sisn. Continuing in this manner, we assign to each
node of the S-tree a label which is simply a finite sequence of elements
from S. We fix these labels once and forever. Then the sequences from S∞

can be viewed as the corresponding paths in the S-tree which start from
the root and follow the edges according to the consecutive symbols from
the sequences.

In this way, for every s ∈ S, the mapping from S∞ to S∞ associated to
the state s, is in effect a corresponding endomorphism of the S-tree.

The semigroup of endomorphisms of the S-tree is the infinite wreath
product of the semigroups TS (where TS is the semigroup of all mappings
from S to S). This enables us to think about s in terms of what is known as
the wreath recursion. So, first of all we view s as the corresponding endo-
morphism of the S-tree. This endomorphism acts on the first level of the
S-tree by the function λs : S → S defined by x 7→ sx. Let si ∈ S. Consider
the restriction of the endomorphism s to the node si. This restriction is
an endomorphism of the regular |S|-ary rooted tree with the root si. The
latter |S|-ary rooted tree is canonically isomorphic to the S-tree. Thus we
may view the restriction of s to the rooted tree starting from the node si as
the corresponding endomorphism of the S-tree. To summarise, s may be
viewed as the endomorphism of the S-tree constructed as follows: we first
put the corresponding endomorphisms to the nodes labelled by si for all
i ≤ n and then ‘shuffle’ the first level by the mapping λs. This means that
we may define s in a recursive way.

To express in short what we have said in the previous paragraph, we
will write the following:

s = λs(ss1, . . . , ssn).

Here λs stands for the function which corresponds to the action of s on
the first level of the S-tree, and ssi is the endomorphism of the S-tree,
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which corresponds to the restriction of the endomorphism s to the rooted
tree with the root si. Note that, by definition of C(S), this restriction of
s indeed corresponds to ssi since upon reading the symbol si, the state s
moves to the state ssi.

Furthermore, as we said above, we will deal with right actions in this
chapter. So, (x)λsλt = (xλs)λt = (sx)λt = tsx for all x ∈ S. This means
that λsλt = λts for all s, t ∈ S.

Now let us understand how to calculate the product of endomorphisms
s and t for s, t ∈ S. First of all, the composition of functions on the first
level goes like this: first we apply λs and then apply λt, so that the endo-
morphism s ·t acts on the first level of the S-tree by the function λsλt = λts.
Next, we need to calculate what is the restriction of the endomorphism s · t
to the node si. First we must apply ssi – just the restriction from the first
endomorphism (our first endomorphism is s) and then multiply it by the
restriction of t to that node, which corresponds to point obtained by map-
ping si by λs. Thus this node is ssi, and the corresponding restriction is
associated to tssi. Thus, following our above notation, we may write

s · t = λts(ss1 · tss1, . . . , ssn · tssn).

Let a1, . . . , ak ∈ S and x ∈ S. We will denote by τ(a1 · · · ak) the trans-
formation on the set S, corresponding to the action of a1 · · · ak on the first
level of the S-tree. As above, we have that

τ(a1 · · · ak) = λak···a1 .

The endomorphism, associated to the restriction of a1 · · · ak to the node x
will be denoted by q(a1 · · · ak, x). As above, one calculates that

q(a1 · · · ak, x) = a1x · a2a1x · · · ak · · · a1x.

For more details about general automaton semigroups see the work of
Alan Cain [11].

Let us now shortly overview what has been known about the Cayley
automaton semigroups.

In [35] Grigorchuk and Żuk prove that C(Z2) is a free semigroup of
rank 2. Generalizing this result, Silva & Steinberg prove in [80] the follow-
ing

Theorem 3.1.1. Let G be a finite non-trivial group. Then C(G) is a free semi-
group of rank |G|.

Under a different perspective, Cayley automaton semigroups appeared
in a work by Mintz [64]. One of the main results he proves is
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Theorem 3.1.2. Let S be a finite semigroup. Then C(S) is finite if and only if S
is H-trivial, i.e. that H is the identity relation.

In this chapter we present an alternative proof of Theorem 3.1.2, using
the machinery of the wreath recursions. There is one more way of proving
this theorem, using the action of states of C(S) on the words from S∞, see
a work of Cain [11]. The proof of Theorem 3.1.2 is contained in Section 3.3.

Making use of Theorem 3.1.2, in Sections 3.4 and 3.5 we will prove the
following three propositions:

Proposition 3.1.3. Let S be a finite semigroup. Then C(S) is a free semigroup if
and only if the minimal ideal K of S consists of a single R-class, in which every
H-class is not a singleton, and there exists k ∈ K such that st = skt for all
s, t ∈ S.

Proposition 3.1.4. Let S be a finite semigroup. Then C(S) is a right zero semi-
group if and only if abc = ac for all a, b, c ∈ S.

Proposition 3.1.5. Let S be a finite semigroup. Then C(S) is a left zero semi-
group if and only if S2 is the minimal ideal of S and if this ideal forms a right zero
semigroup.

Continuing the study of automaton semigroups, in Section 3.6 we find
a characterization of when C(S) is a group:

Theorem 3.1.6. For a finite semigroup S, the following statements are equiva-
lent:

1. C(S) is a group.

2. C(S) is trivial.

3. S is an inflation of a right zero semigroup by null semigroups.

Recall that a semigroup S is an inflation of a right zero semigroup T by
null semigroups if T ≤ S and S can be partitioned into disjoint subsets St

(for each t ∈ T ) such that t ∈ St and SuSt = {t} for all t, u ∈ T .
After proving this, in Section 3.7 we will discuss these results and their

corollaries.
In the final Section 3.8 we introduce the dual Cayley machine of a finite

semigroup and prove a theorem, analogous to Theorem 3.1.2. In a way,
it will show that when turning a Cayley graph of a finite semigroup to
an automaton, the most natural construction which appears is the Cayley
machine.

Before we start proving our main results we need some preparation.
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3.2 Auxiliary Lemmas

Throughout this chapter we will use the following. Let α, β ∈ C(S). Then
α = β if and only if τ(α) = τ(β) and q(α, x) = q(β, x) for all x ∈ S. This
follows immediately when realizing α and β as endomorphisms of the S-
tree.

Lemma 3.2.1. Let S be a finite semigroup. Then for all s, t ∈ S, s = t in C(S) if
and only if λs = λt.

Proof. Let s, t ∈ S. Then s = t if and only if λs = λt and sx = tx for all
x ∈ S. Furthermore, sx = tx if and only if λsx = λtx and sxy = txy for all
y ∈ S. Using the above recursive formula for s, we obtain that s = t if and
only if λs = λt and λsx = λtx for all x ∈ S. It remains to notice that λs = λt
implies λsx = λtx for all x ∈ S.

Later we will need Cayley automaton semigroups of special types semi-
group:

Lemma 3.2.2. Let L be a finite left zero semigroup. Then C(L) is a right zero
semigroup with |L| elements.

Proof. Suppose C(L) is in state s and reads symbol t. Then, by the defini-
tion of C(L), it outputs s and moves to the same state s. Thus α · s = s∞ for
all α ∈ L∞. Hence for any s, t ∈ L and α ∈ L∞:

α · (s · t) = s∞ · t = t∞ = α · t,

and so s · t = t. It remains to note that, by Lemma 3.2.1, if s 6= t, then
s 6= t.

Lemma 3.2.3. Let S be a finite semigroup and let R be a finite right zero semi-
group. Then C(S ×R) ∼= C(S).

Proof. Let s ∈ S and r, t ∈ R. Then it follows from Lemma 3.2.1 that

(s, r) = (s, t) in C(S×R). Hence C(S×R) coincides with T = 〈(s, r0) : s ∈
S〉 for any fixed r0 ∈ R. It is now easy to check that (s, r0) 7→ s gives rise to
an isomorphism from T onto C(S).

Corollary 3.2.4. Let R be a finite right zero semigroup. Then C(R) is trivial.

We finish this section with the following three technical lemmas about
finite semigroups. The first one follows immediately from [70, Corol-
lary 2.6, p. 446] and [18, Theorem 2.17]:
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Lemma 3.2.5. Let S be a finite semigroup and let a, b ∈ S belong to the same
D-class D of S. Then

1. If ab ∈ D then ab ∈ Ra ∩ Lb.

2. ab ∈ Ra ∩ Lb if and only if La ∩Rb contains an idempotent.

Lemma 3.2.6. Let S be a finite H-trivial semigroup. Denote by I all the elements
from S which do not belong to any of the maximal D-classes of S. Then

1. I is an ideal in S.

2. If I = ∅, then S is a rectangular band.

3. If a1 · · · ak ∈ S \ I , then all a1, . . . , ak belong to the maximal D-class
Da1···ak .

4. If x, y ∈ S are such that x and yx do not belong to the same maximal D-
class of S, then yx ∈ I . Analogously, if x and xy do not belong to the same
maximal D-class of S, then xy ∈ I .

5. If a1, . . . , am, x ∈ S are such that am · · · a1 and am · · · a1x belong to the
same maximal D-class, then a1xLa2a1xL · · · Lam · · · a1x and a1x ∈ S \ I .

Proof. (1). Take arbitrary i ∈ I and s ∈ S. We will show that is ∈ I .
By symmetry it will follow then that si ∈ I and we will be done. So,
assume that is /∈ I . This means that is lies in some maximal D-class of
S. Since i ≥D is, it follows that iDis and so i lies in a maximal D-class, a
contradiction.

(2). Assume that I = ∅. We will prove that S has only one D-class.
Assume the converse, i.e. that one can find two distinct D-classes D1 and
D2. Since I is empty, both D1 and D2 must be maximal. Take x ∈ D1 and
y ∈ D2. Then xy ≤D x and xy ≤D y. But I = ∅ and so every element of S
lies in a maximal D-class. In particular, xy lies in some maximal D-class.
Thus, by maximality of Dxy, actually xyDx and xyDy. This yields xDy, a
contradiction.

Thus, S indeed has only one D-class and so is simple. Since it is H-
trivial, from Rees–Suschkewitch Theorem it is now immediate that S is a
rectangular band.

(3). Let a1 · · · ak ∈ S \ I . Then Da1···ak is a maximal D-class in S. But
Da1···ak ≤ Dai for all i ≤ k. Thus Da1···ak = Dai for all i ≤ k. Hence all
a1, . . . , ak belong to the maximal D-class Da1···ak .

(4). We will prove only the first claim, and we do it by its contraposi-
tive. So, assume that yx ∈ S \ I . By (3) it follows that x and y belong to the
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same maximal D-class Dyx. Hence x and yx belong to the same maximal
D-class.

(5). Let am · · · a1 and am · · · a1x belong to the same maximal D-class.
Then am · · · a1x ∈ S \ I and by (4) we have that am · · · a1 and x are from the
same maximal D-class. This implies that a1, a2, . . . , am and am · · · a1, . . . , a1
are all from Dx. Then by Lemma 3.2.5, a1La2a1L · · · Lam · · · a1. Since L
is a right congruence, we obtain a1xLa2a1xL · · · Lam · · · a1x. Finally, since
am · · · a1x ∈ S \ I , we have a1x ∈ S \ I .

Lemma 3.2.7. Let S be a finite semigroup in which H is non-trivial. Then S
contains a non-trivial subgroup.

Proof. Let H be a non-trivial H-class in S. Then the stabiliser Stab(H) =
{s ∈ S : Hs = H} forms a subsemigroup in S. Moreover, there is a con-
gruence ρ on Stab(H) such that Stab(H)/ρ is the so-called Schuetzenberger
group Γ(H) of the H-class H , see [18]. Moreover, |Γ(H)| = |H|, see [18]. So,
there exists a homomorphism φ from Stab(H) onto a non-trivial group.

Assume that Stab(H) does not contain non-trivial subgroups. Let I be
the minimal ideal in Stab(H). Then I is a Rees matrix semigroup over the
trivial group, and so I is isomorphic to a rectangular band. Since every
element e ∈ I is an idempotent, we must have that φ(e) is the identity
1Γ(H) of Γ(H). For every s ∈ Stab(H) and e ∈ I there exists f ∈ I such that
se = f and so

1Γ(H) = φ(f) = φ(s)φ(e) = φ(s) · 1Γ(H) = φ(s).

Thus Stab(H) is mapped by φ to {1Γ(H)}, a contradiction. Hence Stab(H)
contains non-trivial subgroups and so does S.

3.3 Proof of Theorem 3.1.2

Proof of Theorem 3.1.2. (⇒). Suppose that C(S) is finite. Assume with the
aim of getting a contradiction that S is not H-trivial. By Lemma 3.2.7, S
contains a non-trivial subgroup G.

Now, take g ∈ G. Then g is an endomorphism of the S-tree. There
is a |G|-ary rooted subtree in the S-tree corresponding to the nodes la-
belled only by the elements from G. The restriction of g to this G-subtree
coincides with the endomorphism of the G-subtree corresponding to the
element g from C(G), the Cayley automaton over the group G. By Theo-
rem 3.1.1, these restrictions for all g ∈ G, generate a free semigroup of rank
|G|. Therefore, 〈g : g ∈ G〉 is a free semigroup of rank |G|, a contradiction.
Thus S is H-trivial.
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(⇐). We will prove by induction on |S| that if S is H-trivial then C(S)
is finite. The base case |S| = 1 is obvious. So, assume that S is a finite
H-trivial semigroup and for all H-trivial semigroups T with size < |S| we
have that C(T ) is finite.

Let I comprise all the elements from S which do not belong to any
of the maximal D-classes of S. By Lemma 3.2.6, I is an ideal. If I = ∅,
then by Lemma 3.2.6, S is a rectangular band, i.e. the direct product of
left zero semigroup with right zero semigroup. Then by Lemma 3.2.3,
C(S) is isomorphic to a Cayley automaton semigroup over a finite left
zero semigroup. Lemma 3.2.2 tells us then that C(S) is a finite right zero
semigroup. So in the remainder of the proof we may assume that I 6= ∅.
Hence by inductive hypothesis, C(I) is finite.

For X ⊆ S define X = {x : x ∈ X}.
Let us examine what is the situation we are working with. The follow-

ing five lemmas will show us how we can reduce the problem of proving
that C(S) is finite to another problem.

Lemma 3.3.1. I〈S〉1 = I ∪ I〈S〉 is finite.

Proof. First of all let us prove that 〈I〉 is finite. To do this, it suffices to prove
that there are finitely many products i ·i1 · · · ik ∈ 〈I〉 for any fixed i ∈ I . We
have that i · i1 · · · ik and i · j1 · · · jn are equal if and only if the restrictions
of i1 · · · ik and j1 · · · jn on S∞i coincide. Notice that S∞i ⊆ I∞. Obviously
i1 · · · ik and j1 · · · jn act on I∞ in the same way as the corresponding prod-
ucts from C(I) do. Hence the set {i1 · · · ik ↾S∞i: i1, . . . , ik ∈ I} has at most
|C(I)| elements and so is finite. Thus there are finitely many products
i · i1 · · · ik ∈ 〈I〉. Hence 〈I〉 is finite.

Now, take a typical element p = i · a1 · · · ak ∈ I〈S〉. Then for all x ∈ S,
we have

q(i · a1 · · · ak, x) = ix · a1ix · · · ak · · · a1ix ∈ 〈I〉

and τ(p) = λak···a1i with ak · · · a1i ∈ I . So, there are at most |I| possible
actions of p on the first level of the S-tree and the action of p on any subtree,
corresponding to a node from the first level, is by some element from 〈I〉.
Hence |I〈S〉| ≤ |I| · |〈I〉||S|. The lemma is proved.

Lemma 3.3.2. If 〈S \ I〉 is finite, then 〈S〉 is finite.

Proof. Follows from 〈S〉 = I〈S〉1∪〈S\I〉∪〈S\I〉I〈S〉1 and Lemma 3.3.1.

Lemma 3.3.3. If the set P0 = {a1x ·a2a1x · · · ak · · · a1x : a1, . . . , ak ∈ S \I, x ∈
S} is finite, then 〈S \ I〉 is finite.
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Proof. Take a typical product a1 · · · ak ∈ 〈S \I〉 with a1, . . . , ak ∈ S \I . Then

qx = q(a1 · · · ak, x) = a1x · a2a1x · · · ak · · · a1x

for all x ∈ S. Now, all the elements qx together with τ(a1 · · · ak) define
a1 · · · ak uniquely. Hence the claim.

Lemma 3.3.4. If the set P1 = {a1 · · · an : a1La2L · · · Lan, a1 ∈ S \ I} is finite,
then P0 is finite.

Proof. Take an element p0 = a1x · a2a1x · · · ak · · · a1x ∈ P0 with a1, . . . , ak ∈
S \ I and x ∈ S. Let m be the maximal number such that am · · · a1x ∈ S \ I .
Then either m = k or am+1 · · · a1x ∈ I . Hence p0 ∈ a1x · a2a1x · · · am · · · a1x ·
(
I〈S〉1

)1
.

Now, (am · · · a1) · x ∈ S \ I and so, by Lemma 3.2.6(4), am · · · a1 and
am · · · a1x belong to the same maximal D-class of S. Then, by Lemma 3.2.6(5),

a1xLa2a1xL · · · Lam · · · a1x and a1x ∈ S \ I . Thus p0 ∈ P1 ·
(
I〈S〉1

)1
and the

claim follows.

Lemma 3.3.5. If the set

P2 = {a1 · · · an : {a1, . . . , an} ⊆ S \ I is a left zero subsemigroup}

is finite, then P1 is finite.

Proof. Let P2 be finite. Take any p1 = a1 · · · ak ∈ P1 with a1La2L · · · Lak and
a1 ∈ S \ I . For any x ∈ S we have

q(p1, x) = a1x · a2a1x · · · ak · · · a1x.

As before, it suffices to prove that there are finitely many products q(p1, x)
when p1 runs through P1 and x runs through S. As in the proof of Lemma 3.3.4,
let m = m(p1) be the maximal number such that am · · · a1x ∈ S \ I . Then
a2a1, . . . , amam−1 belong to the same maximal D-class. Then, for all j ≤ m−
1, aj+1Daj+1ajDaj and so by Lemma 3.2.5 we have that aj+1aj ∈ Raj+1

∩Laj

and that Laj+1
∩ Raj contains an idempotent. Recall that ajLaj+1. Hence

aj ∈ Laj+1
∩Raj and since S is H-trivial, we obtain that aj is an idempotent

for all j < m. Therefore, since a1L · · · Lam, it follows that {a1, . . . , am−1}
forms a left zero subsemigroup in S. Therefore a1 · · · am−1 ∈ P2. Thus
there are finitely many products

a1x · a2a1x · · · am−1 · · · a1x = q(a1 · · · am−1, x)

when p1 runs through P1 and x runs through S. Since am+1 · · · a1x ∈ I , by
Lemma 3.3.1 it follows now that the set {q(p1, x) : p1 ∈ P1, x ∈ S} is finite.
Thus P1 is finite.
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We will prove by induction on k that the subset Qk ⊆ P2, consist-
ing of those products a1 · · · an ∈ P2 such that the left zero subsemigroup
{a1, . . . , an} ⊆ S\I contains precisely k distinct idempotents, is finite. This
will then prove that P2 is finite and so the theorem will be established.

Base of induction.
k = 1. To prove the base case, it is enough to show that a is of finite

order for all idempotents a ∈ S \ I .
Let a be an arbitrary idempotent from S \ I . Let E be the set of all

idempotents R-equivalent to a and let Xa be the set of all x ∈ Da such that
ax is an idempotent in Da. Notice that if x ∈ S \Xa, then (ax)2 ∈ I ; and if
x ∈ Xa, then aRax.

We will prove now that the set A = {q(an, x) : n ≥ 1, x ∈ S \ Xa} is
finite. So, take x ∈ S \Xa and n ≥ 1. Then qx = q(an, x) = axn. Consider
qx,y = q(qx, y) when y ∈ S:

qx,y = axy · axaxy · · · (ax)ny ∈ I ∪ S · I〈S〉1,

since (ax)2 ∈ I . Thus the set {q(α, y) : α ∈ A, y ∈ S} is finite and so A is
finite.

On the other hand, q(an, x) = axn and ax ∈ E, for all x ∈ Xa.
Now, since A is finite there is an infinite increasing sequence n1 < n2 <

· · · such that q(ani , x) = q(ani+1 , x) and τ(ani) = τ(ani+1) for all x ∈ S \Xa

and for all i.
To summarize: we had an idempotent a ∈ S \ I and arrived at the

conclusion of the previous paragraph. The same type conclusion will hold
for all elements e ∈ E (E is the set of all idempotents R-equivalent to a).
Hence, taking now subsequences of n1 < n2 < · · · we gradually will arrive
at an infinite sequence k1 < k2 < · · · such that q(eki , x) = q(eki+1 , x) and
τ(eki) = τ(eki+1) for all x ∈ S \Xe, for all e ∈ E and for all i.

Consider now the wreath recursions for the elements ek1 and ek2 for
any e ∈ E. Their actions on the first level of the S-tree coincide. The
restrictions of ek1 and ek2 to the subtrees with roots labeled by elements
from S \ Xe are equal. And for any x ∈ Xe, the restrictions of ek1 and ek2

to the subtrees with roots labeled by an element x ∈ Xe are exk1 and exk2

where ex ∈ E. Hence, by recursion, ek1 = ek2 and so e is of finite order for
all e ∈ E. So, a is of finite order. The base case is established.

Induction step.
We will do step k 7→ k + 1. Take an arbitrary product π = a1 · · · an ∈

Qk+1. There are precisely (k + 1) different R-classes among Ra1 , . . . , Ran .
Obviously, it would suffice to prove the step if a1, . . . , an come from fixed
(k + 1) R-classes (and for every of these R-classes there is at least one
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representative among a1, . . . , an). In particular, in the remainder of the
proof all the products from Qk+1 will involve these fixed R-classes. The
D-class containing these R-classes we will denote by D.

With every such product π we associate the corresponding L-classL(π) =
La1 = · · · = Lan . We have qx = q(π, x) = a1x · · · anx for all x ∈ S.

Make the following observation. Assume that a1x ∈ S\I . This happens
if and only if a1x ∈ D. Then a1x, x ∈ D and so, since a1xL · · · Lanx, we
obtain that ai, x, aix ∈ D for all i. Hence aiRaix for all i.

Furthermore, for every L-class in D there exists x such that a1x lies in
this L-class. Now we split S into three disjoint sets:

• The set A(π) of all x such that a1x /∈ D.

• The set B(π) of all x such that a1x ∈ D and there are at most k idem-
potents among a1x, . . . , anx.

• The set C(π) of all x such that a1x ∈ D and there are precisely (k+1)
idempotents among a1x, . . . , anx.

Notice that a1x ∈ D if and only if L(π) ∩ Rx is an idempotent. Thus each
of A(π), B(π), C(π) depends only on L(π) and not on a1.

If x ∈ A(π) then a1x ∈ I and so qx ∈ I〈S〉1.
Let x ∈ B(π). Take y ∈ S. We have q(qx, y) = a1xy · · · anxan−1x · · · a1xy.

Let m be maximum such that aix · · · a1xy ∈ D for all i ≤ m. Recall that
a1xL · · · Lanx. So, as in the proof of Lemma 3.3.5, we have that a1x, . . . , am−1x
are idempotents. There are at most k such idempotents and so a1x, . . . , am−1x
split in at most k R-classes. We have aix · · · a1xy = aixyRaix and so there
are at most k different R-classes amongRa1xy, . . . , Ram−1xy. Therefore there
are at most k idempotents among a1xy, . . . , am−1xy (as they lie in Lxy and
S is H-trivial). Thus for all y ∈ S, we have q(qx, y) ∈ I〈S〉1 ∪ QkS · I〈S〉1.
By induction hypothesis this implies that there are only finitely many qx
for every π ∈ Qk+1 and x ∈ B(π).

Let, finally, x ∈ C(π). Since a1x, . . . , anx lie in exactly (k + 1)R-classes,
we have that all of a1x, . . . , anx are idempotents. In particular qx = a1x · · · anx ∈
Qk+1 and a1x, . . . , anx involve the same (fixed) R-classes as a1, . . . , an. We
also mention that if we fix some L-class L in D such that L = L(ρ) for
some ρ ∈ Qk+1, then the set of all q(π, x), where π ∈ Qk+1, L(π) = L and
x ∈ C(π), exhausts the whole of Qk+1.

Let M be the total (finite) number of elements in {q(π, x) : x ∈ A(π) ∪
B(π), π ∈ Qk+1}. Let also N = M |S||S| and p be the number of L-classes
in D.
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Take now any product π = a1 · · · aNp+1 ∈ Qk+1. We will prove that
π equals some element from Qk+1 of length less than Np + 1. That will
complete the induction step and thus the proof of the theorem.

Let L1, . . . , Lq be all L-classes, which in intersection with the fixed R-
classes give (k + 1) idempotents. Assume without loss of generality that
L(π) = L1. Note that π = q(π, x) for some x ∈ C(π).

By Pigeonhole Principle, we have that there exist 1 ≤ i1 < · · · <
iNp−1+1 ≤ Np + 1 such that τ(a1 · · · aij) = τ(a1 · · · aik) and q(a1 · · · aij , x) =
q(a1 · · · aik , x) for all x ∈ A(π) ∪ B(π) and j < k. Notice now that since
a1Lai1 , we have L(π) = L(ai1 · · · aik). There exists y ∈ C(π) such that
L(q(π, y)) = L2. Analogously, by Pigeonhole Principle, we have that there
is a subsequence i1 ≤ j1 < · · · < jNp−2+1 ≤ iNp−1+1 such that τ(a1y · · · ajuy) =
τ(a1y · · · ajvy) and q(a1y · · · ajuy, x) = q(a1y · · · ajvy, x) for all x ∈ A(q(π, y))∪
B(q(π, y)) and u < v. Proceeding in this way in total at most q times we
arrive at two indices u < v, such that

τ(a1z · · · auz) = τ(a1z · · · avz)

and
q(a1z · · · auz, x) = q(a1z · · · avz, x)

for all z ∈ C(π), x ∈ A(q(π, z)) ∪ B(q(π, z)).
Finally, we remark that if x ∈ C(π) and y ∈ C(q(π, x)), then xy ∈ C(π).

Thus, from wreath recursions for elements a1z · · · auz and a1z · · · avz for all
z ∈ C(π), it now follows that a1 · · · au = a1 · · · av and so

π = a1 · · · au · av+1 · · · aNp+1

is of length strictly less than Np + 1.

3.4 Proof of Proposition 3.1.3

Proof of Proposition 3.1.3. (⇒). Suppose that C(S) is free. LetK be the min-
imal ideal of S. Then K is a Rees matrix semigroup M[G; I, J ;P ] for some
J × I-matrix P and group G with identity e. By [45, Theorem 3.4.2] we
even may assume that 1 ∈ I , 1 ∈ J and pj1 = p1i = e for all i ∈ I , j ∈ J .
Then the element k = (1, e, 1) ∈ K is clearly an idempotent. We will prove
now that k · s = k · sk. Indeed,

q(k · s, x) = kx · skx = q(k · sk, x)

holds for every x ∈ S, and τ(k · s) = λsk = τ(k · sk). Hence k · s = k · sk and
so, since a free semigroup is cancellative, we obtain s = sk. Then λs = λsk
and, in particular, st = skt for all s, t ∈ S.
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Fix some i ∈ I . For every x ∈ S there exist ix ∈ I , jx ∈ J and gx ∈ G
such that x(1, e, 1) = (ix, gx, jx). Then (ix, gx, jx) = (ix, gx, jx)(1, e, 1) =
(ix, gx, 1) and so x(1, e, 1) = (ix, gx, 1). Hence, since s = s(1, e, 1) for all
s ∈ S, we have

(i, g, 1)x = (i, g, 1)x(1, e, 1) = (i, g, 1)(ix, gx, 1) = (i, ggx, 1)

for all g ∈ G and x ∈ S. Now, for all g, g′ ∈ G and x ∈ S we have that

q((i, g, 1) · (1, g′, 1), x) = (i, g, 1)x · (1, g′g, 1)x = (i, ggx, 1) · (1, g′ggx, 1)

is a product from (i, G, 1) · (1, G, 1). But

λ((i1, g, 1) · (1, g′, 1)) = λ(1,g′g,1) = λ((i2, g, 1) · (1, g′, 1))

for all i1, i2 ∈ I . Hence, by wreath recursion, we obtain that (i1, g, 1) ·

(1, g′, 1) = (i2, g, 1) · (1, g′, 1) for all g, g′ ∈ G and i1, i2 ∈ I . Then (i1, e, 1) =
(i2, e, 1) and so λ(i1,e,1) = λ(i2,e,1) for all i1, i2 ∈ I . Thus I is a singleton and
so K contains only one R-class.

Finally, since λs = λsk for all s ∈ S, we have that S2 ⊆ K. Hence the
only non-singleton H-classes in S must be those lying in K. If K contains
singleton H-classes, then S is H-trivial and so, by Theorem 3.1.2, C(S) is
finite, a contradiction. Thus all H-classes in K are non-singleton.

(⇐). Since K contains only one R-class, we have that K = G × R
where G is a group with identity e and R is a right zero semigroup. By
assumption G is non-trivial. Let k = (g, r) ∈ K be as in the hypothesis.
Then λs = λsk = λs(g,r) for all s ∈ S.

Take any s ∈ S. Then s(g, r) = (h, r′) for some h ∈ G and r′ ∈ R. Since
(g, r)(e, r) = (g, r), we have (h, r′) = (h, r′)(e, r) = (h, r). That is, λs =
λs(g,r) = λ(h,r). Hence, by Lemma 3.2.1, s = (h, r) and so S = H(e,r). Note
that H(e,r)

∼= G and so H(e,r) is a non-trivial subgroup. As in the proof of
Theorem 3.1.2, we have that H(e,r) is a free system. Hence C(S) = 〈H(e,r)〉
is free of rank |G|.

3.5 Proofs of Propositions 3.1.4 and 3.1.5

Proof of Proposition 3.1.4. (⇒). Suppose that C(S) is a right zero semigroup.
Let a, b ∈ S. Then b·a = a. In particular, λab = λa. This implies that abc = ac
for all a, b, c ∈ S.

(⇐). Suppose that abc = ac for all a, b, c ∈ S. Then λab = λa for all
a, b ∈ S. Now, b · a = a if and only if λab = λa and bx · abx = ax for all
x ∈ S. By hypothesis, the latter is equivalent to bx · ax = ax. By recursive
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arguments we now obtain that b ·a = a for all a, b ∈ S. Thus C(S) is a right
zero semigroup.

Proof of Proposition 3.1.5. (⇒). Suppose that C(S) is a left zero semigroup.
Since this left zero semigroup is finitely generated, it is finite. So, by Theo-
rem 3.1.2, S is H-trivial. Let I be the minimal ideal in S. Then 〈I〉 ⊆ C(S)
can be homomorphically mapped onto C(I). Since I is simple and finite,
it is a Rees matrix semigroup. Since S is H-trivial, I = X × Y for some
left zero semigroup X and a right zero semigroup Y . By Lemmas 3.2.2
and 3.2.3, C(I) is a right zero semigroup on |X| points. A homomorphic
image of the left zero semigroup 〈I〉 must be a left zero semigroup. Hence
|X| = 1 and so I is a right zero semigroup.

Let s ∈ S and i ∈ I . Then, since C(S) is a left zero semigroup, s · i = s;
consequently λs = λis. Hence sS = isS ⊆ I for all s ∈ S and so S2 ⊆ I .
Thus I = S2.

(⇐). Suppose that the minimal ideal I of S coincides with S2 and that
I is a right zero semigroup.

Take an arbitrary s ∈ S and fix i ∈ I . Then for every x ∈ S we have
that sx ∈ I and so isx = sx. This implies that λs = λis. By Lemma 3.2.1,
we have that s = is. Therefore S = I and in particular C(S) = 〈I〉. So
it suffices to prove that i · j = i for all i, j ∈ I . Note that if α ∈ S∞, then
α ·i ∈ I∞. Since I is a right zero semigroup, j acts identically on I∞. Hence
α · (i · j) = α · i for all α ∈ S∞ and so i · j = i, as required.

3.6 Proof of Theorem 3.1.6

Proof of Theorem 3.1.6. The proof follows via the chain of implications (1) ⇒
(3) ⇒ (2) ⇒ (1).

(2) ⇒ (1) is clear.
(3) ⇒ (2). Let S be an inflation of a right zero semigroup T . Then for all

s, t, x ∈ S, we have sx = tx. Hence λs = λt and so, by Lemma 3.2.1, s = t
for all s, t ∈ S. It remains to prove that for any fixed s ∈ S, the element s
is an idempotent. We have s = λs(s, . . . , s) and s2 = λs2(s

2, . . . , s2). Thus it
suffices to prove that λs2 = λs. This holds since s2x = sx for all x ∈ S.

(1) ⇒ (3). We will prove by induction on |S| that if C(S) is a group,
then S is an inflation of a right zero semigroup by null semigroups. The
base case |S| = 1 is trivial. So suppose the implication holds for all semi-
groups of cardinality < |S| and C(S) is a group.

Let TS be the transformation semigroup on S. The subsemigroup 〈λs :
s ∈ S〉 in TS is a homomorphic image of the group C(S) and so is a group.
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This implies that the images and kernels of the mappings λs must coincide.
These conditions can be translated as

• sS = tS for all s, t ∈ S and

• sx = sy if and only if tx = ty, for all s, t, x, y ∈ S.

Notice that the condition that sS = tS for all s, t ∈ S is equivalent to
sS = S2 for all s ∈ S. The rest of the proof depends on whether S2 = S or
not.

Case 1: S2 = S.

Then, by the observations above, sS = S2 = S for all s ∈ S. So each
s ∈ S, acting via left-multiplication, permutes S. Then for any s ∈ S, some
power of s is a left identity e for S. Then for all s, x, y ∈ S, the condition
sx = sy implies x = ex = ey = y. Hence S is left cancellative. The
condition that sS = S for all s ∈ S implies that S is right simple.

Therefore S is a right group and so S = G×R for some group G and a
right zero semigroup R, see [18, Theorem 1.27]. By Lemma 3.2.3, we have
C(G×R) = C(G). Hence by Theorem 3.1.1, G must trivial. Then S ∼= R is
a right zero semigroup and so (3) holds.

Case 2: S2 6= S.

The condition of the case means that S contains indecomposable ele-
ments.

Recall that the kernels of all the mappings λs coincide. Partition S into
these kernel classesA1, . . . , Ak and notice that, for every s ∈ S, the equality
sx = sy holds if and only if x and y come from the same class. Further-
more, since the mappings λs generate a subgroup in TS , it follows that
every kernel class Ai contains an image point, which must of course be an
element of S2 (the image of every λs is S2).

The remainder of the proof we will work out in two subcases:

Subcase a: for all a ∈ S \ S2 there exists x ∈ S \ {a} with x(S \ {a}) 6=
(S \ {a})(S \ {a}).

Consider an arbitrary a ∈ S\S2 and find the corresponding x ∈ S\{a}.
That x(S \ {a}) 6= (S \ {a})(S \ {a}) means that there exists an element
uv /∈ x(S \{a}) where u, v ∈ S \{a}. Since uS = S2 = xS, there exists some
b ∈ S with uv = xb. Obviously then b = a. Hence xa /∈ x(S \ {a}). That is,
xa 6= xy for all y ∈ S \ {a}. This is equivalent to that sa 6= sy for all s ∈ S
and y ∈ S \ {a}. The kernel class A that contains a is not a singleton, for it
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must contain an element from S2 and a itself is indecomposable. Take an
arbitrary c ∈ A \ {a}. Then sa = sc for any s ∈ S, a contradiction.

Subcase b: There exists a ∈ S \S2 such that for all x ∈ S \{a} there holds
x(S \ {a}) = (S \ {a})(S \ {a}).

Fix such an a. Obviously T = S \ {a} is a subsemigroup of S.
We will show now that C(T ) is a homomorphic image of C(S) and thus

that C(T ) is a group. Let I be the minimal ideal in S. Then I is simple and
so, being finite, is completely simple. Hence I is a Rees matrix semigroup.
Take now an arbitrary i ∈ I . Since I is a Rees matrix semigroup, there
exists e ∈ I such that ei = i. Then τ(i · a) = λai = λaei = τ(i · ae) and

q(i · a, x) = ix · aix = ix · aeix = q(i · ae, x)

for all x ∈ S. Thus i · a = i · ae in C(S). Since C(S) is a group, we derive
now that a = ae. Since e ∈ I , the element ae must lie in I ⊆ T . Hence
S = T in C(S). Restricting the action of the states from C(S) to T ∗ yields
the automaton C(T ). Therefore C(T ) is a homomorphic image of C(S),
and as so is a group.

So, by the induction hypothesis, T is an inflation of a right zero semi-
group by null semigroups. Suppose without loss of generality that a ∈ Ak.
Then A1, . . . , Ak−1, Ak \ {a} are the corresponding null semigroups from
T . For each i, let ei ∈ Ai be the right zero in Ai. Then S2 = {e1, . . . , ek}.
In particular, ek 6= a since a is indecomposable. Take now ai ∈ Ai and
aj ∈ Aj . Recall that sx = sy as soon as x and y are from the same kernel
class.

1. If ai 6= a and aj 6= a, then aiaj = eiej = ej .

2. If ai 6= a and aj = a, then aiaj = aia = aiek = ek.

3. Let ai = a and aj 6= a. Let aaj = em for some m. Then em = e2m =
emaaj . Since ema ∈ T , it follows that emaaj = ej and so em = emaaj =
ej . Hence aiaj = ej .

4. If ai = aj = a, then aiaj = a2 = aek = ek.

Thus S is an inflation of a right zero semigroup {e1, . . . , ek} and the
induction step is established.

3.7 Further Discussion

The following proposition is an important consequence of Theorem 3.1.2.
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Proposition 3.7.1. Any infinite Cayley automaton semigroup contains a free
semigroup of rank 2.

Proof. Suppose C(S) is infinite. Then S is not H-trivial. So S contains a
non-trivial subgroup G ≤ S. Then 〈G〉 is a free semigroup of rank |G|.

Corollary 3.7.2. The free product of two trivial semigroups Sg〈e, f | e2 =
e, f 2 = f〉 and free commutative semigroups of rank > 1 are all automaton
semigroups, but neither of them is a Cayley automaton semigroup.

Proof. That Sg〈e, f | e2 = e, f 2 = f〉 and free commutative semigroups of
rank > 1 are automaton semigroups can be found in [11]. That neither of
these semigroups is a Cayley automaton semigroup follows immediately
from Proposition 3.7.1.

Remark 3.7.3. The characterization of those finite semigroups S such that
C(S) is a right zero semigroup, is ‘close’ to the characterization of rect-
angular bands: the latter are precisely those semigroups S such that all
the elements from S are idempotents and abc = ac for all a, b, c ∈ S, [45,
Theorem 1.1.3].

In the following example we show that it is possible for a Cayley au-
tomaton semigroup to be a non-trivial left zero semigroup:

Example 3.7.4. Define a finite semigroup S on four points i, j, k, f with
the following multiplication table:

i j k f
i i j k i
j i j k i
k i j k j
f i j k i

Then C(S) is a left zero semigroup on 2 points.

Proof. One checks that the multiplication table indeed gives a semigroup.
By Lemma 3.2.1, i = j = f . Hence, by Proposition 3.1.5, C(S) is a left zero
semigroup generated by j and k. It remains to notice that j 6= k. It follows
from Lemma 3.2.1 and fλj = jf = i 6= j = kf = fλk.

In Theorem 3.1.6 we proved that no Cayley automaton semigroup can
be a non-trivial group. In addition, it is proved in [64] that if S is a finite
H-trivial semigroup, then C(S) is a (finite) H-trivial semigroup. In fact,
the author believes that every Cayley automaton semigroup is H-trivial
and poses the following problem:

Question 1. Are all Cayley automaton semigroups H-trivial?
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3.8 Dual Cayley Automaton Semigroups

Let S be a finite semigroup. Define the dual Cayley machine C∗(S) to be the
automaton, obtained from the right Cayley graph of S with respect to the
generating set S by specifying the output symbol on the arc, going from
s and labeled by x, to be xs. In other words, the states and the letters of
C∗(S) are the elements of S and when C∗(S) is in the state s and reads the
letter x, it moves to the state sx and outputs the letter xs.

The automaton semigroup generated by C∗(S) we will denote by C
∗(S).

The main goal of this section is

Theorem 3.8.1. Let S be a finite semigroup. Then C
∗(S) is finite if and only if

S is H-trivial and does not contain non-trivial right zero subsemigroups.

In comparison to Theorem 3.1.2 there appears an additional condition
to H-triviality. Probably this means that, at least as regards automaton
semigroups, the most natural way to obtain a transducer from the Cayley
graph of a semigroup, is to construct C(S). The remainder of the section
is devoted to the proof of Theorem 3.8.1. The proof will resemble that of
Theorem 3.1.2, but is somewhat easier: there will be no need to deal with
‘long’ words and trying to reduce their lengths. Before we start the proof,
first make some preparation.

In order to distinguish the states and letters in C∗(S), we will write s
to denote the state corresponding to s ∈ S. If S = {s1, . . . , sn}, then the
wreath recursion for s looks like

s = ρs(ss1, . . . , ssn),

where ρs : S → S is given by x 7→ xs.
If x ∈ S and α ∈ C

∗(S), then by q(α, x) we will denote the state, to
which α moves after reading x ∈ S. The transition function of α on S
we will denote by τ(α). So, τ(α) : S → S and for all x ∈ S, xτ(α) is the
symbol which outputs C∗(S), reading x in the state α. By definition, for all
a1, . . . , ak, x ∈ S, we have

q(a1 · · · ak, x) = a1x · a2xa1 · · · akxa1 · · · ak−1.

Also the corresponding transition function τ(a1 · · · ak) is ρa1 · · · ρak = ρa1···ak .

Lemma 3.8.2. Let L be a finite left zero semigroup and S be a finite semigroup.
Then C

∗(S × L) = C
∗(S).

The proof of Lemma 3.8.2 is similar to that of Lemma 3.2.3. However,
the analogue of Lemma 3.2.2 does not hold for the ‘dual’ case:
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Lemma 3.8.3 ([11, Proposition 7]). Let R be a finite right zero semigroup with
|R| > 1. Then C

∗(R) is a free semigroup of rank |R|.

Lemma 3.8.4. Let G be a non-trivial finite group. Then C
∗(G) is infinite.

Proof. Take any non-identity element a ∈ G. Then H = 〈a〉 is a non-trivial
commutative group. Obviously the restriction of the action of the state
h, h ∈ H , to H∞, is the same as the action of h in C

∗(H). Notice that
C(H) = C∗(H) and so, by Theorem 3.1.1, H is a free system. Thus C∗(G) is
infinite.

Proof of Theorem 3.8.1. First notice that the condition that S does not con-
tain non-trivial right zero subsemigroups is equivalent to the condition
that there are no two distinct idempotents e, f ∈ S such that eRf .

(⇒). Suppose that C∗(S) is finite. In the same way as in the proof of
Theorem 3.1.2, one can show that S is H-trivial. It remains to prove that
there are no distinct idempotents e, f ∈ S such that eRf . So, suppose the
converse: that there exist two idempotents e 6= f with eRf . Then {e, f}
is a 2-element right zero semigroup. Restricting the action of e and f to
{e, f}∞ yields the automaton C∗({e, f}). By Lemma 3.8.3, it follows now
that 〈e, f〉 is a free semigroup of rank 2, a contradiction.

(⇐). We will prove by induction on |S| that if S is H-trivial and every
its R-class contains at most one idempotent, then C

∗(S) is finite. The base
case |S| = 1 is obvious. So, assume that S is a finite H-trivial semigroup
with no non-trivial zero subsemigroups and that the hypothesis holds for
all such semigroups of size < |S|.

As in the proof of Theorem 3.1.2, let I be the set of all elements which
do not lie in any maximal D-class of S. By Lemma 3.2.6, I is an ideal. If
I = ∅ then S is a rectangular band, and by assumption is thus a left zero
subsemigroup. Then by Lemma 3.8.2, C∗(S) is trivial and so finite. So in
the remainder of the proof we may assume that I 6= ∅. Analogously as we
did in Lemma 3.3.1, one can prove that I〈S〉1 = I ∪ I〈S〉 is finite. Since

〈S〉 = I〈S〉1 ∪ 〈S \ I〉 ∪ 〈S \ I〉I〈S〉1

we are left to prove that 〈S \I〉 is finite. It follows from the following series
of lemmas.

Lemma 3.8.5. If the set P0 = {a1x · a2xa1 · · · akxa1 · · · ak−1 : a1, . . . , ak ∈
S \ I, x ∈ S} is finite, then 〈S \ I〉 is finite.

Proof. Take a typical product a1 · · · ak ∈ 〈S \I〉 with a1, . . . , ak ∈ S \I . Then

qx = q(a1 · · · ak, x) = a1x · a2xa1 · · · akxa1 · · · ak−1.
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for all x ∈ S. All the elements qx together with τ(a1 · · · ak) define a1 · · · ak
uniquely. This proves the claim.

Lemma 3.8.6. If the set

P1 = {a1x · a2xa1 · · · akxa1 · · · ak−1 | aixa1 · · · ai−1 ∈ S \ I for all i ≤ k}

is finite, then P0 is finite.

Proof. Take a typical product p0 = a1x · a2xa1 · · · akxa1 · · · ak−1 ∈ P0 with
a1, . . . , ak ∈ S \ I and x ∈ S. Let m be the maximal number such that
amxa1 · · · am−1 ∈ S \ I . Then p0 ∈ P1 · (I〈S〉

1)1 and hence the claim.

Lemma 3.8.7. If the set

P2 = {a1 · · · ak | a1, . . . , ak are L − equivalent idempotents from S \ I}

is finite, then P1 is finite.

Proof. Take a typical product p1 = a1x · a2xa1 · · · akxa1 · · · ak−1 ∈ P1. Since
akxa1 · · · ak−1 ∈ S \ I , by Lemma 3.2.6(3) we have that all a1, . . . , ak, x lie
in the same maximal D-class D. Moreover, a1x, . . . , akx ∈ D. Hence by
Lemma 3.2.5, we have that each H-class La1 ∩Rx, . . . , Lak ∩Rx contains an
idempotent. Then, since every two R-equivalent idempotents coincide,
a1L · · · Lak. Now, for all i ≤ k − 1, we have aiai+1 ∈ D and so Lai ∩
Rai+1

contains an idempotent. Having that aiLai+1 and by H-triviality, we
deduce that ai+1 is an idempotent. Then a1 = a1a2 = · · · = a1 · · · ak−1.
Hence

p1 = a1x · a2xa1 · · · akxa1 · · · ak−1 = a1x · a2xa1 · · · akxa1.

Finally, a1x ∈ D and so xa1, being the unique element of La1 ∩ Rx, by
Lemma 3.2.5 is an idempotent. Then for all 2 ≤ i ≤ k, aiLa1Lxa1, and since
ai is an idempotent, we obtain that aixa1 = ai. Therefore p1 = a1x ·a2 · · · ak.
Thus a2, . . . , ak are L-equivalent idempotents, so p1 ∈ S · P2 and we are
done.

Lemma 3.8.8. P2 is finite.

Proof. Take a typical product a1 · · · ak ∈ P2. Then qx = q(a1 · · · ak, x) =
a1x · a2xa1 · · · akxa1 for all x ∈ S. Consider now the following three cases:

Case 1: (a1x, a1) /∈ D.
Then, by Lemma 3.2.6(4), a1x ∈ I and so there are at most k1 = |I〈S〉1|

many such qx-s.
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Case 2: a1xDa1 but (a1x, a1) /∈ L.
Let y ∈ S be arbitrary. Then

qx,y = q(qx, y) = a1xy · a2xa1ya1x · a3xa1ya1xa2xa1 · · · .

We will prove that if k > 2, then a3xa1ya1xa2xa1 ∈ I . Suppose the
contrary. Then a3xa1ya1xa2xa1Da1 and so a1x, a2, a1xa2 all lie in the same
D-class Da1 . Then by Lemma 3.2.5, we obtain that La1x ∩ Ra2 = {e} con-
tains an idempotent. But a1La2 and (a1x, a1) /∈ L, so that a2 and e are
R-equivalent distinct idempotents, a contradiction.

Therefore qx,y ∈ S ∪ S2 ∪ (S2 · I〈S〉1). In turn, it implies that there at
most k2 elements qx, where k2 is a finite number which depends only on S.

Case 3: a1xLa1.
Then a1x ∈ Da1 and so xLa1. Now, by Lemma 3.2.5 we have that

La1 ∩ Rx is an idempotent. Hence x is an idempotent. Therefore a1x = a1,
a2xa1 = a2, . . . , akxa1 = ak. Thus qx = a1 · · · ak.

So, from Case 3 it follows that a1 · · · ak is uniquely determined by τ(a1 · · · ak)
and qx-s with x ∈ S such that (a1x, a1) /∈ L. Thus from Cases 1 and 2 we
have

|P2| ≤ |S| · (k1 + k2)
|S|.

This completes the proof of the theorem.
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Chapter 4

Ideals, Finiteness Conditions and Green
Index for Subsemigroups

In the present chapter we investigate a number of finiteness conditions
related to ideals: stability, J = D, having finitely many ideals, minR, minJ

and π-regularity.
The results of this chapter were obtained in collaboration with Robert

Gray, James Mitchell and Nik Ruškuc and are taken from the work [32].

4.1 Introduction

In this chapter we direct our attention to some finiteness conditions that
are peculiar to semigroups (in the sense that they are trivial for all groups),
mostly related to ideals. More precisely, letting T be a subsemigroup of
finite Green index in a semigroup S, for each of the following properties
P , we are going to prove that T satisfies P if and only if S satisfies P :

• stability (Theorem 4.2.1);

• finitely many ideals (Theorem 4.4.1);

• minR (Theorem 4.5.1);

• minJ (Theorem 4.5.3);

• π-regularity (Theorem 4.6.2).

Perhaps surprisingly, the finiteness condition J = D behaves somewhat
differently: it is preserved by supersemigroups of finite Green index (The-
orem 4.3.1), and is not preserved even by subsemigroups of finite Rees
index (Example 4.3.6). However, under certain regularity conditions, one
can reverse Theorem 4.3.1; see Theorems 4.3.7 and 4.3.8.
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4.2 Stability

Theorem 4.2.1. Let S be a semigroup and let T be a subsemigroup of S with
finite Green index. Then T is (right, left or two-sided) stable if and only if S is
(right, left, or two-sided respectively) stable.

We will need the following lemma:

Lemma 4.2.2. Let S be a semigroup, let T be a right stable subsemigroup of S
with finite Green index, and let a, x ∈ S such that (axi, axj) 6∈ RT for all i 6= j.
Then there exists N ∈ N such that xi ∈ T , axi ∈ T and (axi, ax2i) 6∈ J T for all
i ≥ N .

Proof. Since (axi, axj) 6∈ RT for all i 6= j, it follows that (axi, axj) 6∈ HT

for all i 6= j. There are only finitely many HT -classes in S \ T , this implies
that there exists N ∈ N such that axi ∈ T for all i ≥ N . Likewise, if
(xi, xj) ∈ HT , then (xi, xj) ∈ RT and so, since RT is a left congruence,
(axi, axj) ∈ RT . Therefore without loss of generality we may assume that
xi ∈ T for all i ≥ N .

Hence the right ideal axiT 1 of T properly contains the right ideal ax2iT 1

for all i ≥ N . It follows that the R-class of axi in T is not a minimal R-class
in the J -class of ax2i in T . So, by Proposition 1.4.1(iv), axi and ax2i lie in
separate J -classes of T . That is, (axi, ax2i) 6∈ J T for all i ≥ N .

Proof of Theorem 4.2.1. Clearly it is sufficient to prove the assertion for right
stability.

(⇒) It suffices, by Lemma 1.4.2, to prove that ifRS
a ≤ RS

ba, thenRS
a = RS

ba

for all a, b ∈ S. Let a, b ∈ S be arbitrary and let x ∈ S be such that a = bax.
Then for all i ≥ 1 we have

a = bax = biaxi.

We start by proving that there exist i, j ∈ N such that i < j and (axi, axj) ∈
RT . Seeking a contradiction assume the contrary, that is, (axi, axj) 6∈ RT

for all i 6= j. It follows from Lemma 4.2.2 that there exists N ∈ N such that
(axi, ax2i) 6∈ J T and xi ∈ T for all i ≥ N . Now, if i ≥ N , then

axi = bi · ax2i · 1 & ax2i = 1 · axi · xi.

As (axi, ax2i) 6∈ J T , we deduce that bi ∈ S \ T for all i ≥ N . Since T
has finite Green index, there exist m,n ∈ N such that m − n, n ≥ N and
(bm, bn) ∈ HT . Thus (bm, bn) ∈ LT and so there exists t ∈ T 1 such that
bm = tbn. Hence

a = bmaxm = tbnaxm = t · axm−n · 1 & axm−n = 1 · a · xm−n
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and so (a, axm−n) ∈ J T . Similarly,

a = t2 · ax2(m−n) · 1 & ax2(m−n) = 1 · a · x2(m−n)

implies that (a, ax2(m−n)) ∈ J T . Therefore (axm−n, ax2(m−n)) ∈ J T , a con-
tradiction as m− n ≥ N .

So, we have shown that there exist i < j such that (axi, axj) ∈ RT . In
particular, there exists u ∈ T 1 such that axi = axju. It follows that

ba = bi+1axi = bi+1axju = axj−i−1u.

Thus from the assumption that RS
a ≤ RS

ba we obtain (ba, a) ∈ RS . That is,
RS

ba = RS
a , as required.

(⇐) As in the direct implication it suffices to prove that RT
a ≤ RT

ba im-
plies RT

a = RT
ba for all a, b ∈ T . Let a, b ∈ T be arbitrary and let x ∈ T such

that a = bax = bkaxk. Since RS
a ≤ RS

ba and S is right stable, it follows that
RS

a = RS
ba. Hence there exists y ∈ S1 such that ba = ay (and so, of course,

bka = ayk for all k ≥ 1). Now,

ba = bk+1axk = ayk+1xk. (4.1)

If yk+1xk ∈ T for some k ≥ 1, then ba ∈ aT by (4.1). Then RT
a = RT

ba and
the proof is concluded.

On the other hand if yk+1xk ∈ S \ T for all k ≥ 1, then yk ∈ S \ T
for all k ≥ 2 (as x ∈ T ). Then there exists m ≥ 2 and n ≥ 1 such that
(ym+n, ym) ∈ HT and, in particular, (ym+n, ym) ∈ LT . Hence there exists
t ∈ T 1 such that ym+n = tym. Then for all k ≥ 1 we have that

tkymxm+kn−1 = ym+knxm+kn−1 ∈ S \ T. (4.2)

It follows that ymxm+kn−1 ∈ S \ T for all k ≥ 1 (as t ∈ T 1). Hence there
exist u, v ∈ N such that v > u + 1 and (ymxm+un−1, ymxm+vn−1) ∈ HT . In
particular, (ymxm+un−1, ymxm+vn−1) ∈ RT and so there exists t0 ∈ T 1 where

ymxm+un−1 = ymxm+vn−1t0. (4.3)

To conclude,

ba = aym+unxm+un−1 by (4.1)
= atuymxm+un−1 by (4.2)
= atuymxm+vn−1t0 by (4.3)
= atuymxm+un−1 · x(v−u)nt0
= ba · x(v−u)nt0
= bax · x(v−u)n−1t0
= ax(v−u)n−1t0 ∈ aT.

Thus RT
a = RT

ba, as required.
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4.3 J = D

Theorem 4.3.1. Let S be a semigroup, and let T be a subsemigroup of S with
finite Green index. If J = D in T , then J = D in S.

In order to prove Theorem 4.3.1 we need some preparation. Let S be
a semigroup and T be a subsemigroup of S with finite Green index such
that J = D in T . Note that J S = DS if and only if J S1

= DS1

. Hence we
assume without of loss of generality that S has an identity 1 and that 1 ∈ T
throughout this section. Let a, b ∈ S such that (a, b) ∈ J S . Then define

Qa,b = { (x1, x2, y1, y2) ∈ S × S × S × S : a = x1by1 and b = x2ay2 }.

Note that if (x1, x2, y1, y2) ∈ Qa,b and k > 0, then

(x1(x2x1)
k, x2, y1(y2y1)

k, y2) ∈ Qa,b &
(x1, x2(x1x2)

k, y1, y2(y1y2)
k) ∈ Qa,b.

(4.4)

Lemma 4.3.2. Let a, b ∈ S such that (a, b) ∈ J S and let (x1, x2, y1, y2) ∈ Qa,b.
Then

(i) if {k ∈ N : x1(x2x1)
k ∈ S \ T or x2(x1x2)

k ∈ S \ T} is infinite, then
(b, x1b) ∈ LS and (a, x2a) ∈ LS ;

(ii) if {k ∈ N : y1(y2y1)
k ∈ S \ T or y2(y1y2)

k ∈ S \ T} is infinite, then
(b, by1) ∈ RS and (a, ay2) ∈ RS .

Proof. (i) Assume that x1(x2x1)
k ∈ S \ T for infinitely many k > 0. Then

there exist k, r > 0 such that (x1(x2x1)
k, x1(x2x1)

k+r) ∈ HT . In partic-
ular, (x1(x2x1)

k, x1(x2x1)
k+r) ∈ LT and so there exists t ∈ T such that

x1(x2x1)
k = tx1(x2x1)

k+r. Hence

b = (x2x1)
k+1b(y1y2)

k+1 = x2tx1(x2x1)
k+rb(y1y2)

k+1 = x2tx1(x2x1)
r−1b

and so (b, x1b) ∈ LS .
Also

a = (x1x2)
k+1a(y2y1)

k+1 = tx1(x2x1)
k+rx2a(y2y1)

k+1 = t(x1x2)
ra

and so (a, x2a) ∈ LS .
The result follows by symmetry in the case that x2(x1x2)

k ∈ S \ T for
infinitely many k ∈ N.

(ii) The proof in this case is dual to that of the first case.
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Lemma 4.3.3. Let a, b ∈ S such that (a, b) ∈ J S . If there exists (x1, x2, y1, y2) ∈
Qa,b with x1, x2, y1, y2 ∈ T , then (a, b) ∈ DS .

Proof. It suffices to consider the case when a, b ∈ T and the case when
a, b ∈ S \ T . (The case that a ∈ T and b ∈ S \ T , say, cannot occur as
b = x2ay2 and x2, y2 ∈ T .)

In the first case, when a, b ∈ T , we have that (a, b) ∈ J T and so (a, b) ∈
DT by assumption. Thus (a, b) ∈ DS , as required.

In the second case, when a, b ∈ S \ T , we will prove that (b, x1b) ∈ LS

and (x1b, a) ∈ RS . Since b = (x2x1)
kb(y1y2)

k, we have that (x2x1)
kb ∈ S \ T

for all k ≥ 1. Hence there exist m,n ≥ 1 and t ∈ T with (x2x1)
mb =

t(x2x1)
m+nb (again since T has finite Green index). Then

b = (x2x1)
mb(y1y2)

m = t(x2x1)
m+nb(y1y2)

m = t(x2x1)
nb

and so (b, x1b) ∈ LS .
Analogously, (b, by1) ∈ RS and since RS is a left congruence, (a, x1b) =

(x1by1, x1b) ∈ RS . Moreover, as we have shown, (x1b, b) ∈ LS and the
proof is complete.

Lemma 4.3.4. Let a, b ∈ S such that (a, b) ∈ J S . If (x1, 1, y1, y2) ∈ Qa,b with
y1, y2 ∈ T , then (a, b) ∈ DS .

Proof. As (x1, 1, y1, y2) ∈ Qa,b, we have that a = x1by1 and b = ay2. Hence
a = xk1by1(y2y1)

k−1 for all k ≥ 1. It follows that (xk1, 1, y1(y2y1)
k−1, y2) ∈ Qa,b.

Hence if there exists k ∈ N such that xk1 ∈ T , then (a, b) ∈ DS by Lemma
4.3.3.

Thus we may assume that xk1 ∈ S \ T for all k ≥ 1. This implies that
there exist m,n ≥ 1 such that xm+n

1 = txm1 for some t ∈ T (again since T
has finite Green index in S). Hence

a = xm+n
1 b(y1y2)

m+n−1y1 = txm1 b(y1y2)
m+n−1y1 = t · b · (y1y2)

n−1y1.

It follows that the quadruple (t, 1, (y1y2)
n−1y1, y2) lies in Qa,b and all its

entries are in T and the result follows by Lemma 4.3.3.

The following lemma provides the crucial step in the proof of Theo-
rem 4.3.1.

Lemma 4.3.5. Let a, b ∈ S such that (a, b) ∈ J S . If (x1, x2, y1, y2) ∈ Qa,b with
y1, y2 ∈ T , then (a, b) ∈ DS .

Proof. There are two cases to consider: either
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1. there exists N ∈ N such that x1(x2x1)
k, x2(x1x2)

k ∈ T for all k ≥ N ;
or

2. x1(x2x1)
k or x2(x1x2)

k ∈ S \ T for infinitely many k.

In Case (1), the quadruple

(x1(x2x1)
N , x2(x1x2)

N , y1(y2y1)
N , y2(y1y2)

N)

lies in Qa,b and all of its entries are in T . Hence the result follows by
Lemma 4.3.3.

To prove the lemma in Case (2), note that x2a = x2x1 · b · y1 and b =
1 · x2a · y2. This implies that (x2a, b) ∈ J S and (x2x1, 1, y1, y2) ∈ Qx2a,b. So,
by Lemma 4.3.4, (x2a, b) ∈ DS . By the assumption of Case (2) it follows
from Lemma 4.3.2(i) that (x2a, a) ∈ LS . Therefore (a, b) ∈ DS .

We can now use Lemmas 4.3.2 and 4.3.5 to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. Let a, b ∈ S such that (a, b) ∈ J S . Then by Lemma
4.3.5, if there exists (x1, x2, y1, y2) ∈ Qa,b with either x1, x2 ∈ T or y1, y2 ∈ T ,
then the proof is concluded.

If neither of these conditions hold, then for all (x1, x2, y1, y2) ∈ Qa,b and
for all k ∈ N we have x1(x2x1)

k or x2(x1x2)
k ∈ S \ T and y1(y2y1)

k or
y2(y1y2)

k ∈ S \ T (from (4.4)). Therefore by Lemma 4.3.2, (b, x1b) ∈ LS and
(b, by1) ∈ RS . Thus (a, by1) = (x1b · y1, by1) ∈ LS and so (a, b) ∈ DS .

The property J = D is not inherited the other way round, from S to T ,
even for the finite Rees index, as the following example shows.

Example 4.3.6. We are going to define a semigroup S by means of a (fairly
large) presentation. The generators are

A = {a, b, c, d, x},

and the main relations are

bxa = ac, acd = a, dc = cd, x3 = x, x2a = a. (4.5)

There is also a number of zero relations, making the ‘unnecessary’ prod-
ucts of generators equal to zero:

aa = ab = ax = 0

ba = bb = bc = bd = 0

ca = cb = cx = 0

da = db = dx = 0

xc = xd = 0,

bx2b = 0.
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As a consequence of these relations

ack+1d = acdck = ack

for all k ≥ 0. A routine check confirms that the presentation together with
the relations ack+1d = ack, viewed as the correspondent rewriting system
is confluent. It is easy to see that this rewriting system is also terminat-
ing: it is length reducing, except for the relation dc = cd, which pushes ds
systematically to the right. Therefore, a set of normal forms for non-zero
elements is provided by all the words from A+ which do not contain the
left hand side of a relation as a subword; they are:

x, x2

aci, adj, xaci, xadj, cidj (i, j ≥ 0),

xj(bx)ibkxl (i ≥ 0, j = 0, 1, 2, k = 0, 1, l = 0, 1, 2).

The non-singleton Green’s classes in S are:

Lx = Rx = Dx = Jx = {x, x2},

Laci = {aci, xaci}, Ladi = {adj, xadj},

Ra = {aci, adi : i ≥ 0}, Rxa = {xaci, xadi : i ≥ 0},

Lxaci = {xaci, x2aci}, Lxadi = {xadi, x2adi},

Ja = {aci, adi, xaci, xadi : i ≥ 0},

Lx(bx)ibkxl = {x(bx)ibkxl, x2(bx)ibkxl},

Rxj(bx)ibkx = {xj(bx)ibkx, xj(bx)ibkx2}.

Therefore J S = DS .
Let now T = S \ {x}. The only words of S that are equal to x are

x2i+1, where i ≥ 0. Such a word cannot be expressed as a product of two
elements of T . Hence T is a subsemigroup of S. Now note that

a = b · xa · d, xa = xbx · a · d;

hence (a, xa) ∈ J T . We claim that (a, xa) 6∈ DT . Viewed in S we have

Ra = {aci, adi : i ≥ 0}.

However, unlike the situation in S, the L-class of xa in T is trivial. Indeed,
the only elements of T we can premultiply xa with and not obtain 0 are
of the form x2 and xj(bx)ixl with i > 0 and l ∈ {0, 2}. After rewriting
xj(bx)ibkxl · xa we can obtain only the words aci and xaci. Thus, by pre-
multiplying xa by elements of T , except x2, we never get back to xa, and
so Lxa is trivial in T . Therefore Lxa ∩Ra = ∅ in T , and hence (a, xa) 6∈ DT .
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What is really curious is that under certain regularity assumptions, the
property J = D is inherited the other way as well. Below are two sample
results. We have not been able to obtain a single satisfactory general result.

Theorem 4.3.7. Let T be a subsemigroup in a semigroup S with finite Green
index. Let also T be regular. Then J = D in S implies J = D in T .

Theorem 4.3.8. Let T be a subsemigroup in a semigroup S with finite Rees index.
Let also S be regular. Then J = D in S implies J = D in T .

In order to prove them we need the following technical lemma:

Lemma 4.3.9. Let S be a semigroup, and let T be a subsemigroup of finite Green
index in S. Let also a, b ∈ T be such that aDSab. Then there exists c ∈ T such
that aLScRSab and cJ Ta.

Proof. Since aDSab, there exists c ∈ S such that aLScRSab. It means that
there exist x1, x2, y1, y2 ∈ S1 with

a = x1c ab = cx2

c = y1a c = aby2.

Then a = x1 · a · by2 and c = x1 · c · by2.
The considerations are split into two cases.

Case 1: there are infinitely many k ≥ 1 with (by2)
k ∈ S \ T . Then there

exist k, n ≥ 1 such that (by2)
kHT (by2)

k+n. In particular there exists t ∈ T 1

such that (by2)
k+nt = (by2)

k. Then

a = xk1a(by2)
k = xk1a(by2)

k+nt = a(by2)
nt = c · (by2)

n−1t.

Having that c = a · by2, we obtain aRSc. Then aRSab and so aLSaRSab, as
required since aJ Ta trivially.

Case 2: there exists k0 ≥ 1 such that (by2)
k ∈ T for all k ≥ k0. We prove

first that c ∈ T . Suppose the converse: c ∈ S \T . Recall that c = xk1c · (by2)
k

and c ∈ S \ T . Hence xk1c ∈ S \ T for all k ≥ k0. Then there exist k, n ≥ k0
such that xk1cH

Txk+n
1 c. In particular, txk1c = xk+n

1 c for some t ∈ T 1. Then

c = xk+n
1 c(by2)

k+n = txk1c(by2)
k+n = tx1 · c · (by2)

n+1 = t · a · (by2)
n.

Since n ≥ k0, we obtain c ∈ T , a contradiction. Hence c ∈ T . It remains to
prove that cJ Ta.
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Now, we have c = xk1 · a · (by2)
k+1 for all k ≥ k0. If there are infinitely

many k such that xk1 ∈ S\T , then there exist k, n ≥ k0 such that xk+n
1 = t·xk1

for some t ∈ T . Then

c = xk+n
1 · a · (by2)

k+n+1 = txk1 · a · (by2)
k+n+1 = t · a · (by2)

n+1

and so c ∈ TaT . On the other hand, if xk1 ∈ T for all k ≥ N0 for some
N0 ≥ k0, then c = xN0

1 · a · (by2)
N0+1 and so c ∈ TaT .

Having a = xk+1
1 ·c·(by2)

k for all k ≥ k0, by analogous reasoning as in the
previous paragraph we deduce that a ∈ TcT . Thus cJ Ta, as required.

Proof of Theorem 4.3.7. Take two J T -equivalent elements t1 and t2 from T .
Then there exist elements α1, α2, β1, β2 ∈ T 1 with t1 = α1t2β1 and t2 =
α2t1β2. Then t1J

T t1β2J
T t2 and t2 = α2 · t1β2. Hence, to prove the theo-

rem, it suffices to establish that, for every two elements a, b ∈ T , if aJ Tab
then aDTab, and that if aJ T ba then aDT ba. We will prove only the first
assertion.

So suppose that a, b ∈ T are such that aJ Tab. Then aJ Sab and so
aDSab. By Lemma 4.3.9 we have that aLScRSab for some c ∈ T . Recall
that if P is a regular subsemigroup of a semigroup Q and x, y ∈ P are R-
equivalent (resp. L-equivalent) in Q, then x and y are R-equivalent (resp.
L-equivalent) in P . Now, since T is regular, we have aLT c and cRTab.
Thus aDTab and we are done.

Before proving Theorem 4.3.8 we need another technical result:

Lemma 4.3.10. Let T be a semigroup and x, y, α, β, γ, δ ∈ T such that x = αyβ
and y = γxδ. Furthermore, assume that there exists n ∈ N such that y = y(βδ)n.
Then x and y are D-related in T .

Proof. First notice that yRyβ. Now,

y = (γα)n · y · (βδ)n = (γα)ny.

Hence yβ = (γα)n−1γ · αyβ = (γα)n−1γ · x. Having x = α · yβ we now
obtain yβLx. Thus xDy.

Proof of Theorem 4.3.8. As in the proof of Theorem 4.3.7, it suffices to prove
that if aJ Tab then aDTab for all a, b ∈ T . So, let aJ Tab for some a, b ∈ T .
Then aDSab. By Lemma 4.3.9 we have that there exists c ∈ JT

a = JT
ab such

that aLScRSab.
Therefore, in order to prove the theorem, it is enough to prove that if

x, y ∈ T are such that xRSy [xLSy] and xJ Ty, then xDTy. We will do this
only for the R-case.
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So, let x, y ∈ T be such that xJ Ty and xRSy. We need to prove that
xDTy. There exist x′, y′ ∈ S such that x = xx′x and y = yy′y. There also
exist α, β, γ, δ ∈ T such that x = αyβ and y = γxδ. We have four possible
cases.

Case 1: x ∈ yT and y ∈ xT . Then immediately xRTy, as required.

Case 2: x = yt and y = xf for some t ∈ T and f ∈ S \T . In this case we have
to distinguish three subcases:

Subcase 2a: x′ ∈ T and y′ ∈ T . Then xRTxx′ and yRTyy′. In addition,
xx′RSxRSyRSyy′. Hence xx′ = yy′ · xx′ and yy′ = xx′ · yy′. Therefore
xx′RTyy′ and so xRTy.

Subcase 2b: x′ ∈ S \ T and y′ ∈ T . Then yRTyy′. Moreover,

x = yy′ · yt (4.6)

yy′ = x · fy′. (4.7)

If fy′ ∈ T then xRTyy′ and so xRTy. So, let fy′ ∈ S \ T . Recall that
xRSyy′ and xJ Tyy′. Since it suffices to prove that xDTyy′, in view of (4.6),
without loss of generality we may assume that y2 = y and put y′ = y. Now,
y = x · fy. If fy ∈ T then xRTy, as required. Hence we may assume that
fy ∈ S \T . Then f(γα)k · y(βδ)k ∈ S \T for all k ≥ 1 and so f(γα)k ∈ S \T
for all k ≥ 1. This implies that f(γα)k = f(γα)k+n for some k, n ≥ 1. Then

fy = f · (γα)k+ny(βδ)k+n = f(γα)ky(βδ)k+n = fy(βδ)n.

Hence y = x · fy = xfy(βδ)n = y(βδ)n and so by Lemma 4.3.10, xDTy, as
required.

Subcase 2c: y′ ∈ S \ T . Then y = x · fy′y. If fy′y ∈ T then xRTy. Hence
we may assume that fy′y ∈ S \ T . Then fy′(γα)k · y(βγ)k ∈ S \ T for all
k ≥ 1. Thus fy′(γα)k ∈ S \ T for all k ≥ 1. Then there exist k, n ≥ 1 such
that fy′(γα)k = fy′(γα)k+n. Hence

fy′(γα)k = fy′(γα)k+nr

for all r ≥ 1. Since y = xf , we have yy′(γα)k = yy′(γα)k+nr for all r ≥ 1.
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Now,

y = yy′y

= yy′(γα)ky(βδ)k

= yy′(γα)k+nry(βδ)k

= yy′(γα)nry

for all r ≥ 1. Hence we may assume that y′(γα)nr ∈ S \ T for all r ≥ 1
(otherwise we can move to Subcase 2b and obtain that xDTy). So, there
exist r1 < r2 with r2 − r1 > 1 such that y′(γα)nr1 = y′(γα)nr2 . Then

y′y(βδ)n = y′(γα)nr1 · y(βδ)n(r1+1)

= y′(γα)nr2 · y(βδ)n(r1+1)

= y′(γα)n(r2−r1−1)y.

This yields

y = y · y′(γα)n(r2−r1−1)y = yy′y · (βδ)n = y(βδ)n

and so xDTy by Lemma 4.3.10.

Case 3: x = yf and y = xt for some t ∈ T and f ∈ S \ T . This case is dual to
Case 2.

Case 4: x = yf1 and y = xf2 for some f1, f2 ∈ S \ T . Once again we will
distinguish three subcases:

Subcase 4a: x′ ∈ T and y′ ∈ T . Then immediately xRTy.

Subcase 4b: x′ ∈ S \ T and y′ ∈ T . Note first that

x = yy′ · yf1

yy′ = x · f2y
′.

If any of yf1 and f2y
′ is in T then we move to Cases 1–3 and derive that

xDTyy′. Since yRTyy′, then xDTy and we are done. Hence without loss
of generality we may assume that y2 = y and y′ = y. Then y = x · f2y. If
f2y ∈ T then we move to Case 3 and the proof is complete. So we may
assume that f2y ∈ S \ T . Then, as before, f2(γα)

k ∈ S \ T for all k ≥ 1.
Then f2(γα)

k+n = f2(γα)
k for some k, n ≥ 1. This implies f2y(βδ)

n = f2y
and so

y = xf2y = xf2y(βδ)
n = y(βδ)n.
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Then by Lemma 4.3.10, xDTy.

Subcase 4c: y′ ∈ S \ T . Then in the same way as in Subcase 2c we can
show that we either can move to Subcase 4b or move to Case 3. In any of
cases we have xDTy.

The only case we have not covered leads to the following problem:

Question 2. Let T be a subsemigroup in a semigroup S with finite Green
index. Let also S be regular and J = D in S. Is it true then that J = D in
T ?

4.4 Finitely Many Ideals

In [33] it was proved that if T is a subsemigroup of finite Green index in a
semigroup S, then T has finitely many right (left) ideals if and only S has
finitely many right (resp. left) ideals. We prove here the same theorem for
the case of two-sided ideals:

Theorem 4.4.1. Let S be a semigroup and let T be a subsemigroup of S with
finite Green index. Then T has finitely many ideals if and only if S has finitely
many ideals.

Proof. (⇒) Suppose that T has finitely many ideals, or, equivalently, finitely
many J -classes. Let J be an arbitrary J -class of S. Then J ∩ T is a union
of J -classes of T , while J ∩ (S \ T ) is a union of relative RT -classes. It
follows that S has finitely many J -classes.

(⇐) Let now S have finitely many ideals, and suppose that T has in-
finitely many ideals. Then there exists a J -class J of S which contains
infinitely many J -classes of T . In particular, it either contains an infinite
chain

Ju1
> Ju2

> . . .

or an infinite chain

Ju1
< Ju2

< . . .

or an infinite antichain

Ju1
, Ju2

, . . .

of J -classes of T . In any case, for any number M ≥ 1, it is possible to find
elements u1, . . . , uM in J such that

Jui
6≤ Juj

(1 ≤ i < j ≤M) (4.8)
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in T . Take so far M to be some unspecified number, we will discuss later
what we should take for M .

Since ui and uj are J -related in S for all 1 ≤ i < j ≤M , we can write

ui = αiui+1βi (i = 1, 2, . . . ,M − 1; αi, βi ∈ S). (4.9)

Define
αi,j = αiαi+1 . . . αj−1, βi,j = βj−1 . . . βi+1βi (4.10)

for all 1 ≤ i < j ≤M . These elements satisfy

ui = αi,jujβi,j (1 ≤ i < j ≤M). (4.11)

From (4.11) and (4.8) it follows that for all 1 ≤ i < j ≤ M at least one
of αi,j , βi,j is not in T . By Ramsey’s Theorem, for any a priori prescribed
M1 ≥ 1, there exists M such that there exists an subset I ⊆ {1, . . . ,M} of
size M1 such that either αi,j ∈ S \ T for all i, j ∈ I , i < j, or else βi,j ∈ S \ T
for all i, j ∈ I , i < j. Without loss of generality assume the first of these
possibilities occurs. By discarding all the values of i, j not belonging to
I , and then renumbering, we see that without loss of generality we may
assume

αi,j ∈ S \ T (1 ≤ i < j ≤M1). (4.12)

M1 is again unspecified, but shortly it will be clear what should we take
for M1.

A similar application of Ramsey’s Theorem shows that for any a priori
prescribed number M2 ≥ 1 there exists M1 ≥ 1 such that we can find a set
P ⊆ {1, . . . ,M1} of size M2 such that

βi,j ∈ T (i < j, i, j ∈ P ), or

βi,j ∈ S \ T (i < j, i, j ∈ P ).

It will be clear shortly what one needs to take for M2. Again, without loss
of generality we may assume that one of the two following cases concern-
ing βi,j occurs:

βi,j ∈ T (1 ≤ i < j ≤M2), or (4.13)

βi,j ∈ S \ T (1 ≤ i < j ≤M2). (4.14)

Let us examine each of them in turn.
Suppose first that (4.13) holds. Then we can find large enough N ∈ N

and M2 ≥ N so as to guarantee, by the Pigeonhole Principle, that there
exist i, j (1 ≤ i < j ≤ N ) such that

(αi,N , αj,N) ∈ HT (4.15)
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and write
αi,N = aαj,N (a ∈ T ). (4.16)

Now we have

ui = αi,NuNβi,N (by (4.11))
= aαj,NuNβi,N (by (4.16))
= aαj,NuNβN−1 . . . βjβj−1 . . . βi (by (4.10))
= aαj,NuNβj,Nβj−1 . . . βi (by (4.10))
= aujβj−1 . . . βi (by (4.11))

This, together with (4.13), contradicts (4.8).
Consider now the situation where (4.14) holds, and let N ∈ N and

M2 ≥ N be large enough to guarantee the existence of i, j (1 ≤ i < j ≤ N )
such that

(αi,N , αj,N), (βi,N , βj,N) ∈ HT , (4.17)

and write
αi,N = aαj,N , βi,N = βj,Nb (a, b ∈ T ). (4.18)

Now we have
ui = αi,NuNβi,N (by (4.11))

= aαj,NuNβj,Nb (by (4.18))
= aujb (by (4.11)),

again contradicting (4.8). This completes the proof of the theorem.

4.5 Minimal Conditions for Ideals

Theorem 4.5.1. Let S be a semigroup and let T be a subsemigroup of S with
finite Green index. Then T has minR if and only if S has minR.

Proof. Obviously without loss of generality we may assume that S has an
identity 1 and 1 ∈ T .

(⇒) Let T have minR. Assume that S does not have minR. Then there
exists an infinite chain RS

x1
> RS

x2
> RS

x3
> · · · where xi ∈ S.

If there are infinitely many elements from S \ T among x1, x2, . . ., then
there exist i < j such that xiH

Txj . Then xiR
Txj and so xiR

Sxj , a contradic-
tion. Hence there are only finitely many i such that xi ∈ S \T , and without
loss of generality we may assume that xi ∈ T for all i ≥ 1. Now, for every
n ≥ 1 there exists pn ∈ S such that xnpn = xn+1. Then x1 ·p1 · · · pi = xi+1 for
all i ≥ 1. If p1 · · · pi ∈ S \ T for all i ≥ 1, then there would exist i < j such
that p1 · · · piR

Tp1 · · · pj and so xi+1 = x1p1 · · · piR
Sx1p1 · · · pj = xj+1, a con-

tradiction. Hence there exists i1 such that p1 · · · pi1 ∈ T . Then RT
x1

≥ RT
xi1+1

.

84



Analogously, there exists i2 > i1 such that RT
xi1+1

≥ RT
xi2+1

. Proceed-

ing in this way, there exists an infinite sequence i1 < i2 < · · · such that
RT

x1
≥ RT

xi1+1
≥ RT

xi2+1
≥ RT

xi3+1
≥ · · · . Since every xi lies in T and T has

minR, we obtain that RT
xik+1

= RT
xin+1

for some k < n. Then RS
xik+1

= RS
xin+1

,

a contradiction.
(⇐) Let S have minR. Assume that T does not have minR. Then there

exists an infinite chain RT
x1
> RT

x2
> RT

x3
> · · · where xi ∈ T . Since RS

x1
≥

RS
x2

≥ RS
x3

≥ · · · , we may assume without loss of generality that RS
xn

=
RS

xn+1
for all n ≥ 1. Then for every n ≥ 1 there exists qn ∈ S with xn+1qn =

xn. Now,
x1 = x2q1 = · · · = xn+1qn · · · q1

for all n ≥ 1. Hence qn · · · q1 ∈ S \T for all n ≥ 1. Then there exist numbers
i < j < N such that qN · · · qiH

T qN · · · qj . In particular, there exists t ∈ T
with qN · · · qi = qN · · · qj · t. Then

xi = xN+1qN · · · qi = xN+1qN · · · qjt = xjt,

a contradiction.

Now we will prove an analogue of Theorem 4.5.1 for minJ . For this we
will require the following lemma.

Lemma 4.5.2. Let T be a subsemigroup of finite Green index in a semigroup S.
Let also JS

x1
> JS

x2
> JS

x3
> · · · be an infinite chain where xi ∈ T for all i ≥ 1.

Then there is a sequence n1 < n2 < n3 < · · · such that JT
xn1

≥ JT
xn2

≥ JT
xn3

≥
· · · .

Proof. For each n ≥ 1 there exist pn, qn ∈ S such that xn+1 = pnxnqn. Define
pi,j = pj−1 · · · pi and qi,j = qi · · · qj−1 for all 1 ≤ i < j. Then xj = pi,jxiqi,j for
all 1 ≤ i < j. We will say that an element s ∈ S is of the first type if s ∈ T ,
and is of the second type if s ∈ S \T . By Ramsey’s Theorem there exists an
infinite subset I ⊆ N such that all the elements pi,j with i < j and i, j ∈ I
are of the same type, and all the elements qi,j with i < j and i, j ∈ I are of
the same type. By renumbering, without loss of generality we may assume
that I = N. If all pi,j and qi,j are of the first type, then JT

x1
≥ JT

x2
≥ JT

x3
≥ · · ·

and we are done. Hence either all pi,j are of the second type, or all qi,j are
of the second type. Without loss of generality we may assume the former
case, i.e. pi,j ∈ S \T for all 1 ≤ i < j. Now we consider two possible cases:

Case 1: qi,j ∈ T for all 1 ≤ i < j. By Ramsey’s Theorem there exists an
infinite subset J ⊆ N such that all the pi,j with i < j and i, j ∈ J lie in the
same HT -class. Up to renumbering, we may assume that J = N. Then, in
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particular, pn+1pnH
Tpn for all n ≥ 1. Hence there exists tn+1 ∈ T such that

pn+1pn = tn+1pn. Then

xn+2 = pn+1pnxnqnqn+1 = tn+1pnxnqnqn+1 = tn+1xn+1qn+1 ∈ Txn+1T

for all n ≥ 1. Therefore JT
x2

≥ JT
x3

≥ JT
x4

≥ · · · .

Case 2: qi,j ∈ S \ T for all 1 ≤ i < j. By the Pigeonhole Principle there
exist numbers N < i < j such that pN,iH

TpN,j and qN,iH
T qN,j . Then there

exist t1, t2 ∈ T such that pN,i = t1pN,j and qN,i = qN,jt2. Then

xi = pN,ixNqN,i = t1pN,jxNqN,jt2 = t1xjt2,

and so JS
xi
= JS

xj
, a contradiction.

Theorem 4.5.3. Let S be a semigroup and let T be a subsemigroup of S with
finite Green index. Then T has minJ if and only if S has minJ .

Proof. Without loss we may assume that S has an identity 1 and that 1 ∈ T .
(⇒) Let T have minJ . Assume that S does not have minJ . Then there

exists an infinite chain JS
x1
> JS

x2
> JS

x3
> · · · where xi ∈ S. As in the proof

of Theorem 4.5.1 we may assume that xi ∈ T for all i ≥ 1. By Lemma 4.5.2
there exists a sequence n1 < n2 < n3 < · · · such that JT

xn1
≥ JT

xn2
≥ JT

xn3
≥

· · · . Therefore JT
xk

= JT
xn

for some k < n. Then JS
xk

= JS
xn

, a contradiction.
(⇐) Let S have minJ . Assume that T does not have minJ . Then there

exists an infinite chain JT
x1
> JT

x2
> JT

x3
> · · · where xi ∈ T . As in the

proof of Theorem 4.5.1 we may assume that JS
xn

= JS
xn+1

for all n ≥ 1. Then
for each n ≥ 1 there exists pn, qn ∈ S such that xn = pnxn+1qn. Define
pi,j = pi · · · pj−1 and qi,j = qj−1 · · · qi for all 1 ≤ i < j. Then xi = pi,jxjqi,j
for all 1 ≤ i < j. It follows that for every i < j, either pi,j ∈ S \ T ,
or qi,j ∈ S \ T . By Ramsey’s Theorem and up to renumbering, we may
assume that pi,j ∈ S \ T for all i < j. Furthermore, we may even assume
that all of pi,j lie in the same HT -class.

Take arbitrary i < j. Then pi,jpj = pi,j+1H
Tpj,j+1 = pj and so there ex-

ists t ∈ T such that pi,jpj = tpj . Then xi = pi,jpjxj+1qjqi,j = tpjxj+1qjqi,j =
txjqi,j and so qi,j ∈ S \ T .

Now, by the Pigeonhole Principle there exist numbers i < j < N such
that pi,NH

Tpj,N and qi,NH
T qj,N . Therefore there exist t1, t2 ∈ T such that

pi,N = t1pj,N and qi,N = qj,N t2. Then

xi = pi,NxNqi,N = t1pj,NxNqj,N t2 = t1xjt2,

a contradiction. This proves the theorem.
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Proposition 4.5.4. Let T be a subsemigroup of finite Green index in a semigroup
S. If T has a minimal ideal, then S has a minimal ideal.

Proof. Let I be a minimal ideal in T and assume that S does not have
a minimal ideal. Take any x ∈ I . Then there exists an infinite chain
JS
x > JS

x1
> JS

x2
> · · · where xi ∈ S. As in the proof of Theorem 4.5.3

we may assume that xi ∈ T for all T . Now, JT
x1

≥ JT
x and so JS

x1
= JS

x , a
contradiction.

4.6 π-regularity

We close the chapter by discussing one more important finiteness condi-
tion, this time not related to ideals.

Definition 4.6.1. A semigroup S is π-regular if for every s ∈ S there exists
n ∈ N such that sn is a regular element of S.

π-regular semigroups are important as they generalise the regular semi-
groups, and cover a big class of non-regular semigroups with behaviour
similar to that of the regular semigroups.

Theorem 4.6.2. Let S be a semigroup and let T be a subsemigroup with finite
Green index. Then S is π-regular if and only if T is π-regular.

Proof. Suppose that T is π-regular and let s ∈ S be arbitrary. If sm ∈ T for
some m ∈ N then since T is π-regular, (sm)n = smn is regular in T (and
hence also in S) for some n ∈ N. Otherwise sm 6∈ T for all m and since
T has finite Green index in S there exist n, r ∈ N with sn+rHT sn. Then as
in the proof of [33, Theorem 18] choosing z ∈ N with 0 ≤ z ≤ r − 1 and
n + z ≡ 0 (mod r) we have (sn+z)2HT sn+z. In particular sn+z is a regular
element of S.

For the converse, suppose that S is π-regular and let t ∈ T . Since S is
π-regular there exists an infinite subset I ⊆ N such that ti is regular in S
for all i ∈ I . For each i ∈ I let si be an inverse of ti in S, so

tisit
i = ti & sit

isi = si. (4.19)

If si ∈ T for some i ∈ I then ti is regular in T and we are done, so suppose
otherwise. For all i ∈ I , set fi = tisi noting that by (4.19), fi is an idempo-
tent satisfying fiR

Sti and fiL
Ssi. Since si ∈ S \ T for all i ∈ I , and T has

finite Green index in S, it follows that there is an infinite subset J ⊆ I such
that for all i, j ∈ J we have siH

T sj . Let i, j ∈ J be arbitrary, with i < j say.
Then

fiL
SsiL

SsjL
Sfj
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and therefore fifj = fi. Since RS is a left congruence tjRSfj implies
fit

jRSfifj and hence

tj = titj−i = tisit
itj−i = (tisi)t

j = fit
jRSfifj = fiR

Sti.

By a dual argument tjLSti and hence tjHSti.
Since i, j ∈ J were arbitrary it follows that tkHStl for all k, l ∈ J . By [33,

Proposition 10] each HS-class of S is a union of finitely many HT -classes.
Since J is infinite it follows that there exist p, q ∈ J with tpHT tq. Now
as in the proof of the converse above we can find a number y ∈ N with
(ty)2HT ty, and we conclude that ty is a regular element of T .

In view of Theorem 4.6.2 and our previous discussion of the finiteness
condition J = D, the following problem is of great interest:

Question 3. Let T be a subsemigroup in a semigroup S with finite Green
index. Let also T or S be π-regular, and J = D in S. Is it true then that
J = D in T ?
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Chapter 5

Hopficity and Rees Index for Semigroups

In this chapter we prove the following: If a finitely generated semigroup
S has a hopfian subsemigroup T of finite Rees index then S is hopfian too.
This no longer holds if S is not finitely generated. There exists a finitely
generated hopfian semigroup S with a non-hopfian subsemigroup T such
that S \ T has size 1.

The results of this chapter were obtained in collaboration with Nik
Ruškuc and are taken from [60].

5.1 Introduction and the Statement of Main Result

An algebraic structure A is said to be hopfian if no proper quotient of A is
isomorphic toA, or, equivalently, if every surjective endomorphism ofA is
an automorphism. Hopficity is clearly a finiteness condition (i.e. all finite
algebraic structures are hopfian), and so the question arises of its preserva-
tion under substructures that are in some sense ‘large’, or extensions that
are in some sense ‘small’.

The property was introduced by Hopf [44] who asked if every finitely
generated group was hopfian. The group defined by Gp〈a, b : a−1b2a = b3〉
is an easy (but not the first) counter-example; see [7]. In the same paper the
authors show that the group Gp〈a, b : a−1b12a = b18〉 is hopfian, but con-
tains a normal non-hopfian subgroup of index 6. In particular, hopficity is
not preserved by subgroups of finite index, even in the finitely generated
case. By way of contrast, Hirshon [41] proved that if H is a hopfian sub-
group of finite index in a finitely generated group G, then G is hopfian as
well. To the best of our knowledge, it is still open if the same statement
holds without finite generation assumption.

The purpose of this chapter is to demonstrate that the situation in semi-
groups with respect to finite Rees index is analogous to the above de-
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scribed situation for groups with respect to the group-theoretic index.
Here we prove that, provided the semigroup is finitely generated, hop-

ficity is preserved by finite Rees index extensions:

Theorem 5.1.1. Let S be a finitely generated semigroup, and let T be a subsemi-
group with S \ T finite. If T is hopfian then S is hopfian as well.

Accompanying Theorem 5.1.1 are two examples, establishing the fol-
lowing:

• if finite generation assumption is removed, Theorem 5.1.1 no longer
holds; and

• hopficity is not inherited by finite Rees index subsemigroups, even
in the finitely generated case.

Theorem 5.1.1 is proved in Section 5.4, although the brunt of the work
is in proving a result concerning finite Rees index and endomorphisms in
Section 5.3. The accompanying examples are exhibited before and after
the proof, in Sections 5.2 and 5.5 respectively. The final section contains
some further commentary and open problems.

5.2 An Introductory Example

The purpose of this section is to show that, without adding the finite gen-
eration assumption, hopficity is not preserved by either finite Rees index
extensions or subsemigroups.

We begin by defining a family of isomorphic semigroups Ti = 〈bi : b
2
i =

b4i 〉, i ∈ N. Form their union T =
⋃

i∈N Ti, and extend the multiplication
defined on each Ti to a multiplication on the whole of T by letting xy =
yx = y for any x ∈ Ti, y ∈ Tj , i < j. It is easy to see that this turns T into a
semigroup.

Further, let F be the semigroup 〈a : a5 = a2〉, let S = T ∪ F , and extend
the multiplication on T and F to a multiplication on the whole of S by
xy = yx = y for x ∈ F , y ∈ T . Again, this turns S into a semigroup.
Finally, let S1 be the semigroup S with an identity adjoined to it. Clearly
we have T ≤ T 1 ≤ S1, a sequence of finite Rees index extensions.

Proposition 5.2.1. The semigroups S1 and T are hopfian, while the semigroup
T 1 is not. Hence, hopficity is preserved by neither finite Rees index extensions
nor subsemigroups
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Proof. T is hopfian. Let φ : T → T be a surjective endomorphism. Since
b1 is the only indecomposable element of T (in the sense that it cannot be
written as a product of any two elements of T ), we must have b1φ

−1 = {b1}.
In particular φ↾T1

is the identity mapping. The set of elements on which b1
acts trivially (meaning b1x = xb1 = x) is precisely T \T1, so φ maps this set
onto itself. But clearly T \ T1 is a subsemigroup isomorphic to T , and an
inductive argument shows that φ is in fact the identity mapping. Thus T
indeed is hopfian.

T 1 is not hopfian. A routine verification shows that the mapping b1 7→ 1,
bn+1 7→ bn (n ∈ N) extends to a surjective, non-injective endomorphism of
T 1.

S1 is hopfian. Let φ : S1 → S1 be a surjective endomorphism. Clearly,
1φ = 1. Note that a is the only element x ∈ S1 such that 〈x〉 is not a group
and x5 = x2. It follows that aφ−1 = {a}.

Now, assume that for some i ≥ 1, biφ /∈ T . Notice that biφ = (abi)φ =
aφ · (bi)φ = a · (bi)φ. Hence biφ 6= 1 and in fact biφ ∈ F , i.e. biφ = ak for
some k. Then ak = biφ = a · (bi)φ = ak+1, which cannot hold in F . Thus
biφ ∈ T for all i ≥ 1.

Hence φ maps 〈b1, b2, . . . 〉 = T onto itself. We have already proved that
T is hopfian, and so it follows that φ is a bijection, and so S1 is hopfian, as
required.

5.3 Finite Rees Index and Endomorphisms

The following result will be of crucial importance in the proof of Theo-
rem 5.1.1.

Theorem 5.3.1. For every endomorphism φ of a finitely generated semigroup S
and every proper subsemigroup T of finite Rees index we have Tφ 6= S.

Proof. Suppose to the contrary that Tφ = S. Let F = S \ T , a finite set.

Claim 5.3.2. There exists N ≥ 1 such that for every f ∈ F at least one of the
following holds: fφtN ∈ T for all t ≥ 1, or fφN = fφ2N .

Proof. Consider the following two sets:

F∞ = {f ∈ F : fφk ∈ F for infinitely many k ≥ 1},

F0 = {f ∈ F : fφk ∈ F for only finitely many k ≥ 1},

which clearly partition F . The following assertions follow easily from
finiteness of F : First of all, for every f ∈ F∞ its orbit O(f) = {fφk : k ≥ 0}
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is finite. Then O(F∞) =
⋃

f∈F∞

O(f) is finite too, and so there exists p ≥ 1
such that φp↾O(F∞) is an idempotent. Finally, there exists q ≥ 1 such that
F0φ

k ⊆ T for all k ≥ q. Any number N which is greater than q and is a
multiple of p will satisfy the conditions of the claim.

Let us denote the mapping φN by π. From the assumption that Tφ = S
it follows that Tπ = S as well. For every k ≥ 0 let

Ak = Fπ−k, (5.1)

and let

B = T \
⋃

k≥0

Ak = {t ∈ T : tπk ∈ T for all k ≥ 0}. (5.2)

From (5.2) and Tπ = S it is immediately clear that B is a subsemigroup
of T (or possibly empty) and that Bπ = B. Furthermore, from Claim 5.3.2
and the definition of π it follows that for every f ∈ F we have:

fπ ∈ B or fπ2 = fπ ∈ F. (5.3)

From (5.1), (5.2), (5.3) it follows that

Akπ
l ⊆ B ∪ F (l ≥ k ≥ 0). (5.4)

We now start using finite generation of S. We remark that by [75, The-
orem 1.1] this is equivalent to T being finitely generated.

Claim 5.3.3. There exists a finite set Y ⊆ B such that the set Y ∪F generates S.

Proof. Let X be any finite generating set for T . Since X is finite there must
exist k ≥ 0 such that X ⊆ B ∪ A1 ∪ · · · ∪ Ak. Note that X ∪ F generates
S. Since π is onto, the set (X ∪ F )πk also generates S. But, using (5.4), we
have (X ∪ F )πk ⊆ B ∪ F .

Let U = {f ∈ F : fπ = f}; clearly U = F ∩ Fπ by (5.3). Note that

(Y ∪ F )π = Y π ∪ (T ∩ Fπ) ∪ (F ∩ Fπ) = Z ∪ U,

where Z = Y π ∪ (T ∩ Fπ) ⊆ B. So we have:

Claim 5.3.4. There exists a finite set Z ⊆ B such that Z ∪ U generates S.

Now let V = T ∩ (U2 ∪ U3).

Claim 5.3.5. We have F ∩ 〈U〉 = U and T ∩ 〈U〉 = 〈V 〉 ⊆ B.
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Proof. For the first assertion, let f ∈ F ∩ 〈U〉, and write f = u1 · · · uk for
some u1, . . . , uk ∈ U . Then

fπ = (u1π) · · · (ukπ) = u1 · · · uk = f

and so f ∈ U . Therefore F ∩ 〈U〉 ⊆ U , and the converse inclusion is
obvious.

For the second assertion, we shall show that if t ∈ T ∩ 〈U〉, then t ∈
〈V 〉 by induction on the length k of an expression t = u1u2 · · · uk with
u1, u2, . . . , uk ∈ U . So, let us have a decomposition t = u1 · · · uk with
u1, . . . , uk ∈ U . Obviously, k ≥ 2. The base of induction k = 2 and k = 3 is
immediate: we have t ∈ V by the definition of V . Suppose now k ≥ 4 and
assume that the induction hypothesis holds for all numbers < k. If any of
u1u2 and u3 · · · uk belongs to F , then it belongs to F ∩ 〈U〉 = U and so we
may apply induction hypothesis. Hence we may assume that both u1u2
and u3 · · · uk belong to T . Then u1u2 ∈ V and, by induction, u3 · · · uk ∈ 〈V 〉,
so that t ∈ 〈V 〉 as well, as required.

In what follows, as a technical convenience, we will take 1 to denote an
identity element adjoined to S, for any set X ⊆ S write X1 = X ∪{1}, and
adopt the convention that 1π = 1.

Claim 5.3.6. Let n ≥ 0 be arbitrary. Every element s ∈ S can be represented in
the form

u1w1u2w2 · · · ukwkuk+1, (5.5)

where k ≥ 0, u1, uk+1 ∈ U1, ui ∈ U for i = 2, . . . , k, and wi ∈ 〈Zπn ∪ V 〉 for
i = 1, . . . , k.

Proof. First of all note that since Z∪U is a generating set for S and Uπ = U ,
we have that Zπn ∪ U = (Z ∪ U)πn is a generating set for S, since π is
surjective. By Claim 5.3.5 a product of generators from U of length greater
than 1 can be replaced either by a single element from U , or by a product
of elements from V .

Claim 5.3.7. For any u1, u2 ∈ U1 and w ∈ Z ∪ V there exists n ≥ 1 such that
u1(wπ

k)u2 ∈ U ∪ B for all k ≥ n.

Proof. From Fπ ∩ F = U and Fπ ∩ T ⊆ B it follows that Fπ ⊆ U ∪ B.
Combining this with (5.4), we see that for every s ∈ S there exists n ≥ 1
such that sπk ∈ B ∪ F for all k ≥ n. Applying this to s = u1wu2, and
remembering that uπk = u for all u ∈ U1, yields the result.
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Note that since V ⊆ 〈U〉, every element of V is fixed by π. The sets U1,
Z and V are all finite, and so Claim 5.3.7 implies that there exists M ≥ 1
such that

T ∩ {u1wu2 : u1, u2 ∈ U1, w ∈ ZπM ∪ V } ⊆ B (5.6)

F ∩ {u1wu2 : u1, u2 ∈ U1, w ∈ ZπM ∪ V } ⊆ U. (5.7)

Let us now consider an arbitrary element t ∈ T . Write t in the form (5.5)
with wi ∈ 〈ZπM ∪ V 〉. Furthermore, choose this decomposition so that the
length of the corresponding product of generators U ∪V ∪ZπM is as short
as possible. Consider now an arbitrary wi, i = 1, . . . , k − 1. Suppose that
its shortest expression as a product of generators from ZπM ∪ V starts
with a ∈ ZπM ∪ V , and write wi = aw′

i. From (5.6), (5.7) it follows that
uia ∈ U ∪ B. But we cannot have uia ∈ U , as that would allow us to
shorten the expression for t. Hence uia ∈ B, and since w′

i ∈ 〈ZπM ∪ V 〉1 ⊆
B1, it follows that uiwi ∈ B for all i = 1, . . . , k − 1. A similar argument
shows that ukwkuk+1 ∈ B; one just needs to consider both the first and the
last factors of wk. This implies that t ∈ B, and hence T = B. But then
S = Tπ = Bπ = B = T , a contradiction as T is a proper subsemigroup of
S. This completes the proof of Theorem 5.3.1.

5.4 The Proof of Theorem 5.1.1

Let S be a finitely generated semigroup, and let T be a hopfian subsemi-
group of finite index. Suppose φ : S → S is a surjective endomorphism
of S.

Let F = S \ T . Since φ is onto, for every k ≥ 0 we must have Tφk ⊇
S \ Fφk, and so Tφk is a subsemigroup of finite Rees index in S; moreover
this index is no more than |Fφk| ≤ |F |. By [76, Corollary 4.5], a finitely
generated semigroup has only finitely many subsemigroups of any given
finite Rees index. Therefore there exist k, r ≥ 1 such that Tφk = Tφk+r, and
hence Tψ = Tψ2, where ψ = φ(k+1)r.

From Tψ2 = Tψ it follows that (T ∪ Tψ)ψ = Tψ. Since ψ is onto, we
must have

(S \ (T ∪ Tψ))ψ ⊇ S \ (T ∪ Tψ)ψ = S \ Tψ.

Now we have

|S \ Tψ| ≥ |S \ (T ∪ Tψ)| ≥ |(S \ (T ∪ Tψ))ψ| ≥ |S \ Tψ|,

and hence S \ Tψ = S \ (T ∪ Tψ), which in turn implies T ⊆ Tψ.
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Thus ψ is a surjective endomorphism of Tψ, and T is a subsemigroup
of finite index mapping onto the whole of Tψ. By Theorem 5.3.1, T cannot
be a proper subsemigroup, and hence T = Tψ. Thus ψ↾T is a surjective
endomorphism of T , and, since T is hopfian, ψ↾T is actually an automor-
phism. Since ψ is a surjection on S and Tψ = T , it follows that F ⊆ Fψ. So
ψ↾F is surjective. Since F is a finite set, ψ↾F is therefore a bijection. Thus ψ
as a whole is bijective, and hence so is φ since ψ = φ(k+1)r. Theorem 5.1.1
has been proved.

5.5 A Concluding Example

The purpose of this section is to exhibit an example which demonstrates
that hopficity is not inherited by passing to finite Rees index subsemi-
groups, not even in the finitely generated case. This is accomplished in
Theorem 5.5.7 at the end of the section.

The construction relies on the notion of S-acts (or actions). All actions
will be on the right, and to distinguish them from the semigroup opera-
tions we will denote the result of the action of a semigroup element s ∈ S
on an element x ∈ X by x · s. An S-act X can, of course, be viewed as
an algebraic structure in its own right, with every s ∈ S inducing a unary
operation x 7→ x · s on X . Therefore the standard algebraic notions – sub-
structures, homomorphisms, generation, hopficity – are all meaningful in
this context. For a systematic introduction into the semigroup actions see
for instance [45, Section 8.1].

Our first result is well known, but since we have not been able to locate
an explicit example in the literature, we give one here for completeness.

Lemma 5.5.1. The free semigroup of rank 3 admits a cyclic non-hopfian act.

Proof. Let F = 〈a, b, c : ∅〉 be the free semigroup of rank 3. Consider the
action of generators a, b, c on the set

X = {xi, yi : i ∈ Z} ∪ {zi : i ∈ N} ∪ {0}
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given by

xi · a = xi+1,

xi · b = xi−1,

xi · c = yi,

yi · a = yi · b = 0,

yi · c =

{
yi if i ≤ 0,
zi if i > 0,

zi · a = zi · b = 0,

zi · c = zi,

0 · a = 0 · b = 0 · c = 0.

This action is shown in Figure 5.1. Since F is free on a, b, c, this action
extends to a unique action of F on X . Clearly, this action is generated by
x0 (or, indeed, any xi).

Let ψ : X → X be defined by

xiψ = xi−1,

yiψ = yi−1,

z1ψ = y0,

ziψ = zi−1 (i > 1),

0ψ = 0.

Effectively, ψ moves all of xi, yi, zi one to the left, except for z1 which it
maps to y0, the same as y1. It is a routine matter to verify that ψ is a surjec-
tive, non-injective endomorphism of X .

Lemma 5.5.2. Let F be a free semigroup, and let X be a cyclic F -act. Then there
exists an F -act Y such that the following hold:

1. X is a subact of Y ;

2. |Y \X| = 1;

3. Y is hopfian.

Proof. Suppose that F = 〈A | 〉, and suppose X is generated by x0, i.e.
x0 · F

1 = X . Let Y = X ∪ {y0}, where y0 6∈ X . Extend the action of F on X
to an action on Y by setting

y0 · a = x0 (a ∈ A).
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a a a a

b b b b
c c c c c

c c c
c c

c c

x−2 x−1 x0 x1 x2

y−2 y−1 y0 y1 y2

z1 z2

Figure 5.1: A non-hopfian action of F on X . The arrows not shown all
point to 0.

Assertions 1 and 2 are clear. To verify that Y is hopfian, let ψ : Y → Y be
any surjective endomorphism. Since Y · F = X (i.e. y0 is the only element
of Y which has no arrows coming into it) it follows that xψ 6= y0 for all
x ∈ X . This, combined with ψ being onto, implies y0ψ = y0. Since the
F -act Y is generated by y0, it readily follows that ψ must be the identity
mapping, and so Y is indeed hopfian.

We now introduce a semigroup construction that we then use to build
our desired example. The ingredients for the construction are a semigroup
S and an S-act X (with S∩X = ∅). The new semigroup, which we denote
by S[X], has the carrier set S∪X ; the multiplication in S remains the same,
while for s ∈ S, x, y ∈ X we define

sx = x, xs = x · s, xy = y.

It is a routine matter to check that S[X] is indeed a semigroup.

Lemma 5.5.3. Let S be a semigroup, let X, Y be two S-acts, and let ψ : X → Y
be a homomorphism of S-acts. Define a mapping φ : S[X] → S[Y ] by φ = 1S∪ψ,
where 1S is the identity mapping on S. Then φ is a (semigroup) homomorphism.
Moreover, φ is surjective (respectively injective, bijective) if and only if ψ is sur-
jective (resp. injective, surjective).

Proof. For s, t ∈ S and x, y ∈ X we have

(st)φ = st = (sφ)(tφ),

(sx)φ = xφ = xψ = s(xψ) = (sφ)(xφ),

(xs)φ = (x · s)φ = (x · s)ψ = (xψ) · s = (xφ)s = (xφ)(sφ),

(xy)φ = yφ = yψ = (xψ)(yψ) = (xφ)(yφ).
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The final three assertions are obvious.

Lemma 5.5.4. Let F = 〈A | 〉 be a free semigroup of finite rank, letX be an F -act,
and suppose that φ : F [X] → F [X] is a surjective endomorphism. Then:

1. φ↾F is an automorphism of F .

2. Xφ = X .

Proof. 1 All elements of X are idempotents, while F has no idempotents;
hence Xφ ⊆ X . Since φ is onto it follows that F ⊆ Fφ. Now let

AF = {a ∈ A : aφ ∈ F},

AX = {a ∈ A : aφ ∈ X}.

Since X is an ideal of F [X], it follows that (F 1AXF
1)φ ⊆ X . Again, since φ

is onto we must have 〈AF 〉φ = F . But 〈AF 〉 is a free subsemigroup of F of
rank |AF |. Since A is finite it follows that AF = A and AX = ∅. Hence φ↾F
is a surjective endomorphism of F , and indeed an automorphism since F
is hopfian.

2 We have already proved Xφ ⊆ X . The assertion now follows from
Fφ = F and φ being surjective.

Lemma 5.5.5. Let F be a free semigroup of finite rank, and let X be an F -act.
Suppose φ : F [X] → F [X] is a surjective endomorphism with φ↾F= 1F . Then
φ↾X is a surjective endomorphism of the F -act X .

Proof. By Lemma 5.5.4 2 we have that φ↾X maps X onto itself. Further-
more, for x ∈ X and s ∈ F , we have

(x · s)φ↾X= (xs)φ = (xφ)(sφ) = (xφ)s = (xφ↾X) · s,

i.e. φ↾X is an F -act endomorphism.

Lemma 5.5.6. Let F be a free semigroup of finite rank, and let X be an F -act.
The semigroup F [X] is hopfian if and only if X is a hopfian F -act.

Proof. (⇒) Suppose F [X] is hopfian, and let ψ : X → X be a surjective
endomorphism of F -acts. Using Lemma 5.5.3, there is a surjective endo-
morphism φ : F [X] → F [X] such that φ↾X= ψ. Since F [X] is hopfian, φ is
injective, and hence ψ is injective as well.

(⇐) Suppose X is a hopfian F -act, and let φ : F [X] → F [X] be a sur-
jective endomorphism. By Lemma 5.5.4, the mapping φ↾F is an automor-
phism of F . Since the automorphism group of F is isomorphic to the finite
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symmetric group Sr (where r is the rank of F ), there exists n ∈ N such
that (φ↾F )

n = 1F . By Lemma 5.5.5, applied to the mapping φn, we have
that (φ↾X)

n is a surjective endomorphism of the F -act X . But X is hopfian,
and hence (φ↾X)

n is injective. It follows that φ↾X , and indeed φ itself, are
injective, and so F [X] is hopfian.

Theorem 5.5.7. There exists a finitely generated hopfian semigroup S which con-
tains a non-hopfian subsemigroup T with |S \ T | = 1.

Proof. Let F = 〈a, b, c | 〉 be the free semigroup of rank 3, and let X be
a cyclic, non-hopfian F -act, guaranteed by Lemma 5.5.1. Extend X to a
cyclic hopfian F -act Y with |Y \X| = 1, as in Lemma 5.5.2. Let S = F [Y ],
T = F [X]. Clearly, T ≤ S and |S \ T | = 1. By Lemma 5.5.6 we have
that S is hopfian, while T is not. Finally, S is finitely generated: indeed
S = 〈a, b, c, y0〉, where y0 is any generator of the F -act Y .

5.6 Concluding Remarks

If we perform the construction as described in the proof of Theorem 5.5.7,
starting from the act exhibited in Lemma 5.5.1 it is relatively easy to see
that the resulting semigroups S and T are not finitely presented. The fol-
lowing two examples show that there exists a hopfian semigroup, admit-
ting a finite complete rewriting system, with a non-hopfian subsemigroup
of finite Rees index:

Example 5.6.1. The one-relation semigroup T = Sg〈a, b : abab2ab = b〉 is
non-hopfian. To verify this, first note that

abab3 = abab2 · abab2ab = abab2ab · ab2ab = bab2ab.

It easy to check that the rewriting system {abab2ab → b, abab3 → bab2ab} is
confluent and noetherian and so defines T . Notice that

a · bab · a · (bab)2 · a · bab = abab · abab2ab · abab

→ abab2ab · ab

→ bab.

This means that the assignment a 7→ a, b 7→ bab lifts to an endomorphism
φ of S. Since a · bab · bab = b, the endomorphism is onto. Under φ we
obviously have ab2 7→ b and so ab2a2b2 = ab2 · a · ab2 7→ bab. But, by our
rewriting system, ab2a2b2 6= b and so φ is not bijective.
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Example 5.6.2. The semigroup

S = Sg〈a, b, f : abab2ab = b, fa = ba, af = ab, fb = bf = f 2 = b2〉

is obviously a finite Rees extension of T from the previous example. We
will show that S hopfian. Indeed, let ψ be an onto endomorphism of
S. Since a and f are the only indecomposables in S, we must have that
{a, f}ψ = {a, f}. Let ϑ = ψ2. Then ϑ is an onto endomorphism of S and
aϑ = a and fϑ = f . If bϑ = f , then f = afaf 2af = b, a contradiction.
Hence bϑ = w ∈ T . Then

ab = af = aϑ · fϑ = (af)ϑ = (ab)ϑ = aw.

But T is left-cancellative by Adjan’s Theorem, and so w = b. Thus ϑ is the
identity mapping and so ψ is bijective.

Since finite Green index generalises both finite Rees index and finite
group index, the only unknown to us question about preservation of hop-
ficity under finite Green index is

Question 4. Is it true that if a finitely generated semigroup S has a hopfian
subsemigroup T of finite Green index then S itself must be hopfian?

If the answer is positive, the proof of this fact would most likely incor-
porate elements of both Hirshon’s original argument, and our considera-
tions in Sections 5.3, 5.4.

We close the chapter with the following two open problems:

Question 5. Is hopficity decidable for one relation semigroups (or one rela-
tor groups)?

This problem appears to be quite difficult at present. In fact, even the
seemingly easier related question of deciding residual finiteness is still
open:

Question 6. Is residual finiteness decidable for one relation semigroups (or
one relator groups)?

The reader should recall a classical theorem of Malcev [56] (see also
[52, Theorem IV.4.10]) that a finitely generated residually finite group (or
semigroup) is hopfian, and consult [50] and [77] for some relevant infor-
mation.
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Chapter 6

Word-Hyperbolic Semigroups

In this chapter we prove that any monoid presented by a confluent context-
free monadic rewriting system is word-hyperbolic. This result is then
applied to answer a question asked by Duncan & Gilman by exhibiting
an example of a word-hyperbolic monoid that does not admit a word-
hyperbolic structure with uniqueness. The example we provide does not
admit a regular language of normal forms with uniqueness.

The results of this chapter were obtained in collaboration with Alan
Cain and are taken from [16].

6.1 Introduction

Hyperbolic groups — groups whose Cayley graphs are hyperbolic metric
spaces — have grown into one of the most fruitful areas of group theory
since the publication of Gromov’s seminal paper [37]. The concept of hy-
perbolicity generalises to semigroups and monoids in more than one way.
First, one can consider semigroups and monoids whose Cayley graphs are
hyperbolic [12]. Second, one can use Gilman’s characterisation of hyper-
bolic groups using context-free languages [31]. This characterisation says
that a group G is hyperbolic if and only if there is a regular language L
over some finite generating set for G which represents all the elements of
G and such that the language

M(L) =
{
u#1v#2w

rev : u, v, w ∈ L ∧ uv =G w
}

(where wrev denotes the reverse of w) is context-free. The pair (L,M(L)) is
called a word-hyperbolic structure. Duncan & Gilman [24] pointed out that
this characterisation generalises naturally to semigroups and monoids.
The geometric generalisation gives rise to the notion of hyperbolic semi-
group; the linguistic one to the notion of word-hyperbolic semigroups. While
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the two notions are equivalent for groups [24, Corollary 4.3], they are not
equivalent for general semigroups. This chapter is concerned with word-
hyperbolic semigroups:

Definition 6.1.1. A word-hyperbolic structure for a semigroup S is a pair
(L,M(L)), where L is a regular language over a finite generating set A for
S such that L maps onto S, and where

M(L) = {u#1v#2w
rev : u, v, w ∈ L ∧ uv =S w}

is context-free. The pair (L,M(L) is a word-hyperbolic structure with unique-
ness if L maps bijectively onto S; that is, if every element of S has a unique
representative in L. A semigroup is word-hyperbolic if it admits a word-
hyperbolic structure.

Duncan & Gilman [24, Question 2] asked whether every word-hyperbolic
monoid admits a word-hyperbolic structure with uniqueness. The main
goal of this chapter is to give a negative answer to this question; see Ex-
ample 6.3.2. En route, however, a result of independent interest is proven:
any monoid presented by a confluent context-free monadic rewriting sys-
tem is word-hyperbolic – Theorem 6.2.1.

Before we start proving our main results, let us show that every hy-
perbolic group admits a word-hyperbolic structure with uniqueness: If
(L,M(L)) is a word-hyperbolic structure for a group G, then the fellow-
traveller property is satisfied [24, Theorem 4.2] and so L forms part of an
automatic structure for G [25, Theorem 2.3.5]. Therefore there exists an
automatic structure with uniqueness for G, where the language of rep-
resentatives L′ is a subset of L [25, Theorem 2.5.1]. Hence (L′,M(L) ∩
L′#1L

′#2(L
′)rev) is a word-hyperbolic structure with uniqueness for G.

6.2 Monoids Presented by Confluent Context-Free Monadic

Rewriting Systems

Recall that a special or monadic rewriting system (A,R) is context-free if,
for each a ∈ A∪{1} (where 1 stands for the empty word), the set of all left-
hand sides of rules in R with right-hand side a is a context-free language.

Theorem 6.2.1. Let (A,R) be a confluent context-free monadic rewriting system.
Then (A∗,M(A∗)) is a word-hyperbolic structure for Mon〈A : R〉.

Proof. Let M = Mon〈A : R〉 and define

K = {u#2v
rev : u, v ∈ A∗, u =M v}.
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Let φ : (A ∪ {#1,#2})
∗ → (A ∪ {#2})

∗ be the homomorphism extending

#1 7→ 1, #2 7→ #2, a 7→ a for all a ∈ A.

Then M(A∗) = Kφ−1 ∩ A∗#1A
∗#2A

∗. Since the class of context-free lan-
guages is closed under taking inverse homomorphisms, to prove thatM(A∗)
is context-free it suffices to prove that K is context-free.

For each a ∈ A ∪ {1}, let $a and $̃a be new symbols. Let

$A∪{1} = {$a : a ∈ A ∪ {1}} $A = {$a : a ∈ A},

$̃A∪{1} = {$̃a : a ∈ A ∪ {1}} $̃A = {$̃a : a ∈ A},

and for any word w = w1 · · ·wn with wi ∈ A, let $w and $̃w be abbreviations

for $w1
· · · $wn

and $̃w1
· · · $̃wn

respectively.

For each a ∈ A ∪ {1}, let Γa = (Na, A, Pa, Oa) be a context-free gram-
mar such that L(Γa) is the set of left-hand sides of rewriting rules in R
whose right-hand side is a. Since R is length-reducing, no L(Γa) contains
1. Therefore assume without loss of generality that no Γa contains a pro-
duction whose right-hand side is 1 [43, Theorem 4.3].

Modify each Γa by replacing each appearance of a terminal letter b ∈ A
in a production by $b; the grammar Γ′

a = (N ′
a, $A∪{1}, P

′
a, O

′
a) thus formed

has the property that w ∈ L(Γa) if and only if $w ∈ L(Γ′
a). Modify each Γa

by reversing the right-hand side of every production in Pa and by replac-

ing each appearance of a terminal letter b ∈ A in a production by $̃b; the
grammar Γ′′

a = (N ′′
a , $A∪{1}, P

′′
a , O

′′
a) thus produced has the property that

w ∈ L(Γa) if and only if $̃wrev ∈ L(Γ′′
a).

The language

{$p#2$̃prev : p ∈ A∗}

is clearly context-free. (Notice that $p can either be an abbreviation for a

non-empty word $p1 · · · $pk or the single letter $1, and similarly for $̃prev .)

Let ∆ = (N∆, $A∪{1} ∪ $̃A∪{1} ∪ {#2}, P∆, O∆) be a context-free grammar
defining this language. Assume without loss of generality that the various
non-terminal alphabets N ′

a, N ′′
a and N∆ are pairwise disjoint.

Define a new context-free grammar Θ = (NΘ, A ∪ {#2}, PΘ, O∆) by
letting

NΘ = N∆ ∪ $A∪{1} ∪ $̃A∪{1} ∪
⋃

a∈A∪{1}

(N ′
a ∪N

′′
a ),
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and

PΘ = P∆ ∪
[ ⋃

a∈A∪{1}

(P ′
a ∪ P

′′
a )
]

∪
{
$a → $a$1, $a → $1$a, $̃a → $̃a$̃1, $̃a → $̃1$̃a : a ∈ A ∪ {1}

}

(6.1)

∪
{
$a → O′

a, $̃a → O′′
a : a ∈ A ∪ {1}

}
(6.2)

∪
{
$a → a, $̃a → a : a ∈ A ∪ {1}

}
. (6.3)

Notice that elements of $A∪{1} now play the rôle of non-terminals, while in
the various grammars Γ′

a and Γ′′
a, they were terminals. Notice further that

the start symbol of Θ is O∆.
The aim is now to show that L(Θ) = K.

Lemma 6.2.2. If w ∈ L(Θ), then w = u#2v
rev for some u, v ∈ A∗, and there

exists some p ∈ A∗ such that $p ⇒
∗
Θ u and $̃prev ⇒∗

Θ v
rev.

Proof. Let w ∈ L(Θ). Then O∆ ⇒∗
Θ w, and the first production applied is

from P∆. Since no production in PΘ−P∆ introduces a non-terminal symbol
from N∆, assume that all productions from P∆ in the derivation of w are
carried out first, before any productions from PΘ − P∆. This shows that
there is some word q ∈ L(∆) such that O∆ ⇒∗

Θ q ⇒∗
Θ w. By the definition

of ∆, it follows that q = $p#2$̃prev with

O∆ ⇒∗
Θ $p#2$̃prev ⇒∗

Θ w.

Since symbols from $A∪{1}∪$̃A∪{1} can ultimately only derive symbols from
A (and not the symbol #2), it follows that there exist u, v ∈ A∗ with $p ⇒

∗
Θ

u and $̃prev ⇒∗
Θ v

rev such that w = u#2v
rev.

Lemma 6.2.3. Let w, u ∈ A∗. If w →∗
R u, then $u ⇒∗

Θ $w.

Proof. Suppose

w = w0 →R w1 →R w2 →R . . .→R wn = u

is a sequence of rewriting of minimal length from w to u.
Proceed by induction on n. If n = 0, it follows that w = u and there

is nothing to prove. So suppose n > 0 and that the result holds for all
shorter such minimal-length rewriting sequences. Then w0 →R w1, and so
w0 = xℓy and w1 = xay for some x, y ∈ A∗, a ∈ A ∪ {1}, and (ℓ, a) ∈ R. So
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ℓ ∈ L(Γa). Hence, first applying a production of type (6.2), the construction
of Γ′

a and the inclusion of all its productions in Θ shows that

$a ⇒Θ O
′
a ⇒

∗
Θ $ℓ. (6.4)

By the induction hypotheses, $u ⇒∗
Θ $w1

. Now consider the cases a ∈ A
and a = 1 separately:

1. a ∈ A. Then $w1
= $x$a$y and so

$u ⇒∗
Θ $w1

(by the induction hypothesis)

= $x$a$y

⇒∗
Θ $x$ℓ$y (by (6.4))

= $w0

= $w.

2. a = 1. Then $w1
= $x$y and so by (6.4),

$u ⇒∗
Θ $w1

(by the induction hypothesis)

= $x$y

⇒Θ $x$a$y (by (6.1))

⇒∗
Θ $x$ℓ$y (by (6.4))

= $w0

= $w.

This completes the proof.

Lemma 6.2.4. Let u, w ∈ A∗. If $u ⇒∗
Θ $w, then w →∗

R u.

Proof. The strategy is to proceed by induction on the number n of produc-
tions of type (6.1) or (6.2) in the minimal-length derivation of $w from $u.

Suppose such a minimal length derivation involves a production $1 →
1 (of type (6.3)). If this symbol $1 is introduced by a production of type
(6.1), then the derivation would not be of minimal length. So this sym-
bol $1 must be present in $u, which, by the definition of the abbreviation
$u requires u = 1. But this would mean that the derivation produced 1,
which contradicts the hypothesis of the lemma. So the derivation does not
involve productions $1 → 1.

The only productions where symbols from $A∪{1} appear on the left-
hand side are of types (6.1), (6.2), and (6.3). Since there are no productions
$1 → 1, any production of type (6.3) would produce a terminal symbol,
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which is impossible. So the first production applied in the derivation se-
quence must be of type (6.1) or (6.2).

Recall that n is the number of productions of type (6.1) or (6.2) in the
minimal-length derivation of $w from $u.

Suppose first that n = 0. Then, since the first production cannot be

of type (6.3) or from P∆ ∪
[
⋃

a∈A∪{1}(P
′
a ∪ P ′′

a )
]

, there is no possible first

production and thus $w = $u, which entails w = u and so there is nothing
to prove.

Suppose now that n > 0 and that the result holds for all shorter such
minimal-length derivations. Consider cases separately depending on the
whether the first production applied in the derivation is of type (6.1) or
(6.2).:

1. Type (6.1). So $u = $x$y ⇒Θ $x$1$y for some x, y ∈ A∗ with xy = u.
The symbol $1 thus produced does not derive 1 since no production
$1 → 1 is involved. So $x ⇒∗

Θ $w′ , $1 ⇒∗
Θ $w′′ , $y ⇒∗

Θ $w′′′ , where
w = w′w′′w′′′, w′, w′′′ ∈ A∗ and w′′ ∈ A+ and all three of these deriva-
tions involve fewer than n productions of type (6.1) or (6.2). By the
induction hypothesis, w′ →∗

R x, w′′ →∗
R 1, and w′′′ →∗

R y, and thus
w = w′w′′w′′′ →∗

R xy = u.

2. Type (6.2). So $u = $x$a$y ⇒Θ $xO
′
a$y for some x, y ∈ A∗ with xay =

u. Now, O′
a is the start symbol of Γ′

a, and L(Γ′
a) consists of words of

the form $ℓ where ℓ→R a. Thus

$u ⇒Θ $xO
′
a$y ⇒

∗
Θ $x$ℓ$y ⇒

∗
Θ $w.

Thus $x ⇒∗
Θ $w′ , $ℓ ⇒

∗
Θ $w′′ , and $y ⇒∗

Θ $w′′′ , where w′, w′′, w′′′ ∈ A∗

are such that w = w′w′′w′′′, and each of these derivation sequences
involve fewer than n productions of type (6.1) or (6.2). Hence by the
induction hypothesis, w′ →∗

R x, w′′ →∗
R ℓ, and w′′′ →∗

R y. Therefore

w = w′w′′w′′′ →∗
R xℓy →R xay = u.

This completes the proof.

Lemma 6.2.5. For any u, w ∈ A∗, w →∗
R u if and only if $u ⇒∗

Θ w.

Proof. Suppose w →∗
R u. Then $u ⇒∗

Θ $w by Lemma 6.2.3. By |w| applica-
tions of productions of type (6.3), $w ⇒∗

Θ w. So $u ⇒∗
Θ w.

Suppose that $u ⇒∗
Θ w. Only productions of type (6.3) have terminals

on the right-hand side. So $u ⇒∗
Θ $w ⇒∗

Θ w. So by Lemma 6.2.4, w →∗
R

u.
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Reasoning symmetric to the proofs of Lemmas 6.2.3, 6.2.4, and 6.2.5
establishes the following result:

Lemma 6.2.6. For any u, w ∈ A∗, w →∗
R u if and only if $̃urev ⇒∗

Θ w
rev.

Suppose u#2v
rev ∈ K. Then u, v ∈ A∗ and u =M v. Therefore there is

a normal form word p with u →∗
R p and v →∗

R p. So by Lemmas 6.2.5 and

6.2.6, $p ⇒
∗
Θ u and $̃prev ⇒∗

Θ vrev. Since every production in P∆ is included
in PΘ, it follows that

O∆ ⇒∗
Θ $p#2$̃prev ,

whence O∆ ⇒∗
Θ u#2v

rev and so u#2v
rev ∈ L(Θ).

Conversely, suppose w ∈ L(Θ). By Lemma 6.2.2, there are words

u, v, p ∈ A∗ with w = u#2v
rev, $p ⇒∗

Θ u, and $̃prev ⇒∗
Θ vrev. (Notice that

p need not be in normal form.) By Lemmas 6.2.5 and 6.2.6, it follows that
u→∗

R p and v →∗
R p. So u =M v and thus w = u#2v

rev ∈ K.
Hence L(Θ) = K. Thus K and so M(A∗) are context-free. Therefore

(A∗,M(A∗)) is a word-hyperbolic structure for the monoid M .

6.3 Word-Hyperbolic Structures with Uniqueness

This section exhibits an example of a word-hyperbolic monoid that does
not admit a word-hyperbolic structure with uniqueness.

The following preliminary result, showing that admitting a word-hyperbolic
structure with uniqueness is not dependent on the choice of generating
set, is needed. The proof is similar to that of the independence of word-
hyperbolicity from the choice of generating set [24, Theorem 3.4], but the
detail and exposition are different to make clear that uniqueness is pre-
served. Additionally, the result here also shows that whether one deals
with monoid or semigroup generating sets is not a concern.

Proposition 6.3.1. Let M be a monoid that admits a word-hyperbolic structure
with uniqueness over either a semigroup or monoid generating set, and let A be
a finite alphabet representing a semigroup or monoid generating set for M . Then
there is a language L ⊆ A∗ such that (L,M(L)) is a word-hyperbolic structure
with uniqueness for M .

Proof. Assume that S admits a word-hyperbolic structure with uniqueness
(K,M(K)) where K is a regular language over a finite alphabet B. For
each b ∈ B, let ub ∈ A∗ be such that ub =M b. (If A represents a semigroup
generating set, ensure that ub lies in A+; this restriction is important only
if b is actually the identity.) Let P ⊆ B∗ × A∗ be the rational relation

P =
(
{(b, ub) : b ∈ B}

)∗
,
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i.e. the relation consisting of the pairs (b1 · · · bk, ub1 · · · ubk) for k ≥ 1 and
b1, . . . , bk ∈ B. Notice that if (v, w) ∈ P , then v =M w.

Let
L = K ◦ P =

{
w ∈ A∗ : (∃v ∈ K)((v, w) ∈ P)

}
;

observe that L is a regular language. Notice that, by the definition of P , for
each word v in K there is exactly one word w ∈ L with (v, w) ∈ P . Since
for each x ∈ M there is exactly one word v in K with v =M x, it follows
that there is exactly one word w ∈ L with w =M x. That is, the language L
maps bijectively onto M .

Let Q be the rational relation

P(#1,#1)P(#2,#2)P
rev.

Then M(L) =M(K) ◦Q and so M(L) is a context-free language.
Thus (L,M(L)) is a word-hyperbolic structure for S in every case ex-

cept when S is a monoid, A is a semigroup generating set, and the repre-
sentative in K of the identity is 1. In this case, let L1 = (L − {1}) ∪ {e},
where e ∈ A+ represents the identity. Then L1 is contained in A+ and
maps bijectively onto S. The language M(L1) is context-free. Indeed, let
e = a1 · · · ap where a1, . . . , ap ∈ A. Let x1, . . . , xp be letters not from A and
define φ : A ∪ {x1, . . . , xp} → A by a 7→ a and xi 7→ ai for all i ≤ p and
a ∈ A. Then φ gives rise to a homomorphism from (A ∪ {x1, . . . , xp})

∗ to
A∗ which we will also denote by φ. Then the language

L2 =
[
(A+ x1 · · · xp)

∗#1(A+ x1 · · · xp)
∗#2(A+ x1 · · · xp)

∗
]
∩ φ−1(M(L)),

being an intersection of a regular language with a context-free one, is
context-free itself. It is easy to see that

M(L1) = φ(L2) ∩ A
+#1A

+#2A
+,

and thusM(L1) is an intersection of a context-free language with a regular
language, and thus M(L1) is indeed context-free.

Example 6.3.2. Let A = {a, b, c, d}, R = {abncnd → 1 : n ≥ 1}, and M =
Mon〈A : R〉. Then M is word-hyperbolic but does not admit a regular
language of unique representatives and thus, in particular, does not admit
a word-hyperbolic structure with uniqueness.

Proof. Let G be the language of left-hand sides of rewriting rules in R. The
language G is context-free, and so (A,R) is a context-free special rewriting
system. Two left-hand sides of rewriting rules in R only overlap if they
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are exactly equal, and so (A,R) is confluent. Hence, by Theorem 6.2.1,
(A∗,M(A∗)) is a word-hyperbolic structure for the monoid M . So M is
word-hyperbolic. Identify M with the language of normal form words of
(A,R).

Suppose for reductio ad absurdum that M admits a word-hyperbolic
structure with uniqueness. Then, by Proposition 6.3.1, there is a regu-
lar language L over A such that (L,M(L)) is a word-hyperbolic structure
with uniqueness for M . In particular, every element of M has a unique
representative in L. Let A be a finite state automaton recognizing L and
let n be the number of states in A.

Now, if w ∈ L represents u ∈ M , then w →∗
R u: the word u can be

obtained from w by replacing subwords lying in G by the empty word,
which effectively means deleting subwords that lie in G. Consider this
process in reverse: the word w can be obtained from u by inserting words
from G.

If a word from G is inserted between two letters of u, call it a depth-1
inserted word. If a word fromG is inserted between two letters of a depth-
k inserted word, it is called a depth-(k+1) inserted word. A word inserted
immediately before the first letter or immediately after the last letter of a
depth-k inserted word also counts as a depth-k inserted word. See the
following example, where for clarity symbols from u are denoted by x:

x ab

depth 2
︷ ︸︸ ︷

abbccd bccd
︸ ︷︷ ︸

depth 1

depth 1
︷ ︸︸ ︷

abbccd xx

depth 1
︷ ︸︸ ︷

abbbcccd xx.

Then it is possible to obtain w from u by performing all depth-1 insertions
first, then all depth-2 insertions, and so on until w is reached.

Suppose that, in order to obtainw from u, a word abαcαd ∈ G is inserted
for some α > n. Let w = w′aw′′dw′′′, where these distinguished letters a
and d are the first and last letters of this inserted word. Notice that w′′ →∗

R

bαcα, since

w = w′aw′′dw′′ →∗
R w

′abαcαdw′′′ →R w
′w′′′ →∗

R u.

(Of course, w′′ may or may not contain inserted words of greater depth.)
Since α exceeds n, the automaton A enters the same state immediately
after reading two different symbols b of this inserted word, say after read-
ing w′apb and w′apbqb. Similarly it enters the same state immediately after
reading two different symbols c of this inserted word, say after reading
w′apbqbrc and w′apbqbrcsc. Therefore by the pumping lemma, w factors as
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w′apbqbrcsctdw′′′ such that

w′apb(qb)irc(sc)jtdw′′′ ∈ L

for all i, j ∈ N∪{0}, where the subwords p and q consist of letters b (letters
of this inserted word) and possibly also inserted words of greater depth,
the subwords s and t consist of letters c (letters of this inserted word) and
possibly also inserted words of greater depth, and the subword r consists
of some letters b followed by some letters c (letters of this inserted word)
and possibly also inserted words of greater depth. Thus

p→∗
R b

β1 , q →∗
R b

β2 , r →∗
R b

β3cγ3 , s→∗
R c

γ2 , t→∗
R c

γ1 ,

where β1 + β2 + β3 + 2 = γ1 + γ2 + γ3 + 2 = α. It follows that

w′apb(qb)irc(sc)jtdw′′′

→∗
R w

′abβ1b(bβ2b)ibβ3cγ3c(cγ2c)jcγ1dw′′′

= w′abα+(β2+1)(i−1)cα+(γ2+1)(j−1)dw′′′.

Set i = γ2 + 2 and j = β2 + 2 to see that

w′apb(qb)γ2+2rc(sc)β2+2tdw′′′ ∈ L

and

w′apb(qb)γ2+2rc(sc)β2+2tdw′′′

→∗
R w

′abα+(β2+1)(γ2+1)cα+(γ2+1)(β2+1)dw′′′

→∗
R w

′w′′ (since abα+(β2+1)(γ2+1)cα+(γ2+1)(β2+1)d ∈ G)

→∗
R u.

So there are two distinct words w and w′apb(qb)γ2+2rc(sc)β2+2tdw′′ in L rep-
resenting the same element u of M . This is a contradiction and so shows
the falsity of the supposition that the insertion of a word abαcαdwith α > n
is used in obtaining the representative in L from a normal form word in
M .

Let G′ = {abαcαd : α ≤ n}. Then obtaining a word w ∈ L representing
u ∈M requires inserting only words from G′ ⊂ G.

Now suppose that an insertion of depth greater than n2 is required to
obtain w from u. Then w factorizes as w′apaqdrdw′′, where the first dis-
tinguished letter a and second distinguished letter d are the first and last
letters of some inserted word of depth k, and the second distinguished let-
ter a and first distinguished letter d are from some inserted word of depth

110



ℓ > k, and where the automaton A enters the same state after reading the
two distinguished letters a and enters the same state after reading the two
distinguished letters d. (Such a factorization must exist because there are
only n2 possible pairs of states, and there are inserted words of depth ex-
ceeding n2.) Notice that aqd →∗

R 1 and so apaqdrd →∗
R aprd →∗

R 1. Then,
by the pumping lemma,

w′apapaqdrdrdw′′ ∈ L,

but

w′apapaqdrdrdw′′ →∗
R w

′apaprdrdw′′ →∗
R w

′aprdw′′ →∗
R w

′w′′ →∗
R u,

and so there are two representativesw andw′apapaqdrdrdw′′ inL of u ∈M .
This is a contradiction and so shows the falsity of the assumption that
insertions of depth greater than n2 are required to obtain the representative
in L of a normal form word in M .

Suppose that, in the process of performing insertions to obtain a rep-
resentative w ∈ L for an element u ∈ M , a word w(k) is obtained after
the insertions of depth k have been performed. Suppose further that in
performing the insertions of depth k + 1, more than n insertions are made
between consecutive letters of w(k) to obtain a word w(k+1). (The reasoning
below also applies if w(k) is the empty word, which would require k = 0.)
Then w(k+1) factors as

w(k+1) = v′abα1cα1dabα2cα2d · · · abαhcαhdv′′,

where h > n, and each abαicαid is a word from G′. Then w factors as

w = w′ap1dap2d · · · aphdw
′′,

where w′ →∗
R v′, w′′ →∗

R v′′, and pi →
∗
R bαicαi for each i. Then A enters the

same state on reading w′ap1dap2d · · · apid and w′ap1dap2d · · · apjd for some
i < j. So by the pumping lemma,

q = w′ap1dap2d · · · apid(api+1d · · · apjd)
2apj+1d · · · apkdw

′′ ∈ L.

But

q = w′ap1dap2d · · · apid(api+1d · · · apjd)
2apj+1d · · · apkdw

′′

→∗
R v

′abα1cα1dabα2cα2d · · ·

· · · abαicαid(abαi+1cαi+1d · · ·

· · · abαjcαjd)2abαj+1cαj+1d · · · abαhcαhdv′′,

→∗
R v

′v′′

→∗
R u,
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and so there are two representatives w and q of the element u ∈ M . This
contradicts the uniqueness of representatives in L and shows the falsity of
the supposition that more that n insertions between consecutive letters in
the process of obtaining a representative in L for an element of M .

Therefore, to sum up: a representative w in L of an element u of M can
be obtained by inserting elements of G′ to a depth of at most n2, with at
most n consecutive words being inserted between adjacent letters at any
stage. Notice that the maximum length of words in G′ is 2n + 2. Thus,
starting with empty word, the after depth 1 insertions, there are at most
n(2n + 2) letters; after depth 2 insertions, at most n2(2n + 2)2; and after
depth n2 insertions, at most h = nn2

(2n+ 2)n
2

. Similarly, if one starts with
a word u and performs insertions to obtain its representative in L, at most
h new symbols are inserted between any adjacent pair of letters in u.

Define
H =

{
w ∈ A∗ : |w| ≤ h,w →∗

R 1
}
.

Then, by the observations in the last paragraph, if u ∈M with u = u1 · · · un
is represented by w ∈ L, then w ∈ Hu1Hu2 · · ·HunH . Define the rational
relation

P =
(
{(a, a) : a ∈ A} ∪ {(p, 1) : p ∈ H}

)∗
.

Then, since removing all subwords in H from a word in L yields the word
to which it rewrites, it follows that

M = (L ◦P)∩ (A∗ −A∗HA∗) =
{
u ∈ A∗ −A∗HA∗ : (∃w ∈ L)((w, u) ∈ P)

}
,

and so M , which is the language of normal forms of (A,R), is regular.
However, two words abαcβd and abα

′

cβ
′

d (where α, β, α′, β′ ∈ N) rep-
resent the same element of M if and only if α = β and α′ = β′, in which
case they both represent the identity of M . Thus, since in M the unique
representative of the identity is 1, the language K = ab∗c∗d −M , which
is also regular, consists of precisely those words of the form abαcβd that
represent the identity. That is, the language K is {abαcαd : α ∈ N}, which
is not regular by the pumping lemma. This is a contradiction, and so M
does not admit a regular language of unique representatives.
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Chapter 7

Markov Semigroups

In this chapter we will define the natural analog of the notion of ‘being
Markov’ for semigroups; see how it interacts with two specific generalisa-
tions of hyperbolicity for semigroups; and investigate how the property of
being Markov is preserved under finite Rees and Green indices. The main
result we obtain is establishing an example of a monoid with linear Dehn
function which does not admit a regular language of normal forms with
uniqueness.

The results of this chapter were obtained in collaboration with Alan
Cain and are taken from [15].

7.1 Introduction

The notion of Markov groups was introduced by Gromov in his seminal
paper [37, § 5.2], and explored further in [30] and in [25]. A group is
Markov if it admits a language of unique representatives, with respect to
some generating set, that can be described by a Markov grammar. In this
context, a Markov grammar is essentially a finite state automaton with
one initial state and every state being an accept state. The connection with
hyperbolic groups arises because every hyperbolic group admits such a
language of minimal-length unique representatives. There is also a connec-
tion to automatic groups as was explored in [25]. However, it remains an
open direction to investigate the connection between Markov semigroups
and automatic semigroups.

Let A be a finite generating set for a monoid M . By a combing for M
over A we will mean simply a language over A which represents all the
elements of M . We will say that a combing L ⊆ A∗ for M is with uniqueness
if all the words from L, viewed as elements in M , are pairwise distinct. So,
a combing with uniqueness is exactly what we called normal forms before.
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For x ∈ M we will denote by |x|A the length of any shortest word over A
representing x. Now we give our main definition, which we will show in
Proposition 7.1.4 below to be equivalent to the original definition:

Definition 7.1.1. Let A be a finite generating set for a monoid M .

1. A monoid Markov language for M over A is a regular prefix-closed
combing with uniqueness for M over A.

2. The monoid M is Markov (as a monoid) if there exists a monoid
Markov language for M over some finite generating set.

In the next definition by +-prefix-closure we mean the closure with
respect to the non-empty prefixes.

Definition 7.1.2. Let A be a finite generating set for a semigroup M .

1. A semigroup Markov language for M over A is a regular +-prefix-
closed combing with uniqueness for M over A.

2. The semigroup M is Markov (as a semigroup) if there exists a semi-
group Markov language for M over some finite generating set.

The reason for introducing two definitions is the following. When con-
sidering monoids it is natural to take the empty word for the representa-
tive of the identity. But if trying to introduce the property of being Markov
for semigroups, we must in general consider +-prefix-closure rather than
just prefix-closure. Anyway, for monoids our two definitions do not col-
lide by the following proposition:

Proposition 7.1.3. A monoid is Markov as a semigroup if and only if it is Markov
as a monoid.

Proof. Suppose that M is Markov as a monoid. Let A be a finite generating
set for M such that there is a monoid Markov language L for M over A.
Then L is prefix-closed, regular, and contains a unique representative for
each element ofM . In particular, the identity ofM is represented by 1 ∈ L.
Let e be a new symbol representing the identity for M . Then K = (L −
{1})∪{e} is +-prefix-closed, regular, and contains a unique representative
for every element of M . Hence K is a semigroup Markov language for M
and thus M is Markov as a semigroup.

Suppose now that M is Markov as a semigroup. Let A be a finite semi-
group generating set for M such that there is a semigroup Markov lan-
guage L for M over A. Let w be the unique word in L representing the
identity of M . Let

K =
(
L− wA∗

)
∪ {u ∈ A∗ : wu ∈ L}.
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Since L is +-prefix-closed and wA∗ is closed under concatenation on the
right, L − wA∗ is also +-prefix closed. Furthermore, {u ∈ A∗ : wu ∈ L}
is prefix-closed. (Notice that this set contains 1 since w lies in L.) So K is
prefix-closed. Moreover, wu and u represent the same element of M for
any u ∈ A∗, so {u ∈ A∗ : wu ∈ L} consists of unique representatives for
exactly those elements of M whose representatives in L have w as a prefix.
Hence every element ofM has a unique representative inK. Finally, notice
that K is regular. Thus K is a monoid Markov language for M and so M
is Markov.

The following result shows the connection between the definitions of
Markov languages and Markov grammars as used by Ghys & de la Harpe [30].

Proposition 7.1.4. A regular language is prefix-closed if and only if it is recog-
nized by a finite state automaton in which every state is an accept state.

Proof. Suppose L is prefix-closed and let A be a trim deterministic finite
state automaton recognizing L. Let q be some state of A. Since A is trim,
q lies on a path from the initial state to an accept state. Let w be the label
on such a path, with w′ being the label before the first visit to q. Then w′,
being a prefix of w, also lies in L. Since A is deterministic, there is only
one path starting at the initial state labelled by w′, and this path ends at
q. Since w′ ∈ L, it follows that q is an accept state. Therefore, since q was
arbitrary, every state of A is an accept state.

Suppose that L is accepted by an automaton A in which every state is
an accept state. Let w ∈ L and let w′ be some prefix of w. Then w labels
a path starting at the initial state of A and leading to an accept state. The
prefix w′ labels an initial segment of this path, ending at a state q, which,
by hypothesis, is also an accept state. Thus w′ ∈ L. Since w ∈ L was
arbitrary, L is prefix-closed.

7.2 ‘Being Markov’ vs. Hyperbolicity

As we noted above, every hyperbolic group is Markov. The following
definitions of hyperbolicity for groups are equivalent: admitting a word-
hyperbolic structure and having linear Dehn function. In this section we
will show that neither word-hyperbolicity nor having linear Dehn func-
tion for monoids implies even being Markov.

Example 7.2.1. As we proved in Chapter 6, the monoid

Mon〈a, b, c, d : abncnd = 1 n ≥ 1〉
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is word-hyperbolic. But it also does not admit a regular combing with
uniqueness, so it is non-Markov.

Recall that for a finitely presented monoid M = Mon〈A : R〉, the Dehn
function Dn(M) = Dn(M ;A,R) is defined as follows. For two words u, v ∈
A∗ such that u =M v we let d(u, v) be the least number of relations from R
needed to be applied in the derivation from u to v. Then

Dn(M) = sup{d(u, v) : u, v ∈ A∗, |u|, |v| ≤ n, u =M v}.

It is easy to see that the growth rate (in terms of n) of the Dehn function
does not depend on the finite presentation we choose for M .

Unfortunately, the Dehn functions of finitely presented monoids be-
have somewhat differently relative to the Dehn functions of finitely pre-
sented groups. For instance, there exists a monoid with linear Dehn func-
tion which does not admit a finite complete rewriting system, let alone a
finite confluent length-reducing system, see [69]. In the same work [69]
there is also an example of an automatic monoid with exponential Dehn
function.

Our next example is inspired by the monoid Mon〈a, b, c : ba = ab, bc =
aca, ac2 = 0〉 from [69], which was shown not to admit a regular combing
with uniqueness. This monoid is also of intermediate growth (faster than
any polynomial and slower than any exponential) and has quadratic Dehn
function. A slight modification of this monoid remains non-Markov and
has linear Dehn function.

Our next examples relies on the following observation, proof of which
follows the same lines as in that of Proposition 6.3.1:

Proposition 7.2.2. Let S be a semigroup that admits a regular combing with
uniqueness over some finite generating set. Then for every finite generating set A
for S, S admits a regular combing with uniqueness over A.

Example 7.2.3. M = Mon〈a, b, c : ba = a2b, bc = aca, ac2 = 0〉 has linear
Dehn function and does not admit a regular combing with uniqueness. In
particular, M is not Markov.

Proof. Notice that ban = a2nb for all n ≥ 1 and so

a2
n+1−1canc = a2

n+1−2bcan−1c

= ba2
n−1can−1c

= · · ·

= bnac2

= 0
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for all n ≥ 0. Moreover, the number of defining relations we used in this
derivation is

(1+2n−1)+(1+2n−1−1)+· · ·+(1+21−1)+1+1 = 2n+· · ·+22+2+2 = 2n+1

which is less than the length of the word a2
n+1−1canc.

Next, it is routine to check that the system

{ba→ a2b, bc→ aca, a2
n+1−1canc→ 0 n ≥ 0}

is confluent and noetherian. Of course this system defines M . We start
proving that Dn(M) is linear. For this we will need the following two
technical lemmas:

Lemma 7.2.4. Let f be the function defined on the tuples of non-negative integers
recursively by

f(dk, · · · , d1) = 2f(dk−1, · · · , d1) + 2dk + 1, f(d) = 2d+ 1.

Then badk · · · bad1c→∗ af(dk,··· ,d1)cak.

Proof. Follows from induction and the observation that badc →∗ a2dbc →
a2d+1ca.

Lemma 7.2.5. The analytic expression for the function f is

f(dk, · · · , d1) = 2dk + 22dk−1 + · · ·+ 2kd1 + 2k − 1.

Proof. Follows directly by induction.

Part 1: M has linear Dehn function.

Case 1: rewriting a word equal to zero to 0. Let w ∈ {a, b, c, 0}∗ be
such that w = 0 in M . If 0 is present in w, then there is a derivation from
w to 0, using at most |w| defining relations. So let w ∈ {a, b, c}∗. Now,
keep applying the rewrite of a2b to ba (note that this process reverses the
rewriting rule ba → a2b from our system) as much as possible. If in the
process we get a word with a subword of the form a2

n+1−1canc, then w can
be rewritten to 0 using at most |w| + |w| = 2|w| defining relations, where
the first summand |w| estimates from above the number of moves from
a2b to ba, and the second summand |w| estimates from above the number
of relations needed to rewrite a2

n+1−1canc to 0. Indeed, as we noted above,
for this is needed at most 2n+1 ≤ |w| defining relations.
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So, suppose that w in the process of the rewrite from the previous para-
graph is transformed to a word w′. First of all, |w′| ≤ |w|. Secondly, w′ does
not contain subwords of the form a2b. If w′ contains a subword of the form
a2

n+1−1canc, then as above, there is a derivation from w to 0 which uses
≤ 2|w| defining relations. Hence we may assume that w′ does not contain
such subwords. Since w′ = 0 in the monoid, there exists a derivation using
our rewriting system: w′ →∗ 0. In this derivation there must exist the first
step when there appears a subword of the type a2

n+1−1canc:

w′ →∗ αa2
n+1−1cancβ →∗ 0. (7.1)

So, the rules used in the derivation w′ →∗ αa2
n+1−1cancβ are only of the

form ba → a2b or bc → aca. This means that it is allowed only to ‘shift’ b’s
to the right by ba → a2b, and ‘take b out’ by applying the rule bc → aca. In
particular, the number of c’s remains unchanged.

As we said above,w′ does not contain subwords of the form a2
k+1−1cakc.

So that in the rewriting process (7.1) the subword A = a2
n+1−1canc would

appear, the following must hold with respect to the two distinguished c’s
of the subword A: to the left of at least one of these c’s in the word w′ there
must take place the process of shifting several b’s to the right and then tak-
ing them out by applying the rule bc→ aca with the c involved in this rule
being the distinguished one. To put it formally, there exist µ1, µ2 ∈ {a, b}∗

and α1, β1 such that

• w′ = α1cµ1µ2cβ1;

• α1cµ1 →
∗ αa2

n+1−1cap;

• µ2cβ1 →
∗ an−pcβ

for some 0 ≤ p ≤ n. Since there is no way of taking out b’s in µ1, we have
actually that µ1 = am for some m ≤ p.

Let us now take a closer look at the rewriting µ2cβ1 →∗ an−pcβ. As we
noted above we are forced to take out all the b’s from µ2. In the process we
can also do some rewriting involving the letters from β and its derivatives.
But since our rewriting system is complete, we may choose first taking out
all the b’s from µ2 and only then do the remainder of the rewriting of µ2cβ1
to an−pcβ. Formally this can be put as follows. Let l = |µ2|b ≤ n − p, then
there exists s ≥ l such that µ2c →∗ ascal and alβ1 →∗ β. Later we will
use the formal decomposition of µ2, so let t′, el, · · · , e1 ≥ 0 be such that
µ2 = at

′

bael · · · bae1 .
Let us now look at the rewriting α1ca

m →∗ αa2
n+1−1cap. In this rewrit-

ing it is only possible to shift b’s to the right and to take them out by
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applying the rules bc → aca. There have to be applied p − m (we will
prove later that this number has to be zero) ‘taking-out’-s of b involving
the distinguished c. The p − m letters b involved in this process have to
be the first p − m letters b of the word w′ to the left of the distinguished
letter c. Formally, this means that there exist t, dp−m, · · · , d1 ≥ 0 such that
α1 = α2 · a

tbadp−m · · · bad1cam and

atbadp−m · · · bad1cam →∗ a2
n+1−1cap.

To summarise the information we collected so far:

w′ = α2 · a
tbadp−m · · · bad1cam · at

′

bael · · · bae1cβ1

atbadp−m · · · bad1cam →∗ X = a2
n+1−1cap

at
′

bael · · · bae1c →∗ Y = an−pcal.

Since
w′ →∗ α2XY β1 = α2 · a

2n+1−1canc · alβ1,

without loss of generality we may assume that β = alβ1 and α = α2. By
Lemma 7.2.4,

2n+1 − 1 = t+ f(dp−m, · · · , d1)

n = p+ t′ + f(el, · · · , e1).

By Lemma 7.2.5 these transform to

2p+t′+f(~e)+1 = t+ 2dp−m + · · ·+ 2p−md1 + 2p−m, (7.2)

where f(~e) stands for f(el, · · · , e1) for short.
Now, in the derivation

W = atbadp−m · · · bad1cam · at
′

bael · · · bae1c→∗ a2
n+1−1cancal, (7.3)

which essentially makes the derivation w′ →∗ α2a
2n+1−1cancalβ1, the or-

der of the rules to be applied is as follows: in the current word to rewrite
we will find the rightmost position of b and if it is possible to apply the
rule bc → aca then do it, otherwise after this b there must follow a and
we apply ba → a2b. We do it until run out of b’s and obtain the word
a2

n+1−1cancal. Two important remarks: (A) there do appear b’s to work
with in this manner – since w′ does not contain subwords of the form
a2

k+1−1cakc; (B) in the process of our rewriting, by the initial choice of the
derivation w′ →∗ αa2

n+1−1cancβ, there never appear intermediate rewrit-

ten words with subwords of the form a2
k+1−1cakc.
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Now our aim is to prove that p = m. Assume the converse, i.e. p−m ≥
1. Since w′ does not contain subwords a2b, we have that

t ≤ 1, dp−m ≤ 1, · · · , d2 ≤ 1.

Then (7.2) gives us

2p+t′+f(~e)+1 = t+ 2dp−m + · · ·+ 2p−md1 + 2p−m

≤ 1 + 2 + · · ·+ 2p−m−1 + 2p−m + 2p−md1

= 2p+1−m + 2p−md1 − 1.

From this we derive

2p+t′+f(~e)+1 < 2p+1−m + 2p−md1,

which yields 2m+t′+f(~e)+1 < 2 + d1, which means

2m+t′+f(~e)+1 ≤ d1 + 1. (7.4)

Now, by our manifest how we execute the derivation (7.3) and Lemma 7.2.4,
we have that

atbadp−m · · · bad1cam · at
′+f(~e)cal.

is one of the intermediate words we obtain in the process of execution. But
by our remark (B), we must have

d1 < 2m+t′+f(~e)+1 − 1.

This contradicts (7.4) and so p = m.
Again let us summarise what we have obtained:

• w′ = α2a
tcam · at

′

bael · · · bae1cβ1;

• w′ →∗ P = α2a
tcam+t′+f(~e)calβ1;

• t+ 1 = 2m+t′+f(~e)+1.

Since
|w′| = |α2|+ |β1|+ t+m+ t′ + l + 2 + (el + · · · e1),

we have that

|P | = |α2|+ |β1|+ t+m+ t′ + l + 2 + f(el, · · · , e1)

≤ |w′|+ f(el, · · · , e1)

≤ |w|+ 2f(el,··· ,e1) − 1

≤ |w|+ t

≤ |w|+ |w′|

≤ 2|w|.
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Thus there is a derivation from P to 0 which uses at most |P | ≤ 2|w|
defining relations. Also, since every application of the rules ba → a2b
and bc → aca increases the length of the word by 1, we applied at most
2|w| rewriting rules in the derivation w′ →∗ P . The word w′ was obtained
from w by applying at most |w| changes of a2b by ba. Therefore, includ-
ing the consideration in the first paragraph in the current Case 1, w can be
rewritten to 0 by ≤ |w|+ 2|w|+ 2|w| = 5|w| defining relations.

Case 2: rewriting two equal non-zero words. Now let w,w′ ∈ {a, b, c}∗

represent the same non-zero element of M . Then in any derivation from
w to w′ there can be only used the relations a2b = ba and bc = aca. In
particular, w = w′ in the monoid N = Mon〈a, b, c : a2b = ba, bc = aca〉. Let
us prove that the Dehn function ofN with respect to the given presentation
is linear. This will finish the proof of that Dn(M) is linear. Thus in the
remainder of Case 2 we are working with the monoid N .

We see that

banc = a2ban−1c = · · · = a2n+1c

and note that the system Σ = {a, b, c; a2b → ba, banc → a2n+1ca, n ≥
0}, which obviously defines N , is confluent and noetherian. It is an easy
exercise to check that N is left cancellative.

We aim to show by the complete induction on ℓ = |w1| + |w2| that if
w1 = w2 in N , then dN(w1, w2) ≤ ℓ. The base case is obvious.

Now we do the induction step (< ℓ) 7→ ℓ. Take two words w1, w2 ∈
{a, b, c}∗ such that w1 = w2 in N . By at most ℓ applications of the rule
a2b→Σ ba we do the rewrites w1 →

∗
Σ u1 and w2 →

∗
Σ u2 to the words u1 and

u2 not containing a subword a2b. The number of c’s in u1 coincides with
that of in u2. If this number is zero, then u1 = u2 and so dN(w1, w2) ≤ ℓ. So,
assume that u1 = p1cq1 and u2 = p2cq2 where p1, p2 ∈ {a, b}∗. One easily
sees that p1 = 1 if and only if p2 = 1; and in the case when p1 = p2 = 1
we have that cq1 =N cq2 which yields q1 =N q2 and then by induction
dN(w1, w2) ≤ dN(|q1| + |q2|) ≤ |q1| + |q2| ≤ ℓ. So, assume that p1 and p2
are non-empty. Again, for the reasons that N is left-cancellative, we may
assume that p1 and p2 start with different letters. Without loss, p1 = ap′1
and p2 = bp′2.

If p′1 contains b’s, then since p1 does not contain a subword a2b, we
obtain that p′1 = bp. But then p1c = abpc →∗

Σ a2rcad and p2c = bp′2c →∗
Σ

a2s+1cae, a contradiction. Therefore p1 = a2f+1. Then, by applying our
old rewriting system, i.e. the rules ba → a2b and bc → aca, we obtain
bp′2c →

∗ a2f+1cal, where l = 1 + |p′2|b, and the number of rules to apply is
2f +1+ l− (1+ |p′2|) ≤ 2f +1 = |p1|. Also, from a2f+1calq2 =N a2f+1cq1 we
obtain alq2 =N q1. Finally, since |alq2|+ |q1| = l+ |q2|+ |q1| < |w1|+ |w2|, by
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induction we deduce that

dN(w1, w2) ≤ |p1|+ dN(a
lq2, q1) ≤ |p1|+ l + |q2|+ |q1| ≤

|p1|+ |p2|+ |q2|+ |q1| ≤ |w1|+ |w2|.

This finishes the induction step proof and we are ready to conclude that
M has linear Dehn function.

Part 2: M is non-Markov.

Assume that M admits a regular combing with uniqueness. Then by
Proposition 7.2.2, M admits a regular combing L with uniqueness over
{a, b, c}. Let N be the number of states in an automaton accepting L.

Take M ≥ 1 such that as soon as (N + 1)(2k+1 − 1) ≥ 22
M+1−1 − 2, then

k > N .
Consider the word W = a2

2
M+1

−1−2ca2
M+1−2caMc. This word is irre-

ducible with respect to our rewriting system, and so w 6= 0. Let w ∈ L be
the word representing W . Then w must be of the form

w = atbadk · · · bad1cat
′

bael · · · bae1camc.

Furthermore,

atbadk · · · bad1c →∗ a2
2
M+1

−1−2cak

at
′

bael · · · bae1camc →∗ a2
M+1−2−kcaMc.

Assume that di > N for some i. Then we can pump some power of a in
adi :

wk = atbadk · · · badi+1 · bap+qn · badi−1 · · · bad1cat
′

bael · · · bae1camc ∈ L

for all n ≥ 1, where q ≥ 1 and p+ q = di. But

badi−1 · · · bad1cat
′

bael · · · bae1camc →∗ aucavcafc

with u, v, f bounded in length by |w|. Then starting from some n0 ≥ 1, for
all n ≥ n0 we will have that p + qn + u ≥ 2v+1 − 1 and so wn = 0 for all
n ≥ n0, a contradiction.

Thus all di ≤ N . Analogously t ≤ N . Then

22
M+1−1 − 2 = t+ 2dk + · · ·+ 2kd1 + 2k − 1

≤ N(1 + 2 + · · ·+ 2k) + 2k − 1

= N(2k+1 − 1) + 2k − 1

≤ (N + 1)(2k+1 − 1)
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and so k > N . But then

w →∗ a2
2
M+1

−1−2cak · at
′

bael · · · bae1camc,

and by similar arguments we show by pumping a power of a in ak that
there are two distinct words in L both representing 0. Again we get a
contradiction and so M does not admit a regular combing with unique-
ness.

7.3 ‘Being Markov’ under Finite Rees and Green Indices

Theorem 7.3.1. The class of Markov semigroups is closed under forming finite
Rees index extensions and subsemigroups.

Proof. Let T ≤ S with S − T finite.
Suppose that T is Markov and that L is a Markov language for T over

some finite generating set A for T . Let B be a (finite) alphabet in bijection
with S−T . Without loss of generality, assume that A∩B = ∅. Then L∪B
is a Markov language for S.

Now suppose that S admits a Markov language L over an alphabet A.
Let ϕ : A → S be the corresponding representation map, so we have that
Lϕ = S. Define

L(A, T ) = {w ∈ A+ : wϕ ∈ T}.

Let C be an alphabet representing the elements of S − T , that is there is a
bijection ψ from C onto S − T . For any word w ∈ A∗ − L(A, T ), let w be
the unique element of C ∪ {1} representing, under ψ, the element wϕ, or 1
if wϕ = 1. Define the alphabet

D = {dρ,a,σ : ρ, σ ∈ C ∪ {1}, a ∈ A, (aϕ)(σψ) ∈ T ∧ (ρψ)(aϕ)(σψ) ∈ T},

and let it represent elements of T by the map φ as follows:

(dρ,a,σ)φ = (ρψ)(aϕ)(σψ).

Notice that since A is finite, D too must be finite. Let R ⊆ A+ ×D+ be the
relation consisting of pairs
(
wn+1anwnan−1wn−1 · · · a2w2a1w1, dwn+1,an,wn

d1,an−1,wn−1
· · · d1,a2,w2

d1,a1,w1

)

where the left-hand side lies in L(A, T ) and its factorization is obtained
in the following way: start by letting the left-hand side be w′

1; a partial
factorization

w′
i+1aiwi · · · a1w1
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is complete if w′
i+1 /∈ L(A, T ); if on the other hand w′

i+1 ∈ L(A, T ) set
ai+1wi+1 to be the shortest suffix of w′

i+1 lying in L(A, T ) and let w′
i+2 be the

remainder of w′
i+1.

Notice that if (w, u) ∈ R then wϕ = uφ by the definition of how the al-
phabetD represents elements of T . Note also that each wordw determines
a unique word u ∈ D+ such that (w, u) ∈ R.

Lemma 7.3.2. The relation R is rational.

Proof. We will explain how a two-tape finite state automaton A can recog-
nize R when reading from right-to-left; since the class of rational relations
is closed under reversal, it will then follow that R is rational.

By the dual of [76, Theorem 4.3], S admits a left congruence Λ of finite
index (that is, having finitely many equivalence classes) contained within
(T × T ) ∪∆S−T , where ∆S−T is the diagonal relation on S − T .

Imagine the automaton A reading letters from A from its left-hand in-
put tape and outputting symbols from D on its right-hand tape. Suppose
the content of its left-hand tape is w. As it reads symbols from w (moving
from right to left along the tape), it keeps track of the Λ-class of the element
represented by the suffix of w read so far. (This is possible because Λ is a
left congruence with only finitely many equivalence classes.) In particular,
A knows whether the element represented by the suffix read so far lies in
T (or equivalently, whether the suffix read so far lies in L(A, T )), or, if the
element so represented lies in S − T , which letter of C ∪ {1} represents it.
When A reads a symbol a such that the suffix read so far — say aw′ — lies
in L(A, T ), it non-deterministically chooses one of two actions:

1. It outputs d1,a,w′ , resets its store of the suffix read so far to 1, and
continues to read from its left-hand tape.

2. It outputs dc,a,w′ , where c is a non-deterministically chosen element of
C∪{1}, then reads the remainder v of its left-hand tape and accepts if
and only if v = c. (Notice that this is the only way that A can accept.)

By induction on the subscripts of the letters ai, the automaton A can ac-
cept only by outputting letters d1,a,wi

immediately after reading the suffix
aiwi · · · a1w1 and the letter dwn+1,an,wn

immediately after reading anwn · · · a1w1,

and can accept only when wn+1 /∈ L(A, T ). So A recognizes R.

By Lemma 7.3.2,

K = L ◦R =
{
v ∈ D∗ : (∃u ∈ L)

(
(u, v) ∈ R

)}
.
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is regular. Since the set of left-hand sides of elements of R is L(A, T ), the
language K maps under φ onto T .

Suppose u1, u2 ∈ K are such that u1φ =S u2φ. Let w1, w2 ∈ L be such
that (w1, u1), (w2, u2) ∈ R. Since L maps bijectively under ϕ onto S and
w1ϕ =S u1φ =S u2φ =S w2ϕ, the words w1 and w2 must be identical. Since
every w ∈ L(A, T ) determines a unique u ∈ D+ with (w, u) ∈ R, it follows
that u1 and u2 are identical. So K maps bijectively under φ onto T .

Finally, let u ∈ K with |u| ≥ 2. Then u = dcn+1,an,cn · · · d1,a2,c2d1,a1,c1 , with
n ≥ 2. Then there is some word w ∈ L with (w, u) ∈ R. By the definition
of R, the word w factorizes as wn+1anwn · · · a2w2a1w1 ∈ L with wi = ci, and
a1w1, a2w2, . . . , wn+1anwn ∈ L(A, T ).

SinceL is prefix-closed,wn+1anwn · · · a2w2 ∈ L. Since a2w2, . . . , wn+1anwn ∈
L(A, T ), it follows that wn+1anwn · · · a2w2 ∈ L(A, T ). So, by the definition
of R, it follows that dcn+1,an,cn · · · d1,a2,c2 ∈ K.

This shows that K is closed under taking longest proper non-empty
prefixes. By induction, K is +-prefix-closed. Hence K is a Markov lan-
guage for T .

The following example shows that the class of Markov semigroups is
not closed under finite Green index extensions:

Example 7.3.3. Let G a finitely generated infinite torsion group. Let B be
an alphabet representing a generating set for G. Let A be a finite alphabet
in bijection withB and F be the free group with basisA. The bijection from
A to B naturally extends to a surjective homomorphism φ : F → G. Let
S be the strong semilattice of groups S(F,G, φ), which is defined as follows:
as a set S is the disjoint union of F and G, and the multiplication on S is
defined by the following rule. Let x, y ∈ S. If x, y ∈ F , then define xy to be
the product of x and y in F . If x, y ∈ G, then define xy to be the product of
x and y in G. If x ∈ F and y ∈ G, then define xy to be xφ · y. If x ∈ G and
y ∈ F , then define xy to be x · yφ.

F is hyperbolic and hence F is Markov. Moreover, F is a finite Green
index subsemigroup of S, with S − F = G forming of a single HF -class.

Suppose that S is Markov. Then by Proposition 7.2.2, S admits a reg-
ular combing with uniqueness L over A ∪ B. By the definition of multi-
plication in a strong semilattice of monoids, the words in L representing
elements of G are precisely those that include at least one letter B. That
is, the language of words in L representing elements of G is K = L − A∗.
Since L is regular, K is also. Since L maps bijectively onto S and K ⊆ L,
it follows that K maps bijectively onto G. So if each letter a ∈ A is inter-
preted as representing the element aφ of G, then K is a regular combing
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with uniqueness for G. However, G, as a finitely generated infinite torsion
group, does not admit a regular language of unique normal forms by the
reasoning in [25, Example 2.5.12]. This is a contradiction, and so S cannot
be Markov.

This example is similar in spirit to examples showing that neither the
class of finitely presented semigroups nor the class of automatic semi-
groups is closed under forming finite Green index extensions [13, Exam-
ples 6.5 & 10.3]. However, with an extra condition on the Schützenberger
groups of the T -relative H-classes in the complement, a positive result
does hold. First of all, recall the definition of Schützenberger groups:

Definition 7.3.4. Let T be a subsemigroup of a semigroup S. Let H be an
HT -class. Let Stab(H) = {t ∈ T 1 : Ht = H}, and define an equivalence
σ(H) on Stab(H) by (x, y) ∈ σ(H) if and only if hx = hy for all h ∈ H . Then
σ(H) is a congruence on Stab(H) and Stab(H)/σ(H) is a group, called the
Schützenberger group of the HT -class H and denoted Γ(H).

Proposition 7.3.5. Let S be a semigroup and T a subsemigroup of S of finite
Green index. Suppose that T is Markov and that the Schützenberger group of
every T -relative H-class in S − T is Markov. Then S is Markov.

Proof. Let L be a semigroup Markov language for T over some finite al-
phabet A representing a generating set for T under the map φ : A → T .
Since T has finite Green index in S, there are finitely many T -relative H-
classes H1, . . . , Hn in S − T . By hypothesis, every Schützenberger group
Γ(Hi) admits a semigroup Markov language Li over some finite alphabet
Ai representing a generating set for Γ(Hi) under the map φi : Ai → Γ(Hi).
For brevity, let σi = σ(Hi).

For each i = 1, . . . , n, fix an element hi ∈ Hi. For each i = 1, . . . , n and
a ∈ Ai, fix elements si,a ∈ Stab(Hi) such that aφi = [si,a]σi

.
Let A′

i be a new alphabet in bijection with Ai under the map αi : Ai →
A′

i. (Without loss of generality, assume that the alphabetA and the various
alphabets Ai and A′

i are pairwise disjoint.) Define a map ψi : Ai ∪ A
′
i → S

as follows:

aψi =

{

si,a if a ∈ Ai,

hisi,a if a ∈ A′
i.

(7.5)

Let
L′
i =

{
(aαi)u ∈ A′

iA
∗
i : au ∈ Li, a ∈ Ai

}
.

(So L′
i is the language obtained from Li by taking each word in Li ⊆ A+

i

and replacing its first letter with the corresponding letter from A′
i.) Notice

that since Li is regular and +-prefix-closed, so is L′
i.

126



Since Γ(Hi) acts regularly on Hi via

x · [s]σi
= xs,

it follows that for every y ∈ Hi there is a unique element [s]σi
∈ Γ(Hi) such

that hi · [s]σi
= y. Thus it follows from (7.5) and the fact that Li is a Markov

language for Γ(H) that for every y ∈ Hi there is a unique w ∈ Li such that
hi(wφi) = y. Hence, by (7.5) and the definition of L′

i, for every y ∈ Hi there
is a unique word v ∈ L′

i with vψi = y. Thus L′
i maps bijectively onto Hi.

Finally, let

K = L ∪
n⋃

i=1

L′
i.

Then K is +-prefix-closed and regular. Define

ψ : A ∪
n⋃

i=1

(
Ai ∪ A

′
i

)
→ S, aψ =

{

aφ if w ∈ A,

aψi if w ∈ Ai ∪ A
′
i.

Then φ maps K bijectively onto S. Hence K is a semigroup Markov lan-
guage for L .

Proposition 7.3.5 parallels [13, Theorem 6.1], which shows that if T is
a finite Green index subsemigroup of S, and T and all the Schützenberger
groups of the T -relative H-classes in S−T are finitely presented, then S is
finitely presented.

Question 7. Let T be a subsemigroup of finite Green index in a semigroup
S. Let also S be Markov. Is T Markov?
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Chapter 8

Decision Problems for Finitely Presented
and One-Relator Semigroups and Monoids

In this chapter, for some distinguished properties of semigroups we study
the following: whether that property or its negation is a Markov property,
and whether it is decidable for finitely presented semigroups and for one-
relator semigroups and monoids. All the results and open problems are
summarized in a table.

The results of this chapter were obtained in collaboration with Alan
Cain and appeared in [14].

8.1 Introduction

At the beginning of 20th century Max Dehn posed the question whether
every one-relator group has soluble word problem. Later this was an-
swered in the affirmative by Magnus [55]. At that stage it was natural
to find an example of algorithmically insoluble problem. Based upon the
results of Turing and Post it was possible to find the first undecidabil-
ity result of an algebraic nature: Markov [61] and Post [71] established
examples of finitely presented semigroups with insoluble word problem.
This result was used later for proving other undecidability results like in-
solubility of the word problem for finitely presented groups [2]. Markov
also used the word problem for finitely presented semigroups to prove
that the so-called Markov properties are undecidable for finitely presented
semigroups, see Section 8.2. Even though there has been much success in
dealing with algorithmic problems using semigroup theory, the original
question of Dehn for one-relator semigroups still remains open. A major
step in the approach to this problem uses combinatorics on words [1, 3, 50].
An interesting result is obtained in [46] where the word problem for one-
relator semigroups is reduced to the word problem for one-relator inverse
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semigroups, the latter being closer to the class of groups. Some partial re-
sults, using the geometric approach of the so-called word diagrams, were
obtained in [72]. The least known number of relations in a finitely pre-
sented semigroup one needs to take to obtain a semigroup with insoluble
word problem is 3, due to Matiyasevich [62].

As a natural continuation, there appeared in literature some works on
other algorithmic problems for finitely presented and one-relator semi-
groups, with greater emphasis on the latter. It was proved by Adian [1]
that cancellativity is decidable for one-relator semigroups. Lallement [50]
showed that it is decidable whether a one-relator semigroup has idempo-
tents (we reprove this result in another fashion in Section 8.4).

In this chapter we do the following. We construct a list of ‘distin-
guished’ properties for semigroups. For each property from this list we
ask whether it or its negation is a Markov property. If so then this property
is undecidable for finitely presented semigroups. If neither the property
nor its negation is a Markov property (or we do not know the answer to
these) then we use a certain type of construction to prove that it is unde-
cidable for finitely presented semigroups. After that we ask whether this
property is decidable for one-relator semigroups and one-relator monoids.
For some properties like ‘having an identity’ this clearly should be sepa-
rated between semigroup and monoid cases. The summary of results we
put into Table 8.1.

Before we start, let us agree on the following notation: if w is a word
over some generating set for a semigroup S, then w is the element from S
which is represented by w.

8.2 Markov Properties

In studying whether a given property is decidable for finitely presented
semigroups, it turns out to be useful to know if it is a so-called Markov
property, as such properties are undecidable for finitely presented semi-
groups. (By a ‘property of semigroups’ we mean those properties that are
preserved under isomorphisms.) In most cases it is easy to check whether
a particular property is a Markov property:

Definition 8.2.1. Let P be a property of semigroups. Then P is a Markov
property if it satisfies the following two conditions:

1. There exists a finitely presented semigroup S1 with property P.

2. There exists a finitely presented semigroup S2 that does not embed
into any finitely presented semigroup with property P.
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Table 8.1: Shows, for particular properties of semigroups, whether it or its negation is a Markov property and
whether it is decidable for general finitely presented semigroups and one-relator semigroups. [In each column:
Y = Yes, N = No, ? = Unknown; in the decidability columns: T = Always true, F = Always false].

MARKOV PROPERTY DECIDABLE

PROPERTY P P ¬P FIN. PRES. ONE-RELATOR

SEMIGROUP MONOID

Having an identity N (Pr. 8.3.1) N (Pr. 8.3.1) N (Pr. 8.3.3) Y (Pr. 8.3.5) T (By def.)
Having a zero N (Pr. 8.3.2) N (Pr. 8.3.2) N (Pr. 8.3.4) Y (Co. 8.3.7) Y (Pr. 8.3.6)
Having idempotents N (Th. 8.2.3) Y (Trivial) N (Th. 8.2.2) Y (Th. 8.4.2) T (By. def.)
Being a group Y (Pr. 8.5.1) N (Th. 8.2.3) N (Th. 8.2.2) Y (Pr. 8.5.6) Y (Pr. 8.5.5)
Group-embeddability Y (Pr. 8.5.1) N (Th. 8.2.3) N (Th. 8.2.2) Y (Pr. 8.5.7) Y (Pr. 8.5.8)
Cancellativity Y (Pr. 8.5.10) N (Th. 8.2.3) N (Th. 8.2.2) Y (Re. 8.5.11) Y (Pr. 8.5.12)
Non-trivial subgroup N (Th. 8.2.3) Y (Trivial) N (Th. 8.2.2) ? ?
Being inverse Y (Pr. 8.5.1) N (Th. 8.2.3) N (Th. 8.2.2) Y (Pr. 8.5.9) ?
Orthodoxy Y (Pr. 8.5.1) N (Th. 8.2.3) N (Th. 8.2.2) ? ?
Regularity ? N (Pr. 8.5.2) N (Pr. 8.5.3) Y (Pr. 8.5.4) ?
minR Y (Pr. 8.6.1) N (Th. 8.2.3) N (Th. 8.2.2) Y (Co. 8.6.3) Y (Pr. 8.6.2)
Right-stability Y (Pr. 8.6.1) N (Th. 8.2.3) N (Th. 8.2.2) ? ?
J = D ? N (Pr. 8.7.1) N (Pr. 8.7.2) ? ?
Being the bicyclic monoid Y (Re. 8.8.3) N (Th. 8.2.3) N (Th. 8.2.2) F (Co. 8.8.5) Y (Pr. 8.8.4)
Being a BR-ext. N (Pr. 8.8.1) N (Pr. 8.8.1) N (Pr. 8.8.2) F (Co. 8.8.5) ?
Simplicity N (Pr. 8.9.1) N (Pr. 8.9.1) N (Pr. 8.9.2) Y (Co. 8.9.6) ?
Bisimplicity ? N (Pr. 8.9.1) N (Co. 8.9.5) Y (Co. 8.9.6) ?
Semisimplicity N (Pr. 8.9.3) N (Pr. 8.9.3) N (Pr. 8.9.4) ? ?
Hopficity N (Pr. 8.10.1) N (Pr. 8.10.1) N (Pr. 8.10.2) ? ?
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The following theorem is folklore: the Markov properties are undecid-
able for finitely presented semigroups. The way how it is proved will help
us later to prove undecidability results for finitely presented semigroups,
so we include a sketch proof for the monoid case.

Theorem 8.2.2 ([9, Theorem 7.3.7]). Let P be a property of semigroups, and
suppose that either P or ¬P is a Markov property. Then P is undecidable for
finitely presented semigroups.

Proof. Let P be a Markov property and let S1 and S2 be two monoids as in
Definition 8.2.1. Take any finitely presented monoid T with undecidable
word problem. Set S = T ∗M S2. The monoid S has undecidable word
problem and does not have property P. Also S is a finitely presented
monoid: let S = Mon〈A : R〉 be any finite presentation for S. Now for
arbitrary u, v ∈ A∗ define

Su,v = Mon〈A, c, d : R, cud = 1, acvd = cvd (∀a ∈ A ∪ {c, d})〉. (8.1)

Su,v satisfies the following two conditions: if u = v, then Su,v is trivial; if
u 6= v then S2 embeds into Su,v and so Su,v does not have property P.

Thus whether the monoid S1 ∗M Su,v has property P is equivalent to
whether u = v. All the constructions used are effective, so the word prob-
lem reduces to the problem of deciding P: thus P is undecidable.

If ¬P is a Markov property, the result follows from the same proof on
noting that P is decidable if and only if ¬P is decidable.

Notice that the construction (8.1) appears in some other branches of
mathematics, e.g. using it, Bernhard Neumann proved that every existen-
tially closed monoid has only two congruences [52, Chapter IV]. Construc-
tions of this type will be a principal tool for proving undecidability results
for finitely presented semigroups later in the chapter.

The following theorem, although not difficult, does not seem to have
been explicitly stated hitherto:

Theorem 8.2.3. Let P be a property of semigroups. Then at most one of P and
¬P is a Markov property.

Proof. Suppose P and ¬P are both Markov properties. Then there exists
a finitely presented semigroup S that does not embed into any finitely
presented P-semigroup and a finitely presented semigroup T that does
not embed into any finitely presented semigroup that is ¬P. Both S and T
embed into S ∗S T , which is finitely presented; thus S ∗S T can be neither
P nor ¬P. This is a contradiction, so at least one of P, ¬P fails to be a
Markov property.
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8.3 Identity? Zero?

Proposition 8.3.1. Neither the property of having an identity, nor its negation,
is a Markov property.

Proposition 8.3.2. Neither the property of having a zero, nor its negation, is a
Markov property.

These results can be proved in parallel:

Proof. Let S be a finitely presented semigroup. Then S embeds into the
finitely presented semigroup S1 (respectively, S0); thus having an identity
(respectively, a zero) is not a Markov property.

On the other hand, S embeds into the free product S ∗S N, which does
not contain an identity (respectively, a zero); thus lacking an identity (re-
spectively, a zero) is not a Markov property.

Proposition 8.3.3. It is undecidable whether a finitely presented semigroup has
an identity.

Proof. Let S = Sg〈A : R〉 be a semigroup with insoluble word problem.
Take any u, v ∈ A∗ and construct a new semigroup

S ′
u,v = Sg〈A, c, d, e : R, cud = e, acvd = cvd (∀a ∈ A ∪ {c, d})

ae = a (∀a ∈ A ∪ {c, d, e})〉.

If u = v then every generator for S ′
u,v equals e, which is an idempotent,

and so S ′
u,v is trivial.

If u 6= v then S ′
u,v does not have an identity. To see this, suppose the

contrary and observe that since e is a right identity, e would be this iden-
tity and thus we would have ec = c. Then, having that e = cud ∈ 〈A, c, d〉
and so e = ecvd, we would have cud = e = ecvd = cvd. This leads to a con-
tradiction since cud 6= cvd in the semigroup Su,v which is a homomorphic
image of S ′

u,v.
Therefore S ′

u,v contains an identity if and only if u = v.

Proposition 8.3.4. It is undecidable whether a finitely presented semigroup has
a zero.

Proof. Notice that a group has a zero if and only if it is trivial. In addi-
tion, every finitely presented group is also a finitely presented semigroup.
Hence, since ‘being trivial’ is a Markov property for groups, the claim fol-
lows immediately.
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Proposition 8.3.5. It is decidable whether a one-relator semigroup has an iden-
tity.

Proof. Let S = Sg〈A : u = v〉 be a semigroup with identity w. Then for
every a ∈ A, we have that a = aw. Therefore there is a sequence of tran-
sitions from a to aw and so a is either u or v. So A contains at most two
symbols. If A = {a, b}, then u = a and v = b, whence S ≃ N, which is
a contradiction. If A is a singleton {a} then, using elementary reasonings
about monogenic semigroups, S has an identity if and only if the defining
relation u = v is either a = ak or ak = a for some k ≥ 2.

Proposition 8.3.6. It is decidable whether a one-relator monoid has a zero.

Proof. Let S = Mon〈A : u = v〉 be a monoid with a zero w, where w ∈ A∗.
Assume first that v = 1. Then for any a ∈ A we have wa = w. Thus

there is a sequence of elementary transitions from wa to w. Since such a
sequence can lead from wa only to words with length |wa|+ k|u| for some
k ∈ Z, we obtain |u| = 1. Thus a Tietze transformation can be used to
remove a redundant generator from A and so S is a free monoid and does
not contain a zero, unless it is trivial.

Now assume that |u|, |v| ≥ 1. Obviously w ∈ A+. Note that in a left-
cancellative semigroup every idempotent is a left identity. So S cannot be
left-cancellative and so, by Adjan’s Theorem, u and v start with the same
letter. Now, for any a ∈ A, the equality aw = w holds. So there is a
sequence of elementary transitions from aw to w. Thus w begins with the
letter a. Since a ∈ A was arbitrary, we obtain that |A| = 1. Therefore S
contains a zero if and only if A = {a} and u = v is ak = ak+1 or ak+1 = ak

for some k ∈ N.

Since S contains a zero if and only if S1 does, the following result is a
corollary of the preceding proposition.

Corollary 8.3.7. It is decidable whether a one-relator semigroup has a zero.

8.4 Idempotents?

Lallement proved in [50] that it is decidable whether a one-relator semi-
group contains an idempotent. We provide an alternative, shorter, proof
for this. We will need an auxiliary lemma which was proved in [53, Lemma 2].
We give a new proof of this lemma which, unlike the original one from [53],
avoids inductive reasonings:
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Lemma 8.4.1. Let s, x, y ∈ A∗ be such that sx = ys with |x| = |y| < |s|. Then
there exist u, v ∈ A∗ and n ∈ N with s = (uv)nu, x = vu and y = uv.

Proof. Take the maximal n such that s = ynu for some u ∈ A∗. We have
ynux = yn+1u and so ux = yu. So either y is a prefix of u or u is a prefix of y.
By the choice of n, the former case is impossible. So y = uv for some v ∈ A∗

and thus s = (uv)nu. Therefore (uv)nux = (uv)n+1u and so x = vu.

Theorem 8.4.2. Let S be the one-relator semigroup Sg〈A : p = q〉 with |p| ≥ |q|.
Then S contains an idempotent if and only if one of the following two conditions
hold:

1. A = {a} (for some symbol a), p = ak (for some k ≥ 2), and q = a, in which
case S is a finite cyclic group.

2. S is neither left- nor right-cancellative, and q is both a prefix and a suffix of
p.

Proof. First we note that if S contains an idempotent then |p| 6= |q|. Indeed,
otherwise there would exist w ∈ A+ such that the words ww and w repre-
sent the same element of S. But then, having |p| = |q|, we would have that
|ww| = |w|, a contradiction.

Lemma 8.4.3. If S is left-cancellative and contains an idempotent, then A con-
tains a single symbol a, p = ak (for some k ≥ 2), q = a, and thus S is a finite
cyclic group.

Proof. Suppose S is left-cancellative and let w ∈ A+ represent an idempo-
tent of S. Then w is a left identity for S. So, for any a ∈ A, wa and a must
represent the same element of S. Thus wa and a are linked by a sequence
of elementary transitions. The last transition must have right-hand side a.
That is, q = a for every a ∈ A. Thus A must contain a single letter a, and
p = ak for some k ≥ 2 since |p| > |q|.

Lemma 8.4.4. If S is not left-cancellative (respectively, right-cancellative) and
contains an idempotent and |A| ≥ 2, then q is a prefix (respectively, suffix) of p.

Proof. If S is not left-cancellative, then p and q must start with the same
letter. Let u be the longest common prefix of p and q, with p = up′ and
q = uq′. Assume q′ 6= 1. Then the semigroup T = Sg〈A : p′ = q′〉 is
left-cancellative and contains an idempotent since S does. By the previous
lemma, A = {a}, which is a contradiction.

Lemma 8.4.5. If S is neither left- nor right-cancellative and |A| ≥ 2, S has an
idempotent if and only if q is both a prefix and a suffix of p.
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Proof. The forward implication holds by the previous lemma.
Suppose q is both a prefix and suffix of p. If |q| ≤ (1/2)|p|, then p = qwq

for some w ∈ A∗. In this case, qw represents an idempotent of S.
If |q| > (1/2)|p|, then p = xq = qy, and therefore p = (uv)n+1u and

q = (uv)nu by Lemma 8.4.1. So (uv)n+2 and (uv)n+1 represent the same
element of S, and hence (uv)n+1 represents an idempotent of S.

The above lemmas together imply the theorem.

Corollary 8.4.6. Let S be the one-relator semigroup Sg〈A : p = q〉. Assume
without loss that |p| ≥ |q|. Then S contains an idempotent if and only if q is
a proper prefix and a proper suffix of p. In particular, it is decidable whether a
one-relator semigroup has an idempotent.

8.5 A Group? Group-embeddable? Inverse? Orthodox?

Regular? Cancellative?

A semigroup is called orthodox if it is regular and all the idempotents form
a subsemigroup.

Proposition 8.5.1. Orthodoxy, being inverse, group-embeddability, and being a
group are all Markov properties.

Proof. Group-embeddability is a Markov property since there are exam-
ples of finitely presented semigroups embeddable into groups and the
semigroup Sg〈a, b : a2 = a, b2 = b〉 is not embeddable into a group.

For the remaining three properties, orthodoxy is the weakest property,
so it suffices to exhibit a finitely presented semigroup that does not embed
into any finitely presented orthodox semigroup. Again, Sg〈a, b : a2 =
a, b2 = b〉 is not embeddable into any orthodox semigroup: it is generated
by idempotents but does not consist entirely of idempotents.

Proposition 8.5.2. Non-regularity is not a Markov property.

Proof. Follows from that any finitely presented regular semigroup S em-
beds into the finitely presented non-regular semigroup S ∗S N.

It remains an open problem whether regularity is a Markov property.
However we can prove that regularity is undecidable for general finitely
presented semigroups:

Proposition 8.5.3. Regularity is undecidable for finitely presented semigroups.
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Proof. Take an arbitrary finitely presented semigroup S = Sg〈A : R〉 with
insoluble word problem and indecomposable generators (e.g., Tseitin’s
semigroup, see [2, Theorem 2.2]). Pick u, v ∈ A+. If u = v then the semi-
group Su,v (as defined by Eq. (8.1)) is trivial and so is regular. Suppose,
with the aim of obtaining a contradiction, that u 6= v and Su,v is regu-
lar. Then for any letter a, there exists a word w ∈ (A ∪ {c, d})∗ such that
a = awa.

We will prove now by induction on k that every chain of transitions
a = w0 → w1 → · · · → wk is such that none of wi contains a factor cpd
where p = v and p ∈ (A ∪ {c, d})∗. The base case is obvious since u 6= v.
Assume that for chains of lengths ≤ k the hypothesis holds and take a
chain a = w0 → w1 → · · · → wk → wk+1 contradicting the hypothesis.
Then wk+1 contains a factor cpd with p = v. Clearly the transition wk →
wk+1 cannot correspond to a relation from R ∪ {bcvd = cvd}. If wk → wk+1

corresponded to the insertion of the word cud, then wk would contain the
factor cpd. Hence wk → wk+1 corresponds to the deletion of the word
cud. Then wk must contain a factor cp1cudp2d with p1p2 = p. This is a
contradiction since p1cudp2 = v. Thus the statement of induction is proved.

In any chain of transitions from a to awa there can be used only inser-
tions or deletions of cud and relations from R. Hence by a routine induc-
tion one shows that w = cpd for some p ∈ (A ∪ {c, d})∗. Let a = w0 →
w1 → · · · → wk−1 → wk = acpda be a chain from a to a word of the
type acpda with minimal possible length. If wk−1 → wk is the insertion of
cud, then wk−1 ∈ ac(A ∪ {c, d})∗da, a contradiction. If wk−1 → wk corre-
sponds to a relation from R, then, since a is indecomposable element in
S, we again have wk−1 ∈ ac(A ∪ {c, d})∗da. Therefore wk−1 → wk is the
deletion of cud. Hence either wk−1 = cudawa or wk−1 = awacud, with-
out loss of generality we may assume the first case. In order to reach
cudawa from a, there must exist r such that wr+1 = cudwr. Find the largest
such r. Then wi = cudw′

i for every i with r + 1 ≤ i ≤ k − 1. Then
a = w0 → w1 → · · ·wr → w′

r+2 → · · ·w′
k−1 = awa is a chain with length

shorter than the initial one, a contradiction.
Thus, Su,v is regular if and only if u = v in S.

Although we do not know the answer to the question on decidability
of regularity for one-relator monoids, we provide it for one-relator semi-
groups:

Proposition 8.5.4. It is decidable whether a one-relator semigroup is regular.

Proof. Take an arbitrary one-relator semigroup S = Sg〈A : u = v〉 and
assume that it is regular. Since every generator must be decomposable,
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we have that either A is a singleton or that the relation is of the type a = b
for some a, b ∈ A. The latter case is obviously impossible. So that S is
regular if and only if A is a singleton {a} and the relation is of the type
ak = a or a = ak for some k ≥ 2.

Proposition 8.5.5. It is decidable whether a one-relator monoid is a group.

Proof. Consider an arbitrary one-relator monoid S = Mon〈A : u = v〉.
Suppose first that both u and v are non-empty. Then no sequence of

elementary transitions links the empty word 1 and a non-empty word.
Thus no non-empty word u can represent an invertible element, for if v ∈
A∗ represents its inverse, there would have to be a transition sequence
from uv to 1. So in this case, S can never be a group.

Suppose now, without loss of generality, that v = 1. Then S is a group
if and only if every letter from the alphabet is both right and left invertible.
This is equivalent to that every letter from the alphabet divides 1 both from
left and right, and the division problem for one-relator special monoids is
soluble [1].

Proposition 8.5.6. It is decidable whether a one-relator semigroup is a group.

Proof. If a semigroup is a group, it contains an identity. By the proof of
Proposition 8.3.5, a one-relator semigroup contains an identity if and only
if it is a group. This is possible only in the case when A = {a} and the
relation is ak = a or a = ak where k ≥ 2.

Proposition 8.5.7. It is decidable whether a one-relator semigroup is group-
embeddable.

Proof. If A is a singleton {a} then a semigroup Sg〈A : u = v〉 is group-
embeddable if and only if the relation is of the type a = ak or ak = a for
some k ≥ 1. If |A| > 1 then, by Adjan’s theorem [1], Sg〈A : u = v〉 embeds
into a group if and only if u and v start and end with different letters.

Proposition 8.5.8. It is decidable whether a one-relator monoid is group-embeddable.

Proof. Let S = Mon〈A : u = v〉 be a one-relator monoid. Suppose that
u, v ∈ A+. Then S ≃ T 1, where T = Sg〈A : u = v〉, and S is group-
embeddable if and only if T is group-embeddable and does not contain
an identity: both of these properties are decidable by Propositions 8.5.7
and 8.3.5.

Now suppose that S is a special monoid with, say, v = 1. We will
show that S is group embeddable if and only if Mon〈cont(u) : u = 1〉 is a
group where cont(u) is the content of the word u. To see this, let u = pq
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for some p, q ∈ A∗. Then pq = 1 and so qp = 1, for otherwise S would
contain a copy of the bicyclic monoid (see [18, Lemma 1.31]) and so could
not be group-embeddable. Therefore every letter from cont(u) is invertible
and so the claim follows. The sufficiency is obvious. It remains to use
Proposition 8.5.5.

Unfortunately we do not know if it is decidable whether a one-relator
monoid is inverse, but we can do it for one-relator semigroups:

Proposition 8.5.9. It is decidable whether a one-relator semigroup is inverse.

Proof. Take an arbitrary one-relator semigroup S = Sg〈A : u = v〉 and
suppose that it is inverse.

Suppose first that u, v ∈ A+. The semigroup S contains idempotents
and so by Theorem 8.4.2 we have that u and v start with the same letter.
Take now an arbitrary a ∈ A and w ∈ A+. Then we have

a a−1ww−1 = ww−1a a−1,

and so w must start with a. This means that A is a singleton and, using
elementary reasonings about monogenic semigroups, S must be a group.

Thus a one-relator semigroup is an inverse semigroup if and only if it
is a group. The result now follows from Proposition 8.5.6.

The last property of this section we discuss is the cancellativity. First
we deal with the general finitely presented semigroups case:

Proposition 8.5.10. Cancellativity is a Markov property.

Proof. Obviously there are examples of cancellative finitely presented semi-
groups. On the other hand the bicyclic monoid is not embeddable into a
cancellative finitely presented semigroup.

Remark 8.5.11. It is a classical result of Adjan [1] that a one-relator semi-
group Sg〈A : u = v〉 is cancellative if and only if either A is a singleton, or
u and v start with different letters and end with different letters.

Proposition 8.5.12. It is decidable whether a one-relator monoid is cancellative.

Proof. Take a one-relator monoid S = Mon〈A : u = v〉. If |u|, |v| ≥ 1
then S is cancellative if and only if Sg〈A : u = v〉 is, and so it remains
to use Remark 8.5.11. If, say, v = 1 then S is cancellative if and only if
S ′ = Mon〈cont(u) : u = 1〉 is a group. The sufficiency is obvious. For
the other direction, using the same methods as in the proof of Proposi-
tion 8.5.8, we prove that either S ′ is a group or S contains a copy of the
bicyclic monoid. In the latter case S cannot be cancellative. It remains to
use Proposition 8.5.5.
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8.6 Right Stable? minR?

Proposition 8.6.1. Right stability and minR are Markov properties.

Proof. Since right stability is the weaker property among the two, it suf-
fices to exhibit an example of a finitely presented semigroup, which cannot
embed into a finitely presented right stable semigroup.

Take the bicyclic monoid B = Mon〈b, c : cb = 1〉. Assume that B is
embeddable into a finitely presented right stable semigroup S. We have a
strictly descending chain of R-classes in B:

RB
b > RB

b2 > RB
b3 > · · · .

This gives a descending chain of RS-classes in S: RS
b ≥ RS

b2 ≥ RS
b3 ≥ · · · .

This latter chain must stabilise since all the R-classes from it come from the
same J B-class and so from the same J S-class. So that there exist k < n
such that RS

bk
= RS

bn . Now, since B is a regular subsemigroup of S, we
have by [45, Proposition 2.4.2] that RB = RS ∩ (B × B). This means that
RB

bk
= RB

bn , a contradiction. Thus right stability is a Markov property.

We do not know whether it is decidable for one-relator semigroups or
monoids to be right stable. However we prove that the corresponding
question for the property minR is decidable:

Proposition 8.6.2. It is decidable whether a one-relator monoid has minR.

Proof. Take an arbitrary one-relator monoid S = Mon〈A : u = v〉.
Assume first that both u and v come from A+. The aim is to show that

S has minR if and only if A is a singleton {a} and the relation has the form
ak = an for distinct k and n. The sufficiency is obvious. So assume that
S has minR and suppose, with the aim of obtaining a contradiction, that
A contains distinct letters a and b. Let d ∈ {a, b}. Then, since the chain
Rd ≥ Rd2 ≥ Rd3 ≥ · · · must stabilise, we have that there exist k < n and
x ∈ A∗ such that dk = dnx. This implies that one of u and v is a power of d.
Therefore, interchanging u and v if necessary, u = ap and v = bq. If either
p or q is equal to 1, then S is isomorphic to N ∪ {0}. If, on the other hand,
p, q ≥ 2 then we obtain a strict descending chain Rab > R(ab)2 > R(ab)3 >
· · · . In either case, we have a contradiction. Hence, A = {a} and so the
relation is as above (for otherwise S would be isomorphic to N ∪ {0} and
so not minR).

Assume now that v = 1. The aim is to show that S is minR if and only
if it is a group, the sufficiency being obvious. Then this would imply, in
view of Proposition 8.5.5, that minR is decidable for one-relator monoids.
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So, suppose that S has minR. Let u = pa where a ∈ A. Consider the chain
Ra ≥ Ra2 ≥ Ra3 ≥ · · · . Since it must stabilise, there exist k < n and
x ∈ S such that ak = anx. This implies 1 = pkak = pkanx = an−kx and
so a is invertible. Hence p is invertible and similarly the last letter from p
represents an invertible element. Continuing in this way, one sees that all
the letters from u represent invertible elements. Obviously all the letters
from A must appear in u. Thus every generator is invertible and so S is a
group, as required.

Corollary 8.6.3. It is decidable whether a one-relator semigroup has minR.

Proof. It is easy to see that a semigroup S has minR if and only if S1 has.
So that Sg〈A : u = v〉 has minR if and only if Mon〈A : u = v〉 has. The
statement now follows from Proposition 8.6.2.

8.7 J = D?

We do not know whether the property of having J = D is a Markov prop-
erty. However we prove that its negation is not:

Proposition 8.7.1. The negation of J = D is not a Markov property.

Proof. Take an arbitrary finitely presented semigroup S. If T is an arbitrary
finitely presented monoid with J T 6= DT (for example T = Mon〈a, b, c :
abc = 1〉, see [51, Excercise 9, Chapter 2]) then S1 × T is finitely presented,
contains S and does not possess J = D.

Proposition 8.7.2. The property of having J = D is undecidable for finitely
presented semigroups.

Proof. As in the proof of Proposition 8.5.3, consider an arbitrary finitely
presented semigroup S = Sg〈A : R〉 with insoluble word problem and
indecomposable generators. Pick u, v ∈ A+. If u = v then Su,v is trivial
and so has J = D. So suppose u 6= v. Any any letter a, appearing in u, is
J -related to 1. We claim that (a, 1) /∈ D. Indeed, if aD1 then a is regular in
Su,v and so we would be able to find w ∈ Su,v such that a = awa. As in the
proof of Proposition 8.5.3, this is a contradiction.

We do not know whether J = D is decidable for one-relator semi-
groups or monoids. Possible hints could be taken from [50], where one-
sided and two-sided divisibility problems are solved for some important
classes of one-relator monoids.
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8.8 A Bruck–Reilly Extension? Bicyclic?

Recall that the Bruck–Reilly extension of a monoid M = Mon〈A : R〉 with
respect to a (monoid) endomorphism ϑ :M →M is the monoid

BR(M,ϑ) = Mon〈A, b, c : R, bc = 1, ac = c(aϑ), ba = (aϑ)b (∀a ∈ A)〉,

where b, c are new symbols not in A and aϑ is interpreted as some fixed
word in A∗ representing aϑ. If S is a semigroup without an identity and
ϑ is an endomorphism of S, then the Bruck–Reilly extension of S with
respect to ϑ is defined to be BR(S1, ϑ∗), where ϑ∗ : S1 → S1 is defined by
s 7→ sϑ for all s ∈ S and 1 7→ 1. The bicyclic monoid B is the Bruck–Reilly
extension of the trivial monoid:

B = Mon〈b, c : bc = 1〉.

Note that any semigroup S embeds into any of its Bruck–Reilly extensions.
If W is a set of canonical forms for M , then the set {ckwbn : k, n ≥ 0, w ∈
W} forms the canonical forms for BR(M,ϑ). It turns out that BR(M,ϑ)
is isomorphic to the semigroup of triples (k,m, n) (where k, n ≥ 0 and
m ∈M ) subject to the multiplication

(k,m1, n) · (p,m2, q) = (k − n+ r, (m1ϑ
r−n)(m2ϑ

r−p), q − p+ r),

where r = max(n, p). The use of Bruck-Reilly extensions is that BR(S1, ϑ),
where ϑ maps all s ∈ S1 to 1, is a simple semigroup, and so every semi-
group embeds in a simple semigroup. The definition of Bruck-Reilly ex-
tensions makes them an analogue of HNN-extensions.

Let P be the property of being a Bruck–Reilly extension.

Proposition 8.8.1. Neither P nor ¬P is a Markov property.

Proof. Let S be a finitely presented semigroup. Then S embeds into S ∗S
N, which is finitely presented and ¬P, for the latter semigroup has no
identity. On the other hand, S embeds into BR(S1, ϑ∗) which is manifestly
P.

Nonetheless, P is undecidable for the general finitely presented semi-
groups.

Proposition 8.8.2. For finitely presented semigroups, P is undecidable.
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Proof. Let S = Sg〈A : R〉 be a finitely presented semigroup with unsolv-
able word problem. Pick u, v ∈ A+ and construct

Su,v,x,y = Mon〈A, c, d, x, y : R, xy = 1, cud = 1, bcvd = cvd where b ∈ A ∪ {c, d}〉

= Su,v ∗M Mon〈x, y : xy = 1〉.

We will now prove that Su,v,x,y is a Bruck–Reilly extension precisely when
Su,v is trivial (in which case Su,v,x,y is the bicyclic monoid). The sufficiency
is obvious.

Suppose now that Su,v is not trivial and Su,v,x,y is a Bruck–Reilly exten-
sion BR(M,ϑ) so that every element is a triple (tk,m, rn) such that rt = 1
and 〈r, t〉 is the bicyclic monoid, and m ∈ M . Since xy = 1, we obtain that
x = (1,m1, r

k) and y = (tk,m2, 1) for some k ≥ 0 and m1,m2 ∈ M with
m1m2 = 1M . We have two cases to consider:

Case 1. k > 0. Let w represent a canonical form in the free product for
(t, 1M , r). Then since (t, 1M , r)·(t

k,m2, 1) = (tk,m2, 1), we have thatwy = y.
Thus w ∈ Mon〈x, y | (xy, 1)〉 and either w = 1 or w = yx. The first case is
impossible, for w does not represent 1. Hence yx = w = (t, 1M , r). On the
other hand, yx = (tk,m2m1, r

k). So that k = 1 and m2m1 = 1M . Note that
1M = 1.

We also have that there are no invertible elements in Su,v except 1. In-
deed, in every chain of transitions from 1 to a word p there can be used
only the relations from R ∪ {cud = 1}. Hence, if p 6= 1, then p starts with c,
ends with d and the corresponding subsequence of c’s and d’s in p forms
the correct bracketing sequence. Thus if w1w2 = w2w1 = 1 and w1 6= 1,
then |w1|c > |w2|c and |w2|c > |w2|c, a contradiction.

Now, in both components Su,v and Mon〈x, y : xy = 1〉 there are no in-
vertible elements except 1, hence Su,v,x,y does not have invertible elements
but 1. Hence m1 = m2 = 1. So, x = (1, 1, r) and y = (t, 1, 1). Thus
yx = (t, 1, r). Since Su,v is not trivial, we have that M is not trivial (other-
wise Su,v,x,y would coincide with Mon〈x, y : xy = 1〉). Take m ∈ M \ {1}.
Now,

(t,mϑ, r) = (t, 1, r) · (1,m, 1) = (1,m, 1) · (t, 1, r).

So, if w0 = c1 · · · cp is the normal form for (1,m, 1) then c1 ∈ 〈x, y〉. More-
over, we have that yxc1 = c1. Then c1 = yexf for some e ≥ 1 and f ≥ 0.
This implies that w0 represents (tg,m′, rh) for some g ≥ e, a contradiction.

Case 2. k = 0. Then we have x = (1,m1, 1) and y = (1,m2, 1) with
m1m2 = 1M . Notice that

(1,m2m1, 1) · (t, (m2m1)ϑ, r) = (t, (m2m1)ϑ · (m2m1)ϑ, r) = (t, (m2m1)ϑ, r).
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Letw = c1 · · · cp be the normal form for (t, (m2m1)ϑ, r). Since (1,m2m1, 1) =
yx, we have that c1, cp ∈ 〈x, y〉. Now notice that (t, (m2m1)ϑ, r) is an idem-
potent. Hence cpc1 = 1 and so c1 = yn and cp = xn for some n ≥ 1. So
w = ynw0x

n for some w0 which starts and ends with a component from
Su,v. Now,

w0 = xnwyn = (t, (mn
1 )ϑ(m2m1)ϑ(m

n
2 )ϑ, r) = (t, (1M)ϑ, r) = (t, 1M , r).

Therefore yx · w0 = w0 · yx, a contradiction.
Thus the word problem for finitely presented semigroups reduces to

the question of being P for finitely presented semigroups; thus the latter
is undecidable.

Remark 8.8.3. ‘Being the bicyclic monoid’ is a Markov property: for ex-
ample, no non-trivial finitely presented group embeds into the bicyclic
monoid.

Proposition 8.8.4. The bicyclic monoid admits a unique one-relator monoid pre-
sentation (up to relabelling of generators and exchanging the two sides of the
defining relation), namely Mon〈b, c : bc = 1〉.

Before embarking on the proof, witness that this result implies that it
is decidable whether a one-relator monoid is the bicylic monoid.

Proof. Let S = Mon〈A : u = v〉 be a presentation for the bicyclic monoid
B.

If both u and v come from A+, then the identity of B would not be
possible to decompose in a non-trivial way, a contradiction.

So assume that v = 1. The alphabet A must contain at least two sym-
bols. Furthermore, all the letters from A appear in u, since otherwise S

would present a proper free product, which is a contradiction. If |A| > 2,
by the Freiheitssatz for one-relator monoids [81], we have that any two
elements of A generate a free submonoid of B. But from Descalço and
Ruškuc’s description of all subsemigroups of B [21], it follows that B does
not contain a 2-generated free subsemigroup. Therefore A is a 2-set.

Suppose thatA = {b, c}. Assume without loss of generality that u = pc.
Clearly, p 6= 1. If p starts with c then c is right- and left-invertible and, since
the only invertible element in B is the identity, B is monogenic, which is
a contradiction. So p = bqc for some q ∈ A∗ and the relation has the form
bqc = 1. Since the monoid presentation Mon〈b, c : bqc = 1〉 presents B, the
group presentation Gp〈b, c : bqc = 1〉 presents Z [18, Corollary 1.32].

Suppose that u is not of the form bkcn where k, n ≥ 0. Then u =
bk1cn1 · · · bkscns for some ki, ni ≥ 1. By [52, Lemma V.11.8], Z = Gp〈b, c :
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bqc = 1〉 has a presentation H = Gp〈x, y : yl1xm1 · · · yltxmt = 1〉 for some
t ≥ s, li,mi ∈ Z \ {0}, and such that either x or y has zero exponent sum.
But in this case, H will present an HNN-extension of a non-trivial group
(see [52, Chapter IV.5]), and so cannot be Z, which is a contradiction.

Thus u = bkcn for some k, n ∈ N. The aim is now to complete the proof
by proving that k = n = 1.

Suppose that n > 1. Then cnbk and cbkcn−1 are idempotents and, so
since B is an inverse monoid, must commute. Therefore

cnbk

= cbkcncn−1bk (by the defining relation bkcn = 1)

= cbkcn−1cnbk

= cnbkcbkcn−1 (by the commutativity of the idempotents).

But {b, c; bkcn = 1} is a confluent noetherian rewriting system and cnbk

and cnbkcbkcn−1 are in normal forms but not equal: this is a contradiction.
Therefore n = 1. Analogously, one can prove that k = 1.

The following result follows from the proof of Proposition 8.3.5:

Corollary 8.8.5. A one-relator semigroup is never a Bruck–Reilly extension.

We conjecture that a one-relator monoid is a Bruck–Reilly extension if
and only if it is the bicyclic monoid.

8.9 Simple? Bisimple? Semisimple?

Recall that a semigroup S is simple if it has no ideals other than S itself; it
is bisimple if it consists of a single D-class. A semigroup S with a zero 0
is 0-simple if S2 6= {0} and its only ideals are S and {0}. It is semisimple if
every principal factor of S is 0-simple or simple. For further information
about these notions we refer the reader to [18].

Proposition 8.9.1. Neither simplicity nor non-simplicity is a Markov property;
non-bisimplicity is not a Markov property.

Proof. Every semigroup S embeds into the non-simple semigroup S0. Thus
neither non-simplicity nor non-bisimplicity is a Markov property.

On the other hand, every semigroup S embeds into the Bruck–Reilly
extension BR(S1, ϑ), where ϑ : S1 → S1 is the trivial endomorphism: sϑ =
1 for all s ∈ S1. Since S1ϑ is contained in the group of units of S1, the
extension BR(S1, ϑ) is simple [45, Proposition 5.6.6(1)].
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The question on whether bisimplicity is a Markov property remains
open.

Proposition 8.9.2. Simplicity is undecidable for finitely presented semigroups.

Proof. Let S be a finitely presented group with unsolvable word problem
and let S = Mon〈A : R〉 be a finite monoid presentation for S. Pick v ∈ A+

and consider the monoid S1,v. Let I1,v = S1,vcvdS1,v. If 1 = v, then S1,v is
trivial and so simple.

So let 1 6= v. We will prove that 1 /∈ I1,v, which will yeild that S is non-
simple. So, assume that 1 ∈ I1,v. Then there exist p, q such that pcvdq = 1.
Then cvdq = 1 and so a = acvdq = cvdq = 1 for all a ∈ A ∪ {c, d}, a
contradiction.

Thus the word problem for finitely presented groups reduces to the
question of simplicity for finitely presented semigroups.

Recall that if S is semisimple and I is an ideal in S then every ideal in
I is an ideal in S, see [18, Theorem 2.41].

Proposition 8.9.3. Neither semisimplicity, nor non-semisimplicity, is a Markov
property.

Proof. Let S be a finitely presented semigroup. Then S embeds into the
simple finitely presented semigroup BR(S1, ϑ), where sϑ = 1 for all s ∈ S
[45, Proposition 5.6.6(1)]. It remains to note that every simple semigroup
is semisimple.

Let T be any non-semisimple finitely presented monoid (for example
T = N0: it has an ideal {2, 3, · · · }, in which {3, 5, 6, 7, · · · } is an ideal, and
in T not). Then a finitely presented semigroup S1 × T 1 contains S and is
not semisimple.

Proposition 8.9.4. Semisimplicity is undecidable for finitely presented semi-
groups.

Proof. Let S = Sg〈A : R〉 be any finitely presented semigroup with insol-
uble word problem. Pick u, v ∈ A+. If u = v then Su,v is trivial and so
semisimple.

So let u 6= v. Consider the ideal I = Su,vcdSu,v in Su,v. Take the ideal
J = IcdI in I . We will prove that c2d /∈ J and this will complete the proof.
Suppose that c2d ∈ J , i.e. c2d ∈ X∗cdX∗cdX∗cdX∗ where X = A ∪ {c, d}.
By a straightforward induction on lengths of chains, it follows that any
chain of transitions starting from c2d cannot lead to a word with a factor
cpd such that p = v. Take now any chain c2d = w0 → w1 → · · · → wk−1 →
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wk to a word wk of the form p1cdp2cdp3cdp4 with shortest possible length.
Without loss of generality we may assume that p1, p2 and p3 do not contain
the factor cd. Each transition in this chain corresponds to a relation from
R ∪ {cud = 1}. Hence the transition wk−1 → wk can be only the deletion of
cud from a subword ccudd of wk−1 which leads to some of first three factors
cd appearing inwk. By the same method as in the proof of Proposition 8.5.3
it is easy to provide a chain from c2d to p1cdp2cdp3cdp4 of length less than
k.

In the proof of Proposition 8.7.2, if Su,v is non-trivial, then a does not
lie in the same D-class as the identity and so Su,v is bisimple if and only if
it is trivial.

Corollary 8.9.5. Bisimplicity is undecidable for finitely presented semigroups.

We do not know whether it is decidable for one-relator monoids to be
simple (or bisimple). A one-relator semigroup is simple or bisimple if and
only if it is a group:

Corollary 8.9.6. It is decidable whether a one-relator semigroup is simple, and
whether it is bisimple.

Proof. For a non-trivial semigroup S to be simple (respectively, bisimple),
each of its elements must be decomposable. Thus S2 = S and so obviously
S is a group. So S is simple (respectively, bisimple) if and only if S2 = S,
which is decidable.

The question of semisimplicity for one-relator semigroups and monoids
remains open. The following is a partial result:

Proposition 8.9.7. Let S = Sg〈A : u = v〉 where |u|, |v| ≥ 2 and |A| ≥ 2. Then
S is not semisimple.

Proof. Suppose, with the aim of obtaining a contradiction, that S is semisim-
ple. Let a ∈ A. Let I = S1aS1; then I is an ideal of S. Let J = I1aI1; then J
is an ideal of I . Therefore J is an ideal of S.

Let b ∈ A−{a}. Now, a ∈ J and so ab ∈ J (since J is an ideal). So there
are words p, q ∈ (A∗aA∗) ∪ {1} with paq = ab. Since q 6= b, a sequence of
transitions must lead from paq to ab. But u and v are of length at least 2, so
either u = ab or v = ab; assume, without loss of generality u = ab.

Similarly, ba ∈ J for any b ∈ A, which forces v = ba, and, furthermore,
|A| = 2 (otherwise S would split into a semigroup free product with one
factor being a free semigroup, and so would not be semisimple). Thus

S = Sg〈A : ab = ba〉 = N0 × N0 − {(0, 0)}.
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Let T = {(x, y) : x ≥ 2 ∧ y ≥ 2}; then T is an ideal of S. Let U =
T −{(x, y) : x = 3∨ y = 3}. Then U is an ideal of T but not of S. Therefore
S is not semisimple, which is a contradiction; this completes the proof.

8.10 Hopfian?

Proposition 8.10.1. Neither hopficity nor non-hopficity is a Markov property.

Proof. Consider an arbitrary finitely presented semigroup S. Let T be a
non-hopfian semigroup. Then S embeds into S ∗S T , which is non-hopfian
since any non-injective surjection from T onto itself can be extended in a
natural way to a non-injective surjection from S ∗S T onto itself.

Let S be presented by Sg〈A : R〉, whereA = {a1, . . . , an}. Let C = {c, d}
and in each relation from R replace each letter ai with cdi and denote the
resulting relations by R′. Let T be the semigroup Sg〈C : R′〉. Notice that,
since c and d are indecomposable in T , the only non-trivial surjective en-
domorphism ϑ of T onto itself could be those which is given by c 7→ d
and d 7→ c, but then ϑ2 would be the identity mapping and so ϑ is injec-
tive. Hence T is hopfian. It remains to note that the subsemigroup in T ,
generated by {cdi : 1 ≤ i ≤ n}, is isomorphic to S.

Proposition 8.10.2. Hopficity is undecidable for finitely presented semigroups.

Proof. Consider the Baumslag-Solitar group B = Gp〈x, y : yx3 = x2y〉.
Then the mapping ϑ : B → B extending x 7→ x2, y 7→ y is a surjective
endomorphism of B (see [52]).

Now consider an arbitrary finitely presented group G with insoluble
word problem. Take any finite monoid presentation Mon〈A : R〉 for G. Let
S = G× B. Choose v ∈ A∗ and form the monoid S1,v.

Now, if v = 1, then S1,v is trivial and so hopfian. Suppose that v 6= 1.

Then S embeds into S1,v. Notice that S1,v is generated byA∪{c, d, x, x−1, y, y−1}
and define the mapping ϑ∗ : S1,v → S1,v by extending ϑ : B → B by setting
aϑ∗ = a for a ∈ A ∪ {c, d}. Then ϑ∗ is a surjective endomorphism of S1,v,
but ϑ∗ is not injective since ϑ is not injective on B. Thus, when v 6= 1, the
semigroup S1,v is non-hopfian.

Since the word problem for G is insoluble, hopficity is undecidable for
finitely presented semigroups.
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Chapter 9

Open problems

Open Problem 9.1. Let T be a subsemigroup of finite Rees index in a semi-
group S, and let S have Bergman’s property. Does T then have Bergman’s
property?

Open Problem 9.2. Are all Cayley automaton semigroups H-trivial?

Open Problem 9.3. Let T be a subsemigroup in a semigroup S with finite
Green index. Let also S be regular and J = D in S. Is it true then that
J = D in T ?

Open Problem 9.4. Is it true that if a finitely generated semigroup S has a
hopfian subsemigroup T of finite Green index then S itself must be hop-
fian?

Open Problem 9.5. Let T be a subsemigroup of finite Green index in a semi-
group S. Let also S be Markov. Is T Markov?

Open Problem 9.6. Is hopficity decidable for one-relation semigroups (or
one relator groups)?

Open Problem 9.7. Is residual finiteness decidable for one-relation semi-
groups (or one relator groups)?

Open Problem 9.8. Is every one-relation semigroup Markov?

Open Problem 9.9. Are J = D, regularity and bisimplicity Markov proper-
ties?

Finally, let us pose ‘the problem’ of Combinatorial Semigroup Theory:

Open Problem 9.10. Is the word problem for one-relation monoids decid-
able?
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