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Abstract

Opportunistic networks provide an ad hoc communication medium without the need

for an infrastructure network, by leveraging human encounters and mobile devices. Rout-

ing protocols in opportunistic networks frequently rely upon encounter histories to build

up meaningful data to use for informed routing decisions. This thesis shows that it is

possible to use pre-existing social-network information to improve existing opportunistic

routing protocols, and that these self-reported social networks have a particular benefit when

used to bootstrap an opportunistic routing protocol.

Frequently, opportunistic routing protocols require users to relay messages on behalf

of one another: an act that incurs a cost to the relaying node. Nodes may wish to avoid

this forwarding cost by not relaying messages. Opportunistic networks need to incentivise

participation and discourage the selfish behaviour. This thesis further presents an incent-

ive mechanism that uses self-reported social networks to construct and maintain reputation

and trust relationships between participants, and demonstrates its superior performance

over existing incentive mechanisms.
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Chapter 1

Introduction

The use of infrastructure data networks from mobile devices is growing and has tripled

every year since 2007. 1 People are carrying a mobile phone at almost all times, and a large

percentage of these devices tend to be smartphones. 2 Users can install a wide range of ap-

plications on these devices, providing more functionality over traditional mobile phones,

which are limited to messaging and voice calls. Smartphones have rechargeable batter-

ies meaning users can take the device anywhere and charge it when a suitable electrical

connection is available.

Many personal communication devices allow connection to existing infrastructure net-

works, for example, laptops. There are, however, certain situations in which existing mo-

bile or wireless (802.11 based or otherwise) networks are not adequate/appropriate.

• There are times when wireless signal is insufficient, or connectivity is unobtainable

and therefore mobile devices are unable to connect to a network. This could be due

to lack of infrastructure or too great a distance from the necessary network device.

• Batteries frequently run out of energy, therefore the wireless radio component may

not be permanently activated. In networks without infrastructure connectivity, this

can lead to partitions of the network and destruction of forwarding paths.
1http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_

c11-520862.html
2http://blog.nielsen.com/nielsenwire/consumer/smartphones-to-overtake-feature-phones-in-u-s-by-2011/
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In a world where we are becoming increasingly reliant on mobile communication in all

aspects of our lives, the inability to communicate in such a manner can negatively affect

business and personal relationships. In regions where there is no suitable network infra-

structure, we need an alternative system that is present where the people are, regardless

of the availability of fixed infrastructure.

For situations where existing IP and GSM/UMTS networks are unsuitable, researchers

have developed alternative protocols to deal with these scenarios, specifically the study

of so called “Delay Tolerant Networks” [48] (DTNs). A DTN works in situations where

existing network protocols are unsuitable. DTNs use a store-and-forward architecture to

allow communication when a path through the network is not reliable (due to likelihood

of disconnection). Nodes may store duplications of messages for other nodes and then

forward these on at the appropriate time.

Another way for a network to provide coverage for locations where people are is via an

opportunistic network [115]. Opportunistic networks are a special case of delay-tolerant

networks in which there are frequent disconnections and unpredictable encounter pat-

terns; nodes forward messages when the opportunity arises: during an encounter contact.

The most basic routing protocol employed by these networks is Epidemic Routing [142]

(named after disease spreading in epidemiology), whereby nodes flood the links by for-

warding all stored messages at every encounter. This approach is effective at getting mes-

sages to their destination, however, it can rapidly drain the battery of the device, as there

are many duplications of the messages.

To combat this energy drain, researchers have developed alternative routing protocols

that reduce message duplications by restricting which messages nodes forward during

an encounter. Different protocols use different criteria to reduce the number of message

duplications. Many of these protocols use an encounter history to provide data used to

determine the restrictions. An encounter-history–based protocol, however, takes time to

build up a knowledge database from which to make accurate routing predictions about

the network state. Thus we are left with the question:

Q1 How can we bootstrap an opportunistic network?
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Moreover, we must consider the issue of incentives for participating in an opportunistic

network. Forwarding messages incurs an energy cost. A rational approach for nodes,

therefore, would be to not forward messages on behalf of other nodes, thereby allowing

them to preserve their own battery power. We are thus confronted with the following

question:

Q2 How can we incentivise participation in opportunistic DTNs?

If we are not going to use the encounter history to distinguish nodes for forwarding,

we need an alternative approach for deciding when to forward messages. Since oppor-

tunistic networks frequently involve the mobility of humans, these human interaction net-

works frequently fall into the realm of small-world or “social networks”, a topic covered

extensively in the social sciences. In recent years we have seen the growth of online social

networks, networks which may be useful for improving opportunistic networks, if they

provide us with insights into user behaviour. These online social networks can provide us

with “self-reported social networks”, where nodes in the network provide a list of nodes

they consider themselves to have a connection with: we consider these connections as ties

in the network. An area of interest here is the division of the structure of the network into

social roles. Using knowledge of the structure of the network we can divide the nodes into

different roles depending on their behaviour.

1.1 Thesis

I have proposed that existing opportunistic routing protocols rely on encounter history

and so under-perform. I therefore offer the following thesis:

Self-reported social networks provide an alternative to encounter histories for

efficient routing in opportunistic networks.

To address this statement I make three research contributions:
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1. I show that self-reported social networks can be used for efficient message forward-

ing.

2. I show that existing history-based protocols do not provide adequate performance

during the initial part of the network operation. I address this by providing a routing

protocol using social roles that performs well when existing protocols cannot: when

bootstrapping.

3. I demonstrate the use of self-reported social networks for developing a mechanism

to detect selfishness by nodes and incentivise routing protocol co-operation.

1.2 Goals And Approach

This thesis attempts to demonstrate that the use of self-reported social network informa-

tion in opportunistic forwarding can provide performance improvements to existing net-

works. The aim is to answer the questions 1-3 listed above. To do so, the primary approach

is to construct a role-based forwarding protocol and compare the performance against ex-

isting protocols. As it is costly to procure many devices and users for an expansive test, we

carry out the tests via trace-driven simulation, with a variety of representative scenarios

and routing protocols.

To examine Q1, we analyse the performance of an alternative to using encounter histor-

ies. This demonstrates that an encounter history is not necessary for comparably efficient

forwarding in an opportunistic network.

To examine Q2, we compare a mechanism for detecting selfishness using self-reported

social networking against similar protocols. We see that self-reported social network in-

formation is useful in this scenario, and that we can use it to provide incentives for user

co-operation.
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1.3 Dissertation Outline

Chapters 2 and 3 provide an overview of the related literature and the current state of the

art in the area.

• Chapter 2 describes the background and related research for opportunistic network-

ing. The chapter shows how social networks can be used for opportunistic routing,

and describes attacks against opportunistic networks

• Chapter 3 shows the current state of the art and highlights the problems that we

address in this thesis

Chapters 4, 5 and 6 document the analysis and work performed to establish this thesis,

and represent my contribution.

• Chapter 4 demonstrates that encounter histories are not necessary for adequate mes-

sage passing, and that an alternative method provides similar performance

• Chapter 5 details the role-based forwarding protocol developed as to demonstrate

social roles as an alternative to existing history based forwarding protocols. This

chapter demonstrates the benefits of the new protocol, particularly for bootstrapping

networks

• Chapter 6 details how we can use self-reported social network information to de-

velop a distributed mechanism to detect selfish behaviour by nodes, and its per-

formance compared to similar mechanisms. Then we show that we can incentivise

co-operation by punishing selfish behaviour of nodes.

Finally, Chapter 7 concludes with a summary of the contributions of this thesis, as well

as discussing the potential future research that can stem from this work.
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Chapter 2

The development of opportunistic

networks, and the usefulness of social

networks

In this chapter we discuss using opportunistic networks in scenarios for which existing

networking technologies are inappropriate. We see that we can use social network inform-

ation to aid opportunistic networking.

First, we see why delay in certain scenarios renders existing technology inappropriate

for those scenarios. Second, we discuss the development of networks designed to cope

with high-delay environments. Third, we discuss the similarities between social and mo-

bile networks, and how we can use information gathered about social networks to improve

understanding of mobile and opportunistic networks. Lastly, we look at attacks against

opportunistic network routing.

We start by looking at wireless networking, which is important because mobile devices

are becoming more prevalent, and as a result we are becoming increasingly reliant on

communication whilst mobile.

Wired infrastructure networks are suitable for scenarios where nodes do not need to

change location frequently. Examples of suitable scenarios include offices with a fixed
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(a) An example small network. Black lines

indicate wired connections. Wired Devices

have a fixed location, however, all devices

must communicate via the network router.

(b) An example MANET topology for a set

of laptops. Connections between laptops are

indicated by bolt symbols. There is no ded-

icated router for the network, all devices can

act as routers.

Figure 2.1: Example networks.

location, and the average home environment.

Wireless networking does not require any fixed connection. It allows for mobility

within and across networks, because devices are not restricted by the physical length of

cables found in wired networking. A mobile device may run on alternative sources of

energy, e.g., solar or battery power. This enables networking in areas where networks

previously could not sustain them: situations in which in areas without electricity or

where nodes frequently change location. Examples include the developing world where

infrastructure is unreliable or not present, and military scenarios where nodes frequently

change location. Mobile networks can also enable new health-care scenarios, where pa-

tients can carry the device on their person, without obtrusive wires. There are scenarios

where we do not have, or need, any infrastructure network: where nodes are mobile. The

first area we discuss is therefore Mobile Ad Hoc Networking (MANET).
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2.1 MANETS

Routing is important in any network because it enables messages to be sent from source

to destination through intermediate nodes; routing provides a path for messages through

nodes within the network. There are two routing strategies: proactive and reactive. Pro-

active routing is where the routing tables are constructed periodically, therefore, the route

is ready when needed. This does not cope well, however, with topology changes due

to mobility. In reactive routing, the routes are constructed on demand. Reactive routing is

more useful in situations with mobility as effort is not spent on constructing routes that are

later made inaccurate by topology changes (it is still possible, however, for the topology to

change mid-flow, which can break the route).

MANETs are self-configuring networks, in which nodes connect via wireless links.

Nodes are free to move around, therefore enabling the topology to change arbitrarily. We

see an example MANET topology in Figure 2.1b. Rather than all nodes connecting to ac-

cess points to route packets, all nodes in a MANET may be asked to route packets in a

MANET.

There are two main MANET routing algorithms: Dynamic Source Routing (DSR) [76](Pro-

active) and Ad Hoc on Demand Distance Vector Routing (AODV) [117](Reactive). When

using DSR the source sends out a single message to the nodes in range via broadcast; the

destination address and an ID number are contained in the message. If they can provide a

route to the destination the intermediate nodes will send a route-reply back to the sender.

If the intermediate node does not know the route it will flood the network with the original

message and its IP address appended to the list of addresses in the packet header. When

the destination receives the discovery packet, it will reply with a route-reply message to

the node it received the enquiry message from. When the source receives a route-reply it

adds it to its route cache.

When sending data using AODV Routing, a source node checks if it knows a route to

that destination. If the source does not have a route to the destination it will broadcast a

route-request message. When nodes in the network receive a route-request message they

will update their information about the source by creating a record of which node sent
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them the message, they will also forward this message, unless they already have a route,

in which case they will send a route-reply back to the sender using the route it received the

route-request from. The sender will use the route that it finds to have lowest cost (usually

measured in hops).

There are several other MANET protocols [153]:

• Optimized Link State Routing (OLSR) [29]— a proactive link state protocol. Nodes

flood a topology table to all of the nodes within the network. Nodes then work out

the optimal forwarding paths locally.

• Location-Aided Routing (LAR) [83]— these protocols use location information (e.g.

GPS) to improve routing performance.

• EASE [62]— using encounter histories to improve routing.

• On Demand Multicast Routing Protocol (ODMRP) [87]— a reactive multicast pro-

tocol that uses mobility prediction.

• Dynamic MANET On-demand (DYMO) [116]— can work as both a proactive and

reactive protocol. DYMO is intended to be a successor to AODV.

Each of the MANET routing protocols mentioned above however, assume that there is

an end-to-end path between the peers in the network. It is possible to imagine a case where

there is no point in time where two nodes are ever part of the same network partition, yet

we consider them to be members of the same network. Perhaps a node runs out of energy,

or moves out of range. It may be that a node powers down because it is only needed

for certain periods of the day, e.g., during office hours. This schedule breaks that nodes

connectivity to the rest of the network for an extended period of time.

One problem with MANET routing protocols is that they assume that a network par-

tition has occurred if the path between a message’s source and its destination is lost. This

creates a problem for networks where the nodes only have intermittent connectivity, e.g.,

wireless sensor networks [34] where the nodes only have periodic connectivity to conserve

battery power. In MANETs, if a node is not detected in the network at all times by at least

one node it is assumed to have left the network.
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If there is a large delay, existing transport protocols such as TCP can break down, even

if the end-to-end connection is still active. The large delay causes the congestion control to

assume packet loss. Another problem for TCP is that the window size might take a very

long time to enlarge due to the wait for ACK packets. A different strategy is therefore

needed for networks with intermittent connectivity or when there is a large delay.

2.2 Delay-Tolerant Networks

As we have discussed, the architecture and protocols of the modern Internet may not op-

erate well in environments where there is a long delay or a sparsely connected network.

These conditions are often found in networks with mobility and limited battery power, as

well as in extreme environments [21]. Often called challenged networks, a delay-tolerant

network (or Intermittently Connected Network [153] [ICN]) is a network where some of

the assumptions of the TCP/IP stack regarding the performance characteristics of network

links do not hold.

“Applications in ICNs must tolerate delays beyond conventional IP forward-

ing delays, and these networks are referred to as delay/disruption tolerant net-

works (DTNs).” [153]

Examples of the assumptions of conventional IP networks that do not hold in the DTN

domain are [48]:

1. An end-to-end path exists between peers in the network.

2. The maximum round trip time between nodes in the network is not excessive.

3. The end-to-end packet drop is small.

We find these properties, for example, in communication with Mars [21]. Similar prop-

erties emerge in very high speed networks where waiting for control traffic reduces per-

formance, and in situations with a large amount of mobility. There may be mobile nodes in

the network that have intermittent connectivity, e.g., commuters in a city may go through
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areas with very different connectivity. Such examples include walking on a pavement

compared with travelling on an underground train network.

As a result the DTN routing and data-delivery architecture is unlike conventional TCP/IP

networks. DTNs use a store-and-forward architecture, where nodes forward a group of

messages together. In DTNs the data unit can be a message itself, a packet or a bundle of

messages. The network is split into regions, where links with high delay mark region bor-

ders. The internal region networks can use different mechanisms from the transport-layer

down in the network stack. The network uses the DTN bundle protocol to communicate

between regions on the high delay links. The bundle protocol sits between the application

and transport layer in the traditional internet protocol stack.

Cerf et al. have put forward an RFC (Request For Comments) for a delay-tolerant

network architecture [25]. RFC 4838 covers the routing and transport layer approaches:

• Virtual Message Switching Using Store-and-Forward Operation: allows nodes to ex-

change messages in high delay environments.

• Nodes and Endpoints: nodes may be members of groups called “Endpoints”. When

the bundle reaches a minimum subset of end nodes it is considered delivered.

• Endpoint Identifiers (EIDs) and Registrations: endpoints are identified by Uniform

Resource Identifiers. Each node needs one EID that uniquely identifies it.

• Late Binding: allows the final destination nodes to be determined on route rather

than at the source.

• Fragmentation and Reassembly: DTN nodes may divide up application data into

bundles. The final destinations are responsible for extracting the application data

from incoming bundles and reconstructing it.

• Reliability and Custody Transfer: the bundle layer can provide acknowledgements

and prioritisation of traffic.

• DTN Support for Proxies and Application Layer Gateways: the bundle layer provides

a common method for connecting application layer gateways.

34



• Timestamps and Time Synchronization: timestamps are used to expire bundles.

• Congestion and Flow Control and Security: are left as research topics.

2.2.1 DTN routing

In DTNs the latency associated with reactive routing approaches is less of a concern than

in MANETs, as the delay due to the lack of connectivity is usually orders of magnitude

greater than the delay associated with constructing an end-to-end route. The large inter-

encounter period affords routing protocols with time to make relatively more complex

decisions in comparison to MANET protocols.

We can break DTN routing protocols down into two classes [153]. The first for determ-

inistic time-evolving networks, and the second for stochastic time-evolving networks. We

class deterministic networks as those for which the routing topology can be pre-determined.

We class stochastic networks as in which nodes only have a probabilistic chance of appear-

ing within the network at a given point in time.

Satellite networks are an example of a deterministic DTN, because the position of satel-

lites can be predicted in advance. The movement of ambulance crews provides an example

of a stochastic DTN, because the ambulance crews must respond to external input (call-

outs) and therefore they do not have a predictable schedule.

The most simple stochastic DTN routing strategy is “store-and-wait”. The sender holds

onto the message until it encounters the destination node directly. This is a cheap approach

in terms of energy, as it preserves battery life, but the time to message delivery can be large

or infinite in the case where two nodes never appear in the same network partition.

The antithesis of this approach is Epidemic routing [142], where an intermediate node,

on receipt of a message, forwards it to all of its neighbours bar the sender. This implicitly

assumes that the intermediate nodes will come into contact with other nodes closer to the

destination through mobility. When this occurs the nodes swap messages that the other

party has not seen before, hopefully leading the messages towards their final destination.
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Many routing protocols use other nodes to forward messages. We refer to nodes phys-

ically carrying data as “data muling” [61]. Data muling can increase bandwidth, as Grossglauser et al.

state:

“Our results show that direct communication between sources and destinations

alone cannot achieve high throughput, because they are too far apart most of

the time. We propose to spread the traffic to intermediate relay nodes to ex-

ploit the multi-user diversity benefits of having additional “routes” between a

source and a destination.” [61]

As a result, DTN routing protocols are a variation on one of two approaches:

• Flood the network, sending lots of copies of the message, in the hope that some of

the copies arrive

• Send a single copy (or a low number of copies) of the message, hoping that the in-

formation used to make the routing decisions is accurate

We have seen that DTNs solve the problem of disconnection and delay that MANETs

are unable to cope with, by providing a store-and-forward mechanism that sits on top

of the network transport layer. DTNs are not, however, appropriate for all disconnected

scenarios.

2.3 Opportunistic Networks

DTNs are networks designed for systems with a few high delay links. There are also scen-

arios, however, in which all the nodes are subject to high-delay/disconnection. One ex-

ample is humans commuting to work in a city. Almost all the nodes in such a scenario

move between two distant physical locations: home and work. Even nodes that are seem-

ingly in one physical location, e.g., a market-stall trader on the commuter route to work,

have very few static connections. Most of the trader’s connections are with commuters

who occupy one location for a short period of time only.
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This fully mobile stochastic scenario is different to a DTN scenario. Rather than regions

with short intra-region delays and large inter-region delays, as in a DTN, there is the po-

tential for high delay or disconnection on all links. An opportunistic network [115] is a

store-and-forward network that can route messages in a high-disconnection environment.

DTNs can be seen as a subset of Opportunistic Networks (as DTNs feature only a few high

delay links). Hui et al. have created a “Pocket Switched Network” (PSN or Opportunistic

network) [69], and describe networking in a scenario where humans carry small personal

computing devices capable of exchanging messages. We can leverage the network from

the encounters between the devices as the humans go about their daily lives.

Opportunistic networks can enable many new applications. Lindgren and Hui high-

light several areas in which they think that opportunistic networking can make a positive

improvement upon existing technologies [94]. They believe the developing world would

be an ideal place for low-cost messaging and network access from mobile devices, where

cellphone markets are increasing in size.

Urban areas in developed regions can also benefit from opportunistic networks. Hui et al.

argue that even in the presence of existing infrastructure coverage, e.g., 3G networks, op-

portunistic networks could be of benefit when distributing large data items. In areas with

low 3G coverage, opportunistic networks allow improved communication applications

using hybrid opportunistic networks [73].

As well improving existing mobile applications, opportunistic networks open up pos-

sibilities for new applications that were not previously carried out on consumer electronic

devices:

• Crowdsourcing and messaging [23, 105]

• Sensing [33, 44] and collaborative sensing [56, 136]

• Military surveillance [148] and human tracking [6]

• Sport-activity monitoring [43]

• Animal tracking [77]

• Personal sensing for healthcare monitoring [88]
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• Mobile file sharing [102, 120]

• Interaction with embedded AI in pervasive environments [63]

• Opportunistic computation [30, 109]

Routing in an opportunistic network operates on the principle that, in the absence of

connectivity to existing infrastructure networks, passing messages between devices car-

ried by humans could eventually route a message to the intended destination. This relates

to Stanley Milgram’s famous small-world experiment [138] where he found he could route

letters between two unfamiliar individuals over a large distance, one in Nebraska, the

other in Massachusetts, in under six hops. Opportunistic networks have to been shown to

have similarly small contact patterns [27].

The Haggle architecture [124] is a data-centric architecture for opportunistic networks.

Haggle uses asynchronous connectivity, allows intermediate nodes access to ad-hoc mul-

ticast content, and exploits any available data transfer methods to take advantage of brief

encounters using store-and-forward message switching. Hui et al. have highlighted that

finding the correct groups of nodes to forward messages to aids in routing and node effi-

ciency [70, 71] (we look at this problem further in Chapter 5).

The problems facing opportunistic networks include energy efficiency, user privacy

concerns, incentivising participation, and routing. Energy efficiency is an important con-

cern for protocol designers, as forwarding messages has an associated cost in terms of

energy used. User privacy concerns may include the over-exposure of encounter data.

Incentivising participation concerns the problem of ensuring that users participate in mes-

sage forwarding. Routing concerns the selection of appropriate encounters to use for for-

warding.

There are two main approaches for message forwarding in opportunistic routing. Us-

ing the first approach, we can send many copies and constrain the flood according to some

mechanism, e.g., forward to all nodes who have recently encountered the destination. Us-

ing the second approach, we can limit the number of message copies (as few as one), but

expend more effort computing which encounters to use for exchanging the message, e.g.,

use a detailed model of movement patterns to predict which node frequents the current
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location and encounters the destination often. The data used for both approaches’ compu-

tations routinely comes from storing a history of encounters. These stored encounters are

then used to drive the routing algorithm.

Researchers look at collecting traces of human encounters to then use for routing sim-

ulation [24,39]. This is because it is costly to run experiments with large numbers of parti-

cipants carrying mobile devices. By collecting and sharing encounter data, researchers can

repeat one another’s experiments [84,149]. Traces of human encounters can be more easily

collected today than in the past, because most people in the developed world already carry

mobile phones (81% of people in the UK [50]).

Opportunistic networks involve humans operating according to their daily schedules.

The task of the routing protocol is to decide if the encounter taking place is appropriate

for routing any of the outgoing messages. We can therefore see that studying the social

connections between individuals can give us insights into the usefulness of encounters for

forwarding.

When considering the incentives for nodes to participate in forwarding, we should

remember that mobile nodes carry the devices in an opportunistic network. We can, there-

fore, assume that the devices run on battery power. The cost of forwarding is measured

by the battery power the device uses to forward messages. An economically rational user

will conclude that it is in their best interest not to forward messages on behalf of any

other nodes (as this saves their battery power), while expecting other nodes to forward

their messages. If this is the case, the network will not be able to forward messages; only

messages exchanged directly with the destination will arrive. We therefore need a way

to incentivise the users to participate in the routing protocol. This is an example of what

economists refer to as the free rider problem [154].

2.4 Social Networks

Both opportunistic encounter patterns and traditional social networks represent a relation-

ship between individuals. In an opportunistic network the relationship is an “encounter”
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that takes place because individuals were co-located, in a social network the relationship

is dependent on some kind of social connection. We shall see that opportunistic-network

encounter patterns are also similar to social networks, due to similar graph structure and

contact distribution.

To understand the usefulness of the similarity between social and opportunistic net-

works we first need to understand social networks. First we will discuss terminology;

second, we will discuss how social networks form; third, we will discuss how social net-

works can improve opportunistic networks. Finally we see how to compare social net-

works.

A social network is a social structure of individuals or organisations (vertices/actors/nodes).

These entities are joined together via social connections of some kind (edges/ties); friend-

ship or business ties are good examples. It is the patterns of relationships which are inter-

esting, rather than the characteristics of the individual nodes [52]. The social network is

routinely represented by a graph of the edges and vertices.

In this dissertation, we use the vocabulary from [52], and expand with relevant entries

in the appendix A.

2.4.1 Social Network Models

What we consider social network analysis has arisen from the study of graph theory, and

the study of community relations between humans [82]. To understand the structure of

these relationship graphs, we need to understand how social networks form. We can con-

sider a graph of a network as nodes, and ties between nodes. To generate a network we

can assume that connections between nodes are made at random.

The most famous model of random graphs is the Erdős and Rényi model [45]. In this

model, nodes have an equal chance of connecting to one another with a given probability.

We can see an Erdős-Rényi model graph in Figure 2.2a. Erdős and Rényi’s model however,

does not capture the behaviour of social networks, as the distribution of connections does

not match the expected power-law form.
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(a) A graph created using the Erdős-Rényi

random graph model. Here we see a links

from a random uniform distribution.

(b) A graph created using the scale-free net-

work model. The degree distribution fol-

lows a power-law.

Figure 2.2: Randomly generated graphs. Notice the presence of hub nodes in Figure 2.2b.

More recently, the scale-free network model [9] by Barabási and Albert, is believed to

be more closely related to that of human social networks. Scale-free networks model the

world-wide web [3, 68, 85], internet links [49], e-mail networks [42] and the power-law

connectivity patterns also appear in opportunistic contact traces [26]. Scale-free networks

also capture human sexual contacts [92].

Scale-free networks, rather than assuming the connections amongst a static set of N

nodes, iteratively add nodes into the network graph. The principles are that the network

is constantly adding new members, and nodes have preferential attachment (to nodes with

a high degree), which creates nodes with a relatively large number of connections (hubs)

as in Figure 2.2b.

Kwak et al. show that connections in online social networks also follow a power-law

distribution [86]. The phone call network is similar to human encounters, as calls also

follow a heavy-tail distribution [24].

Amaral et al. find that social networks of actor collaboration, Mormon acquaintance-

ships and friendships amongst school children, follow a heavy-tail distribution that al-
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though similar to a power-law distribution, is instead a truncated exponential distribu-

tion [5]. They conclude that it is a combination of ageing of the vertices and limited ver-

tex capacity (the physical cognitive limit on vertex numbers) that prevents the scale-free

model from exactly fitting the social networks studied. Researchers have shown that hu-

mans have a cognitive limit on the number of individuals they can maintain knowledge the

relationships between [37, 133], placing the number at 147.8 [38]. A similar limit manifests

in online social networks [2].

We can see that there are similarities between social, encounter, phone and online social

networks. Can these similarities can be exploited?

A useful property of scale-free networks is that they are tolerant to random link fail-

ures, where up to 5% of nodes can fail before the network communication capability de-

creases [4]. Albert et al. find however, that scale-free networks are susceptible to targeted

attacks on the hubs, where a loss of 5% of nodes results in network diameter doubling.

2.4.2 Social Network Analysis

Current research trends include community or graph properties. If we understand the

structure of an encounter network, we can potentially gain insight into the performance of

an opportunistic network using the encounter network.

Newman looks at finding community structure in networks [110–112], and proposes

algorithms to find groups and discover community structure. A community is as a set of

nodes which has many ties within the group, but very few ties to nodes in other groups.

Communities are useful because we can assume similar behaviour amongst members of a

community [54]. Ties that bridge communities are important as we can exploit these ties

for message routing [36, 59, 75].

As well as evaluating encounters, any opportunistic routing protocol should consider

which nodes to select for forwarding messages. The choice often depends on the result

of a metric for comparing nodes in a network. If we can compare nodes using a metric,

we can rank nodes. We can use the ranking of nodes to decide which node is more useful
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for forwarding. Daly et al. discuss several metrics [36] naming closeness centrality and

betweenness [53] to be some of the most important performance metrics for opportunistic

network routing. As well as closeness centrality, clustering coefficient is important since

it is another measure of the similarity of nodes. A higher clustering coefficient means that

the network shows greater “cliquishness”. We can think of clusters as communities within

the network.

“A network is said to show clustering if the probability of two nodes be-

ing connected by a link is higher when the nodes in question have a common

neighbour” [36].

If we can work out which are the “important” nodes within the network (hubs and nodes

with weak ties), this information can aid the design of routing algorithms to forward mes-

sages closer towards the destination [46, 70]. We can also use this knowledge to prevent

the overloading of nodes. If we maximise the lifetime of nodes, we avoid dividing the

network [28].

Collecting encounter data can be costly for the researcher. If we can show that social

networks and encounter networks are similar, then insights we make into social networks

could be applied to encounter networks. We could, therefore, use this information to im-

prove opportunistic networks, specifically by enabling protocols to make informed routing

decisions without having to collect large encounter histories.

There is further evidence to link the models of opportunistic networks and human

social networks. Srinivasan et al. present a study on the contact patterns of students [130],

analysing their timetables. They study the inter-contact times and the spread of computer

viruses in such networks, which is similar to Su et al. [134]. Srinivasan et al. find that:

“The student population is well mixed, with a small degree of separation

between them. This observation is good news for mobile applications that rely

on proximity-based connectivity to disseminate messages, as a potentially large

number of contacts can be made.” [130]

By studying the epidemic spread of information inside this social network of students,
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Srinivasan et al. find that: “arbitrary pairs of students can communicate with each other

in less than two business days on average.” [130]. This indicates that many opportunistic

networking applications with a TTL of less than two days are likely to perform worse than

those with a TTL higher than two days.

Khelil et al. describe some contact-based metrics for the analysis of social networks [81].

Specifically, they mention contact rate, encounter frequency, encounter rate, encounter dur-

ation, contact loss duration. With these metrics we can understand mobility on a large

time-scale.

Rather than using encounters we have collected between individuals, we can also con-

sider networks where the nodes provide a “list” of nodes that they consider themselves to

have a tie with. These can be considered self-reported social networks (SRSN) following

the terminology of [41]. We can consider networks where we infer the connections between

nodes from contacts or communication, as detected social networks (DSNs) following the

terminology of [74, 110].

It is well known amongst social science researchers [10, 32], that self-reported and de-

tected social networks differ. A recent study by Mtibaa et al. [106], however, looked at

self-reported and detected social networks amongst a group of conference attendees, find-

ing that the two social networks are similar. These results however, may be peculiar to

conference environments. Regardless of the similarity or difference between the two types

of social network it is still interesting to see how useful SRSNs can be for improving op-

portunistic networks.

If social networks and encounter networks are similar, then inferences made about one

network may be relevant to the other. We may therefore, be able to sample social-network

information instead of encounter information, and come to the same conclusions without

performing a field-experiment, thus saving time and money. If social and encounter net-

works are different, inferences about one may improve our understanding of the other. For

example, we might observe that all members that bridge groups in an encounter network

are from one group in the social network. If this were true, we could then design a routing

protocol to make particular use of these group of nodes.
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2.4.3 Comparing Nodes and Networks

If social networks are similar to contact networks, the ability to compare networks is im-

portant for developing and understanding expected node behaviour amongst the nodes

in the network. For example, if we consider two nodes to be similar, we can save routing

information by only storing one set of behaviour predictions for both nodes.

Routing protocols select nodes to use for forwarding messages. Understanding simil-

arities between nodes in the network may be useful for routing. We therefore now look

at computing the similarity of nodes. First, we consider how similar the nodes are to one

another in terms of which other nodes that they are in contact with. Second, we consider

how to calculate how similar the nodes’ positions in the network are in terms of how they

are connected to the other nodes’ positions in the network.

Structural Equivalence

We can view nodes as occupying a position in the network, given by the set of ties they

have to all other nodes in the network. We can then see, that it is possible for two nodes

to have a measure of similarity of ties. If we compare the relations of nodes we obtain a

measure of the structural similarity of the nodes. Euclidean distance is a common metric

used to measure structural similarity [22].

It is also possible to use structural equivalence to compare node properties. Blockmod-

elling for structural equivalence [145] groups nodes together into structurally equivalent

sets called blocks. We can compare the sets of blocks to see the differences between mul-

tiple dimensions of the same data, e.g., call records and Bluetooth records for a mobile

phone trace. We can thus make inferences about the difference and similarity of nodes.

As there can be many possible blockmodels with even only a few types of tie, Sailer

developed a hierarchical method called CONCOR [123]. CONCOR requires the researcher

to decide the number of hierarchical levels required. We cannot therefore, easily automate

a system to use CONCOR. Sailer describes the concept of structural relation, which he sees

not as a tie between specific people, but as a set of ties in an entire population. In his view,
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the network is the patternising of the social relations over a set of persons positions or

groups. This approach is similar to regular or role equivalence.

Regular Equivalence

Structural equivalence tells us how similar two nodes are to each other, but, it does not

consider the types of relationships between nodes. We can use regular equivalence to do

this.

Borgatti and Everett [17] describe Regular Equivalence as a partition of nodes into

classes such that nodes of the same class are surrounded by the same classes of nodes.

We can consider the classes as “roles” in the social network. They have developed an al-

gorithm called CARTREGE which takes a multiplex matrix (see [144, p 208]) and works out

the regular equivalence in a neighbourhood of nodes. At first, CATREGE assumes nodes

are equivalent, then it iteratively breaks the nodes down into separate role classes.

We can view the roles as groups of nodes that are similar to each other in terms of their

relationships to other nodes. For example, nodes in the same role may all bridge different

groups of nodes in the social network.

Exact role assignments, however, are a case of regular equivalence where the nodes

have to have the same number of occurrences of another role in their neighbourhood to

form that role. These are largely difficult to find in practise.

We therefore need a way to deterministically work out the role assignments in the

network, without any manual intervention.

2.5 Incentives For Participation In Opportunistic Networks

Opportunistic networking relies on cooperation between nodes, that is, the users parti-

cipating in the network, to perform efficiently. Opportunistic routing protocols depend

on nodes forwarding messages for each other, as otherwise the only delivery mechanism
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Figure 2.3: Simulation of an opportunistic network application using Epidemic routing [142], and

the Reality Mining mobile-phone trace [40]. Indirect delivery ratio is defined as the number of

messages delivered that were not passed directly from the source to the destination, divided by the

number of unique messages. As the proportion of selfish nodes in the network increases, network

performance in terms of delivery ratio decreases. Selfish nodes do not pass messages that originate

from nodes other than themselves. Error bars are included, but are too small to be seen.

would be for the creator of a message to encounter the message destination node and

deliver the message directly. Cooperative forwarding, however, incurs a cost to the for-

warding nodes, both in terms of energy (battery power) and storage (the space required

to store forwarded messages). Both of these are a constrained resource in mobile devices

such as those used in opportunistic networks.

Due to these costs, nodes may wish to avoid the costs associated with participation

in an opportunistic network, by not forwarding messages for other nodes. We call this

behaviour selfishness. Nodes behaving selfishly attempt to avoid costs to themselves, at

the expense of the performance the other nodes receive from the network. When a node is

behaving selfishly, it will not forward a message for another node at any time.

Figure 2.3 shows the results of an opportunistic network simulation where nodes act

selfishly. In this trace-driven simulation, using the Reality Mining opportunistic data
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trace [40], nodes create and forward messages according to the Epidemic routing protocol.

We performed runs with differing numbers of selfish nodes. We see, that as the percentage

of selfish nodes is increased, the performance of the network, i.e., the number of messages

delivered, decreases rapidly as the percentage of selfish nodes increases. If we can detect

and discourage selfish behaviour, it might be possible to achieve the same performance as

if no nodes are selfish, even if the all the nodes have a propensity for selfish behaviour.

How can we create incentives for nodes to cooperate? Incentives, reputation and trust

have been extensively studied in peer-to-peer networks and MANETs, and more recently,

in sensor networks and DTNs.

Huang et al. discuss the drawbacks of mobile DTN systems and state “without suf-

ficient nodes cooperating to provide relaying functions a MANET cannot function prop-

erly” [67]. They go on to discuss the different drawbacks with various types of incentive

systems for user co-operation. They find that in the early stage of a technology’s develop-

ment it is not necessary for the system to incentivise co-operation. They do however, state

that this may be a problem in the future if the technology is to be used in a mainstream

market.

We can view incentivising participation in the scope of malicious/selfish behaviour,

as attacks and a lack of incentive for participation can both lead to reduced network per-

formance. We now discuss attacks on opportunistic networks, as we cannot consider the

improvements these networks can provide, without considering whether opportunistic

networks are capable of providing those improvements in the face of a malicious attacker’s

behaviour.

To incentivise nodes to participate in forwarding, we can create an undesirable con-

sequence for not following the routing protocol, or we can encourage participatory nodes

through rewards. Opportunistic networks are mobile and ad hoc. The incentive mechan-

ism thus needs to operate in a distributed fashion. For nodes to know whether or not a par-

ticular node is malicious or altruistic, we need to provide a common scale that nodes can be

compared against. To do this we can incorporate the concept of a computable reputation

score for nodes, thus enabling the nodes to punish or reward nodes for their behaviour.
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2.5.1 Selfishness

If users are selfish, it harms the network as the nodes’ messages may not get through. If

all nodes were selfish, the only way to deliver messages would be via direct delivery. The

users’ economically rational desire to preserve their battery power affects this selfishness.

Many different mechanisms exist to create incentives to discourage selfishness [97]:

from bartering (a direct exchange of services), to currency (behaviour that benefits other

users earns measurable credits exchangeable for services). In the middle of this spectrum

lies asynchronous bilateral trading: nodes perform actions to benefit one another, but not

necessarily at the same point in time.

In a credit based system nodes must perform actions (altruistic behaviour) that they

use to accrue credits, which they exchange for ability to forward messages [155]. If nodes

can purchase more credits for the system they can afford to be more selfish: behaviour

that does not benefit the network. If nodes all purchase more credits instead of following

the routing protocol, then we are left with the same results as if there were no incentive

mechanism at all. The cost of credits should therefore be set appropriately high.

To combat selfishness, many mechanisms incentivise participation by encouraging the

other nodes not to forward the selfish node’s messages [7,20,64,97,98,100,103,125]. Either

selfish nodes do not have access to credits, or other nodes do not forward their messages

because their reputation is below a certain threshold.

If the incentive mechanism incentivises nodes to behave in a network it is possible that

the nodes may start to behave selfishly again if they can avoid detection for a period of

time. It may also be possible in mechanisms without credits, that nodes only stop being

selfish while they are detected as being selfish, and then resort to being selfish again once

they are no longer considered selfish. There may be a window in which nodes that are

being selfish are not detected as such. We need to look at how well mechanisms detect the

selfishness, as this detection-delay exploit may be quite large.

Incentive mechanisms in which nodes gain reputation/trust by being on the delivery

path, may encourage nodes to drop older messages. Nodes would be incentivised to drop
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messages that offer them a minimal chance of reputation improvement. This reduces net-

work performance because less messages get through to the destination.

It may also be the case that nodes are selfish to the point where they do not forward

messages on behalf of other nodes, but will pass messages to the destination if they meet

them.

2.5.2 Exploiting the friendship mechanism

Incentive mechanisms that use the concept of friendship or node pairing must take care not

to incentivise nodes to accept all other nodes as friends or accept no nodes as friends. This

can occur if the incentive mechanism hands out extra credits to nodes that are “friends”

with the individual paying the credit charge, or perhaps by increasing the payout to indi-

viduals who are not friends with the node charged for sending the message.

2.5.3 Epidemic behaviour to gain trust

It may be possible for a node to improve its score by ignoring the routing protocol and

flooding messages on all network paths. This would increase the offending node’s stand-

ing in other nodes’ eyes as they are being helpful. If all nodes took this approach, however,

the network would experience reduced delivery ratios due to flooding the network . This

attack is still economically rational, as a node could decide to be selfish when it needs to be

(when experiencing low energy), yet can gain significant trust/reputation by forwarding

when it has a large amount of energy, e.g., when charging.

2.5.4 Control traffic manipulation

In this attack, nodes may refuse to submit their credits or not exchange control informa-

tion [18,55,96,155]. This behaviour makes it harder for the reputation mechanism to detect

the selfishness, as there is less information to rely upon. Nodes may also try to offer routes

that do not exist, by advertising that they are on the optimum forwarding path [18,20,152].
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Many incentive mechanisms assign a high reputation value to a node that is doing a large

share of forwarding. By reporting to be doing a higher share of forwarding than they are,

the attacker can increase its reputation, as well as potentially avoiding its share of required

message forwarding.

Nodes may create false acknowledgements of messages arriving at the destination [20].

This can be an attempt to avoid nodes asking the attacker to forward messages by causing

other nodes to drop the messages that they may be holding.

Nodes may choose to create fake error messages, by claiming that a message was cor-

rupt [18]. This would allow them to avoid having to forward any more copies of the

message that they have been given.

2.5.5 Route manipulation

Nodes may try and alter the speed at which they perform periodic control processes, for

example increasing the route update frequency. This may affect the weighting of reports

for example, or cause increased energy consumption [18].

Nodes may alter the intended path of a message by forwarding it to a node that was

not on the intended path [18]. This can be an attempt to decrease the chance of a message

arriving at the destination. This is also a way for an attacker to cause a node to have to do

more than its fair share of forwarding.

Nodes can try to claim that another node was or was not on the path of a message. At-

tackers attempt to create the appearance that a node has a higher (or lower) reputation that

it does [98,155]. Nodes may also remove another node from the routing path to increase its

own share of the credits or to discriminate against another node. By discriminating against

a particular node, the attacker may hope to gain increased reputation, as this may increase

its own likelihood of being asked to forward messages in the future, and therefore gain

credits.
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2.5.6 Defamation

Nodes may choose to create false reputation claims about nodes, e.g., claiming that a node

is malicious when it is not [96,135,152]. This type of attack allows the attacker to potentially

increase its own probability of nodes giving it a message in the future. This would allow

the attacker to intercept more messages.

2.5.7 Tailgaiting

Nodes can follow another node, to create the appearance of a social connection or to collect

records of encounters. In some systems nodes use encounter records as a form of credit [20,

90, 91]. If the attacker can increase the amount of time that it spends with a node, then

the other nodes in the network may give the attacker messages for the intended victim

of tailgating. The attacker may then refuse to deliver these messages to the victim node,

effectively cutting it off from the network.

2.5.8 Collusion

Nodes may collude and work together to perform attacks [96, 152]. Rather than being an

attack itself, this is a way for nodes to modify an attack strategy. Collusion adds another

level of consideration for distributed reputation and incentive mechanisms designers to

consider. For example, if nodes can pollute the reputation mechanism with false reputation

reports, it may make accurately detecting malicious behaviour difficult.

2.5.9 Sybil attacks

Malicious attackers may create several fake identities to mask their behaviour or alter the

outcome of any reputation mechanism or routing decisions [135, 152]. This allows the

attacker to use a new identity in the network if the reputation mechanism detects their

previous malicious behaviour. In a sybil attack, the attacker uses multiple identities to

increase the reputation of the attacker’s main identity, in the same way as multiple nodes
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in collusion would.

2.5.10 Selective maliciousness

Nodes may try to beat any reputation mechanism by only being selectively malicious.

Either in the time dimension (by altering at which times they are malicious) or the node

dimension (by only being malicious to certain nodes) [135].

By performing attacks on only a subset of the nodes (or for a short period of time), the

attacker may avoid detection, while still gaining some return from its malicious behaviour.

We can see a summary of these attacks and some defense mechanisms against them in

Table 2.1. Not all of the attacks discussed are a relevant threat to all opportunistic networks,

as not all opportunistic networks rely on the same routing or incentive mechanisms. Many

of the attacks can be prevented with adequate security protocols, however, it is important

that the network can provide the intended service to users. If users are not incentivised

to follow the routing protocols, nodes will not follow the routing protocols, thus, research

into prevention of attacks against the routing protocols would be irrelevant. We there-

fore see incentivising participation and avoiding selfishness as the most important of the

challenges.

2.6 Summary

In this chapter we have seen how the need for opportunistic networking research has

emerged from the study of challenged communication environments, and how opportun-

istic networks can be useful. We have noted the following points:

• We have motivated the need for opportunistic networks through example applica-

tions

• We have motivated the need for specific opportunistic networking research instead

of using existing networking technologies
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Table 2.1: Opportunistic Routing Threat Model

Attack Defence

Selfishness An Incentive mechanism

Traffic deviation Watchdog nodes

Fake Routes Can be allowed within reason

Fake error messages Reputation mechanism

Increase Route update frequency Encounter tickets

Silent Route Change Not applicable as we do not have

static routes

Collusion Remove distributed mechanisms

Tailgaiting Solve out of band

Adding/removing nodes on path PKI

Submission refusal Detected by reputation mechanism

Sybil attacks SRSN can solve

Trying to live in the grace period Better mechanisms to detect
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• Opportunistic networks and social networks share similar properties, and under-

standing one can improve understanding of the other

• We have seen that the main challenge for opportunistic routing is how to decide

which encounters to use for forwarding

• We see that of the several potential attacks against opportunistic networks, incentiv-

ising adherence to routing protocols is the most pressing

In the next section we see how current research addresses several of these points.
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Chapter 3

Using Social Networks and

Opportunistic Networks Together

In this chapter we assess the extent to which current research addresses several of the

problems discussed in Chapter 2. First, we will discuss how social networks are used in

opportunistic routing, and how we can improve routing using SRSNs. Second, we will

discuss the problem with existing protocols being reliant on encounter histories. Finally,

we will discuss how existing incentive mechanisms are inappropriate for opportunistic

networks.

3.1 Social Networks For Opportunistic Routing

Opportunistic network routing relies on nodes forwarding messages to one another. The

intention is that when the nodes forward the messages, the messages move closer toward

the intended destination. For a high probability of delivery, we can exchange messages

during all available encounters. We assume that when we flood the network, that mes-

sages eventually arrive at the destination (assuming that there are no constraints on buf-

fers or energy), because all links will eventually be used. Epidemic routing [142] uses this

approach. Messages are only forwarded to nodes that do not already have a copy of the

message.
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Intuitively we can see that a flooding approach is inefficient. Why should we use all

links for forwarding? We should only forward messages along the shortest path (in hops

and time) to the destination. Forwarding the messages directly to the destination is guar-

anteed to use the minimum number of hops (one). When compared to Epidemic rout-

ing, however, direct-delivery to the destination results in higher delivery times. We could

therefore conclude that because Epidemic routing necessarily finds the one of the possible

paths (but with considerable overhead), that it should be used for forwarding. But oppor-

tunistic network nodes do not run in constraint-free environments. They have a maximum

buffer size, and a finite energy source. Epidemic routing has been shown, both intuitively

and experimentally, to be energy expensive [127].

If Epidemic routing is too expensive, and direct delivery too slow, then we need to

develop more efficient routing protocols that use the best quality links [46]. Identifying

these links is an NP-hard problem [8].

To limit the number of links used for forwarding we can limit the number of message

copies and links used in the network. A protocol that reduces the flooding nature of Epi-

demic routing in this way is Spray-and-Wait routing [128, 129]. The sender forwards a

few copies of the message (around 12% of the number of nodes) into the network, and

these intermediate nodes may then forward the message to the destination only. 1 This is a

rather naive approach, as it does not use any potentially useful information regarding the

encounter network itself.

Rather than place an arbitrary constraint on the number of message copies, the RAPID

routing protocol [8] intentionally optimises a routing for a particular metric. For example,

it is possible, to maximise the minimum delay, by viewing it as a resource allocation prob-

lem, rather than a link selection problem. This approach is appropriate for optimising

routing with respect to one metric. We can imagine, however, that in an opportunistic

network deployment, performance should be measured via a combination of several dif-

ferent metrics (including delay, probability of message arrival and effect of forwarding on

the energy levels of nodes).

1There are extensions to this protocol that allow intermediaries to forward messages. One example exten-

sion allows nodes to forward based on a utility derived from recency of interaction [129].
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It is because of efficiency concerns that researchers have designed protocols driven by

the information nodes can collect about their environment. For example, we can use the

frequency of nodes attending a location to drive routing decisions [58, 60, 102, 131]. While

this is useful, more efficient protocols use information that the nodes collect about the

encounter network itself to drive routing. If this information is collected by the device

itself, then we see that nodes do not need a concept of global knowledge. Picu et al. find

that when using local information, distributed protocols do converge [118].

Many existing protocols, such as Habit [101], use metrics based on locally-available

information. By taking advantage of the encounter network structure and properties we

can develop more efficient routing protocols. Lindgren et al. demonstrate their routing

protocol PROPHET [93], and show that using encounter histories to predict future node

encounters leads to equivalent delivery performance to Epidemic routing, with intermedi-

aries required to do less forwarding. With MaxProp routing, Burgess et al. also argue for

the use of a history of previous encounters to drive the routing decisions [19]. They show

that another useful approach is to flood delivery acknowledgements to clear redundant

message copies from intermediary nodes’ buffers, because this leads to increased delivery

percentages.

To improve routing performance further, many protocols use social network analysis

techniques. Boldrini et al. find that users’ sociability information (connections to users

outside of their home group) can be used to improve opportunistic routing [16]. They

also construct a middleware using contact-history based social information to improve

opportunistic services [15], and integrate it into the established opportunistic architecture,

Haggle [124].

Daly et al. present the SimbetTS routing protocol [35] that determines whether a node

should forward a message to an encountered node using a combination of three social-

network-analysis measures: betweenness [53] (roughly the number of shortest paths on

which a node lies), similarity (the number of ties that two nodes have in common) and

tie-strength (the recency, duration and number of interactions between two nodes). As

nodes encounter each other, they share encounter histories, update their utility scores (the

normalised sum of these three measures), and use these scores to determine whether to
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forward a message to the encountered node. Tie strength is also used for routing by Fabbri

and Verdone [47], and find that it offers a good trade off between performance and traffic

volume.

The use of centrality for forwarding is also studied in [147], where it is used as a measure

of node importance in the network. Xu et al. find, however, that when using this approach,

a small number of nodes have to perform a large percentage of the forwarding (63% of

traffic by 10% of nodes). Pujol et al. use interaction strength for routing [121], they find that

in SimBet routing that around the top 10% of nodes carry out most of the forwarding (54%

of all the forwards and 85% of all the handovers). We see then, that existing opportunistic-

routing protocols using social-network analysis approaches are not efficient.

As we have seen, most protocols use information from the encounter network, (de-

tected social network), but these are not the only types of social network. We could use

pre-existing social network information (SRSNs). Many applications e.g., Facebook2, Twit-

ter3, Last.fm4 etc, ask users to explicitly declare their social network. We can consider how

these social networks could be used for routing.

If we use an SRSN to obtain data for routing instead of DSN data, this can provide

many benefits. If we validate protocols using the SRSN then we do not need to collect

extensive encounter traces for experimentation. This also saves the user resources as their

device is not expending energy on collecting encounter data. As SRSN data is indicative

of the belief of a connection by the nodes (rather than based on a connection derived from

proximity), SRSN based routing predictions may be more accurate than using the DSN

data. The SRSN data reflect a longer-lasting concept of a relationship between individuals

than the DSN, which is more appropriate in the short-term. This saves energy lost by re-

dundant or unnecessary forwarding decisions made by the less accurate protocols. SRSNs

provide better user privacy, because the users have explicitly provided (or consented to)

access to the data used by the opportunistic routing protocol, rather than devices collecting

and exposing data the user may not want to be used/exposed.

2www.facebook.com
3www.twitter.com
4www.last.fm
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Mtibaa et al. [108] make use of SRSN information from online social networks to com-

pute node rankings. Their PeopleRank protocol achieves an end-to-end delay and a suc-

cess rate close to those given by flooding, while reducing the number of retransmissions by

50%. Similarly Hui et al.’s studies on forwarding and mobility [70,71], argue for using pre-

existing social network information, and they create a routing protocol BubbleRap [72].

By ranking nodes within a community, and having hierarchical communities, BubbleRap

allows nodes to “bubble up” a message to a node if it has a higher rank within the same

community, or is a member of a community that is closer to the destination node. This

external information provides useful information that aids forwarding, and might not be

discernible from the encounter network itself.

Pietiläinen et al. describe an architecture that uses SRSNs to bootstrap an opportunistic

network [119]. Nodes use their SRSN as a list of permitted intermediaries, and can decide

to add nodes to this list over the network lifetime.

Mtibaa et al. find a strong correlation between the SRSN and DSN and describe a way

to process the SRSN data so that they are more useful [107]. The SRSN and DSN data are

mixed to improve routing.

Hossman et al. look at how well the social network analysis techniques (such as

betweenness) are applied to the social graph [65], they find that for both SimBet and Bub-

bleRap, the techniques are not applied to an optimal/efficient graph on condensed connec-

tions. They find that the graph could be improved by using a density based aggregation:

for a given network density we can pick the best encounters to use. We thus see that we

may be able to make better use of the encounter data for forwarding.

As well as aiding routing, social networks can be used for improving mobile applic-

ations. Miklas et al. [104] use social networks to improve three different mobile applic-

ations: opportunistic routing, mitigating the spread of worms, and mobile peer-to-peer

file-sharing. Social networks and communities have also been used to build improved

publish/subscribe architectures [66, 150].

We have not seen an experiment which detects whether or not SRSN data is better or

worse than DSN data for forwarding in an opportunistic network. We have seen that there
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is no research into using exclusively SRSN data for forwarding. This may be because the

focus before has been primarily concerned with proving that social networks can be used

to improve routing. For this reason many of the social networks used in these routing

systems were generated from encounter traces. A gap therefore exists in investigating

how exclusively using an SRSN declared by the individuals taking part in the experiment

can improve routing.

3.2 Encounter Histories And Over-Reliance

The nodes in an opportunistic routing protocol do not run in a constraint-free environment.

Due to the finite buffer and energy stores of the nodes, routing large amounts of traffic

though a subset of nodes can lead to nodes batteries becoming drained.

We have seen in Chapter 2.4.1 that if a certain proportion of the hub nodes are removed

from the network, the network diameter can increase, leading to longer forwarding paths

and in turn, more nodes running out of battery. As discussed in the previous section, we

have seen that existing opportunistic routing protocols require a small number of nodes

to do a large proportion of forwarding [121, 147]. There are, however, no protocols that

sufficiently address this problem.

As the nodes that perform forwarding are the hub nodes [121], and due to the clustered

and assortative nature of opportunistic networks [137], routing protocols that rely on these

nodes will cause nodes to run out of battery, thereby reducing performance. We therefore

need an opportunistic routing protocol that does not rely on a subset of nodes to perform

the forwarding. Perhaps we can use social network analysis techniques to find nodes to

use as alternatives for those nodes that are required to do a lot of forwarding.

As we have seen in Section 3.1, many existing routing protocols rely on an encounter

history for information used in routing decisions. Using an encounter history to make an

informed decision, however, means that a number of encounters must take place before

the routing protocol works as intended. Thus, the SimBetTS authors propose that a period

of time (15% in their simulations) be reserved as a “warm-up” period, during which nodes
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gather encounter information, but do not forward messages [35]. The PROPHET protocol

similarly uses a warmup period.

We see that there is a need to develop routing protocols that can operate from the time

of network startup, without relying on the encounter histories for forwarding.

3.3 Incentives For Participation

We have seen in Chapter 2 that there are many attacks against opportunistic routing. Bur-

gess et al. however [20], show that opportunistic networks are robust to many attacks,

without even having to use authentication. They find that because the routing protocols

frequently use a lot of message replication, opportunistic networks perform well in the

face of attacks.

We also need to consider the incentives that users have to participate in a routing pro-

tocol at all. It would be rational for nodes to forward their own messages at all possible

opportunities and to expect other nodes to forward all of their messages, whilst they them-

selves do not forward messages on behalf of any other nodes. While rational, this beha-

viour is selfish, to avoid costs, or to reduce congestion due to other nodes traffic, so that

the selfish-node’s messages have an increased likelihood of reaching the destination.

The vulnerability of opportunistic networks to selfishness is discussed in [79]. Karali-

opoulos finds that DTNs are vulnerable to selfishness, and produces a metric for assessing

the vulnerability, called the “deceleration factor”. Panagakis et al. [114] also show that the

opportunistic routing protocols can be susceptible to selfishness, in particular Epidemic

and Spray-and-Wait.

Keränen et al. find that once around 30% of the nodes in the network are selfish, the

performance of the routing protocols degrade [80]. Shevade et al. find that the perform-

ance of the network can drop to as low as 20% if nodes are selfish [125]. Thus, rather than

looking at attacks on the network, we focus on the incentives for participation in oppor-

tunistic routing.
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Xu et al. [146] look at the different distributions of altruism for opportunistic shar-

ing. They find that nodes with lots of contacts cannot maintain a uniform altruism to all

connections due to resource constraints. They find that the “important” nodes should be

favoured, as they are responsible for maintaining the short diameter of the network. This

fits with our view of certain nodes in the network (hubs) having more influence over the

transmission paths of messages than the average node. Solis et al. describe a mechan-

ism that uses classification for the nodes to prioritise the traffic of nodes that contribute

towards routing [126].

Sun et al. develop a trust measure for distributed networks [135], and argue that a trust

measure is necessary to facilitate cooperation.

When Resta et al. look at node cooperation [122], they find that even a small number

of nodes co-operating leads to significant improvements over the case where all nodes

are selfish. If we can incentivise a small proportion of nodes to participate it could lead

to increased routing performance. We need to decide however, how to incentivise this

participation.

To combat selfishness, we must first detect it. Several approaches use “watchdog”

mechanisms [7,18,64,99,100,103], where a third node oversees a message exchange between

two nodes to verify its authenticity. Such an approach, however, is inappropriate for op-

portunistic networks, as routes are rarely static and the inter-contact times are large; neigh-

bours are not consistently available to monitor the behaviour of one another.

For a disconnected opportunistic network, it is therefore necessary to rely on the en-

counters between nodes as the only way to exchange data and incentive-mechanism con-

trol traffic. The most common detection approach for opportunistic networks is for all

nodes to monitor their own encounters, and to exchange their opinions of other nodes

when they interact. Nodes then use these collated opinion data to make decisions about

the trustworthiness of individual nodes. Liu and Issarny [96] describe a recommendation

model, which is used to allow nodes to share their opinion of nodes so that malicious

behaviour can be detected.

Liu et al. argue in favour of using reputation of recommendations as well as reputation
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of service provided by nodes [96]. They discuss how to force nodes to reveal the control

information and reputation information.

Yu et al.’s reputation system for peer-to-peer (P2P) networks has nodes build opin-

ions of other nodes by analysing the quality of service (QoS) that they receive from these

nodes [152]. They also use a measure of credibility for the nodes in the network.

They include a rating-discovery algorithm that maintains consistency of ratings across

the network. P2P networks, however, have different properties to opportunistic networks.

Even though there is potentially high churn in peer-to-peer networks, it is generally as-

sumed that direct connectivity between any two nodes in the peer-to-peer network is pos-

sible, which is unlikely to be true in an opportunistic network. In opportunistic networks,

it is harder for nodes to establish the opinion of nodes, as they cannot connect to arbitrary

nodes to request reputation information.

To verify the reputation information, we must be able to prove that the reputation is

based on experiences – how can we prove that messages were exchanged, or that encoun-

ters occurred? One way to validate encounters is to use encounter tickets [89], a crypto-

graphic mechanism that nodes can use to prove encounters and message exchanges took

place. When nodes two nodes meet they create a data item containing the timestamp of

the encounter, known as an encounter ticket. Assuming the nodes are using PKI, both

nodes sign the ticket with their private keys. This provides non-repudiation for encoun-

ters. Encounter tickets allow nodes to build up a history of message exchanges to use to

construct an opinion of other nodes. Nodes can exchange encounter tickets and opinions

during encounters.

SMART is a credit-based multilayer incentive mechanism for DTN [155]. SMART uses

provable exchanges and layered coins. This protocol requires the nodes to connect to a

trusted authority for credit checks for nodes to send messages. Lu et al. also use an

encounter-ticket-based incentive mechanism [98], but this requires a trusted authority (an

out-of-band oracle), which makes it inappropriate for opportunistic networks. Li et al.

propose RADON [90], which uses a history-based approach, combined with watchdog

nodes. RADON floods control messages to the network, potentially consuming lots of

nodes’ resources.
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Any incentive protocol that relies on trust and reputation needs initial reputation val-

ues for the nodes [125]. As SRSNs provide information that is available before network

startup, then perhaps we can use SRSN information to bootstrap the incentive mechan-

ism. Social community information has been used to thwart node capture attacks [31].

The RELICS protocol [139] encourages cooperation through ranking. Nodes estimate

the likelihood of message delivery for each of the nodes they encounter, and use this to

rank nodes. A node’s rank is improved by being on the forwarding path of successful

delivery. Nodes adjust their energy expenditure to meet a desired delivery ratio threshold

(decided a priori). By expending more energy (forwarding more messages), nodes can

hope to deliver more messages, increasing their rank with other nodes. Similarly, if their

delivery ratio is above the threshold, nodes drop their energy expenditure. The RELICS

protocol requires nodes to flood control messages to the network. It may be the case that

not all of the nodes receive the control messages, and potentially there is a large energy

overhead for control messages.

3.4 Summary

This chapter has outlined the current research in the area of opportunistic routing and

incentivising participation in opportunistic routing. We have noted the following points:

1. Social network theory has been shown to be useful for opportunistic routing

2. Existing protocols using social network information result in certain nodes becoming

overloaded

3. SRSNs might provide information useful in efficient routing protocols

4. There is the problem of bootstrapping opportunistic routing protocols

5. While work in incentive mechanisms exists, current opportunistic network incentive

mechanisms require infrastructure connectivity or oracles to operate

We believe that by using SRSNs, we will be able to address these problems. In the next

chapter we perform an experiment to demonstrate that SRSNs can be more useful than
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detected social networks for opportunistic routing.

67



68



Chapter 4

Self-Reported Social Networks for

Opportunistic Routing

Opportunistic networks may form an important part of future mobile-computing environ-

ments. Understanding how to efficiently and effectively route information through such

networks is an important research challenge, and much recent work has looked at detect-

ing communities and cliques to determine forwarding paths.

Such detected communities, however, may miss important aspects. For instance, a

user may have strong social ties to another user that they seldom encounter; a detected

social network may omit this tie and so produce sub-optimal forwarding paths. Moreover,

the delay in detecting communities may slow the bootstrapping of a new delay-tolerant

network.

This chapter explores the use of self-reported social networks for routing in mobile net-

works in comparison with detected social networks discovered through encounters. Using

encounter records from a group of participants carrying sensor motes, we generate detec-

ted social networks from these records. We use these networks for routing, and compare

these to the social networks which the users have self-reported on a popular social net-

working website.

A fundamental problem for opportunistic networks is how to effectively and efficiently
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route information. If network nodes (users) are mobile, then static routing tables are in-

appropriate, and nodes require some mechanism for finding the best node to which to

forward a message to, for the message to effectively reach its destination. As the destina-

tion of many messages is a node known to the source node, and many of the intermediate

nodes may also be nodes known to the source (e.g., co-located nodes in a home or work-

place), many researchers have explored the use of social network information for building

opportunistic routing tables. By examining the social network of the nodes visited by a

particular node, it may be possible to optimise routing by forwarding messages to nodes

that are encountered more often.

To build the social networks for each node, however, data (e.g., encounters), must be

collected so that social networks can be detected or discovered. This can lead to delays in

bootstrapping the opportunistic network which may impede its effectiveness. We observe

that many networked applications involve communicating with a recipient that is known

to the sender, i.e., a node that is part of the sender’s existing social network.

Thus, might it make sense to use the network of friends in the physical world to de-

termine forwarding paths in a mobile network? Such a social network is already known

to a node, and so requires little time to generate, compared to the social network collected

from an encounter trace.

This chapter thus attempts to answer the following question:

1. Can we use SRSNs to improve opportunistic routing protocols?

This work was conducted with Dr Tristan Henderson, Dr Martin Bateman, Dr Saleem

Bhatti, and Devan Rehunathan, who helped with practical aspects of the experiments, and

originally published in [13].

4.1 Experimental Setup

The purpose of this experiment was to investigate what relationship there is between a

SRSN and a DSN. So, we gathered SRSN and DSN information from a set of volunteers.
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Figure 4.1: SASSY architecture. Nodes upload their detected encounters to the basestations.

We use these data to explore this relationship, to answer the question above.

We set up a mobile sensor network comprising mobile IEEE 802.15.4 sensors (T-mote

Invent devices, Figure 4.1) carried by human volunteers, and Linux-based basestations

that bridge the 802.15.4 sensors to the wired network. T-mote Invent devices can detect

each other within a radius of ∼10m. These encounters are stored in the Invent devices

and are uploaded through the basestations to a central database, as seen in Figure 4.1. The

system is called SASSY (St Andrews Sensing SYstem).

For the experiments described in this chapter, we deployed 25 Invent devices amongst

20 undergraduate students, three postgraduate students and two members of staff. To up-

load encounters, we deployed three basestations across the two Computer Science build-

ings in our institution. Participants were asked to carry the devices whenever possible

over a period of 79 days. We could detect Invent-to-Invent encounters anywhere through-

out the town of St Andrews and beyond; they were not limited by basestation placement.
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The Invent devices were programmed to broadcast a beacon every 6.67 seconds. 1

When other devices detected these beacons, they recorded a timestamp (and other inform-

ation such as signal strength) for this beacon. This timestamp, the sending device’s ID

and the other information form a Sensor Encounter Record (SER). When these SERs are

uploaded to a basestation, the basestation adds the ID of the uploading device and the

basestation’s ID, and records these in a central database.

To conserve storage on the Invent devices (which only have 48KB of storage space),

we only recorded the maximum, minimum and mean measurements for encounters that

lasted more than one polling interval.

We use the participants’ Facebook2 social network information to generate a topology.

We consider this the SRSN. We also generate a topology using the SERs to create a social

network, similar to [36]. We refer to this as the DSN.

These data are referred to as the SASSY data from this point forward. We have made

these data available online for other researchers to use [14].

4.2 Self-Reported And Detected Social Networks

Before we can examine whether the use of SRSNs instead of DSNs has an impact on op-

portunistic network performance, we must answer our first question: Are detected social

networks and self-reported social networks similar? Figure 4.2a and Figure 4.2b show the to-

pologies for the SRSN and DSN for the SASSY data. We can observe differences between

the two networks, but to better understand these differences, we employ techniques from

traditional social network analysis. We may observe properties that may improve oppor-

tunistic routing.

1Found experimentally using two users walking each with a device. This period was determined experi-

mentally to allow detection of encounters at walking speed, whilst preserving battery life.
2http://www.facebook.com/
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(a) The SRSN graph. There are two groups of nodes: the small group is the staff and postgraduates,
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(b) The DSN graph. At first glance it appears all participants bar one seem to be in the same group.

On average nodes in the DSN have more ties.

Figure 4.2: The topologies of the SRSN and DSN for the SASSY trace. The node labels are consistent

across both plots, i.e., node 1 in the SRSN is also node 1 in the DSN.

73



4.2.1 Structural equivalence

The notion of structural equivalence allows us to compare the ties between nodes (or actors

in social network analysis terminology) within social networks [22]. Actors who have

identical relationship ties to the same group of actors are structurally equivalent and are

referred to as being in the same equivalence class.

To calculate structural equivalence we create a matrix of the ties between actors (a so-

ciomatrix); if an actor i has a social tie to actor j, then the element (i, j) has a value of 1;

otherwise the value is 0. If actors i and j are structurally equivalent, the entries in their re-

spective rows and columns of the sociomatrix will be identical (i.e., the Euclidean distance

between them is 0). By computing distances between all n actors in the network, we create

an n× n matrix that shows the structural equivalence of each actor.

Using these Euclidean distances as a metric, we can plot dendrograms for the SRSN

(Figure 4.3a) and DSN (Figure 4.3b). Dendrograms can be used to understand cluster-

ing; we say the nodes are clustered, where each mutual cluster is a set of nodes whose

largest intra-group distance is smaller than the distance to the nearest point outside the

set. For this work, the important feature to note is that nodes on the same ‘branch’ of the

dendrogram are considered to have shorter distances between them, and are thus said to

be clustered.

4.2.2 Role equivalence

Closely related to the concept of structural equivalence is role equivalence. This allows us to

examine clusters in a social network and also compare the clusters between different social

networks. Two actors i and j are role equivalent if the collection of ways in which i relates

to other actors is the same as the collection of ways in which j relates to other actors [143].

To examine role equivalence graphically, we use blockmodels following [145]. The block-

model can be thought of as a graphical abstraction over the sets of ties between nodes, and

the function to produce it takes the clustered nodes from the dendrogram as input. Each

block in the blockmodel indicates whether or not the column actor can be thought of as
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having equivalent ties to other nodes as the row actor. A position is assigned to each actor

in the network. For each pair of structural equivalence relationships (node ties), we de-

termine whether a tie exists between the positions of the relationships, i.e., do the ties from

actor j match those of actor i? If there is sufficient overlap of ties to satisfy the equivalence

criteria (in our case: is there at least one match in every row and column of i and j’s role

sets), then a block is added to the blockmodel diagram in the jth column for the ith row.

We must however, pick the number of output roles we expect to see. The blockmodelling

algorithm will divide the nodes into the number of roles that the administrator expects to

see.

4.3 Datasets

To show that the results are not peculiar to the trace data we collected, all analysis is

also performed on two other traces. This section describes the datasets that are used to

drive simulations. These are all available on the data hosting website CRAWDAD3, which

provides datasets to researchers.

4.3.1 HOPE

The HOPE dataset [1] traces the movements of 767 attendees at the seventh Hackers On

Planet Earth conference. Participants registered their interest in topics and specific sessions

before attending the conference. On arrival they were given an RFID tag to carry with

them, these tags were then detected by RFID readers distributed geographically around

the conference facilities.

SRSN

The self-reported social network needs to be extracted from the raw data provided. These

data contain the nodes’ declared interest in up to five of eleven topics. We treat all indi-

3http://crawdad.org
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viduals claiming to have an interest in the same topic as a clique. We do this for all interests

and connect the cliques together, and the resultant graph is the SRSN.

DSN

To create the detected social network, contacts between individuals need to be determined

from the following raw data files: attendance of talks, detection of individuals at specific

readers on a continuous timescale, and normalised time spent at locations over 5 minutes

blocks. We assume that nodes attending the same talk are assumed to be in contact.

The static RFID readers logged detection of mobile nodes, with the information stored

in the format <timestamp, nodeid, location>. This provides the order that nodes visited

locations. As the time is represented as a timestamp, we need to compute the length of

time nodes are present at a location before we can assume co-location. A subset of the

data is of "normalised node location". This provides the name of the locations a node was

detected at in a five minute window, with a value in the range 0− 1 which represents the

normalised length of time the node was present at this location. This allows us to compute

the amount of time a node was at a location. By combining both of these sets of data we

can work out when, and for how long, nodes visited specific locations at the conference.

We can determine if nodes were co-located in space and time; and, if so, we can infer that

an encounter took place.

As RFID-reader detected encounters required more calculations, and therefore increased

likelihood of error, the talk attendance data are assumed to take precedence over the inter-

polated encounters between individuals in the event that nodes appear to be in two places

at once.

4.3.2 Reality Mining

In the RM trace from MIT [40], 99 individuals were given a mobile phone to carry that

used Bluetooth to detect co-location. 75 of the users were either students or faculty at

the laboratory, while the remaining twenty-five were incoming students at the adjacent
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Table 4.1: Dataset graph statistics

Trace

SASSY RM HOPE

Property SRSN DSN SRSN DSN SRSN DSN

Number of Vertices 25 25 97 96 414 410

Number of Edges 127 155 107 2328 67836 80183

Clustering Coefficient 0.748 0.672 0.255 0.702 0.834 0.976

Graph Density 0.406 0.496 0.023 0.505 0.792 0.954

Graph Components 1 1 28 1 1 1

Graph density is the ratio of the number of edges in the graph over the maximal number of edges(N(N−

1)).

Table 4.2: Trace properties

Trace SRSN DSN

SASSY Facebook Friends ZigBee Encounters

HOPE Topic Interest RFID Co-Location

RM Phone Contact List Bluetooth Encounters

business school. The authors logged cell-tower ID to determine approximate location and

at the same time logged Bluetooth devices.

The information collected included call logs, Bluetooth devices in proximity, cell tower

IDs, application usage, and phone status (such as charging and idle). Participants carried

the devices for nine months. We use the user-programmed phone book as the SRSN, and

the Bluetooth encounters between participants as the DSN. We can see the details of the

input data used to create the SRSN and DSNs for all traces in table 4.2.

77



4.4 Network Analysis

We now look at the social-network analysis techniques described in section 4.2.1 and 4.2.2

to the traces found in section 4.3. We create dendrograms and blockmodels for each of the

datasets using R.

The table in 4.1 shows the graph details of the SRSN and DSN for each trace. We see

that for each trace, the DSN is always denser than the SRSN, meaning that we expect that

more paths will be available for routing. We would expect this, because data from the

SRSN imply a social connection of some kind, which we would expect to be stronger than

the social connection that arises from two individuals being co-located.

The edges are not weighted for either the DSN or SRSN. Many of the traces do not

include multiple interaction information for the nodes. For example, the SASSY trace in-

cludes a single connection between each of the SRSN nodes, similarly in the HOPE trace.

We therefore have no measure of the relative importance of a tie in each node’s SRSN.

With the DSNs, edge weightings could, for example, be determined using a measure of

frequency of encounter or length of encounters. This approach, however, would result in

edge weights linked strongly to the encounter sampling methodology, which, in turn may

affect the graph level analysis. To allow us to perform a fairer comparison of opportunistic

network performance, we therefore do not weight edges for any of the traces.

4.4.1 SASSY

When analysing the SRSN blockmodels we see four roles, each of which can be seen as a

cluster in the dendrogram Figure 4.3a, or as a section of the blockmodel (Figure 4.4a).

Nodes 4, 2, 13, 12, 9, 3, 5, 10, 11, 7, 16, 1, 15, 6, 8 form role 1: These nodes are almost entirely

connected to themselves. These nodes are the most popular, with lots of ties; and ties

to the widest variety of nodes. In Figure 4.2a, these nodes are located close to the

centre. These nodes represent a clique — they all have ties to each other, but there

are no other nodes that are directly connected to all the members of the group [143].
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(a) The SASSY SRSN dendrogram. Here we see four clusters. Only four nodes are completely

similar to one another.
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(b) The SASSY DSN dendrogram. Here we see four clusters. No nodes are completely equivalent,

meaning that there are no perfect alternate nodes that have matching social networks.

Figure 4.3: The equivalence clustering Euclidean distance dendrograms. Height indicates the Euc-

lidean distance.
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Figure 4.4: Blockmodels of role equivalence for the SRSN and DSN. Dotted lines indicate role

divisions.
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We would expect that nodes in this group would be able to communicate with each

other with low delay and high probability of delivery success.

Nodes 23, 14, 24 form role 2: Three nodes on the edge of the main group. They are found

in the middle of the dendrogram (Figure 4.3a). They are slightly similar to each other,

but are grouped together as their common property is a fewer number of connections

than nodes in role 1.

Nodes 19, 21, 18, 20, 22 form role 3. These nodes form the postgraduate and staff group.

They are similar to each other, and connect to the other nodes only through node 19.

We would imagine then, that node 19 is an important node for maintaining routing

paths.

Nodes 17, 25 form role 4. These nodes are again outliers from role 1. They are on the other

side of role 1 to role 2, and are therefore not grouped together.

In contrast with the SRSN, we found four weakly-defined roles in the DSN blockmodel

(Figure 4.4b).

Nodes 20, 25, 3, 4, 12, 9, 24 form role 1. There nodes are on the edge of the graph (Fig-

ure 4.2b), and while they are not similar to each other they are grouped together,

as they have the fewest connections that are useful to other nodes.

Nodes 19, 21, 22 form the second cluster and role 2. These nodes have connections to most

of the nodes in roles 1, 2 and 4, and only a few connections to role 3. Crucially, they

provide links to the more central nodes for those in the outlying cluster, and hence

do not fall into the outlying cluster themselves.

Nodes 11, 10, 5, 6 form role 3. They lie near to (but not in) the centre of the network. They

can also be considered edge nodes, but they have more connections into the centre

than role 1, and are also highly connected to role 1, yet hardly similar to role 2, and

therefore are not grouped with role 2.

Nodes 16, 23, 7, 14, 13, 18, 1, 2, 8, 15, 17 form role 4. This is the most central role. The nodes

are very similar to one another, and share many similarities with nodes in all the

other roles.
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On average, nodes in the DSN have a greater number of ties than in the SRSN. In both

cases the roles indicated in the blockmodel confirm the clusters described in the respective

dendrograms, and also help us to distinguish the roles more clearly. The roles are less well

defined in the DSN, as the blockmodel does not show as obvious divisions as in the SRSN.

The SRSNs roles seem to form in groups of nodes with similar relations to each other and

with clear group boundaries. It is also noticable from the graph that in an opportunistic

network roles 2, 3, and 4 might heavily rely on role 1 to provide paths in the network. In

the DSN, however, divisions seem to be distinguished by number of ties to the center of

the network.

The similarities that these analyses show between nodes allow us to make predictions

about which nodes will be the most useful for forwarding. Nodes that are similar to one

another can be viewed as providing similar forwarding paths. Routing protocols may be

exploit this in the event expected nodes are not present.

This is a feature of the blockmodel that would not have been obvious from simply

inspecting the topology diagrams. Blockmodels may therefore provide information useful

in opportunistically routing messages.

Reality Mining

When we compare the RM node diagrams Figures 4.5a and 4.5b we notice that the DSN has

one large component, while the SRSN has 28 components. When trying to route messages

the nodes have more encounters than expected social contacts (SRSN neighbours) and

therefore have more options available to them for routing.

In cluster dendrograms Figures 4.6a and 4.6b, we see that in the SRSN trace 35 nodes

have a difference of 0 with other nodes, meaning these nodes’ neighbours are exactly the

same as at least one of the other nodes. This is not the case for the DSN. Nodes on average

have a difference of between two and eight. Overall there is less difference between nodes

in the SRSN than the DSN. The maximum difference on the y axis is just over six in the

SRSN, while is is almost 14 in the DSN.

82



12

34

5
6

7

8

9

10

11
12

13

14
15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
35

3637

38

39

40

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70 71

72

73
74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

(a) Reality SRSN graph. Here we see two large groups, with several individuals and 4 pairs. In

total there are 28 components.

1

2

3

4

5

6

7

8

9

10
11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

3334

35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

7677

78

79

80

81

82 83
84

85

86

87

88

89

90

91

92 93

94

9596
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number of contacts.

Figure 4.5: SRSN and DSN graphs for the RM trace.
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(a) Reality SRSN cluster dendrogram. We see a large difference between the nodes, as expected

from inspecting the SRSN graph. There appears to be three main clusters. The outliers are all very

similar, and are clustered together. High betweenness nodes in the large component: 10, 12, 26 are
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(b) Reality Mining DSN cluster dendrogram. There appears to be 5 large clusters. The middle

branch there is little difference between the nodes. None have a difference of 0.

Figure 4.6: Reality Mining Cluster Dendrograms. Height indicates Euclidean distance.
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(a) Reality mining SRSN blockmodel. Here

we see very little similarity between the

nodes in the SRSN, this is most likely be-

cause of the small number of connections

between nodes. There are less structurally

equivalent nodes than in the DSN.
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(b) Reality mining DSN blockmodel. We see

four different groups in the network. Nodes

in the dark square region in the top left are

all very similar to one another, and are fre-

quently similar to nodes in two of the other

groups. Nodes in the second group (56...83)

are near the middle of the DSN graph, and

have are similar to themselves and nodes

in group 1. Nodes in the third group are

slightly similar to nodes in the first group,

but are very similar to one another. They

are found in the group in the bottom right

of the network graph. Nodes in the fourth

group are neither similar to nodes in any of

the other groups, nor to nodes in their own

group.

Figure 4.7: Reality Mining Blockmodels. Nodes in the SRSN show less similarity with one another

than the DSN nodes.
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(a) Hope SRSN graph. (b) Hope DSN graph.

Figure 4.8: The SRSN and DSN graphs for the HOPE trace. Both are highly connected dense graphs.

The RM blockmodels show that there is little similarity in the SRSN Figure 4.7a, despite

the number of nodes with a distance of zero to other nodes. The DSN Figure 4.7b shows

two groups (84...85, 52...91) with high similarity within each group, yet in the cluster dia-

gram they have distances greater than 0. These graphs show that just using one technique

(clustering or blockmodelling) is not enough to capture potential node similarity.

HOPE

The SRSN and DSN (Figures 4.8a and 4.8b) for the HOPE trace are both very dense (0.792

and 0.954 respectively), yet when we look at the clustering dendrograms (Figures 4.9a and

4.9b) we see that far more nodes in the DSN have a difference of 0 in comparison to the

SRSN. Due to density of figures, these dendrograms are included for illustrative purposes

only. The DSN dendrogram shows that in the DSN, nodes have a wider range in difference

than in the SRSN. Despite this wider range in difference, overall there is a lower average

distance in the DSN that the SRSN.

The blockmodels for the SRSN (Figure 4.10a) and DSN (Figure 4.10b) show nodes in

the DSN are very similar. The SRSN shows some nodes with high similarity, representing
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(a) Hope SRSN cluster dendrogram. We observe six main clusters, all but one containing nodes

with a distance of 0. The cluster on the right hand side from the root is made of the edge nodes in

the graph.
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(b) Hope DSN cluster dendrogram. We observe that the very large cluster has many nodes with

distance of 0. This is in contrast toe the SRSN which has fewer nodes with distance 0.

Figure 4.9: HOPE Cluster Dendrograms. Due to size, figures only included for illustrative pur-

poses.
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(a) Hope SRSN blockmodel. We see several groups with similarity in connections. These may

represent cliques within the graph.

(b) Hope DSN Blockmodel. We can see that the nodes in the DSN are very similar to one another.

The graph is almost a single clique.

Figure 4.10: HOPE Blockmodels.
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cliques of nodes within the large group itself.

We have seen that blockmodels and dendrograms offer a way to see node similarity

and provide a numeric value for how different the nodes are to each other. It is, how-

ever, required that we manually decide how many different groups/roles there are in the

networks via inspection of the dendrogram/blockmodel.

We have seen that the SRSN and DSNs differ in structural and role equivalence even

when we compare two network graphs that are very dense and appear similar in structure.

We now go on to see how these differences affect opportunistic routing.

4.5 Hypotheses

Nodes in the DSNs have a greater number of ties than in the SRSNs, and these ties are

more frequently to nodes outside their role. We therefore infer that the nodes in the DSN

may be more easily reached. For example, we see in Figure 4.2a and Figure 4.4a that

there are fewer paths and more clearly defined roles than the DSN equivalents Figure 4.2b

and Figure 4.4b.

We use similar metrics to those listed in [71], namely:

• Delivery ratio — the number of messages that have been delivered divided by the

total number of messages created.

• Delivery cost — the number of medium accesses, divided by the number of messages

delivered.

We make the following hypotheses:

1. An opportunistic network application using a SRSN as a routing table would have

a lower delivery ratio than one using a DSN, as there are fewer links available, and

nodes are more restricted in the ways they relate to each other.

2. An opportunistic network application using a SRSN as a routing table would have a
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lower delivery cost than one using a DSN, as there are fewer links available, and so

nodes are likely to generate fewer transmissions.

4.6 Experimental Results

To test the hypotheses of Section 4.5, we use the SRSN and DSN as inputs to a simulated

opportunistic network and calculate delivery ratio and delivery cost metrics to determine

message-passing performance.

4.6.1 Simulation setup

An important factor in the design of a opportunistic network is the amount of time that it

takes to pass a message from one node to another – the bundle-transfer time. If messages

are large and take a long time to transfer between nodes, then we are reliant on nodes

encountering each other and staying within range of each other for a long time in order for

the opportunistic network to be effective. We assume a bundle-transfer time of 30 seconds,

which we believe to be a reasonable minimum encounter time4. Experimentally, we also

found that, for our experiments, beyond 30 seconds, the delivery ratio becomes negligible

as there are insufficient encounters longer than 30 seconds.

We hold this bundle-transfer time constant, and experiment with different time to live

(TTL) values: this allows us to determine opportunistic network performance under dif-

ferent application scenarios. For instance, a disaster scenario application might require a

low message TTL, whereas a holiday maker sending photos to their friends may not worry

about timely delivery and so will be content with a high TTL.

The encounter trace data were used to create a trace-driven simulation. Simulation

parameters can be seen in Table 4.3. Randomly selected nodes send messages to randomly

selected destinations, where the total number of messages created in each simulated day

is the number shown in the table. To increase realism, all random values are taken from an

exponential distribution.

4Computed via experimentation with N95 smartphones sending 1MB file
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The messages are sent in an unicast fashion, rather than a one-to-many or a many-

to-many approach. This is to capture an application similar to a mobile network short-

messaging-service. A one-to-many messaging approach is more appropriate for advert-

ising than messaging. Many existing works similarly use an unicast approach for their

simulations [35, 36, 72, 141].

For this experiment, devices are assumed to have infinite buffers and energy. This is to

minimise the effects from including these parameters, and to ensure that any divergence

arising is from the difference between the protocols, rather than external factors.

Table 4.3: Simulation parameters

TTL values

Trace Messages per Day Hours Days

SASSY 20 † 1, 2, 3, 4, 5, 8, 10, 20, 30, 40, 50, 80

RM 84 † 1, 2, 3, 4, 5, 8, 10, 20, 30, 40, 50, 80

HOPE 414 1, 2, 3, 4, 12 1

† No runs with these units

The traces are initially parsed to generate the SRSNs and DSNs for nodes. Then, tra-

versing the encounters, a message is passed to the encountered node if the encountered

node is in the source’s SRSN or DSN, respectively. This is so that the DSN protocol does

not flood the network in dense traces. We condense the encounters as follows: we assume

bundles of messages to be passed within 30 seconds, so any encounters shorter than this

period of time are not included in the simulations.

It is important to note that the DSN is not growing during the course of the simulation;

it is static and is calculated at the start of the simulation. This means that the DSN nodes

are able to use future information. They use knowledge of encounters that have not taken

place yet. This will likely result in the DSN protocol having a higher performance than in

a deployment where future information is not available.
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4.6.2 Simulator

We use a custom discrete-event simulator, written in Python to perform the simulations

of opportunistic routing. A custom simulator was more appropriate than an existing sim-

ulator such as NS-2, as we do not need to take mobility into account. 5 The simulator

assumed homogeneous devices, where all nodes have equivalent buffer and battery capa-

city.

First, the simulator parses the input parameters, for example, reading the number of

messages to be sent per unit time. Second, the simulator generates the initial copies of the

messages and places them in the nodes message buffer.

Each trace that we use presents a set of events (the DSN) and an SRSN. Assuming

the trace is sorted in ascending timestamp order, the simulator steps through the events

exchanging messages between devices according to the opportunistic-routing protocol in

use.

The simulator was validated by performing a simulation of SimBet [36] and Epidemic

routing according to the authors parameters [36] and achieving equivalent results.

4.6.3 Results

Delivery ratio

SASSY Figure 4.11a indicates similar trends for both DSN and SRSN. As might be expec-

ted, the delivery ratio increases along with the TTL. Both protocols result in somewhat low

delivery ratios overall, with a maximum of 33% of the messages being delivered. This is an

artefact of our trace; it turns out that the participants in our experiment did not encounter

each other frequently enough to create a very effective opportunistic network.

The DSN results in a slightly higher delivery ratio than the SRSN (at most 5%). This

difference was found to be statistically significant using a t-test (p< 0.01).

5http://isi.edu/nsnam/ns
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medium access.

Figure 4.11: Results for the SRSN and DSN for the SASSY trace.

Reality Mining In Figure 4.12a we see that there is a large difference between the de-

livery ratio for DSN and the SRSN. This is likely because nodes in the DSN have more

contacts. The SRSN is too restrictive in the number of encounters it allows nodes to use for

forwarding. Even at high TTL values the DSN does not achieve an average delivery ratio

of above 0.5.

HOPE Figure 4.13a shows the HOPE delivery ratio results. We see that the difference in

delivery ratio between the SRSN and DSN is not statistically significant. Both protocols

achieve a high delivery ratio, at high TTLs the delivery ratios are over 0.8.

Delivery cost

SASSY Figure 4.11b shows the delivery costs for the SRSN and DSN simulations. We see

that the SRSN results in a dramatically lower delivery cost, with a maximum of 73 medium

accesses per message for the SRSN compared to a maximum of 187 for the DSN. Like the

delivery ratio, the difference in delivery cost is found to be statistically significant via a
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Figure 4.12: Results for the SRSN and DSN for the RM trace.
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Figure 4.13: Results for SRSN and DSN for the HOPE trace.
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t-test (p< 0.01). This is because the SRSN exploits fewer links: it forces the intermediate

nodes to ignore encounters not in the source social networks that may prove useful, and

provides links to intermediate nodes they may never meet.

Reality Mining The RM delivery cost shows a significant difference between SRSN and

DSN Figure 4.12b. This is due to the increased number of encounters used for passing

messages in the DSN simulation.

HOPE We see a significant difference between the SRSN and DSN delivery cost for the

HOPE trace Figure 4.13b. These results show that even with two high density traces that

look similar we may see different forwarding behaviour.

4.6.4 Discussion

We have seen that across traces which differ greatly in terms of number of nodes and

density, that SRSNs can provide adequate tables to drive opportunistic routing. The SRSN

performs better than the DSN (equivalent delivery ratio and lower delivery cost) in two of

the three trace driven simulations.

The DSN protocol in our simulation uses optimal information, because it is calculated

at the start of the simulation. In a real deployment the DSN would grow over the course

of the experiment, rather than starting with all future encounters included. The number of

links paths used, therefore, is inflated compared to reality.

The simulation does not require that the sources only send messages to nodes in their

social network. This is because many of the nodes in SRSNs for the RM project have a

small number of connections. They could skew any results, resulting in a higher standard

deviation in delivery ratios. In practise, however, this may be a fair assumption.

The DSN has a higher density and one component in every trace, and in the SASSY

and RM traces, the SRSN is different to the DSN (more components and lower density).

The HOPE trace SRSN and DSN may appear similar when observing the graph, however,

95



0.0 0.2 0.4 0.6 0.8

5
1

0
2

0
5

0
1

0
0

2
0

0

Normalised Delivery Cost against Ratio

Delivery Ratio

D
e

liv
e

ry
 C

o
s
t

Hope−SRSN

Hope−DSN

Reality−SRSN

Reality−DSN

SASSY−SRSN

SASSY−DSN
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know, however, that for the SASSY and HOPE traces the SRSN and DSN delivery ratios are nearly

equivalent.

the social network analysis reveals differing structural and role equivalence for the nodes.

This difference is confirmed in the simulation where the SRSN outperforms the DSN. The

RM trace, however, shows the DSN to have a higher delivery cost and higher delivery

ratio. This is likely to be because the DSN is far denser than the SRSN. For this trace we

need to decide whether the cost saving of the SRSN is more important than the increased

delivery ratio of the DSN. This is confirmed in Figure 4.14 where we see that the DSN

has a higher delivery cost and delivery ratio. Thus, when picking a routing protocol we

need to decide which is more important: delivery cost or delivery ratio, and pick the SRSN

accordingly.
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4.7 Conclusion

In this chapter we have examined the use of self-reported social networks for opportunistic

routing. We have analysed SRSN and DSNs to show the structural and role equivalence,

and used this analysis to motivate the use of SRSNs as well as DSNs for opportunistic rout-

ing. We have seen that the SRSN outperforms the DSN for driving opportunistic routing in

certain scenarios. When the SRSN does not outperform the DSN, rather than performing

worse, it merely displays different properties of cost and ratio. We have seen that it is the

case that network operators/application designers need to consider the desired delivery

cost and delivery ratio of their application when choosing a routing protocol.

We have seen that SRSNs are useful in a simple routing protocol. This may be the case

because using a SRSN for routing does not require maintenance of an encounter history

like using a DSN does, resulting in lower energy and memory consumption.

As we are using a trace we can scan for future information (encounters that occur after

the current point in time). Whilst this use of future information is not possible in real-

world deployments, a SRSN can be collected before network startup. We explore the use

of SRSN data from network startup in the next chapter.

Currently, the application designer must decide on how many roles are present in the

network. An automated way to choose roles would allow them to be used in routing

protocols, where they may be useful. We explore this in the next chapter.
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Chapter 5

Social Roles for Opportunistic

Forwarding

We have seen in Chapter 4 that SRSNs can provide information that is useful in opportun-

istic routing. In this chapter we see examples of where existing routing protocols perform

badly, and how we can improve upon existing routing protocols by using SRSN informa-

tion.

This work was conducted with Dr Tristan Henderson and published in [11].

Many researchers have looked at conducting social network analysis of the encounters

between mobile nodes to create routing protocols for opportunistic networks, exploiting

the fact that a node that has encountered a node in the past may be likely to encounter

this node in the future. For example, PROPHET [93], SimbetTS routing protocol [35] and

MaxProp [19] all use encounter histories to drive routing decisions. Such routing protocols

may suffer from two problems:

1. First, those nodes that are best-connected in the social network (i.e., those nodes with

the highest number of “friends”) might be selected very frequently for forwarding

messages. This may lead to those nodes running out of energy or storage. As we saw

in Chapter 3.1, as much as 63% of traffic is routed through only 10% of nodes when

using protocols which rely on only the most preferred nodes for forwarding [147].
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It may therefore be beneficial to consider alternative nodes for routing, rather than

exclusively those most obviously suitable.

2. Second, collecting encounter information on which to analyse social networks may

require time and a mechanism for aggregating these collected data. This leaves a

window of time between network start-up and the point at which the protocol has

built a model reliable enough to make accurate inferences for routing. During this

period nodes may experience sub-optimal routing behaviour, reducing network per-

formance. Using an alternative mechanism for bootstrapping the network before the

encounter information can be gathered, may improve routing performance.

In this chapter we introduce a new opportunistic routing protocol, Social Role Routing

(SRR), which attempts to solve these two challenges. Rather than rely upon on the social

networks derived from collected encounter patterns, we use information from pre-existing

social networks to drive routing decisions. To derive alternative nodes for forwarding, we

determine the social roles in the social network to find classes of nodes that may be useful

for forwarding. SRR bootstraps opportunistic networks while providing high perform-

ance, before alternative encounter-history-based routing protocols’ forwarding decisions

have stabilised.

5.1 Overview Of Role Forwarding

This section describes the role forwarding algorithm SRR. We show how, and why, we

detect roles in social networks, and then how they can be used to make an opportunistic

routing algorithm.

5.1.1 Role analysis

In society we are members of various social networks, from work relationships to sports

groups to connections with our neighbours. We can use a record of these social network

data to create self-reported social networks, such as our Facebook “friends”, that can aid
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opportunistic routing. By constraining the devices that can use a particular node as an

intermediary for opportunistic message delivery to only those members of a node’s SRSN,

we may save energy (due to the reduced number of forwarded messages) at little expense

(members of a node’s SRSN may be more likely to aid message delivery).

As opportunistic networking devices are frequently assumed to run on battery power,

we should consider battery usage as a cost to users. We want to minimise this cost by

reducing redundant forwarding of messages. One way to do this may be to constrain

the number of devices allowed to use a particular node as an intermediary for message

delivery. We can use the SRSN information to do this, as we can make an assumption

that users would be happy to relay messages for those individuals with which they have

a pre-declared relationship. SRR exploits SRSN information in this way.

Certain nodes may be more central, or have many connections, in the encounter net-

work and therefore be required to do a larger share of message forwarding on behalf of

other devices. This may lead to the device being depleted of energy. Battery depletion

may then, be more likely to affect hub nodes or nodes that bridge groups. For example, in

Figure 5.1, all messages sent by nodes in group A to group B would likely pass through

node 1 (as it is on the shortest path). Node 1 might therefore run out of battery quickly, or

be less likely to participate in an opportunistic network if its resources were to be heavily-

utilised, due to selfishness or lack of battery. We thus need to find nodes that can function

similarly to node 1 (in that they connect group A to group B). In this case messages could

be routed via nodes 12 and 13 in certain circumstances, which can be used as an alternative

forwarding path.

As well as being members of social networks, we function in society as members of

various roles. For instance, we can view a business as a network of employees, all of whom

have particular roles which define their connections to the other employees. An example

can be seen in Figure 5.2: assistant managers connect managers to non-managerial work-

ers. If an assistant manager is not available to pass on work instructions to the workers, a

manager may select another assistant manager to do this, as all members in the assistant

manager role perform the same task (passing on instructions).

We extend this analogy to opportunistic networking. By passing messages to nodes
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Figure 5.1: An example node contact graph. Routing messages from group A to B via the shortest

path (node 1) may overburden the device’s resources. Utilising an alternative path (nodes 12 and

13) may be more appropriate.

Manager

Asst.M Asst.M Asst.M

Worker Worker Worker Worker Worker

Figure 5.2: Here we see the nodes in a company network. Each colour represents one role. Man-

agers pass instructions to Assistant Managers, who pass the instructions on to the workers. Sim-

ilarly the workers pass the results to the Assistant Managers, who pass the results back up to the

Manager.
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performing a similar role in an opportunistic network, we can find alternative nodes for

times when the preferred nodes are unavailable, or to avoid overloading the preferred

nodes.

We can consider roles useful for routing because:

1. Nodes can be in the same role as nodes they have not encountered

• This provides greater resilience of roles in comparison to grouping nodes with

their neighbours. If there is a network partition, groups are more likely to lose

connectivity than roles, because members of groups are located together in the

network topology. Members of roles can be spread out across the network to-

pology.

2. Nodes in roles share similar social structure to one another

• All nodes in the roles are expected to show similar connectivity patterns.

3. Nodes do not have to reveal their unique node identifier

• This increases privacy as node identifiers are not needed. Intermediaries only

need to reveal the identity of their role, and not their unique identifier.

4. Nodes from same role may be used interchangeably

• This provides greater redundancy in message paths as there are more forward-

ing opportunities than restricting forwarding to specific nodes.

5. We can route through the role connectivity graph

• This increases scalability as the role connectivity graph is smaller than the full

network graph, and thus takes up less memory.

We take advantage of these properties in the forwarding algorithm, SRR, by restricting the

flood of messages based upon role membership.
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0 1 2

Figure 5.3: An example role connectivity graph (RCG). Nodes in role 0 only connect to nodes in

role 1, similarly nodes in role 2 only connect to nodes in role 1. Nodes in role 1 can be seen as

central, as they enable nodes in role 0 and 2 to communicate with each other.

5.1.2 Determining roles for forwarding

To categorise nodes in an opportunistic network into roles, we employ the social science

technique of regular equivalence [144]. White et al. consider that “if the graphs for two

types of social relation are identical, i.e. if they consist of exactly the same ordered pairs

of nodes, the two will be treated as a single type.” This approach has been considered to

be too strict a restriction [123], because it requires that all nodes in the same role have to

be tied to the same specific nodes. Instead, regular equivalence was introduced [144] and

can be thought of as “a partition of nodes into classes such that nodes of the same class are

surrounded by the same classes of nodes” [17]. In the aforementioned business example,

all nodes in the manager role connect to at least one node in the assistant manager role,

who in turn connect to at least one node in the non-managerial worker role. These roles

can then be used to drive routing decisions. Consider three roles (0, 1, 2), connected in the

following manner: {0, 1},{1, 2} (Figure 5.3). If node a in role 0 intends to pass a message

destined for node d in role 2 to intermediate node b in role 1, but instead meets node c

from role 1, it may be beneficial for a to pass the message to c, as a and b may never meet.

Note that nodes b and c do not need to ever have contact.

5.1.3 Partitioning the Network

Structural equivalence measures the way in which a node relates to the specific nodes in

its neighbourhood, where the size of neighbourhood depends on the specific structural

equivalence algorithm considered.

Regular equivalence, however, measures the way in which nodes relate to other nodes
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across the whole network graph. Regular equivalence is, therefore, more useful for oppor-

tunistic routing than structural equivalence. Using regular equivalence we can partition

nodes into roles, where members of roles can be assumed to have similar properties. Roles

can be considered useful for opportunistic routing for the following reasons:

• Nodes can be in the same role as nodes they have not encountered, which provides

greater resilience of groups in comparison to grouping via clustering

• Nodes in roles are similar in terms of social structure, which we could use to make as-

sumptions on specific node behaviour based on the expectation of similar behaviour

to other members of the node’s role

• We can abstract the node identifiers away, which allows for greater privacy because

node identifiers not needed

• Nodes from same role may be used interchangeably, which provides redundancy.

This property provides forwarding opportunities based on roles, and is the property

we exploit

• We can route through the role connectivity graph. This provides scalability, because

nodes only need to know the connections between roles rather than nodes to be able

to make assumptions about other roles behaviour.

As highlighted in Chapter 2, there exist several different mechanisms for calculating the

regular equivalence classes (roles), but many of these mechanisms are difficult to automate.

For instance, Blockmodelling [145] requires human involvement to determine the most ap-

propriate number of classes, while CATREGE [17] works only on directed networks, which

precludes the use of bi-directional relationship data such as a Facebook SRSN. We employ

the Kanellakis-Smolka algorithm [78] as this provides a deterministic approach that works

on directed and bi-directed networks, making it appropriate for all SRSN graphs.

The Kanellakis-Smolka algorithm is a fast implementation of Paige and Tarjan’s al-

gorithm for the Relational Coarsest Partition Problem (RCPP) [113]. RCPP is analogous to

regular equivalence. We can see an example of this approach in Figure 5.4.
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Figure 5.4: Here we see an input partition of two groups being iteratively broken down to form

four roles, using the Kanellakis-Smolka regular equivalence mechanism. [140, p 240] First, we see

the input partition, where we have determined that the two black nodes form a role and the other

nodes form a role. Notice that under the definition of a role, all members of the role must have ties

to the same roles as other members of the role. Thus, in the second figure, we split the white role so

those nodes that have ties to the members of the black role form a new role. Third, the members of

newer yellow role do not have consistent role ties: some members of the role connect to members of

the white role as well as members of the black role. We therefore create a new blue role, consisting

of those members of the yellow role with ties to members of the yellow, white and black roles. At

this point, all members of all roles have ties to the same roles as the other members of their role,

and our role partitioning is now complete.

To compute the social roles using the Kanellakis-Smolka algorithm, the network must

be initially partitioned according to some selection criteria, for example:

• popularity – the number of unique nodes encountered

• betweenness centrality – the extent to which a node lies on shortest paths between

other nodes

• information flow – the direction of message passing between nodes

• sociability – the proportion of time a node spends in the company of other nodes

In comparison to popularity or number of connections, betweenness provides a meas-

ure of the potential control over the passing of information between nodes, because of how

it correlates to the number of shortest paths on which a node lies. We therefore use it to

partition the input graph.

In our analysis we use betweenness centrality to make our initial partition (as sug-

gested in [17]), place nodes with matching betweenness in the same class, and use the
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Kanellakis-Smolka algorithm to compute the role assignments. This results in a graph of

connections between roles, or a Role Connectivity Graph (RCG).

Strict regular equivalence results in many roles having size 1, and a number of roles

similar to the number of nodes in the input graph. Roles of such a small size are impractical

for forwarding, because if the sole node in a role is unavailable, there is no alternative node

available for forwarding. Thus, we relax this constraint and enforce a minimum role size

of 2 nodes.

5.1.4 Role divisions

As the performance of an opportunistic network may vary depending on the connectivity

patterns of the nodes, we use four different real-world wireless data traces in our analysis:

1. The “SASSY” connectivity data [13] (as discussed in Chapter 4.3).

2. The Reality Mining trace from MIT [40] (as discussed in Chapter 4.3).

3. The HOPE dataset [1] (as discussed in Chapter 4.3).

4. The student schedule trace from NUS [132]. This trace consists of a timetable of

22, 341 students’ lectures (4, 885 sessions, with an average number of 40.25 students

in a session). The timetable is presented as contiguous hours without breaks overnight.

Students in the same lecture are assumed to be in contact with one another. To im-

prove realism we assume a 6 day work-week with each working day lasting 11.5

hours (work day plus commute time). As this is a dense dataset, to reduce simula-

tion complexity we use the method described in [95] to reduce the number of nodes,

whilst preserving the degree distribution. As the trace is a timetable, we can view

it as a SRSN, as this is a list of declared connections between individuals. We can

also use this trace as an encounter list, as it is a record of when individuals should

meet one another. To create a more realistic scenario, we randomly remove 34% of

nodes each day from the encounter trace, as we assume that these students did not

attend classes [131]. The DSN encounters are condensed as follows: bundles of mes-

sages are assumed to be passed on within 30 seconds, so any encounters less than
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Table 5.1: Trace properties: all traces

Trace SRSN DSN

SASSY Facebook Friends ZigBee Encounters

HOPE Topic Interest RFID Co-Location

RM Phone Contact List Bluetooth Encounters

NUS Student Timetable Reduced Student Timetable

this period of time were not included in the simulations.

We can see the details of the input data used to create the SRSN and DSNs in table 5.1.

We believe these traces capture a wide variety of possible network scenarios. We can see

in Table 5.2 that the number of nodes varies in each trace, from 25 to 500, with a similar

variation in the number of connections between the nodes in each trace. The SRSNs for

these traces can be seen in Figures 5.5a–5.5d. The SASSY SRSN has one large component,

the RM SRSN has two large components, four pairs of nodes and 23 disconnected nodes.

The NUS trace has two components, the nodes of which are highly connected. The HOPE

trace has one large connected component.

5.1.5 Role Analysis

We now describe the role assignments of nodes in the four wireless traces. Figures 5.6a–

5.6d show the RCGs for the SASSY, RM, NUS and HOPE traces respectively. These graphs

show the connection patterns between members of the roles. Each vertex represents one

role, and may have two or more members. Summary statistics of each input trace SRSN

graph and output RCG can be seen in Table 5.2.

The graph density is higher in each RCG, meaning, that on average, each node needs to

consider more connections using the RCG than a purely SRSN-based protocol. In all cases

the number of vertices has been reduced from the input partition, meaning that storing the

RCG requires less memory than storing the whole SRSN graph.
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(a) SASSY trace. Two groups of nodes are

linked by a single node.

(b) Reality Mining trace. There are two dis-

connected groups of nodes, four groups of

outlying pairs, and 22 disconnected nodes.

(c) NUS trace. There are two distinct groups

of highly connected nodes.

(d) HOPE trace. Here we we see a large con-

nected group of nodes.

Figure 5.5: The self-reported social networks for our four chosen datasets.
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Table 5.2: Dataset graph statistics

Trace

SASSY Reality Mining NUS HOPE

Property SRSN RCG SRSN RCG SRSN RCG SRSN RCG

Number of Vertices 25 5 97 16 500 26 414 27

Number of Edges 127 7 107 23 29743 198 67836 329

Clustering Coefficient 0.748 0 0.255 0.246 0.605 0.808 0.834 0.885

Graph Density 0.406 0.560 0.023 0.180 0.238 0.586 0.792 0.903

Graph Components 1 1 28 3 2 1 1 1

The SASSY and RM RCGs have central hub roles that connect the other roles together.

We believe that nodes in this group are likely to be overloaded by existing routing proto-

cols.

Central roles can be seen in both the SASSY and RM RCGs. Notice that in the RM SRSN

several nodes have no ties to other nodes, and using a forwarding protocol based purely

on the SRSN data might lead to the assumption that these nodes make no contacts during

the trace. In the RCG graph nodes which have not ties in the SRSN are now members of

a role. We also see that the two large disconnected groups are now connected together.

This shows that role analysis can find similarities between nodes that are not in the same

components.

The RCG for the NUS trace data (Figure 5.6c) shows a group of highly connected nodes,

with six outlier nodes, each with four or fewer connections. The HOPE trace’s RCG is

similar to its SRSN connectivity graph (Figure 5.5d), and shows a large group of roles.

5.1.6 Social Role Routing

We now describe a routing protocol for opportunistic networks that uses social roles, Social

Role Routing (SRR).
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(a) SASSY trace. A central role connects

two clique roles, with two other roles whose

nodes only connect to nodes in the central

role.

(b) Reality Mining trace. There is a highly

important central role. All the outlying

nodes (Figure 5.5b) have been grouped to-

gether.

(c) NUS trace. There is a large group of

highly connected central roles, with a small

number of roles outside this group.

(d) Hope trace. We see a large connected

group of roles.

Figure 5.6: Role Connectivity Graphs for the four different datasets, showing the interconnections

between the node roles in the Self-Reported Social Network. Distances are meaningless, squares

indicate roles, and loops indicate members of the role connect to one another.
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As reducing message duplication can prolong battery lifetime we only allow forward-

ing of messages to intermediate nodes that are in the same role, or in a role adjacent to, the

destination’s role in the RCG. As they are likely to see nodes in the destination’s role, and

therefore by extension, the destination, nodes in or adjacent to the destination’s role are

appropriate candidates for intermediary nodes.

Before the network starts up, we analyse the SRSN of the participating nodes using the

method described in Section 5.1.2. Each node stores a copy of the resulting RCG, allowing

them to compute the geodesic distance between roles. Each node has a unique identifier

(ID) and stores the identifier of the role to which it belongs (RoleID).

We can see the pseudo-code for SRR in Algorithm 1. When nodes encounter one an-

other, each provides its ID, RoleID and identifiers of each of the messages that it is carry-

ing. For each message in its message buffer not present in the other node’s message buffer,

the node checks the geodesic distance of the encountered node’s role from the destination

node’s role. If this distance is less than or equal to 1 (i.e., it is in the same role or in a role

adjacent to the destination’s role), the node duplicates the message and passes it on to the

encountered node.

Nodes duplicate each message, rather than passing on the only copy, to increase the

number of paths that the message may take. We believe that the forwarding constraint of

passing to only nodes in the destination’s role or the adjacent role, will prevent nodes from

flooding the network.

Algorithm 1 SRR forwarding algorithm
1: r ←Maximum Role Distance Allowed

function EncounterNode(B):

1: for all message in message_buffer do

2: currdist← getRoleDistance(message.destination.role , B.role)

3: if currdist ≤ r then

4: giveMessage(message,B)
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5.2 Simulation Setup

To evaluate SRR, we perform trace-driven simulation using the four traces described in

Section 5.1.4, with five routing protocols.

5.2.1 Routing protocols

We simulate established routing protocols where the source code is available and the pro-

tocol can be validated from the paper describing the protocol. For example, the PeopleR-

ank [108] protocol would have been appropriate to simulate, but the source/pseudo code

is not available.

We evaluate the following protocols:

• Epidemic [142]: Nodes forward messages to any node that they encounter that do

not already have a copy of the message.

• SimbetTS [35]: This is an example of a well-known existing history-based oppor-

tunistic routing protocol. Nodes forward messages depending on a utility value

computed from node similarity, betweenness, and tie-strength. A small number of

message duplications are allowed.

• Simple Social Network Routing (SSNR): The simple social network routing protocol

from Chapter 4. Nodes embed their SRSN into each message they create. Copies of

the message are only forwarded to nodes in the SRSN.

• Social Role Routing (SRR): The SRSN is used to determine roles, and routing is per-

formed as described in Section 5.1.6. Nodes forward only to nodes in the destinations

role, or in a role adjacent to the destination.

• Social Role Routing SimbetTS Hybrid(HySimbR): Many routing protocols (such as

SimbetTS) use a warm-up period in which to gather enough data to make accurate

routing decisions. In this protocol we switch from the SRR protocol to SimbetTS after

15% of the encounters. This allows us to study the performance of the system using

SRR to bootstrap the network before switching to a history-based protocol.
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5.2.2 Routing Evaluation

To evaluate SRR against existing protocols, we use trace-driven simulation of Nokia N95

smartphones running a messaging application.

We investigate two different simulation scenarios. In our first scenario we simulate

opportunistic routing using a segment of each of the four encounter traces. In our second

scenario we examine the behaviour of the routing protocols as they warmup.

For the SASSY and RM traces we use the initial 30 days of the trace. We simulate seven

days in the shorter NUS trace, and one day of the HOPE trace. Table 5.3 describes the

simulation parameters, which are in line with existing work on opportunistic networks,

e.g., [57].

In previous work, researchers have used the initial 15% of encounters as a warm-up

period [35]. In our second scenario we analyse only the first 15% of encounters (roughly

five days for a 30-day trace). This is to examine how routing protocols perform in the early

stages of the network lifetime. We hypothesise that history-based protocols will perform

poorly during this period (note that simulating the HySimbR protocol in this scenario is

redundant and therefore not discussed).

5.2.3 Messaging and Battery Model

Each node is assumed to be a Nokia N95 smartphone, with the message buffer and battery

parameters given in Table 5.3. We only consider encounters over 30 seconds in length,

assuming that shorter encounters are insufficient for exchanging data.

The message senders and sources are chosen from a randomly-generated exponential

distribution, to model real-world messaging patterns.

To determine an energy model for our nodes, we enabled the Bluetooth radio on a

Nokia N95 smartphone with a 1200 mAh battery and measured energy depletion using

the Nokia Energy Profiler v1.2. Our simulated nodes’ batteries deplete according to this

observed behaviour (1.9 × 10−6mAh). When a node sends a message, it decrements its
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Table 5.3: Simulation parameters

Parameter Value

TTL of messages 10 days / 1 day / 2 hours

Message frequency 1 per node per day

Simulation length (days) 30 / 7 / 1

Simulation runs 30 per protocol

Message size (MB) 1

Buffer size (MB) 2000

Loss per second (mAh) 1.9× 10−6

Time to send bundle (s) 34

Max energy (mAh) 1200

Energy per send (mAh) 0.4

Charge time (h) 8

battery level by 0.4mAh. When a node runs out of battery it charges for 8 hours, and is not

present on the network during this time.

5.2.4 Metrics

To compare the routing protocols, we analyse the following commonly-used metrics. These

show the performance of the protocol across the nodes in the network:

• Delivery ratio: The ratio of the number of delivered destinations over the total num-

ber of destinations. A protocol that delivers a large proportion of messages sent can

be seen to have a high performance [19, 35, 65, 72, 142].

• Delivery cost: The average number of medium accesses required for delivering a

data item to a destination [72]. A protocol that has a low cost can be seen to preserve

the battery of the nodes more than one with a higher delivery cost.

• Forwarding distribution: The standard deviation of percentage of total forwards per-

formed by each node. A protocol in which more nodes share the burden of forward-
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ing messages may have an extended network lifetime.

5.3 Results

In this section we present the results of the trace-driven simulations performed to evaluate

our opportunistic routing protocol. First, we discuss the full-length scenario, and then the

warmup period scenario. Finally we discuss the analysis of the distribution of forwarding

amongst the nodes.

5.3.1 Full-length scenario

This scenario is indicative of performance of the protocols up to and achieving expected

operating performance. No one protocol performs well across all of the traces.

Figures 5.7a–5.7d show that the role-based protocols SRR and HySimbR perform equi-

valently to, or better than, SimbetTS. This is because using SRR allows for more message

duplications than SimbetTS and SSNR.

When we look at the cost of forwarding (Figures 5.8a–5.8d), we see that the role-based

protocols do have a higher cost than SimbetTS due to extra message duplications. Despite

the higher cost, however, SRR and HySimbR maintain a delivery ratio similar to Epidemic

routing, while having a lower cost. The extra forwarding cost that SRR and HySimbR

incur over SimbetTS is not, however, enough to reduce the delivery ratio. Using SRR or

HySimbR would therefore provide better performance.

5.3.2 Bootstrap scenario

This scenario captures the performance of protocols during the protocol warmup phase.

In contrast to the full-length scenario where no one protocol consistently outperforms the

others, SRR always does better than SimbetTS in the bootstrap scenario. Figures 5.9a–5.9d

show that SRR outperforms SimbetTS in all four traces, although the difference between
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(a) SRR and HySimbR outperform Sim-

betTS. There is no significant difference

between Epidemic and either SRR or

HySimbR.
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(b) SRR outperforms SimbetTS, and is not

significantly different to Epidemic. The dif-

ference between SimbetTS and both SRR and

HySimbR is not statistically significant.
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(c) SimbetTS performs slightly worse than

HySimbR, and SRR marginally outperforms

Epidemic. SSNR performs the best because

it uses a lower number of forwarding paths

than SRR, but more than SimbetTS.
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(d) HySimbR performs the best, followed

by SimbetTS. Epidemic, SSNR, and SRR are

equivalent.

Figure 5.7: Delivery ratios for the full-length simulations. We see that SRR and HySimbR perform

as well as, or better than, SimbetTS in all scenarios.
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(a) SimbetTS has a lower cost than Epi-

demic and the role-based schemes. SRR and

HySimbR, however, have a lower cost than

Epidemic routing.
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(b) Epidemic routing has the highest cost.

There is no statistically significant difference

between SSNR and SimbetTS.
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(c) We see that HySimbR has a lower cost

than SRR and Epidemic, and SimbetTS per-

forms better than all other schemes.
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(d) Here we see that SRR and Epidemic have

a similar cost, as do SimbetTS and HySimbR.

Figure 5.8: Delivery cost for the full-length simulations.

118



the other protocols in the NUS trace is not statistically significant.

Figures 5.10a–5.10d show that SRR has a lower cost than Epidemic routing, but a higher

cost than SimbetTS. We believe, however, that SRR is preferable in this scenario as it is

computationally simpler than SimbetTS, offers a delivery ratio similar to, or better than,

SimbetTS, and similar to Epidemic, with a delivery cost similar to, or lower than, Epidemic

routing. As we saw in the full length scenario, it is beneficial to switch to another protocol

after a certain period of time, before the increased cost due to the number of duplications

impacts delivery ratios.

SimbetTS has a lower cost than Epidemic and SRR, which can especially be observed in

the NUS trace (Figure 5.10c). Despite their high cost, Epidemic and SRR are not overload-

ing the devices battery or storage to a level that adversely affects routing performance, and

we observe high delivery ratios. This shows that minimising delivery cost at the expense

of increased message duplications need not necessarily be a priority of routing protocols.

Despite the differences between the traces, SRSNs and RCGs in terms of density, clus-

tering coefficient and number of vertices, we see that SRR is the best of the evaluated

protocols to use to bootstrap the network.

5.3.3 Distribution of Forwarding

Protocols that require a small subset of nodes to do a large amount of the forwarding

may incur costs to those nodes that cause them to quickly run out of battery. If nodes do

run out of battery then the network diameter may increase, resulting in poorer network

performance.

SimbetTS does badly in the dense traces, NUS and HOPE. We see in Figures 5.13a

and 5.13b that SimbetTS has a worse cost distribution than SRR in the NUS trace, and

the worst cost distribution in the HOPE full length scenario Figure 5.14b. In both NUS and

HOPE traces, HySimbR always outperforms SimbetTS. This is because SimbetTS requires a

specific group of nodes to do forwarding, whereas SRR and HySimbR share the forwarding

responsibility amongst nodes.
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(a) SRR performs better than SimbetTS, and

has no significant difference in performance

to Epidemic routing. SSNR has no signific-

ant difference in performance to SimbetTS.
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(b) Again SRR has no significant difference

to Epidemic or SimbetTS.
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(c) SRR performs slightly better than the

other schemes.
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(d) SimbetTS performs slightly worse than

the other schemes. There is, however, no

statistically significant difference between

the schemes.

Figure 5.9: Delivery ratios for the four traces during the bootstrap scenario.
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(a) SRR has a lower delivery cost than Epi-

demic routing. The difference is not, how-

ever, statistically significant.

Epidemic SSNR SimbetTS SRR

0
1
0

2
0

3
0

4
0

Reality Mining: Warmup Period Scenario

Scheme

D
e
liv

e
ry

 C
o
s
t 
(m

e
d
iu

m
 a

c
c
e
s
s
e
s
 /
 n

u
m

b
e
r 

d
e
liv

e
re

d
)

(b) SRR has a lower cost than the Epidemic

scheme. There is no statistically significant

difference between SSNR and HySimbR.
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(c) There is no significant difference between

the Epidemic, and SRR. SimbetTS performs

the best out of all the traces.
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(d) SimbetTS has the lowest cost. There is no

statistically significant difference between

the rest of the protocols.

Figure 5.10: Delivery cost for the four traces during the bootstrap scenario.
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(a) SRR performs the worst. SSNR and Epidemic are equivalent.
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(b) Epidemic, SRR, and SimbetTS are all equivalent.

Figure 5.11: Standard deviation of the percentage of forwarding performed by nodes in the SASSY

trace.
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(a) SimbetTS performs the best, followed by Epidemic, followed by SRR, with SSNR coming in last.

All differences are statistically significant.
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(b) Epidemic and SimbetTS are equivalent. HySimbR performs better than SRR, and SSNR.

Figure 5.12: Standard deviation of the percentage of forwarding performed by nodes in the RM

trace.
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(a) There is a large error value for the Epidemic routing protocol. SRR has a lower mean standard

deviation than SSNR and HySimbR.
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(b) SSNR performs the worst, followed by SimbetTS. There is no significant difference between

Epidemic and SRR, nor between Epidemic and HySimbR.

Figure 5.13: Standard deviation of the percentage of forwarding performed by nodes in the NUS

trace.
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(a) SSNR performs the worst. SRR is no different to SimbetTS or Epidemic. Epidemic performs

better than SimbetTS.
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(b) SimbetTS has the highest standard deviation of forwarding performed. Epidemic and SSNR are

equivalent to HySimbR and SRR. SRR performs better than HySimbR.

Figure 5.14: Standard deviation of the percentage of forwarding performed by nodes in the HOPE

trace.
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SimbetTS is similar to SRR in the SASSY trace during the full length scenario, and better

than the HySimbR. SimbetTS does very well in the RM bootstrap scenario, outperforming

all the other protocols. SimbetTS’s better distribution of forwarding in the RM trace (and

good performance in the SASSY trace), does not translate into better delivery perform-

ance, as discussed in Section 5.3.2 and 5.3.1, where it performs equivalently to SRR and

HySimbR.

Epidemic routing has a low deviation of forwarding in most of the traces. We know

from the cost analysis that Epidemic has a high delivery cost, however, and that this high

cost impacts delivery ratios. We should therefore consider the delivery cost when deciding

whether a more even forwarding distribution is important.

SRR works well in the dense traces, performing the best, or equivalently best, in NUS

and HOPE. These traces have a high delivery cost (Figures 5.10c and 5.10d), so maintaining

an even distribution of forwarding is important for preserving forwarding paths.

There is no best protocol in terms of distribution of routing. None of the protocols have

an consistently even distribution of forwarding across all traces or scenarios. We do see

that SRR maintains an even forwarding distribution in the dense traces NUS and HOPE,

distributing forwarding in traces where a lot of forwarding is required. Even though

SRR does not have the most even forwarding distribution of the assessed protocols in the

sparser traces (RM and SASSY), where less forwarding is required, it still maintains a high

delivery ratio. The uneven distribution in these traces is caused by the lack of alternatives

for forwarding when the trace is sparse.

5.4 Conclusions

We have presented a novel opportunistic routing protocol, Social Role Routing, that uses

self-reported social networks and applies the social network analysis technique of role ana-

lysis to select nodes to act as message relays. This allows the protocol to route effectively

when expected nodes are not present, and to provide good performance while encounter-

history-based protocols are still warming up.
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We compared our protocol to four existing protocols, and found that SRR performs as

well as existing protocols in most scenarios. Moreover, SRR always performs better than

existing protocols when used to bootstrap an opportunistic network, with a delivery ratio

similar to Epidemic routing, at a much lower cost. Over the full trace length it may perform

as well as SimbetTS, but at a higher cost, so we proposed and evaluated a hybrid protocol

which provides the best of both approaches.

We have seen that minimising delivery cost is not necessarily an indication that a rout-

ing protocol will perform better than a protocol that does not. SRR performs well despite

having a high cost, as it aims to avoid adversely overloading nodes that perform a large

bulk of the forwarding. We have seen in dense traces where the cost of forwarding is high,

that SRR shares the forwarding cost amongst the nodes more evenly than (or as evenly as)

other protocols, thus maintaining a high delivery ratio.

We have evaluated the protocols’ performance using four traces, each with differing

structure and connectivity patterns. No one protocol consistently performs best across all

of these traces. Which trace, if any, is indicative of an opportunistic network in the general

population, is an open question. Even then, it appears that a system designer’s choice of

routing protocol may depend on the nature of the users of the proposed system.

In this chapter we have demonstrated the following:

• we can create routing protocols that work without encounter histories, and instead

use social roles to route effectively

• we can use SRSNs to create the role information, thereby creating a role protocol SRR,

that can effectively bootstrap an opportunistic network

In this chapter we have discussed protocols for opportunistic network routing. Nodes

must, however, adhere to the routing protocol for the network to work effectively. In

the next chapter we therefore look at how to incentivise nodes to adhere to opportunistic

routing protocols.
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Chapter 6

Detecting Selfishness and

Incentivising Cooperation in

Opportunistic Networks

This chapter leads on from using social roles for forwarding, and focuses on how to combat

selfishness in opportunistic networks using SRSNs. Many existing studies of opportunistic

routing focus purely on network level metrics, for example: delivery delay, delivery cost

and delivery ratio. Frequently, nodes may wish to avoid the costs associated with parti-

cipation in an opportunistic network. To avoid the forwarding costs, nodes can cut down

on the messages that they forward. If nodes forward only their own messages and not the

messages of other nodes (against the behaviour expected of them by the routing protocol),

we refer to this behaviour as selfish. When a node is behaving selfishly, it will not forward

a message for another node at any time.

Many existing works do not consider the incentives for nodes to participate in the net-

work. In this section we see how it is possible to detect such selfishness and how to in-

centivise nodes to cooperate according to the routing protocol. As outlined in Chapter 3

we need to develop an incentive protocol that works on multi-copy forwarding protocols

in opportunistic networks.
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Figure 6.1: Delivery ratio opportunistic routing under differing levels of node selfishness.

This work was originally published with Dr Tristan Henderson in [12].

Opportunistic networking relies on cooperation between nodes, that is, the users par-

ticipating in the network, to perform efficiently. Opportunistic routing protocols depend

upon nodes forwarding messages for each other. The only delivery mechanism possible

without forwarding/data muling would be for the creator of a message to encounter the

message destination node and deliver the message directly. Cooperative forwarding, how-

ever, incurs a cost to the forwarding nodes, both in terms of energy (battery power) and

storage (the space required to store forwarded messages). Both of these are constrained

resources in mobile devices used in opportunistic networks.

Nodes may wish to avoid the costs associated with participation in an opportunistic

network by not forwarding messages for other nodes. Figure 6.1 shows the results of an

opportunistic network simulation where nodes act selfishly: the performance of the net-

work, i.e., the number of messages delivered, decreases rapidly as the percentage of selfish

nodes increases. If we can detect and discourage selfish behaviour it might be possible to

achieve the same performance as the case where no nodes are selfish, even if all the nodes

have a propensity for selfish behaviour.
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How can we create incentives for nodes to cooperate? This chapter investigates how

to use social network information to build an incentive mechanism for opportunistic net-

works.

We present an incentive mechanism for opportunistic networks, IRONMAN (Incent-

ives and Reputation for Opportunistic Networks using sociAl Networks), that uses social-

network information to bootstrap the detection and discourages selfishness.

We demonstrate IRONMAN’s superior performance over two existing incentive mech-

anisms, and show how to improve existing mechanisms by using social-network informa-

tion.

The contributions of this Chapter are:

• showing that existing incentive mechanisms are inappropriate for opportunistic net-

works.

• showing that social-network information can bootstrap a trust mechanism to dis-

courage selfishness in opportunistic networks.

6.1 An Incentive Mechanism For Opportunistic Networks

Opportunistic networks exploit the interconnections of individuals as they go about their

daily lives. In society we form ties and connections with people around us, be it work

colleagues, friends or family. Our goal is to use a record of these social-network data from

self-reported social networks (SRSNs) to bootstrap an incentive mechanism for opportun-

istic networks. SRSNs can be obtained through interview, or from an online social network

(e.g., Facebook friends lists).

By viewing the members of the opportunistic network that are also in a node’s SRSN

as more trustworthy, we can exploit the implicit trust relationships provided by the users.

Detecting selfish behaviour quickly reduces the amount of transmissions to (and due to)

selfish nodes, and therefore the energy wasted. We must balance this, however, against

being too cautious and presuming that all nodes are selfish. Most existing mechanisms
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Figure 6.2: Nodes keep a history of their encounters and message exchanges. When nodes meet

they exchange histories to detect selfishness.

are not bootstrapped to work from network start-up, we use SRSNs to bootstrap the in-

centive mechanism. We assume that individuals have implicit trust with members of their

SRSN: therefore, when the network starts up, nodes assign higher trust values to nodes in

their SRSN, and do not trust nodes not in their SRSN. The trust values may, however, be

modified over time.

6.1.1 Detecting selfishness

We now present our IRONMAN mechanism. Consider the following scenario (Figure 6.2):

Alice wishes to send a package to Bob. She meets Eve first, however, and gives Eve the
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package, believing that Eve will meet Bob before Alice does. Eve then meets Bob, and

because Eve is selfish, does not give Bob the package. Yet later, Alice meets Bob, and they

discuss their encounters. Alice mentions to Bob that she gave Eve a package for Bob. Bob

knows he met Eve, and therefore knows that Eve was being selfish by withholding the

package. We extend this analogy to opportunistic networks.

If nodes can store a history of encounter times and messages exchanged, and exchange

histories during encounters, we can detect selfishness and altruism as seen in Algorithm 2.

If a node detects another node as selfish, the detecting node decrements its rating for

the selfish node by the behaviour constant x. Similarly, when nodes pass on a message for

which they are not the source: the receiver marks them as altruistic, and their rating of

the node receiving the message is incremented by x. Additive increase and decrease are

used to reduce the effect of false positives. False positives can arise when a node pushes

a message out of its buffers due to congestion (giving the appearance that it deliberately

dropped the message).

Algorithm 2 IRONMAN selfishness detection
1: x ←behaviour constant

function EncounterNode(B):

1: history_tuples← [(exchange_time, msg_id, msg_source, node_seen)]

2: exchange forwarding history with B

3: for all message_exchanges in foreign_history do

4: if exchange_time > last encounter with B then

5: if msg_destination == my_id then

6: if last encounter with node_seen > last encounter with B then

7: if node_seen did not give us msg_id then

8: Ratingnode_seen ←Ratingnode_seen − x

function ReceiveMessage(other_node, msg_src):

1: if other_node 6= msg_src then

2: Ratingother_node ←Ratingother_node + x

Nodes store local ratings of encountered nodes, and exchange these ratings during
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encounters. An encountered node’s trust score is the sum of the local rating and foreign

ratings. Upon receiving a message, the node checks if the forwarding node is the source

of the message. If so, and if the trust score is not greater than the trust threshold, then the

receiving node will discard the message and notify the forwarding node that it has been

detected as selfish.

Nodes do not accept messages if they believe the source of the message to be selfish.

To allow nodes that have been deemed as selfish to improve their trust score, nodes do

pass messages to selfish nodes. If selfish nodes are given messages, they can then use the

messages to improve their ratings. This approach does not punish nodes that are rarely

given messages to forward, it only punishes those that could have given a message to

a destination but did not. To prove that encounters took place we assume the presence

of encounter tickets [89]. Nodes use this cryptographic mechanism to prove that they

exchanged messages, by getting a signed receipt of message exchange.

While nodes do not need synchronised clocks, which can be difficult to implement in

an opportunistic network, they must agree on the relative ordering of encounters. When

nodes encounter one another they exchange the time they believe the current encounter

is taking place at; nodes can thus determine the time when the encounters in the foreign

history took place relative to their own opinion of the correct time. Nodes can then use

this information despite potential differences in the perceived time on the nodes. A similar

mechanism to IRONMAN could be used at the clock synchronisation layer to detect lies in

the time dimension. We save this, however, for future work.

6.2 Evaluation

We test IRONMAN’s performance using trace-driven simulation of a simple message-

passing application. As the performance of an opportunistic network may vary depend-

ing on the connectivity patterns of the nodes, we use three real-world traces in our ana-

lysis. We believe that these traces capture a wide variety of possible network scenarios. To

avoid the effects of warmup or ending segments of the trace where the recent/impending

start/end of the trace may affect node behaviour, we divide the traces into segments and
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use the most central segment:

1. Our “SASSY” connectivity trace (as discussed in Chapter 4.3). As the SASSY trace

lasts over two months we split it into two 30-day segments and a 20 day segment

and use the second segment.

2. The MIT Reality Mining (RM) trace [40] (as discussed in Chapter 4.3). The nine-

month RM trace is divided into three 30-day periods, from the beginning, middle

and end of the trace respectively, and we use the middle segment.

3. The HOPE dataset [1] (as discussed in Chapter 4.3). For the HOPE trace we use the

second day of three.

We do not extract only day or nights, to allow for the heterogeneity of user behaviour.

Even during the conference traces, only focussing on daylight hours would not allow for

the nodes to exchange messages between hotel rooms for example. We do not wish to limit

opportunistic communication by reducing the amount of time available for exchanging

messages.

We also consider then length of trace that would be useful for evaluation. The time

periods we use are appropriate as either the length of the traces are short begin with, as

with the HOPE trace, or are datasets involving students. With datasets involving students

we want to capture typical behaviour. We therefore look at the encounter frequency to try

to avoid holiday periods where students would not be present in the same geographical

area, so that we have sufficient encounters between the participants. We split the traces

accordingly.

Table 4.1 shows the different properties of the overall traces and the SRSNs. For the RM

and HOPE traces the number of edges, clustering coefficient and graph density are higher

in the encounter data than in the SRSN data. In other words, there are longer paths in the

SRSN data, which might make them useful for building a trust mechanism.

Nodes which are further away in the SRSN network might be less trusted, despite

their frequent proximity in the trace network, reflecting the idea of familiar strangers [151]:

nodes who you encounter frequently yet you do not know well.
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6.2.1 Routing protocols

We analyse IRONMAN running over the Epidemic [142] routing protocol. We simulate

performance at three different levels of selfishness following [122]: 0%, 50%, and 100%.

Given Xu et al.’s finding [146] that the altruism of high-degree nodes is the most important

for mitigating the impact of selfishness, we choose the nodes with the highest degree in

the encounter graph to be selfish, which finds nodes that see the most number of different

other nodes. This selection of selfish nodes maximises the impact of selfishness on our

simulations.

Table 6.1: Simulation Routing Parameters

Parameter Value (SASSY/RM/HOPE)

TTL of messages 10 days / 2 days / 2 hours

Message frequency 1 per node per day

Simulation length 30 days / 30 days / 1 day

Message size (MB) 1

Buffer size (MB) 2000

Loss per second (mAh) 1.9× 10−6

Time to send bundle (s) 34

Max energy (mAh) 1200

Energy per send (mAh) 0.4

Charge time (h) 8

6.2.2 Incentive mechanisms

We compare IRONMAN with two existing incentive mechanisms, and modifications of

these two mechanisms to use SRSN information:

• IRONMAN: The mechanism outlined in Section 6.1. We use a value of 100 as the

default local rating for SRSN nodes, 50 for unknown nodes and 50 for the trust

threshold. We use 50 as the behavioural constant. With these values, nodes will
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trust those members of their SRSN, but not other nodes. If another node provides

them with a positive opinion of a third untrusted node with the default score of 50,

the reputation score increase will be enough to raise opinion of the third node so that

it is trusted.

• YSS: The peer-to-peer reputation mechanism developed by Yu, Singh and Sycara [152].

This scheme is appropriate for comparison with IRONMAN as it is a decentralised

reputation mechanism that does not use any oracle or credit information. For the QoS

parameter required to measure nodes’ behaviour, we use the proportion of messages

exchanged altruistically, detected using the same approach described in Section 6.1.1.

Where possible we use the thresholds outlined in their paper: the default opinion of

nodes that are not known is 0.5, which is the same value as the trust threshold. We

use their exponential approach to weighting opinions and credibility of opinions.

• RELICS+S: A modified version of RELICS [139], as representative of the state-of-the-

art in incentive mechanisms for opportunistic networks. This mechanism does not

use any oracle information or any credit information. By using this approach REL-

ICS is suitable for use in ad-hoc, decentralised opportunistic networks such as those

used in the simulations in this work. We attempt to use parameters as described in

their paper: 0.8 for the desired delivery ratio threshold, 0.373mAh as the initial en-

ergy level, one hour as the energy epoch, and 14.30mAh for the increase in energy

allowed during each epoch. Nodes are given a starting rank of two, allowing them

to send two messages before being required to forward on behalf of other nodes.

Estimated delivery probabilities are 1.0 if a node is the source of a message, and

0.5 otherwise. As RELICS, unlike the other mechanisms, uses delivery receipts, we

simulate these, but assume that receipts have no forwarding cost, to maximise the

potential performance of RELICS. As RELICS does not actively detect selfishness,

we modified the mechanism to treat nodes who have a rating below the initial value

of two as selfish, we call this RELICS+S.

• YSS+SRSN: Here we bootstrap the mechanism so that nodes give members of their

social network an opinion of 1.0 (complete trust). We leave the default trust level

for other nodes as 0.5 and change the trust mechanism so that nodes only take the

opinions of members of their social network into account.
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• As a control, we also consider performance when no incentive mechanism is in place.

When a node is detected as selfish it ceases to behave selfishly. The node may con-

tinue to be punished, however, as other nodes need to detect its altruistic behaviour before

trusting it again.

6.2.3 Scenarios and metrics

We perform simulations under two different scenarios to highlight different features of the

mechanisms:

1. A scenario with no resource constraints: nodes have infinite buffer space and energy

and messages have an infinite time-to-live (TTL) value. There will be no false posit-

ives of selfishness generated in this scenario, as nodes will not drop messages due to

full buffers.

2. Finite buffers, energy and TTL, as listed in Table 6.1.

We simulate ten runs per scenario, per incentive mechanism, per trace. We calculate

the delivery ratio (number of delivered delivered over messages sent) and observe the

difference in performance across incentive mechanisms.

15% of each trace is used as a warmup period, where no messages are created or sent,

but nodes may build up reputation information. All message senders and destinations are

picked from an exponential distribution. For the SASSY and RM traces, we exponentially

distribute the message creation times throughout the day. As the HOPE trace only lasts

one day, we uniformly distribute the message creation times throughout the day to prevent

messages from being created with no time left in the trace for them to be sent.

As nodes in a real deployment would have memory limits, we restrict the size of the

history of recent encounters for IRONMAN and both YSS mechanisms, to the most recent

1000 entries in all scenarios.
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To study the performance of the incentive mechanisms we consider the negative impact

of selfishness on the network using the following metrics:

1. Detection Time. The time that it takes a mechanism to correctly detect selfish beha-

viour in a node. This is the average time between a node choosing to behave selfishly,

and the time that a node is detected as selfish. A mechanism with a low detection

time will minimise the impact selfish behaviour has on the network.

2. Detection Accuracy. The proportion of selfish nodes that were correctly detected as

selfish by a mechanism. An ideal mechanism will have a low Detection Time and a

high Detection Accuracy.

3. Selfishness Cost. The proportion of forwarded messages (medium accesses) that were

generated as a result of a node creating a message while it was selfish. In some

respects this can be seen as the “goodput” of a network with selfish nodes; a mech-

anism with a low Selfishness Cost is effectively maximising the use of the network

by cooperative nodes.

6.3 Results

We now examine the performance of the incentive mechanisms in our simulations.

6.3.1 Infinite buffer, energy and TTL scenario

First we consider the performance of the routing protocol when nodes have infinite bat-

tery and energy resources, and the message have an infinite TTL. Figures 6.3a–6.3c show

network performance (in terms of delivery ratio) across the three traces. It can be seen

that IRONMAN performs the best of the evaluated mechanisms. All the mechanisms have

quite high detection times, due to intermediate nodes infrequently encountering destin-

ation nodes, but IRONMAN has a higher detection accuracy and lower detection time

than all the other mechanisms in the SASSY and RM traces (Figures 6.4a and 6.4b). In the

much denser HOPE trace, even though the detection accuracy is lower than the YSS-based
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mechanisms (Figure 6.4c), the resulting delivery ratio (Figure 6.3c) is higher because both

YSS-based mechanisms discard more messages from selfish nodes. Indeed, in this trace

(Figure 6.3c), IRONMAN is not only the sole mechanism that performs better than hav-

ing no detection mechanism at all, but IRONMAN performs almost as well with 100% of

nodes acting selfish as when 0% of nodes are selfish.

In addition to the fastest and most accurate detection of selfishness, IRONMAN has

a lower or equivalent selfishness cost than the other mechanisms (Figures 6.5a–6.5c). In

other words, IRONMAN is successful at ensuring that the network is predominantly used

by cooperating nodes.

When the YSS mechanism is modified to use social network information, it performs

the same, or better, than the original mechanism (Figures 6.3a–6.3c). Figures 6.4a–6.4c

show that while YSS+SRSN has a slower detection time than YSS in two of the traces, it

has a higher delivery ratio, as it does not drop as many messages from nodes perceived as

selfish.

6.3.2 Resource-constrained scenario

As one might expect, when we consider the effects of energy, buffer and TTL, we see that

in comparison to the infinite resource scenario, the network performance drops. In the RM

and HOPE traces (Figures 6.6b–6.6c), IRONMAN has the highest delivery ratios, while in

the SASSY trace (Figure 6.6a), all mechanisms perform similarly. IRONMAN, however,

detects a larger proportion of selfish nodes (Figure 6.7a), has a lower detection time and a

lower selfishness cost (Figure 6.8a).

The relative detection time is not consistent across the traces, however. YSS and YSS+SRSN

have a lower detection time and higher detection accuracy in the HOPE trace (Figure 6.7c)

than IRONMAN; the density of the HOPE trace means the low detection time of YSS and

YSS+SRSN (a result of the exponential weightings of ratings/opinions) causes both mech-

anisms to detect a higher proportion of nodes than both IRONMAN and RELICS+S, and

results in a lower detection time. As in the infinite scenario, however, IRONMAN still has

a higher delivery ratio (Figure 6.6c), despite lower accuracy and detection time.
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In the HOPE trace, the delivery ratios of YSS and YSS+SRSN do not change as selfish-

ness in the network increases. These mechanisms are able to detect selfishness and drop

messages from those selfish nodes, thereby reducing the overall performance of the net-

work. YSS and YSS+SRSN have similar Selfishness Cost results to IRONMAN however,

as YSS and YSS+SRSN do not allow nodes that have become altruistic to forward many

messages. If a group of nodes all believe that each other are selfish, they will drop the

messages created by the other nodes in the group. The only way to build up a good repu-

tation is to forward messages for other nodes, if nodes drop all incoming messages they

can not build up enough reputation to have their own messages forwarded. The delivery

ratio therefore remains low, and the Selfishness Cost remains high, as is the case for YSS

and YSS+SRSN in the HOPE trace.

Again we see that RELICS+S does not perform as well as IRONMAN, with a lower

delivery ratio (Figures 6.6a–6.6c). This is because the energy monitor does not allow for

nodes to forward a sufficient amount of messages. RELICS+S has a low detection accuracy

in all traces (Figures 6.7a–6.7c), and a high detection time in all but the SASSY trace. This

is because RELICS+S does not detect selfishness well enough, a problem exacerbated by

reduced forwarding opportunities.

Figures 6.8a–6.8c show that IRONMAN has the lowest selfishness cost in all traces;

IRONMAN is again the best at reducing the overall impact of selfish nodes on the network.

Overall we see that IRONMAN can perform well, in certain scenarios performing as

when there are no selfishness nodes in the network. SRSN-based mechanisms are always

the best (or equivalent to) the best performing mechanism in the network. The exception

is RELICS+S, which continues to perform badly, because the time to adjust to the correct

energy level causes nodes to miss out on forwarding opportunities.

6.4 Conclusions And Future Work

We have introduced IRONMAN, an incentive mechanism for opportunistic networks that

uses pre-existing social-network information to bootstrap trust relationships. Unlike ex-
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isting mechanisms, IRONMAN does not require an oracle or infrastructure network, nor

delivery receipts.

We have demonstrated that IRONMAN outperforms existing incentive mechanisms,

with accurate detection of selfish nodes in a timely manner, and improved delivery per-

formance in the presence of selfishness. As a result, IRONMAN is able to maximise the

proportion of the network that is used by cooperating nodes.

We have also shown that social-network information can be used to improve existing

incentive mechanisms in a similar manner. We believe that this use of social-network in-

formation will prove a fruitful topic for researchers in this and other networking areas. For

instance, is it possible to use social-network information to improve incentive mechanisms

for peer-to-peer or ad hoc networks?
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(a) In the SASSY trace, all the mechanisms perform similarly. IRONMAN and RELICS+S have the best per-

formance when 100% of the nodes are selfish; however, IRONMAN has less variance.
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(b) In the RM trace, all the mechanisms perform similarly, with YSS performing slightly better than the others

at high levels of selfishness.
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(c) In the HOPE trace, IRONMAN performs equivalently to having no selfish nodes in the network. Other

mechanisms detect selfishness but do not allow enough forwarding: YSS and YSS+SRSN drop messages from

nodes they detect as selfish, and RELICS+S’s energy monitor allows too little forwarding.

Figure 6.3: Incentive mechanism performance in the three traces under epidemic routing, with infinite buffer,

energy and TTL. 143
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(a) In the SASSY trace, IRONMAN performs the best, with the highest accuracy in the lowest time.
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(b) In the RM trace, IRONMAN again performs best. YSS performs better than YSS+SRSN as it

does not implicitly trust as many nodes.
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(c) In the HOPE trace, YSS+SRSN and YSS perform best, with low detection time and high accuracy.

In spite of this, IRONMAN still has the highest delivery ratio (Figure 6.6c).

Figure 6.4: Detection Accuracy against detection time, when 100% of nodes are selfish. Infinite

buffer, energy and TTL.
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Selfishness Cost, SASSY Trace
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(a) In the SASSY trace, IRONMAN performs best, as its low detection time ensures that more nodes

are incentivised away from selfishness before sending messages.
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(b) In the RM trace, IRONMAN performs very well, ensuring that almost all medium accesses are

from altruistic nodes. Legend as in Figure 6.5a.
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(c) In the HOPE trace, all mechanisms perform similarly apart from when all nodes in the network

are selfish. The energy model in RELICS penalises altruistic nodes.

Figure 6.5: Selfishness Cost under epidemic routing and infinite buffer, energy and message TTLs.
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Delivery Ratio, Finite Resources, SASSY Trace
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(a) In the SASSY trace, all mechanisms perform similarly, with IRONMAN performing slightly

better at 100% selfishness.
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(b) In the RM trace, IRONMAN performs far better than the other mechanisms, performing as well

as having no selfish nodes in the network. Legend as in Figure 6.6a.
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(c) The level of selfishness does not affect normal delivery, however, almost all mechanisms apart

from IRONMAN do not perform well at 100% selfishness. Legend as in Figure 6.6a.

Figure 6.6: Incentive mechanism performance under epidemic routing, with finite buffer, energy

and TTL. 146
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(a) In the SASSY trace, IRONMAN provides the highest accuracy in the lowest time.
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(b) In the RM trace, IRONMAN again has the highest accuracy in the quickest time.
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(c) In the HOPE trace, YSS and YSS+SRSN perform best in the dense HOPE trace.

Figure 6.7: Detection Accuracy against detection time, when 100% of nodes are selfish. Finite TTL,

buffer and energy.
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(a) In the SASSY trace, IRONMAN performs well, with the lowest selfishness cost.
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(b) In the RM trace, IRONMAN greatly outperforms the other mechanisms, with both YSS mech-

anisms performing similarly, followed by RELICS. Legend as in Figure 6.8a.
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(c) In the HOPE trace, all mechanisms perform similarly, apart from when all nodes are selfish,

when RELICS performs almost as badly as having no detection mechanism.

Figure 6.8: Selfishness Cost under epidemic routing and finite buffer, energy and TTL.
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Chapter 7

Conclusions

Opportunistic routing relies on the interactions of participants to exchange data. Such

interactions arise because of social behaviour; the study of social networks can therefore

be useful for opportunistic routing. Many existing opportunistic routing protocols rely on

encounter histories to make forwarding decisions. We therefore addressed the following

thesis:

Self-reported social networks provide an alternative to encounter histories for

efficient routing in opportunistic networks.

To test the thesis we answered the following questions:

1. How can we bootstrap an opportunistic network?

2. How can we incentivise participation in opportunistic DTNs?

To address the first question we have shown (in Chapters 4 and 5) that self-reported

social networks can provide an alternative to encounter histories. We demonstrated this

by running collecting encounter data and combining these with existing traces and per-

forming trace-driven simulation of opportunistic routing.

First, in Chapter 4, we demonstrated that SRSNs can be used for routing and have a

lower cost than using encounter data for routing. Second, in Chapter 5, we demonstrated
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that by analysing the roles that nodes play in their SRSN we can build a routing protocol

that performs better than encounter history based protocols for bootstrapping an oppor-

tunistic network.

To address the second question, in Chapter 6, we demonstrated that SRSNs can be used

to build an incentive mechanism for opportunistic routing that detects selfish messaging

behaviour and punishes offending nodes, thereby encouraging participation.

We now outline the contributions of this thesis. We discuss how this relates to work in

the area, and future research directions effected by this thesis.

7.1 Contributions

In Chapter 4 we analysed the performance of an opportunistic routing protocol where

nodes may only forward a message if the encountered node is in a subset of nodes defined

by the message source. The subset was either the SRSN of the node, or the DSN of the

node. The DSN was taken to be any node seen by the node during the trace, making use

of future information.

We used three traces to drive our simulation, and observe that in certain scenarios,

the SRSN has a lower delivery cost than the DSN, while providing an equivalent delivery

ratio. In scenarios where the SRSN does not have an equivalent delivery ratio, the SRSN

also displays different properties of delivery cost. We believe that the application designer

must decide which protocol is appropriate for routing in a given scenario. We have shown

then, that SRSNs can be useful for routing, indicating that it is possible to effectively route

information better than, or equivalent to, DSNs.

In Chapter 5, we developed and analysed an opportunistic routing protocol, SRR, that

uses social roles to drive nodes’ routing decisions. Many existing routing protocols use

encounter histories: nodes use the data gathered from the encounters they participate in.

SRR uses the social roles derived from a node’s SRSN to decide whether a node can be

given a message. Using trace driven simulation on four encounter traces, we demonstrated

that SRR performs as well as existing protocols for message routing, however, it always
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performs better to bootstrap the network.

We also see that in dense traces, despite its high cost, SRR has a lower standard devi-

ation in the distribution of cost amongst the network nodes. This shows that SRR avoids

adversely overloading nodes that perform a large bulk of the forwarding.

Thus, we have demonstrated the usefulness of SRSN information for opportunistic

routing in comparison to existing routing protocols, and specifically to encounter history

based protocols.

In Chapter 6, we studied how to incentivise the nodes in an opportunistic network to

follow the routing protocol. We built an incentive mechanism for opportunistic networks

IRONMAN. IRONMAN does not rely on infrastructure networks, delivery receipts or or-

acles with perfect information. Instead IRONMAN uses SRSN information to bootstrap

the incentive protocol, and uses node encounters to exchange reputation information. We

also demonstrated that we can use SRSN information to improve existing incentive mech-

anisms, by using the SRSN information in conjunction with an existing protocol. We com-

pared the protocols using trace-driven simulation, using three traces.

7.2 Discussion

This thesis shows the usefulness of SRSN information in two areas of opportunistic net-

working: routing protocols and incentivising participation in routing.

In Chapter 4, we treat an encounter as an indicator of a tie in the DSN. We could, how-

ever, compute the ties using a different approach. Perhaps one tie is not enough contact to

indicate a social-network association?

We also used traces of various sizes, both in terms of the number of nodes in the net-

work, and the number of encounters in the networks. We chose this variety of sizes to

allow for variance in behaviour across differing network scenarios. We considered using

longer traces that take place over many months, we believe however, that we would not

see any relevant difference in results.
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The length of time used for the warmup period in Chapter 5 is obtained from existing

work. We could perhaps vary the length of the warmup period to measure the effect on

the relative performance of the routing protocols.

As the NUS trace is so large, we cut down the number of nodes using methodology

used in related work. This approach maintains the same degree-distribution of the nodes,

which we believe is appropriate for use in our work. We could, however, attempt to see

what effect using all the nodes in the trace makes. As well as the number of nodes, we

assumed that a portion of the nodes would be absent from the trace in each day of the

trace. We assumed that this value was normally distributed.

In Chapter 5 we introduced SRR to demonstrate the use of social roles derived from

SRSNs. This is a relatively simplistic protocol, we could imagine an approach able to

transition from using the SRSN to using the DSN for role routing. We could also improve

SRR by limiting the number of message duplications in some way.

We demonstrated that SRR shows a lower standard-deviation in the distribution of

forwarding in dense encounter traces. We could study this property further and look at

metrics for detecting unfairness, or the effects of routing protocols at the node level, rather

than across the network.

We presented IRONMAN, an incentive mechanism for opportunistic networks. It uses

node encounters to exchange reputation information that leads to the distribution of know-

ledge of node selfishness. Nodes using IRONMAN do not prioritise the messages in the

outbound buffer. Perhaps prioritising messages from nodes in the SRSN would further

incentivise participation.

We hope that the use of SRSN information will become more common in opportun-

istic networks and other networking areas. Using SRR to demonstrate that opportunistic

networks are able to effectively route messages from network startup encourages the ad-

option of opportunistic networks.

We have shown that in comparison to many of the existing incentive mechanisms,

IRONMAN achieves better performance without the need for oracles, infrastructure net-
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works or delivery receipts by using SRSN information.

7.3 Future Work

We have found that there is space to research into metrics that capture opportunistic rout-

ing protocol effects on individual nodes (as opposed to the network level). We believe

our results show that an understanding of these effects is important for building effective

opportunistic routing protocols.

Routing protocols that make more use of social roles could be useful for providing im-

proved opportunistic routing. This is especially true to attempt to maintain more even

forwarding distributions which may be considered fairer. Rather than viewing the prob-

lem of nodes being frequently selected for forwarding as an issue related to delivery cost,

a concept of fairness for opportunistic routing could provide more developments for in-

centive mechanisms for opportunistic networks.

We could perform user studies into the privacy concerns and altruism of opportunistic

network participants. For example, users may not wish to forward messages for individu-

als that they do not consider themselves to have a strong social connection to. Privacy

concerns of users may include:

• not wanting their messages forwarded through “non-friends”, regardless of whether

messages were encrypted

• concerns over their reputation/opinion values from the incentive mechanism being

distributed amongst nodes in the network, friends or otherwise

• not trusting other individuals reputation/opinion values, and instead only choosing

to consider the opinions of friends

If we can identify and address user concerns, we hope that we can motivate the use of

opportunistic networks more effectively.

We have demonstrated that the choice of routing protocol during the warmup period
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is important. We could ask which is the best protocol to use after the warmup period. We

assume that the choice of protocol depends on the nature of the opportunistic network.

We could look into how nodes detect which routing protocol to use, and on what grounds

that decision could be made. Can an opportunistic network work in the face of multiple

routing protocols being in use simultaneously?

Our plans for future work include analysing a network’s connectivity and structural

properties during the warm-up period to determine which routing protocol is the most

appropriate to use after the warm-up period, investigating the affect of varying the min-

imum role size, and further comparison of role-graphs and self-reported social networks.

We could explore the interaction between the application-layer social-network inform-

ation that we exploit for our incentive mechanism, and the use of this information in the

application itself. Many opportunistic network applications might themselves involve so-

cial networks, for instance, mobile social networks, crowdsourcing, or participatory sens-

ing. It may be useful to expose trust relationships from the routing layer to the application

layer, or vice versa. Could application-layer detection of misbehaving nodes, such as an-

omalous crowdsourced data, be used to inform routing decisions? Such further study

requires both routing protocol development and application deployment.

We also wish to refine our models of social network behaviour. We currently assume

that members of the same social network will be more likely to trust each other. If beha-

viour is contagious across a social network, as proposed by Fowler and Christakis [51],

then perhaps selfish behaviour might also propagate, leading to new incentive challenges.
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Appendix A

Social network Vocabulary

We take the vocabulary from [52], and expand with relevant entries:

Actor: A node or vertex

Dyad/tie: A relation between two actors

Neighbours: Two nodes are neighbours if they connect via a tie

Degree: The number of ties that a node has

Clique: A subset of actors with ties with all other members of the subset

Density: The proportion of the total available ties connecting actors

Centralization: The fraction of main actors within a network

Reachability: The number of ties connecting actors

Connectedness: The ability of actors to reach one another reciprocally

Asymmetry: The ratio of reciprocal relationships— those relationships that are mutual–

to total relationships within a network

Balance: The extent to which ties in the network are direct and reciprocated

Centrality: The degree to which an actor is in a central position in the network
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Isolate: An actor with no ties to other actors

Gatekeeper: An actor who connects the network to outside influences

Cutpoint: An actor whose removal results in unconnected paths in the network

Ego-network: A graph consisting of the connections from one node to its neighbours, and

the connections between those neighbours

Diameter: The longest shortest-path between any two nodes in the network
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