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Abstract

A detailed discussion is presented of the Vlasov-Maxwell equilibrium for the force-free Harris

sheet recently found by Harrison and Neukirch (Phys. Rev. Lett. 102, 135003, 2009). The deriva-

tion of the distribution function and a discussion of its general properties and their dependence

on the distribution function parameters will be given. In particular, the distribution function can

be single-peaked or multi-peaked in two of the velocity components, with possible implications for

stability. The dependence of the shape of the distribution function on the values of its parameters

will be investigated and the relation to macroscopic quantities such as the current sheet thickness

will be discussed.
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I. INTRODUCTION

Force-free plasma equilibria with the property

j ×B =
1

µ0

(∇× B) ×B = 0, (1)

are of great importance, in particular for space and astrophysical plasmas. Equation (1)

implies that the current density, µ0j = ∇×B, is parallel to the magnetic field, B, so that it

can be written as µ0j = αB. In general, the function α can vary with position, but has to

be constant along magnetic field lines, since ∇ · j = 0 together with ∇ · B = 0 implies that

B · ∇α = 0. (2)

Obviously Eq. (2) is also satisfied if α = constant. This case is usually referred to as the

linear force-free case, because the equation determining the magnetic field is linear in this

case. Magnetic fields for which α varies from field line to field line are called nonlinear

force-free fields.

Whereas many force-free equilibria can be found using magnetohydrodynamics (MHD),

this is not the case when Vlasov-Maxwell (VM) theory is used. Collisionless force-free

equilibria have only been found for the special case where the magnetic field depends only

on one spatial Cartesian coordinate (in this paper taken to be z). This case is trivial

in MHD, but finding the appropriate distribution functions for given magnetic field and

current density profiles for a collisionless equilibrium is a highly nontrivial task. The reason

for this difficulty is that one has to try and solve the VM problem in the opposite direction

than it is usually treated, which is to specify the distribution functions (DFs) and then to

calculate the magnetic field by solving Ampère’s law.

This difficulty is reflected by the fact that only a very small number of exact force-free

VM equilibrium DFs are known and all known solutions were of the linear force-free type1–4

until the first nonlinear force-free VM equilibrium DF was presented in a recent Letter.5 The

DFs found in Ref. 5 are for the force-free Harris sheet, with a magnetic shear field ensuring

force balance instead of a plasma pressure gradient as in the original Harris sheet.6

For reasons of space no detailed discussion of a) the derivation of the DFs and b) their

properties has been given in Ref. 5. In the present publication, we aim to give a full

discussion of the method used to derive the DFs in Sect. II and of its properties in Sect.
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III. Of particular interest is the possibility that the DFs can have multiple maxima in two

of the velocity components (in the coordinate system used in this paper the vx- and vy-

components), which may have stability implications. Therefore, a detailed investigation of

the connection between the shape of the distribution function and the parameter values was

carried out. A summary and conclusion will be presented in Sect. IV.

II. CALCULATION OF THE EQUILIBRIUM DISTRIBUTION FUNCTION

A. Basics

We use Cartesian coordinates x, y, z complemented by the corresponding velocities vx,

vy, vz for the DFs. We assume spatial invariance in x and y, i.e. all quantities depend only

upon z. We also assume time-independence.

For the problems considered in the present paper the magnetic field has only two non-

vanishing components, Bx and By, which, using an appropriate gauge, can be written in

terms of a vector potential A = (Ax, Ay, 0) in the form

Bx = −dAy

dz
, (3)

By =
dAx

dz
. (4)

The electric field is given by the negative gradient of an electric potential φ such that

E = −∇φ = −dφ

dz
e
z
. (5)

The magnetic and electric fields thus automatically satisfy the homogeneous steady-state

Maxwell equations ∇ · B = 0 and ∇× E = 0.

Due to time independence and spatial symmetries we have three obvious constants of

motion for particles of species s with charge qs and mass ms moving in these fields, namely

the particle energy, Hs,

Hs =
1

2
ms(v

2
x + v2

y + v2
z) + qsφ, (6)

the canonical momentum in the x-direction, pxs,

pxs = msvx + qsAx, (7)
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and the canonical momentum in the y-direction, pys,

pys = msvy + qsAy. (8)

Solutions of the steady state Vlasov equation

v · ∂fs

∂r
+

qs

ms
(E + v × B) · ∂fs

∂v
= 0. (9)

are given by all positive functions fs depending only on the constants of motion,

fs = fs(Hs, pxs, pys), (10)

and satisfying the appropriate conditions for existence of the velocity moments. If the same

combination of values for the constants of motion allows particle trajectories in several

distinct regions of phase space then it is in principle possible to assign different values to

fs in each region7,8, but this possibility will not be considered in the present paper (for an

example of 2D rotationally symmetric VM equilibria see e.g. Ref. 9).

Using the assumption of quasineutrality to determine the electric potential φ, one can

show8,10 that the VM equilibrium problem reduces to solving Ampère’s law in the form

d2Ax

dz2
= −µ0jx = −µ0

∂Pzz

∂Ax
, (11)

d2Ay

dz2
= −µ0jy = −µ0

∂Pzz

∂Ay
, (12)

where

Pzz(Ax, Ay) =
∑

s

ms

∫

v2
zfs d3v (13)

is the zz-component of the plasma pressure tensor.

It is obvious (see e.g. Ref 10) that Eqs. (11) and (12) are equivalent to the equations

of motion of a particle in a 2D conservative potential, with z taking the role of time, Ax

and Ay the coordinates of the particle and µ0Pzz being the potential. As in the analogous

particle problem one can integrate Eqs. (11) and (12) once to get

d

dz

[

1

2µ0

(

dAx

dz

)2

+
1

2µ0

(

dAy

dz

)2

+ Pzz(Ax, Ay)

]

= 0 (14)

so that

1

2µ0

(

dAx

dz

)2

+
1

2µ0

(

dAy

dz

)2

+ Pzz(Ax, Ay) = Ptotal = constant, (15)
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i.e. the total pressure (magnetic plus plasma pressure) is constant for this class of VM

equilibria. The total pressure corresponds to the total energy in the particle problem.

Knowledge of the shape of Pzz(Ax, Ay) can provide insight into the nature of the solutions

of Eqs. (11) and (12) in the same way as knowledge of the potential as a function of position

in the equivalent particle problem can provide information about the nature of the possible

trajectories of the particle. It is usually straightforward to calculate Pzz as a function of Ax

and Ay if the equilibrium DFs are specified. It may, however, also be possible to determine

equilibrium DFs for a given function Pzz(Ax, Ay) using a method suggested by Channell.2

B. Channell’s Method

To be able to make analytical progress in determining a distribution function from

Pzz(Ax, Ay) a number of assumptions have to be made. The first assumption made is that

the dependence of the DFs on the Hamiltonian Hs is of the form of a negative exponential,

i.e

fs(Hs, pxs, pys) =
n0s

(
√

2πvth,s)3
exp(−βsHs)gs(pxs, pys) (16)

with βs = (kBTs)
−1, vth,s = (βsms)

−1/2and gs an unknown function of the canonical mo-

menta. Using this DF Pzz becomes

Pzz =
∑

s

1

βs
exp(−βsqsφ)Ns(Ax, Ay), (17)

with

Ns(Ax, Ay) =
n0s

2πv2
th,s

∞
∫

−∞

∞
∫

−∞

exp

[

−βsms

2
(v2

x + v2
y)

]

gs(pxs, pys) dvxdvy. (18)

The charge density, σ, can be calculated by taking the negative derivative of Pzz with respect

to the electric potential8,10 as

σ(Ax, Ay, φ) =
∑

s

qs exp(−βsqsφ)Ns(Ax, Ay). (19)

Assuming a two-species plasma with both species having the same charge e with opposite

sign (e.g. electrons and protons) and quasi-neutrality by letting σ = 0, one can determine

the quasi-neutral electric potential to be

φqn =
1

e(βe + βi)
ln(Ni/Ne). (20)
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Channell’s2 final assumption is strict neutrality, i.e. that Ni(Ax, Ay) = Ne(Ax, Ay) =

N(Ax, Ay) for all possible values of Ax, Ay, implying that φqn = 0. This will impose

additional conditions on the parameters of the DFs which have to be satisfied, but this is in

principle not a problem.

The neutral Pzz is then given by

Pzz(Ax, Ay) =
βe + βi

βeβi

N(Ax, Ay). (21)

Using the canonical momenta instead of the velocity components as integration variables

and using Eq. (21), Eq. (18) becomes

n0s

2πm2
sv

2
th,s

∞
∫

−∞

∞
∫

−∞

exp

{

− βs

2ms
[(pxs − qsAx)

2 + (pys − qsAy)
2]

}

gs(pxs, pys) dpxsdpys =

βeβi

βe + βi
Pzz(Ax, Ay). (22)

For Pzz(Ax, Ay) a known function of Ax and Ay, this is a Fredholm integral equation of the

first type for the unknown function gs(pxs, pys). The kernel K(pxs, pys; qsAx, qsAy) of this

integral equation

K(pxs, pys; qsAx, qsAy) ∝ exp

{

− βs

2ms

[(pxs − qsAx)
2 + (pys − qsAy)

2]

}

(23)

depends only upon the difference of its arguments and the standard method for solving such

integral equations is using Fourier transforms, as also suggested by Channell.2

It must, however, be pointed out that to be able to determine gs by Fourier transforms

two conditions need to be satisfied: a) the Fourier transform of Pzz(Ax, Ay) must exist and

b) the inverse Fourier transform to obtain gs must exist. Especially condition b) can prove

difficult to meet as the inverse Fourier transform involves a factor with the inverse of the

Gaussian in the convolution integral, i.e. an exponential function with a positive quadratic

argument. Channell2 treats several examples for which the Fourier transform method does

not work using other methods. For the force-free Harris sheet case discussed in the present

paper, we will also use a more direct method to solve Eq. (22) because Fourier transforms

are only of limited applicability to our case and because the other method turns out to be

more instructive.
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C. Harris sheet and force-free Harris sheet

The Harris sheet6 is a well-known one-dimensional VM equilibrium. It is widely used

in theoretical plasma physics, for example for reconnection studies, because it is a typical

neutral current sheet and is mathematically well-behaved. The magnetic field is given by

BHarris = B0(tanh(z/L), 0, 0), (24)

the current density by

µ0jHarris = B0/L(0, 1/ cosh2(z/L), 0), (25)

and the vector potential (in a convenient gauge) by

AHarris = B0L(0,− ln[cosh(z/L)], 0). (26)

Force balance is maintained by a pressure gradient with Pzz(z) given by

Pzz,Harris =
P0,zz

cosh2(z/l)
+ Pb,zz, (27)

with P0,zz = B2
0/(2µ0) and Pb,zz a constant background pressure. The distribution function

used by Harris6 is given by

fs,Harris =
n0s

(
√

2πvth,s)3
exp[−βs(Hs − uyspys)], (28)

which is a Maxwellian DF in all velocity directions, but with a constant average bulk flow

velocity of uys in the y-direction. Other distribution functions giving rise to the same

magnetic field and pressure profiles have also been found (see e.g. Ref. 11). By using either

the distribution function (28) directly or Eqs. (26) and (27), one can show that

Pzz,Harris(Ax, Ay) = P0,zz exp[2Ay/(B0L)] + Pb,zz. (29)

Note that to get a constant background pressure from the distribution function an extra

term proportional to exp(−βsHs) has to be added to the right-hand side of Eq. (28). Using

that tanh2 x = 1 − 1/ cosh2 x the equilibrium condition (15) is satisfied with

Ptotal,Harris =
B2

0

2µ0

+ Pb,zz. (30)

The force-free Harris sheet has the same Bx as the Harris sheet, but is kept in force balance

by magnetic pressure due to a By component, with Pzz being constant. The magnetic field

is then given by

BffHarris = B0(tanh(z/L), 1/ cosh(z/L), 0). (31)
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FIG. 1: The magnetic field, current density and pressure profiles as functions of z/L for the Harris

sheet (left panel) and the force-free Harris sheet (right panel).

.

The current density is

µ0jffHarris = B0/L(tanh(z/L)/ cosh(z/L), 1/ cosh2(z/L), 0), (32)

with µ0jffHarris = αBffHarris where

α(z) =
1

L cosh(z/L)
. (33)

The vector potential, again in a convenient gauge, is given by

AffHarris = B0L(2 arctan(exp(z/L)),− ln(cosh(z/L)), 0). (34)

At this point, no form for Pzz as a function of Ax and Ay and no DF are known for this

equilibrium magnetic field. The derivation of both will be discussed in the next section.

Plots of the magnetic field components, current density and pressure as functions of z/L are

shown in Fig. 1.

D. Derivation of the distribution function

To be able to apply Channell’s method to find a DF for the force free Harris sheet, we

first need to find an appropriate function Pzz(Ax, Ay) for these cases. It can be shown10 that

to find a Pzz that allows a force-free solution is equivalent to finding a potential for which
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at least one of its equipotential lines is identical with a particle trajectory. The simplest

examples for this are attractive central potentials whose contours are circles and which also

allow circular orbits. The corresponding 1D VM equilibria are linear force-free magnetic

fields.1–4

It is obvious, however, that the Pzz for the force-free Harris sheet has to be more complex

than a central potential. The approach chosen in Ref. 5 was to let

Pzz(Ax, Ay) = P1(Ax) + P2(Ay). (35)

In this case the Eqs. (11) and (12) decouple and can be integrated separately. Thus one can

see immediately that P2(Ay) is identical to Pzz,Harris given by Eq. (29). The unknown func-

tion P1(Ax) can be determined from inverting Ax,ffHarris(z) using Eq. (34) and substituting

z(Ax,ffHarris) into

P1(z) = P1,b −
B2

0

2µ0

1

cosh2(z/L)
. (36)

Using the trigonometric identity

sin(2x) =
2 tanx

1 + tan2 x
, (37)

one can see that

sin

(

Ax,ffHarris

B0L

)

=
1

cosh(z/L)
, (38)

so that, dropping the subscript ffHarris,

P1(Ax) = Pb,1 −
B2

0

2µ0

sin2

(

Ax

B0L

)

. (39)

Using sin2 x = [1 − cos(2x)]/2 and putting together P1(Ax) and P2(Ay), we arrive at the

form of Pzz(Ax, Ay) given in Ref. 5

Pzz(Ax, Ay) =
B2

0

2µ0

[

1

2
cos

(

2Ax

B0L

)

+ exp

(

2Ay

B0L

)]

+ Pb, (40)

where Pb = Pb,1 + Pb,zz −B2
0/(4µ0). By construction, Ampère’s law (11) and (12) generated

from this Pzz has the vector potential (34) as a solution, and this solution coincides with a

contour of Pzz(Ax, Ay). In Fig. 2 we show a surface plot of Pzz(Ax, Ay) for the force-free

case with the vector potential for the force-free Harris sheet shown as a trajectory at the

top of the plot.
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FIG. 2: Surface plot over the Ax-Ay-plane of the pressure function Pzz(Ax, Ay) for the force-free

Harris sheet. The vector potential of the force-free Harris sheet traces out a trajectory in the

Ax-Ay-plane, which is shown at the top of the plot. This trajectory coincides with a contour of

Pzz(Ax, Ay), as the general condition for force-free VM equilibria demands.10

Having found a Pzz(Ax, Ay), we can use Channell’s method2 to find the corresponding DF.

As the relation between the unknown function gs(pxs, pys) and Pzz is linear, it is immediately

clear that gs must also have the form of a sum,

gs(pxs, pys) = gs1(pxs) + gs2(pys), (41)

with

βeβi

βe + βi

P1(Ax) =

√

βs

2πms

n0s

∞
∫

−∞

exp

[

− βs

2ms

(pxs − qsAx)
2

]

gs1(pxs) dpxs, (42)

βeβi

βe + βi
P2(Ay) =

√

βs

2πms
n0s

∞
∫

−∞

exp

[

− βs

2ms
(pys − qsAy)

2

]

gs2(pys) dpys. (43)

For the time being we can ignore any constant parts of P1 and P2, because the solution for

a constant P is simply a constant g, which can be added at the end of the calculation due

to the linearity of the problem.
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For solving Eq. (42) with P1(Ax) ∝ cos(2Ax/B0L) one could in principle use Fourier

transforms, but we shall use a more direct method here. The method is based on the obser-

vation that, using the trigonometric identity cos[b(s + t)] = cos(bs) cos(bt) − sin(bs) sin(bt),

one has
∞
∫

−∞

exp(−as2) cos[b(s + t)]ds =

√

π

a
exp

(

− b2

4a

)

cos(bt). (44)

Thus, rewriting the integral in Eq. (42) using vx as integration variable instead of pxs, one

can see immediately that a gs(pxs) ∝ cos(βsuxspxs) leads to a P1(Ax) ∝ cos(βsuxsqsAx). The

constant uxs has the dimensions of a velocity so that the argument of the cosine function is

dimensionless.

The solution to Eq. (43) is already known, because this part of the pressure gives rise

to the y-component of the current density and thus to the Harris sheet Bx. Therefore, we

must have gs2(pys) ∝ exp(βsuyspys) (note that the case of a simple exponential P2(Ay) is

also a special case of one the examples in Channell’s paper2). This means that the part of

the DF depending explicitly on pys is identical with the pys-dependent part of the original

Harris sheet DF (28).

The full distribution function therefore has the general form

fs =
n0s

(
√

2πvth,s)3
exp(−βsHs) [as cos (βsuxspxs) + exp (βsuyspys) + bs] , (45)

with as, bs, uxs and uys being constant parameters of the DF in addition to n0s and βs. We

remark that we assume that bs > |as| ≥ 0 at this point to ensure that fs remains positive.

The parameters of the DF will have to satisfy a number of consistency relations due to the

assumptions made for applying Channell’s method and in order to relate the microscopic

DF parameters to the macroscopic parameters B0 and L.

E. Consistency Relations

The pressure tensor component Pzz we obtain using Eq. (45) is of the general form (17)

with

Ns(Ax, Ay) = n0s exp

(

βsmsu
2
ys

2

)[

as exp

(

−
βsms(u

2
xs + u2

ys)

2

)

cos(βsuxsqsAx)

+ exp(βsuysqsAy) + bs exp

(

−
βsmsu

2
ys

2

)]

. (46)
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The fundamental condition for Channell’s method to be applicable is Ne(Ax, Ay) =

Ni(Ax, Ay). This is satisfied if

n0e exp

(

βemeu
2
ye

2

)

= n0i exp

(

βimiu
2
yi

2

)

= n0 (47)

ae exp

(

−
βeme(u

2
xe + u2

ye)

2

)

= ai exp

(

−
βimi(u

2
xi + u2

yi)

2

)

= a (48)

be exp

(

−
βemeu

2
ye

2

)

= bi exp

(

−
βimiu

2
yi

2

)

= b (49)

βe|uxe| = βi|uxi| (50)

−βeuye = βiuyi (51)

For the case of the original Harris sheet, Eq. (51) is well known12 as the condition for

a vanishing electric potential. In the Harris sheet case, uys is the constant average bulk

velocity of species s in the y-direction and condition (51) is basically specifying a particular

frame of reference. In the case of the force-free Harris sheet, the average bulk velocity for

both the x- and the y-velocity components varies with z and one thus needs more conditions,

but in principle one can still interpret Eqs. (47) to (51) as conditions for a particular frame

of reference in which the electric potential vanishes.

Using Eqs. (47) to (51) the general expression for Pzz(Ax, Ay) for the force-free Harris

sheet equilibrium becomes

Pzz(Ax, Ay) =
βe + βi

βeβi
n0 [a cos(eβeuxeAx) + exp(−eβeuyeAy) + b] , (52)

where, for simplicity, we have used the electron parameters only at the moment. An ex-

pression which is symmetrical in the electron and ion parameters will be derived in Sect.

IIIA.

III. PROPERTIES OF THE EQUILIBRIUM DISTRIBUTION FUNCTION

A. Relation between microscopic and macroscopic parameters

Although we have now derived the DF for the force-free Harris sheet, we have not yet

related the set of microscopic parameters of the DF, namely βs, uxs, uys, as and bs, to the

macroscopic parameters of the equilibria, which are B0 and L. The easiest way to find this
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connection is to compare Eq. (52) with Eq. (40). This leads to

B2
0

2µ0

=
βe + βi

βeβi
n0, (53)

1

2
= a, (54)

Pb =
βe + βi

βeβi
n0b, (55)

2

|B0|L
= eβe|uxe| = eβi|uxi|, (56)

2

B0L
= −eβeuye = eβiuyi, (57)

where we have assumed that L is positive, but allow for B0 to be negative.

To make the connection with the original Harris sheet results we use Eqs. (57) and (53)

to derive an expression for L in the form (see also Ref. 12, Chapter 6)

L =

(

2(βe + βi)

µ0e2βeβin0(uyi − uye)2

)1/2

, (58)

which is symmetric in electron and ion parameters. Using Eq. (57), expressions for L using

only electron or only ion parameters can be derived from Eq. (58).

The relation of the other macroscopic parameters to the microscopic parameters are more

obvious. Equation (53) directly relates B0, the magnetic field strength in the limit z → ∞,

with βe, βi and n0. In the original Harris sheet case, n0 is the maximum value of the z-

dependent part of the particle density at z = 0, and Eq. (53) simply states that the magnetic

pressure for z → ∞ has to be equal to the plasma pressure at z = 0 due to force balance. As

we will see later, in the force-free Harris sheet case the meaning of n0 changes, but because

we have effectively separated the total force-balance into two conditions for Bx and By, the

same condition as for the original Harris sheet still applies for the force-free Harris sheet as

well.

Equation (54) directly shows that for the force-free Harris sheet we have a = 1/2.

Equation (55) relates the constant background pressure Pb to the microscopic parameter

b, which is representing the magnitude of the part of the DF which depends only on Hs. Ob-

viously, b is simply the ratio of the background pressure Pb to the pressure (βe+βi)n0/(βeβi).

Equation (56), together with Eq. (57), allows us to relate uys to uxs by writing

|uys| = |uxs|. (59)
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An expression for N(Ax, Ay) for the force-free Harris sheet equilibrium which is symmet-

rical in electron and ion parameters is given by

N(Ax, Ay) = n0

[

a cos

(

2Ax

A0

)

+ exp

(

2Ay

A0

)

+ b

]

(60)

with

A0 =
2(βe + βi)

eβeβi|uyi − uye|
, (61)

An expression for Pzz which is symmetrical in ion and electron parameters is obtained by

using (60) in Eq. (21). Using the vector potential for the force-free Harris sheet, (34), we

obtain for the particle density as a function of z, expressed using microscopic parameters,

N(z) = ne(z) = ni(z) = n0

[

1

2
+ b

]

, (62)

the pressure Pzz is obtained by multiplying N(z) by (βe + βi)/βeβi.

The mean bulk flow velocities of each species in the x- and y-directions as functions of z,

namely

< vxs > =
uys sinh(z/L)

(1

2
+ b) cosh2(z/L)

, (63)

< vys > =
uys

(1

2
+ b) cosh2(z/L)

, (64)

which gives a current density of the form

jx = en0(uyi − uye)
sinh(z/L)

cosh2(z/L)
, (65)

jy = en0(uyi − uye)
1

cosh2(z/L)
, (66)

The force-free parameter α(z) can be directly determined by using (58) in (33) resulting

in

α(z) =

(

µ0e
2βeβin0(uyi − uye)

2

2(βe + βi)

)1/2
{

cosh

[

(

µ0e
2βeβin0(uyi − uye)

2

2(βe + βi)

)1/2

z

]}−1

. (67)

One can easily show that this is consistent with the expression for α(z) obtained from the

current density (65) and (66) and the magnetic field for the force-free Harris sheet (31),

when taking into account (53).
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B. The number of maxima of the DF in vx and vy

One of the interesting features of the force-free Harris sheet DF (45) is that it can have

multiple maxima in both the vx- and the vy-directions. We shall discuss the vy-direction

first as it is simpler to understand. Looking at the structure of the DF in the vy direction

one can immediately see that it consists of the Harris sheet DF part, which is a Maxwellian

distribution function drifting with a constant velocity uys in the vy-direction, and a part

which, if regarded purely as function of vy, is Maxwellian at rest. It is intuitively clear that

one should get two maxima in vy if the drift velocity uys increases, because the drifting

Maxwellian moves towards the tail of the Maxwellian at rest. As we show in appendix A

it is relatively straightforward to work out that a necessary condition for having more than

one maximum in the vy-direction is

|uys| > 2vth,s, (68)

i.e. the constant drift velocity has to be larger than twice the thermal velocity. There is,

however, a second condition on the parameter bs that also needs to be satisfied for the DF

to have more than one maximum in vy. We derive and state the exact condition in appendix

A, but its physical meaning is very easy to understand. If bs exceeds a certain limiting value,

the part of the DF which does have vanishing average velocity in the y-direction dominates

over the other part of the DF, so that a second maximum cannot develop even if (68) is

satisfied. Usually, this condition on bs will not be very restrictive, though, as the upper limit

for bs grows exponentially with u2
ys/v

2
th,s (see appendix A). We show examples of DFs as

functions of vy for the different cases in Figs. 3 - 5. For these figures the values of bs have

been chosen to be close to the critical value discussed in appendix A for illustrative purposes.

The values for bs are of the order 4.5 · 103 for the examples shown, which corroborates the

point made above regarding the exponential growth of the limiting value.

We now turn to the dependence of the DF on vx. Due to the cosine-dependence it is clear

that the possibility of multiple maxima in vx exists. We discuss the details of the calculation

in appendix B. From the analysis in appendix B we find that the condition for having just

a single maximum in vx is

bs >
1

2
exp

(

u2
ys

v2
th,s

)(

u2
ys

v2
th,s

+ 1

)

. (69)
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FIG. 3: Shape of the DF in the vy-direction for various values of z/L for a multiple maximum case.

Here uys = 3vth,s, bs = 4.254 · 103 and vx = 0 have been used. In the case shown here the DF has

multiple maxima for small values of |z|, but only a single maximum as |z| increases. The value of

bs has been chosen to be smaller than, but close to the critical value calculated in appendix A.

This condition on bs can be understood in the same way as the similar condition on bs

derived for the vy-dependence. If bs is large enough the Maxwellian background plasma it

represents dominates the part of the DF with the cosine dependence and we only have a

single maximum of the distribution function. If the condition (69) is not satisfied then we

have multiple maxima in vx, but their existence still depends on the values of z/L and vy.

Obviously, for small uys/vth,s the limiting value on the right hand side of (69) is 1/2, which

is consistent with the absolute lower limit on bs mentioned before. Examples of the different

cases are shown in Figs. 6 to 8.

A slightly different perspective on the discussion above can be provided if we express the

ratio uys/vth,s in terms of the current sheet thickness L. Using Eq. (57), we get

u2
ys

v2
th,s

= 4
r2
g,s

L2
, (70)

where rg,s = msvth,s/eB0 is the thermal gyroradius of species s. If all parameters except L

and uys are fixed, it is obvious that a decrease in the current sheet thickness will eventually
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FIG. 4: Shape of the DF in the vy-direction for various values of z/L for the critical case, at

which the transition between multiple maxima and a single maximum occurs. Here uys = 3vth,s,

bs = 4.427 · 103 and vx = 0 have been used. For z = 0 the DF has a point of inflection with

horizontal slope, but only one maximum. For |z| > 0 the DF only has a single maximum. The

value of bs has been chosen to be equal to the critical value calculated in appendix A.

lead to multiple maxima in the DF, first in vx by violating condition (69) and then in vy as

well. This may obviously have implications for possible velocity instabilities of the system,

e.g. the two-stream or bump-on-tail instabilities, apart from macroscopic instabilities of the

current sheet, e.g. the collisionless tearing mode. A detailed investigation of the stability

properties of this inhomogeneous Vlasov-Maxwell equilibrium would be very interesting, but

is beyond the scope of the present paper and will be left for future work.

IV. SUMMARY AND CONCLUSIONS

We have given a detailed presentation of the derivation and the properties of the DF

for the collisionless force-free Harris sheet found in Ref. 5. In particular, we have shown

how the microscopic parameters of the DF are related to the macroscopic parameters of the
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FIG. 5: Shape of the DF in the vy-direction for various values of z/L for a single maximum case.

Here uys = 3vth,s, bs = 4.659 · 103 and vx = 0 have been used. The value of bs has been chosen to

be greater than the critical value calculated in appendix A.

FIG. 6: Shape of the DF in the vx-direction for various values of z/L for a single maximum case.

Here uys = vth,s, bs = 2.85 and vy = 0 have been used.
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FIG. 7: Shape of the DF in the vx-direction for various values of z/L for a multiple maximum

case. Here uys = vth,s, bs = 1.43 and vy = 0 have been used. In the case shown here the DF has

multiple maxima close to the sheet centre (z = 0), but a single maximum for larger distances from

the sheet centre.

FIG. 8: Shape of the DF in the vx-direction for various values of z/L for a multiple maximum

case. Here uys = 2vth,s, bs = 28.66 and vy = 0 have been used. In the case shown here the DF has

multiple maxima for all values of z.
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magnetic field. We have also given a detailed derivation of the conditions on the parameters

of the DF to ensure that it has only a single maximum in vx and in vy. We have shown that

as the current sheet thickness decreases the condition for multiple maxima will eventually be

violated and we have suggested that this may lead to velocity space instabilities in addition

to other macroscopic instabilities for thin current sheets. The stability properties of the VM

equilibrium are a very interesting topic for further investigations.
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Appendix A: Condition for two maxima in the vy-direction

From a mathematical point of view it is easier to write the DF as a function of the

momenta when carrying out this calculation. The pzs-dependence does not play any role in

the calculation and can be integrated out. The reduced DF for pxs and pys then reads

F̄s(z̄, p̄xs, p̄ys) = exp

{

− 1

2ū2
ys

[

(

p̄xs − Āx

)2
+
(

p̄ys − Āy

)2
]

}

[as cos(p̄xs) + exp(p̄ys) + bs] ,

(A1)

where F̄s = 2π(msvth,s)
2Fs/n0s, with Fs =

∫

fsdpzs, ūys = uys/vth,s, p̄xs = βsuyspxs, p̄ys =

βsuyspys, Āx = qsβsuysAx = 2Ax/(B0L) and similarly Āy = qsβsuysAy = 2Ay/(B0L).

For an extremum of F̄s in the p̄ys direction the derivative

∂F̄s

∂p̄ys
= exp

{

− 1

2ū2
ys

[

(

p̄xs − Āx

)2
+
(

p̄ys − Āy

)2
]

}

×
{

exp(p̄ys) −
1

ū2
ys

(

p̄ys − Āy

)

[as cos(p̄xs) + exp(p̄ys) + bs]

}

(A2)

must vanish, leading to the condition

p̄ys − Āy =
ū2

ys exp(p̄ys)

as cos(p̄xs) + exp(p̄ys) + bs
. (A3)

We remark that the right hand side is well-defined because bs > as ≥ 0.

20



The left hand side of (A3) is a linear function of unit slope in p̄ys, which crosses the

p̄ys-axis at p̄ys = Āy. As Āy varies between −∞ and 0, the left hand side intercepts the

p̄ys-axis for negative values of p̄ys. The right hand side of (A3) can be rewritten as

R(p̄ys) =
A

1 + B exp(−p̄ys)
, (A4)

where A = ū2
ys > 0 and B = as cos(p̄xs) + bs > 0. The function (A4) is positive, increases

monotonically and is bounded between 0 and A. Therefore, a necessary condition for mul-

tiple maxima of the DF in vy (or pys) is that the maximum slope of R(p̄ys) must be larger

than 1. Otherwise the (A3) can only have a single solution, implying a single maximum

for the distribution function. It is straightforward to show that R(p̄ys) has its maximum

slope A/4 at p̄ys = ln B. So the necessary condition for multiple maxima is A/4 > 1 which

translates into

|uys| > 2vth,s. (A5)

However, (A5) is not sufficient, because even if it is satisfied, it is still possible that

p̄ys − Āy intersects with R(p̄ys) only once, namely if the value of B is large enough. As

discussed above the left hand side of (A3) can only cross the p̄ys-axis for p̄ys ≤ 0, depending

on the value of Āy (and thus z/L). Since the ln B is positive it can happen that R(p̄ys) takes

on its maximum slope too far to the right for more than one intersection between the two

functions to happen.The transition between three intersections to one intersection happens

at the value of B for which the straight line of slope one through the origin just touches

the graph of R(p̄ys) at the point where it also has unit slope (see Fig. 9). One can easily

calculate the value of p̄ys for which the function R(p̄ys) has unit slope as

p̄ys,u = ln(2B) − ln(A − 2 −
√

A(A − 4)). (A6)

Two remarks are to be made here:

• p̄ys,u only has a real value if A > 4, which is consistent with the condition found before

for R(p̄ys) to have slope greater than unity anywhere;

• For A > 4, the function R(p̄ys) has unit slope at two values of p̄ys, of which one has

to choose the larger one (see Fig. 9), as we have done above.

The limiting value for B can now derived from

p̄ys,u = R(p̄ys,u) (A7)
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FIG. 9: Upper left panel: A case for which R(p̄ys) has a maximum slope smaller than one (A = 2.0,

B = 2.0). Upper right panel: A case for which R(p̄ys) has a maximum slope equal to one (A = 4.0,

B = 2.0). Lower left panel: A case for which R(p̄ys) has a maximum slope larger than one (A = 6.0,

B = 2.0). A case for which R(p̄ys) has a maximum slope greater than one, but for which B is larger

than Bl (A = 6.0, B = 33.5, Bl = 30.42). The straight line shown passes through the point of

maximum slope in all plots apart from the lower right panel. In the lower right panel the straight

line passing through the origin is shown.

leading to

Bl =
1

2
[A − 2 −

√

A(A − 4)] exp

(

2A

A −
√

A(A − 4)

)

, (A8)

so the sought for condition is

B < Bl. (A9)

Since B still depends upon p̄xs we have to replace it by the minimum value it can take on
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as function of p̄xs to get a condition which is independent of p̄xs.

In summary, the DF has more than one maximum in pys (and thus in vy) if the following

conditions are both satisfied

|uys| > 2vth,s, (A10)

bs <
1

2vth,s

(u2
ys − 2v2

th,s − |uys|
√

u2
ys − 4v2

th,s) exp





2u2
ys

u2
ys − |uys|

√

u2
ys − 4v2

th,s





+
1

2
exp

(

u2
ys

v2
th,s

)

, (A11)

where we have made use of (48) to replace as.

Appendix B: Condition for multiple maxima in the vx-direction

The analysis here is very similar to that in appendix A. Again we use the reduced DF

(A1) expressed as a function of the canonical momenta p̄xs and p̄ys. Taking the derivative

of F̄s with respect to p̄xs gives

∂F̄s

∂p̄xs

= − exp

{

− 1

2ū2
ys

[

(

p̄xs − Āx

)2
+
(

p̄ys − Āy

)2
]

}

×
{

as sin(p̄xs) +
1

ū2
ys

(

p̄xs − Āx

)

[as cos(p̄xs) + exp(p̄ys) + bs]

}

. (B1)

Setting this to zero gives the equation

p̄xs − Āx = −
ū2

ysas sin(p̄xs)

as cos(p̄xs) + exp(p̄ys) + bs
, (B2)

or, in an abbreviated form

p̄xs − Āx = R(p̄xs), (B3)

with

R(p̄xs) = − C sin(p̄xs)

cos(p̄xs) + D
(B4)

where C = ū2
ys > 0 and D = (bs + exp(p̄ys))/as > 1, because bs > as. The function (B4) is

a bounded periodic function of p̄xs. Furthermore, Āx = 4 arctan(exp(z/L)) varies between

0 and 2π, so the left hand side of (B3) can only cross the p̄xs-axis between 0 and 2π. The

slope of R(p̄xs) is given by
∂R

∂p̄xs
= −C

D cos(p̄xs) + 1

(cos(p̄xs) + D)2
, (B5)
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FIG. 10: Left panel: A case in which R(p̄xs) has a maximum slope greater than unity (A = 1.0,

B = 1.5); Middle panel: The limiting case with maximum slope equal unity (A = 1.0, B = 2.0);

Right panel: A case in which R(p̄xs) has a maximum slope less than unity (A = 1.0, B = 2.5). For

these plots the straight line of unit slope has been chosen to cross the p̄xs-axis at p̄xs = π.

which shows that R(p̄xs) has a positive slope for cos(p̄xs) < −1/D, which is always satisfied

for some p̄xs in the interval 0 ≤ p̄xs ≤ 2π. Therefore, a necessary and sufficient condition for

multiple maxima of the DF in vx is that R(p̄xs) has a maximum slope which is larger than

unity. Examples for the different cases are shown in Fig. 10.

Taking the derivative of (B5) we get

∂2R

∂p̄2
xs

= C sin(p̄xs)
D2 − 2 − D cos(p̄xs)

(cos(p̄xs) + D)3
. (B6)

A brief calculation shows that R(p̄xs) has positive slope only for p̄xs = nπ with n an odd

integer. The maximum value of the slope is given by C/(D−1), which leads to the condition

C < D − 1 (B7)

for the DF to have only one maximum. The lowest value D can take (as a function of p̄ys)

is D = bs/as so that we finally arrive at the condition

bs >
1

2
exp

(

u2
ys

v2
th,s

)(

u2
ys

v2
th,s

+ 1

)

, (B8)

for the DF to have only one maximum in vx, where we have used (48) and (54) to replace

as.
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