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Abstract

Vigorous debates as to the evolutionary origins of culture remain unresolved due to an absence of methods for identifying
learning mechanisms in natural populations. While laboratory experiments on captive animals have revealed evidence for a
number of mechanisms, these may not necessarily reflect the processes typically operating in nature. We developed a novel
method that allows social and asocial learning mechanisms to be determined in animal groups from the patterns of
interaction with, and solving of, a task. We deployed it to analyse learning in groups of wild meerkats (Suricata suricatta)
presented with a novel foraging apparatus. We identify nine separate learning processes underlying the meerkats’ foraging
behaviour, in each case precisely quantifying their strength and duration, including local enhancement, emulation, and a
hitherto unrecognized form of social learning, which we term ‘observational perseverance’. Our analysis suggests a key
factor underlying the stability of behavioural traditions is a high ratio of specific to generalized social learning effects. The
approach has widespread potential as an ecologically valid tool to investigate learning mechanisms in natural groups of
animals, including humans.
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Introduction

It is widely agreed that scientific endeavours to understand the

evolutionary roots of human culture require knowledge of the

extent to which the social transmission of information in human

and non-human societies relies on homologous mechanisms

[1,2,3]. Laboratory experiments can pinpoint the operation of

specific mechanisms in captive animals, but cannot generate

evidence that the same mechanisms operate in natural social

groups, subject to all the stressors of life in the wild. Conversely,

observations of natural behaviour alone cannot discriminate

between alternative social (or asocial) learning mechanisms. Here

we present a novel analytical tool that allows investigation of

learning mechanisms in natural groups of animals (including

humans) and apply it to a new dataset from groups of wild

meerkats. Our methodology allows us to determine for the first

time the social and asocial learning mechanisms operating in the

wild, but the methods could also be applied to captive groups.

Traditional social learning experiments involve presenting a set

of subjects, or ‘‘observers’’, with the opportunity to observe one or

more ‘‘demonstrator’’ animals that have been trained to perform

target behaviour, usually the solution to a foraging task. The

subjects’ performance is then assessed in a subsequent test phase,

in which they are given access to the task, to ascertain whether

acquisition of the behaviour has been improved as a result of the

observational experience, compared to control subjects. This

traditional social learning experiment design (henceforth ‘tradi-

tional approach’) has been modified in various ways to isolate

different social learning mechanisms, taking advantage of the fact

that the experimenter has a high degree of control over what social

cues are available to the observers [4].

The traditional approach has been fruitful in establishing that

certain species have a capacity for specific types of social learning

[4]. However, the high level of experimental control comes at the

cost of decreased ecological validity: the traditional approach does

not allow the level of social interaction that would occur in freely

interacting groups of animals. Consequently, the traditional

approach can tell us little about the relative importance of

different social learning mechanisms in such situations, or the role

each one has in promoting or inhibiting the emergence and

stability of traditions under natural conditions [5,6]. For example,

keas (Nestor notabilis) have been shown to use observational

conditioning in captivity [7] but failed to do so in the wild [8].

Furthermore, whilst laboratory experiments on chimpanzees (Pan

troglodytes) suggest an important role for imitation in tool use tasks

[9], some field researchers [10] suggest local enhancement plays a

dominant role in the acquisition of tool use in the wild. Similarly,

social learning appears to be primarily restricted to the juvenile

period in wild chimpanzees [10] but not restricted in this way for

captive chimpanzees[9]. It is also conceivable that some species

may not exhibit evidence of a capacity for a specific type of social

learning unless presented with naturalistic social interactions.
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Finally many species are not amenable to study in the laboratory,

and though approaches similar to the traditional approach are

sometimes possible in the field [11,12], this will not always be the

case. This is a severe limitation if one’s goal is to obtain a picture of

the taxonomic distribution of social learning mechanisms or

understand the selection pressures driving their evolution.

Such concerns have recently led researchers to devise experi-

ments and observational studies of the diffusion of innovations

through groups of freely interacting animals [11,13,14]. These

range from initiated diffusions (where groups are presented with a

novel task) in captive and wild groups, to natural diffusions of

spontaneously arising innovations. It has been noted that whilst

ecological validity and the potential for understanding the factors

affecting culture increases with increased naturalism, the potential

for understanding social learning processes decreases [15]. Further

experimental control is possible in initiated diffusions by ‘‘seeding’’

groups with demonstrators trained to solve the task using one of

two or more different options: the researcher can then test whether

the groups tend to adopt the same option as their demonstrator.

However, in all diffusion experiments, the experimenter has, at

best, very limited control over the social cues received by each

individual, so information on these must be gathered as

observational data [16]. Such data, collected on a fine temporal

scale, is likely to contain statistical patterns indicative of different

social and asocial learning mechanisms, but the analytical tools

required to extract these patterns have, to date, been lacking.

Here we present a conceptual framework for the analysis of

detailed observational data from seeded or unseeded diffusion

studies (or indeed other social learning experiments) and present

methods for detecting the presence of different mechanisms and

quantifying their effects. We deploy a novel statistical approach.

We call this a ‘stochastic mechanism-fitting model’ (henceforth

‘SMFM’) since it formulates hypothetical mechanisms as stochastic

models, allowing us to assess the evidence for their presence and

estimate the size and duration of their effects.

We applied the SMFM to data from a specially-designed

initiated social diffusion experiment on wild meerkats. Meerkats

are cooperatively breeding mongooses that have been the subjects

of extensive studies of social learning under natural conditions

[17]. However, the mechanisms by which information spreads

through meerkat groups (or indeed social groups in any species)

are unknown.

Demonstrator animals (subordinate adult male meerkats) were

trained, out of sight of others, to obtain food from an experimental

apparatus (hereafter a ‘Box’) using one of two ‘option-types’

(henceforth ‘Flap’ and ‘Tube’) positioned on opposite sides of a

clear plastic box (Fig. 1A and B). The demonstrators then reliably

performed their trained behaviour in front of a group of

conspecifics over eight sessions, during which two identical Boxes

were positioned 30cm apart, facing opposite directions (Fig. 1A),

giving four possible ‘options’ for solving the task. Three meerkat

groups were exposed to Flap-solver demonstrators, three to Tube-

solvers, and a further three had no demonstrators (controls). We

recorded the duration of all bouts of observation or interaction

with the Boxes, noting the identity of the individuals involved,

whether an individual observed another interacting with a Flap or

Tube, whether it witnessed successful entry into a Box, whether

food was obtained, and other relevant variables (see Materials and

Methods for details). The two-Box design allowed us to distinguish

between local enhancement effects (attraction to a particular

location [18]) and stimulus enhancement (attraction to a particular

stimulus type, such as black flaps or white tubes [19]), while other

aspects of the method allow alternative learning mechanisms to be

isolated (see below).

Historically, researchers have assumed that imitation and

teaching may be necessary for stable cultural traditions

[2,20,21], a view conflicting with recent empirical and theoretical

work suggesting that stimulus and local enhancement can result in

the formation of traditions [22,23,24,25,26]. Here we utilise a

method that can be used to study these and other learning

mechanisms in a natural context, and allow us to investigate,

empirically, the relationship between learning mechanisms and the

emergence of behavioural traditions.

We fitted stochastic models (see Methods and Materials) to the

data, modelling individuals’ rates of transition between states of

not interacting and interacting with each specified Box and Option

(Fig. 1B). We modelled the rate at which an individual, i, initiated

a bout of interaction with each Flap and Tube as a function of (i)

individual differences in rate, (ii) i’s past successes using Flap and/

or Tube (asocial learning), (iii) the observed number of entries by

others to the Box using each option (direct social learning), and (iv)

the latency since i observed another individual interacting with

each option (transient social effects). We then used a stochastic

model of the rate of interaction with the task in continuous time, in

which the rate of interaction with each option was specified at a

given time. Learning effects were modelled using an approxima-

tion to the Rescorla-Wagner learning rule, where association of an

option-type with food increased to a maximum strength with

repeated rewards. We derived a likelihood function and used

Markov Chain Monte Carlo (MCMC) to generate posterior

samples for the parameters in the model. We summarise the

posterior sample using the median and 95% highest posterior

density intervals (denoted as ‘‘95% HPD’’), giving the range of

probable parameter values. Where relevant we also provide

posterior probabilities for statements regarding inequalities of

parameters: for example p sInƒsRð Þ= 0.019 means that, condi-

tional on the model, there is only a 1.9% probability that sR is less

than or equal to sIn. To explore factors affecting the rates of task

solving and task abandonment we used Cox models, which have

the advantage that they make no specific assumptions about the

shape of latency distributions underlying the model [27]. We used

a model averaging procedure to estimate effects, based on Akaike’s

Information Criterion (AIC), and present back-transformed 95%

unconditional confidence intervals (denoted ‘‘95% UCI’’) [28].

Full details of the models and model selection procedure are given

in the Text S1.

Results

Excluding the six trained demonstrators, 77/170 meerkats

manipulated the task with a total of 513 manipulations

(mean = 6.7 per manipulator), 36 individuals were successful in

obtaining food (i.e. were ‘‘solvers’’) with a total of 271 successful

manipulations (mean = 7.5 per solver). The models identified nine

separate processes underlying the successful foraging behaviour of

the meerkat groups, including three separate social learning

processes and a further six asocial learning processes (Fig. 2,

Table 1). In general, social factors played critical roles in drawing

meerkats to interact with the apparatus, and keeping them at the

task, while asocial learning processes dominated task acquisition.

Three factors were found to increase the rate of interaction with

the box (Fig. 2). The first was operant conditioning (Process 1 in

Fig. 2, Table 1). The observed rate of interaction with the box by a

given individual was found to be positively associated with their

number of previous successful interactions, in an option-type

specific manner. The estimated effect of each successful manip-

ulation for an average (median) subordinate meerkat was

a = 0.051; 95% HPD = [0.040, 0.063], where a is the parameter

Identification of Learning Mechanisms in Meerkats

PLoS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e42044



that quantifies the learning rate in the Rescorla-Wagner model

(see Eqn. 2). In contrast, dominant meerkats tended to be affected

very little by operant conditioning (a = 5.5E–12; 95% HPD = [0,

9.9E–4]).

Second, we found that meerkats that observed a conspecific gain

entry to the box (sIn = 0.0035; 95% HPD = [0.0017, 0.0055])

themselves subsequently increased their rate of interaction with the

box (Process 2 in Fig. 2, Table 1). Here and below, s terms can be

viewed as social equivalents to a. This observational effect was

stronger than merely observing an individual feeding inside the

box (sIn{sR = 0.0028; 95% HPD = [25.1E-5, 0.0058];

p sInƒsRð Þ= 0.019), and elevated relative to individuals who did

not observe the interaction at all (sIn{sAll = 0.0028; 95% HPD =

[2.6E–5, 0.0054]; p sInƒsAllð Þ,0.001; see Fig. S2). However, we

found no evidence that the effect was stronger for individuals who

observed a conspecific both gaining entry to a box and receiving a

reward (sInR{sInNR = 25.2E–4; 95% HPD = [20.0050, 0.0045];

p sInRƒsInNRð Þ= 0.583), implying that observing a conspecific gain

entry to the box was necessary and sufficient for direct social

learning to occur. This effect generalised between option-types as

observations of individuals gaining entry via the flap increased

rates of interaction with the tube, and vice versa (see Fig. S1).

However, there was weak evidence that the effect was stronger on

the same option-type (s{scross = 0.0022; 95% HPD = [21.1E–4,

0.0045]; p sƒscrossð Þ= 0.027; see Fig. S1). These observations rule

out an interpretation of this form of observational learning in

terms of local or stimulus enhancement, observational condition-

ing, imitation or response facilitation, and appear to be most

consistent with the process of ‘emulation’ [29]. Broadly defined,

emulation occurs when after observing a demonstrator interacting

with objects in its environment an observer becomes more likely to

perform any actions that bring about a similar effect on those

objects [4]. Here, the meerkats appear to have learned through

observation that it was possible to get into the box, and

observation of others getting into the box makes them more likely

to try to do so themselves.

Third, we found that individuals were more likely to interact

with all options on either Box immediately after observing a

conspecific interacting with any one of them (see Fig. 3. Process 3

in Fig. 2, Table 1). We had allowed for the fact that observing

others might transiently increase an observer’s rate of interaction

with the box, which could indirectly result in social learning by

influencing its asocial learning experience– for instance, through

‘stimulus enhancement’ or ‘local enhancement’ [4]. This was

detected by including a component that was a function of the time

since an individual had observed another individual interacting

with each other option, assuming such effects decay exponentially

in time (see Fig. S2). There was strong evidence that the effect was

larger for the specific option and Box observed, indicating it was

highly spatially-specific, and more pronounced in non-adults than

in adults (see Fig. 3 and Table S1). This specific effect did not

generalize to the same option-type on the other Box, ruling out

Figure 1. Experimental setup and model structure. A) A ‘‘Box’’. The ‘‘Flap’’ technique involved going through a black cat flap to obtain food
from a pot; the ‘‘Tube’’ technique involved pushing through a fabric sleeve on the tube and breaking a paper lid to obtain food; B) experimental
layout of the two identical Boxes; C) diagrammatic representation of the stochastic mechanism-fitting model (SMFM) showing the three rates of
transition that were modelled. In reality ‘rate of interaction’ involved modelling four ‘competing’ transition rates, to each of the four options available:
left Flap, right Flap, left Tube and right Tube. We recorded an individual as solving the task when it gained access to food inside the box, and as
abandoning the task when it terminated a bout of interaction without gaining access to food inside the box.
doi:10.1371/journal.pone.0042044.g001
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stimulus enhancement, and strongly indicating an interpretation in

terms of ‘local enhancement’. Local enhancement occurs when,

after or during a demonstrator’s presence, or interaction with

objects at a particular location, an observer is more likely to visit or

interact with objects at that location [4,18].

Our model also enables us to estimate the duration of the local

enhancement effect. For an exponential model, this is intuitively

captured by the half-life (time taken for the effect to halve in

magnitude), which we estimated to be 20s (95% HPD = [12,29]).

To our knowledge this is the first precise estimate of the duration

of local enhancement, although experimental studies have

determined that local enhancement effects persisted for greater

than a fixed interval (e.g. [30]). We suggest that determining

whether a social effect persists for greater than a fixed interval is

not a particularly good way of quantifying its duration. Whether or

not we can detect an increase relative to baseline is as much a

function of sample size as the nature of the process. If we had a

very large sample size we might conclude that local enhancement

lasts for a very long time: however, the estimated effect at this

point would likely be so small as to be unimportant. It makes more

sense to ask how fast the effect fades- the precision of this estimate

is then a function of sample size. In addition, we can investigate

the conditions under which local enhancement occurred by fitting

alternative models and comparing deviance information criterion

(DIC) values. We tested for transient effects conditional on

observation of a conspecific gaining entry to the box (DDIC =

+168.2), and observation of a conspecific obtaining a reward

(DDIC = +137.8). We also fitted a model in which the transient

effects operated on all individuals present at an experimental

session, regardless of whether they were recorded as an observer

(DDIC = +399.2). All alternative models provide a worse fit to the

data, suggesting that observation of a conspecific interacting with

an option was a necessary and sufficient condition for the transient

social effects to occur.

We estimated that meerkats that had previously solved the task

subsequently solved it at a 50% higher rate (Process 8 in Fig. 2,

Table 1: x1.51; 95% UCI = [1.00, 2.01]) and abandoned the task

at a third of the rate (Process 4 in Fig. 2, Table 1: x0.34; 95%

UCI = [0.23, 0.49]) during future manipulations of the same

option-type. Counter-intuitively, the rate of task abandonment

increased with the number of further previous successes at either

option-type (Process 6 in Fig. 2, Table 1: x1.09 each successful

manipulation; 95% UCI = [1.04, 1.14]) perhaps due to decreased

motivation, with the meerkats having become satiated. In

addition, the number of previous unsuccessful interactions was

negatively associated with the rate of abandonment (Process 5 in

Fig. 2, Table 1: x0.84 each unsuccessful manipulation; 95%

UCI = [0.74, 0.96]; option-type general) and positively associated

with the rate of solving (Process 9 in Fig. 2, Table 1: x1.12 each

successful manipulation; 95% UCI = [1.01, 1.25]; option-type

specific) suggesting individuals might acquire useful information

from unsuccessful manipulations. This latter finding is consistent

with findings that the ‘error’ can be crucially important to effective

trial-and-error learning.

While there was little evidence that observation of others

directly affected the rate of solving the box task (see Table S2), an

individual’s rate of task abandonment declined with the number of

successes it had observed (Process 7 in Fig. 2, Table 1: x0.84 each

observation; 95% UCI = [0.76, 0.94]), suggesting that observing

the success of others decreased the rate at which individuals gave

up on the task. There was strong evidence that this effect required

observation of a conspecific both gaining entry to the box and

obtaining a food reward and that the effect was not option-type

specific (see Table S3). To our knowledge, this effect of social

learning has not previously been detected in any previous human

or animal experiment. As the effect of observing others’ successes

appears primarily to encourage individuals to persist with the task,

in the absence of a recognized label we have termed this process

‘observational perseverance’.

Despite strong evidence of social learning processes affecting the

learning of wild meerkats, the demonstrators’ techniques did not

spread to form strong group-level traditions (see Fig. 4, modified

Option Bias test [31]; P = 0.080; see Text S1 for details). We

suggest that in this study the ratio of specific to generalized local

enhancement effects was too low to promote the maintenance of

the demonstrated option. Had the dominant social learning effects

been more strongly option specific, rather that generalizing to

other options, then traditions may have been detected. As a test of

this hypothesis, we applied the SMFM method to experimental

data reporting stronger evidence of group-level traditions in

meerkat groups [5] and, as predicted, found the estimated

Figure 2. Diagrammatic representation of all effects found.
Each effect is described and interpreted in Table 1. The positioning of
the arrow for each effect represents the transition rate affected. Green
arrows mean a rate of transition was found to be a function of an
individual’s previous manipulations of the task, interpreted as asocial
learning or changes in motivation. Red arrows mean a rate of transition
was found to be a function of the number of previous observations,
interpreted as direct social learning. The blue arrow indicates the rate of
interaction was found to be a function of the time since last observation
at each option, interpreted as a transient local enhancement effect. + or
- indicates whether the transition rate was positively or negatively
associated with the variable in question.
doi:10.1371/journal.pone.0042044.g002
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transient effects were more specific to the observed option-type

(Fig. 5; see Text S1).

Discussion

Groups of wild meerkats were found to solve a novel foraging

task through an interwoven complex of nine separate processes,

including three types of operant conditioning and three separate

forms of social learning. With respect to the latter, we found that

observation of others interacting with and solving the task made

meerkats more likely to succeed in a given bout of interaction with

the task. This is unlikely to be a result of imitation (copying a

motor pattern), since observing successful manipulations did not

raise observers’ solving rate disproportionately when using the

same option type, nor did it improve the rate at which they solved

the task during a bout of interaction. Rather, observation of

others’ successes caused individuals to interact with the task at

higher rates and to persist for longer once they had begun a bout

of interaction, with attention being transiently drawn to specific

variant solutions. The dominant social influence was a specific

local enhancement effect, which attracted individuals to the exact

option and Box with which they observed another individual

interacting, but emulation and observational perseverance also

played a role. While it is known that influences on perseverance

may in turn affect learning (e.g. [32]) the role of social observation

in mediating perseverance and hence the acquisition of new skills

has not previously been described. Moreover, although stimulus

and local enhancement are commonly thought of as cognitively

unsophisticated, an understanding of simple mechanisms is central

to our understanding of cognitive evolution [33]. Laboratory

studies commonly infer local and stimulus enhancement when

evidence for imitation is lacking, but seldom discriminate between

them, examine the magnitude or duration of these effects, specify

the conditions under which they occur, or describe how they

interact with other asocial and social learning processes. Nor,

unlike the SMFM approach, do established social learning

methodologies typically identify multiple learning processes

underlying a particular bout of behaviour. Accordingly, the

insights gained from this study go significantly beyond conven-

tional studies of social learning, or the detection of local

enhancement in the laboratory.

Fig. 2 and Table 1 provide a summary of the effects found, and

our causal interpretation. Whilst not all effects detected map easily

onto existing terminology for social learning mechanisms, this

terminology is based primarily on the study of animals in artificial

(i.e. laboratory) contexts, and existing classification schemes are

widely thought to be incomplete, with overlapping and non-

hierarchical categories, and with evidence for several processes

contentious (e.g. [4,34]). The processes isolated here have the

advantage that they are known to be deployed in a natural context

by wild animals. We are also able to infer the conditions for each

effect to occur, and the consequences this has for an individual’s

future behaviour. As such, our SMFM approach might yield

important insights into the limitations of primarily laboratory-

based terminology (e.g. [4,35]) for describing those learning

mechanisms actually deployed by animals in a natural social and

ecological context. Perhaps more importantly, the SMFM

framework allows for the fact that information transmission in

animal groups might reflect a composition of multiple mecha-

nisms, and provides a means for disentangling and quantifying the

mechanisms’ individual effects in both laboratory and field studies.

Table 1. Summary of effects found on meerkats’ task solving behaviour, and our interpretation.

Label in
Fig. 2 Description of effect Interpretation

1 Rate of interaction positively associated with number of
previous successful interactions. Option-type specific.

Asocial learning. Interaction with an option-type is reinforced by successful
interactions – a straightforward case of operant conditioning.

2 Rate of interaction positively associated with number of
previous observations of conspecifics gaining entry to the box.
Only weak evidence the effect is option-type specific.
See Fig. S2.

Direct social learning. Not consistent with learning an association of the Box with
food (‘observational conditioning’, sensu Heyes 1994), since seeing another
individual feeding in box was not sufficient for the effect to occur. Perhaps
individuals learned it was possible to get into the box, a case of emulation.

3 Rate of interaction higher in the period immediately after
observation of a conspecific manipulating the task. Some effect on
all options, but much stronger on the specific option observed
to be manipulated, for younger meerkats. See Fig. 2.

Local enhancement: Observation of others manipulating the task transiently
draws the observers to that location. The effect was more spatially specific for
younger meerkats. See Text S1 for further investigation of this causal
interpretation.

4 Rate of abandonment lower for individuals who
had previously solved the task. Option-type specific.

Asocial learning: interaction with an option-type is reinforced by a first successful
interaction.

5 Rate of abandonment negatively associated with the number
of previous unsuccessful attempts to manipulate the task.
Option-type general.

Individuals with more previous failures are hungrier, so more highly motivated to
succeed once they start manipulating the task.

6 After accounting for effect 4, rate of abandonment positively
associated with the number of previous successful attempts
to manipulate the task. Option-type general.

Individuals with fewer previous successes are hungrier, so more highly motivated
to succeed once they start manipulating the task, whilst individuals that have
successfully retrieved lots of food become satiated.

7 Rate of abandonment negatively associated with the number
of previous observations of conspecifics gaining entry to
the box and feeding. Option-type general.

Direct social learning: observation of others solving the task caused meerkats to
persevere with the task for longer during bouts of interaction. We term this
‘observational perseverance’.

8 Rate of solving higher for individuals who had previously
solved the task. Option-type specific.

Asocial learning: the actions required to solve the task using a specific option-type
are reinforced. Another instance of operant conditioning.

9 Rate of solving positively associated with the number of
previous unsuccessful attempts to manipulate the task.
Option-type specific.

Asocial learning: reinforcement of actions leading closer to task solution and/or
punishment of actions not leading closer to task solution. Another instance of
operant conditioning.

See also Fig. 2.
doi:10.1371/journal.pone.0042044.t001
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Moreover, our SMFM analysis detects strong evidence for social

learning processes affecting the learning of wild meerkats, despite

the fact that demonstrators’ techniques did not spread to form

group-level traditions. This has two important implications. First,

researchers deploying conventional tools reliant on finding

between-group differences in behaviour to infer social learning

are probably failing to detect many instances of social learning in

natural animal populations. This is consistent with recent

empirical findings suggesting that, contrary to common assump-

tion [31], social learning need not lead to within-group

homogeneity [5,12,36]. The SMFM approach has the advantage

that it detects social influences on learning regardless of whether

they result in population differences in behaviour. Second, by

linking mechanisms to social behaviour, the SMFM approach is

able to explain why, in this instance, traditions did not form. We

suggest that in this study the ratio of specific to generalized local

enhancement effects was too low to promote the maintenance of

the demonstrated option. Had the dominant social learning effects

been more strongly option-type specific, rather that generalizing to

other option-types, then traditions may have been detected.

While it is possible that the operation of mechanisms such as

imitation may allow greater fidelity in the transmission of

information [2], our analysis suggests that other factors are

potentially important, consistent with recent experiments on

humans, which suggest that faithful transmission and cumulative

cultural change may occur in the absence of imitation [37]. Our

analysis implies that the persistence of traditions is more

dependent on whether the social learning processes deployed are

highly option specific, thereby failing to generalize to other

solutions to the task in hand, rather than on the mechanism

through which social learning occurs. Researchers have frequently

assumed that the occurrence, persistence and complexity of

behavioural traditions in different species reflect alternative

underlying learning mechanisms [1,2], yet hitherto it has not

been possible to test this. It is also widely assumed that human

cultural traditions are maintained through imitation and teaching

[2,20,21], and that the greater stability of human traditions

compared to those of other animals reflects a reliance on different

learning mechanisms, but these assumptions are also virtually

never tested. Our findings raise the possibility that human

cumulative culture may require mechanisms that promote

specificity in the solution adopted, such as conformity and

punishment of violators of social norms [38], rather than, or as

well as, high fidelity of information transmission. We suggest that

the analytical tools presented here provide the means to meet these

Figure 3. Estimated transient effects. A) Estimated size of the transient increase in rate of interaction at each option immediately following
observation, for different age classes of meerkats (taken from the final model). These effects are decomposed into B) box-level local enhancement,
influencing rate of interaction with both options at the manipulated box; and C) specific local enhancement, further influencing rate of interaction
with the manipulated option. Estimates are the median of the posterior distribution, scaled relative to the estimated median baseline rate of
interaction with the flap option. Error bars give the 95% highest posterior density (HPD) interval. Green points and error bars give the estimates of the
difference in effect size between different age classes, where A = adult; J/SA = juveniles and sub-adults; P = pups.
doi:10.1371/journal.pone.0042044.g003
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challenges and thus to develop a fuller understanding of the

relationship between human and animal culture.

We note that application of SMFM to different task designs

would allow researchers to distinguish between further mecha-

nisms. For example, imitation and emulation could be distin-

guished if two options involved different motor patterns, but

resulted in the same movements of the task (a ‘two-action test’

[39]). The SMFM would detect whether social influences are

option-specific (indicating imitation), as well as providing addi-

tional information about which transitions are influenced, the time

course of the effect, and the conditions under which it arises. The

approach could also be generalized to apply to natural, rather than

experimentally induced, traditions in animals, with particular

utility where multiple options are observed (e.g. alternative ant-

dipping methods by chimpanzees, Pan troglodytes [40], or variant

tools used by New Caledonian crows, Corvus moneduloides [41].

Whilst existing approaches allow inferences to be made about

the way in which individuals use social information to solve a task,

to our knowledge none do so at a sufficient level of detail to allow

specific psychological mechanisms to be identified. For instance,

Kendal et al [42] provide a method for quantifying the extent to

which social learning influences the rate at which individuals

approach and subsequently solve novel tasks. However as this

method is applied at the level of the group, it cannot take into

account the dynamic nature of skill acquisition, whereby an

individual’s competence changes over time in relation to its

specific previous experience. In contrast, McElreath et al [43]

model individuals’ choices between alternative options as a

function of their previous observations of others’ choices and the

reward obtained, thus allowing inference about the social learning

strategies being employed. However, this approach is only able to

detect learning mechanisms that influence option choice, and not

those that influence rate of interaction, success or task abandon-

ment. Our approach also differs from the recent use of multistate

Markov chain models to model animal behaviour [44] since the

rates of transition between states are a function of each individual’s

past experience. Nonetheless, all of these studies share with SMFM

the strategy of formulating hypotheses about behavioural mech-

anisms as stochastic models, which can be fitted to, and evaluated

by time-structured data. We feel this under-used approach is likely

to prove particularly fruitful in the study of animal behaviour [45].

A stochastic modelling approach could allow researchers to study

mechanisms of behaviour in the wild, including in species that are

not amenable to experimental manipulation. This would allow

comparisons to be made across a wide range of species, not just

convenient laboratory models or species for which field experiments

are feasible. This approach could be of particular utility for the study

of all aspects of social behaviour (e.g. communication, grouping,

social networks, agonistic and affiliative encounters), where it can be

difficult to manipulate the social cues received by an individual

experimentally, in either the lab or the field. There is also

considerable potential for applying similar techniques to analyze

aspects of human behaviour within the social sciences. Thus the

approach has widespread potential as an ecologically valid analytical

tool with which to investigate learning mechanisms in natural groups

of animals, including humans.

Materials and Methods

Ethics Statement
All data collection was carried out following Association for the

Study of Animal Behaviour guidelines, with ethics approval from

the Universities of Cambridge and Pretoria, under Northern Cape

Conservation Authority Permit ODB 2575/2009.

Study Site and Meerkat Population
Experiments were conducted between January and May 2009

on nine groups of 12–24 free-living meerkats (176 total) in the

Kuruman River Reserve in northern South Africa. All individuals

were habituated to close observation (,1 m) and could be

recognised through unique marks of hair dye on their fur. Groups

Figure 4. Group differences in manipulations of the flap and
tube. A) The number of manipulations of the flap and tube; B) the
number of successful manipulations of the flap and tube; C) the
proportion of individuals that manipulated the flap and tube; and D)
the proportion of individuals solving the task using the flap and tube.
Trained demonstrators are not included in all cases. Letter codes refer
to different groups.
doi:10.1371/journal.pone.0042044.g004
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were located by radio-tracking one collared individual in each

group. Whilst the meerkat population is habituated to human

observers, it is entirely wild and thus subject to intense predation

and food restriction [46,47], and unlike captive groups, the

meerkats exhibit natural social dynamics including dispersal,

eviction, inter-group encounters and infanticide [48]. Crumbs of

egg are used to attract meerkats onto scales for weighing as part of

a long-term study, but these crumbs are ,1 g (typically less than

0.15% of body weight). Rates of predator attack may be lower

while researchers are present, but observers are not present

continuously and survival rates are still lower than in related

species [46].

Experimental Apparatus
All experiments used identical ‘‘Box’’ apparatus (Fig. 1 a, Fig.

S3). A Box consisted of a rectangular plastic box 37.5 cm long,

26.5 cm wide and 15 cm high. One face of the box had a black cat

flap, hinged at the top, while the opposite face had a plastic tube

which led into the box and protruded 2 cm from the face

diametrically opposite to the flap. The tube was lined with a

baggy, white fabric sleeve that blocked visual access to the inside of

the box. Meerkats could either go through the flap to obtain food

(crumbs of hard-boiled egg and pieces of freshly-killed scorpion)

from a clear plastic pot (‘‘Flap technique’’) or push through the

sleeve into the tube and rip apart a kitchen paper lid to access food

from another pot (‘‘Tube technique’’). Boxes were made of clear

plastic with perforations to allow individuals to see and smell the

contents.

Training Demonstrators
One demonstrator in three groups was trained on the Flap

technique, and one demonstrator in another three groups was

trained on the Tube technique. A further three control groups had

no demonstrators. All demonstrators were subordinate adult

males. We ensured that only demonstrators were exposed to

training by conducting training sessions when demonstrators were

foraging out of sight of the rest of the group or when

demonstrators were babysitting pups that were underground at

the breeding burrow while the rest of the group was foraging

elsewhere. Demonstrators typically required five days of training

to reach proficiency in either technique (4–9 training trials per

demonstrator). Once demonstrators were fully trained (successful

completion on five subsequent presentations), we conducted one

training trial with two identical boxes, facing opposite directions.

In all cases, demonstrators successfully obtained food from both

boxes using their trained technique.

Flap training. We began by propping open the flap and

leaving a trail of food leading into the box. We then incrementally

closed the flap so that the individual had to push against it to enter

the flap. Training ended once individuals reliably approached the

box, pushed through the flap to obtain food from the pot inside

and subsequently exited the box.

Tube training. We trained demonstrators on the Tube

technique by first enticing them to go through the tube (with no

sleeve) and obtain food from the pot inside. We then attached the

sleeve and made it increasingly baggy until the sleeve obscured the

view into the tube and the demonstrator had to push through it to

go through the tube. Once demonstrators were reliably going

through the tube in this manner, we began affixing a kitchen paper

lid to the pot containing rewards. Initially, the lid was loosely

attached on one side, so that the individual could put its paw

under the paper to scoop out food. As individual grew more

competent at this technique, we began to attach the paper more

securely on all sides so that paper had to be ripped to access the

food. Training ceased once demonstrators reliably approached the

box, pushed through the tube, broke the paper lid and consumed

food.

Figure 5. Specificity of the transient social effect for different age classes for the current study and the previous experiment by
Thornton and Malapert [21]. Specificity quantifies the probability a naive observer will use the same option-type it has observed, given that it
manipulates one of them immediately after observation. The mean of the posterior sample is shown in each case, with the 95% central interval. *
Indicates that the 95% central interval for the difference between the two studies did not include zero, whereas NS signifies that it did.
doi:10.1371/journal.pone.0042044.g005
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Control groups. To ensure that individuals in control groups

were not afraid of the Boxes, we conducted a session prior to the

group phase where the two boxes were placed on the floor and

could be seen by all group members. No meerkats displayed

mobbing behaviour, produced alarm calls or showed any fearful

response to the Boxes, and no individuals attempted to enter the

boxes.

Group Phase
Once demonstrators were trained, group sessions were con-

ducted during the morning period when all group members were

present at the sleeping burrow before setting out to forage.

Meerkats do not eat during the night, so motivation to obtain food

should be comparable for all individuals. Two identical boxes,

30cm apart and facing opposite directions were placed adjacent to

the sleeping burrow, visible to and approximately equidistant from

all group members. Sessions lasted 3–35 mins (mean = 19 mins

60.9), depending on how long the group spent at the burrow, with

sessions ending once the first individual moved more than 20 m

from the burrow. We conducted eight sessions at each group, with

sessions spaced at least three days apart (mean days between

sessions = 1160.5). For one group, MM, we conducted an

additional ninth session so that the total duration of all sessions was

comparable (within 20 mins) at all groups. In all experimental

groups the trained animals successful demonstrated the target

behaviour proficiently.

Sessions were videorecorded using a Panasonic NV-GS80

camcorder (Panasonic Corporation, Kadoma, Japan). From the

videos, the duration of all bouts where an individual interacted

with a box or observed another meerkat interacting with a box

were later transcribed by AT and JS. Bouts of interaction and

observation could be coded unambiguously, and independent

coding of the first five group sessions by AT and JS showed

interobserver reliability of .95%. An interaction bout refers to a

discrete period spent interacting with the apparatus (scratching,

pushing or otherwise manipulating it). Interaction bouts com-

menced when a meerkat made physical contact with the apparatus

and ended when the animal moved away from the apparatus.

During interaction bouts, we noted which part of which box the

individual interacted with (flap, tube or other), whether it entered

the box and whether it obtained food. We recorded an individual

as solving the task when it gained access to food inside the box,

and we refer to the bout of interaction leading to this as a

successful interaction. Observation bouts were defined as occur-

ring when a meerkat was within 1 m of, and had its head oriented

towards, another individual that was interacting with the box.

During observation bouts, we noted whether an individual

observed another interacting with a flap or tube and whether it

witnessed successful entry into the box and/or acquisition of food.

Whenever an individual ripped a paper lid or consumed the

majority of the food in a box, we waited for it to leave and then

rapidly removed the box (,10 secs), affixed a pre-prepared

replacement paper lid and replenished the food before placing the

box back in its original position.

Data Analysis
Full details of the model, model selection procedure and causal

interpretation of the model can be found in Text S1. Here we give

a brief overview of the stochastic mechanism-fitting model. In

sum, we derived a likelihood function and used Markov Chain

Monte Carlo (MCMC) to generate posterior samples for the

parameters in the model, using WinBUGS 1.4 [49], which were

analysed using the coda [50] package in the R statistical

environment [51].

Stochastic model of interaction with the task. We

modelled the rate at which individuals initiated bouts of

interaction with option-type k (flap = 1, tube = 2), on box l (left = 1,

right = 2) for individual i in group j at time t in session s as:

lijkls(t)~ exp mkzIij

� �
zvVijks(t)zTijkls(t) ð1Þ

where mk determines the rate of interaction for option-type k, Iij is

a linear function of time-constant variables influencing i’s baseline

rate of interaction with the task (age-class, sex, dominance and

individual and group-level random effects), Vijks(t) is i’s association

of option-type k with reward, which is a function of past asocial

and direct social learning (see below), v§0is a parameter

determining the relative influence of learning, and Tijkls(t) is a

function describing transient social effects on i’s rate of interaction

with option-type k, on box l at time t during session s (see below).

Learning in the model was based on the established Rescorla-

Wagner learning rule [52], where a rewarded interaction with k by

individual i in group j, increments its association with that option-

type as follows:

DVijks~a 1{Vijks

� �
ð2Þ

where a is a parameter controlling how quickly the maximum

association is attained. This can be approximated, and extended to

include the direct effects of observation as follows:

Vijks tð Þ~1{exp {aRijks tð Þ{sOijks tð Þ
� �

ð3Þ

where Rijks tð Þ is the number of times i has been rewarded for

interacting with k prior to time t in session s and all previous

sessions.Oijks tð Þ is the number of observations by i of interactions

with k prior to time t in session s and in all previous sessions and s

controls the strength the social learning in a manner analogous to

a. This means that inferences regarding s assess the evidence that

observation of another individual solving the task exerts a

permanent influence on the observer’s future rate of interaction

with the flap and tube, as oppose to a transient effect (see below).

We further generalised learning to investigate the conditions under

which direct social learning occurred, by distinguishing different

types of observation events, and allowing the rate of social learning

to vary between them (e.g. sIn denotes the effect of observing a

conspecific gain entry to the box).

We modelled transient social effects these effects by taking

Tijkls(t) to be a function of the time since the times since another

individual had last interacted with each option at each box within

that session. We assumed that each of these effects would be

strongest while a conspecific was interacting with the option in

question, and fade away to baseline levels as time went on. For

example, we modelled the effect of observation of a conspecific at

the same option-type on the same box (SOSB) effect as follows:

Tijkls(t)~hSOSB exp {bxijkls(t)
� �

, ð4Þ

where xijkls(t) is the time since the last observation of a

manipulation by individual i in group j, during session s of

option-type k on box l, excluding manipulations by i, with

xijkls(0)~?, hSOSB§0gives the strength of the SOSB effect, and

b§0 is the rate at which transient social effects die away, with

H~ ln (2)=b giving the half-life of the effects. We expanded the

model to include transient effects operating across options and

used the contrasts between these effects to distinguish local and
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stimulus enhancement. For example, stimulus enhancement would

be inferred if observation increased interaction with the same

option-type on a different box (SODB) more than the different

option-type on the different box (DODB), i.e. hSODBwhDODB. We

further expanded the model to include interactions of asocial

learning, direct social learning, and transient effects with age-class,

sex and dominance. Details of the final model are given in Table

S1. In the results we give 95% highest posterior density (HPD)

intervals for parameters and contrasts of interest, taken from the

final model or from a model with unimportant effects added back

in.

Modelling probability of successful manipulation. To

model the probability that an individual would be successful (i.e.

obtain food) in a given bout of manipulation with the task we used

a GLMM with a binomial error structure and logit link function,

with nested random effects for group and individual. We allowed

for a difference in difficulty between flap and tube and tested for

between-individual differences in the probability of success

between males and females, pups, juveniles, sub-adults, subordi-

nate adults and dominant adults. We also tested for how

probability of success depended on an individual’s prior experi-

ence. As before, we assumed that potential influences could be a)

an individual’s own history of manipulations, i.e. the cumulative

number of successful interactions and number of unsuccessful

interactions at the option being manipulated; b) direct social

learning: a permanent effect resulting from observation, i.e. the

cumulative number of observed successful manipulations at each

option, and c) transient social influence, i.e. the time since another

individual last interacted with the same option at the same box.

This particular transient effect was chosen as the most likely to be

in operation in light of its dominant effect on the rate of

interaction.

Models were fitted using the lmer function in the lme4 package

[53] of the R statistical environment [51], using the Laplace

approximation. We fitted models including every combination of

fixed effects, using R code that fitted each model and recorded the

AIC (Akaike’s Information Criterion) in each case. This allowed us

to judge the evidence for each behavioural mechanism based on its

total Akaike weight, and provide model-averaged estimates for

supported effects (see Text S1 for details) [28].

Changes in the probability of success in a bout could logically be

the result of only two factors: a) changes in the rate at which

individuals terminate a bout of interaction unsuccessfully, hence-

forth ‘task abandonment’; or b) changes in the rate at which

individual terminate a bout successfully, henceforth ‘rate of

solving’. To investigate how each variable operated, we fitted a

separate model of each process, using a Cox Proportional Hazards

survival analysis model [27]. For a), the time of ‘death’ is the time

since initiating a bout at which an individual terminates a bout

without gaining a reward. Those individuals who gain a reward

are considered to be ‘censored’, equivalent to surviving the course

of a survival analysis. Conversely, for b) the time of ‘death’ is the

time since initiating a bout at which an individual terminates a

bout by gaining a reward. In this case, those individuals who do

not gain a reward are ‘censored’. The models were fitted using the

coxme function in the coxme package [54] in the R statistical

environment [51]. For each of a) and b) we used the same model

averaging procedure as above, calculating AIC using the

integrated likelihood. In the results we report 95% unconditional

confidence intervals for parameters of interest, allowing for model

selection uncertainty across all other variables.

Supporting Information

Figure S1 Mean and 95% central interval of the
posterior distribution for the direct social learning
effect of different classes of observation. The size of each

effect refers to the corresponding parameter in the learning rule

used in the model (Eqn. 6, with constraints sInR~sInNR and

sR~sNR). * indicates that the 95% central interval for the contrast

between two effects did not include zero; NS indicates that the

95% central interval for the contrast between two effects did

include zero. Note that only the effects for ‘‘Box entry observed’’

were retained in the final model.

(EPS)

Figure S2 Plot giving an unconstrained estimate of the
shape of the transient function for the specific local
enhancement effect. This was computed by i) summing, across

all individuals, the number of bout initiations within a given time

period of observation of a conspecific at that same option; ii)

summing, across individuals and options, the total time for which

each individual was within a given time period of observation of a

conspecific at each option: the ‘time available’, iii) estimating the

rate for each time period by dividing the bouts initiated by the

time available. The width of each interval was chosen such that it

contained a minimum of 10,000s of time available, with the

exception of the final interval, 1210+ s (5029s available time). The

dashed line gives the rate before an individual had observed

another individual interacting with a given option in that session

(886 initiations, 5.4e+06 s available time), taken in the model as

infinity.

(EPS)

Figure S3 Photograph of the ‘‘boxes’’ used in the
diffusion experiment, showing the tube (left) and flap
(right) option types.

(JPG)

Text S1 Supplementary Information including a full
specification of the SMFM, model fitting and selection
procedure, causal interpretation of the results and
further analyses run.

(PDF)

Table S1 Descriptive statistics of MCMC samples of the
posterior distribution for parameters and contrasts in
the final model. 95% credible intervals are highest posterior

density (HPD). Where relevant the posterior probability is given

that the parameter or contrast #0. These are not given in cases

where parameters were constrained to be .0 or where the

hypothesis = 0 is of no interest. Posterior probabilities are given to

3 d.p and in bold when ,0.025. All other figures are given to 3 sig.

figs.

(PDF)

Table S2 Relative support for different models of the
effect of direct social learning on rate of solving.

(DOC)

Table S3 Relative support for different models of the
effect of direct social learning on rate of task abandon-
ment.

(DOC)
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