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Abstract

This thesis explores the role of non-classical correlations in bipartite con-
tinuous variable quantum systems, and the approach taken is three-fold.
We show that given two initially entangled atomic ensembles, it is pos-
sible to probabilistically increase the entanglement between them using a
beamsplitter-like interaction formed from two quantum non-demolition (QND)
interactions with auxiliary polarised light modes. We then develop an elegant
method to calculate density matrix elements of non-Gaussian bipartite quan-
tum states and use this to show that the entanglement in a two mode squeezed
vacuum can be distilled using QND interactions and non-Gaussian elements.

Secondly, we introduce a potential new measure of quantum entangle-
ment in bipartite Gaussian states. This measure has an operational meaning
in quantum cryptography and provides an upper bound on the amount of a se-
cret key that can be distilled from a Gaussian probability distribution shared
by two conspirators, Alice and Bob, given the presence of an eavesdropper,
Eve.

Finally, we go beyond the realm of quantum entanglement to explore
other non-classical correlations in continuous variable systems. We pro-
vide solutions for a number of these measures on two mode Gaussian states
and introduce the Gaussian Ameliorated Measurement Induced Disturbance
(GAMID). The interplay between these different measures and quantum en-
tanglement is examined. We then attempt to take small steps into the non-
Gaussian regime by computing these non-classicality measures on the three-
parameter continuous variable Werner states.
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Chapter 1

Introduction

The development of quantum theory can be regarded as the greatest revolution of the 20th

century, sweeping away the determinism of the preceding centuries and replacing it with inherent
quantum uncertainty. In the years since, quantum mechanics has proven to be an undeniably
successful theory. It began its journey explaining black body radiation and the photoelectric
effect, and has since been used to explain the behaviour of elementary particles, chemical bonds,
and the structural properties of crystals. The theory of light has not escaped the vast scope
covered by quantum mechanics, with Maxwell’s infamous equations now viewed as statistical
truths.

One of the strangest things that quantum systems are capable of is to follow non-local
dynamics [1] and to become correlated in non-local ways [2], unthinkable in the classical realm.
Such phenomena are now regularly observed in laboratories worldwide, and any physical theories
that claim to dispel non-locality are seen as increasingly quixotic.

Consider two people, Alice and Bob, separated by lightyears but sharing two particles from
a common source. Each perform space-like separated experiments. That is, the experiments take
a short time compared to the time period required for light to propagate from Alice and Bob
and vice versa. Alice’s experiment finishes before she could receive any classical communication
from Bob, and Bob is likewise ignorant of Alice’s experimental results. Only much later on,
after Alice and Bob communicate classically, does it become apparent that their results are, in
fact, correlated. Whatever the experimental results of one party, the other’s have been non-
locally influenced. These results should perhaps be expected to be correlated - after all, the two
particles came from the same source. However, the beauty lies in the fact that Alice and Bob
could choose to perform any measurement that they wished on their respective particles and
the measurements of the other would be influenced. If they were to instead use classical objects
then such correlations would require superluminal communication. This observation is at the
core of all investigations into quantum entanglement.

That non-local correlations can exist at all without conflicting with Einstein’s relativity, is
possible only because all measurement outcomes are probabilistic in nature. Quantum mechanics
is indeterministic, and as such can peacefully coexist with relativity. In fact, Aharanov and
Shimony [3] have independently posited that relativity and non-locality are the only axioms
required to uniquely define quantum mechanics amongst the myriad of other physical theories.

The indeterminacy enters at the most fundamental level - when we ask what is meant by
a quantum state. Regardless of whether one holds to the Copenhagen interpretation, countless
experiments have suggested that atoms may act like waves and light may act like a stream of
particles. Add into the mix Heisenberg’s uncertainty principle, in which after one measurement
a second observable would give unpredictable results, and it is easy to see why there are so
many interpretational traps to fall into. In the words [4] of Stephen Hawking: “Even God is
bound by the uncertainty principle and cannot know position and velocity. He can only know
the wavefunction.”

The pragmatic approach is to sidestep the question and introduce a definition of a quantum
state based on axiomatic principles that are born out in experiments. A quantum state ρ̂ is a
positive semi-definite, Hermitian matrix1, inhabiting a Hilbert space such that Tr [ρ̂] = 1. This

1The “hat” above the ρ is used to denote an operator, as the density matrix can be viewed as an operator

2



3

last condition is to ensure that any probability distribution resulting from measurements of the
quantum state normalise. At the first hurdle, it appears that the quantum theory is unclear,
as there is no way that a single measurement on a single quantum object can yield an entire
probability distribution. It is, then, implied that ρ̂ denotes the statistical properties of an entire
ensemble of identical quantum objects2.

The only other important comment to be made on this is that a density matrix may be used
to describe multiple systems. Two entirely statistically separate entities ρ̂1 and ρ̂2 can have their
density matrices combined as ρ̂ = ρ̂1⊗ ρ̂2 in a larger Hilbert space. Thus, we can largely remove
any analysis of quantum correlations from specific experimental settings and instead analyse
the properties of the abstract ρ̂. Correlations between subsystems will be contained within the
density matrix.

If a quantum state is examined entirely without any environmental interactions, i.e. we
have complete statistical knowledge of the system, then the state is said to be pure. However,
if there are interactions with any system not accounted for in ρ̂, then ρ̂ is said to form a mixed
state. A mixed state is not a fundamental object. A mixed state is simply a sign of ignorance
on the behalf of the researcher. If we have initially a pure state in a laboratory, but it is not
closed off from the elements, it is clear that information will be lost to the environment.

Traditionally, one could verify the purity of their quantum state by checking that Tr
[
ρ̂2
]

=
1. Another tool, much used in quantum information theory, is the von-Neumann entropy [6]

S (ρ̂) = −Tr [ρ̂ log ρ̂] (1.1)

where the definition is understood in terms of the eigenvalues of ρ̂. S (ρ̂) is zero if and only if
ρ̂ is a pure state. The von-Neumann entropy shall be used extensively throughout this thesis,
particularly for defining the quantum mutual information that captures the total correlations
between two subsystems ρ̂A and ρ̂B that make up the larger ρ̂AB

Iq (ρ̂AB) = S (ρ̂A) + S (ρ̂B)− S (ρ̂AB) (1.2)

where ρ̂A = TrB [ρ̂AB ].
Quantum entanglement has in recent years been identified as a potent resource in quantum

communication and is now readily accepted. However, until fairly recently the physics com-
munity wrongly associated all non-classical correlations with quantum entanglement. However,
in 2001 [7] a crude tool, the quantum discord was established that demonstrated a different
type of non-local correlation that can be formed between quantum subsystems. These non-local
correlations have recently found uses in quantum computing [8], but the full repercussions have
not yet been seen.

The work carried out in the pursuit of this thesis has covered a wide range of topics. In
this thesis are the best results from my studies into quantum entanglement and other non-
local correlations. The main focus has been on continuous variable systems (that is, density
matrices in infinite dimensional Hilbert spaces) as there remains far more to be explained than
in the finite-dimensional setting. Gaussian states are a special case and shall be referred to a lot.

The structure of this thesis is as follows. In Part 1, Chapter 2 gives all of the required in-
formation for describing continuous variable systems. In Part 2, Chapter 3 details all of the
relevant background information from entanglement theory. Chapters 4, 5 and 6 contain orig-
inal work on entanglement distillation and measures. In Chapter 4 we detail a method for
increasing quantum entanglement in two already entangled atomic ensembles. In Chapter 5
we explore entanglement distillation schemes using single quantum non-demolition interactions
and non-Gaussian operations. In Chapter 6 we introduce a quantity that looks promising as an
entanglement measure.

In Part 3, Chapter 7 contains relevant background information on quantum discord and
related measurements of correlations in bipartite systems. Chapters 8 and 9 contain further
original work on non-classicality indicators. In Chapter 8, we define a new non-classicality

acting in a Hilbert space.

2It is assumed throughout this thesis that the reader has a working knowledge of quantum mechanics and so
it is unnecessary to outline all the axioms and implicit assumptions from which quantum theory follows. For a
detailed analysis, I recommend [5].
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measure on Gaussian states and find analytic solutions on two mode Gaussian states. In Chapter
9 we explore the quantum correlations in a simple non-Gaussian state.

The work in Chapters 4 and 5 is entirely my own. The investigation of the Gaussian Intrinsic
Information in Chapter 6 is an ongoing project with Dr. Ladislav Mǐsta of Palacký University
with most work being carried out in parallel so as to make sure thare are no errors. The work of
Chapters 8 and 9 has been carried out in collaboration with Dr Mǐsta and Dr Gerardo Adesso at
the University of Nottingham. In both chapters, all analytic work was carried out primarily by
myself and Dr Mǐsta in parallel with Dr Adesso (and in the case of Chapter 8, his PhD student
Davide Girolami) performing numerical calculations. My supervisor, Dr Natalia Korolkova, has
provided guidance on all projects except for the measure discussed in Chapter 6.

In the final chapter we provide conclusions and suggest further work that could be done on
the ideas in this thesis.



Chapter 2

Continuous Variable Systems

In recent years, as the drive for quantum computers and communication hurtles ever forward,
more and more thought and attention has been given to how to implement quantum devices in
practice. Atomic systems have long been thought of as great candidates for quantum memory
and quantum repeaters [9, 10, 11]. To transmit signals, the obvious workhorse is light.

Light is a quantum object. If we shine a torch through two slits and onto a screen we
see wave-like interference patterns. Light can be polarised and succumbs to diffraction and
refraction. Light propagates in space and interferes with itself. Light is a wavelike object.

And yet, with suitable detectors we could consider the corpuscle nature of light in the guise
of photons. Einstein was awarded the Nobel prize in 1921 for his explanation of the photoelectric
effect, based on exactly that idea [12]. Light consists of particles.

The quantum nature of light has long been known. Planck’s initial treatise in 1905 asserted
just that! As light is such a useful resource in quantum information theory, we here give an in-
troduction to quantum optics, as the quantum language of light provides the perfect playground
in which to introduce continuous variable systems.

In what follows we discuss the basics of quantum optics, as has been described in lots of
excellent references [13, 14, 15, 16, 17, 18, 19, 20]. We shall begin by quantising the electro-
magnetic field and demonstrating the different representations of light: quadrature states, Fock
states, and coherent states. Once the basic formalism of continuous variable systems has been
established, we shall introduce the quasiprobability distributions that best represent quantum
states in phase space. We shall also discuss the special class of Gaussian states for which a
covariance matrix formalism proves sufficient for most required calculations.

2.1 Introductory quantum optics

Quantisation of the Electromagnetic Field

Maxwell revolutionised science when he introduced his famous equations to describe the be-
haviour of light. In dielectric media, an electric field E causes the bound charges in the material
to move, inducing a local electric dipole moment. This gives rise to an electric displacement
field D = εε0E where ε0 is the permittivity of free space and ε is the permittivity of the material
in question. In free space ε = 1. Magnetic fields can be described in terms of the magnetizing
field H and the magnetic induction B = µµ0H where µ0 is the permeability of free space. The
character µ defines the permeability coefficient of the material through which the light travels
and in free space is given by µ = 1. Maxwell’s equations can be written in differential form as

∇ ·D = 0, ∇ ·B = 0, ∇×E = −∂B

∂t
, ∇×H = −∂D

∂t
(2.1)

and also require the boundary conditions that the fields vanish at infinity.
Maxwell’s equations complemented Newtonian mechanics and ushered in the confident age

in which it was thought that the universe operated along strictly deterministic lines. With the
discoveries of Planck and Einstein at the beginning of the 21st century, quantum uncertainty
came to the fore. We can regard the classical fields E,D,B,H as the expectation values of

quantum observables e.g.
〈
Ê
〉

= E. From this simple yet plausible assumption it follows that

5
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the quantum field strengths must obey Maxwell’s equations as well, due to their linearity. By
replacing E,D,B,H in (2.1) with their hatted operator counterparts Ê, D̂, B̂, Ĥ we describe the
behaviour of the quantum fields.

As in classical electrodynamics, the quantum fields may be expressed in terms of a vector
potential A, which can be replaced with an operator Â.

Ê = −∂Â

∂t
, B̂ = ∇× Â (2.2)

With this, the middle two of Maxwell’s equations are automatically satisfied. The electromag-
netic field is gauge invariant so for simplicity we introduce the Coulomb gauge

∇ · Â = 0. (2.3)

This satisfies ∇ · D̂ = 0 immediately.
By rewriting the fourth Maxwell equation in terms of Â and using the vector identity

∇×
(
∇× Â

)
= ∇

(
∇ · Â

)
−∇2Â, we arrive at

∇2Â− 1

c2
∂2Â

∂t2
= 0. (2.4)

That is, the vector potential satisfies the wave equation. In deriving the wave equation, the
speed of light in a vacuum c emerges as c = 1/

√
µ0ε0.

The wave nature of light implies that it is subject to the superposition principle: if two
light fields interfere their amplitudes add together. This is due to the linearity of Maxwell’s
equations, which in turn implies that the superposition principle holds in the quantum world.
In fact, a quantum field Â (r, t) already contains all possible light fields, waiting to be made into
reality by the measurement process.

If we were to consider the classical field A (r, t) then we could rewrite it as A (r, t) =

A(+) (r, t) + A(−) (r, t) with A(−) (r, t) =
(
A(+) (r, t)

)†
. A(+) (r, t) contains all amplitudes

which vary as e−iωt, ω > 0 and A(−) (r, t) contains all amplitudes that vary as eiωt. Importantly,
the complex conjugate is part of the complete set of classical waves because Maxwell’s equations
are real.

In order to discretise the field variables, it is necessary to assume the field is contained in a
finite spatial volume V. The contributions A(+) (r, t) can be expanded as

A(+) (r, t) =

∞∑
k=0

Akuk (r) e−iωkt (2.5)

where the Fourier coefficients Ak are constant as the field is free. When V contains no refracting
materials all vector mode functions uk (r) must independently obey the wave equation (2.4).
That is, (

∇2 +
ω2
k

c2

)
uk (r) = 0 (2.6)

for all k and the Coulomb gauge implies that ∇ · uk (r) = 0. As the modes form a complete,
orthonormal set the condition ∫

V
u∗k (r) uk′ (r) dV = δk,k′ (2.7)

also applies.
In theory we could consider any solution to uk (r) that satisfied the correct conditions of

∇·uk (r) = 0, equations (2.6) and (2.7). For example, we could consider the plane wave solution
appropriate to a cubic volume V with length of sides given by L:

uk (r) =
1

L3/2
eσe

ik·r. (2.8)
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Here, k is the wave vector, eσ is the unit polarization vector (which is necessarily orthogonal to
k as ∇·uk (r) = 0, and the dispersion relation |k| = ωk/c is obtained by (2.6). The polarisation
index and wave vector are all encompassed in the mode index k.

The quantised vector potential can take the form

Â (r, t) =

∞∑
k=0

√
~

2ωkε0

[
uk (r) e−iωktâk + u∗k (r) eiωktâ†k

]
=

∞∑
k=0

√
~

2ωkV
eσ

[
ei(k·r−ωkt)âk + e−i(k·r−ωkt)â†k

]
. (2.9)

All of the quantumness of field Â (r, t) is obtained by replacing the fourier coefficientsAk with the

operators âk and â†k and imposing that they are mutually adjoint. Maxwell’s equations correctly
give real values. The normalisation factor renders the operators dimensionless. Equations (2.2)
indicate that the electric and magnetic fields can be quantised as

Ê (r, t) = i

∞∑
k=0

√
~ωk
2ε0

[
uk (r) e−iωktâk + u∗k (r) eiωktâ†k

]
(2.10)

B̂ (r, t) = i
∞∑
k=0

√
~

2ωkε0

[
(k× uk (r)) e−iωktâk + (k× u∗k (r)) eiωktâ†k

]
(2.11)

As an ansatz, we consider that the quantum Hamiltonian of an electromagnetic field is given by
replacing all field components with operators.

H =
1

2

∫
V

(E ·D + B ·H) dV → Ĥ =
1

2

∫
V

(
ε0Ê

2
+

B̂
2

µ0

)
dV (2.12)

By inserting (2.10) and (2.11) into (2.12) the Hamiltonian can be written as

Ĥ =
1

2

∞∑
k=0

~ωk
(
â†kâk + âkâ

†
k

)
. (2.13)

By imposing the condition that the field amplitudes Â and D̂ at various points in space but
at the same point in time are causally disconnected, and observing how the fields transform in
time, it is possible to show [13] that the bosonic commutation relation for the introduced mode
operators is [

âk, â
†
k′

]
= δk,k′ . (2.14)

The Hamiltonian (2.13) can then be rewritten as

Ĥ =
1

2

∞∑
k=0

~ωk
(
â†kâk +

1

2

)
. (2.15)

The entire electromagnetic field can therefore be described by the tensor product state of all
these quantum harmonic oscillators. Each one represents a single electromagnetic mode. The
bosonic operators âk and â†k can be considered as annihilating and creating photons respectively
in mode k. The photon number operator, counting the number of photons in mode k is defined
as

n̂k = â†kâk (2.16)

An important consequence of the quantisation process is that the vacuum |0〉 has non-zero
energy (〈0|Ĥ|0〉 > 0). Due to Heisenberg’s uncertainty principle, the vacuum contains random
fluctuations. That is, |0〉 is a valid quantum state.

With the electromagnetic field quantised and annihilation/creation operators introduced,
we can now begin to discuss other representations of continuous variable quantum states. In the
remainder of this thesis, ~ = 1 unless otherwise stated.
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Quadrature states

In what follows we shall consider representations of a single mode, and for convenience drop the
subscript k. We begin by introducing two operators x̂ and p̂ called the quadrature operators and
can be considered as the real and imaginary parts of the complex â multiplied by a factor1 of√

2.

x̂ =
1√
2

(
â† + â

)
, p̂ =

i√
2

(
â† − â

)
(2.17)

The annihilation operator can be written as â = (1/
√

2)(x̂ + ip̂). In quantum optics, the
quadratures commonly correspond to the in phase and out of phase components of the electric
field amplitude with respect to a reference phase. However, the physical representation of
these constructs is not important - they can simply be thought of as conjugate “position” and
“momentum” in phase space, satisfying the commutation relation

[x̂, p̂] = i (2.18)

(where ~ = 1). They have no bearing on the position and momentum of e.g. a photon, which
in any case is challenging to define. They can be rotated by a unitary operator U = exp[iφ] in
phase space and still satisfy the commutation relation (2.18) in their new form

x̂φ = x̂ cosφ+ p̂ sinφ, p̂φ = −x̂ sinφ+ p̂ cosφ. (2.19)

The phase shift can be thought of, in the quantum optics case, as shifting the reference phase
mentioned previously. A phase shift of π/2 rotates from a position to a momentum representa-
tion. The eigenstates of the quadratures, the quadrature states satisfy

x̂|x〉 = x|x〉, p̂|p〉 = p|p〉 (2.20)

and are orthogonal and complete:

〈x|x′〉 = δ (x− x′) , 〈p|p′〉 = δ (p− p′) ,
∫ ∞
−∞
|x〉〈x|dx =

∫ ∞
−∞
|p〉〈p|dp = 1. (2.21)

The quadrature states are not physical as they require an infinite precision to define, but act as
a useful mathematical trick. For a wavefunction represented by |ψ〉 we can define the probability
amplitude in the position and momentum bases via

〈x|ψ〉 = ψ (x) , 〈p|ψ〉 = ψ̃ (p) . (2.22)

The wavefunction |ψ〉 can be written as e.g.

|ψ〉 =

∫ ∞
−∞
|x〉 〈x|ψ〉dx =

∫ ∞
−∞

ψ (x) |x〉dx. (2.23)

As a final note, position and momentum states are related by Fourier transform:

|x〉 =
1

2π

∫ ∞
−∞

dp exp[−ixp]|p〉, (2.24)

|p〉 =
1

2π

∫ ∞
−∞

dx exp[+ixp]|x〉. (2.25)

Fock states

Another useful state representation is the Fock or number state |n〉, defined as the eigenstate of
the number operator n̂.

n̂|n〉 = â†â|n〉 = n|n〉. (2.26)

1In the literature, this normalisation factor is not unique and so the quadrature operators may sometimes be
defined differently. The most common normalisation factors are 1 and 2 along with the

√
2 used here.
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A ket |n〉 therefore represents a state of n photons (excitations). The annihilation and creation
operator respectively lower and raise the number of photons in the mode:

â|n〉 =
√
n|n− 1〉, (2.27)

â†|n〉 =
√
n+ 1|n+ 1〉. (2.28)

The Fock state |n〉 can then be thought of as n excitations of the vacuum. That is,

|n〉 =

(
â†
)n
√
n
|0〉. (2.29)

The Fock states are also orthogonal and complete:

〈n′|n〉 = δn,n′ ,

∞∑
n=0

|n〉〈n| = 1. (2.30)

Importantly, equation (2.27) bounds the number of photons from below2 as â|0〉 = 0. One
consequence of this is the following. If we express â in terms of quadratures but replace the
momentum operator p̂ with −i∂/∂x, then it becomes apparent that

â|0〉 = â

∫ ∞
−∞

dxψ0(x)|x〉 =

∫ ∞
−∞

dx
x+ (∂/∂x)√

2
ψ0(x)|x〉 = 0. (2.31)

The solution of this equation is then

ψ0(x) =
1

π1/4
e−

x2

2 ,

(
ψ̃0(p) =

1

π1/4
e−

p2

2

)
. (2.32)

That is, the vacuum state can be described by a Gaussian phase space distribution, due to the
Heisenberg uncertainty relation. In a similar fashion, the quadrature distributions of the nth

Fock state can be expressed as

ψn(x) = 〈x|n〉 =
Hn(x)√
2nn!π1/4

e−
x2

2 (2.33)

ψ̃n(p) = 〈p|n〉 =
Hn(p)√
2nn!π1/4

e−
p2

2 (2.34)

where Hn is the nth Hermite polynomial.

Coherent states

As the mode functions uk (r) used to define the electric field in (2.10) form an orthonormal
set, it logically follows that the eigenstates of the field follow an infinite succession of relations
âk|αk〉 = αk|αk〉. The coherent state of the field as a whole then is made up of a direct product
of the individual states |αk〉.

We consider a single mode and drop the mode index k. The oscillator state which satisfies

â|α〉 = α|α〉 (2.35)

is known as a coherent state or sometimes as a Glauber state after the Nobel prize winner who
first considered them in mathematical detail [21, 22]. In actuality, coherent states were first
mentioned by Schrödinger [23] (translated to English in [24]) as a response to criticisms by
Lorentz that quantum mechanics did not allow for the emergence of classical behaviour in light.
However, the idea is usually credited to Glauber who gave detailed accounts.

2In actual fact this is not the only possibility. Another solution would be â|0〉 6= 0 but â†â|0〉 = 0. This,
however, has the unfortunate consequence of leading to a vacuum state wavefunction that cannot be normalised.
The resulting wave function is therefore known as the irregular wave function of the vacuum.
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If we project both sides of (2.35) onto the bra 〈n| and use the adjoint of equation (2.28)
then we immediately attain the recursion relation

√
n+ 1 〈n+ 1|α〉 = α 〈n|α〉 from which it can

be seen that

〈n|α〉 =
αn√
n!
〈0|α〉 . (2.36)

From the completeness of the Fock states it follows that

|α〉 =

∞∑
n=0

|n〉 〈n|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 (2.37)

where the normalisation 〈α|α〉 = 1 leads to 〈0|α〉 = e−
|α|2

2 . From (2.36) and (2.37) the photon
number distribution is given by a Poissonian distribution as

pn = | 〈n|α〉 |2 =
|α|2n

n!
e−|α|

2

. (2.38)

That is, if we repeatedly count the number of photons in a coherent state we obtain n photons
with probability pn. On average we get as many photons as quantified by the mean value |α|2.

A similar situation arises classically, if we were to repeatedly count a number of randomly
distributed classical particles. A Poissonian distribution is essentially classical in nature - a light
source emitting a coherent state would yield a random spacing between photons and remain
unaffected by the detection (annihilation) of a field excitation by definition. Some other photon
emitting sources are allowed to have different statistics. For example, a thermal light source gives
off “bunches” of photons revealing super-poissonian statistics, and the annihilation of the photon
does not leave the thermal state unperturbed. Coherent states thus offer the “most classical”
quantum description of light which is to be expected as they are produced, for example, as the
output of a laser and so mimic the wave nature of classical light.

It is important to note that the set of coherent states is not orthogonal as they are not
eigenstates of a Hermitian operator:

〈β|α〉 = e−
|α|2

2 −
|β|2

2 −β
∗α (2.39)

and so | 〈β|α〉 |2 = exp[−|α − β|2]. If |α〉 and |β〉 differ a lot then the overlap tends to zero
asymptotically.

Coherent states can be formulated in another useful way that highlights their properties in
phase space. We introduce the unitary displacement operator

D̂ (α) = exp[αâ† − α∗â] (2.40)

which has the properties [25]

Tr
[
D̂ (α)

]
= Tr

[
D̂† (α)

]
= πδ (R (α)) δ (I (α)) (2.41)

and
D̂ (α1) D̂ (α2) = e(α1α

∗
2+α∗1α2)D̂ (α1 + α2) . (2.42)

The displacement operator has the effect of adding a complex number α to the annihilation
operator:

D̂† (α) âD̂ (α) = â+ α. (2.43)

We could conceivably apply a negative displacement to a coherent state to see that

âD̂ (−α) |α〉 = D̂ (−α) D̂† (−α) âD̂ (−α) |α〉 = D̂ (−α) (â− α) |α〉 = 0 (2.44)

and so D̂ (−α) |α〉 = |0〉 which implies that coherent states are simply vacuum states that have
been displaced in phase space. Physically, of course, |α〉 and |0〉 are quite different, in energy
if nothing else. They simply have the same quantum uncertainty as the vacuum, as noticed by
Schrödinger in 1926 [23].

However, we can write the complex amplitude α in terms of real and imaginary parts as

α =
1√
2

(x̄+ ip̄) . (2.45)



11

(a) Displacement (b) Squeezing (c) Phase Rotation

Figure 2.1: On a plot of position x and momentum p, a classical system could be represented by a
point. In a quantum system there is inherent uncertainty. The effect of the displacement operator is
to shift a distribution in phase space (Figure 2.1a). The squeezing operator (Figure 2.1b) reduces the
uncertainty in one phase space variable at the expense of the other. The phase operator simply alters
the quantum state’s orientation (Figure 2.1c).

Replacing (2.45) in the definition of D̂ (α) and using the Baker-Hausdorff formula [26]

eF̂+Ĝ = e−
1
2 [F̂ ,Ĝ]eF̂ eĜ

= e
1
2 [F̂ ,Ĝ]eĜeF̂ (2.46)

we can write

D̂ (x, p) = exp

[
−ip̄x̄

2

]
exp [ip̄x̂] exp [−ix̄p̂]

= exp

[
ip̄x̄

2

]
exp [ix̄p̂] exp [−ip̄x̂] (2.47)

which has the effect of shifting the distributions by p̄ and x̄ in phase space e.g.

〈x|α〉 =
1

π1/4
exp

[
− (x− x̄)2

2
+ ip̄x− ip̄x̄

2

]
. (2.48)

Of course, if α = 0 then x̄ = p̄ = 0 and we have the vacuum quadrature distribution. Coherent
states have the same level of uncertainty as the vacuum and are minimum uncertainty states i.e.
Heisenberg’s uncertainty principle

∆x∆p ≥ 1/2 (2.49)

is saturated for coherent states.

Minimum Uncertainty States and the Squeezing Operator

We could ask what other states saturate the bound (2.49). In fact Pauli [27] (translation [28])
used a beautifully elegant method to show that a minimum uncertainty state |φ〉 must satisfy
the equation

1

2

x

∆2x
φ(x) +

∂

∂x
φ(x) = 0 (2.50)

where ∆2x is the variance of the position distribution. The solution to this is

φ(x) =
1

(2∆2xπ)1/4
exp

[
− x2

4∆2x

]
. (2.51)

Up to displacement, minimum uncertainty states are like coherent states. However, there is
another beauty to Pauli’s solution. Conceivably, the variance ∆2x does not have to equal 1/2.
That is, ∆2x and ∆2p could differ so long as (2.49) is satisfied. The uncertainty in position
x of the state could be decreased (“squeezed”) at the expense of knowledge of the momentum
quadrature.
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We parametrise the squeezing by parameter r and so

∆2x =
1

2
e−2r, ∆2p =

1

2
e2r (2.52)

which can be shown to be the result of applying a unitary squeezing operator [29, 30, 31]

Ŝ (r) = exp
[r

2

(
â†2 − â2

)]
(2.53)

to the vacuum |0〉.
Pauli’s proof showed that in fact all minimum uncertainty states are Gaussian and can be

thought of as displaced, squeezed, vacuum states in phase space i.e.

|φ〉 = D̂ (α) Ŝ (r) |0〉, (2.54)

which encompasses the vacuum trivially and all coherent states. A minimum uncertainty state
would have a position quadrature distribution of

φ(x) =
1

π1/4
er/2 exp

[
−e2r (x− x̄)

2

2
+ ipx− ip̄x̄

2

]
. (2.55)

We can consider the effect of the squeezing operator on the vacuum in more detail by normally

ordering it. Define K̂+ =
(
â†/2

)2
, K̂− = (â/2)

2
, K̂0 = (n̂+ 1/2), which have commutation

relations [
K̂−, K̂0

]
= 2K̂−,

[
K̂+, K̂0

]
= −2K̂+,

[
K̂−, K̂+

]
= K̂0. (2.56)

The squeezing operator can then be written as

Ŝ (r) = erK̂+−rK̂− = ef(r)K̂+eg(r)K̂0eh(r)K̂− . (2.57)

Following a method demonstrated elsewhere [32, 33, 34], if both sides of (2.57) are differentiated
with respect to r and multiplied on the right by Ŝ−1 (r) then the result is

K̂+ − K̂− =f ′(r)K̂+ + g′(r)ef(r)K̂+K̂0e
−f(r)K̂+

+ h′(r)ef(r)K̂+eg(r)K̂0K̂−e
−g(r)K̂0e−f(r)K̂+ . (2.58)

By applying the operator identity

eF̂ Ĝe−F̂ = Ĝ+
[
F̂ , Ĝ

]
+

1

2!

[
F̂ ,
[
F̂ , Ĝ

]]
+ · · · (2.59)

and equating operators on each side of the equals sign in (2.58), some differential equations are
found. These are

f ′(r)− 2g′(r)f(r) + h′(r)f2(r)e−2g(r) = 1, (2.60)

g′(r)− h′(r)e−2g(r)f(r) = 0, (2.61)

h′(r)e−2g(r) = −1, (2.62)

which have the solutions

f(r) = tanh(r), g(r) = − ln [cosh(r)] , h(r) = − tanh(r). (2.63)

The integration constants were found by setting r = 0. Thus the squeezing operator in normally
ordered form is

Ŝ (r) = e
tanh(r)

2 â†2e− ln[cosh(r)](n̂+ 1
2 )e−

tanh(r)
2 â2

(2.64)

which if applied to the vacuum state yields [35]

Ŝ(r)|0〉 =
1√

cosh r

∞∑
n=0

(
tanh(r)

2

)n √
(2n)!

n!
|2n〉. (2.65)

Consequently, a squeezing operator is not passive. It alters the number of photons in a state. If
we consider the energy of a given minimum uncertainty mode |φ〉 then

〈φ|Ĥ|φ〉 = 〈φ|â†â+
1

2
|φ〉 = |α|2 +

1

2
+ sinh2(r). (2.66)

In practice, the squeezing of light is accomplished by use of various non-linear crystals. These
must be pumped by another laser beam, which amplifies the input parametrically. As both
the conjugate position and momentum operators contribute to the energy of the mode, even a
squeezed vacuum carries energy beyond the standard vacuum.
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2.2 Phase space quasiprobability distributions

Wigner Function

With the essentials of quantum optics now explained, it is possible to consider how to represent
a quantum state in phase space. On a plot of conjugate position and conjugate momentum,
it would be possible to express a classical system by a single point, but quantum uncertainty
renders this impossible in the quantum case as it is infeasible to observe position and momentum
simultaneously and precisely. Furthermore, the very notion of a quantum state is hard to define
in terms of measurements alone, and it is instead standard to carry out repeated measurements
on seemingly identical systems to build up a statistical picture of a quantum object. It is, then,
more sensible to consider a phase space distribution, with the singular purpose of being able to
calculate observable quantities in a seemingly classical way.

Just as a particular state vector |ψ〉 admits a quadrature wavefunction ψ(x) = 〈x|ψ〉,
an operator Ô can be described by a phase space function Tr

[
ÔD̂ (α)

]
, where D̂ (α) is the

displacement operator of (2.40) and satisfies a completeness relation. With this, it is possible
to define a characteristic function of a quantum density matrix ρ̂ as

χ (x, p) = Tr
[
D̂ (x, p) ρ̂

]
. (2.67)

The Fourier transform of the characteristic function yields the Wigner function first proposed
by Eugene Wigner [36]:

W (x, p) =
1

(2π)
2

∫ ∞
−∞

χ (u, v) eiux+ivpdudv. (2.68)

The Wigner function can be written in terms of x and p as

W (x, p) =
1

2π

∫ ∞
−∞

eipq〈x− q

2
|ρ̂|x+

q

2
〉dq. (2.69)

Above, for brevity, the Wigner function has been defined for a single mode only, but the extension
to an N -mode Wigner function W (x1, p1, · · · , xN , pN ) is not a difficult leap of the imagination.

Here we have an appropriate representation of a quantum state in phase space in the form
of a Wigner function. Importantly,W (x, p) can become negative in regions or ill-behaved and so
is not a true probability distribution. Also, in reality quantum position and momentum cannot
be measured simultaneously to form a true probability distribution. It is a quasiprobability
distribution. The Wigner function satisfies all the desirable properties that a quasiprobability
distribution should have [37]. Firstly, the Wigner function has the correct marginal distributions∫ ∞

−∞
W (x, p) dx = Pr (p) ,

∫ ∞
−∞
W (x, p) dp = Pr (x) , (2.70)

where Pr signifies a probability distribution. If a density matrix ρ̂ is rotated in phase space by
the unitary operator U (φ) = eiφ, then the Wigner function transforms accordingly as

ρ̂→ U(φ)ρ̂U†(φ)⇒W (x, p)→W (x cosφ− p sinφ, x sinφ+ p cosφ) . (2.71)

The Wigner function is normalised ∫ ∞
−∞
W (x, p) dxdp = 1 (2.72)

and real (W(x, p) =W∗(x, p)) as a representation of Hermitian operators.
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By far the most outstanding property of the Wigner function is the overlap formula. For
two Hermitian operators e.g. ρ̂ and Ô

Tr
[
ρ̂Ô
]

=

∫ ∞
−∞
〈x′|ρ̂Ô|x′〉dx′

=

∫ ∞
−∞
〈x′|ρ̂|x′′〉〈x′′|Ô|x′〉dx′dx′′

=
1

2π

∫ ∞
−∞

eip(q1+q2)〈x− q1

2
|ρ̂|x+

q1

2
〉〈x− q2

2
|Ô|x+

q2

2
〉dq1dq2dxdp

= (2π)

∫ ∞
−∞
Wρ (x, p)WO (x, p) dxdp. (2.73)

That is, one can calculate the expectation value of an operator Ô acting on state ρ̂ by looking
at the phase space distribution overlap of the two operators. The overlap formula allows for an
easy change of basis. For example, if a switch to a basis |n〉〈n| was required, then it would be
only necessary to replace WO (x, p) in (2.73) with the Fock state Wigner function

Wn (x, p) =
(−1)n

π
e−x

2−p2

Ln
(
2x2 + 2p2

)
(2.74)

where Ln denotes the nth Laguerre polynomial. The purity of a state can also be described by
(2.73)

Tr
[
ρ̂2
]

= 2π

∫ ∞
−∞
W2 (x, p) dxdp (2.75)

and the von-Neumann entropy of ρ̂ is bounded by

S (ρ̂) ≥ 1− 2π

∫ ∞
−∞
W2 (x, p) dxdp. (2.76)

Another property of the Wigner function is that it is bounded from above,

|W (x, p)| ≤ 1

π
. (2.77)

It is easy to show how a Wigner function transforms with the operators mentioned so far. In
addition to the phase shift operation (2.71), the squeezing operator (2.53) and displacement
operator (2.47) transform the Wigner function as

W (x, p)→W
(
erx, e−rp

)
and W (x, p)→W (x− x̄, p− p̄) (2.78)

respectively.

Other quasiprobability distributions: s-parametrization

We could consider other quasiprobability distributions that have other useful properties. In
particular, we could re-examine equation (2.67), defining the characteristic function as the trace
of the displacement operator with the density matrix ρ̂:

χ (α) = Tr
[
ρD̂ (α)

]
= Tr

[
ρeαâ

†−α∗â
]
. (2.79)

Importantly, the displacement operator in (2.79) is symmetrically ordered - if the exponential
was to be expanded, the operators â and â† would be combined symmetrically. By treating the
characteristic function as a generating function, it is therefore possible to find that〈[

â†mân
]
sym

〉
= Tr

[
ρ̂
[
â†mân

]
sym

]
=

∂(m+n)

∂αm∂α∗n
χ (α)

α=α∗=0
(2.80)

where, for example,
[
â†â2

]
sym

= âââ† + ââ†â+ â†ââ.
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However, one could instead use the Baker-Hausdorff formula (2.46) to rewrite the charac-
teristic function in two alternative ways:

χ (α) = Tr

[
ρ̂e−

|α|2
2 eαâ

†
e−α

∗â

]
= e−

|α|2
2 Tr

[
ρ̂eαâ

†
e−α

∗â
]

= e−
|α|2

2 χN (α) , (2.81)

χ (α) = Tr

[
ρ̂e
|α|2

2 e−α
∗âeαâ

†
]

= e
|α|2

2 Tr
[
ρ̂e−α

∗âeαâ
†
]

= e
|α|2

2 χA (α) . (2.82)

In the above, the subscripts N and A stand for normally and antinormally ordered respectively.
That is, if χN (α) and χA (α) were to be treated as generating functions then

〈
â†mân

〉
= Tr

[
ρ̂â†mân

]
=

∂(m+n)

∂αm∂α∗n
χN (α)

α=α∗=0
, (2.83)

〈
âmâ†n

〉
= Tr

[
ρ̂âmâ†n

]
=

∂(m+n)

∂αm∂α∗n
χA (α)

α=α∗=0
. (2.84)

The normally ordered and anti-normally ordered characteristic functions play a special role in
this thesis, but as can be seen above, one can be turned into the other by multiplying by a
suitable exponential. More commonly, one defines an s-parametrised characteristic function as

χ (α; s) = χ (α) es
|α|2

2 (2.85)

which for convenience we shall write in terms of conjugate position and momentum as

χ (x, p; s) = χ(x, p)e
s
4 (x2+p2) (2.86)

The effect on the Wigner function is to convolve it with Gaussian distributions parametrised by a
real parameter s [38, 39]. It is also possible to define quasiprobability distributions parametrised
by complex numbers [40] but that is beyond the scope of this thesis. The s-parametrised
quasiprobability distributions are given by the Fourier transform of (2.86):

W (x, p; s) =
1

(2π)
2

∫ ∞
−∞

χ (u, v; s) eiux+ivpdudv. (2.87)

The most important cases for this thesis are s = 0, 1,−1. When s = 0, the characteristic function
(2.86) is unchanged and so (2.87) reduces to the standard Wigner function.

If s = −1 then the parametrised characteristic function is the anti-normally ordered χA
and the corresponding quasiprobability distribution is known as the Q function, denoted Q.
The Q function is a simple convolution of the Wigner function with the vacuum distribution
Wvac(x, p) = (1/π) exp[−x2−p2] and the result is a smooth, non-negative, normalized quasiprob-
ability distribution

Q (x, p) ≡ W (x, p;−1) =

∫ ∞
−∞
W (x′, p′)

exp[−(x− x′)2 − (p− p′)2]

π
dx′dp′. (2.88)

On comparison with the overlap formula (2.73) it is clear that the Q function simply gives the
probability distribution for finding the coherent state α = (1/

√
2)(x+ ip).

Q (x, p) =
〈α|ρ̂|α〉

2π
(2.89)

Importantly, as will be seen in Chapter 5 the Q function acts as a generating function for density
matrix elements.

For s = 1 the P function, P (also known as the Glauber-Sudarshan function [41, 42]) is
obtained, and is of importance in Chapter 8. Due to the optical equivalence theorem a density
matrix ρ̂ can be written as

ρ̂ =

∫ ∞
−∞
P (x, p) |α〉〈α|dxdp (2.90)

(where once again α = (1/
√

2)(x+ ip)). Traditionally, the P function has been used to indicate
whether a state exhibits non-classical behaviour. If the Wigner function can be negative, then
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the P function can exhibit far worse behaviour. Not much more will be said of the P function
here except that it can be very ill-behaved. After all, a pure state |ψ〉〈ψ| cannot be written as a
distribution of coherent states unless |ψ〉 itself is a coherent state. In that case, the P function is
simply a delta function. From this observation, the P function of a Fock state |n〉 must contain
derivatives of a two dimensional delta function - very strange behaviour indeed.

The relationship between the s-parametrized formulae and the overlap function is

Tr
[
ρ̂Ô
]

=
1

2π

∫ ∞
−∞
Wρ (x, p; s)WO (x, p;−s) dxdp. (2.91)

2.3 Gaussian States

The primary tools for exploring quantum information theory in the continuous variable setting
are the Gaussian states and Gaussian maps. Gaussian states are those states with a Gaussian
characteristic function (2.67) (and hence a Gaussian Wigner function) and Gaussian maps are
those transformations that turn one Gaussian state into another.

Gaussian states are of great practical relevance. The quantum vacuum, for one, is a Gaussian
state, as are the coherent states |α〉 resulting from a displacement of the vacuum in phase space.
Squeezing, phase-shifting and beamsplitter transformations, are all examples of Gaussian maps.
Quite often, non-linear operations can also be approximated to a high calibre by Gaussian maps.

In this Section, we shall introduce only the most relevant qualities of bosonic Gaussian states
to this thesis. Consequently, a lot of fascinating areas of investigation shall not be delved into.
For brilliant reviews of the basic facts of Gaussian quantum information processing, see those
by Braunstein and Van Loock [43] and Ferraro [25]. For a particular focus on entanglement
in Gaussian states see the PhD thesis of Adesso [44] and the review [45]. For an up-to-date
overview of all Gaussian Quantum Information Theory see [46].

Definition of a Gaussian state

An N-mode Gaussian state is a state with a Gaussian Wigner function that can be written in
terms of a covariance matrix γ as

W (x1, p1, . . . , xN , pN ) =
exp

[
−
(
RT − dT

)
γ−1 (R− d)

]
πN
√

det γ
(2.92)

where R = (x1, p1, . . . , xN , pN )
T

and d = (〈x1〉 , 〈p1〉 , . . . , 〈xN 〉 , 〈pN 〉)T is a vector of first
moments i.e. displacements. The covariance matrix is defined as

γlm =
〈
R̂lR̂m + R̂mR̂l

〉
− 2dldm. (2.93)

It is very important to note that definitions vary throughout the literature. The definition of
the covariance matrix given above is compatible with [x̂j , p̂k] = iδj,k. Other possibilities that
frequently surface are [x̂j , p̂k] = 2iδj,k with a factor of 1/2 appearing in (2.93) (as is used in
e.g. [44] and [45]), or [x̂j , p̂k] = iδj,k with the factor of 1/2 in (2.93), in which case the Wigner
function (2.92) is altered accordingly.

Interestingly, for Gaussian states all of the s-parametrized quasiprobability distributions
can be found by replacing γ in (2.92) with γs, and γs is defined by

γs = γ − s1. (2.94)

The quantities that characterise all continuous variable Wigner representations are the statistical
moments of the Gaussian state. The first moment is simply the mean value of the observables
(e.g. d) and the second characterises the covariance matrix (2.93). One may ask whether there
exist continuous variable states that are fully characterised by, for example, their skewness or
kurtosis (3rd and 4th moments). In fact, as a result of the Marcinkiewicz Theorem [47, 48, 49],
to fully characterise a continuous variable state you either need just the first two moments (for
Gaussian states) or you need all of them!
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The covariance matrix is a real, 2N × 2N , symmetric matrix. To represent a feasible
quantum state the only requirement is that a covariance matrix satisfy Heisenberg’s Uncertainty
Principle [50] which can be expressed conveniently as

γ + iΩ ≥ 0 (2.95)

where Ω = ⊕Nj=1ω and ω is given by

ω =

(
0 1
−1 0

)
. (2.96)

From the diagonal terms in (2.95) one easily derives the usual expression of Heisenberg’s un-
certainty principle. From the definition (2.93), the covariance matrix of the vacuum is given by
γvac = 1. All other Gaussian states can be seen as the result of Gaussian maps on γvac.

Gaussian Maps

In general, a quantum state undergoes a quantum operation [51] consisting of a linear map
Ξ : ρ̂→ Ξ (ρ̂) which is completely positive and potentially trace-decreasing. More will be made
of this in Chapter 3. A quantum operation is said to be a quantum channel if it is trace-
preserving, and the simplest of these are reversible and represented by unitary transformations
U with U†U = 1. The density matrix ρ̂ then transforms as Uρ̂U†. A Gaussian unitary channel
therefore consists of those quantum channels that transform Gaussian states to Gaussian states.
Usually the unitary can be represented by U = exp[−iĤ] where Ĥ is a Hamiltonian which is at
most a second-order polynomial in the field operators â and â†.

As a consequence of the Stone Von-Neumann Theorem, all Gaussian unitaries acting on
the Hilbert space level can be represented by a symplectic operation S on the phase space level.
That is a Gaussian unitary can be identified with a matrix S that acts on the phase space
variables (x,p) and is essentially defined by how the phase space variables tranform i.e.

R′ = SR. (2.97)

The matrix S must necessarily satisfy

SΩST = Ω (2.98)

to be symplectic and to preserve Heisenberg’s Uncertainty Principle. As a consequence of (2.98),
detS = 1. A generic unitary Gaussian map can consist of a symplectic operation and a displace-
ment. For example, if we were to displace a Gaussian state in phase space by d′ and perform a
symplectic transformation S the first and second moments would transform as

d→ Sd + d′, γ → SγST (2.99)

respectively.
Some of the most important transformations that have been introduced so far can be rep-

resented by a symplectic operation. The squeezing operation (2.53) can be represented by

SSQ (r) =

(
er 0
0 e−r

)
(2.100)

and a phase space rotation can be represented by

SPH (θ) =

(
cos θ sin θ
− sin θ cos θ

)
. (2.101)

The most general one mode covariance matrix γone can be represented as a result of squeezing
and rotation of a thermal state in phase space and can be written as

γone = (2 〈n〉+ 1)SPH (θ)SSQ (r) γvacS
T
SQ (r)STPH (θ) (2.102)

where 〈n〉 is the average number of photons in the mode and γvac = 1. If 〈n〉 = 0, we have
the most general form of a pure Gaussian covariance matrix. This corresponds to a rotated
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Figure 2.2: A beamsplitter is a four port optical device, taking two modes as input and releasing two
modes as output. Both input modes are partially transmitted and partially reflected by the beamsplitter.

and displaced squeezed state |α, θ, r〉 = D̂ (α) Û (θ) Ŝ (r) |0〉 although later in this thesis (e.g.
Chapter 9) the rotation and squeezing are amalgamated as e.g. |α, reiθ〉.

Vitally, some very useful multimode operations are Gaussian in nature. Firstly, we have the
lossless beamsplitter which takes two input modes and combines them by either transmitting
or reflecting photons proportional to a transmittance coefficient T (see Figure 2.2). In the
Heisenberg picture, a beamsplitter transforms the annihilation operators of the two input modes
(â and b̂ respectively) as (

â′

b̂′

)
=

( √
T −

√
1− T√

1− T
√
T

)(
â

b̂

)
, (2.103)

and so, by taking the adjoint of equation (2.103) and representing two input Fock states |n1, n2〉
using equation (2.29), it can (after a lot of algebra) be shown that a beamsplitter mixes two
Fock states as

|n1, n2〉 →
1√

n1!n2!

n1,n2∑
k1,k2

(√
T
)k1 (

−
√

1− T
)n1−k1

(√
1− T

)k2
(√

T
)n2−k2√

(k1 + k2)!(n1 + n2 − k1 − k2)!

×
(
n1

k1

)(
n2

k2

)
|k1 + k2, n1 + n2 − k1 − k2〉. (2.104)

The total photon number is conserved, but the photons are distributed between the two output
modes proportional to T . Using equation (2.104), one sees that if a single photon in each input
mode is incident on a 50/50 beamsplitter, then 2 photons emerge in one output port or the other.
This is the famous Hong-Ou-Mandel effect. A beamsplitter interaction between two Gaussian
states can be represented by the symplectic operation

SBS (T ) =


√
T 0

√
1− T 0

0
√
T 0

√
1− T

−
√

1− T 0
√
T 0

0 −
√

1− T 0
√
T

 . (2.105)

If we squeeze a vacuum mode in x and another mode in p, and combine both modes on a 50/50
beamsplitter (T = 1/2) then we arrive at the covariance matrix of the two mode squeezed vacuum

γTMSV = SBS (1/2) (SSQ (r)⊕ SSQ (−r)) γvac

(
STSQ (r)⊕ STSQ (−r)

)
STBS (1/2)

=


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 . (2.106)

This Gaussian state has zero mean. In the limit of infinite squeezing (r → ∞) the state ap-
proaches the legendary, and yet unphysical, Einstein-Podolsky-Rosen state [52] in which the
positions and momenta of two subsystems are maximally entangled. The two mode squeezed
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vacuum is a pure state and any two mode pure Gaussian state can be represented by covariance
matrix (2.106). The Fock state representation of the two mode squeezed vacuum is

|Ψ〉 =
√

1− λ2

∞∑
n=0

λn |nn〉 (2.107)

with λ = tanh(r).
Another significant Gaussian operation is the Quantum Non-Demolition (QND) interaction.

The quantum non-demolition interactions [53, 54] are well-known from quantum metrology.
They are decribed by Hamiltonians of the form e.g.

ĤQND = κP̂SP̂A (2.108)

where κ is the interaction strength and P̂S/A are the quadratures of the system/ancillary mode.
The system and ancillary mode interact in such a way as to leave one quadrature component
of each subsystem intact whilst phase shifting the conjugate components. In particular, in the
Heisenberg picture, where the quadratures evolve via the Heisenberg equations of motion, only
the position quadratures of the system and ancillary modes would be affected by equation (2.108)
as the momenta quadratures commute with the Hamiltonian. Furthermore, for light it was also
shown that it is possible to create a QND Hamiltonian using optical instruments such as biased
beamsplitters and squeezers in combination [55].

Importantly for Chapter 5, quantum non-demolition interactions can also be represented
by symplectic operations. For an interaction between a system and ancillary mode, given by

the interaction Hamiltonian Ĥint = κR̂jR̂k, the corresponding symplectic operation S
(κR̂jR̂k)
QND is

given by

S
(κX̂X̂)
QND =


1 0 0 0
0 1 −κ 0
0 0 1 0
−κ 0 0 1

 , S
(κX̂P̂ )
QND =


1 0 0 0
0 1 0 −κ
κ 0 1 0
0 0 0 1

 ,

S
(κP̂ X̂)
QND =


1 0 κ 0
0 1 0 0
0 0 1 0
0 −κ 0 1

 , S
(κP̂ P̂ )
QND =


1 0 0 κ
0 1 0 0
0 κ 1 0
0 0 0 1

 . (2.109)

Symplectic analysis of Gaussian states

In 1936, Williamson [56] proved that all positive definite real matrices of even dimensions can
be diagonalised by symplectic operations. For the N -mode covariance matrix γ, there always
exists a symplectic transformation that puts the covariance matrix in symplectic form γν

SγST = γν = ⊕Nj=1

(
νj 0
0 νj

)
, (2.110)

where ⊕ denotes the direct sum of matrices. The symplectic eigenvalues νj can be found
as the eigenvalues of |iΩγ|. The determinant of any Gaussian state is easily expressed as
det (γ) =

∏
j ν

2
j . Furthermore, for Heisenberg’s Uncertainty Principle to hold, and hence for

γ to represent a true quantum covariance matrix, νj ≥ 1 for all j. The symplectic diagonalisa-
tion of a covariance matrix corresponds to the decomposition of a Gaussian state into thermal
modes. The covariance matrix (2.110) corresponds to the density matrix being expressed as

ρ̂⊗ = ⊗Nj=1

2

νj + 1

∞∑
n=0

(
νj − 1

νj + 1

)n
|n〉j〈n|, (2.111)

where ⊗ denotes the tensor product of density matrices. In this Williamson form, each mode
is a Gaussian state in thermal equilibrium at a temperature Tj characterised by the average
number of photons 〈nj〉 and frequency ωj . The average number is described by Bose-Einstein
statistics

〈nj〉 =
νj − 1

2
=

1

exp[
~ωj
kBTj

]− 1
. (2.112)
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There are other important quantities relating to the symplectic spectrum {νj}. The seralian [57]
is defined as the sum of the determinants of all the 2× 2 submatrices of γ and can be calculated
from symplectic eigenvalues via

∆ (γ) =

N∑
j=1

ν2
j . (2.113)

The invariance of ∆ for multiple modes [58] follows from the the knowledge that all symplectic
operations can be decomposed as products of two-mode transformations [59] and the invariance
of ∆ in the two-mode case (see [60] for proof).

The von-Neumann entropy of any N -mode Gaussian state can easily be calculated in terms
of the symplectic eigenvalues of covariance matrix γ [61]. The entropy is calculated via

S (ρ) =

N∑
j=1

F(νj) (2.114)

where

F(ν) =

(
ν + 1

2

)
ln

(
ν + 1

2

)
−
(
ν − 1

2

)
ln

(
ν − 1

2

)
. (2.115)

Noticeably, the state is pure (i.e. entropy (2.114) is zero) if and only if νj = 1 for all j. The
covariance matrix of a pure Gaussian state satisfies

−ΩγΩγ = −ΩSSTΩSST = −ΩSΩST = −ΩΩ = 1 (2.116)

where γ can be expressed as SST for all pure states.

Bipartite Gaussian States

If we were to consider that two parties, Alice and Bob, possessed a Gaussian state (of m and n
modes respectively), the covariance matrix of the system could be expressed as

γ =

(
α σ
σT β

)
(2.117)

where α is a 2m × 2m matrix, β is a 2n × 2n matrix and σ contains the correlations between
Alice and Bob’s modes.

It would be most desirable to explore how a bipartite Gaussian state transforms under local
Gaussian operations. As Gaussian maps have effects only on the level of covariances, it is possible
to formulate the effect of a Gaussian map on a Gaussian state also in terms of covariances. There
have been many works ([62],[63] to name a few) showing how a bipartite state transforms under
a Gaussian map reducing the number of modes. Ultimately, if we were to project Bob’s modes
onto a Gaussian state with covariance matrix γp, then a Gaussian operation has been performed.
The result is that the covariance matrix of Alice’s modes, and their displacement in phase space,
are transformed as

γ → α− σ (β + γp)
−1
σT , d→ 1

2
σ (β + γp)

−1
d. (2.118)

The proofs given in the literature are complicated but the principle behind (2.118) is simple,
and just requires the overlap formula (2.73). Consider, as an example, a map where there are
no displacements i.e. we are only concerned with the transformation of the covariance matrix.
Then we express

γ−1 =

( (
α− σβ−1σT

)−1 −
(
α− σβ−1σT

)−1
σβ−1

−β−1σT
(
α− σβ−1σT

)−1
β−1 + β−1σT

(
α− σβ−1σT

)−1
σβ−1

)

=

(
A C
CT B

)
. (2.119)
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The measurements of Bob’s modes (with Gaussian measurement ĜB) can be written using the
Wigner overlap formula as

Tr
[
ρ̂ABĜB

]
=

(2π)
n

exp
[
−ηTAAηA

]
πm+n

√
det γ

∫ ∞
−∞

exp
[
−ηTB

(
B + γ−1

p

)
ηB − 2ηTACηB

]
dηB

=
(2π)

n
πn

πm+n
√

det γ
√

det
(
B + γ−1

p

) exp
[
−ηTA

(
A− C

(
B + γ−1

p

)−1
CT
)
ηA

]
(2.120)

where ηTA = (x1, p1, · · · , xm, pm) and ηTB = (xm+1, pm+1, · · · , xm+n, pm+n). This can be thought

of as a probability of projecting onto ĜB multiplied by a Wigner function characterised by the

covariance matrix γ′ =
(
A− C

(
B + γ−1

p

)−1
CT
)−1

which, with repeated and careful use of the

binomial inverse theorem

(A+ UBV)
−1

= A−1 −A−1UB
(
B + BVA−1UB

)−1 BVA−1 (2.121)

can be put into the required form (2.118). Homodyne detection of Bob’s modes is a projection
onto a pure generic state, given for a single mode in (2.102), in the limit of infinite squeezing.
Heterodyning too is a Gaussian map.

In a similar way, we can also consider what happens to the covariance matrix of subsystem
A if we trace out subsystem B. Using the Wigner Overlap formula and utilising the binomial
inverse theorem it is possible to show that the covariance matrix of equation (2.117) reduces to
simply α. That is, we simply cut away all other submatrices (β and σ).

Most important for this thesis is the case when Alice and Bob each possess a single mode
(m = n = 1). If this is the case then there exist local symplectic operations S1 and S2, applied
as S = S1 ⊕ S2, that transform γ into the standard form

γ =


a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b

 (2.122)

which can be a mixed state in general. The invariants of this standard form can be expressed as

det γ = (ab− c2+)(ab− c2−), (2.123)

∆(γ) = a2 + b2 + 2c+c− (2.124)

and the symplectic eigenvalues are given by

ν± =

√
∆(γ)±

√
∆2 (γ)− 4 det γ

2
(2.125)

2.4 Summary of Chapter 2

The standard toolbox for quantum optics has been unpacked in this chapter and proves very
useful for describing continuous variable systems in general. The beauty of the language of
quantum optics is that it shows, in effect, the boundary between particle and wave-like quantum
objects in continuous variables. The Wigner function and other phase space quasiprobability
distributions provide, for a single mode, a way to visualise a quantum state.

A particular focus has been applied to Gaussian states, which play a crucial role throughout
this thesis. In later chapters, the Gaussian state formalism will be used in the context of
entanglement distillation, and analytic formulae for non-classicality measures shall be provided
based on the elements of covariance matrices phrased in standard form.
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Chapter 3

Quantum Entanglement

In 1935, Einstein, Podolsky and Rosen [52] introduced a bipartite quantum state, perfectly cor-
related in position and momentum, as an example the “incompleteness” of quantum mechanics.
This was based on two precepts: “locality” and “reality”. “Locality” asserts that there can be no
“spooky action at a distance”. “Reality” means “If, without in any way disturbing a system, we
can predict with certainty (i.e. with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this physical quantity”.

For Einstein, Podolsky and Rosen, this example was meant to be a reductio ad absurdum
showing a fundamental flaw with quantum theory. After all, a measurement on one subsystem
of the bipartite state that they considered had the effect of collapsing the wavefunction of the
other and yet “since at the time of measurement the two systems no longer interact, no real
change can take place in the second system in consequence of anything that may be done to the
first system”. Einstein thought there must be more to quantum mechanics i.e. hidden variables,
and indeed spent the rest of his life looking for another explanation. Although unphysical, this
state can be achieved by the two mode squeezed vacuum in the limit of infinite squeezing. This
seminal paper galvanised the physics community.

Schrödinger [64] first coined the term entanglement (Verschränkung) to describe this phe-
nomenon. The term appeared again later in the second of the triplet of papers in which he
introduced the famous Schrödinger cat [65] (translation [66]). Schrödinger placed the phe-
nomenon at the centre of quantum theory but was also troubled. In a letter to Einstein dated
7th June, 1935, he wrote “I was very happy that, in your work that recently appeared in Phys.
Rev., you have publicly caught the dogmatic quantum mechanics by the collar, regarding that
which we had already discussed so much in Berlin”1. Schrödinger went on to say “The point of
my foregoing discussion is this: we do not have a quantum mechanics that takes into account
relativity theory, that is, among other things, that respects the finite speed of propagation of all
effects”.

Ultimately, quantum entanglement appeared troublesome, but is now recognised as a gen-
uine signature of quantum theory with bountiful applications. After a long hiatus, broken
by John Bell (Section 3.1), there has been a resurgence of interest in recent years. Notably,
in the 1990s quantum entanglement was formalised in terms of entropic quantities (see e.g.
[67, 68, 69, 70]). Quantum entanglement is now viewed as a potent resource, with applications
in quantum cryptography [71], quantum dense coding [72] and quantum teleportation [73, 74].
The quest for quantum cryptography and quantum computing led, in turn, to algorithms [75, 76].
Quantum entanglement went from being a philosopher’s toy to an experimentalist’s tool!

This chapter aims to give a brief review of the biggest results concerning quantum entangle-
ment, albeit far from exhaustive. For an extensive review see [77]. Only bipartite entanglement
shall be considered here. We begin by setting the historical context of quantum entanglement.
From there, we aim to capture the properties of entanglement qualitatively and quantitatively.
Some of the most vital separability criteria shall be covered, and information on measures of
entanglement.

1The original letter is in German at the Einstein Archives at the Hebrew University of Jerusalem. This
translation is from a copy of the letter held at the Howard Gotlieb Archival Research Center and extracts appear
in [3].
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3.1 Bell’s Inequalities

For a long time, the notion of quantum entanglement was ignored. This altered with John Bell.
Bell phrased the EPR idea of a deterministic world in terms of a local hidden variable model
(LHVM) by assuming that (1) measurement results are determined by properties the particles
carry prior to, and independent of, the measurement (realism), and (2) results obtained at
one location are independent of any actions at spacelike separated points (locality) [2]. The
third presumption is Free Will i.e. that the setting of the measurement devices is independent
of the hidden variables in the state to be measured. Local hidden variables are taken as a
working hypothesis to find restrictions. It was Aspect [78, 79, 80] that first performed the
most convincing2 tests of Bell’s inequalities after a long struggle. Before that they were seen as
controversial.

Imagine the following scenario. Alice and Bob have a pair of particles (A and B respectively)
which they have created with a quantum experiment of one form or another. They each have
two measuring devices (A1 & A2 for Alice, and B1 & B2 for Bob) and can independently choose
which of these measuring devices they use. They simultaneously observe the two particles A and
B by performing a measurement with one of their devices. For simplicity we can assume that
each measurement device has two possible outcomes, +1 and −1. Bell’s inequality then states
that for a LHVM

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2. (3.1)

To see this we expand the left hand side of (3.1) as

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 = 〈A1B1 +A1B2 +A2B1 −A2B2〉
= 〈A1(B1 +B2) +A2(B1 −B2)〉 . (3.2)

As the outcomes are ±1 we have two possibilities:

• B1 = B2 in which case we get the expectation value to be ±2A1,

• B1 = −B2 in which case the expectation value is ±2A2.

Therefore,

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 =
∑

a1,a2,b1,b2

p(a1, a2, b1, b2)(a1b1 + a1b2 + a2b1 − a2b2) ≤ 2.

(3.3)
This clear bound has nothing to do with the experimental apparatus used, and only concerns
itself with limits on expectation values. Although Aspect violated the bound, there are still
some hidden variable theories that remain popular, but all must now admit a non-local element.
The most famous of these is the de-Broglie/Bohm pilot wave theory [84] which Einstein also
found appealing.

It is now known that all pure states that are not product states (i.e. separable) must violate
a Bell inequality (see [85, 86]). For mixed states, there are states that are allowed to violate Bell’s
inequalities and which are demonstrably entangled. One example is the Werner state [87]. Aćın
et al. [88] also showed that there are non-maximally entangled states that maximally violate
Bell-type inequalities. Since Bell, there have been further developments to the theory, most
notably the CHSH inequalities [89]. Also, Greenberger, Horne, and Zeilinger went beyond the
Bell inequalities to show that entanglement of more than two particles leads to a contradiction
with the LHVM for nonstatistical predictions in quantum theory [90].

3.2 Characterising Bipartite Entanglement

Definition of an entangled state

The definition of quantum entanglement was first put forward in [87]. To be more precise,
a separable state was defined, and any quantum state not satisfying this definition must be

2The word “convincing” has been used as opposed to “definitive”. All experimental Bell tests suffer from
loopholes. See e.g.[81, 82, 83]. Usually this is due to detector inefficiencies etc. The problem is that it is almost
impossible to say definitively that the LHVM model has been violated (and is categorically impossible if one does
not accept Free Will as a valid assumption).
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non-separable. A separable state ρ̂AB is a state that can be written as the convex mixture

ρ̂AB =
∑
j

pj ρ̂A,j ⊗ ρ̂B,j (3.4)

and a non-separable state cannot. This negative definition of non-separability is perfectly ade-
quate, but more recently [91] it has been shown that if a state ρ̂AB is non-separable, then there
will be another quantum state σ whose teleportation fidelity will be magnified when used in
conjunction with ρ̂AB . An entangled state could then be positively defined as any state ρ̂AB
that can be used in “entanglement activation”.

Werner and Wolf [92] showed that for bipartite Gaussian states with covariance matrix γ,
equation (3.4) is equivalent to saying that there exist two covariance matrices γA and γB such
that

γ ≥
(
γA 0
0 γB

)
(3.5)

where the ≥ sign is understood as a relation amongst all eigenvalues. Keeping the definition of
a Gaussian state (2.93) in mind, this means that is is possible to create γ using two covariance

matrices in product form centred at the origin in phase space (i.e. defined by
〈
R̂lR̂m + R̂mR̂l

〉
alone) and adding classically correlated noise such that, in effect,

γ =

(
γA 0
0 γB

)
+ χ (3.6)

where χ is a matrix created by classical noise.

The geometry of quantum states

The set of separable states (i.e. those satisfying (3.4)) form a convex and compact set. For two

separable bipartite states ρ̂
(1)
AB and ρ̂

(2)
AB , we could write a linear mixture of the two as

pρ̂
(1)
AB + (1− p)ρ̂(2)

AB = p
∑
j

pj ρ̂
(1)
A,j ⊗ ρ̂

(1)
B,j + (1− p)

∑
j

qj ρ̂
(2)
A,j ⊗ ρ̂

(2)
B,j (3.7)

which is also a separable state. As the set of separable states is convex it must be contained within
the convex set of all quantum states. With this in mind, it should be possible to detect whether a
state is entangled by slicing up the space of all density matrices sufficiently to determine whether
a given state ρ̂AB is inside or ouside the set of separable states.

As a corollary of the Hahn-Banach theorem, given any convex set and an external point,
there exists a plane such that the point lays on one side whilst the convex set resides on the
other. If the convex set were taken to be the set of separable states, then the operator defining
the plane is known as an entanglement witness.

If we were to consider an arbitrary vector space V, then a plane in V can be defined by
finding all the vectors |u〉 that satisfy

〈u|ψ〉 = 0 (3.8)

where |u〉 is a unit vector orthogonal to the plane. The plane is then defined by a single vector
|ψ〉 such that all the vectors {|u〉} in the plane are orthogonal to it. For Hermitian operators
this would correspond to

Tr
[
ÔuÔψ

]
= 0. (3.9)

So, we could define a witness Ŵ to be a Hermitian operator that acts as a plane through the
convex set of all quantum states for which an entangled quantum state σ̂ falls on one side and
the convex set of separable states is on the other side. By definition

Tr[Ŵ ρ̂] = 0 (3.10)

defines the plane. Then we define that if a state ρ̂sep is separable then Tr[Ŵ ρ̂sep] ≥ 0. Necessarily,

state σ̂ is entangled if and only if there exists an operator Ŵ such that Tr
[
Ŵ σ̂

]
< 0 whilst

Tr[Ŵ ρ̂sep] ≥ 0 for all separable states ρ̂sep. Terhal [93] pointed out that a violation of a Bell
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Figure 3.1: The convex set of separable states is a subset of the convex set of all states. Entanglement
witnesses, such as the plane above, can bisect the set of quantum states, but not the set of separable
states. An optimal entanglement witness would bisect the set of all quantum states right at the boundary
of the separable states.

inequality can be expressed as a witness of entanglement, and coined the term entanglement
witness. Since then lots of work has been carried out.

Needless to say, entanglement witnesses are more of a mathematical tool than anything else.
It is more common to use separability criteria (see Section 3.3). Witnesses shall, however, play
a role later on in this thesis.

Qualities of entanglement

The geometric ideas of the previous section are useful for the mathematical formulation of
entanglement but are not useful for understanding the properties of entanglement. We here
outline a more operational interpretation, similar to that found in [94].

In quantum information we can consider a generalised measurement on a state. As is stan-
dard in an approach to quantum evolution, one considers a system to evolve either via unitary
operations or through the collapse of the wavefunction resulting from a projective measurement.
Instead, a more general scenario could be explored, in which interactions occur with ancillary
quantum states:

1. Ancillary particles are introduced

2. Joint unitary operations are performed on both the system in question and the ancillae,
and

3. Some particles are then discarded based on measurement outcomes.

If the ancillae are originally uncoordinated with the system then we can describe the evolution
via the Kraus operators. If total knowledge of the measurement outcomes is retained then the
state corresponding to measurement outcomes j occurs with probability pj = Tr[Âj ρ̂Â

†
j ] and is

given by

ρj =
Âj ρ̂Â

†
j

Tr[Âj ρ̂Â
†
j ]

(3.11)

where ρ is the initial state and the {Âj} are the Kraus Operators. The normalisation condition∑
j Â
†
jÂj = 1 holds.

Sometimes, when a system interacts with an environment, all or part of the knowledge of
measurement outcomes is lost. At the extreme end, the only hope for the observer is to average
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over all the possible measurement outcomes, that is, to trace out the ancillary particles. Such a
map is said to be trace preserving and is given by

ρ̂→ ρ̂′ =
∑
j

Âj ρ̂Â
†
j . (3.12)

We can now discuss the most important defining aspect of quantum entanglement, the LOCC
constraint. In any experiment involving quantum communication, it is most desirable to dis-
tribute entangled quantum states between distant, separate locations. If the states are perfectly
entangled, then it would be feasible to communicate via teleportation, and so the perfect distri-
bution of entanglement is almost synonymous with perfect quantum communication. However,
noise will always play a detrimental role to the ability to communicate, and to distribute the
entangled states. One favoured option would be to use these imperfect channels and then to
battle the noise using local operations and classical communication (LOCC). Loosely speak-
ing, the correlations that can emerge from local operations and classical communication can be
considered as classical correlations.

If we then try to use a bipartite quantum state to perform some task that cannot be
simulated using these essentially classical correlations, then the only option is that the ability
to do so must be due to some inherent quantum correlations that were already present in the
state. This is an essential consideration to the study of quantum entanglement. In practice
the set of LOCC operations is very large and Alice and Bob may use classical communication
before or after any round of local operations. They may perform one round of measurements,
communicate these results to each other classically, and then use the measurement outcomes
to indicate what their next move should be. There is, consequently, no simple characterisation
of LOCC operations, so other classes (with some sense of LOCC) have to be considered. For
example we could consider the set of separable operations which can be described as all Krauss
operators with a product decomposition as

ρ̂j =

(
Âj ⊗ B̂j

)
ρ̂
(
Â†j ⊗ B̂

†
j

)
Tr
[(
Âj ⊗ B̂j

)
ρ̂
(
Â†j ⊗ B̂

†
j

)] (3.13)

where
∑
j Â
†
jÂj ⊗ B̂

†
j B̂j = 1. All LOCC operations can be formed in terms of separable opera-

tions.
Following this idea of LOCC constraints, we can point out the main properties that entan-

glement has. These are

• Separable states, those given in (3.4), must possess no entanglement. These states can
be easily created from LOCC operations and they trivially satisfy local hidden variable
models.

• The entanglement of a single quantum state cannot increase deterministically under LOCC
operations. More specifically, if we know that a state ρ̂ can be turned into another state σ̂
by LOCC operations then anything that ρ̂ can be used for involving LOCC operations can
be equally well simulated using σ̂ and LOCC operations. That is not to say that things
cannot be altered by other methods (see Section 3.4).

• As the inverse of a local unitary matrix is another local unitary matrix, then if the entan-
glement in a quantum state could decrease via a local unitary operation, it would logically
follow that the inverse operation would increase the entanglement. This cannot occur due
to the reason mentioned previously, and so entanglement must be invariant to local unitary
operations.

• There are quantum states in finite dimensional Hilbert spaces that are said to be maximally
entangled, e.g. the singlet state 1/

√
2 (|01〉+ |10〉), which by definition yield a maximally

mixed thermal state when one subsystem is traced out. In the continuous variable regime
this is not the case when finite energy is assumed. A maximally entangled state could only
be achieved by taking e.g. the two mode squeezed vacuum in the non-physical limit of
infinite squeezing.

With these qualitative ideas expounded, we can now explore theoretical techniques for detecting
entanglement.
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3.3 Separability and Non-separability Criteria

Now that the idea of an entangled state has been firmly planted, we shall consider how to detect
entanglement. The best way is in fact to consider separability and non-separability criteria.
These consist of statements of the form “A separable state possesses the quality .... If the state
in question does not possess this quality, then it must necessarily be entangled” or a converse
statement.

Positive but not completely positive maps

At about the same time as the theory of entanglement witnesses was being developed, there was
also research done in the area of positive but not completely positive maps. A positive map is a
superoperator that will transform a matrix with positive eigenvalues (such as quantum density
matrices) into another positive matrix. That is, a map Λ is positive if, for any positive matrix
ρ, we have Λ(ρ) ≥ 0. A map Λ is positive if it preserves hermiticity and the cone of positive
elements. From any map Λ another map affecting a larger system, (1⊗ Λ) can be defined with
the effect

(1⊗ Λ)

∑
j

pjρA,j ⊗ ρB,j

 =
∑
j

pjρA,j ⊗ Λ (ρB,j) (3.14)

If the RHS of the above equation is also positive, then the map Λ is said to be completely
positive. All physical evolution of a system is given by completely positive maps. But to test
entanglement, we want to find positive but not completely positive maps. A quantum state ρ̂AB
is separable if and only if

(1⊗ Λ) (ρ̂AB) ≥ 0 (3.15)

for all positive but not completely positive maps.
Effectively, a density matrix has to be positive semidefinite and hermitian with Tr [ρ̂] = 1. If

we apply a map Λ to a state ρ that is positive, then Λ(ρ) is also a valid quantum state. However,
if (1⊗ Λ) ρ̂AB is not positive, then the use of the map on one of the subsystems of a bipartite
state does not yield a valid state. As shall be seen, there has been major exploration into finding
operations, or some symmetry to be broken, that would transform a single quantum object into
another single quantum object, but which does not apply on sub parts of larger systems.

Peres-Horodecki Criterion

One of the most powerful criterion based on positive but not completely positive maps is the
positive partial transposition criterion (PPT). For finite dimensional systems this was first shown
in [95]. The PPT criterion states that for a separable state ρ̂AB =

∑
j pj ρ̂A,j ⊗ ρ̂B,j , the form

ρ̂TAAB =
∑
j pj ρ̂

T
A,j ⊗ ρ̂B,j is also a valid density matrix. It also guarantees the positivity of

ρ̂TBAB defined in an analogous way. Horodecki [96] showed that the PPT criterion is necessary
and sufficient for quantum states ρ̂AB defined on Hilbert space HAB = HA ⊗ HB where the
dimensions of HA and HB are dA = dB = 2 and dA = 2, dB = 3.

For continuous variables the PPT criterion has also been shown [97] to be valid. There,
it was shown that in phase space the PPT criterion can be interpreted as a reflection of the
phase space coordinates of one subsystem about the position axis. That is, if a density ma-
trix can be represented by the coordinates (xA, pA, xB , pB) then ρ̂TBAB can be represented by
(xA, pA, xB ,−pB). This corresponds to a time reversal of one subsystem. For one lone quantum
object, time reversal would still lead to a valid quantum state, but when performed on part of
a greater quantum state, the result is not in general a positive density matrix.

Reduction and Majorisation criteria

As was noticed by Schrödinger, the whole is more than a sum of its parts. It is known that in
quantum mechanics the von-Neumann entropy of a subsystem ρ̂A = TrB [ρ̂AB ] can be greater
than the entropy of the global state. That is,

S (ρ̂A) > S (ρ̂AB) . (3.16)
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If this is true then it is known that the state is more disordered locally than globally and the state
must be non-separable. Separable states must satisfy S (ρ̂A) ≤ S (ρ̂AB). Majorisation theory
can be a very useful tool in quantum information and can allow us to see whether (3.16) holds.
For two matrices A and B of dimensions dA and dB we can put their respective eigenvalues into

vectors in descending order a↓ =
(
a↓1, · · · , a

↓
dA

)
and b↓ =

(
b↓1, · · · , b

↓
dB

)
. If for example dA < dB

then we put a↓dA+1 = 0, · · · , a↓dB = 0. Then if

k∑
j=1

a↓j ≤
k∑
j=1

b↓j k = 1, 2, · · · (3.17)

we say that A is majorised by B (or A � B)3. If A is majorised by B then for any Schur concave
functional f of A and B, it is true that f (A) ≥ f (B). Consequently, for two density matrices
ρ̂(1) and ρ̂(2) for which ρ̂(1) � ρ̂(2), their von-Neumann entropies must satisfy S

(
ρ̂(1)

)
≥ S

(
ρ̂(2)

)
.

With this majorisation tool it is possible to check the entropic relations between the global and
local states. Majorisation works in the continuous variable case too [98].

It was shown in [99] that the majorisation criterion follows from the reduction criterion.
This is defined [100] by the positive but not completely positive map

ΛR(X) = Tr [X] · 1−X, (3.18)

which is equivalent to stating that for a separable density matrix

ρ̂A ⊗ 1− ρ̂AB ≥ 0 (3.19)

where ρ̂A = TrB [ρ̂AB ]. For two qubits, the reduction criterion also provides a necessary and
sufficient condition for separability, although it was shown that in general the reduction criterion
is weaker than the PPT criterion. Consequently, the PPT criterion can detect any states that
the reduction and majorization criteria detect, but can also detect states beyond the scope of
this pair.

Range criterion

One of the first criteria that surfaced able to detect entangled quantum states that the PPT
criterion could not was the range criterion [101] which operates on finite dimensions.

The range criterion states: For a separable state ρ̂AB , there exists a set of product vectors
|aibi〉 such that the set {|ai, bi〉} spans the range of ρ̂AB and also the set {|a∗i bi〉} spans the range
of ρ̂TAAB where |a∗〉 denotes the vector consisting on the complex conjugated components of |a〉.
The range criterion has detected states for which the PPT criterion has failed [101, 102].

Local Uncertainty Relations

For continuous variable systems, one of the first separability criteria to emerge was the Duan
criterion [103]. The Duan criterion is an inseparability criterion based on the variances of two
Einstein-Podolsky-Rosen like operators. One defines operators

û = |s|x̂1 +
1

s
x̂2, (3.20)

v̂ = |s|p̂1 −
1

s
p̂2 (3.21)

where s is an arbitrary non-zero real number and (x̂j , p̂j) are the quadratures corresponding to
system j. Then the Duan criterion states that for any separable state ρ̂AB , the total variance

3As an interesting but at times distressing quirk, the symbol denoting majorisation has changed. In some
older references such as [98] and in my own [IV], the statement A is majorised by B is denoted as in the main
text A � B. However, in many modern references such as [99], the notation has been reversed i.e. � is replaced
with ≺ although the meaning is the same. In this thesis, our notation follows from [98]
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of a pair of EPR-like operators defined by equations (3.20) and (3.21) with the commutators
[q̂j , p̂j′ ] = iδjj′(j, j

′ = 1, 2) satisfies the inequality〈
(∆û)

2
〉
ρAB

+
〈

(∆v̂)
2
〉
ρAB
≥ s2 +

1

s2
. (3.22)

General separability criteria based on uncertainty relations and valid for both discrete and
continuous variable systems were introduced by Giovannetti [104] and Hofmann & Takeuchi
[105]. It should be noted that Hofmann’s criterion was initially designed for discrete variables
but is equally valid for continuous variable states. It was also shown that Hofmann’s criterion
could be used to detect entanglement in quantum states with positive partial transposition [106].

3.4 Entanglement Distillation and Bound Entanglement

In many protocols in quantum information theory, success is dependent on the entanglement
content of two quantum objects held by Alice & Bob and spatially separated. If we were to
consider that Alice created the bipartite state and then sent Bob his quantum present via a
noisy channel, then it stands to reason that the initial entanglement in ρ̂AB will have decreased.
Once spatially separated, could Alice and Bob use local operations and classical communication
to improve the entanglement between their subsystems once again?

In 1996, Bennett et al. [107] responded in the affirmative. In their seminal paper, they
established that when two distant parties share n copies of a bipartite mixed state ρ̂AB containing
noisy entanglement, they can perform LOCC and obtain some number k < n of a system in a
state closer to a singlet state (i.e. closer to a pure entangled state and with more entanglement).
Such a sequence of LOCC operations achieving this goal is known as entanglement purification
or entanglement distillation.4 The ratio r = k/n in the limit of large n when optimised is used
to define an entanglement measure, the distillable entanglement (see Section 3.5).

Entanglement distillation protocols have been found for qubits. For example, one-way
hashing distillation protocols [108] in which only one party can tell the other the results of any
local measurements, are closely linked to error correcting codes. Two way recurrence distillation
protocols have also been defined [107, 108]. Notably, it has been shown that all two qubit states
are distillable [109].

However, for the purposes of this thesis, the most relevant distillation protocols are the
so-called procrustean entanglement distillation schemes [110], named for the mythical Greek
bandit, Procrustes, who would lure weary travellers to rest on his comfortable bed, which could
magically fit a person perfectly. He neglected to tell them that this marvel of ergonomic design
could only be achieved by removing the legs of anyone too tall or stretching anyone too short.

In a similar way, procrustean entanglement distillation schemes aim to increase the entan-
glement in a system by altering the coefficients in the Schmidt decomposition whilst retaining
the general structure. Such a protocol implies that a state transforms as

|ψ〉in =

K∑
k

sk|ek〉 ⊗ |fk〉 → |ψ〉out =

K∑
k

tk|ek〉 ⊗ |fk〉 (3.23)

where the output state is necessarily more entangled than the input state and {|ej〉} and {|fk〉}
are orthonormal sets of basis vectors. That is, Alice and Bob use LOCC to conditionally trans-
form the Schmidt coefficients of each entangled input state to obtain a more entangled output
state.

Procrustean entanglement concentration schemes can be applied to just a single copy of
a state. The trade-off is that procrustean schemes are necessarily probabilistic - just as with
Procrustes’ victims’ legs, the “extra” probabilistic outcomes are chopped off, i.e. the state is
altered by a probabilistic post-selection after some transformation to the state. The methods
are necessarily probabilistic due to a theorem by Nielsen [111] based on majorisation. Nielsen

4Over time, the terminology has altered significantly. Although “purification” of course can only apply to
LOCC that transform a mixed state closer to a pure entangled state, the term “distillation” is more commonly
used to just denote any set of LOCC that increase entanglement. For example in Chapter 5 we transform an
initial pure state to a mixed state with more entanglement. We use the terms “distillation” and “concentration”
interchangeably throughout this thesis.
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Figure 3.2: An example of a traditional continuous variable distillation scheme. Both arms of a two
mode squeezed vacuum are incident on highly transmissive beamsplitters. One or more photons may be
siphoned off and, if successfully detected, the (now non-Gaussian) remainder of the two mode squeezed
vacuum is more entangled.

showed that one can only transform the pure state ρ̂in into the pure state ρ̂out deterministically
using LOCC if TrB [ρ̂out] is majorised by TrB [ρ̂in]. This in turn would imply that one could
only turn ρ̂in into ρ̂out by deterministic LOCC if ρ̂in is more entangled than ρ̂out. As this is the
polar opposite of what we want, to increase the entanglement necessarily requires a probabilistic
action.

In the continuous variable setting, procrustean entanglement concentration schemes have
proved most useful. On the theory side, Opartný et al. [112] showed how beamsplitters and
photon subtraction can be used to increase the entanglement in a two mode squeezed vacuum
(TMSV) as part of a teleportation scheme. The distillation aspect of this was seized upon and
improved [113, 114, 115] and a rigorous theoretical description was given by Kitagawa et al.
[116]. Experimentally, there have been some notable successes [117, 118], including with non-
Gaussian noise [119]. In a fairly recent proposal [120] a complete CV entanglement “distillery”
has been proposed, harnessing limited physical space for storing quantum states and distill-
ing entanglement. There, clever manipulation of an imperfect quantum memory complements
a beamsplitter based entanglement concentration scheme. The discovery of more continuous
variable entanglement distillation schemes is hampered by a notorious no-go theorem stating
that it is impossible to distil entanglement in Gaussian states with Gaussian operations alone
[62, 63, 121].

One of the best known of the entanglement distillation schemes aims at increasing the
entanglement of a two mode squeezed vacuum by impinging each arm of the TMSV on a highly
transmissive beamsplitter. If some photons are subtracted and detected by a waiting photon
counter or avalanche photodiode, then the entanglement of the TMSV increases, although the
resultant entangled state is mixed (see Figure 3.2). In Chapters 4 and 5 we develop this idea by
showing that two QND interactions can be used to simulate a beamsplitter interaction to distil
entanglement in two atomic ensembles. We then show that a single QND interaction could be
used to the same end.

At first glance it appears that entanglement distillation has met the challenge that opened
this section. Alice could create a bipartite, entangled quantum state and send Bob his share of
the state via a noisy quantum channel, with any losses that arise being corrected later by local
operations and classical communication. Perfect quantum communication would then require
sufficient distillation, but any noise distorting the initial state could be corrected for. The
spanner in the works came from M. Horodecki et al. [122] (for the continuous variable case it
was later shown in [123]) who showed that no positive partially transposed (PPT) state can be
distilled. Clearly, separable states cannot become entangled from LOCC, but other entangled
states with a positive partial transpose can also not be distilled. The states that are known
to be entangled but are not distillable are called bound entangled states. There is a sense that
the entanglement of these mixed states (and it is only found in mixed states) is bound to the
system.

One big open question in QIT is whether or not there exist non-distillable states that are not
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Figure 3.3: The separable states have a positive partial transpose (PPT) and are a subset of a larger
set of all density matrices with a positive partial transpose, including bound entangled states. There
may then be bound entangled states with a negative partial transpose (NPT), and all quantum states
possessing distillable entanglement must have a negative partial transpose.

PPT. Although bound entangled states are known to exist, there has been no characterisation
of the set of bound entangled states, but are all NPT states distillable? See [77] and references
within for more information on this.

3.5 Entanglement Measures

It is the instinct of the physicist to not simply admire the beauty in nature, but to try to
quantify it. So far, we have tried to give an operational characterisation of entanglement and
have discussed increasing entanglement by local operations and classical communication. But
this begs the question: How can we know that we have truly increased the entanglement in the
system? By what gauge is it justified to say that the entanglement in a system has increased? In
this section, we look at a small and by no means complete survey of entanglement measures that
illuminate the attempts made to quantify entanglement. An entanglement measure is simply a
mathematical tool which captures the essence of all the properties discussed earlier. In Chapter
6 we define our own potential measure of entanglement in Gaussian states.

In the continuous variable regime, it is possible to define measures so long as the mean
energy is bounded (if not, then one may demonstrate that in an arbitrarily small neighbourhood
of a pure product state, there are pure states with arbitrarily strong entanglement [124]). How-
ever, we here describe some measures that were initially defined for finite dimensional systems,
although will also state how well they carry across to the continuous variable setting. A number
of measures have been defined for Gaussian states, usually as an extrapolation from the qudit
measures.

An axiomatic approach to entanglement measures

One approach to finding entanglement is to propose a list of all the properties that would
be desired from a good measure [125]. Then, any functional of a probability density matrix
satisfying those properties would be useful as an entanglement measure E. The most obvious
two are

• For any separable state ρ̂sep
E (ρ̂sep) = 0 (3.24)
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• E does not increase on average under LOCC

E (ρ̂AB) ≥
∑
j

pjE

 Âj ρ̂ABÂ
†
j

Tr
[
Âj ρ̂ABÂ

†
j

]
 (3.25)

where the Aj are Krauss operators and pj = Tr
[
Âj ρ̂ABÂ

†
j

]
.

Vidal [126] in fact, argued that monotonicity under LOCC should be the only postulate neces-
sarily required under an entanglement measure. Further to the above two qualities of a measure,
below are some more desirable properties.

• Convexity: Convexity is a useful property that is sometimes justified as capturing the notion
of loss of information. This would therefore mean

E

∑
j

pj ρ̂j

 ≤∑
j

pjE (ρ̂j) (3.26)

• Additivity: Given an entanglement measure and a state ρ̂AB, one may ask that E
(
ρ̂⊗nAB

)
=

nE (ρ̂AB) where ρ̂⊗nAB denotes ρ̂AB ⊗ ρ̂AB ⊗ · · · ρ̂AB (n times). If this holds, the measure is
said to be additive.

Some of the measures that are most useful for quantifying entanglement are not additive, but
given any non-additive measure we could define an additive measure E′ as

E′ (ρ̂AB) := limn→∞
E
(
ρ̂⊗nAB

)
n

. (3.27)

A far more scarce property of entanglement measures is strong additivity. That is, given two
states ρ̂1 and ρ̂2

E (ρ̂1 ⊗ ρ̂2) = E (ρ̂1) + E (ρ̂2) . (3.28)

• Reduces to entropy of entanglement on pure states

This is a desirable property in both the discrete and continuous variable regime. It is known that
in finite dimensions, any entanglement monotone that is additive on pure states and sufficiently
continuous must equal S (ρ̂A) on all pure states [127, 128, 129].

• Asymptotic Continuity

Some of the most useful entanglement measures are introduced below, beginning with the entropy
of entanglement.

Entropy of Entanglement

The entropy of entanglement captures the essence of what Schrödinger thought most remarkable
about quantum mechanics [64]:

Another way of expressing the peculiar situation is: the best possible knowledge of
a whole does not necessarily include the best possible knowledge of all its parts, even
though they may be entirely separated and therefore virtually capable of being “best
possibly known”, i.e. of possessing, each of them, a representative of its own.

In particular, the entropy of entanglement is a good measure of entanglement in pure states and
is defined as the Von-Neumann entropy of the reduced state. That is, for a bipartite state ρ̂AB ,
the entropy of entanglement is given by

Ev.N (ρ̂AB) = S (ρ̂A) (3.29)

where ρ̂A = TrB [ρ̂AB ]. Similarly Ev.N (ρ̂AB) = S (ρ̂B). For a pure state ρ̂AB , as has been seen
S (ρ̂AB) = 0, so the entropy of entanglement simply shows that there is more uncertainty in the
parts than in the whole. For Gaussian states, the entropy of entanglement is easily calculated
from the symplectic spectrum of Alice’s reduced covariance matrix and equation (2.114). It
should be noted that the entropy of entanglement is not a good measure of entanglement for
bipartite mixed states.
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Distillable Entanglement and Entanglement Cost

With regards to distillation, we could ask the following question: If Alice and Bob shared n copies
of a state ρ̂AB and carry out LOCC transformations to transform their combined state, as closely
as possible, to m copies of a maximally entangled qubit state, then what is the best possible
rate r = m/n of distillation? In the limit of large n, the distillable entanglement can be defined
[107, 108, 94] as the best possible rate over all possible LOCC schemes Λ to convert n copies of
ρ̂AB to m copies of the maximally entangled state (|φ+〉〈φ+|⊗m) where |φ+〉 = 1√

2
(|00〉+ |11〉).

ED (ρ̂AB) := sup
{
r : limn→∞

[
infΛ||Λ

(
ρ̂⊗nAB

)
−
(
|φ+〉〈φ+|⊗m

)
||
]

= 0
}

(3.30)

Distillable entanglement tells us the rate at which noisy mixed states can be converted back
to good singlet states, having been sent along a noisy channel. Distillable entanglement in the
CV regime is difficult to compute, as expected. For Gaussian states, distillation with respect
to all possible quantum operations must be considered, due to the no-go theorem [62, 63, 121]
stating that it is impossible to distil entanglement with Gaussian operations alone. Consequently,
although the concept of distillable entanglement can be envisaged for continuous variables, there
is no way to conceivably calculate it, even for a subset of possible states such as Gaussian states.

We could ask the opposite question: What is the maximal rate r at which one can convert
blocks of maximally entangled 2 qubit states into output states that approximate many copies
of ρ̂AB , such that the approximations become vanishingly small in the limit of large block sizes.
This is known as entanglement dilution and gives rise to the entanglement cost :

EC (ρ̂AB) := inf
{
r : limn→∞

[
infΛ||ρ̂⊗nAB − Λ

((
|φ+〉〈φ+|⊗m

))
||
]

= 0
}

(3.31)

If one was to perform a cycle of entanglement dilution and distillation, then often there would
be a discrepancy between the input and output states [130] even in the asymptotic limit. In
general,

ED (ρ̂AB) ≤ EC (ρ̂AB) . (3.32)

Entanglement of Formation

For a mixed state ρ̂AB , the Entanglement of Formation (EoF) is defined as

EF (ρ̂AB) := inf

∑
j

pjEv.N (|ψj〉〈ψj |) : ρ̂AB =
∑
j

pj |ψj〉〈ψj |

 . (3.33)

The EoF represents the minimal possible average entanglement over all pure state decomposi-
tions of ρ̂AB , using the entropy of entanglement as a quantifier of the entanglement in the pure
states. It can be expected that it is closely related to the entanglement cost of ρ̂AB . It should
be noted that the entanglement cost is dependent on ρ̂⊗nAB , not ρ̂AB , and it is unknown for which
states EF scales accordingly. It is instead possible to define the regularised entanglement of
formation as

E∞F (ρ̂AB) := limn→∞
EF
(
ρ̂⊗nAB

)
n

(3.34)

which was proven rigorously in [131] to be equal to the entanglement cost EC (ρ̂AB).
For a long time it was conjectured that the EoF was additive, and there were indeed some

indications (e.g. [132, 133, 134]). If true, this would have implied that

EF = E∞F = EC . (3.35)

Recently, however, Hastings [135] showed by counterexample that EoF is not additive on all
states.

In the continuous variable regime, Giedke et al. [136] found the EoF of two-mode sym-
metric Gaussian states (a = b in Equation (2.122)). If we define the functions k±(x) =(
x−1/2 ± x1/2

)2
/4 then symmetric two-mode Gaussian states ρ̂sym

G have an EoF value of

EF (ρ̂sym
G ) = k+ (xsym) log [k+ (xsym)]− k− (xsym) log [k− (xsym)] (3.36)
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where the argument is given by

xsym =
√

(a− c+)(a+ c−). (3.37)

The formula for symmetric two-mode Gaussian states was found by a decomposition over Gaus-
sian pure states, and it was conjectured that this would always be true, i.e. that the entanglement
of formation would always be found by a decomposition over Gaussian pure states. With this
idea in mind Wolf et al. defined the Gaussian Entanglement of Formation (GEoF) [137] (denoted
EGf (ρ̂AB)) for a bipartite Gaussian state as the optimal decomposition of a Gaussian state over
all pure Gaussian states.

Finally, Marian and Marian [138] found the optimal pure state decomposition of an arbitrary
two-mode Gaussian state. They also found that for any two-mode Gaussian state, EGf (ρ̂AB) =
EF (ρ̂AB). Furthermore, they also showed that on two mode Gaussian states, the Entanglement
of Formation is additive!

Relative Entropy of Entanglement

The quantum relative entropy

S (ρ̂||σ̂) := Tr [ρ̂ log ρ̂− ρ̂ log σ̂] (3.38)

is a very useful gauge for distinguishing between quantum states. It is not, strictly speaking, a
measure as S (ρ̂||σ̂) 6= S (σ̂||ρ̂) in most cases, but is useful all the same. The relative entropy of
entanglement can be defined as

EXR (ρ̂AB) := infσ∈XS (ρ̂AB ||σ̂) (3.39)

with respect to a set X. The set X can be taken to be the set of separable states, PPT states, or
non-distillable states (if PPT and non-distillable are not the same). The measure then asks for
the distance between ρ̂AB and the closest state σ̂ within set X. The regularised version, E∞R acts
as an upper bound on the distillable entanglement [128]. Remarkably, it is fully computable for
two qubits [139] and Friedland and Gour [140] have shown that an analytic solution should in
principle exist for multipartite states in any number of finite dimensions. Within the continuous
variable regime, the most successful form of this measure is the Gaussian Relative Entropy of
Entanglement [141]. In this case, for any Gaussian entangled state this measure is defined as the
minimal quantum relative entropy between the state and the set of Gaussian separable states.

Negativity and Logarithmic Negativity

The Negativity of a quantum state ρ̂AB is defined as the sum of the eigenvalues of the partially
transposed state and can be written as

N (ρ̂AB) =
1

2
Tr

(√
(ρ̂TAAB)2 − ρ̂TAAB

)
=

∥∥∥ρ̂TAAB∥∥∥− 1

2
, (3.40)

where ‖·‖ denotes the trace-norm, i.e.
√
ρ̂AB ρ̂

†
AB , and ρ̂TAAB is the partial transpose of the density

matrix ρ̂AB with respect to subsystem A. It was introduced by Zyckowski et al. [142] and shown
to be an entanglement monotone by Vidal and Werner [143].

The negativity is useful as it is easy to compute numerically and works for both discrete
and continuous variable states. Sometimes it can be calculated analytically. For example, if we
consider the density matrix of the two mode squeezed vacuum (TMSV),

ρ̂TMSV =
(
1− λ2

) ∞∑
m,n=0

λm+n|mm〉〈nn|, (3.41)

and partially transpose with respect to subsystem A, we obtain

ρ̂TATMSV =
(
1− λ2

) ∞∑
m,n=0

λm+n|nm〉〈mn|. (3.42)
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We next consider the structure of ρ̂TATMSV. Whenever m = n, the corresponding element(
1− λ2

)
λ2m is an eigenvalue and is positive as 0 ≤ λ ≤ 1 and so does not contribute to the

negativity. Whenever m 6= n, the density matrix elements can be written in a block diagonal
form where the blocks take the form(

0
(
1− λ2

)
λm+n(

1− λ2
)
λm+n 0

)
.

The eigenvalues of this matrix are ±
(
1− λ2

)
λm+n (i.e. one positive and one negative eigen-

value). The sum of the negative eigenvalues is then given by

N (ρ̂TMSV) =
1

2

( ∞∑
m,n=0

(
1− λ2

)
λm+n −

(
1− λ2

) ∞∑
m=0

λ2m

)
=

λ

1− λ
(3.43)

where on the left hand side we have expressed the sum over m,n with m 6= n as the sum over
all m,n minus the sum over all m = n. The factor of 1

2 is to negate double counting.
More useful is the logarithmic negativity

EN (ρ̂AB) = log(1 + 2N (ρ̂AB)) = log(
∥∥ρ̂PTAB∥∥) (3.44)

as it is additive. The logarithm is taken with different bases throughout the literature, and
is commonly taken to be base 2 for qubits. When discussing the logarithmic negativity of
continuous variable, we shall use the natural log. The logarithmic negativity of the two mode
squeezed vacuum can be calculated from Equations (3.43) and (3.44) to be

EN (TMSV) = ln(1 + λ)− ln(1− λ). (3.45)

Plenio [144] showed that the logarithmic negativity also satisfies the strong monotonicity con-
dition (3.25)

EN (ρ̂AB) ≥
∑
j

pjEN

 Âj ρ̂ABÂ
†
j

Tr
[
Âj ρ̂ABÂ

†
j

]
 (3.46)

although EN is not convex because the logarithm is not convex. The Negativity and Logarithmic
Negativity are of course zero on bound entangled states by definition and are upper bounds to
the distillable entanglement.

As has been said previously, partial transposition corresponds to partial time reversal in
Gaussian states. To see this effect on a Gaussian state, one simply defines

θA|B = diag

1,−1, 1,−1, · · · , 1,−1︸ ︷︷ ︸
Alice’s modes

, 1, 1, 1, 1, · · · , 1, 1︸ ︷︷ ︸
Bob’s modes

 (3.47)

if transposing with respect to A and transforms the covariance matrix as γ → θA|BγθA|B . The
logarithmic negativity of the Gaussian state ρ̂G is then given by

E (ρ̂G) = −
N∑
j=1

log [min (1, µ̃j)] (3.48)

where {µ̃j} are the symplectic eigenvalues of ρ̂TAG . This can be shown by symplectically diago-
nalising θA|BγθA|B and examining the thermal decomposition (2.111).

Throughout Chapters 4 and 5 we shall make extensive use of the logarithmic negativity to
explore entanglement distillation in non-Gaussian states.

Squashed Entanglement

Squashed entanglement was introduced by Christandl and Winter [145] and was inspired by the
intrinsic information (see Chapter 6). For a tripartite state ρ̂ABE satisfying TrE [ρ̂ABE ] = ρ̂AB
we define the squashed entanglement between subsystems A and B as

Esq (ρ̂AB) = inf
ρ̂ABE

1

2
Iq
(
ρ̂AB|E

)
(3.49)
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where Iq
(
ρ̂AB|E

)
= S (ρ̂AE)+S (ρ̂BE)−S (ρ̂ABE)−S (ρ̂E) is the conditional mutual information.

The squashed entanglement has a lot of delightful properties. It is additive on the tensor product

Esq (ρ̂1 ⊗ ρ̂2) = Esq (ρ̂1) + Esq (ρ̂2) (3.50)

and superadditive
Esq (ρ̂AA′BB′) ≥ Esq (ρ̂AB) + Esq (ρ̂A′B′) . (3.51)

The squashed entanglement is convex and equal to S (ρ̂A) on pure states. It provides a lower
bound to EF and EC , an upper bound to ED, and was proven to be continuous [146]. It is not
known whether Esq (ρ̂AB) = 0 if and only if ρ̂AB is separable. Unfortunately, it is rarely easy to
calculate the squashed entanglement.

3.6 Summary of Chapter 3

Quantum entanglement provides a tantalising resource for quantum information processing. In
this chapter we have attempted to qualify and quantify entanglement whilst highlighting the
aspects relevant to continuous variables. Entanglement distillation has been discussed and will
be of paramount importance to the next two chapters.



Chapter 4

Entanglement Distillation in Macroscopic
Atomic Ensembles using effective

beamsplitter approximation

4.1 Motivation

In the previous chapter, the concept of quantum entanglement was introduced, along with the
notion of distillation. In this chapter, a theoretical proposal shall be introduced for putting this
knowledge into practice.

In quantum communication, the direct distribution of quantum states is limited by untame-
able losses in transmission and the no-cloning theorem. For channels such as optical fibres, the
probability for both absorption and depolarisation of a photon increases exponentially with the
length of a fibre. Accordingly, the number of attempts required to transmit a photon without
absorption must increase with the distance between the sender and receiver, and even when
a photon arrives, it barely resembles what it was when sent. In short, the delicate superpo-
sitions required for quantum information processing prove untenably evanescent when being
communicated.

Briegel et al. [147] proposed the use of quantum repeaters to overcome this problem, and the
idea is remarkably reminiscent of using signal amplifiers in classical communication. Briegel’s
proposal was as follows. If Alice wanted to send to Bob some quantum information, they
would need to enlist the aid of Charlie1, Charlie2,· · · ,CharlieN1. Then Alice could share a set
of weakly entangled pairs with Charlie1. Charlie1 in turn could separately share some weakly
entangled pairs with Charlie2 and so on. CharlieN shares some weakly entangled pairs with Bob.
Between each couple, the weakly entangled pairs can be distilled into one strongly entangled pair.
Importantly, Charlie1 can perform a global measurement on his bipartition of the entangled state
he shares with Alice and the entangled state he shares with Charlie2. Charlie2 can do likewise
as can his brothers until eventually there exists a long chain running between Alice and Bob.

Briegel et al. showed that such an approach would prove advantageous for Alice to commu-
nicate with Bob. Evidently, some form of entanglement distillation is required, but importantly,
so is quantum memory.

For a review on quantum memory see [148, 11] but for the purposes of this thesis we are
only concerned with one setup in particular. Whereas for the transport of quantum signals,
light as a medium has no immediate rivals, for the storage of quantum states, one must look to
atoms. Atoms provide a good candidate for quantum memory devices due to the relatively long
lifetimes of atomic excitations. More interesting is the prospect of using light-atom interactions
to transfer quantum information between the two.

Duan et al. [149] published a theoretical method for entangling two atomic ensembles. By
installing a cloud of identical atoms in a biased magnetic field, and sending in heavily polarised
light, it was thought that the quantum state of the light would be written onto the macroscopic
spin states of the atoms. If the light then interacted with a second cloud, the macroscopic spin
states of the two atomic ensembles would become entangled.

1Their parents were not particularly imaginative
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This was impressively demonstrated by Julsgaard et al. [9] and has been improved upon
since. However, to gauge the entanglement between the two ensembles, the fidelity of a teleported
pulse was measured. Although above the classical threshold, the entanglement remained weak.
This begs the question: can one increase the entanglement between two atomic ensembles?

In Section 4.2 the experimental setup will be described. Thereafter, a procrustean distilla-
tion scheme for the ensembles will be put forward, analogous to that of Eisert et al. [114] (and
illustrated in Figure 3.2). An approximate “beamsplitter” interaction between a mode of light
and an atomic ensemble will be described in Section 4.3 and in Section 4.4 this will be used for
distillation.

The work of this chapter has been published in [I] and [III].

4.2 The system and interactions

The setup of Julsgaard et al. involved sending heavily polarised light through atomic ensembles
held in magnetic fields. It shall be described in a simplified format below but for a detailed
description, see [150].

Consider a pulse of light, or collection of photons, propagating in the z−direction. The
polarization state is well described by the Stokes Operators

Ŝx =
1

2

(
â†xâx − â†yây

)
(4.1)

Ŝy =
1

2

(
â†xây + â†yâx

)
(4.2)

Ŝz =
1

2i

(
â†xây − â†yâx

)
(4.3)

where âx and ây are annihilation operators for photons polarised in the x and y directions
respectively as described in Chapter 2. The Stokes operators, to all intents and purposes,
describe the differences between the number of photons polarised in different directions. That
is, Ŝx counts the difference between the number of photons polarised in the x direction and
the y direction, Ŝy refers to the difference in numbers at polarisations of 45◦, and Ŝz looks at
circularly polarised photons. The Stokes operators satisfy the commutation relation[

Ŝk, Ŝl

]
= iεklmŜm (4.4)

where εklm is the Levi-Civita symbol. The Stokes operators are dimensionless.
By heavily polarising the light in the x direction, the operator Ŝx can be approximated

by its expectation value
〈
Ŝx

〉
. That is, we treat Ŝx as essentially classical. Significantly, the

commutation relation (4.4) between Ŝy and Ŝz now satisfies[
Ŝy, Ŝz

]
= i
〈
Ŝx

〉
. (4.5)

On examination of the commutation relations for quadrature operators (2.18), the Stokes oper-
ators can be used to represent quadrature operators of the light pulse.

X̂L =
Ŝy√〈
Ŝx

〉 , P̂L =
Ŝz√〈
Ŝx

〉 , (4.6)

[
X̂L, P̂L

]
= i. (4.7)

These quadrature operators have expectation values of zero, as a pulse of x polarised photons
would be found by measurement to have polarisation in the ±45◦ directions or circular directions
with equal probability. It is worth pointing out that if the polarisation of the pulse shifted by a
small angle out of alignment with the x axis, then the expectation value of Ŝy would be non-zero,

and
〈
X̂L

〉
would be non-zero. The quadratures themselves would be ill-defined if the angle was
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large. With that, we are satisfied that if the number of photons in the pulse was large, then the
conjugate position and momentum quadratures would become well-defined.

The choice of atomic gas was Caesium 133. Two macroscopic ensembles of Na ≈ 1012

caesium atoms at room temperature and with a ground state degeneracy were placed in a
homogeneous magnetic field. There, the caesium atoms were pumped into the |F = 4,mF = 4〉
state in the first cell and |F = 4,mF = −4〉 in the second cell to form coherent spin states
oriented in the +x and −x directions respectively. If the total angular momentum of a single
atom (defined by nuclear spin and total electronic angular momentum) is denoted by the vector

ĵ, then the collective angular momentum Ĵ, defined as the sum of all the angular momenta of
the atoms can be described by its components

Ĵx =
Na
2

∑
mF

mF σ̂mF ,mF , (4.8)

Ĵy =
Na
2

∑
mF

C (F,mF ) (σ̂mF+1,mF + σ̂mF ,mF+1) , (4.9)

Ĵz =
Na
2i

∑
mF

C (F,mF ) (σ̂mF+1,mF + σ̂mF ,mF+1) (4.10)

where σ̂µ,ν = 1
Na

∑Na
k=1 |µ〉〈ν|k and

C (F,mF ) =
√
F (F + 1)−mF (mF + 1). (4.11)

By pumping the atoms in each ensemble into a coherent spin state, as with the Stokes operators
the components of the total angular momentum spin operators Ĵx1

and Ĵx2
can be replaced by

their expectation values. The different directions of the magnetic fields ensure that
〈
Ĵx1

〉
=

−
〈
Ĵx2

〉
. As with the light mode, the replacement of the Ĵx operators with their expectation

values allowed for the definition of “atomic” spin quadratures

X̂A =
Ĵy√〈
Ĵx

〉 , P̂A =
Ĵz√〈
Ĵx

〉 . (4.12)

The caesium vapour samples were placed inside paraffin coated cells to ensure that the spin
decoherence time when the atoms collided with the walls would be large. By performing the
experiment at room temperature, the jostling of the atoms ensured that all atoms travelled
through any light pulses applied.

The interaction between light and the atoms was a linearised dipole interaction with far
off-resonant detuning,

Ĥ =
∑
j

−dj ·E(Rj) (4.13)

where dj = −erj is the dipole operator for the jth atom and Rj is the location of the jth atom.
If, for example, the polarized light propagates in the z-direction through an atomic ensemble,
the linearised interaction Hamiltonian can be written as

Ĥ = a

∫ T

0

Ŝz(t)Ĵz(t)dt ≈ κP̂LP̂A (4.14)

where a is a coupling constant, renormalised to κ on the RHS. The full derivation of this QND
Hamiltonian from the off-resonant dipole interaction can be found in [150]. Physically, the QND
Hamiltonian (4.14) causes the polarisation of the light to rotate about the axis of propagation,
dependant on the quadrature distribution of the atoms. The back action effect on the atoms is
to rotate the macroscopic spin state.

By sending the polarised light through both atomic ensembles and taking a homodyne
measurement, it is possible to collapse the atomic states into an entangled “two mode squeezed

vacuum” with variance ∆2
(
X̂A1

− X̂A2

)
= ∆2

(
P̂A1

+ P̂A2

)
= e−2r, where r is dependent on

κ and given by

r =
1

2
ln
[
1 + 2κ2

]
. (4.15)
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Figure 4.1: The principle behind the entanglement concentration scheme for atomic ensembles. The
entanglement concentration protocol works similar to the light scheme [114, 151]. The coherent spin
states of two atomic ensembles are initially entangled as a two mode squeezed vacuum (TMSV). Then x-
polarised light (number basis |0〉) interacts with the atoms in a way that approximates the beamsplitter
interaction of the light scheme. Following the interaction, non-Gaussian measurements of the number
of y-polarised photons are performed. A positive response from both detectors heralds an increase in
entanglement between the atomic ensembles.

It is assumed that any displacement of the joint atomic quadrature distributions from the centre
in phase space caused by the entanglement process itself is so small as to be negligible.

Julsgaard et al. achieved a teleportation fidelity of 55% when testing how entangled they
could get their caesium atoms. The quest is on to find a way of increasing the entanglement in
the caesium gas samples.

One possible method, considered here, is analogous to the protocol of [114], mentioned in
Chapter 3. In that procrustean distillation scheme for light, both arms of a TMSV had photons
subtracted to increase their entanglement. Would it be possible to create something similar
for atomic ensembles? A beamsplitter-like interaction and non-Gausssian element would be
paramount (see Figure 4.1).

4.3 A beamsplitter interaction between light and an atomic ensemble

The first step to consider in Figure 4.1 is how to accomplish a “beamsplitter” interaction between
light and the atoms. The solution put forward in this section takes advantage of two passes of
the light pulse through the sample.

Whereas a single pass of a light pulse through an atomic ensemble corresponds to the simple
QND interaction (4.14), multiple passes open up the possibility for a larger design freedom of
the effective Hamiltonian, as for each pass a particular form of the underlying QND interaction
can be adjusted (see e.g. [152]). For example, a double pass scheme [153] has been shown to
be useful for the generation of polarisation squeezed light by optical Faraday rotation. Another
double pass scheme was suggested and thoroughly studied by Muschik et al. [154] that also
used atomic ensembles and light in order to enact quantum memories. There the light-atom
interaction was shown to include two main parts, one equivalent to the beamsplitter interaction,
and the other to two-mode squeezing. Depending on the geometry of the set-up, either of the
two underlying dynamics could be selected.

Here we take a different approach. The actual double-pass interaction of the light mode
with the atomic ensemble is used to approximate a beamsplitter interaction. The light mode is
initially prepared in the state |ψl〉L, which can be written in the quadrature bases

|ψl (x)〉L =

∫ ∞
−∞

dxlψl (xl) |xl〉L (4.16)

|ψ̃l (p)〉L =

∫ ∞
−∞

dplψ̃ (pl) |pl〉L (4.17)

with the eigenbases |xl〉L and |pl〉L as the respective eigenvectors of the quadrature operators
X̂L and P̂L defined in Equation (4.6). Similarly the atomic ensemble can be described by the
distributions ψa (xa) and ψ̃a (pa).
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Figure 4.2: To approximate a beamsplitter type interaction between the atomic ensemble and a field

mode requires one QND interaction of e−iϕP̂LX̂A followed by another different QND interaction of

eiϕX̂LP̂A . The coupling phase constant φ should be weak compared to the initial entangling coupling
strength. Taken from [I].

In this configuration the light mode first interacts via the QND interaction Ĥ1 = φP̂LX̂A

(see Figure 4.2). The tunable parameter φ, dependent on the detuning and other parameters,
is assumed to be weaker than the coupling κ initially used to entangle the atomic ensembles.
The emerging light field is then reflected back into the atomic ensembles for a further QND
interaction Ĥ2 = −φX̂LP̂A. The second QND interaction can be implemented by performing
local operations on the light field and atomic ensembles.

The free Hamiltonians of the field and ensemble are assumed to be vanishing here for clarity
so that the results are unique up to a suitable unitary transformation. Each QND interaction
generates an associated evolution operator

Û1 = e−iφP̂LX̂A , (4.18)

Û2 = eiφX̂LP̂A , (4.19)

which takes the initial input state |ψI〉LA = |ψl〉L|ψa〉A and transforms it to

|ψI〉LA → eiφX̂LP̂Ae−iφP̂LX̂L |ψl〉L|ψa〉A. (4.20)

In the position basis it is clear that the two interactions have the effect

Û2Û1|xl〉L|xa〉A = |xl + φxa〉L|xa − φ(xl + xa)〉A. (4.21)

At this stage a number of approximations are introduced. Firstly, the interaction strength φ is
assumed to be small. This is in direct contrast to the initial requirement for entanglement that κ
be strong, and is the primary reason why the letter φ has been used in place of κ. The interaction
strength φ is dependent on a number of tunable parameters such as the cross-sectional area of
the laser beam and the detuning from the transition frequencies of the caesium atoms and so
this poses no problems. In fact, it is far harder to make the interaction strong.

With this approximation, we can make the further approximations that xl ≈
√

1− φ2xl
and (1 − φ2)xa ≈

√
1− φ2xa. However, the validity of these approximations contains further

constraints. The approximations are only good when φ << 1 and xl, xa are small. However, xl
and xa can assume values over the entire real line, making this approximation worthless unless
we restrict to input states with quadrature distributions ψl(xl) and ψa(xa) that are large in the
regions where the approximations hold well and negligible otherwise.
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Figure 4.3: Graphical representation of the joint approximation required to allow multiple QND passes
to behave like a beamsplitter for the example of xl. The quadrature distribution ψl(xl) (blue) needs to be
small where the approximation xl =

√
1− φ2xl (red, orange respectively) is not a good approximation.

Therefore there are restrictions on both the coupling strength φ and on the wavefunctions of the light and
atoms for which the approximation would be applicable. A similar restriction exists for the momentum
quadrature of the light mode.

Narrow Gaussian states that are centred in phase space and peak around the origin are good
for this approximation, and consequently the squeezed atomic spin distributions of the ensembles
are well suited. The joint constraint on the input states and the coupling (graphically illustrated
in Figure 4.3) is reminiscent of the approximations in the weak measurement formalism of
Aharanov et al. [155].

Assuming that the conditions are satisfied, the final output of the interaction Û2Û1 is given
by

|ΨF 〉 =

∫ ∞
−∞

dxldxaψl (xl)ψa (xa) |xl + φxa〉L
∣∣(1− φ2

)
xa − φxl

〉
A

≈
∫ ∞
−∞

dxldxaψl (xl)ψa(xa)
∣∣∣√1− φ2xl + φxa

〉
L

∣∣∣√1− φ2xa − φxl
〉
A
.

These reasonable approximations, when satisfied, cause the double pass of the heavily polarised
light mode through a caesium gas sample to mimic a beamsplitter operation. For this to be-
have like a proper beamsplitter, of course, similar conditions apply to the conjugate momenta
distributions of the light and atoms, namely

(
1− φ2

)
pl ≈

√
1− φ2pl and pa ≈

√
1− φ2pa.

To examine how well these approximations hold for different states, the fidelity of the output
state |ΨF 〉LA with the output state of a true beamsplitter interaction |ΨF 〉BS can be considered.
This is the overlap of the Wigner function for the idealised case with the Wigner function of the
output of the approximation (see Equation (2.73)). In all cases, the atomic state is assumed to
be a centred Gaussian - a very reasonable assumption based on the methods of Julsgaard et al.
[9, 10].

Figure 4.4 shows how the approximation holds up when the light is assumed to be in
a “vacuum” state2. As expected the approximation holds well. Figure 4.5 shows that the
approximation does not hold when the light is strongly squeezed, except when φ is very small.
This is intuitively correct - if the light is squeezed in position, then the momentum distribution
is antisqueezed. Consequently, although the approximation

√
1− φ2xl ≈ xl holds well, the

conjugate momentum distribution for the light mode has support where
(
1− φ2

)
pl ≈

√
1− φ2pl

does not hold well.

2The term “vacuum” here means simply that no y-polarised photons exist in the mode, as the photons have
to be x-polarised regardless in order for X̂L and P̂L to be well defined.
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Figure 4.4: The fidelity of the system on the interval 0 ≤ φ ≤ 0.1 when only centred Gaussian modes
are used in the interaction. The fidelity stays at almost unity when the interaction strength is low.
Taken from [I].

Figure 4.5: Fidelity is plotted against φ for squeezed light interacting with the atoms with squeezing
parameter r = 0 (solid), r = 1 (dashed) and r = 2 (dotted). Taken from [I].

For coherent and coherent squeezed states, the fidelity drops down substantially as the
displacement in phase space increases. This, too, is to be expected. This behaviour does
not prove problematic for the light and atoms described above, as the very definition of the
quadratures relies on the distributions being approximately centred at the origin in phase space,
by virtue of the physical limits of the system. The concept of “displacing” the light or atom
phase space quadratures defined in the previous section seems absurd.

A successful approximate beamsplitter interaction between a light mode and atomic ensem-
ble has been characterised. We shall now proceed to discuss the remainder of the concept shown
in Figure 4.1 - non-Gaussian measurements and distillation.

4.4 Entanglement distillation of two atomic ensembles

With the “beamsplitter” interaction between a light mode and an atomic ensemble now de-
scribed, it is possible to consider the distillation as follows. The caesium gas samples of Juls-
gaard’s experiment [9] were successfully entangled as an atomic “two mode squeezed vacuum”,
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written in the number basis as

|TMSV 〉 =
√

1− λ2

∞∑
n=0

λn|n〉1|n〉2 (4.22)

where n is the photon number and λ = tanh(r) quantifies the reduction (squeezing) of the quan-
tum uncertainty of the global state, with r as in Equation (4.15). For ease of calculation, the
atomic state shall be represented as in Equation (4.22). The number basis does have a true mean-

ing here. On consideration of an “annihilation” operator for the atoms âA = 1√
2

(
X̂A + iP̂A

)
,

then the number n represents (up to normalisation) the number of atoms in the upper excited
spin state of the basis of the Ĵx operator. That is, n = 1 corresponds to the superposition of all
possible combinations of atomic spins of the atoms in the ensemble for which a single atom is
excited.

A light mode, prepared as previously, can be considered as a vacuum state in phase space.
That is, there are no photons polarised in the y direction despite a steady base stream of

linearly x-polarised photons, so that
〈
Ŝy

〉
=
〈
Ŝz

〉
= 0. The interpretation of the number basis

for the light mode is easier to comprehend. By polarising the light heavily in the x direction,
the assumption is made that âx → 〈âx〉 and â†x →

〈
â†x
〉

and 〈âx〉 =
〈
â†x
〉

= Ax. The Stokes
operators can then be written as 〈

Ŝx

〉
≈ A2

x

2
(4.23)

Ŝy ≈
Ax
2

(
ây + â†y

)
(4.24)

Ŝz ≈
Ax
2i

(
ây − â†y

)
(4.25)

and with this in mind, an annihilation operator for the light mode âL can be defined as

âL =
1√
2

(
X̂L + iP̂L

)
=

1√
2

Ŝy + iŜz√〈
Ŝx

〉 = ây. (4.26)

The number operator n̂L = â†LâL simply counts the number of photons polarised in the y
direction, initially 〈n̂L〉 = 0. The initial state of the light and atoms together is given by

|ΨI〉LA =
√

1− λ2

∞∑
n=0

λn|n〉1|n〉2|0〉3|0〉4 (4.27)

where the subscripts 1 and 2 denote the first and second atomic modes respectively, and 3 and 4
denote the light vacuum modes. The light modes 3 and 4 are sent through the atomic ensembles
1 and 2 respectively in the double pass scenario described in the previous section. This double
pass scheme then performs the role of a beamsplitter transformation and is treated accordingly
in what follows (see Chapter 2). The quantum state after the beamsplitter interaction can be
described by

|ΨF 〉LA =
∑∞
n=0

√
1− λ2λn

∑n
k1,k2=0

√(
n
k1

)(
n
k2

)
φk1+k2

(
1− φ2

)2n−k1−k2

×|n− k1〉1|n− k2〉2|k1〉3|k2〉4 (4.28)

where φ represents the strength of the interaction.
The outgoing light modes must then be passed through a polarised filter to remove the base

stream of x polarised photons, and allowing only photons whose polarisations have been rotated
by the interaction until y polarised to proceed (Figure 4.6). A detector must then register
whether y polarised photons are present.

The likelihood of completing a double-pass scheme and rotating the polarisation of a single
photon to be aligned with the y axis is negligible. To try to rectify this somewhat, it is noticed
that modern day detectors are unable to distinguish the number of photons present. It is instead
assumed that the detectors used can, to a high degree of efficiency, detect simply the presence



46

(a) First Pass (b) Second Pass

Figure 4.6: The light mode is initially strongly polarised in the x-direction. By interacting twice
with the spin-polarised atomic ensemble, one or more of the spins is probabilisticalloy flipped. This is
heralded by the detection of y-polarised photons by the photodetector.

of one or more photons (on-off detectors). Such a measurement can be performed, for example,
by avalanche photodiodes. The state in this case becomes

|ΨA〉out =

√
1− λ2

S

∞∑
n=0

∞∑
u,v=1

λn

√(
n

u

)(
n

v

)
× φu+v

(
1− φ2

)2n−u−v |n− u〉1|n− v〉2 (4.29)

where S is the probability of getting an affirmative measurement at both detectors

S =
1− λ2

1− λ2
(
φ2 + (1− φ2)

2
)2 −

2
(
1− λ2

)
1− λ2 (1− φ2)

2
(
φ2 + (1− φ2)

2
) +

1− λ2

1− λ2 (1− φ2)
4 . (4.30)

The amount of entanglement in the two ensembles is quantified by the negativity and logarithmic
negativity of the state, defined in Chapter 3 and rewritten here.

N (ρ̂AB) = 1
2Tr

(√
(ρ̂TAAB)2 − ρ̂TAAB

)
=

∥∥∥ρ̂TAAB∥∥∥−1

2

EN (ρ̂AB) = log(1 + 2N (ρ̂AB)) = log(
∥∥ρ̂PTAB∥∥) (4.31)

For projections onto an exact photon state (i.e. single photon detection), the negativity and
logarithmic negativity can be calculated analytically. However, for on-off type measurements
the entanglement measures must be calculated numerically due to the infinite sums over u and
v. Fortunately these sums appear to converge quickly and so a reliable truncation point can be
set.

The calculation of the negativity and logarithmic negativity for the mixed state resulting
from on-off detections can be carried out in a similar manner to Kitagawa et al. [116]. Firstly,
the density matrix of the state is expanded as

|ψA〉out〈ψA| =
∞∑

a,b,c,d=0

ρabcd|a〉1〈c| ⊗ |b〉2〈d|, (4.32)
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Figure 4.7: The density matrix elements of the partially transposed state can be arranged into
block diagonal form where each block is of dimensions (N + 1) × (N + 1), for N = 0 · · ·Nmax.
For details, see text.

where

ρabcd = (1〈a|2〈b|) |ΨA〉out〈ΨA| (|c〉1|d〉2)

=
(1− λ2)

S

∞∑
u,v=1

λa+uλc+u

×

√(
a+ u

u

)(
a+ u

v

)(
c+ u

u

)(
c+ u

v

)
× (φ)

2(u+v) (
1− φ2

)2(a+c+u−v)
δa−b,v−uδc−d,v−u. (4.33)

The partial transpose of this state is given by

(|ΨA〉out〈ΨA|)PT =

∞∑
a,b,c,d

ρadcb|a〉1〈c| ⊗ |b〉2〈d| (4.34)

and the elements are zero unless the total number of y polarised photons detected in both modes
N = a+ b = c+ d is non-zero. This follows logically from the delta functions in ρadcb.

Operator (4.34) can be put into block diagonal form (Figure 4.7). For each value of N ,
the corresponding elements of ρadcb can be harvested and put into an (N + 1)× (N + 1) block

matrix (|ΨA〉out〈ΨA|)PT(N). With this, the matrix (|ΨA〉out〈ΨA|)PT can be written as the direct
sum of all the block matrices.

(|ΨA〉out〈ΨA|)PT = ⊕∞N=0 (|ΨA〉out〈ΨA|)PT (N) (4.35)

The negativity of the partially transposed state is then computed by numerically diagonalising
each block matrix individually, and adding up the absolute value of all negative eigenvalues. A
cut-off, Nmax, is introduced that is large enough compared with the mean number of excited
spins. There is, of course, a trade-off between Nmax and the length of time required to perform
the calculation. For the purpose of this calculation, a value of Nmax = 100 was used as this was
deemed sufficient for the logarithmic negativity (calculated from the negativity) to converge to
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Figure 4.8: A plot of the logarithmic negativity against λ for (i) standard two mode squeezed state
(solid) and for the output of the photon subtracted scheme for the beamsplitter like interaction between
light and atomic ensemble when (ii) φ = 0.1 (dashed) and (iii) φ = 0.01 (dotted). See text for discussion.
Taken from [III].

approximately seven significant figures. To increase Nmax beyond this was not beneficial. The
results can be seen in Figure 4.8

The entanglement between the two atomic ensembles is increased for all values of initial
squeezing except for very high λ. The increase in the logarithmic negativity is not very large but
comparable with the traditional protocol, in which light is used in place of atomic ensembles.
As can be seen, a trade-off is required between the interaction strength and the probability of
success (Figure 4.9). As the interaction strength increases, so does the probability of success,
but the validity of the beamsplitter approximation decreases. It is worth noting, however, that
the beamsplitter approximation has a very high fidelity of approximately 0.99 even when the
interaction strength is as high as φ ≈ 0.35.

As λ approaches approximately 0.95, the concentration procedure ceases to bring further
benefit. This may be misleading, however, as the numerical precision is less when λ is very high
due to lack of convergence. It is conjectured that for all λ, the entanglement would increase.

4.5 Modelling Detector Inefficiencies

The largest contribution to loss in the photon subtraction scheme for light modes comes from
detector inefficiencies, in particular the detector erroneously not sensing the presence of a photon.
For the atomic ensemble scheme, the efficiency of the detectors will also play a crucial role. The
detectors here have a reduced number of photons to detect due to the polarisation filter used to
hold off the base stream of x polarised photons. The inefficiency can be modelled as an ideal
detector behind a beamsplitter of transmittivity η. The light mode is combined with a vacuum
on the beamsplitter and the vacuum is traced out before the measurement is performed. For a
Fock state combining with a vacuum mode, this amounts to the transformation

|k, 0〉 →
k∑
s=0

√(
k

s

)
(
√
η)
s
(√

1− η
)k−s

|s, k − s〉. (4.36)
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Figure 4.9: Probability of success against λ for (i) interaction strength φ = 0.1 (solid) (ii) φ = 0.05
(dashed) and (iii) φ = 0.01 (dotted). The probabilities of success are small but comparable with the
light scheme. Taken from [III].

Directly before detection is performed, the density matrix is given by

ρ =
(
1− λ2

) ∞∑
m,n=0

λm+n
n∑

k1,k2=0

m∑
j1,j2=0

√(
n

k1

)(
m

j1

)(
n

k2

)(
m

j2

)

× φj1+k1+j2+k2
(
1− φ2

)2n+2m−j1−k1−j2−k2

k1∑
s=0

j1∑
t=0

k2∑
y=0

j2∑
z=0

Nk1,k2,j1,j2
s,y,t,z

× |n− k1〉1〈m− j1| ⊗ |n− k2〉2〈m− j2| ⊗ |s〉3〈t| ⊗ |y〉4〈z| (4.37)

where

Nk1,k2,j1,j2
s,y,t,z =

√(
k1

s

)(
j1
t

)(
k2

y

)(
j2
z

)(√
1− ν2

)j1+k1+j2+k2−s−t−y−z

× νs+t+y+zδk1−s,j1−tδk2−y,j2−z. (4.38)

Light modes 3 and 4 are subsequently measured for the presence or absence of photons using
the operator (1− |0〉〈0|) and traced out. The density matrix of the two remaining atomic modes
can then be described by

ρout,η =

∞∑
m,n=0

(
1− λ2

)
λm+n

min(m,n)∑
k1,k2=0

√(
n

k1

)(
m

k1

)(
n

k2

)(
m

k2

)
φ2(k1+k2)

×
(
1− φ2

)2n+2m−2k1−2j1
[
1− (1− η)

k1 − (1− η)
k2 + (1− η)

k1+k2

]
× |n− k1〉1〈m− k1| ⊗ |n− k2〉2〈m− k2| (4.39)
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Figure 4.10: Dependence of the logarithmic negativity on the efficiency of the detectors. The solid line
depicts the initial two mode squeezed state of the entangled atomic ensembles. Then the logarithmic
negativity is shown for η = 1 (dashed line), η = 0.8 (dotted line), η = 0.5 (dash-dot), and η = 0.2 (long
dash). The interaction strength is φ = 0.1. Taken from [III].

and the probability of success, taking into account detector losses, is given by

Sη =
1− λ2

1− λ2
[
φ2 + (1− φ2)

2
]2 +

1− λ2

1− λ2
[
φ2 (1− η) + (1− φ2)

2
]2

−
2
(
1− λ2

)
1− λ2

[
φ2 (1− η) + (1− φ2)

2
] [
φ2 + (1− φ2)

2
] . (4.40)

The effect that detector inefficiency has on the logarithmic negativity of the atomic ensembles
can be shown in Figure 4.10.

As expected, the entanglement concentration becomes less pronounced for low detector
efficiency. The positive message is that even for efficiencies as low as η = 0.2 there is still a
range of λ values for which entanglement is increased (although the probability of success is
quite low in this case). This range is experimentally accessible and so it is good news that the
entanglement concentration protocol is more robust against imperfections.

4.6 Summary of Chapter 4

The tools and language of quantum optical entanglement distillation have been applied to a
collection of entangled atomic gas samples. Similar to the scheme of Eisert et al. [114], in the
attempt made in this chapter, on-off detector clicks herald the successful “photon subtraction”
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(spin flip in the atomic ensembles) and thus successful entanglement distillation. The significant
ingredients for this recipe were

• a double-pass QND interaction between heavily polarised light modes and the atomic
ensembles.

• a non-Gaussian element in the form of a photodetector.

The obvious question to ask is this: why use a double pass? Would a single pass suffice? Is it
really necessary to use an approximation? These questions shall be answered in Chapter 5.



Chapter 5

Entanglement Distillation with QND
Hamiltonians

5.1 Motivation

As has been shown in the previous chapter, it is possible to distil entanglement in two atomic
ensembles using two QND interactions to mimic a beamsplitter interaction followed by a non-
Gaussian measurement. However, it would prove rather difficult experimentally to fire a pulse
through an atomic ensemble and reflect it back, suitably phase-shifted, for a second interaction,
all without losing coherence or significantly altering the base polarisation of the photons, and
thereby leading to the light quadratures becoming ill-defined. Not to mention the fact that in the
experimental set-up of Julsgaard et al. [9] the length of the pulse is long and so the laboratory
would have to be a shining example of ergonomic design in order to perform the double pass.

Although the “beamsplitter” approximation showed that QND interactions do indeed prove
useful, it would be far more desirable (and easier on the poor experimentalists) if a single pass
QND interaction could be used. It would be of great benefit to show that a QND interaction
could be used for entanglement distillation as it would increase drastically the amount of options
open to choose from. With the rich history of QND interactions in, for example, the search
for gravity waves, it would be most intriguing to see what other uses they could be put to.
The success of the beamsplitter approximation approach certainly justifies an examination of
this. However, in the previous chapter, the beamsplitter approximation was implicitly used
to calculate the logarithmic negativity of the output state in the Fock basis, desirable from a
programming perspective. The QND interaction’s effect on the Fock basis is far harder to work
with than a beamsplitter interaction. Moreover, direct calculation in the Fock basis for a given
distillation scheme is cumbersome and unwieldy from a theoretical physicist’s take on life, and
is not easy to adapt to changes (i.e. to quickly see the effects of further interactions).

In what follows, an elegant method is presented for directly calculating the density matrix
elements of a mixed state resulting from a Gaussian state undergoing an entanglement distillation
process in the number basis. This approach is not groundbreaking, but does knit together the
threads that have appeared in various works to efficiently calculate density matrix elements.
It is also incredibly versatile, making additional interactions as simple as multiplying small,
finite matrices. In short, we amalgamate ideas on using the well-known formalism of Gaussian
states to represent non-Gaussian states [156, 157] and calculate density matrix elements using
multivariate Hermite polynomials [158, 159, 160].

Two protocols are presented here as examples and, inspired by the problem put forward in
the previous chapter, QND interactions are used. Although in this chapter, protocols are not
bound to any particular physical system, (although, indeed, the word “photon” is often used
to describe a number state), the observant reader will notice that the first protocol could easily
describe the elements of the previous chapter, but with a single QND pass.

In Section 5.2 the first example scheme will be presented; a procrustean entanglement con-
centration protocol replacing the conventional beamsplitter interaction with the QND interaction
between a Gaussian ancilla and a Gaussian entangled state. In Section 5.3 an alternative scheme
is put forward, where an auxiliary mode is non-Gaussian and a post-measurement is Gaussian.
In both cases the logarithmic negativity of the state is shown to increase, demonstrating a

52
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Figure 5.1: The two modes of a two mode squeezed vacuum interact with two vacuum modes which
are subsequently measured for the presence or absence of photons. If successful, the entanglement of
the two mode squeezed state increases. Taken from [V].

successful continuous variable entanglement distillation based on the QND Hamiltonian.

5.2 Protocol I

The first entanglement concentration scheme is depicted in Figure 5.1. A two mode squeezed
vacuum interacts with two auxiliary modes via QND interaction. The ancillary modes are
subsequently detected for the presence or absence of photons. If successful, detector clicks
herald entanglement concentration and the two mode squeezed vacuum has transformed into a
non-Gaussian mixed state possessing a higher entanglement content.

The key to calculating the density matrix elements of the mixed state output is to notice
that all the quantum states involved are initially Gaussian and the QND interaction is a Gaussian
map. Indeed, the protocol can, up to and including the QND operation between TMSV and
ancillae, be dealt with on the level of covariance matrices and symplectic transformations. The
TMSV (modes A and B) can initially be described by Equation (2.106) and the vacuum modes
(a and b) by γvac = 1. The initial covariance matrix of all four modes before any interaction is
simply given by

γinit = γTMSV
AB ⊕ γvac,a ⊕ γvac,b. (5.1)

Mode A interacts with mode a and mode B interacts with mode b via QND interaction (see
Equation (2.109)). As an example we consider interactions of the form Ĥint = κX̂AP̂a and
Ĥint = κX̂BP̂b. Throughout this chapter, the scheme is always symmetric with all operations
on mode A being the same as on mode B although there is no requirement that this be the case.
Due to this symmetry, we will simply refer to a κX̂P̂ interaction (without subscripts) implying

that the interaction happens to both arms of the TMSV. The symplectic operation S
(κX̂P̂)
QND ,

written in Equation (2.109), must be expanded to incorporate all 4 modes, i.e. rewritten as

S
(κX̂P̂)
QND =



1 0 0 0 0 0 0 0
0 1 0 0 0 −κ 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 −κ
κ 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 κ 0 0 0 1 0
0 0 0 0 0 0 0 1


(5.2)

and applied as S
(κX̂P̂)
QND γinitS

(κX̂P̂)T
QND in the usual way. Conceivably, other schemes could be

considered simply by further multiplying symplectic matrices, e.g. double passes.
With this, the interaction is performed. The non-Gaussian measurement can be considered

as a perfect detector behind a beamsplitter of transmittance η (see e.g. [161, 114]). Such
an operation is a simple Gaussian channel, characterised by the symplectic transformation
Sloss (η) =

√
η1 and the addition of (1− η) 1 [162]. Immediately prior to the measurement,

the covariance matrix of the 4 mode state is given by

γ = (1AB ⊕ Sloss,ab)S
(κX̂P̂)
QND γinitS

(κX̂P̂)T
QND (1AB ⊕ Sloss,ab) + (0⊕ (1− η) 1ab) (5.3)
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where 0 is a four by four matrix of zeroes. With this, the efficiency of the detector is immediately
taken into account. At this time, the state has a Gaussian Wigner Function Wγ .

Importantly, the measurement Π̂ = 1− |0〉〈0| provides the vital non-Gaussian element, but
itself consists of the sum of two Gaussian operations, namely 1 (tracing out the mode in question)
and |0〉〈0| (projection onto the vacuum). The Wigner function WAB ≡ WAB (xA, pA, xB , pB) of
modes A and B after the measurement is given by

WAB = M

1∑
i,j=0

(−1)
i+j

P (ij)W(ij)
AB . (5.4)

That is, the total Wigner function WAB is given by a superposition of normalised Gaussian

Wigner functions W(ij)
AB ≡ W

(ij)
AB (xA, pA, xB , pB) with i = 0 implying that mode a has been

projected onto |0〉〈0| and i = 1 indicating that a has been traced out. The index j tells the story

of mode b. The constants P (ij) are the probabilities associated with W(ij)
AB and M is a global

normalisation constant given as M =
(∑

i,j (−1)
i+j

P (ij)
)−1

.

Each Gaussian Wigner function W(ij)
AB is described by

W(ij)
AB =

1

π2

√
det γ

(ij)
AB

exp
[
−RT γ

(ij)−1
AB R

]
(5.5)

with R = (xA, pA, xB , pB)
T

. The 4 × 4 covariance matrices γ
(ij)
AB that make up the Gaussian

Wigner functions W(ij)
AB and the normalisation constants P (ij) are calculated from γ by con-

sidering the Wigner overlap formula (2.73). Tracing out a mode corresponds to an overlap
with W1 = 1/2π and a projection onto the vacuum corresponds to an overlap with W0 =
π−1 exp

[
−x2 − p2

]
.

To see this we define

Γ = γ−1 =

(
ΓAB σ
σT Γab

)
(5.6)

where γ is an 8 × 8 matrix as in Equation (5.3). In the exponent of the corresponding Wigner
function Wγ , the 4 × 4 matrix ΓAB describes the entangled modes A and B and Γab describes
the auxiliary modes a and b with σ capturing the cross-correlations. The Wigner overlap with

W1 or W0 becomes a Gaussian integral from which the γ
(ij)
AB matrices can be derived. Then

γ
(ij)
AB =

(
Γ

(ij)
AB

)−1

where

Γ
(ij)
AB = ΓAB − σ

(
Γ

(ij)
ab

)−1

σT ; (5.7)

Γ
(ij)
ab = Γab + (1− i) 1⊕ (1− j)1. (5.8)

The normalisation constants P (ij) can be calculated by integrating what remains over xA, pA, xB
and pB . Consequently,

P (ij) =
22−i−j

√
det Γ√

det Γ
(ij)
AB

√
det Γ

(ij)
ab

. (5.9)
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With the example of S
(κX̂P̂ )
QND being used in Equation (5.3), the matrices currently take the form

γ
(11)
AB =


cosh(2r) 0 sinh(2r) 0

0 κ2 + cosh(2r) 0 − sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 κ2 + cosh(2r)



γ
(10)
AB =


ηκ2+2 cosh(2r)
2+ηκ2 cosh(2r) 0 2 sinh(2r)

2+ηκ2 cosh(2r) 0

0 κ2 + cosh(2r) 0 − sinh(2r)
2 sinh(2r)

2+ηκ2 cosh(2r) 0 2 cosh(2r)
2+ηκ2 cosh(2r) 0

0 − sinh(2r) 0 1
2 (2− η)κ2 + cosh(2r)



γ
(01)
AB =


2 cosh(2r)

2+ηκ2 cosh(2r) 0 2 sinh(2r)
2+ηκ2 cosh(2r) 0

0 1
2 (2− η)κ2 + cosh(2r) 0 − sinh(2r)

2 sinh(2r)
2+ηκ2 cosh(2r) 0 ηκ2+2 cosh(2r)

2+ηκ2 cosh(2r) 0

0 − sinh(2r) 0 κ2 + cosh(2r)



γ
(00)
AB =


2(ηκ2+2 cosh(2r))

4+η2κ4+4ηκ2 cosh(2r) 0 4 sinh(2r)
4+η2κ4+4ηκ2 cosh(2r) 0

0 1
2 (2− η)κ2 + cosh(2r) 0 − sinh(2r)

4 sinh(2r)
4+η2κ4+4ηκ2 cosh(2r) 0

2(ηκ2+2 cosh(2r))
4+η2κ4+4ηκ2 cosh(2r) 0

0 − sinh(2r) 0 1
2 (2− η)κ2 + cosh(2r)


(5.10)

with coefficients

P (11) = 1,

P (10) = P (01) =

√
1

1 + 1
2ηκ

2 cosh(2r)
,

P (00) =

√
4

4 + η2κ4 + 4ηκ2 cosh(2r)
. (5.11)

At this point, all of the quantities in Equation (5.4) have been defined for the Wigner function of
the non-Gaussian mixed state resulting from the protocol in Figure 5.1. However, to show that
the entanglement in the two modes has increased, we require the density matrix elements of the
state. These can be calculated with the help of the Q function and multidimensional Hermite
polynomials [158, 159, 160].

The Q function is described by a convolution of the Wigner function with the vacuum [13]
and so

Q(ij)
AB (α, β) =

exp

[
−R†

(
Uγ(ij)U† + 1

)−1

R
]

π2
√

det
(
γ(ij) + 1

) (5.12)

where R =
(
α, α†, β, β†

)
and U is the unitary transformation between (x̂A, p̂A, x̂B , p̂B)

T →(
â, â†, b̂, b̂†

)T
:

U =
1√
2


1 i 0 0
1 −i 0 0
0 0 1 i
0 0 1 −i

 . (5.13)

The Q function, as pointed out in section 2.2 can also be written as

Q(ij) (α, β) =
1

(2π)
2 〈α|〈β|ρ̂

(ij)|α〉|β〉 (5.14)
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which can be used to find the density matrix elements in the Fock basis. By rewriting (5.14)
using the Fock state representations of the coherent states (2.37) and rearranging one finds

(2π)
2Q(ij) (α, β) =

∞∑
l,m,n,p=0

(α∗)
l

√
l!

(β∗)
m

√
m!

(α)
n

√
n!

(β)
p

√
p!
ρlmnp (5.15)

where ρlmnp = 〈l|〈m|ρ̂|n〉|p〉. If one considers the differentiation of the right hand side of (5.15)
with respect to α∗, β∗, α, β a total of l,m, n and p times respectively, and evaluates at α = β = 0
then one finds(

∂

∂α∗

)l(
∂

∂β∗

)m(
∂

∂α

)n(
∂

∂β

)p ∑
l,m,n,p

(α∗)
l

√
l!

(β∗)
m

√
m!

(α)
n

√
n!

(β)
p

√
p!
ρlmnp


α=β=0

=
∑

l,m,n,p

√
l!m!n!p!ρlmnp (5.16)

and consequently

ρ
(ij)
lmnp = 〈l| 〈m| ρ̂(ij) |n〉 |p〉

=
(2π)

2

√
l!m!n!p!

(
∂l+n

∂α∗l∂αn

)(
∂m+p

∂β∗m∂βp

)[
Q(ij)
AB (α, β) e|α|

2+|β|2
]
α=β=0

. (5.17)

As the Q functions Q(ij)
AB (α, β) are Gaussian, the matrix element is most conveniently expressed

in terms of the multivariate Hermite polynomials Hlmnp (see Appendix A). After successful
detection, the total matrix is given by ρ̂ with matrix elements

ρlmnp =
4M (−1)

l+m+n+p

√
l!m!n!p!

1∑
i,j=0

(−1)
i+j

P (ij)H
{C(ij),0}
lmnp√

det
(
γ(ij) + 1

) . (5.18)

where for brevity H
{C(ij),0}
lmnp ≡ H

{C(ij),0}
lmnp (0, 0, 0, 0). The matrices C(ij) are defined from the

matrix equation

C(ij) = B

[(
Uγ(ij)U† + 1

)−1

− 1

2
1

]
D (5.19)

with

B =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , D =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 . (5.20)

The purpose of B and D is simply to rearrange the elements of the matrix in such a way as
to make the matrix compatible with the form given in (A.2) and to make ρlmnp proportional

to H
{C(ij),0}
lmnp . As demonstrated in Appendix A, there is a recursion relation for the Hermite

polynomials, and so a computer program can calculate the density matrix elements of each ρ̂(ij)

quickly and efficiently to a very high precision, subject to a truncation point limiting how high
l,m, n and p can roam.

With this, as previously, the partially transposed matrix

Nmax∑
l,m,n,p=0

ρnmlp|l〉〈n| ⊗ |m〉〈p|

can be used to calculate the negativity and logarithmic negativity.
The logarithmic negativity of the mixed state resulting from this protocol is shown in

Figure 5.2. The graph demonstrates the performance of the protocol dependent on the initial
squeezing parameter r and the interaction strength κ (see caption). Entanglement concentration
is successful if κ is in the range of weak to medium values i.e. for a moderate QND interaction
between the TMSV and auxiliary modes, for a wide range of the initial squeezing in the TMSV.
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Figure 5.2: Logarithmic Negativity of TMSV (solid line), and after a QND interaction of the
form κX̂P̂ with strength 0.1 (dotted), 0.5 (dashed), and 1 (thick dashed). The scheme used is
that depicted in Figure 5.1. The entanglement increase is best when weak interactions are used.
Strong interactions can decrease the entanglement in the initial TMSV. The vertical lines from
left to right indicate where the initial squeezing r is 1dB, 3dB, 5dB, and 7dB. Taken from [V].

If the interaction strength is too strong (e.g. κ = 1) then the effect of the QND interaction
on the entanglement content is negative. As the interaction strength decreases, the logarithmic
negativity of the resultant state increases and the performed QND operation is beneficial, at least
when the initial squeezing of the TMSV is weak. That is, as the interaction strength decreases,
it becomes more likely that just a single photon is subtracted from each arm of the TMSV and
these photons are detected. As expected, this compares well to the traditional protocol in which
beamsplitters are used in place of QND interactions, investigated numerically in [116].

After all, if the pure state resulting from a single photon subtraction in both modes of
the entangled state is more entangled than the initial state, then it should not matter which
interaction exactly is used to subtract the photons. It is no surprise then that a QND interaction
would work, as possibly would any other type of Gaussian interaction that only weakly perturbs
the input state.

5.3 Protocol II

Whereas Protocol I relies on a Gaussian ancillary mode interacting with the Gaussian TMSV
via QND interaction, and a subsequent non-Gaussian measurement, one could also consider a
protocol which uses a non-Gaussian ancilla and a Gaussian measurement after a QND interaction
(Figure 5.3).

The key advantage to the protocol depicted in Figure 5.3 is that the unreliable photon
detections that provide the non-Gaussianity can be performed off-line to a certain extent. It
would be quite plausible to carry out photon subtractions from a squeezed vacuum, and only
using the mode as an auxillary mode if the detectors click. Also, the post-interaction detection
of the light mode, homodyne detection, is far more reliable and highly efficient. Once the density
matrix elements of the final mixed state are found, the negativity and logarithmic negativity
can be calculated as previously.

Preparatory step

In the protocol of Figure 5.3, the ancillary modes a and b are in a quantum state with a
non-Gaussian Wigner function. Specifically, they are prepared as a photon subtracted squeezed
vacuum state. That is, they begin as Gaussian states with covariance matrix γSQ,a (s)⊕γSQ,b (s)
where γSQ (s) = SSQ (s) γvacS

T
SQ (s) and SSQ is as in equation (2.100). The modes then pass
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Figure 5.3: A non-Gaussian ancillary state is first created in a preparatory step by subtracting photons
from a squeezed vacuum. The ancilla then interacts with the TMSV via QND interactions and is
measured by homodyne detection. Taken from [V].

through beamsplitters of transmittance T with any subtracted photons subsequently being de-
tected with efficiency η. As the transmittance T increases, the model approaches the limit of
just a single photon being deducted from the mode. Throughout the remainder of this chapter,
T = 0.95 whenever numerical calculations are performed.

The Wigner function of the non-Gaussian state can be calculated by introducing two fur-
ther modes described by covariance matrices γvac,c and γvac,d that coincide with γSQ,a (s) and

γSQ,b (s) respectively on the beamsplitters and are subsequently acted on with Π̂ = 1−|0〉〈0|. If

the photon subtraction is successful, then the Wigner functionWab = Mab

∑
ij (−1)

i+j
P (ij)W(ij)

ab

where this time index i tells whether mode c was traced out (i = 1) or projected onto the vac-
uum (i = 0), with j providing the details of mode d. The probability of success is given by

Mab =
(∑

i,j (−1)
i+j

P (ij)
)−1

.

The Gaussian Wigner functions are provided by the covariance matrices γ
(ij)
ab = γ

(i)
prep⊕γ(j)

prep

where

γ(k)
prep =

(
ϑ+(k) 0

0 ϑ−(k)

)
(5.21)

and

ϑ±(k) = 1 +
(2− k)

(
e±2s − 1

)
T

1 + (1− k) (1 + η (e±2s − 1) (1− T ))
. (5.22)

The coefficients P (ij) are calculated as

P (ij) =
22−i−j

√
ϑ+(i)ϑ−(i)ϑ+(j)ϑ−(j)√

τ+(i)τ−(i)τ+(j)τ−(j)
(5.23)

with

τ±(k) = 1− k −
1 +

(
e±2s − 1

)
T

(1− η) (e±2s − 1) (1− T )− e±2s
(5.24)

At this point we have a non-Gaussian stateWab, consisting of a superposition of Gaussian states.
If the preparatory step could be performed independently and only passed to the interaction
and homodyne measurement if successful then we could consider η = 1.

Interaction and Detection

A non-Gaussian state produced in the preparatory step further interacts with the TMSV via
QND coupling and the ancilla is subsequently passed on for homodyning on a detector of ef-
ficiency ξ. An angle θ describes the phase of the homodyne measurement, that is the angle
at which homodyning is performed in phase space. An angle of θ = 0 corresponds to a mea-
surement of position quadrature xθ=0 = x (the x marginal distribution) whereas an angle of
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π/2 describes the momentum quadrature measurement xθ=π/2 = p (the p-distribution). Thus
the homodyne measurement is characterised by the generalized quadratures xθ,a, xθ,b. Directly
before measurement, we can calculate the covariance matrices to be

γ
(ij)
ABab = (1AB ⊕ SPH (θ)) γ

(ij)
int (1⊕ ξ1)

(
1AB ⊕ STPH (θ)

)
+ (0AB ⊕ (1− ξ) 1ab) (5.25)

with
γ

(ij)
int = SQND

[
γTMSS
AB ⊕ γ(ij)

ab

]
STQND. (5.26)

To see what happens after the homodyne detection we project the quadratures xθ,a and xθ,b
onto an outcome z. We also trace out the conjugate quadratures (xθ+π/2,a and xθ+π/2,b).

At this point the remaining covariance matrix for A and B and the correlations due to the
z measurements can be described by a 6× 6 matrix µ(ij) such that(

µ(ij)
)−1

=

(
A(ij) C(ij)

CT (ij) B(ij)

)
(5.27)

where A(ij) is a 4×4 matrix (modes A and B), B(ij) is a 2×2 matrix descibing the z correlations,
and C(ij) contains the cross correlations. The probability of projection of modes a and b is given
by

q(ij)
z =

√
det
(
B(ij) − CT (ij)A(ij)−1C(ij)

)
π

exp
[
− (z, z)

[
B(ij) − CT (ij)A(ij)−1C(ij)

]
(z, z)

T
]

(5.28)
and the Q function describing modes A and B reads

Q
(ij)
AB (α, β) =

√
det Φ(ij)

π2
exp

[
−−Λ(ij)Φ(ij)−1Λ(ij)†

4

]
exp

[
−RTΦ(ij)R− Λ(ij)R

]
(5.29)

where

Φ(ij) = U
(
A(ij)−1 + 1

)−1

U†, (5.30)

and

Λ(ij) = 2 (z, z) C(ij)TA(ij)−1
(
A(ij)−1 + 1

)−1

U†. (5.31)

By defining Φ′(ij) = B
[
Φ(ij) − (1/2)1

]
D and Λ′ = ΛD we can write the density matrix elements

as

ρlmnp =
4Mhom√
l!m!n!p!

1∑
i,j=0

(−1)
i+j

P (ij)q(ij)
z

√
det Φ(ij) exp

[
−−Λ(ij)Φ(ij)−1Λ(ij)†

4

]
H
{Φ′(ij),Λ′(ij)}
lmnp

(5.32)
with

Mhom =

 1∑
i,j=0

(−1)
i+j

P (ij)q(ij)
z

−1

. (5.33)

From this, the logarithmic negativity of modes A and B can be calculated as before.
In contrast to the first protocol, the second protocol is sensitive to which interactions are

used. The position and momentum correlations in the TMSV are not mixed by the QND

interactions and so the effects induced by interaction Hamiltonians e.g. H
(κXP )
int and H

(κPP )
int are

equivalent. Correspondingly, the choice of measurement on the ancillary modes is important. If,

for example, the interaction H
(κXP )
int is used, then the momentum quadratures of the ancillary

modes are, by definition, unaffected but information about the TMSV is imprinted on the
position quadrature distribution. If homodyne measurements on the ancillas are performed on p
(θ = π/2) then the resulting outcome can reveal nothing about the state of the TMSV and the

probabilities q
(ij)
z (5.28) are independent of κ and r. As nothing can be learned probabilistically

about modes A and B, procrustean entanglement concentration cannot occur. The effects on
the TMSV can be transformed away by local Gaussian operations and ancillary modes and so
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Figure 5.4: Performance of protocol II (Fig. 5.3): Logarithmic Negativity of TMSV before (solid line),
and after a QND interaction for different initial squeezing of the ancilla modes. The QND interaction
is of the form κX̂P̂ and has strength κ = 0.5; homodyne outcome z ≈ 0. The ancillary modes are
squeezed by s = 0.1 (0.87dB) (black dotted), s = 0.5 (4.34dB) (black dashed) and s = 1 (8.69dB) (thick
black dashed). The improvements of entanglement in the TMSV gained by increasing the squeezing of
the ancillary modes is small when the initial squeezing of the TMSV r is small. The vertical lines from
left to right indicate where the initial squeezing of the TMSV r is 1dB, 3dB, 5dB, and 7dB. η = ξ = 1.
Taken from [V].

the entanglement of the TMSV is unchanged. The above is true irrespective of whether the
ancillary modes are initially squeezed in position or momentum.

If homodyne measurements were taken of the position quadratures (θ = 0) then information
about the TMSV will have been probabilistically imprinted on this measured distribution. If

H
(κXP )
int is used then the momentum quadratures of the TMSV contain information about the

momentum quadratures of the ancillary modes. That is, some noise has been added to modes
A and B which can assist or disrupt entanglement concentration. If the ancillary modes are
squeezed in momentum, then only a little noise is added to the p quadratures of the TMSV.
The result is an increase in entanglement dependent on s and κ (Figure 5.4). If the ancillary
modes are squeezed in position then the momentum quadratures are anti-squeezed and so a lot
of noise is added to the TMSV, having a detrimental effect on the entanglement.

As can be seen in Figures 5.4 and 5.5, successful entanglement concentration is achieved if

the ancillary modes are squeezed in p-quadrature, the QND interaction is of the form H
(κXP )
int ,

and homodyne measurement is performed in x-quadratures. The protocol is noticeably insen-
sitive to ancillary mode squeezing - the logarithmic negativity of the resulting state is largely
unaffected for low levels of TMSV initial squeezing.

Unlike Protocol I a weak interaction strength ruins the entanglement in the system. Simi-
larly, if the strength is too strong then the entanglement decreases. If κ ≈ 0.5 then concentration
successfully occurs.

5.4 Summary of Chapter 5

We have presented here two procrustean entanglement concentration schemes utilizing Quantum
non-Demolition (QND) interactions and photon detectors. The first scheme relied upon QND
interactions between Gaussian ancillary modes and a TMSV to successfully subtract photons
from the TMSV as heralded by on/off detectors. We have shown how to efficiently calculate
the density matrix elements of the resulting quantum state, which can then be used to calculate
the logarithmic negativity of the state. This is a non-trivial task. In the asymptotic limit
of the QND interaction strength κ → 0, one would find that a single photon is subtracted
from each arm of the TMSV, although the probability of heralding entanglement concentration
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Figure 5.5: Performance of protocol II (Fig. 5.3): Logarithmic Negativity of TMSV before (solid line),
and after a QND interaction for different QND interaction strengths. The QND interaction is of the
form κX̂P̂ . The non-Gaussian ancillary modes are initially squeezed by s = 0.2 (1.74dB) and it is
assumed that the homodyne measurement outcome is z ≈ 0. The interaction strengths are κ = 0.1
(black dotted), κ = 0.5 (black dashed) and κ = 1 (thick black dashed). An intermediate interaction
strength is preferable. The vertical lines from left to right indicate where the initial squeezing of the
TMSV r is 1dB, 3dB, 5dB, and 7dB. η = ξ = 1. Taken from [V].

approaches zero. This is intuitively correct as the behavior mimics the protocol of [114] in which
highly transmissive beamsplitters are used in place of weak QND interactions. There, as the
transmittance approaches 1, one finds that a single photon is subtracted from each arm, which
is the optimal outcome for entanglement concentration. The results of [114] can be revisited
by replacing SQND with SBS (T ) in equation (5.3) where SBS (T ) is the symplectic operation
corresponding to a beamsplitter transformation, given in Chapter 2, equation (2.105). We find
that the method we have used for calculating density matrix elements for this protocol offers an
improvement in numerical speed and efficiency over calculations in the Fock basis directly.

Double pass schemes, i.e., letting the ancillae interact with the TMSV twice, do not give

any advantage in protocol I. For example S
(κ2X̂P̂ )
QND S

(κ1X̂P̂ )
QND = S

((κ1+κ2)X̂P̂ )
QND but the logarithmic

negativity is highest for weak interaction strength. By altering the interaction between passes e.g.

S
(κ2P̂ X̂)
QND S

(κ1X̂P̂ )
QND there is some advantage over a double pass scheme using the same interaction

twice but this is still eclipsed by the single pass schemes.
As to detector efficiencies, at low levels of initial TMSV squeezing r, there can still be an

increase in entanglement for weak interactions such as κ = 0.1 when the detector efficiency
exceeds approximately 50%, η > 0.5.

The second protocol relied on QND interactions to mix a TMSV with photon subtracted
squeezed vacuum modes, that is with a non-Gaussian ancillae. The non-Gaussian ancillary
modes are then detected after the interaction using homodyne detectors. As was stated in
the previous section, the success of this scheme is dependent on the initial squeezing of the
ancillary modes, the choice of interaction, and the angle θ of homodyning. It is most likely
that a homodyne measurement yields a result z = 0, and the logarithmic negativity shows an
improvement so long as the measurement outcome does not stray too far from this.

The benefit of the second protocol is that the probabilistic non-Gaussian state preparation
could be performed off-line and therefore the efficiency η of the on/off detectors could be assumed
to be good. Then only the homodyne detector efficiency needs to be taken into account.

Let us now consider the feasibility of the implementation of the protocols presented here in
a laboratory setting. In a purely optical setup in which the TMSV is created by parametric down
conversion and the QND operations are performed with beamsplitters and squeezers, protocol
I is probably the easiest to implement, although other effects such as a nonzero dark count
rate of the detectors would need consideration. However, in the atomic systems of [9] where
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the entangled macroscopic spin states of two caesium gas samples represent the TMSV and off-
resonant dipole interactions with strongly polarized light form the QND interactions, the vacuum
ancillary modes are not true vacuum modes. They are instead modes of heavily polarized light.
The heralding of the entanglement concentration comes from detecting photons for which the
interaction has altered the polarization, but this requires heavy filtering, a problem that is most
likely insurmountable with current technology. Protocol II does not suffer this problem and so is
the best choice in the atomic case. The probabilities of success in both cases are comparable with
those for the beamsplitter-based light schemes, already demonstrated [117] in the laboratory.
The possibility of distilling entanglement in atomic ensembles represents the main motivation
for using a general QND Hamiltonian for entanglement concentration.



Chapter 6

Gaussian Intrinsic Information

This chapter is concerned with a new potential measure of quantum entanglement in continuous
variable bipartite Gaussian states. Such measures are still sought after if they have an operational
interpretation. As has been seen from Chapter 3, the logarithmic negativity is easily computable
on Gaussian states. However, it is operationally unclear what such a measure means. The
Gaussian entanglement of formation is known in some cases but is difficult to calculate in general
and also provides no clear operational interpretation on mixed states.

In this self-contained chapter, an attempt is made at establishing a new entanglement
measure for bipartite Gaussian states. This task has not yet been completed but looks promising.
Work is ongoing in collaboration with Dr Ladislav Mǐsta at Palacký University. The measure is
based on a well-known problem from cryptography that has been partially translated into the
finite dimensional Hilbert space setting for use in quantum information theory.

In Section 6.1 we explain the motivation in classical cryptography for which the Intrinsic
Information was defined. In Section 6.2 we explain briefly what this means for qudits.

From Section 6.3 onwards, we try to translate this to Gaussian states. As has been said,
this is only a partial result but appears promising.

6.1 Motivation

One of the ever fundamental problems in quantum cryptography is the task of establishing a
secret key between Alice (who wants to send a message) and Bob (receiver) in a real environment.
Traditionally in a symmetric cipher, regardless of the exact form the cipher takes, Alice would
encrypt her message, or plaintext, with a secret key. The resulting ciphertext would be sent to
Bob who would then use the same key to decrypt and obtain the original message.

However, suppose that the courier Alice uses is not to be trusted. The courier gives a
facsimile of the ciphertext to an eavesdropper, Eve, who using centuries old techniques can find
the key and thereby crack the code. The techniques at her disposal include frequency analysis.
If the length of the key is shorter than the length of the message, then to encode one message the
key will be used over and over again. Repetition is the root of all evil and Eve can spot patterns
in the ciphertext to establish what the key must be. The ciphertext can therefore be used to
crack the current message and all future messages using the same key. In [163], Shannon proved
the disheartening theorem that a ciphertext C can only be perfectly, information-theoretically
secure if the (classical) mutual information between the message M and ciphertext, I (M : C)
is zero.

First described by Frank Miller in 1882, the one-time pad, or Vernam cipher, was reinvented
in 1917 and gave an added security. The solution was clear - if the key was the same length
as the plaintext then there would be no repetitive loopholes for Eve to exploit. If a different
key was used for every message (i.e. no repetition across multiple messages) then the ciphertext
cannot give up the key.

However, an obvious problem arose. How could Alice send the key to Bob in the first
place? Public key cryptography introduced by Diffie and Hellman [164] solves this problem
under two assumptions. Firstly, Eve is unable to solve a very hard computational problem in a
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feasible amount of time1 and secondly, Eve only has passive access to the communication between
Alice and Bob. Thus public key cryptography is computationally secure but not information-
theoretically secure.

Theorists in classical information theory have given this problem a lot of thought. Ignoring
the technicalities of individual methods for key distribution, the overall idea is the same [165].
Communication occurs between Alice and Bob with Eve having an active or passive role and
consequently, after this round of communication all three parties share a classical distribution2

PXY Z . The part of this that Alice and Bob share is usually termed the raw key and they must
try to produce a secret key by postprocessing, error checking etc.

Alice and Bob aim to turn their distribution into a perfectly correlated list of symbols about
which Eve knows nothing, and to do so they can perform local operations on their individual
distributions and communicate over a public channel. This is known as an LOPC protocol. To
get unconditional security, it is important to show in information-theoretic terms that there is
no correlation between Eve’s distribution and Alice and Bob’s after the LOPC protocol, at least
in the asymptotic limit.

The secret key rate of X and Y with respect to Z, denoted by K (X : Y ||Z), is the maximum
rate at which Alice and Bob can agree on a secret key K in such a way that the amount of
information Eve is privy to is negligible. This could be phrased in an alternative way [166]. The
secret key rate K is the maximal R such that for every ε > 0 and for all sufficiently large N
there exists a protocol, using public discussion over an insecure but authenticated channel, such
that Alice and Bob who receive XN = {X1, · · · , XN} and Y N = {Y1, · · · , YN}, respectively,
compute the same key K with probability at least 1− ε satisfying

I
(
K : CZN

)
≤ ε (6.1)

H (K) ≥ log [K]− ε (6.2)

1

N
H (K) ≥ R− ε (6.3)

where C denotes the communication channel (i.e. the complete collection of all the messages sent
over the channel), H is the Shannon entropy H (pX ) = −

∑
x pX=x log [pX=x], and the classical

mutual information is given by

I (X : Y ) = H (pX) +H (pY )−H (pXY ) . (6.4)

Note, the logarithm of equation (6.2) is usually taken to be to base 2 when discussing bits but
this is unimportant.

From the definition above, it is clear that the secret key rate is not something that is easy to
find. Bounds must be found. It is intuitive that the secret key rate can never be less than Alice
and Bob’s shared information reduced by the correlations between Eve and one party. That is,
there is a lower bound on the secret key rate of the form

max [I (X : Y )− I (X : Z) , I (X : Y )− I (Y : Z)] ≤ K (X : Y ||Z) (6.5)

with the bound being saturated if the communication between Alice and Bob only flows one
way [167]. As the left hand side of the inequality may be negative but the secret key rate may
not, it makes more sense to write

max [I (X : Y )− I (X : Z) , I (X : Y )− I (Y : Z) , 0] ≤ K (X : Y ||Z) . (6.6)

Upper bounds also exist. The secret key rate can certainly never exceed the mutual information
between Alice and Bob. The secret key rate can also never exceed their mutual information
conditioned on what Eve knows, so

K (X : Y ||Z) ≤ min [I (X : Y ) , I (X : Y |Z)] (6.7)

1All bank codes are based on the famous RSA cipher which is dependent on the unproven rule that a very
large number cannot be factorised in a reasonable amount of time. If implemented correctly, it would on average
take all of the computers on the planet longer than the age of the universe to crack a single code by brute force.
This is by far one of the biggest inspirations for creating quantum computers.

2X,Y, Z have been used in place of A,B,E to avoid any confusion later on. X corresponds to Alice’s part of
the distribution, Y to Bob, and Z to Eve.
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(a) Entropies of three random variables (b) The role of intrinsic information

Figure 6.1: The relationship between different classical entropic quantities is shown in Figure 6.1a. In
the centre is the fully symmetric quantity R (X : Y : Z) = I (X : Y )− I (X : Y |Z), although this may
be negative. In Figure 6.1b, the role of Eve’s post-processing is shown. She is able to decrease the
amount of secret correlations that Alice and Bob share. We have used H (X) in place of H (pX) etc. for
ease of notation. Adapted from [168].

where the second term is given by

I (X : Y |Z) = H (pXZ) +H (pY Z)−H (pXY Z)−H (pZ) (6.8)

and H is the Shannon entropy. Equation (6.8) can be thought of as a classical analogue to the
conditional quantum mutual information in the definition of squashed entanglement (3.49).

But let us consider this term further. After the initial round of communication yielding
PXY Z , Eve may choose to do some form of post-processing which would change I (X : Y |Z).
This conditional mutual information could be decreased, forming a tighter bound on the secret
key rate K (X : Y ||Z). We can now define the intrinsic information (intrinsic conditional mutual
information).

Given a distribution PXY Z the intrinsic information is defined as

I (X : Y ↓ Z) = inf
PZ̄|Z

{
I
(
X : Y |Z̄

)
: PXY Z̄ =

∑
Z

PXY ZPZ̄|Z

}
(6.9)

where the infimum is taken over all discrete random variables Z̄ such that XY → Z → Z̄ is a
Markov chain. That is, the transformation to Z̄ from Z has no dependence on XY - it is Eve’s
local operation only. So the secret key rate is bounded from above as

K (X : Y ||Z) ≤ I (X : Y ↓ Z) . (6.10)

The intrinsic information then satisfies the following inequalities:

0 ≤ I (X : Y ↓ Z) ≤ I (X : Y ) (6.11)

I (X : Y ↓ Z) ≤ I (X : Y |Z) . (6.12)

In [168], it was also conjectured that if I (X : Y ↓ Z) > 0 then K (X : Y ||Z) > 0.
On a significant sidenote, it is possible to define another quantity, the Information of For-

mation Iform (X : Y |Z) that, loosely speaking, quantifies how able Alice and Bob are to create
their joint probability distribution using local operations and public communication (LOPC).
It is discovered by finding the infimum over all LOPC channels able to do that. It acts as an
upper bound on the intrinsic information, and therefore on the secret key rate

I (X : Y ↓ Z) ≤ Iform (X : Y |Z) . (6.13)

An examination of Iform in conjunction with K (X : Y ||Z) can yield some very interesting results
and has led to one of the few examples of ideas from quantum information theory directly
inspiring advances in classical information theory, as opposed to the other way round. For
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a long time, it was wondered whether there was a classical analogue to bound entanglement
[169, 170]. The answer is yes, the bound information, and a probability distribution PXY Z
possesses bound information when

K (X : Y ||Z) = 0, Iform (X : Y |Z) > 0. (6.14)

That is, bound information is when a distribution can be formed with correlations from which
no secret key can be distilled. Such distributions can be found for qubits [171] and continuous
variables [172].

6.2 Intrinsic Information in qudit systems

Gisin, Renner and Wolf [169] considered the problem of distilling a secret key from a probability
distribution resulting from measurements on a quantum state. If Alice were to try communicat-
ing a pure state to Bob over a noisy quantum channel, they would only ever end up sharing a
mixed state as information would leak away.

A mixed state, then, is not a true fundamental object, it is a sign of the researchers’
ignorance. For the full knowledge of the initial system, we would need to gather everything that
was ever lost. We can assume that Eve has done this so that overall, Alice, Bob & Eve share
a pure state |ψ〉ABE which reduces to the mixed state shared by Alice and Bob when Eve is
traced out.

When Alice and Bob share many independent systems ρ̂AB there are basically two possi-
bilities for generating a secret key. They either first measure their respective subsystems and
perform a classical protocol secure against all measurements (POVMs) that Eve can perform
(i.e. against all possible distributions PXY Z that can result after Eve’s measurements). Or they
could run a protocol on ρ̂AB in the quantum domain with local operations and classical com-
munication. Such a protocol would simply be a purification scheme (see Section 3.4) with the
aim of eliminating Eve from the scenario. The process of using quantum processing to obtain
a pure state, followed by measurements, is known as quantum privacy amplification. For the
purposes of this chapter, we are instead concerned with the first of these scenarios in which
classical processing is performed on the outcome of measurements.

When given a state |ψ〉ABE between Alice, Bob and Eve, the classical distribution PXY Z =

A〈x| B〈y| E〈z| ψ〉ABE resulting from local POVM measurements by all parties, possesses in-
trinsic information I (X : Y ↓ Z) between Alice and Bob (conditioned on E) if and only if
ρ̂AB = TrE [|ψ〉ABE ] is entangled [169]. However, this correspondence clearly depends on the
measurement bases used by Alice, Bob and Eve. That is, if Alice and Bob share an entangled
ρ̂AB but perform the wrong local measurements then the intrinsic information may disappear.
If, on the other hand, ρ̂AB is separable but Eve performs bad measurements, the intrinsic in-
formation may become positive despite the fact that ρ̂AB could have been manufactured by
local operations and classical communication (LOCC). Consequently, the correspondence be-
tween intrinsic information and entanglement must involve some optimisation over all possible
measurements on all sides.

A similar correspondence is seen within protocols and is supported by many examples - the
distribution PXY Z allows for classical key agreement if and only if quantum key agreement is
possible from the state ρ̂AB .

Gisin and Wolf [170] introduced the following measure of entanglement on a state ρ̂AB in
finite dimensional Hilbert spaces:

µ (ρ̂AB) = min
{|z〉}

(
max
{|x〉,|y〉}

(I (X : Y ↓ Z))

)
(6.15)

That is, Alice and Bob share a state ρ̂AB . Eve holds a subsystem such that as a whole |ψ〉ABE is
pure. Alice, Bob and Eve each perform local POVMs on the pure global state, yielding PXY Z ,
except that Alice and Bob perform measurements chosen to maximise their classical correlations
whilst Eve works against them.

For finite dimensional systems, it was shown that

µ (ρ̂AB) = 0 if ρ̂AB is separable (6.16)
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meaning that Eve can choose a measurement basis forcing the classical correlations between
Alice and Bob to disappear. On pure states

µ (ρ̂AB) = Ev.N. (ρ̂AB) (6.17)

as Eve can do nothing to interfere with the communication between Alice and Bob. Also, µ (ρ̂AB)
is in general convex so

µ (pρ̂1 + (1− p)ρ̂2) ≤ pµ (ρ̂1) + (1− p)µ (ρ̂2) . (6.18)

It is this measure of entanglement that we attempt to translate to the continuous variable regime.

6.3 Introducing Gaussian Intrinsic Information

Defining the Gaussian Intrinsic Information

We now consider what form a measure such as (6.15) may take in the continuous variable
regime. For ease we consider the case where everything is Gaussian - the state ρ̂AB is Gaussian,
the measurements performed on all subsystems are Gaussian POVMs and the post processing
that Eve performs is limited to Gaussian channels. The Gaussian intrinsic information is then
given by

µG (ρ̂AB) = min
Π̂GE

(
max
{Π̂GA,Π̂GB}

(I (A : B ↓ E))

)
(6.19)

where Π̂G
A, Π̂G

B and Π̂G
E are Gaussian POVMS on Alice’s, Bob’s and Eve’s subsystems respectively

and now I (A : B ↓ E) is used to denote a minimisation over Gaussian post-processing on Eve’s
subsystem.

To demonstrate this measure, we first consider only a two mode Gaussian state ρ̂AB of
modes A and B with zero first moments and the covariance matrix γ and without loss of
generality can say that it is in standard form. This last assumption, that the covariance matrix
can be written in standard form without loss of generality, implicitly assumes that (6.19) is
invariant under local symplectic operations. We go some way to show this shortly. For any
such state, there is a symplectic matrix S that transforms the state to the normal form, i.e.
SγST = diag (νA, νA, νB , νB), where νA,B ≥ 1 are the symplectic eigenvalues that we can
assume to be arranged in descending order. The symplectic matrices S for performing this
transformation are detailed in Appendix B. To find the purification of ρ̂AB requires two steps.
Firstly, we diagonalise γ and attach two modes E1 and E2 such that E1 appears to form a pure
two mode squeezed vacuum with A, and E2 with B, i.e.

νA1 0
√
ν2
A − 1σz 0

0 νB1 0
√
ν2
B − 1σz√

ν2
A − 1σz 0 νA1 0

0
√
ν2
B − 1σz 0 νB1


expressed in 2×2 blocks with σz = diag (1,−1) being the Pauli z-matrix. However, the operation
S usually required to get to this form is generally a global measurement and so may have distorted
the amount of entanglement in the system, or even created it. For this reason we must reverse
this operation using S−1 ⊕ 1E1,E2

. With respect to AB|E1E2 splitting the covariance matrix of
the purification of the state, |Ψ〉ABE attains the form:

γπ =

(
γ β
βT νA1E1

⊕ νB1E2

)
, (6.20)

where β ≡ S−1
[
⊕j=A,B

√
ν2
j − 1σ

(j)
z

]
. We have then restricted ourselves to minimisation over

all Gaussian purifications |Ψ (R)〉ABE = UE (R) |Ψ〉ABE . We further assume that Alice, Bob
and Eve perform a Gaussian POVM of the form

ΠG
j (dj) =

1

2π
D̂j (dj) ΠG

j D̂
†
j (dj) , j = A,B,E. (6.21)
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Here the seed element ΠG
j is a normalised density matrix of a generally mixed Gaussian state

(which is single mode in the cases of Alice and Bob but two-mode for Eve) with covariance

matrix Γj and zero displacements. The operator D̂ (dj) = exp
[
−idTj ΩR̂j

]
is the displacement

operator (discussed in detail in Chapter 2), where R̂j = (x̂j , p̂j)
T

and dTj =
(
d

(x)
j , d

(p)
j

)
is a

vector of measurement outcomes. The POVM (6.21) satisfies the completeness condition

1

2π

∫
D̂j (dj) ΠG

j D̂
†
j (dj) d2dj = 1j , (6.22)

where d2dj = dd
(x)
j dd

(p)
j , following from Schur’s lemma [173] and the normalisation condition

Tr
[
ΠG
j

]
= 1.

After the measurements ΠG
j with j = A,B,E, characterised by covariance matrices ΓA,

ΓB and ΓE on the purification |Ψ (R)〉ABE we get a Gaussian probability density of eight real
variables. Two of these variables are for Alice (for notational convenience grouped under dA),
two for Bob (dB) and four for Eve (dE) and the distribution is given by

P (dA, dB , dE) = Tr
[
Ψ (R)⊗j=A,B,E ΠG

j (dj)
]

= Tr
[
Ψ⊗j=A,B Πj (dj)⊗ΠG′

E (d′E)
]

= P (dA, dB , d
′
E) (6.23)

where Ψ ≡ |Ψ〉ABE〈Ψ|, Ψ (R) ≡ |Ψ (R)〉ABE〈Ψ (R) |, and

ΠG′

E (d′E) =
1

(2π)
2 D̂ (d′E) ΠG′

E D̂
†
(
d
′

E

)
, (6.24)

where d
′

E = R−1dE and the seed element ΠG′

E has the covariance matrix Γ′E = R−1ΓE
(
R−1

)T
.

After some algebra we obtain the probability density (6.23) in the form

P (d) =
e−d

TΣ−1d

π4
√

det γ
(6.25)

with d = (dA, dB , d
′
E)

T
and the classical correlation matrix (CCM)

Σ = γπ + ΓA ⊕ ΓB ⊕ Γ′E =

(
α β
βT δ

)
. (6.26)

Eve then processes her measurement outcome d′E using the Gaussian conditional density

P (dĒ |d′E) =
P (d′E , dĒ)

P (d′E)
(6.27)

where we have assumed that the Gaussian joint probability distribution P (dĒ , d
′
E) has the

classical covariance matrix3

χ =

(
δ C
CT ζ

)
, (6.28)

and P (d′E) is the marginal density of the variable d′E . The conditional density (6.27) is simply
discovered to be

P (dĒ |d′E) =
e−(dĒ−CT δ−1d′E)(ζ−Cδ−1CT )

−1
(dĒ−CT δ−1d′E)

π2
√

det (ζ − CT δ−1C)
. (6.29)

3In principle, the random vector dĒ can be of a larger size than the original random vector d′E . In view of
the fact that for discrete channels the minimum in equation (6.15) can be a channel with the range of the output
variable Ē no larger than the range of the input variable E [174], we here assume that this is true too for the
continuous variable systems. That is, we here assume that the dimensions of matrix B are no longer than the
dimensions of δ. This is an entirely unproven assumption and further work should be carried out to clarify this,
but it seems reasonable. Regardless, if it can be shown that using this assumption µG (ρ̂AB) satisfies all the
properties of an entanglement measure, then it is a moot point.
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After the channel, we have the full distribution given by

P (dA, dB , dĒ) =

∫
P (dA, dB , d

′
E)P (dĒ |d′E) dd′E (6.30)

which is in itself another Gaussian function characterised by the classical covariance matrix

Σ̄ =

(
α βδ−1C

CT δ−1βT ζ

)
. (6.31)

Note that if Eve performs no processing, then the channel (6.28) is given by

χ =

(
δ δ
δ δ

)
(6.32)

and Σ̄ = Σ.

Simplifying the Gaussian Entanglement Measure

We shall first focus on the evaluation of the Gaussian intrinsic information. Making use of the
Shannon formula [175] for the entropy of an N -dimensional random vector distributed according
to a Gaussian distribution P with covariance matrix λ,

H (P ) = ln
[
(2πe)

N
2

√
detλ

]
, (6.33)

we obtain using equation (6.8) the formula

I
(
A : B|Ē

)
=

1

2
ln

[
det Σ̄AE det Σ̄BE

det Σ̄ det Σ̄E

]
. (6.34)

The submatrices Σ̄AE , Σ̄BE are defined as

Σ̄AE =

(
σA σAE
σTAE σE

)
, Σ̄BE =

(
σB σBE
σTBE σE

)
, (6.35)

and Σ̄E = σE , where the matrices σ are subblocks of the CCM (6.31) with respect to the A|B|E
splitting

Σ̄ =

 σA σAB σAE
σTAB σB σBE
σTAE σTBE σE

 . (6.36)

In order to optimise over the postprocessing, it is convenient to express the conditional mutual
information (6.8) through the determinants of smaller matrices. Specifically, for the Gaussian
distributions here one has I

(
A : B|Ē

)
= I

(
A : B|Ē = ē

)
where on the right hand side is the

mutual information between A and B conditioned on the variable Ē equal to a certain value ē
which coincides with the mutual information of the conditional distribution P (dA, dB |dĒ). This
then gives

I
(
A : B|Ē

)
=

1

2
ln

[
detσcond

A detσcond
B

detσcond
AB

]
≡ Icond (A : B) , (6.37)

where we have defined

σcond
AB =

(
σA σAB
σTAB σB

)
−
(
σAE
σBE

)
σ−1
E

(
σTAE σTBE

)
(6.38)

and the other classical covariance matrices detσcond
A and detσcond

B are derived by tracing over
the other subsystem.

If we express the covariance matrix (6.20) with respect to A|B|E splitting as

γπ =

 γA γAB γAE
γTAB γB γBE
γTAE γTBE γE

 , (6.39)
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and use equation (6.31), we obtain from equation (6.38)

σcond
AB =

(
γA γAB
γTAB γB

)
+ (ΓA ⊕ ΓB)−

(
γAE
γBE

)
(γE + Γ′E)

−1
Cζ−1CT (γE + γ′E)

−1
(
γAE
γBE

)T
,

(6.40)

σcond
A = γA + ΓA − γAE (γE + Γ′E)

−1
Cζ−1CT (γE + Γ′E)

−1
γTAE , (6.41)

σcond
B = γB + ΓB − γBE (γE + Γ′E)

−1
Cζ−1CT (γE + Γ′E)

−1
γTBE , (6.42)

where the last two classical covariance matrices are derived from the first.
One could view this from a different perspective. The conditional mutual information

described in equation (6.37) is simply the mutual information of a joint Gaussian distribution
arrived at by performing Gaussian measurements on A and B (characterised by ΓA and ΓB
respectively) on a two mode Gaussian state with the covariance matrix

τAB =

(
γA γAB
γTAB γB

)
−
(
γAE
γBE

)
(γE + Γ′E)

−1
Cζ−1CT (γE + γ′E)

−1
(
γAE
γBE

)T
. (6.43)

In other words, it is the classical mutual information of the classical Gaussian probability density
characterised by CCM τAB + ΓA ⊕ ΓB .

6.4 Properties

In this section we shall attempt to flesh out some of the characteristics of the Gaussian intrinsic
information.

Pure States

In the case of pure states, the purification takes the form |Ψ〉ABE = |ψ〉AB |ψ〉E . All of the
symplectic eigenvalues of γ are equal to 1 and so β = 0 in equations (6.20), (6.26) and (6.31).
That is, Σ̄ = α ⊕ ζ and P (dA, dB , dĒ) = P (dA, dB). This then ensures that I

(
A : B|Ē

)
=

I (A : B).
As shall be seen in Chapter 8 and can be found in [II], the optimal measurement that Alice

and Bob can perform (at least in the two mode case) is homodyning. The measure reduces to

µG

(
ρ

(pure)
AB

)
= ln

[√
det γA

]
(6.44)

where γA is the covariance matrix of mode A. Note that this is not equal to the von-Neumann
entropy of the reduced state - that would be given by F

(√
det γA

)
. In fact, as shall be seen in

Chapter 8, the best possible measurement that Alice and Bob could perform to maximise their
post-measurement mutual information I (A : B) would be photon counting, but this is beyond
the Gaussian regime that we have restricted ourselves to.

Separable States

As has been stated previously, if γ is the covariance matrix of a separable bipartite Gaussian
state, then it holds that

γ ≥
(
γA 0
0 γB

)
. (6.45)

Thus γ can be created by taking a two mode Gaussian product state and adding classical noise
in the form of a matrix χ:

γ =

(
γA 0
0 γB

)
+ χ. (6.46)

Regardless of what the purification of γ looks like when Eve’s mode has been included, it is always
possible for Eve to find a measurement (such as a projection onto an infinitely hot thermal state)
to return the Gaussian state shared by Alice and Bob to the form (6.46). The classical noise
matrix cannot increase the classical mutual information of Alice’s and Bob’s shared classical
probability distribution after they perform local measurements on this state, and so they can
only ever achieve the levels of communication that they would acquire from a Gaussian product
state. Therefore, the measure yields zero on separable states.
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Invariance under local symplectic operations

At present we cannot show that the Gaussian Intrinsic Information is non-increasing under
Gaussian local operations and classical communication (GLOCC) in general but we can show the
non-trivial result that the Gaussian Intrinsic Information µG is invariant under local symplectic
operations. This is equivalent to saying that µG neither increases nor decreases under the
influence of local Gaussian unitary operations. To show this, we begin with the covariance
matrix γ′ of a Gaussian state that is not in standard form. γ′ can be put into standard form γ
by local symplectic operations, so

γ =

(
tA 0
0 tB

)
γ′
(
tTA 0
0 tTB

)
(6.47)

where tjΩt
T
j = Ω, j = A,B. The purification of the state takes the form

γ′π =

 (
t−1
A ⊕ t

−1
B

)
γ
((
tTA
)−1 ⊕

(
tTB
)−1
) (

t−1
A ⊕ t

−1
B

)
β

βT
((
tTA
)−1 ⊕

(
tTB
)−1
)

νA1⊕ νB1

 (6.48)

(c.f. equation (6.20)) where we have used the inversion of (6.47) to replace γ′ in γ′π. The
measurements performed by Alice and Bob, Γ′A and Γ′B , can be chosen as

Γ′A = t−1
A ΓA

(
tTA
)−1

, Γ′B = t−1
B ΓB

(
tTB
)−1

, (6.49)

where ΓA and ΓB are the measurements they would have performed if the covariance matrix
had been in standard form. That is the shift from γ to γ′ is corrected for in the choice of
measurements. The above modification to the purification γ′π and the modification to the choice
of measurements performed by Alice and Bob are then carried through as in Section 6.3 until
we can define

Σ̄′ =

 σ′A σ′AB σ′AE
σT
′

AB σ′B σ′BE
σT
′

AE σT
′

BE σ′E

 (6.50)

in place of equation (6.36). In order to show the invariance of µG under local symplectic
operations, we must show that

1

2
ln

[
det Σ̄′AE det Σ̄′BE

det Σ̄′ det Σ̄′E

]
=

1

2
ln

[
det Σ̄AE det Σ̄BE

det Σ̄ det Σ̄E

]
. (6.51)

To do this, we first note that σ′E = σE and so det Σ̄′E = det Σ̄E . We then note that σ′AE = t−1
A σAE

and σ′A = t−1
A σ

(
tTA
)−1

. As a consequence,

det Σ̄′AE = detσ′A det
[
σ′E − σT

′

AE (σ′A)
−1
σ′AE

]
= detσ′A det

[
σE − σTAE

(
t−1
A

)T
tTAσ

−1
A tAt

−1
A σAE

]
= detσA det

[
σE − σTAEσ−1

A σAE
]

= det Σ̄AE , (6.52)

where in the second and third lines we have used the fact that σ′A = t−1
A σA

(
tTA
)−1

and that

det tA = det t−1
A = 1 as tA is a symplectic matrix. Exactly the same argument can be used to

show that det Σ̄′BE = det Σ̄BE and a similar argument can be used to show that det Σ̄′ = det Σ̄.
Thus equation (6.51) holds and the measure is invariant under local symplectic operations.
We are therefore justified in assuming that the covariance matrix of the Gaussian state under
examination is provided in standard form.

Comments on optimisation of the measure

It is unknown at this time whether it is possible to commute the order of maximisation and
minimisation in equation (6.19). In the definition of Gaussian Intrinsic Information, it is nec-
essary to first optimise over Eve’s post-processing, as in the definition of intrinsic information
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in (6.9). One then must maximise over the measurements that Alice and Bob perform, and
finally minimise over the measurement that Eve performs in the first place. It certainly seems as
though the minimisation and maximisation should be commuted as this is in the spirit of what
the measure means in quantum cryptography. Eve first does everything in her power to distort
the quantum state shared by Alice and Bob so as to minimise the correlations they share. Alice
and Bob then wish to perform measurements to make the best of what they are left with.

If we assume that the minimisation and maximisation in the definition (6.19) can be re-
versed, that is µ̃G (ρ̂AB) = µG (ρ̂AB) where

µ̃G (ρ̂AB) = max
{Π̂GA,Π̂GB}

(
min
Π̂GE

(I (A : B ↓ E))

)
, (6.53)

then we can say a lot more about the optimisation. Significantly, as far as Alice and Bob’s
measurements are concerned we can restrict to pure covariance matrices in ΓA and ΓB (see
Appendix C). When optimising over Eve’s measurement with covariance matrix Γ′E followed by
the Gaussian post-processing E → Ē with classical covariance matrix χ as in (6.28), we must
distinguish between three different cases.

Case 1: C is regular

In this case, C−1 exists. The measurement Γ′E and post-processing is equivalent to another
measurement with covariance matrix

Γ̃E = Γ′E + δ
(
CT
)−1

ζC−1δ − δ. (6.54)

That means that the post-processing is incorporated into the measurement itself. We can then
simply perform minimisation over Γ̃E of the CCM

σ̃cond
AB = ΓA ⊕ ΓB + τ̃AB , (6.55)

where

τ̃AB =

(
γA γAB
γTAB γB

)
−
(
γAE
γBE

)(
γE + Γ̃E

)−1
(
γAE
γBE

)T
, (6.56)

and then maximise with respect to ΓA and ΓB . The measure would then read

µ̃G (ρ̂AB) = max
{Π̂GA,Π̂GB}

(
min
Π̂GE

1

2
ln

[
det σ̃cond

A det σ̃cond
B

det σ̃cond
AB

])
(6.57)

where σ̃cond
A and σ̃cond

B are the reduced covariance matrices of σ̃cond
AB . Due to the monotonicity

of the logarithm, we can optimise over just the argument

g =
det σ̃cond

A det σ̃cond
B

det σ̃cond
AB

, (6.58)

and then

µ̃G (ρ̂AB) =
1

2
ln [gopt] (6.59)

where, of course, gopt = max{Π̂GA,Π̂GB}

(
minΠ̂GE

g
)

.

Case 2: The matrix C = 0

In this case the final classical distribution, characterised by Σ̄, takes the same form as it
does for the pure states and P (dA, dB |dĒ) = P (dA, dB). Consequently, this implies that
I
(
A : B|Ē

)
= I (A : B).

Case 2 is in fact fully incorporated into Case 1 already. If Eve performed a measurement
onto a mixed state Γ̃E = (1 + 2 〈n̂〉) 1, which corresponds to the product of two identical thermal
states, but it was infinitely hot (〈n̂〉 → ∞) then the measurement has the same effect as if she
had never performed a measurement in the first place. That is, no knowledge is gained from



73

Γ̃E and consequently the conditional probability distributions of Alice and Bob are unaffected,
which is what happens when C = 0.

Case 3: C 6= 0 is singular

The most complicated case is when C is singular but not given by a matrix of zeros. If γ
is a covariance matrix for a two mode Gaussian state then C must be a 4×4 matrix in the most
general case. It is not known how to treat this at this time.

However, in the case of GLEMS, which can be purified by adding a single mode, we can find
a reasonable expression for g in equation (6.58). This shall be explored in the next subsection.

Gaussian Least Entangled Mixed States for given local and global purities
(GLEMS)

Two mode Gaussian Least Entangled Mixed States for given local and global purities (GLEMS)
have two symplectic eigenvalues, one of which is equal to 1. That is νA > νB = 1 and νA =√

det γ. GLEMS can be purified by a single Gaussian mode, and could always be transformed by
symplectic operations to a form in which mode B is a vacuum and modes A and E form a two
mode squeezed vacuum [176]. The matrix χ in equation (6.28) is a 4 × 4 positive semidefinite
matrix that can be transformed by local symplectic operations into the standard form with
δ = d1, ζ = b1 and C = diag (c1, c2) where c1 ≥ |c2| ≥ 0. For singular C we thus have c1 > 0
and c2 = 0, which gives

(γE + Γ′E)
−1
CζCT (γE + Γ′E)

−1
= U

(
ν̄ 0
0 0

)
UT (6.60)

where we have used the fact that γE = νA1 and U denotes the matrix diagonalising Γ′E (and
therefore also γE + Γ′E). If Γ′E = τUdiag

(
e2r, e−2r

)
UT , where τ is the symplectic eigenvalue of

Γ′E then

ν̄ =
c21
bd2

√
νA + τe−2r

νA + τe2r
(6.61)

where d =
√

(νA + τe2r) (νA + τe−2r).
We would like to know whether in this case the post-measurement processing could con-

ceivably be swallowed up by the measurement itself. We can see this by assuming that Eve’s
subsystem is sent to a balanced beamsplitter and combined with a mixed Gaussian state with
covariance matrix

Γ̃tE = U

(
e−2t + ν̄ − νA 0

0 e2t

)
UT (6.62)

where ν̄ − νA is a non-negative number necessarily greater than or equal to τ from (6.61). The
distribution Γ̃tE can be viewed as a rotated squeezed vacuum with noise added onto one of the
quadratures. If Eve then performs homodyne measurements on the resulting state then we find
that (

γE + Γ̃tE

)−1

→ U

(
ν̄ 0
0 0

)
UT

in the limit of t→∞ and so the action of the channel χ can be incorporated into the measurement
process.

With this knowledge we can derive a different formula for gopt for GLEMS, at least in the
case where in the definition of γ we have bc+ + ac− 6= 0. In this case we can incorporate Eve’s
post measurement processing with her measurement into the POVM Γ̃E = τU (φ)V (r)UT (φ),
where τ ≥ 1 is the symplectic eigenvalue of Γ̃E , and

U (φ) =

(
cosφ − sinφ
sinφ cosφ

)
, V (r) =

(
e2r 0
0 e−2r

)
(6.63)

where φ ∈ [0, π) and r ∈ [0,∞). This collapses mode A into the Gaussian state with covariance
matrix

γcond
A = UT (φ)

(
νAτe

2r+1
νA+τe2r 0

0 νAτe
−2r+1

νA+τe−2r

)
U (φ) (6.64)
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and σ̃cond
AB in equation (6.55) becomes

σ̃cond
AB = S−1

(
γcond
A ⊕ 1

) (
S−1

)T
(6.65)

where the matrix S can be found using the recipe in Appendix B. If we express the inverse of
the symplectic matrix with respect to A|B splitting as

S−1 =

(
sAA sAB
sBA sBB

)
(6.66)

then we obtain the quantity g ≡ gGLEMS as

gGLEMS =
(det sAA)

2
(det sBA)

2
detX detY

detZ
(6.67)

where

X = γcond
A + s−1

AA

(
sABs

T
AB + ΓA

) (
sTAA

)−1

Y = γcond
A + s−1

BA

(
sBBs

T
BB + ΓB

) (
sTBA

)−1

Z =
(
γcond
A ⊕ 1

)
+ S (ΓA + ΓB)ST . (6.68)

The optimal argument, gopt is then obtained by minimising this function with respect to τ , r
and φ and then maximising with respect to pure covariance matrices ΓA and ΓB .

6.5 Summary of Chapter 6

We have introduced a potential entanglement measure for Gaussian states. Importantly, it is
still vital that we prove that µG is non-increasing under GLOCC operations, although it is
invariant with respect to local symplectic operations. The quantity is zero on separable states
and reduces to a simple expression on pure states. Some simplifications to the expression can
be found and it is thought that equation (6.53) holds in general.

It also has an operational interpretation borrowed from the realm of quantum cryptography.
Alice, Bob and Eve possess a pure state from which Alice and Bob wish to create a classical
probability distribution about which Eve knows nothing, in order to create a secret key. Eve
wishes to minimise the amount of secret correlations that Alice and Bob can share by perform-
ing a special measurement on her subsystem and locally processing the result classically. The
measure is then an upper bound on the secret key rate K (A : B|E), and thus in a sense gives a
limit on how much classical secrecy Alice and Bob can achieve from the shared quantum state.

This is an ongoing work but looks very promising.
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Chapter 7

Non-classicality Indicators

When the foundations of modern quantum theory were laid, there were many competing schools
of thought on how best to interpret the differences between observations on a classical and
quantum level. The apparent victor was Niels Bohr with the Copenhagen Interpretation, which
argues that a quantum system may be completely described by a wavefunction representing the
state of the system, which may vary gradually in time but collapses suddenly upon measure-
ment of an observable. That is, the measurement of some observable quantity of a physical
system causes an instantaneous change in the state of the system, unless the state prior to the
measurement is an eigenstate of the observable.

Attempting to challenge Bohr, Einstein et al. [52] introduced the notion of quantum en-
tanglement, with the aim of showing the incompleteness of quantum mechanics. As has been
seen in previous chapters, they failed. Overwhelming evidence of quantum entanglement has
been seen in the lab, and it is now a vital piece of kit for the quantum information toolbox.
Non-classical correlations exist.

It is perhaps unsurprising that an information theoretic approach was opted as a surefire way
to explore entanglement, and as has been seen in previous chapters, has had a lot of success.
Interestingly, with these information quantities, signatures of correlations having no classical
counterpart can be traced even in separable states, but their nature is very different from entan-
glement. In fact, while entanglement can be seen as a consequence of the superposition principle,
more general forms of non-classical correlations arise essentially from the non-commutativity of
quantum observables. When speaking about composite systems, separable states are often per-
ceived as essentially classical. However, truly classical states represent just a small subset of
separable states [177]. Moreover, it is also possible to show that almost all separable states
possess a finite amount of non-classical correlations. This has fuelled a still unsettled debate,
and an active stream of research, to decide whether separable states containing non-classical
correlations can also be directly useful for quantum information tasks.

These non-classical correlations beyond entanglement are thought to assist in some proto-
cols. For instance, the DQC1 protocol [178, 179] allows for a computation that gives an expo-
nential speedup for the computation of the normalised trace of a unitary operator 2−nTr [Un]. It
is also conjectured that nonclassicality measures could account for the distribution of entangle-
ment between two spatially separated quantum systems via an ancillary state that is separable
at all times [180, 181, 182, 183] (the state is tripartite entangled but separable with respect to
the bipartition of the ancilla).

More recently, a zoology of indicators of non-classical correlations have been introduced,
and in the following chapters we play an active role in this field by examining the strength
and legitimacy of these measures. At the forefront of these is the Quantum Discord, which
shall be discussed in some detail in Section 7.1. The primary position of quantum discord is
essentially due to it being the chronological leader, but other measures have also been defined.
The properties of these shall be discussed in Section 7.5.

Researchers have also come to inquire about the relationship between these non-classicality
measures and quantum entanglement. Are they perhaps two sides of the same coin? This trail
of thought shall be followed, although it is still very much an open question.

In what follows, the quantum discord shall be introduced. A feverish attempt has been
made by researchers trying to establish its credentials in the case of finite dimensional systems,
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and some interesting results have been found. An introduction will be presented here in order
to give a flavour of the parallels that can be drawn between discord and entanglement. Other
non-classicality measures will also be introduced. The extension to continuous variable systems
is not straightforward, due an inherent optimization problem. It is a primary aim of this thesis
to advance into this unknown realm, as will be seen in Chapters 8 and 9.

7.1 Quantum Discord

Definition

Let us first consider the classical scenario with two distinct random variables A and B with well
defined probability distributions pA and pB respectively. The joint probability distribution pAB
is related to the other two as pB =

∑
a pA=a,B and pA =

∑
b pA,B=b. Shannon [184] introduced

the classical mutual information

I (A : B) = H (pA) +H (pB)−H (pAB) (7.1)

with H (pX ) = −
∑
x pX=x log [pX=x] being the Shannon entropy. The base of the logarithm is

often taken to be base 2 when discussing bits. When discussing continuous variables the natural
log will be used.

The Shannon entropy represents the uncertainty of a single random event. Loosely speaking,
we could consider how many decimal digits are required to communicate a given number e.g.
8520. The number of digits is roughly the logarithm of the number (base 10 for decimal digits) of
the number we wish to communicate. With this thought in mind, the meaning of the Shannon
entropy is the expectation value of the number of decimal digits (if log is taken to base 10)
required to communicate distribution pX . The classical mutual information I (A : B) then tells
the reduction in uncertainty of one random variable, given the knowledge of the other.

In actual fact, the Shannon entropy can be thought of as the classical equivalent of the
von-Neumann entropy, which was put forward almost 20 years earlier [6]. However, Shannon is
usually credited as being the father of information theory.

In the continuous variable setting, one can define similar quantities. For a probability
density function f(x), the differential entropy (which shall also be denoted H as they have
almost the same properties) can be defined as [185]

H (X ) =

∫
f(x) log [f(x)] dx. (7.2)

This allows the classical mutual information to be defined in the same way as before. Returning
to the discrete case, one can use Bayes rule,

pA|B=b =
pA,B=b

pB=b
(7.3)

which identifies the probability distribution of one random variable outcome given a measure-
ment of the other, to rewrite the quantum mutual information as

Jc (A : B) = H (pA)−H (A|B) (7.4)

where H (A|B) =
∑
b pB=bH

(
pA|B=b

)
is the conditional entropy of A given B. A different

symbol Jc has been used for reasons that will shortly become apparent. Due to the symmetry
of I (A : B), we can also equivalently write

Jc (A : B) = H (pB)−H (B|A) . (7.5)

This holds for the differential entropy case as in general f(x|y) = f(x, y)/f(y).
Ollivier and Zurek [7] examined what happens when one generalises the concept of mutual

information to quantum systems. Naturally one chooses to do this by replacing the classical
Shannon entropy with the von-Neumann entropy S and the probability distribution pX with the
probability density matrix ρ̂X . The quantum mutual information is then written as

Iq (ρ̂AB) = S (ρ̂A) + S (ρ̂B)− S (ρ̂AB) (7.6)
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where ρ̂A = TrB [ρ̂AB ] etc. The quantum version Iq was initially used to study entanglement
[186] and rediscovered a few years later [187]. While the definition (7.6) is formally simple, an
operational interpretation for the quantity itself was missing until 2005 when Groisman, Popescu
and Winter [188] showed it could be interpreted as the total correlations in a bipartite state ρ̂AB ,
as measured by the asymptotically minimal amount of local noise one has to add to turn it into
a product state.

The translation to the quantum world of Jc (A : B) is not such a trivial task. The condi-
tional entropy term in (7.5) requires us to specify the state of A given a measurement on B.
Such a statement is ambiguous in quantum theory until the to-be-measured set of states B is
selected.

For any bipartite state ρ̂AB whose correlations are purely classical, the mutual information
can be equivalently expressed as

J←(ρ̂AB) = S(ρ̂A)− inf
{Π̂i}
H{Π̂i}(A|B) ,

J→(ρ̂AB) = S(ρ̂B)− inf
{Π̂i}
H{Π̂i}(B|A) ,

(7.7)

with H{Π̂i}(A|B)≡
∑
i piS(ρ̂iA|B) being the quantum conditional entropy1 associated with the

post-measurement density matrix ρ̂iA|B = TrB [Π̂iρ̂AB ]/pi, obtained upon performing the POVM

{Π̂i} on system B (pi=Tr[Π̂iρ̂AB ]). The optimization over POVMs is necessary to single out the
least disturbing measurement to be performed on one subsystem, so that the change of entropy
on the other subsystem yields a quantifier of the correlations between the two parts. Notice
that the subscript c of (7.5) has been dropped, and arrows have been introduced to denote on
which subsystem the measurement has been performed. In general Iq ≥ J←,J→ and J shall
be referred to as one way classical correlation from now on.

Such a discrepancy is now recognised as a signature of non-classicality of the correlations
of ρ̂AB and the difference between the total correlations Iq and one way classical correlations
defines what Ollivier and Zurek baptized as the2 quantum discord,

D←(ρ̂AB) = Iq(ρ̂AB)− J←(ρ̂AB) (7.8)

= S(ρ̂B)− S(ρ̂AB) + inf
{Π̂i}
H{Π̂i}(A|B) ;

D→(ρ̂AB) = Iq(ρ̂AB)− J→(ρ̂AB) (7.9)

= S(ρ̂A)− S(ρ̂AB) + inf
{Π̂i}
H{Π̂i}(B|A) ..

The quantum discord as defined above is necessarily asymmetric. A symmetrised version, or
“two-way quantum discord” can be defined as

D↔ (ρ̂AB) = max {D← (ρ̂AB) ,D→ (ρ̂AB)} (7.10)

and in this form becomes vanishing if and only if a state is purely classically correlated [192].
The introduction of the quantum discord was little recognised at its advent. In fact Hen-

derson and Vedral [193] independently advocated the one way classical correlation (7.7) as a
gauge of non-classicality.

Key Properties of Quantum Discord

With the suggestion that discord was responsible for the speedup of DQC1 [8] over classical
algorithms, a flurry of activity was initiated into the properties of discord. Dakic, Vedral &

1As can be seen by different approaches (e.g. [189, 190]) the concept of one way classical correlation, and
in turn, the quantum discord, is dependent on a particular idea of how to translate the classical conditional
entropy in (7.5), H (A|B) into the quantum regime. If instead we made the leap H (A|B) = H (pAB)−H (pB)→
S
(
ρ̂A|B

)
= S (ρ̂AB) − S (ρ̂A) then things would be different. This possible definition of quantum conditional

entropy also has an interpretation in quantum information theory [191]. This quantity is troubling as it can be
negative on entangled states, in stark contrast to the classical conditional entropy. The negative of this quantity
is known as coherent information. O the road not taken!

2In the original paper by Ollivier and Zurek [7], concerning qubit systems, only projective measurements were
performed, and there was no optimisation over measurement bases in the definition. However the form (7.8) has
now evolved into the standard definition of quantum discord.
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Brukner [194], and independently Datta [195] found necessary and sufficient conditions on a
finite dimensional state ρ̂AB for the discord to be zero. They arrived at these by different
considerations. As a result, for a state ρ̂AB ,

D← (ρ̂AB) = 0 if ρ̂AB =
∑
i

pi|i〉〈i| ⊗ ρ̂B,i in basis diagonalising ρ̂A (7.11)

D→ (ρ̂AB) = 0 if ρ̂AB =
∑
j

pj ρ̂A,j ⊗ |j〉〈j| in basis diagonalising ρ̂B (7.12)

for some bases {|i〉} and {|j〉}. Datta showed that ρ̂AB has zero two-way discord if and only if
the eigenvectors of the joint state are separable, which also gives a mathematical definition of
pointer states - they are those with zero discord. Interestingly, the closed set of purely classically
correlated states (D = 0) have measure zero [177].

The quest is on to find upper bounds on the quantum discord [196]. A simple upper bound
is given by

D← (ρ̂AB) ≤ S (ρ̂B) (7.13)

and recently, Xi et al. [197] found a sufficient and necessary condition on finite ρ̂AB for this
upper bound to be saturated. They showed that for two-qubit systems it could only ever be
saturated by pure states. Some non-trivial bounds have been found for other classes of finite
dimensional quantum states [198, 199].

In practice it is very difficult to compute the quantum discord of a generic quantum state
due to the optimization over POVMs required. Analytic solutions have only ever been found
for highly symmetric states in the qudit case [200, 201, 202, 203, 204]. There is currently no
surefire way of finding the optimal measurement for an arbitrary two qubit state, although some
progress has been made [205].

The effect of local operations and classical communication on quantum correlations beyond
entanglement is an emerging area. Streltsov et al. [206] showed that in a mixed state with
no quantum correlations, a local (non-unitary) operation could be performed on one of the
subsystems and induce quantum correlations in the global state.

7.2 The Koashi-Winter Relation

Since the notion of quantum correlations beyond entanglement was put forward [7], the relations
between non-classicality and entanglement have been a focal point of research. Parallels have
been drawn between the properties of entanglement and the properties of discord.

Whilst classical correlations can be shared freely between many parties, quantum ones
cannot. If a quantum system A is entangled to a quantum system B then there is a strict limit
on the amount of entanglement that A or B can share with a third party C. If, in a finite
dimensional system, A and B are maximally entangled, then neither A nor B can be entangled
to C at all! This property was wryly given the sardonic title of monogamy of entanglement.
However, if A and B are maximally entangled, then neither can even be classically correlated
with C. Similarly, if A and B were perfectly classically correlated then both would be forbidden
from being entangled to other systems.

In an impressive publication, Koashi and Winter [207] showed an extraordinary property
relating the one way classical correlation (7.7) J← to the Entanglement of Formation, EF (see
Section 3.5). Consider a pure tripartite state ρ̂ABC where as usual ρ̂AB = TrC [ρ̂ABC ]. Then
visualise an ensemble {pj , |ψj〉} achieving the optimal decomposition required in the definition
of EF (Equation (3.33)). Then there must exist some measurement on subsystem C of ρ̂ABC
such that ρ̂AB =

∑
j pj |ψj〉〈ψj |.

By tracing out subsystem B this implies that there is a measurement on C applied to
TrB [ρ̂ABC ] that leaves state A in TrB [|ψj〉〈ψj |]. From the definition of the one way classical
communication (7.7)

J← (ρ̂AC) ≥ S (ρ̂A)−
∑
j

pjEv.N (|ψj〉〈ψj |)

= S (ρ̂A)− EF (ρ̂AB) . (7.14)
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Conversely, perform a measurement on C that minimises, in the definition of J← (ρ̂AC), the
conditional entropy term H{Π̂i}(A|C). By careful consideration of the properties of the mea-

surement, namely decomposing the measurements {Π̂i} into rank one projectors |φj〉〈φj |, it can
be seen that

EF (ρ̂AB) ≤ S (ρ̂A)− J← (ρ̂AC) . (7.15)

Putting (7.14) and (7.15) together yields the Koashi Winter relation

EF (ρ̂AB) + J← (ρ̂AC) = S (ρ̂A) . (7.16)

If we were to design a regularised version of the one way classical communication, termed usually
the distillable common randomness

J←,∞ (ρ̂AC) = lim
n→∞

J←
(
ρ̂⊗nAC

)
n

(7.17)

then a similar formula explains the monogamy relation in terms of the entanglement cost

EC (ρ̂AB) + J←,∞ (ρ̂AC) = S (ρ̂A) . (7.18)

The Koashi-Winter relation3 also shows that the quantum discord’s additivity is related to the
additivity of the entanglement of formation i.e. it isn’t additive [135]. Furthermore, Fanchini
et al. [208] used this relation to show what they dubbed the “quantum conservation law” in a
tripartite pure state:

EF (ρ̂AB) + EF (ρ̂AC) = D← (ρ̂AB) +D← (ρ̂AC) (7.19)

Similarly, if one was to perform optimal measurements on subsystem C, the difference in discord
with respect to the other subsystems can be expressed as

D← (ρ̂AC)−D← (ρ̂BC) = S (ρ̂A)− S (ρ̂B) (7.20)

and there is also a chain rule [209] relating the discord of the three systems, given by

EF (ρ̂AB) = D← (ρ̂AB) +D← (ρ̂BC)−D→ (ρ̂BC) . (7.21)

It is worth noting that the Koashi-Winter relation is valid for continuous variable systems.

7.3 Physical Interpretation of the Quantum Discord

For a long time the quantum discord was an answer to a question that nobody knew. There was
no physical interpretation of the functional. To this end, there have been two main approaches,
firstly in terms of an analogy to thermodynamics and secondly from a purely information theo-
retic perspective. We shall begin with the latter.

Quantum State Merging and Quantum Discord

One operational interpretation of quantum discord emerged simultaneously and independently
from two sources [210, 211], based on the quantum state merging protocol [212, 213]. A brief
description shall be given of quantum state merging. A basic brick in classical information theory
is the notion of partial information, which is a generalisation of the noisy coding theorem. One
can ask: How many bits does the sender (Alice) need to send to transmit a message from the
source, provided that the receiver (Bob) already has some prior information about the source.
This amount of bits is called the partial information. Slepian and Wolf [214] showed that the
partial information is equal to the entropy of the source reduced by the mutual information,
which is equal to the classical conditional entropy H (A|B) = H (pAB)−H (pB).

3Remarkably, in the same article this relation was used to show that E (ρ̂AB) + E (ρ̂AC) ≤ E
(
ρ̂A,(BC)

)
for

entanglement measures E including the distillable entanglement ED, the squashed entanglement Esq and the
distillable secret key.
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Figure 7.1: Pure state |ψ〉ABC is shared by Alice, Bob and Charlie. Alice attempts to transfer her state
to Bob using LOCC and extra entanglement if necessary. Extended state merging takes into account
the initial resources required in building the initial states between A and B also. Figure reproduced
from [211]. Copyright (2011) by The American Physical Society.

Horodecki et al. [212] asked a similar question for the quantum case. Consider a source,
emitting unknown pure bipartite states {|ψ1〉AB , |ψ2〉AB , · · · } from a distribution with average
density matrix ρ̂AB . The density matrix ρ̂AB is known to Alice and Bob but they do not know
the constituents - for any given state they possess, the state is unknown, but the statistics of
the source are. How much quantum communication is required for Alice to transfer her part of
the unknown sequence of states {|ψ1〉AB , |ψ2〉AB , · · · } to Bob’s location?

It can more elegantly be examined in a different way. Given a source |ψ〉ABC , the purification
of ρ̂AB (i.e. ρ̂AB = TrC [|ψ〉ABC〈ψ|]), how much quantum information is required for Alice to
transfer her part of the state to Bob whilst maintaining coherence with Charlie?

By acting on n copies of |ψ〉ABC , they aim to end up in a state close to |ψ〉⊗nB′BC which is
exactly the same as n copies of |ψ〉ABC except that what was initially Alice’s part of the state
is now well and truly in Bob’s capable hands. Moreover, errors are allowed but must vanish in
the asymptotic limit n→∞.

Alice and Bob may use extra, pre-established two-qubit maximally entangled pairs (ebits),
but these constitute a valuable resource and if consumed must be paid for. Local operations and
classical communication are for free. The answer is that the optimal amount of information is

S (A|B) = S (ρ̂AB)− S (ρ̂B) , (7.22)

per copy of the state, of ebits spent in the process. This quantity may then be positive or
negative with the following implications:

• A positive value means that the entanglement must be consumed (and Alice transfers her
part of the global state to Bob via teleportation).

• A negative value means that not only is no extra entanglement required, but also Alice
and Bob retain −S (A|B) ebits per copy merged, which can be saved up for future use4.

Cavalcanti et al. considered the following: Although Alice and Bob may get extra entangled
resources to put away for a rainy day if S (A|B) is negative, they no longer share the starting
entangled states. They defined the total entanglement consumption

Γ (A > B) := EF (ρ̂AB) + S (A|B) (7.23)

where EF is the entanglement of formation of ρ̂AB . Γ (A > B) quantifies the total entanglement
consumed in state merging by taking into account the amount of entanglement Alice and Bob

4Quantum state merging has also been used to identify another entanglement measure, known as the condi-
tional entanglement of mutual information [215]
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would have needed to prepare ρ̂AB by LOCC and “lost” during quantum state merging. That is,
Equation (7.23) characterises the process of “extended state merging” in which firstly the state
ρ̂AB is created from maximally entangled states by LOCC, and then Alice’s part is merged to
Bob.

So how does this relate to discord? Rather trivially in fact. On examination, the discord
of Alice’s state, given a measurement by Charlie can be rewritten as

D← (ρ̂AC) = J← (ρ̂AC)− S (A|C) (7.24)

where S (A|C) = S (ρ̂AC)−S (ρ̂C). Next consider the Koashi-Winter relation for a pure tripartite
system (7.16) relation for a tripartite pure state system, rewritten here

S (ρ̂B) = EF (ρ̂AB) + J← (ρ̂BC) . (7.25)

By substituting there the definition of J← (ρ̂BC) it is found that

EF (ρ̂AB) = inf
{Π̂i}
H{Π̂i}(B|C) = inf

{Π̂i}
H{Π̂i}(A|C). (7.26)

Substituting this into the definition of quantum discord (Equation (7.8)) and noting that as
ρ̂ABC is pure, S (ρ̂AC) = S (ρ̂B) and S (ρ̂C) = S (ρ̂AB) we obtain

D← (ρ̂AC) = EF (ρ̂AB) + S (ρ̂AB)− S (ρ̂B) = Γ (A > B) . (7.27)

That is, the discord between Alice and Charlie (measurement on C) is equal to the total entan-
glement consumption in an extended state merging protocol from Alice to Bob. The asymmetry
of the discord can be interpreted as the different resources required for Charlie to merge his
state to Bob from what Alice required.

To be more consistent with the concept of state merging, it is beneficial to use Equation
(7.17) to define a regularised quantum discord

D←,∞ (ρ̂AB) = lim
n→∞

D←
(
ρ̂⊗nAB

)
n

(7.28)

and it follows that
D←,∞ (ρ̂AB) = Γ∞ (A > B) (7.29)

where Γ∞ (A > B) is a regularised version of the total entanglement consumption, defined in
the usual way.

Madhok and Datta [210] took a slightly different approach. For a tripartite system

S (A|BC) ≤ S (A|B) . (7.30)

Simply put, from the point of view of the state merging protocol, having more prior information
makes state merging cheaper. If Bob does not acknowledge Charlie’s system, then state merging
is more expensive. Madhok and Datta assumed that initially Charlie’s state is |0〉 (pure).
As |ψ〉ABC is pure globally, S (ρ̂AB) = S (ρ̂ABC). A unitary interaction then occurs between
B and C. After the interaction the global state is still pure and denoted |ψ〉ABC Similarly,
Iq (ρ̂A,BC) = Iq (ρ̂A′,B′C′) and Iq (ρ̂A′,B′) ≤ Iq (ρ̂A′,B′C′). Then

S (A|B) = S (ρ̂A)− Iq (ρ̂AB) = S (ρ̂A)− Iq (ρ̂A,BC) = S (A|BC) . (7.31)

Thus one could always view the cost of merging Alice’s state to Bob’s as the cost of merging A
with B & C together. If Charlie’s system is then discarded,

Iq (ρ̂A′B′) ≤ Iq (ρ̂A′,B′C′) = Iq (ρ̂A,BC) = Iq (ρ̂AB) . (7.32)

The difference Iq (ρ̂AB)− Iq (ρ̂A′B′) reduces to the quantum discord when optimized. Discord,
then, is the minimum possible increase in the cost of quantum communication in order to perform
state merging, when a measurement is performed on the party receiving the final state.



83

Quantum discord and Maxwell’s Demon

In an attempt to understand the limitations of thermodynamics, Maxwell introduced a character
(today named Maxwell’s demon) that has been summoned regularly in many areas of physics.
Maxwell’s demon was initially invoked to demonstrate that the second “law” of thermodynamics
was in fact a statistical principle that holds most of the time but is not is an absolute law.

The simplified version of the thought experiment [216], put forward by Szilárd [217] is as
follows: Imagine a molecule in a box, freely able to move in a volume V. A partition is inserted
and Maxwell’s demon observes whether the molecule is in the left half or right half. On the side
of the box in which the molecule sits, the demon inserts a piston coupled to a load in place of
the partition. The box is then put in contact with a thermal reservoir and the one molecule gas
expands isothermally until, once again, the volume in which it can travel is the original V. The
expansion has lifted the load and the demon can continuously repeat this process, turning heat
from the reservoir into pure work in clear violation of the second law.

Landauer’s principle “exorcised” Maxwell’s demon with his erasure principle. Szilárd’s
engine is not a complete cycle until the knowledge of which side of the partition the molecule
was on is erased. The answer to the paradox then becomes clear: the missing work resides in the
demon’s memory, and the demon must clear his head for the cycle to be complete. The cost of
erasing is proportional to the entropy of the probability distribution resulting from the demon’s
measurements.

Zurek [218] considered the quantum version with Szilárd’s engine S in contact with a ther-
mal reservoir at constant temperature (kBT = 1), expanding through a Hilbert space of volume
dS . The demon’s observations are performed on apparatus A and the combined state is ρ̂SA
(dimension dSdA). Zurek showed that a “classical” demon, only able to perform local measure-
ments and gain information about the apparatus, would only be able to retrieve a maximum net
work of

WC = log [dSdA]− S (ρ̂A) + inf
{Π̂i}
H{Π̂i}(S|A) (7.33)

after erasure. That is, the demon would have to choose optimal local measurements on the
apparatus, only giving him access to part knowledge of the state of the system. However, if
the demon could carry out non-local measurements in the global space, he could extract work
amounting to

WQ = log [dSdA]− S (ρ̂SA) . (7.34)

The difference between the work that can be extracted by a global and a local demon from the
system is equivalent to the quantum discord.

The dilution/distillation gap

Cornelio et al. [219] explored the difference between entanglement cost EC (ρ̂AB) and the dis-
tillable entanglement ED in a cycle of dilution and distillation of a large number of copies of
a quantum state (see Figure 7.2). They were able to show that in all cycles where EC > ED,
the regularised discord (Equation (7.28)) is a measure of the amount of entanglement lost in
each dilution/distillation cycle. As expected, if EC = ED for some particular state ρ̂AB then
the cycle is reversible and the discord in state ρ̂AB is zero. For the irreversible processes, some
information is lost to the environment.

Further to the main result, Cornelio et al. were able to find a closed expression for the
discord of a class of quantum states. Interestingly, it could conceivably be possible that the
discord in a single copy of ρ̂AB could be non-zero, whereas in the asymptotic limit of many
copies, the regularised discord may be zero (and therefore the deficit in entanglement in the
cycle) could be zero. Such a result would be as a consequence of the non-additivity of the
entanglement of formation.

7.4 Extension to Gaussian states

The discussion so far has centred on non-classical correlations in finite-dimensional systems, as
this is the playing field on which most research into non-classicality has been carried out. What
has been included so far has served to express how intricate and useful non-classicality measures
can be, and to give a flavour of the open problems that are left to solve for continuous variables.
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Figure 7.2: In a cycle of entanglement dilution and distillation with many copies, the deficit ∆ is given
by the regularised discord (7.28). For a reversible process the deficit (and regularised discord) is zero.
Figure reproduced from [219]. Copyright (2011) by The American Physical Society.

The optimisation process necessary for quantum discord makes it an intractable problem in the
continuous variable regime. After all, how does one define a general, non-Gaussian, continuous
variable measurement on a subsystem of a generic continuous variable state? One would need
to examine the Wigner function overlap of the subject state with all possible one mode Wigner
functions. Discord, then, is well-defined in the continuous variable regime, but almost impossible
to calculate explicitly except with good guess-work, or finding measurements that render the
conditional entropy to be zero (as inf{Π̂i}H{Π̂i}(A|B) ≥ 0).

So far, discord has only been examined for Gaussian states. As discord is invariant under
local unitary transformations [220], it is possible to focus analysis on Gaussian states whose
covariance matrices are in the standard form (Equation (2.122)). It is possible to define a
Gaussian version of quantum discord [220, 221] in which the optimisation of the conditional
entropy is taken over all generalised Gaussian POVMs on subsystem B. Gaussian states do not
form a convex set, yet every Gaussian state admits a decomposition into pure Gaussian states.
Therefore it is sufficient to limit the measurement to pure Gaussian states. Giorda and Paris
found the optimal measurement for squeezed thermal states [220] and Adesso and Datta [221]
found the Gaussian discord for all two mode Gaussian states.

The two mode Gaussian state is first put into standard form as

γ =


a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b

 . (7.35)

Taking advantage of the formula for the entropy of a Gaussian state (2.114), the Gaussian discord
is given by

D←G (ρ̂AB) = F (b)− F (ν−)− F (ν+) + inf
σ0

F
(√

det ε
)

(7.36)

where σ0 is the covariance matrix of the Gaussian measurement on subsystem B and

ε = a1−
(
c+ 0
0 c−

)
(b1+ σ0)

−1

(
c+ 0
0 c−

)
(7.37)

is the state of subsystem A after the measurement. The optimal value of det ε is found by

inf
σ0

det ε =



2c2+c
2
−+(b2−1)(det γ−a2)+2|c+c−|

√
c2+c

2
−+(b2−1)(det γ−a2)

(b2−1)2

if
(
det γ − a2b2

)2 ≤ (b2 + 1
)
c2+c

2
−
(
det γ + a2

)
;

a2b2−c2+c
2
−+det γ−

√
c4+c

4
−+(det γ−a2b2)2−2c2+c

2
−(a2b2+det γ)

2b2

otherwise.

(7.38)

For states falling into the second category, the optimal measurement strategy is homodyning.
The first case is a more general measurement. As before D→G (ρ̂AB) and D↔G (ρ̂AB) can also be
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defined accordingly. As the Gaussian discord is defined using only an optimisation over Gaussian
POVMs,

D← (ρ̂AB) ≤ D←G (ρ̂AB) . (7.39)

For a general two-mode Gaussian state, it is an open question as to whether non-Gaussian
measurements (e.g. photon detection) can lead to further minimisation of the discord, or whether
the Gaussian discord and discord are one and the same. Numerical evidence supports the latter
statement.

It was also shown that the only two mode Gaussian states with zero discord are product
states of the form γ = γA ⊕ γB . All correlated two-mode Gaussian states have non-classical
correlations. For all separable two mode Gaussian states, ρ̂sep

AB

D←G (ρ̂sep
AB) ≤ (b− 1)

2
log

[
(b+ 1)

(b− 1)

]
≤ 1. (7.40)

This implies further that if D←G (ρ̂AB) ≥ 1 the ρ̂AB is entangled.
The Koashi-Winter relation can also be used in the Gaussian setting. Consider a state ρ̂AB .

The purification of ρ̂AB usually requires the addition of two more modes (S and T ), such that
ρ̂AB = TrST [ρ̂ABST ]. In the Gaussian setting,

J←G (ρ̂AB) + EGf (ρ̂A,ST ) = S (ρ̂A) (7.41)

where EGf is the Gaussian entanglement of formation, and J←G (ρ̂AB) is the one way classical
information when optimised over Gaussian POVMs. From the definition of J←G , we get the

rather simple relation EGf (ρ̂A,ST ) = infσ0
F
(√

det ε
)

.

Furthermore, in the case of two mode Gaussian states where one of the symplectic eigen-
values ν− = 1, the purification requires a single extra mode. It is known [138] that EGf (ρ̂AS) =
EF (ρ̂AS) (as ρ̂AS is a two mode Gaussian state), which in turn implies that J←G (ρ̂AB) =
J← (ρ̂AB). So, for two mode Gaussian states where one symplectic eigenvalue is ν− = 1, we
have the relation D← (ρ̂AB) = D←G (ρ̂AB).

7.5 Alternative non-classicality indicators

Although the quantum discord has been the most researched of the non-classicality measures,
there are rivals. In fact, one of the main goals of this thesis is to extend the analysis of non-
classicality measures to infinite dimensions. We here introduce some alternatives. This list is
far from exhaustive.

Measurement Induced Disturbance

In order to overcome the difficulties involved in the evaluation of quantum discord, Luo intro-
duced the ‘measurement-induced disturbance’ (MID) as an alternative nonclassicality indicator
for bipartite quantum states [222]. Just as with quantum discord, MID is motivated by the ob-
servation that in classical systems, local measurements do not induce disturbance. Any bipartite
quantum state containing no quantum correlations is left invariant by the action of any bi-local
complete measurement. On the other hand, even when a state ρ̂AB is a priori nonclassical, any
complete bi-local measurement makes it classical as a result of a decoherence-by-measurement
process [222]. Luo’s approach was thus to restrict the measurements to the bi-local complete
projective measurement ÊA⊗ÊB determined by the eigen-projectors Êj(k) of the marginal states

ρ̂j =
∑
k λkÊj(k) (j = A,B), where λk are corresponding eigenvalues, and reads [222]

M(ρ̂AB) = Iq(ρ̂AB)− Iq[Ê(ρ̂AB)] , (7.42)

where

Ê(ρ̂AB) =
∑
k,l

pAB(k, l)ÊA(k)⊗ ÊB(l) (7.43)

is the post-measurement state after local measurements ÊA and ÊB and

pAB(k, l) = Tr[ρ̂AB ÊA(k)⊗ ÊB(l)] (7.44)
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is the probability of obtaining the outcome (kl). The post-measurement state is obviously fully
classical and consequently any correlations contained within can be described sufficiently by the
classical mutual information of the distribution pAB (Eq. (7.1)). Hence we can rephrase MID
as

M(ρ̂AB) = Iq(ρ̂AB)− I(A : B) . (7.45)

Two important observations distinguish the MID from the quantum discord:

• Both subsystems are locally probed;

• There is no optimization over the local measurements, which are chosen to be the marginal
eigen-projectors for every quantum state 5.

The Measurement Induced Disturbance is easily computable for a quantum state in a Hilbert
space of any dimensions, and has found widespread applications in several investigations [224].
However, a number of studies have revealed that MID is an unfaithful and unrefined measure of
non-classical correlations [223, 192], being non-zero and even maximal for states approaching the
classical limit. That is, MID severely overestimates the non-classical correlations in a bipartite
state. In Chapter 8 we show how to calculate the MID for any two mode Gaussian state and
compare the results to those of other non-classicality measures.

The perhaps obvious remedy to this major drawback is to define an ameliorated measure-
ment induced disturbance (AMID) which incorporates into (7.45) a minimisation over the joint
bi-local POVM measurements Π̂A ⊗ Π̂B on subsystems A and B [192]. Arguably, this puts all
of the difficulty back in. The AMID can then be defined as [192, 223, 225]

A(ρ̂AB) = inf
Π̂A⊗Π̂B

{Iq(ρ̂AB)− I(A : B)} (7.46)

= Iq(ρ̂AB)− Ic(ρ̂AB) ,

where
Ic(ρ̂AB) = sup

Π̂A⊗Π̂B

I(A : B) (7.47)

is the classical mutual information of a quantum state ρ̂AB , and I(A : B) is the classical mutual
information of the joint probability distribution pAB(k, l) = Tr[ρ̂ABΠ̂A(k)⊗ Π̂B(l)] of outcomes
of local measurements Π̂A and Π̂B on ρ̂AB . The AMID captures the quantumness of bipartite
correlations as signaled by the minimal state disturbance after optimized local measurements.
It is a symmetric, strongly faithful nonclassicality measure [192] that vanishes if and only if a
bipartite state ρ̂AB is genuinely classically correlated [225, 223], and it is operationally inter-
preted as the quantum complement to the classical mutual information [Eq. (7.47)], while the
latter is in turn a bona fide measure of classical correlations in general bipartite quantum states.
The AMID thus incorporates the nice properties of discord and MID without showing their re-
spective weaknesses [192, 226]. The evaluation and properties of AMID have been investigated6

for two–qubit systems [192].
The MID and AMID form a hierarchy with the measures so far defined:

{D← (ρ̂AB) ,D→ (ρ̂AB)} ≤ D↔ (ρ̂AB) ≤ D↔G (ρ̂AB) ≤ A (ρ̂AB) ≤M (ρ̂AB) . (7.48)

In Chapter 8 we shall extend the analysis of these measures to the continuous variable regime,
particularly focussing on Gaussian states. In Chapter 9 we extend this analysis to a simple class
of non-Gaussian states.

5Notice also that this choice of measurements makes MID not uniquely defined on bipartite states whose
reduced density matrices have a degenerate spectrum [223], as it is the case for states with maximally mixed
marginals.

6In Ref. [192] the AMID is defined via an optimization over local projective measurements, rather than more
general local POVMs. Both versions of AMID have also been studied in Ref. [223], albeit without naming the
considered measures explicitly.
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Relative Entropy of Quantumness

Another measure of non-classicality is the Relative Entropy of Quantumness (REQ) [222, 227,
228, 229] defined as the minimum distance (as measured by the quantum relative entropy in
Equation (3.38), which is not technically a distance measure - it is asymmetric for a start) from
a state ρ̂AB to the nearest classically correlated state σ̂,

Q (ρ̂AB) = min
σ̂
S (ρ̂AB ||σ̂) . (7.49)

The appeal of REQ lies in the parallels that can be drawn with e.g. the relative entropy of
entanglement. In [227] a unified view of quantum and classical correlations is advanced using
measures of this kind.

As an important sidenote, in [227], the Quantum Dissonance is defined as the relative
entropy between the closest separable state χ̂ρ to ρ̂AB and the closest classically correlated state
σ̂χρ to χ̂ρ i.e.

Qdiss (ρ̂AB) = min
σ̂χρ
S
(
χ̂ρ||σ̂χρ

)
(7.50)

where χ̂ρ is the state minimising the relative entropy of entanglement of ρ̂AB . The sole purpose
of Qdiss (ρ̂AB) is to define a measure of non-classicality that does not include entanglement.

Returning to REQ (7.49), the measure is faithful (i.e. reaches 0 when the state is classically
correlated only), symmetric under permutations of the subsystems, and has an operational
interpretation [230]. The definition of REQ transports easily to continuous variables but proves
very difficult to evaluate.

Most interestingly, REQ also defines a measure of non-classicality that carries over into the
multipartite setting. It is this property that makes one willing to overlook the fact that relative
entropy is not a true distance measure, as it puts quantum correlations in N−partite states on
an equal footing.

Operationally, Piani et al. [230] showed that the REQ is interpreted as the resource power
of non-classical correlations for the task of generating distillable entanglement (as measured by
ED). In this thesis, the REQ will not play a pivotal role. It has been included as it is another
favourite amongst those studying non-classical correlations.

7.6 Summary of Chapter 7

In this chapter, the quantum discord has been introduced as a rudimentary way of quantifying
those non-classical correlations that a bipartite quantum state may possess in and beyond entan-
glement. These correlations have a deep, yet so far unclarified connection to complementarity.
Discord, in particular, has been the subject of intensive investigations in recent years and was
shown by the Koashi-Winter relation to be intrinsically related to quantum entanglement in
a pure tripartite state. It is endowed with operational interpretations via the quantum state
merging protocol and quantum Maxwell’s demon.

Despite this, other non-classicality measures have been introduced, such as the Measurement
Induced Disturbance, which have appealing properties such as symmetry. In the following two
chapters, we shall attempt to extend the analysis of these measures into the realm of infinite
dimensional systems.



Chapter 8

Extension of MID and AMID to continuous
variables

As has been testified to in the previous chapter, research into non-classicality measures has
generally been restricted to bipartite qudit systems. The notable exception so far has been the
extension of the quantum discord to the Gaussian setting with the Gaussian Discord [220, 221], in
which the optimisation of the measurement on one subsystem is restricted to Gaussian POVMs.
The Gaussian discord has been readily computed analytically for all two mode Gaussian states.

In this chapter, based on [II], the study of quantum correlations beyond entanglement in two
mode Gaussian states is expanded using the instruments of Measurement Induced Disturbance
(MID) (7.42) and its ameliorated version. In the spirit of recent studies of Gaussian discord, the
Gaussian AMID (GAMID) is introduced and is used to probe non-classical correlations in two
mode Gaussian states.

In Section 8.1 the measures used in this chapter shall be reintroduced and the GAMID
shall be defined. In Section 8.2, the measurement induced disturbance shall be calculated for
two mode Gaussian states, with its Gaussian counterpart explored in Section 8.3. In Sections 8.4
and 8.5 the relationship between the different non-classicality measures, and the entanglement
of the Gaussian states, shall be probed.

8.1 Measures of quantum correlations in Gaussian states

The covariance matrix γ contains complete information about all correlations in a Gaussian
state, and any symplectic operations leave all correlations and entropic quantities invariant. All
two mode Gaussian states can be put into the form

γ =


a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b

 (8.1)

by local symplectic operations, and without loss of generality we assume throughout this chapter
that c+ ≥ |c−| ≥ 0. Gaussian states can be readily produced and manipulated in the lab
with a high degree of control. Gaussian measurements are those that map Gaussian states into
Gaussian states and coincide with the standard toolbox of linear optics (e.g. balanced homodyne
detection). Any such measurement is described by a positive operator valued measurement [176]

Π̂G
j (dj) =

1

2π
D̂j(dj)Π̂

G
j D̂
†
j(dj), j = A,B. (8.2)

The seed element Π̂G
j is a normalised density matrix of a generally mixed single mode Gaussian

state with covariance matrix γj and zero displacements. The operator D̂ (dj) = exp
[
−idTj ΩR̂j

]
is the displacement operator (discussed in detail in Chapter 2), where R̂j = (x̂j , p̂j)

T
and

dTj =
(
d

(x)
j , d

(p)
j

)
is a vector of real numbers describing the shift in phase space. The POVM
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satisfies the completeness relation

1

2π

∫ ∞
−∞

D̂ (dj) Π̂G
j D̂
†
j(dj)dd

(x)
j dd

(p)
j = 1j (8.3)

following from Schur’s lemma and the normalisation condition Tr
[
Π̂j

]
= 1.

The quantum discord D← (ρ̂AB), introduced in the previous chapter, shall play no part
in this discussion directly. When dealing with continuous variables, an optimisation of the
measurement over the full Hilbert space is seemingly impossible without an educated guess.
In its stead we shall consider the Gaussian discord D←G (ρ̂AB), which was also mentioned in
the previous chapter. In reality, we can only know that D←G (ρ̂AB) = D← (ρ̂AB) in the cases
where inf{Π̂Gj }

H{Π̂Gj }(A|B) = 0, although it was conjectured in [221] that an optimal Gaussian

measurement Π̂G
j would be better than any non-Gaussian measurement. The measurement

induced disturbance M (ρ̂AB) shall also be used.
For pure bipartite states |ψ〉AB , all the measures of non-classical correlations introduced

above (discord, MID, and AMID) reduce to the entropy of entanglement, showing that quantum
correlations are faithfully identified with just entanglement in the special case of pure states of
composite quantum systems. In order to explore the complicated relationship between entangle-
ment and non-classicality in two mode Gaussian states, the Gaussian entanglement of formation
EGf (ρ̂AB) shall be used.

Although, for the same reason as the discord, the AMID A (ρ̂AB) is all but impossible
to calculate, we can borrow the trick of Gaussian discord and optimise the classical mutual
information in the probability distribution of a bi-local Gaussian POVM measurement on the
state. With this, the Gaussian Ameliorated Measurement Induced Disturbance (GAMID) is
defined as

AG(ρ̂AB) = Iq(ρ̂AB)− IGc (ρ̂AB), (8.4)

where
IGc (ρ̂AB) = sup

Π̂GA⊗Π̂GB

I(A : B) (8.5)

is the Gaussian classical mutual information of the quantum state ρ̂AB . The true AMID, opti-
mised over general local measurements is then bounded from above as

A(ρ̂AB) ≤ min{AG(ρ̂AB),M(ρ̂AB)}. (8.6)

Naturally, one ponders whether A (ρ̂AB) = AG (ρ̂AB) on all two mode Gaussian states. After
all, the numerical evidence (although, as yet, no proof) indicates that D←G (ρ̂AB) = D← (ρ̂AB)
on Gaussian states, and so why should the same not be the case when two local measurements
are made? It shall in fact be shown that for some classes of Gaussian states, the best possible
Gaussian measurements cannot outperform a non-optimised non-Gaussian measurement (photon
counting). This jolting result proves that Gaussian joint measurements may not be the least
disturbing measurements on general two mode Gaussian states.

8.2 Measurement Induced Disturbance of two mode Gaussian states

In this section it is shown how to calculate the MID of a two mode Gaussian state ρ̂AB whose
covariance matrix γ is in standard form (8.1). The expressions derived here could be straight-
forwardly recast in terms of a set of four local symplectic invariants for general two mode states
that uniquely define the standard form covariances.

As with the Gaussian discord, the quantum mutual information (Eq. (7.6)) of the two mode
Gaussian state is required. This is easily shown to be

Iq (ρ̂AB) = F (a) + F (b)− F (ν+)− F (ν−) (8.7)

where 2ν2
± = ∆±

√
∆2 − 4 det γ, ∆ = a2+b2+2c+c−, and F is defined in equation (2.115). Only

the formulation of the classical mutual information after local projections onto the eigenstates
of the marginal density matrices need be derived.
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For a generic two mode Gaussian state in standard form, the reduced states are simply
thermal states ρ̂th,a and ρ̂th,b with mean number of photons 〈n̂A〉 = (a−1)/2 and 〈n̂B〉 = (b−1)/2

respectively. The local measurements
(
ÊA ⊗ ÊB

)
required in the expression for MID must

necessarily be projections onto Fock states (joint photon counting),

Êj(n) = |n〉j〈n|, j = A,B, (8.8)

and the post-measurement state reads as

Ê(ρ̂AB) =

∞∑
m,n=0

p(m,n)|m〉A〈m| ⊗ |n〉B〈n|, (8.9)

where p(m,n) =A〈m|B〈n|ρ̂AB |m〉A|n〉B is the joint probability distribution of finding m photons
in mode A and n photons in mode B.

In order to calculate the classical mutual information after the measurement, three compo-
nents are required as

I (A : B) = Iq
[
Ê (ρ̂AB)

]
= H (p(m)) +H (p(n))−H (p(m,n)) (8.10)

where p(m,n) is the joint post-measurement probability distribution and p(m) and p(n) are the

marginal distributions. The reduced states ρ̂ÊA,B = TrB,A

[
Ê (ρ̂AB)

]
are just equal to the local

thermal states and soH (p(m)) = S
(
ρ̂ÊA

)
= F (a) andH (p(n)) = S

(
ρ̂ÊB

)
= F (b). Consequently,

the measurement induced disturbance is simplified to

M(ρ̂AB) = S[Ê(ρ̂AB)]− S(ρ̂AB) (8.11)

= −
∞∑

m,n=0

p(m,n) ln p(m,n)− F(ν+)− F(ν−) .

All that remains, then, is to find the probability distribution p(m,n). This could, in principle,
be done quickly by deploying the multivariate Hermite polynomials (Appendix A) as in Chapter
5 although this does in fact require all density matrix elements to be computed, which is an
unnecessary waste of memory. Instead, here p(m,n) is derived using the generating function for
the distribution in the spirit of references [231, 232, 233].

Any two mode quantum state can be written in terms of its complex normal quantum
characteristic function defined as

χ(β1, β2) = Tr[ρ̂ABe
β1â
†+β2b̂

†
e−β

∗
1 â−β

∗
2 b̂], (8.12)

where â (â†) and b̂ (b̂†) are annihilation (creation) operators of modes A and B, and β1, β2 are
complex parameters of the characteristic function.

For a Gaussian state in the standard form with zero means (〈a〉 = 〈b〉 = 0) the characteristic
function takes the form [232]

χ(β1, β2) = exp
[
−(B1|β1|2 +B2|β2|2) + (Dβ∗1β

∗
2

+D̄β1β
∗
2 + c.c.)

]
, (8.13)

where

B1 = 〈∆â†∆â〉 =
(a− 1)

2
, B2 = 〈∆b̂†∆b̂〉 =

(b− 1)

2

D = 〈∆â∆b̂〉 =
(c1 − c2)

4
, D̄ = −〈∆â†∆b̂〉 = − (c1 + c2)

4
(8.14)

and ∆Â = Â−
〈
Â
〉

. The generating function for the distribution p(m,n) is then described by

[234]

G (λ1, λ2) =
1

π2λ1λ2

∫ ∫
exp

(
−|β1|2

λ1
− |β2|2

λ2

)
χ(β1, β2)d2β1d2β2, (8.15)
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where λ1 and λ2 are real parameters to be used in the generation of the probability distribution.
Inserting the characteristic function (8.13) into the integral (8.15) and performing the Gaussian
integration yields

G (λ1, λ2) = F+ (λ1, λ2)F− (λ1, λ2) (8.16)

with

Fj =
1√

1 +B1λ1 +B2λ2 +Kjλ1λ2

(8.17)

where

Kj =
1

4

[
(a− 1) (b− 1)− c2j

]
, j = +,−. (8.18)

From this, the photon number distribution is found by differentiating the generating function as

p(m,n) =
(−1)m+n

m!n!

∂m+nG (λ1, λ2)

∂λm1 ∂λ
n
2 λ1=λ2=1

. (8.19)

The derivation of the final solution to this is long and tedious but can be outlined here. After
a lot of calculations,(

∂

∂λ1

)α(
∂

∂λ2

)β
Fj

λ1=λ2=1

= (−1)
α+β (B1 +Kj)

α
(B2 +K2)

β

4α+β (1 +B1 +B2 +Kj)
α+β+ 1

2

×
min(α,β)∑
l=0

l!

(
α

l

)(
β

l

)
[2 (α+ β − l)]!

(α+ β − l)!

×
[
−4Kj

1 +B1 +B2 +Kj

(B1 +Kj) (B2 +Kj)

]l
(8.20)

and a function, Q(j) (α, β), can be defined as

Q(j) (α, β) = (−1)

(
∂

∂λ1

)α(
∂

∂λ2

)β
Fj

λ1=λ2=1

. (8.21)

By virtue of Leibniz’s product rule, the photon number distribution is explicitly given by

p(m,n) =
(−1)m+n

m!n!

m∑
ν1=0

n∑
ν2=0

(
m

ν1

)(
n

ν2

)(
∂

∂λ1

)ν1
(

∂

∂λ2

)ν2

F1 (λ1, λ2)

×
(

∂

∂λ1

)m−ν1
(

∂

∂λ2

)n−ν2

F2 (λ1, λ2)

=
1

m!n!

m∑
ν1=0

n∑
ν2=0

(
m

ν1

)(
n

ν2

)
Q(1) (ν1, ν2)Q(2) (m− ν1, n− ν2) . (8.22)

This formidable formula can be calculated numerically and used to complete the required knowl-
edge for M (ρ̂AB) (Eq. (7.42)). In the case where c+ = ±c− = c, we have K1 = K2 = K =
1
4

[
(a− 1) (b− 1)− c2

]
and the distribution (8.22) is simplified to

p(m,n) =
(B1 +K)m(B2 +K)n

m!n!(1 +B1 +B2 +K)m+n+1

×
min(m,n)∑

j=0

(
m

j

)(
n

j

)
j!(m+ n− j)!

[
−K 1 +B1 +B2 +K

(B1 +K)(B2 +K)

]j
. (8.23)

The two mode squeezed vacuum is particularly interesting, and its MID can be calculated directly
in the Fock state representation. The two mode squeezed vacuum is given by

|ψ (r)〉AB =
√

1− q2

∞∑
n=0

qn|nn〉AB (8.24)
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where q = tanh(r). This is already in its Schmidt decomposition with Schmidt coefficients

µm =
√

1− q2qm. As it is a pure state, S (ρ̂AB) = 0 and so

M (|ψ (r)〉AB) = S
(
Ê [|ψ (r)〉AB ]

)
. (8.25)

The post measurement state reads

Ê (|ψ (r)〉AB) =
(
1− q2

) ∞∑
n=0

q2n|n〉〈n| ⊗ |n〉〈n| (8.26)

and its entropy S
(
Ê [|ψ (r)〉AB ]

)
= F (cosh(2r)) which is precisely the entropy of entanglement

of the pure two mode Gaussian state. Therefore,

M (|ψ (r)〉AB) = Ev.N (|ψ (r)〉AB) = cosh2(r) ln
[
cosh2(r)

]
− sinh2(r) ln

[
sinh2(r)

]
(8.27)

as expected from the definition of MID. Of particular interest, the correct value of MID on a
pure two mode squeezed vacuum means that non-Gaussian Fock state measurements produced
the optimal value of AMID. M (|ψ (r)〉AB) has not overestimated the quantum correlations at
all. The interesting question to ask is, can the best possible Gaussian POVMs, in place of Fock
state measurements, be used to gain the same result for GAMID? Intriguingly the answer is no,
as shall be seen.

8.3 Gaussian AMID of two mode Gaussian states

We now turn our attention to the Gaussian Ameliorated Measurement Induced Disturbance,
which replaces the projection onto eigenprojectors required forM with bi-local Gaussian POVMs.
The challenge is to see if optimal local Gaussian measurements can achieve a lower value than
the unoptimised Fock state projections.

We hereby develop the framework for the determination of the Gaussian AMID on general
two–mode Gaussian states, and provide closed formulas for it in some special cases. As in the
previous section, the quantum mutual information is easily calculated by equation (8.7). The
nontrivial part in the determination of the quantity (8.4) is the calculation of the classical mutual
information IGc (ρ̂AB) requiring maximization of the Shannon mutual information I(A : B) over
local Gaussian POVMs Π̂A and Π̂B of the form (8.2).

One important result is proved in Appendix D - we can restrict the measurements to covari-
ant Gaussian POVMs (8.2), projecting onto pure states (rank one POVMS), as in the discrete-
variable scenarios [223]. That is, we can focus on POVMs of the form (8.2) where the seed element
Π̂j is a pure single mode Gaussian state with covariance matrix γj . As discussed in Chapter 2,
any pure, one mode covariance matrices can be expressed as γj = U (θj)V (rj)U

† (θj), where

U(θj) =

(
cos θj sin θj
− sin θj cos θj

)
, V (rj) =

(
e2rj 0

0 e−2rj

)
, (8.28)

with θj ∈ 〈0, π) and rj ≥ 0. In this picture, homodyne detection on mode j is recovered in

the limit of an infinitely squeezed pure state Π̂j , i.e., rj → ∞. On the other hand, heterodyne
detection on mode j corresponds to rj = 0.

Now we want to maximize the Shannon mutual information I(A : B) of the distribution
(D.3),

P (d) = Tr[
(

Π̂A(dA)⊗ Π̂B(dB)
)
ρ̂AB ],

over all single–mode pure-state CMs γA,B . Expressing the two–mode state CM γ in block form
as in (8.1), and using the formula for the Shannon entropy of a Gaussian distribution P of N

variables with classical correlation matrix Σ, H(P ) = ln[(2πe)
N
2

√
det Σ] [175], the sought mutual

information can be obtained in the form [235]:

I(A : B) =
1

2
ln

[
det (γA +A) det (γB +B)

det (γA ⊕ γB + γ)

]
. (8.29)
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As the determinant is invariant with respect to symplectic transformations we can assume the
covariance matrix γ to be in standard form (8.1). As the logarithm is a monotonic function, in
order to maximise I (A : B) it is necessary to find the maximum of the logarithm’s argument.
Due to the invariance of the determinant under orthogonal transformations, we can then express
γ′ = γ + γA ⊕ γB as

γ′ =

(
A′ C ′

C ′T B′

)
(8.30)

where each two by two block is defined by

A′ = a1+ V (rA) , B′ = b1+ V (rB) ,

C ′ = UT (θA)diag(c+, c−)U(θB) .
(8.31)

That is, all of the phase dependence has been shifted to the blocks not on the diagonal. The
function to be maximised is then

f(rA, rB , θA, θB) =
detA′ detB′

det γ′
, (8.32)

and the classical mutual information that we require is given by

IGc (ρ̂AB) =
1

2
ln

[
sup

{rA,B ,θA,B}
f(rA, rB , θA, θB)

]
. (8.33)

The numerator in (8.32) notably does not contain the phase parameters θA and θB . How-
ever, they do feature in the denominator. The denominator can be expressed [97] in terms of
symplectic invariants:

I1 = detA′, I2 = detB′

I3 = detC ′, I4 = Tr
[
A′ΩC ′ΩB′ΩC ′TΩ

]
. (8.34)

The determinant of γ′ is then given by I1 + I2 + I2
3 − I4. The denominator in (8.32) then only

depends on the phases θA and θB through the invariant I4, so we can optimise over the phases
by maximising I4. Thus, in order to find the optimal measurements, it is pragmatic to optimise
over the phases first, before turning one’s attention to the squeezing parameters rA and rB .

Three different cases must be distinguished at this point, depending on the eigenvalues c+
and c− of C ′.

Case 1: c+ = c− = 0
In this case, the phases play no role in (8.32) and I3 = I4 = 0. Equation (8.32) then reduces to
1 so I (A : B) = 0. The quantum mutual information (8.7) is also zero and so AG (ρ̂AB) = 0.
This is intuitively correct. The state ρ̂AB is a Gaussian product state and have neither quantum
nor classical correlations. Actually, from the analysis of Gaussian discord, it is known that any
non-product two mode Gaussian states have non-zero quantum correlations. In all the other
cases, we expect a non-zero AG.

Case 2: c+ > 0 and c− = 0
In this case, for any non-zero rA and rB the optimal phases in I4 are given by θA,B,opt = π/2
and for these phases the invariant I4 takes the value

I4,opt = c2+
(
a+ e2rA

) (
b+ e2rB

)
. (8.35)

From this we can move to optimise rA and rB . We define

1

1− h(rA, rB)
≡ g(rA, rB)

≡ f(rA, rB , θA,opt, θB,opt). (8.36)

We have h = I4,opt/(I1I2) and the function h (and consequently g) is obviously maximized in
the limits rA,B →∞ (doubly homodyne detection) when we get

ghom =
ab

ab− c2+
. (8.37)
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A quick check reveals that ghom is larger than the value of the function g on the boundaries
rA = 0 or rB = 0 and so ghom is the optimal values of (8.32) when c− = 0.

Case 3: c+, c− 6= 0
The general case is far trickier to calculate. We begin by expressing the invariant I4 as
I4 = c+c−Tr [XB′] where

X = UT (θB) diag(c−1
+ , c−1

− )U (θA)A′UT (θA) diag(c−1
+ , c−1

− )U (θB) . (8.38)

Next we express the matrix X through the eigenvalue decomposition

X = W (φ)diag [xA (θA) , xB (θB)]WT (φ) , (8.39)

where W is an orthogonal matrix diagonalizing X and x1(θA) ≥ x2(θA) are the eigenvalues of
X depending on the angle θA. We can maximize I4 over the phase φ. Further, if we substitute
into the obtained formula the explicit forms of eigenvalues x1,2(θA), we can perform also the
maximization over the angle θA, which finally yields the invariant I4 maximized over the phases
θA,B of local measurements of the form:

I ′4 = {[a+ cosh (2rA)] [b+ cosh (2rB)]

+ sinh (2rA) sinh (2rB)}
(
c21 + c22

)
+ {[a+ cosh (2rA)] sinh (2rB)

+ [b+ cosh (2rB)] sinh (2rA)}
(
c21 − c22

)
. (8.40)

The corresponding value of f is denoted by g(rA, rB). For a generic two–mode mixed Gaussian
state it is again convenient to express the function g(rA, rB) in terms of h(rA, rB) as in Eq. (8.36),
being

h(rA, rB) = (I ′4 − I2
3 )/(I1I2) , (8.41)

where

I1 = (a+ e2rA)(a+ e−2rA), (8.42)

I2 = (b+ e2rB )(b+ e−2rB ), (8.43)

I3 = c1c2. (8.44)

As I (A : B) ≥ 0 always, it follows that h (rA, rB) ≥ 0 and the game is on to maximise h. By
introducing two new variables λ = e2rA and µ = e2rB the extremal points of h can be found by
solving the stationary conditions ∂h/∂λ = 0 and ∂h/∂µ = 0, respectively, leading to a set of
coupled polynomial equations of the form:

c2+(a+ λ)2µ2 + [c2+b(a+ λ)2 − c2−b(aλ+ 1)2

+c2+c
2
−a(λ2 − 1)]µ− c2−(aλ+ 1)2 = 0,

c2+(b+ µ)2λ2 + [c2+a(b+ µ)2 − c2−a(bµ+ 1)2

+c2+c
2
−b(µ

2 − 1)]λ− c2−(bµ+ 1)2 = 0. (8.45)

Upon solving one equation for µ and inputting the solution into the other, a complicated 12th

order polynomial in λ emerges, that for the general case can be solved numerically. By taking its
real roots calculated numerically together with stationary points on the boundary and picking
the one for which h is maximized, we can finally get the optimal squeezing parameters rA,B
of the seed elements Π̂A,B of optimal local POVMs Eq. (8.2) maximizing the classical mutual
information and thus attaining the Gaussian AMID, Eq. (8.4), of a generic two–mode Gaussian
state.

Reassuringly, some analytical results can be found for non-trivial cases.

Case 4: Symmetric states
On symmetric Gaussian states, where a = b only one stationary equation ∂h/∂λ = 0 need be
solved as µ = λ. After some algebra the stationarity condition boils down to the following
fourth-order polynomial equation

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0, (8.46)
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where

a0 = −c2−, a1 = −a
(
c2+c

2
− + 3c2− − a2c2+

)
,

a4 = c2+, a2 = 3a2(c2+ − c2−),

a3 = a
(
c2+c

2
− + 3c2+ − a2c2−

)
. (8.47)

The equation (8.46) can be solved analytically using the Cardan formulae but the obtained so-
lutions are rather cumbersome and therefore we do not give them here explicitly. Calculating
the values of the function h(λ) in the admissible real solutions of Eq. (8.46) and also in the sta-
tionary points on the boundary, the point in which the function is maximal gives us the sought
optimal squeezing.

Case 5: Squeezed Thermal States
Squeezed thermal states are generally asymmetric with c+ = c− = c. the optimal Gaus-
sian POVMs can be derived in a simple closed form by performing the maximization of h in
Eq. (8.41). We find the following results. If the state parameters a, b and c satisfy the inequality
(a+ b+ 1)2 ≥ ab(ab− c2), then the optimality is obtained by homodyne detection (rA,B →∞)
on both modes giving Eq. (8.37); conversely, if (a+ b+ 1)2 < ab(ab− c2), then the optimality is
obtained by heterodyne detection (rA = rB = 0, projection onto coherent states) on both modes
giving

ghet =

[
(a+ 1)(b+ 1)

(a+ 1)(b+ 1)− c2

]2

. (8.48)

Summarizing, the Gaussian AMID of two–mode squeezed thermal states is given by Eq. (8.33)
with

f =

{
ghom [Eq. (8.37)], (a+ b+ 1)2 ≥ ab(ab− c2);
ghet [Eq. (8.48)], otherwise.

(8.49)

Case 6: Pure states
Within the class of the previous section lay the pure states, which must always have the form
a = b = cosh(2r) and c+ = −c− = sinh(2r). In this case, the inequality in equation (8.49) is
always satisfied and so double homodyning measurements are always optimal for the calcula-
tion of the Gaussian AMID. Although this result is quite intuitive (one could guess that in the
pure-state case the optimal local Gaussian measurements possessing maximum Shannon mutual
information for distribution of their outcomes would be homodyne detections), the corresponding
value of AG is strictly bigger than the entropy of entanglement, Eq. (3.29), which corresponds
to the true AMID A globally optimized over joint, possibly non-Gaussian local POVMs as in
the definition (7.46); and we know from Eq. (8.27) that the latter is indeed attained by local
photon counting: AG(|ψ(r)〉AB) > A(|ψ(r)〉AB) =M(|ψ(r)〉AB) = Ev.N.(|ψ(r)〉AB). Namely,

AG(|ψ(r)〉AB)) = 2M(|ψ(r)〉AB)− ln[cosh(2r)] , (8.50)

which is strictly bigger than the expression in equation (8.27).
This is particularly interesting as it answers already the question we previously posed -

although it appears that when a single measurement is performed on one subsystem (a la discord)
the optimal POVM is Gaussian, when we consider the symmetric version this is no longer true.
Non-Gaussian measurements can beat the best Gaussian bi-local POVMS.

Naively, one might expect this result to be attributed to how the two mode squeezed vacuum
is represented. After all, in the Fock state representation there is a perfect correlation between
the number of photons in each subsystem whereas in the position/momentum basis perfect
correlation can only be seen in the unphysical limit of r → ∞. This property could then be
characterised by the Einstein-Podolsky-Rosen variance 〈(x̂A−x̂B)2〉 = e−2r which, indeed, tends
to zero as r →∞. However, by taking the difference between AG (|ψ(r)〉AB) andM (|ψ(r)〉AB)
and finding the limit as r tends to infinity, one sees that

limr→∞
[
AG (|ψ(r)〉AB)−M (|ψ(r)〉AB)

]
= 1− ln [2] ≈ 0.3 (8.51)

A full numerical comparison between Gaussian AMID, MID and Gaussian discord for two–mode
Gaussian states will be provided in the next section.
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(a) MID vs GAMID (b) MID vs G. Discord (c) GAMID vs G. Discord

Figure 8.1: Comparison between (a) MID versus Gaussian AMID, (b) MID versus two-way Gaussian
discord, and (c) Gaussian AMID versus two-way Gaussian discord, for 105 randomly generated mixed
two–mode Gaussian states. The random Gaussian states were generated by choosing random symplectic
matrices and applying them to a diagonal covariance matrix with symplectic eigenvalues chosen from a
uniform distribution, as in [236]. Further restrictions were applied to single out e.g. the pure two mode
squeezed states. Pure two–mode squeezed states are represented by the dashed black curve in all the
plots. See text for details of the other boundaries. All the quantities plotted are dimensionless. Taken
from [II]. Copyright (2011) by The American Physical Society.

8.4 Comparison between nonclassicality measures for Gaussian states

In this section, we aim to provide an extensive comparative analysis of MID (M), Gaussian
AMID (AG) and the two way Gaussian quantum discord (D↔G ) as tools to quantify the quan-
tumness of correlations in arbitrary two mode Gaussian states via entropic descriptions of the
state disturbance following suitable local measurements on one or both local parties. The re-
sults of the previous sections show that in Eq. (8.6), either quantity on the right hand side
can be the smallest on particular instances of two–mode Gaussian states, suggesting that the
subset of two–mode Gaussian states whose true AMID A, Eq. (7.46), is necessarily optimized
by non-Gaussian measurements, might have a finite volume in the space of general two–mode
Gaussian states.

To confirm this interesting feature, we have generated a large number of random two–
mode Gaussian states (up to 106), and for each of them we have evaluated the three symmetric
nonclassicality indicators D↔G , AG, andM, following the prescriptions of the preceding Sections.
The resulting analysis is illustrated in Figure 8.1. Panel (a) shows that, while the MID can be
arbitrarily larger than the Gaussian AMID in principle, there is nonetheless a finite region in
the (AG, M) diagram that allocates two–mode Gaussian states for which even non-optimized
non-Gaussian measurements (specifically, photon counting) result in a larger classical mutual
information, hence minimise the quantum correlations in the definition of the AMID, compared
to the optimal Gaussian POVMs. In this study the only non-Gaussian measurements considered
were photon counting (that emerges in the definition of MID because Gaussian mixed states are
essentially thermal states). Therefore, we can expect that the region in which general non-
Gaussian measurements are optimal for the AMID can be in principle much larger than the
one highlighted by the present study (that is located between the solid straight line and the
dashed line in Figure 8.1a). Still, our finding is perhaps one of the most striking instances of
an operational quantum informational measure for Gaussian states that can gain a significant
optimization by the use of suitable non-Gaussian operations. Non-Gaussian operations can
sometimes reveal quantumness more accurately, thus unleashing more precisely the available
nonclassical resources, than the best Gaussian measurements, on certain two–mode Gaussian
states, including quite remarkably all two–mode pure Gaussian states. Notice however that
the rigidity in choosing the non-Gaussian measurements for the evaluation of MID, excluding
any optimization procedure, results in most of the cases into a very loose overestimation of the
quantum correlations, as testified by the unbounded region above the straight blue line, filled
by states where certainly joint photon counting is not optimal for the AMID.

Interestingly, pure states embody the lower bound (dashed black curve) in Figure 8.1a: they
are therefore the states where the Gaussian AMID realizes the most dramatic overestimation of
the true AMID, that nonetheless can never exceed ≈ 0.3 as computed in the previous section.
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Figure 8.2: Comparison of different measures of quantum correlations for two–mode symmetric squeezed
thermal Gaussian states (b = a, c1 = −c2 = c). Panels (a)-(b): Two-way Gaussian quantum discord
D↔G = max{D←G ,D→G } (dotted black line), Gaussian AMID AG associated to optimal bi-local Gaussian
POVMs (dashed blue line), and unoptimized MID M associated to joint photon counting (solid red
line), plotted versus the normalized state covariance parameter c/

√
a2 − 1, for (a) a = 1.05 and (b)

a = 2. The AMID A optimized over all possible (Gaussian and non-Gaussian) measurements is certainly
A ≤ min{M,AG}. Both MID and Gaussian AMID majorize the Gaussian discord, but for c bigger
than a certain threshold value c?(a) (ticked by a vertical gray line in the plots) one has M < AG,
meaning that non-Gaussian measurements become necessarily optimal for the AMID. Panel (c) depicts
the threshold curve c?(a) (solid black line), defined by the condition M = AG, in the normalized
parameter space {(a− 1)/a, c/

√
a2 − 1}. The shaded (orange) region above the threshold line allocates

instances of the considered family of states, lying in the neighbourhood of pure two–mode squeezed
states, where certainly Gaussian POVMs are not globally optimal for the AMID, since photon counting
results in a lower figure of merit. Below the threshold, either Gaussian measurements are optimal or
there may exist some more general non-Gaussian measurement that achieves the absolute minimum in
A: our analysis cannot rule out this possibility. All the quantities plotted are dimensionless. Taken
from [II]. Copyright (2011) by The American Physical Society.

A family of states sitting on the blue line in Figure 8.1a will be characterized shortly.
Before that, let us comment on the other panels of Figure 8.1. Panel (b) shows as expected,

and in full analogy with the case of two qubits [192], that in general the unoptimized MID based
on photon counting is a very loose upper bound to quantum discord for two–mode Gaussian
states (reducing to it on pure states, depicted as dashed black again), unbounded from above and
relentlessly approaching arbitrarily large values even for states with nearly vanishing quantum
correlations as quantified by the (Gaussian) discord. This should discourage the usage of MID
in general as it almost always provides overestimations, rather than reliable quantifications, of
nonclassicality of bipartite correlations.

The last panel shows also a somehow analogous situation to the two–qubit case [192]: the
Gaussian AMID is intimately related to discord, and admits upper and lower bounds at a given
value of the two-way Gaussian discord. The lower (blue) boundary in panel (c) accommodates
states for which the two quantifiers give identical prescriptions for measuring quantum correla-
tions. These are states with CM in standard form, (8.1), given by

a = cosh(2s), b = cosh2(r) cosh(2s) + sinh2(r),

c+ = −c− = cosh r sinh(2s) ,
(8.52)

in the limit r → ∞. They are characterized by AG = D↔G = 2 sinh2 s ln(coth s). Pure states
fill once more the dashed black curve, for which D↔G = E , Eq. (8.27), but AG is strictly bigger,
Eq. (8.50). The upper (red) boundary in Fig. 8.1c can be spanned for instance by symmetric
squeezed thermal states (b = a, c+ = −c− = c), with a � 1 and c ∈ [0,

√
a2 − 1). Upper and

lower boundaries ideally conjoin asymptotically for diverging discord and Gaussian AMID.
We can now analyse in detail the competition between the MID associated to photon

counting (typically very loose, but optimal on pure states) and the Gaussian AMID (very ac-
curate for mixed and strongly correlated Gaussian states) to maximize the classical mutual
information, hence minimizing the AMID, (8.6), on two–mode Gaussian states. We believe
it is relevant to focus on the class of two–mode symmetric squeezed thermal Gaussian states
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Figure 8.3: Plot of MID (solid red line), Gaussian AMID (dashed blue line) and Gaussian two-way
quantum discord (dotted black line) as a function of the parameter a for the two–mode Gaussian states
of Eq. (8.53). These curves give origin to the dotted magenta lines in Figure 8.1(a),(b). All the quantities
plotted are dimensionless. Taken from [II]. Copyright (2011) by The American Physical Society.

(b = a, c+ = −c− = c), for which the involved measures can be simply evaluated 1. We plot in
Figure 8.2 [(a),(b)] a comparison of the three measures studied here as a function of the rescaled
state parameters a and c. We see that there is a certain threshold value c?(a) beyond which
the Gaussian POVMs are no longer optimal for the AMID, and non-Gaussian measurements
such as photon counting (via MID) provide a more accurate result, culminating in the extreme
case of pure states where those specific measurements are globally optimal. Panel (c) depicts
the threshold in the parameter space, highlighting the region where our analysis conclusively
reveals the necessity of non-Gaussian measurements for the global optimization of AMID and
classical mutual information of the considered class of two–mode Gaussian states. As previously
remarked, this region can be in principle (and is likely to be so) much larger. Yet, it certainly
occupies a finite volume in the space of general two–mode Gaussian states. Notice that for all
the Gaussian states in such a region, non-Gaussian measurements allow one to extract stronger
correlated measurement records compared to any bi-local Gaussian measurement, as the classical
mutual information is maximized by non-Gaussian detections. The states attaining the threshold
identified in this analysis, are an instance of states filling up the blue line in Figure 8.1a.

Finally, we exhibit an example family of two–mode Gaussian states where, on the opposite
end, the MID based on non-Gaussian detections is a highly inaccurate measure of quantum
correlations. These states sit on the quasi-vertical dashed curves in Figure 8.1(a) and (b). They
are symmetric states with

b = a, c− = 0, and c+ = (a2 − 1− ln a)/a. (8.53)

As apparent from Figure 8.3, their Gaussian discord and Gaussian AMID stay limited (smaller
than ≈ 0.06) and rigorously vanish in the asymptotic limit a → ∞. On the other hand, their
MID arising from Fock projections increases arbitrarily and diverges for a → ∞, embodying
an extreme overestimation of some vanishing quantum correlations. Clearly there will be many
more families of Gaussian states where such a behavior will arise.

1For squeezed thermal states, the Gaussian discord is optimized by a local heterodyne detection [220, 221].
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Figure 8.4: Plot of Gaussian AMID AG versus Gaussian EoF EG
f for 105 random two–mode Gaussian

states. The dashed line of equation AG = EG
f stands as a lower bound for the physically admitted region.

Refer to the main text for details of the other curves. All the quantities plotted are dimensionless. Taken
from [II]. Copyright (2011) by The American Physical Society.

8.5 Nonclassicality versus entanglement

Here we present a numerical comparison between nonclassicality of correlations, measured by
means of the Gaussian AMID [Eq. (8.4)], and entanglement, quantified by the Gaussian EoF
[137], for generally mixed two–mode Gaussian states. A similar analysis was performed in
Ref. [221], with (Gaussian) discord used as a nonclassicality indicator.

Figure 8.4 shows the distribution of Gaussian AMID versus Gaussian EoF for a sample
of 105 randomly generated two–mode Gaussian states. In analogy with the case of Gaussian
discord vs Gaussian EoF, it is possible to identify upper and lower bounds on the Gaussian
AMID AG at fixed entanglement EGf . Interestingly, our numerical exploration shows that for
all two–mode Gaussian states ρ̂AB , it is

AG(ρ̂AB) ≥ EGf (ρ̂AB) . (8.54)

This provides a novel hierarchical relationship between different types of nonclassical resources,
entanglement EGf , and more general measurement-induced quantum correlations AG: On the
basis of the hereby employed measures (both symmetric by construction and restricted to a fully
Gaussian scenario), the latters appear to always encompass and exceed entanglement itself for
two–mode generally mixed Gaussian states. A similar relationship does not hold for discord,
which can be smaller as well as larger than entanglement of formation, even in a Gaussian
scenario [221, 237].

We can provide two families of two–mode Gaussian states for which Eq. (8.54) becomes
asymptotically tight. One such class is provided, e.g., by symmetric squeezed thermal states,
whose standard form CM is as in Eq. (8.1) with

b = a , c+ = −c− = a− ν̃ , (8.55)

where
ν̃ > 0 , a ≥ max{ν̃, (1 + ν̃2)/(2ν̃)} . (8.56)

The Gaussian EoF of these states (equal to the true EoF minimized over all possible pure-
state decompositions, by virtue of the symmetry of the states [136]) is a simple monotonically
decreasing function of the positive parameter ν̃,

EGf (ν̃) =
(1 + ν̃)2 ln

[
(1+ν̃)2

4ν̃

]
− (1− ν̃)2 ln

[
(1−ν̃)2

4ν̃

]
4ν̃

, (8.57)
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if ν̃ < 1, and EGf (ν̃) = 0 otherwise. The Gaussian AMID can be computed analytically according
to the prescription of Section 8.3, and for any fixed ν̃ (i.e., fixed Gaussian EoF) one can find
the optimal value of the parameter a, in the range defined by (8.56), that minimizes AG. The
resulting AG as a function of EGf is plotted in Figure 8.4 as a green curve: For this family of
states, the Gaussian AMID approaches the Gaussian EoF as the latter tends to zero, tending to
saturate inequality (8.54) asymptotically in the regime of infinitesimal correlations.

Furthermore, let us consider another class of symmetric two–mode states, whose standard
form CM is as in Eq. (8.1) with

b = a, c+ = a− (1 + ν̃2)/(2a), c− = a− (2a)/(1 + ν̃2) , (8.58)

where the parameter range is the same as in Eq. (8.56). The Gaussian EoF of these states is
still given by Eq. (8.57), while in the limit a → ∞ one can show that their Gaussian AMID is
attained by homodyne detections on both modes, yielding AG(ν̃) = 1− ln(4ν̃) + ln(1 + ν̃2). The
corresponding Gaussian AMID vs Gaussian EoF curve for these states is depicted in Figure 8.4
as a blue curve: In this case, the Gaussian AMID approaches the Gaussian EoF as the latter
tends to infinity, also saturating inequality (8.54) asymptotically.

It has to be underlined that the two presented Gaussian families are just examples to show
that the bound in Eq. (8.54) can be asymptotically tight, and we remark that the combination
of the two presented curves does not provide a strict lower bound to Gaussian AMID against
Gaussian EoF for all two–mode Gaussian states, as it is evident from the presence of some
random points below the intersection of the two (green and blue) curves – however above the
dashed line corresponding to the bound of Eq. (8.54) [see Figure 8.4].

On the other hand, a tight upper bound on the Gaussian AMID at fixed Gaussian EOF
can be identified. We found it numerically to be constituted by the maximum of two branches,

AG(ρ̂AB) ≤


1 + 2 ln(1 + ν̃)− ln(4ν̃),

4/e− 1 ≤ ν̃ ≤ 1;

ln(1 + ν̃)− ln(ν̃),
0 < ν̃ < 4/e− 1;

(8.59)

where EGf (ρ̂AB) is given by Eq. (8.57).
The first expression in Eq. (8.59) corresponds to the Gaussian AMID of the states of

Eq. (8.52) with s → ∞ and r = 2 tanh−1(
√
ν̃), and is depicted as a black curve in Fig. 8.4. It

provides an upper bound for all two–mode Gaussian states distributed in the {EGf ,AG} plane,
in the region of moderate entanglement; such a bound converges to 1 in the separability limit
(ν̃ = 1). We can thus conclude that the degree of nonclassicality of correlations in separable
Gaussian states is always nonzero (apart from the trivial case of uncorrelated, product states)
but stays nevertheless limited: It can at most reach unity, whether measured by the discord
[220, 221] or by the Gaussian AMID.

The second expression in Eq. (8.59) corresponds instead to the Gaussian AMID of the
states of Eq. (8.55) in the limit a→∞. It bounds from above the value of AG for all two–mode
Gaussian states with fixed EGf ' 0.441 [where this number is obtained by setting ν̃ = 4/e − 1
in Eq. (8.57)]. In the limit of infinite entanglement (ν̃ → 0), the upper bound on the Gaussian
AMID converges to EGf + ln 4− 1. Combining this observation with the lower bound (8.54), we
have that, interestingly, the following sandwich relation holds for all two–mode Gaussian states
with EGf � 0 ,

EGf (ρ̂AB) ≤ AG(ρ̂AB) ≤ EGf (ρ̂AB) + ln 4− 1 . (8.60)

In the previous analysis, we have identified some similarities as well as some key differences
in the quantification of nonclassical correlations versus entanglement of Gaussian states when
Gaussian AMID rather than quantum discord are employed. In order to have a visual comparison
between the two nonclassicality indicators and the Gaussian EoF, we focus on the relevant two-
parameter class of symmetric squeezed thermal states ρ̂stsAB , with CM as in Eq. (8.55). For these
states, the entanglement is given by (8.57) (independently of a), while the discord can be written
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Figure 8.5: 3D Plot of Gaussian EoF EG
f [Eq. (8.57)] versus Gaussian discord D←G [Eq. (8.61)] and

Gaussian AMID AG [Eq. (8.62)] for two–mode symmetric squeezed thermal Gaussian states, character-
ized by their covariance parameters a and ν̃ [see Eq. (8.55)]. The solid black line accommodates pure
states (ν̃ = a −

√
a2 − 1). All the quantities plotted are dimensionless. Taken from [II]. Copyright

(2011) by The American Physical Society.

as [220, 221]

D←G (ρ̂stsAB) =
1

2(1 + a)

{(
4a(ν̃ + 1)− 2ν̃2

)
tanh−1

(
a+ 1

2aν̃ + a− ν̃2

)

− 4(a+ 1)
√
ν̃(2a− ν̃) tanh−1

(
1√

ν̃(2a− ν̃)

)

+ a2 ln

[
a+ 1

a− 1

]
− ln

[
(a+ 1)

(
2aν̃ − ν̃2 − 1

)
(a− 1)(ν̃ + 1)(2a− ν̃ + 1)

]}
,

(8.61)

and the Gaussian AMID reads

AG(ρ̂stsAB) =− ln

[
2aν̃ − ν̃2 − 1

a2 − 1

]
+ 2a coth−1(a)

− 2
√
ν̃(2a− ν̃) tanh−1

(
1√

ν̃(2a− ν̃)

)

− ln

{ a√
a2−(a−ν̃)2

, 1 + a
(
4 + a

(
4− 2aν̃ + ν̃2

))
≥ 0;

(a+1)2

(a+1)2−(a−ν̃)2 , otherwise.

(8.62)

Figure 8.5 shows EGf plotted versus D←G and AG for this particular class of Gaussian states,
spanned by a and ν̃. All two–mode symmetric squeezed thermal states sit on a two-dimensional
surface in the space of the three entropic nonclassicality indicators, providing a direct evidence of
the intimate yet intricate relationship between the different aspects of quantumness in Gaussian
states. One can notice the branch of separable states, in the plane EGf = 0 with generally

nonzero discord and Gaussian AMID; while for all entangled squeezed thermal states, EGf can

be exactly recast as a function of D↔G and AG: Knowledge of two nonclassicality quantifiers
fixes the third one univocally. We remark that such a strict result does not extend to more
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general two–mode Gaussian states, which distribute filling a more complex, finite-volume three-
dimensional region in the space {D←G ,AG, EGf }. Figures 8.1c and 8.4 of this paper, and Figure
1(right) of Ref. [221], represent the two-dimensional projections of such a region onto the planes
{D←G ,AG}, {EGf ,AG}, and {EGf ,D←G }, respectively.

8.6 Summary of Chapter 8

In this chapter we have performed an exhaustive study of nonclassical correlations in generic
two mode Gaussian states using information-theoretic non-classicality quantifiers. We have
shown how to calculate the Measurement Induced Disturbance M of a two mode Gaussian
state in standard form. The projection onto the eigenvectors of the marginal states corresponds
to photon counting, and so the MID quantifies the gap between a state’s quantum mutual
information and the classical mutual information after local Fock state detections. We then
introduced the Gaussian Ameliorated Measurement Induced Disturbance AG, which looks at
the gap between the quantum mutual information and the classical mutual information after
local Gaussian measurements. An analytic form of AG can be found for important subclasses
of two mode Gaussian states. Namely, symmetric states and squeezed thermal states, including
pure states. Unfortunately, for more general states one has to find the roots of a 12th order
polynomial although this can be done numerically.

Furthermore, we have compared the MID and Gaussian AMID and seen some interesting
results. Firstly, for a fixed value of AG, it is possible to find Gaussian states for which the
Measurement Induced Disturbance gives an arbitrarily high reading, even if the Gaussian AMID
is infinitesimally small. On the other hand, there also exists a volume of Gaussian states for which
the MID gives a lower value than the Gaussian AMID. This is one of the most remarkable finds of
this chapter. Contrary to the hypothesis that for quantum discord, Gaussian measurements are
optimal on Gaussian states, for the symmetric AMID non-Gaussian measurements have a serious
role to play. However, although counter-intuitive, it is known that in some protocols involving
Gaussian states a non-Gaussian element is required. This is most obviously demonstrated by
the necessity of a non-Gaussian element in the distillation of entanglement in Gaussian states.

We have also compared both the MID and the Gaussian AMID with the two-way Gaussian
discord. Once again, we found that for a given value of D↔G , there are Gaussian states for which
the reading given by MID has no upper bound. However, upper and lower bounds exist for the
value of Gaussian AMID. Finally, we compared the Gaussian AMID with the Gaussian Entan-
glement of Formation, identifying lower and upper bounds for the former as a function of the
latter. The GAMID always exceeds the Gaussian Entanglement of Formation for all two mode
Gaussian states, thus enforcing a hierarchy between two different forms of nonclassicality. Exact
relations between Gaussian AMID, Gaussian discord, and Gaussian entanglement of formation
can be formulated for special families of Gaussian states such as the symmetric squeezed thermal
states.

In the next chapter we shall use these tools to forge ahead and see how these measures act
on a simple family of non-Gaussian states.



Chapter 9

Non-classical correlations in the continuous
variable Werner state

Non-classical correlations, including and beyond entanglement, have been examined thoroughly
in two mode Gaussian states. Measures that aim at capturing the signatures of quantum be-
haviour in continuous variable systems have been defined that include the Gaussian discord, the
Measurement Induced Disturbance (MID), and the Gaussian Ameliorated Measurement Induced
Disturbance (GAMID), introduced in the previous chapter. The preceding study caused some
interesting behaviour to surface and it is clear that there are some two mode Gaussian states
for which the optimal measurement is non-Gaussian when comparing MID and GAMID.

Curiosity drives us to examine how the measures used previously behave on non-Gaussian
states. It is probably impossible to evaluate these measures on all non-Gaussian quantum states,
just as it is probably impossible to optimise the measures over all possible POVMs, Gaussian
and non-Gaussian. The Hilbert space is just a bit too large. We can, however, look at how these
measures behave on small families of non-Gaussian states.

In this chapter, based on [IV], we consider a family of two mode states that are the continu-
ous variable counterparts of two-qubit Werner states [87]. They are non-Gaussian states obtained
as mixtures of two Gaussian states [238], namely a two mode squeezed vacuum and a two mode
thermal product state, and find applications in continuous variable quantum cryptography [239].
These states are defined in Section 9.1. Studying their nonclassicality beyond entanglement is
particularly interesting from a fundamental point of view, as they offer a unique test bed to
compare the role of Gaussian versus non-Gaussian measurements to extract correlations with
minimum disturbance from general two mode continuous variable states.

We show that the states analysed here carry genuine non-classical continuous variable cor-
relations. That is, the optimisation in the quantum discord requires an infinite dimensional
component1.

In some families of the CV Werner states considered the quantum discord can be computed
analytically. In particular, if we mix the pure two mode squeezed vacuum with a pure vacuum
to create a non-Gaussian mixture as in Section 9.2, the optimal measurement in the definition of
quantum discord is achieved by the non-Gaussian photon counting. We analyse the gap between
the optimal Gaussian measurements (homodyning) and the true discord. In this special case,
the quantum discord can also be shown to be equal to other non-classicality measures.

It is possible to find formulae for evaluating these non-classicality measures for the most
general continuous variable Werner state, ideally complementing the analysis of the two qubit
Werner state performed originally in [7]. We show in Section 9.3 that photon counting provides
an upper bound on the quantum discord that coincides with the MID. We also derive a non-trivial
lower bound on the discord. In Section 9.4 we introduce an example of a continuous variable
PPT state and show that it carries “weak” non-classical correlations, signalled by analytically
computable upper and lower bounds on discord which are close and stay small and finite even

1If this were not the case then one could argue that any qudit state (e.g. a two qubit state) is an example of a
non-Gaussian continuous variable state. They are certainly non-Gaussian as they are mixtures of a few photons,
but they span only a finite dimensional space, which is a truncation of the infinite dimensional Hilbert space. In
contrast, the continuous variable Werner states require measurements spanning the entire infinite dimensional
Hilbert space.
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under infinite squeezing.
In this chapter, our results provide insights into the relation between non-classical correla-

tions, entanglement distillability and separability in CV systems outside the Gaussian scenario.
From a practical perspective, our results identify the key role of non-Gaussian measurements
such as photon counting to access and extract all non-classical correlations in general CV states,
even in the particular case of non-Gaussian states with a positive-everywhere Wigner function,
such as those studied here.

Before we begin, we note that there has been a notation change throughout this chapter.
As the continuous variable Werner state is symmetric under exchange of it’s parties, we have

D← (ρ̂AB) = D→ (ρ̂AB) = D↔ (ρ̂AB) (9.1)

and we choose to drop the superscript and refer to all three quantities as D. Also, in this chapter,
we drop the hats from all of the density operators for ease of notation. There is no need to refer
to individual density matrix elements as there was in e.g. Chapter 5 and so no confusion should
arise.

9.1 The continuous variable Werner state

The continuous variable Werner state was first introduced in [238] and is defined as

ρ = p |ψ(λ)〉〈ψ(λ)|+ (1− p) ρth
A (µ)⊗ ρth

B (µ), (9.2)

where 0 ≤ p ≤ 1,

|ψ(λ)〉 =
√

1− λ2

∞∑
n=0

λn|n, n〉AB . (9.3)

is the two-mode squeezed vacuum state with λ = tanh r (r is the squeezing parameter) and

ρth
j (µ) = (1− µ2)

∞∑
n=0

µ2n|n〉j〈n|, j = A,B (9.4)

is the thermal state with µ2 = 〈nj〉/(1 + 〈nj〉), where 〈nj〉 is the mean number of thermal
photons in mode j. As with the d− dimensional qudit Werner states, the continuous variable
Werner states possess the same structure as those shown to be invariant under the maximal
commutative subgroup of U(d) introduced in [240].

9.2 Two mode squeezed vacuum and pure vacuum mixture: µ = 0

First, let us consider the simplest special case of a Werner state with µ = 0 which gives using
Eq. (9.2)

ρ0 = p |ψ(λ)〉〈ψ(λ)|+ (1− p) |00〉〈00| , (9.5)

representing just a mixture of a two-mode squeezed vacuum state with the vacuum. For p > 0
the partially transposed matrix ρTA0 (obtained by transposing ρ0 with respect to the degrees
of freedom of subsystem A only) has negative eigenvalues [238] and therefore, according to the
PPT criterion [95, 96], the state (9.5) is entangled. Note that the state (9.5) has been further
studied in [239, 241] from the point of view of its entanglement properties, as measured by the
negativity, highlighting its applications for quantum key distribution.

Exact calculation of quantum discord

In order to calculate the entropies arising in the expression of quantum discord we need to
determine the eigenvalues of the reduced state ρ0,B , the global state (9.5) and the conditional
state ρA|i = TrB [ΠB(i)ρ0]/pB(i). The latter two states attain the form

σ = ζ1 |φ1〉〈φ1|+ ζ2 |φ2〉〈φ2|, (9.6)
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where ζ1 + ζ2 = 1 and |φ1,2〉 are generally nonorthogonal normalized pure state vectors. The
state (9.6) has at most two-dimensional support spanned by vectors |φ1,2〉 corresponding to
eigenvalues ν1,2 that read as

ν1,2 =
1±

√
1− 4ζ1ζ2 (1− |〈φ1|φ2〉|2)

2
. (9.7)

On inserting the eigenvalues (9.7) into the formula for the von Neumann entropy

S(σ) = −
2∑
i=1

νi ln νi (9.8)

we get analytically the entropy of the state (9.6).
Returning back to the state (9.5) we get, in particular, |φ1〉 = |ψ(λ)〉, |φ2〉 = |00〉, ζ1 = p

and ζ2 = 1− p. The eigenvalues thus amount to

ν1,2 =
1±

√
1− 4p(1− p)λ2

2
. (9.9)

Hence, we can immediately calculate the entropy S(ρ0) using formula (9.8),

S(ρ0) = −
(

1+
√

1−4p(1−p)λ2

2

)
ln

(
1+
√

1−4p(1−p)λ2

2

)
−
(

1−
√

1−4p(1−p)λ2

2

)
ln

(
1−
√

1−4p(1−p)λ2

2

)
. (9.10)

We can next find the entropy of the partial state. Tracing over mode A yields the diagonal
reduced state

ρ0,B = pρth
B (λ) + (1− p)|0〉B〈0|, (9.11)

with ρth
B given in Eq. (9.4), possessing the eigenvalues

ν̃0 = 1− pλ2, ν̃n>0 = p(1− λ2)λ2n, (9.12)

for n ∈ N. Making use of the definition (9.8) we get also the entropy of the reduced state in the
form

S(ρ0,B) = −
(

ln(1− pλ2) + pλ2 ln

[
p(1− λ2)

1− pλ2

]
+

2pλ2 lnλ

1− λ2

)
. (9.13)

By far the hardest part is the minimisation of the conditional entropyHΠ̂i
(A|B) over all POVMs.

State (9.5) has been constructed in such a way as to make it possible to guess at a solution
without needing to solve this difficult task explicitly. A closer look at the state reveals that
the optimal measurement on mode B is simply photon counting, with the set of projectors
Π̂B(m) = |m〉〈m| where |m〉 is a Fock state. In this case, if we detect the m photons in mode B
then the conditional state ρA|m is simply a pure Fock state |m〉〈m| which implies immediately
that HΠ̂(m) (A|B) = 0. As the conditional entropy can never be less than zero, it is clear that
we have found the optimal measurement. The discord of state ρ0 is then equal to

D (ρ0) = S (ρ0,B)− S (ρ0) (9.14)

where the involved entropies are defined in equations (9.10) and (9.13). The discord is an
increasing function of both λ and p and is plotted in Figure 9.1. Note, that the considered Werner
state (8) belongs to the class of maximally correlated states for which Eq. (9.14) can be proved
alternatively [219] using the duality relation between classical correlations and entanglement of
formation [207].

Discord versus Gaussian discord and the non-Gaussianity of the state

A rather pertinent question arises: Is there another measurement besides photon counting that
realises the minimum of the conditional entropy? With this in mind we explore whether there
is any Gaussian measurement that could also give HΠ̂(m) (A|B) = 0. The answer, as we argue
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Figure 9.1: Quantum discord D (Equation (9.14) versus the probability p and the squeezing factor λ
for the CV Werner state ρ0 (Equation (9.5)). All the quantities plotted are dimensionless. Taken from
[IV]. Copyright (2012) by The American Physical Society.

in the following, is that nonclassical correlations in the state (9.5) captured by discord (9.14)
cannot be extracted equally well by any Gaussian measurement. In contrast to the case of two
mode Gaussian states, where it is believed that Gaussian measurements are always optimal, in
this simple non-Gaussian state, we will show that non-Gaussian measurements are required and
the best Gaussian measurement can only ever provide an upper bound to the discord. To show
this, consider the following Gaussian POVM [176] consisting of elements

Π(α) =
1

π
|α, ξ〉〈α, ξ|, (9.15)

where
|α, ξ〉 ≡ D̂(α)S(ξ)|0〉, (9.16)

with ξ = tei2ϕ, is a pure normalized momentum-squeezed vacuum state with squeezing pa-
rameter t ∈ [0,∞), that is rotated counterclockwise by a phase ϕ ∈ [0, π) and that is sub-
sequently displaced by α ∈ C. Here, D̂(α) = exp(αa† − α∗a) is the displacement operator
and S(ξ) = exp

{[
ξ(a†)2 − ξ∗a2

]
/2
}

is the squeezing operator. Note that t = 0 corresponds
to heterodyne detection, whereas homodyne detection is obtained in the limit t → ∞. If the
POVM element Π(α) is detected on mode B of the two-mode squeezed vacuum state (9.3), then
mode A collapses into the state |β, ω = se−i2ϕ〉, which is a pure momentum-squeezed state with
squeezing parameter

s =
1

2
ln

[
1 + e2t cosh(2r)

cosh(2r) + e2t

]
(9.17)

that is rotated clockwise by phase ϕ and that is displaced by

β =
sinh(2r)

2

[
(z+ + z−)α∗ + (z+ − z−) e−i2ϕα

]
, (9.18)

where z± = [cosh(2r) + exp (±2t)]
−1

. Thus, the obtained conditional state,

ρA|α = TrB [ΠB (α) ρ0] /q (α) (9.19)

is again a convex mixture of the form (9.6) where |φ1〉 = |β, ω〉, |φ2〉 = |0〉 and

ζ1α =
pu(α)

πq(α)
, ζ2α =

(1− p)v(α)

πq(α)
.

(9.20)
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Figure 9.2: Logarithmic plot of quantum discord (solid curve) and Gaussian quantum discord (dashed
curve) versus the probability p for the CV Werner state (9.5) with (from bottom to top) λ = 0.1, 0.5, 0.9.
All the quantities plotted are dimensionless. Taken from [IV]. Copyright (2012) by The American
Physical Society.

Here q(α) = [pu(α) + (1− p)v(α)] /π is the probability density of obtaining the measurement
outcome α, u(α) = 〈α, ξ|ρth

B (λ)|α, ξ〉, where ρth
B (λ) is given in Eq. (9.4), and v(α) = |〈0|α, ξ〉|2.

The latter function v(α) can be computed straightforwardly using the formula [234]

〈0|α, ξ = tei2ϕ〉 =
e−
|α|2

2 +
tanh(t)

2 ei2ϕα∗2√
cosh(t)

. (9.21)

The overlap |〈φ1|φ2〉|2 = |〈0|β, ω = se−i2ϕ〉|2 appearing in eigenvalues (9.7) can be calculated
exactly along the same lines.

One can use the P function (section 2.2) representation of the thermal state, and the optical
equivalence theorem (2.90) to express the thermal state as

ρth
B (λ) =

1− λ2

πλ2

∫
C

e−
1−λ2

λ2 |ς|
2

|ς〉〈ς|d2ς. (9.22)

From this, we get the function u(α) in the form

u(α) =
1− λ2

πλ2

∫
C

e−
1−λ2

λ2 |ς|
2

|〈0|α− ς, ξ〉|2d2ς, (9.23)

where we used the property of displacement operators D(−ς)D(α) = exp[(ς∗α−ςα∗)/2]D(α−ς).
Using once again the formula (9.21) to express the overlap |〈0|α − ς, ξ〉|2 and performing the
integration over ς we arrive at the formula

u(α) =
1− λ2

cosh(t)
√

1− λ4 tanh2(t)
exp

{
−
(
1− λ2

) [
1− λ2 tanh2(t)

]
1− λ4 tanh2(t)

|α|2

+

(
1− λ2

)2
tanh(t)

2
[
1− λ4 tanh2(t)

] (e−i2ϕα2 + ei2ϕα∗2
)}

. (9.24)

Substituting the obtained explicit expressions for functions u(α), v(α) and q(α) into Eqs. (9.20)
and using the explicit expression for the overlap |〈φ1|φ2〉|2 = |〈0|β, ω = se−i2ϕ〉|2 we get from
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(a) (b)

Figure 9.3: Normalized gap ∆Dnorm [Eq. (9.31)] between Gaussian discord and optimal discord (dashed
curve) and non-Gaussianity δ0 (solid curve) of the CV Werner state (9.5), plotted as functions of (a)
the probability p for different values of λ (λ = 0.2 and 0.8 from bottom to top), and of (b) the squeezing
factor λ (at p = 0.5). The plots are in logarithmic scale. All the quantities plotted are dimensionless.
Taken from [IV]. Copyright (2012) by The American Physical Society.

Eq. (9.7) the eigenvalues and hence the entropy S
(
ρA|α

)
of the conditional state ρA|α. Sub-

sequent averaging of the entropy over the density q(α) finally yields the Gaussian conditional
entropy

HG{Π(α)}(A|B) =

∫
C

q(α)S
(
ρA|α

)
d2α (9.25)

as a function of the squeezing parameter t and phase ϕ of the Gaussian measurement (9.15). Due
to the complicated dependence of the conditional entropy S

(
ρA|α

)
on α, the remaining integra-

tion over the complex plane C, where d2α ≡ d(Reα)d(Imα), has to be performed numerically.
Likewise, minimization of the entropy (9.25) with respect to variables t and ϕ also requires nu-
merics. This analysis reveals that, within the Gaussian POVM set, the entropy is minimized by
homodyne detection on mode B. The resulting plots of Gaussian discord and the true quantum
discord (9.14) (the latter obtained by photon counting on B) are shown in Figure 9.2. The figure
clearly shows that apart from trivial cases p = 0, 1 the Gaussian discord is always strictly larger
than the discord (9.14), meaning that general Gaussian measurements are strictly suboptimal
(or, in other words, non-minimally disturbing) for the extraction of nonclassical correlations in
the non-Gaussian state (9.5).

To shine a light on this we examine the gap

∆D ≡ DG(ρ0)−D(ρ0) , (9.26)

which quantifies how much Gaussian measurements overestimate the total quantum correlations
with a measure of non-Gaussianity δ0 of state (9.5) [242]. The measure is defined as the quantum
relative entropy between ρ0 and a Gaussian state τ0 with the same first and second moments,
and it was shown in [242] that this can be rewritten as

δ0 = S (τ0)− S (ρ0) (9.27)

where S (ρ0) is given in (9.10). To find S (τ0), we note that ρ0 has zero first moments but
possesses a covariance matrix of the form

Γ0 =


C 0 S 0
0 C 0 −S
S 0 C 0
0 −S 0 C

 (9.28)

with C = p cosh(2r) + (1 − p), S = p sinh(2r). Using equations (2.114) and (2.115) the von
Neumann entropy of the Gaussian state τ0 can be then written as [61]

S(τ0) = (ν + 1) ln

(
ν + 1

2

)
− (ν − 1) ln

(
ν − 1

2

)
, (9.29)
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where ν =
√

[1− (1− 2p)2λ2]/(1− λ2) is the doubly-degenerate symplectic eigenvalue of the
covariance matrix Γ0. The non-Gaussianity δ0 is a concave function of p and increases with
λ, diverging in the limit of infinite squeezing. In the regime of low squeezing, λ � 1, a series
expansion (up to the quadratic term in λ) returns an approximate expression for the non-
Gaussianity,

δ
(λ�1)
0 ≈ (−1 + p)pλ2[−1 + ln(p(1− p)) + 2 lnλ].

Clearly, the gap in discord (9.26) corresponds to the conditional entropy term given by homo-
dyning, so ∆D = HΠG(α) (A|B). In the low squeezing regime, we can also expand in series (up
to the quadratic term in λ) the integrand in (9.25), so as to obtain an approximate analytic
expression for the gap,

∆D(λ�1) ≈ π−1(p− 1)pλ2[1− γ − ln 2 + ln(p(1− p)) + 2 lnλ],

where γ ≈ 0.577 is Euler’s constant. Defining the ratio

Φλ =
π
[
ln
(

4
λ2

)
+ 1
]

ln
(

8
λ2

)
+ γ − 1

(9.30)

between the approximate expressions for δ0 and ∆D (at p = 0.5), we see that the linearly
dependent relationship δ0 ≈ Φλ∆D holds with good approximation for small λ. In other words,
for low squeezing (say λ . 0.2), the (normalized) gap

∆Dnorm = Φλ∆D (9.31)

between optimal Gaussian (homodyne) and globally optimal non-Gaussian (photon counting)
measurements for the extraction of nonclassical correlations, correctly characterizes and quan-
titatively reproduces the non-Gaussianity δ0 of the considered state (9.5). Interestingly,

lim
λ→0

δ0
∆D

≡ Φ0 = π .

This intriguing relationship between the non-Gaussianity of ρ0 and the overestimation of the
Gaussian discord does not hold up for larger values of λ. The discrepancy between the two
parameters becomes extreme in the limit λ→ 1 when the non-Gaussianity measure δ0 diverges
while the gap in discord ∆D vanishes. Figure 9.3 compares the gap thoroughly.

Finite versus infinite-dimensional POVMs

One may argue that an even simpler non-Gaussian state than that given in Eq. (9.5) can be
found possessing a strictly lower discord for a non-Gaussian measurement than for the best
Gaussian measurement. For instance, the optimal measurement minimizing the discord in the
qubit Werner state [87], studied in the seminal paper on quantum discord [7], is a simple non-
Gaussian projection onto the first two Fock states |0〉 and |1〉. One can easily check that the
optimization over all Gaussian measurements gives a strictly higher discord. Let us stress that
the nonclassical correlations captured by discord are fundamentally different for the CV Werner
state (9.5) considered here and for the qubit Werner state. Namely, although our CV Werner
[238] is formally a qubit-like state, the globally optimal POVM has an infinite number of elements
given by projectors onto all Fock states. Moreover, it is not difficult to show that no POVM
measurement on mode B possessing a finite number N of elements Ωi, i = 1, . . . , N can nullify
the conditional entropy H(A|B) and hence also be globally optimal. Namely, the conditional
state corresponding to detection of the element Ωi has to be a pure state, that is, ρΩ

A|i =

TrB [ρ0Ωi] = |χi〉〈χi| in order for the entropy of the conditional state to vanish. Now, consider

the element Ω0 ≡ 1B −
∑N
i=1 Ωi. The corresponding conditional state ρΩ

A|0 = TrB [ρ0Ω0] =

ρ0,A−
∑N
i=1 |χi〉〈χi|, where ρ0,A is obtained from Eq. (9.11) by replacing B with A, cannot have

neither zero, nor one, nor even any finite number of strictly positive eigenvalues, as this would
imply that the state ρ0,A also has a finite number of strictly positive eigenvalues which is not
the case (see equation (9.12)).

Therefore, for any finite N the conditional state ρΩ
A|0 is definitely a mixed state possessing

strictly positive entropy and hence resulting in a strictly positive and therefore suboptimal
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conditional entropy (i.e. not an optimised value for quantum discord). Consequently, the globally
optimal POVM of the qubit Werner state is only two-component and thus the qubit Werner
state is only a trivial embedding of a two-qubit state into an infinitely-dimensional two-mode
state space carrying only qubit-type non-Gaussian nonclassical correlations. In contrast, the
CV Werner state (9.5) carries genuinely CV non-Gaussian nonclassical correlations that can be
optimally extracted only by a non-Gaussian POVM measurement with an infinite number of
elements: in this particular case, photon counting.

Extension to mixtures of n Gaussian states

Before going further let us note that, for a state of the form (9.6), the global optimality of
photon counting (for the calculation of quantum discord) follows immediately from the fact that
the projection of one of its modes onto a Fock state projects the other mode onto the same
Fock state. As a consequence the conditional entropy achieves the minimum possible value
H{Π(m)}(A|B) = 0 and the discord is of the form (9.14). It is not difficult to find more general
mixed states with the same property, for instance, states with the structure

ρq =

∞∑
m,n=0

qmn|mm〉〈nn|, (9.32)

with q∗nm = qmn,
∑∞
m=0 qmm = 1 and the matrix Q with elements qij,kl = qikδijδkl being

positive-semidefinite.
A particular example of such states is a convex mixture of an arbitrary number of two-mode

squeezed vacua (9.3) with different squeezing parameters λi obtained for qmn =
∑
i pi
(
1− λ2

i

)
λm+n
i ,

where pi are probabilities and λi 6= λj for i 6= j. We remark that for all non-Gaussian states of
the form (9.32) the quantum discord can be computed exactly.

Other nonclassicality indicators

We can also explore the value of other measures on the state ρ0. We shall show here that the
ameliorated measurement induced disturbance and the so-called relative entropy of quantumness
coincide with the discord on state ρ0.

Measurement-induced disturbance

As in the previous chapter, the non-trivial task in calculating the AMID of a quantum state is
the optimisation of the classical mutual information (equation (7.47)) after a measurement. We
first note that the classical mutual information between A and B after bi-local measurements
on a quantum state ρ̂AB is upper bounded as [223]

Ic (ρ0) ≤ min {S(ρ0,A),S(ρ0,B), Iq (ρ0)} . (9.33)

It is important to note that this bound is not tight! What we shall do is to find the minimal
upper bound in (9.33) and then find measurements that achieve it. Since S(ρ0,A) = S(ρ0,B) for
the state (9.5), we need to compare S(ρ0,B) with Iq (ρ0) which can be done using majorization
theory for infinite-dimensional density matrices [98]. Consider two such density matrices A and
B with a1, a2, . . . and b1, b2, . . . being their non-zero eigenvalues arranged in a decreasing order
and repeated according to their multiplicity. If some of the matrices, for example, A has only a
finite number k of non-zero eigenvalues, we set ak+1 = ak+2 = . . . = 0. We then say that A is
more mixed than B, and write A � B, if

k∑
i=1

ai ≤
k∑
i=1

bi, k = 1, 2, . . . . (9.34)

It holds further [98], that if A � B then their von Neumann entropies satisfy S(A) ≥ S(B).
Taking now the eigenvalues ν̃j , j = 0, 1, . . . given in Eq. (9.12) instead of eigenvalues ai, and
ν1,2 given in Eq. (9.9) instead of eigenvalues bi, one easily finds that they satisfy Eq. (9.34).
This implies that the density matrices ρ0 and ρ0,B of Eqs. (9.5) and (9.11) satisfy ρ0,B � ρ0 and
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therefore S(ρ0,B) ≥ S(ρ0). Hence, one gets Iq (ρ0) ≥ S(ρ0,B) which leads, using the inequality
(9.33), to the upper bound on the classical mutual information in the form I(pAB) ≤ S(ρ0,B).

We then ask what measurements if any could achieve this upper bound, and the answer is
photon counting. One finds that

H(pA) = H(pB) = H(pAB) = S(ρ0,A) = S(ρ0,B) (9.35)

which gives the classical mutual information in the form Ic (ρ0) = S(ρ0,B). Hence, the latter
inequality is saturated by photon counting which finally yields A (ρ0) = S(ρ0,B)−S(ρ0) = D(ρ0),
that is, AMID coincides with the quantum discord, (9.14).

Relative entropy of quantumness

The Relative Entropy of Quantumness is defined as the relative entropy between the quantum
state ρ̂AB and the closest classically correlated state (Section 7.5). In [227], it was shown that
the REQ could be expressed as

Q (ρ̂AB) = min
{ΠA⊗ΠB}

[H (pAB)− S (ρ̂AB)] , (9.36)

where the minimization is performed over local measurements ΠA and ΠB . As with the measure-
ment induced disturbance, we take the approach of finding a suitably tight bound on the joint
Shannon entropy H (pAB) which must satisfy the inequalities H (pAB) ≥ H (pB) ≥ S (ρ0,B).
Using the previous result, we see that the optimal measurement must be photon counting, as in
that case H(pAB) = S(ρ0,B) and the lower bound is saturated. As a result we see that all of the
non-classicality measures coincide as

D(ρ0) = A (ρ0) = Q (ρ0) = S(ρ0,B)− S(ρ0). (9.37)

9.3 General case

Let us now move to the analysis of nonclassical correlations in a generic CV Werner state
(9.2) with µ 6= 0, complementing the seminal analysis of nonclassical correlations in a two-qubit
Werner state performed in [7, 192, 222]. This can be interesting in particular because, in contrast
to the qubit case, there can potentially exist PPT entangled CV Werner states [238].

In the present general case we do not have any tight bounds, similar to those of the previous
section, allowing us to perform exact optimizations in the calculation of discord, MID (AMID)
and REQ. For this reason, we cannot prove the global optimality of photon counting or any
other measurement strategy analytically. We then resort to computing upper bounds on discord,
AMID2 and relative entropy of quantumness, obtained for (possibly unoptimised) measurements
in the local eigenbasis of the reduced state(s) of the two-mode CV Werner state. Interestingly,
all the upper bounds on the different quantities again coincide as we show later in this Section:
this hints at the conjecture that they might be indeed tight for the considered states, although
we cannot provide conclusive evidence of this claim. We also derive nontrivial lower bounds for
the nonclassical correlations.

Upper and lower bounds on discord

We consider a nonoptimized upper bound on quantum discord defined for a density matrix ρ as

U(ρ) = S(ρB)− S(ρ) +Heig(A|B), (9.38)

whereHeig(A|B) is the conditional entropy for the measurement of mode B in the local eigenbasis
of the reduced state ρB . For the general CV Werner state of (9.2), tracing ρ over mode A gives
the reduced state

ρB = pρth
B (λ) + (1− p)ρth

B (µ) , (9.39)

where ρth is defined in Eq. (9.4). This state is diagonal in the Fock basis with eigenvalues

gm = p
(
1− λ2

)
λ2m + (1− p)

(
1− µ2

)
µ2m (9.40)

2In this case the upper bound on AMID is simply the nonoptimized measurement-induced disturbance (MID).
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that give, after substitution into Eq. (9.8), the marginal entropy S(ρB) appearing in Eq. (9.38).
The local eigenbasis is a Fock basis and so the projection on it corresponds again, even in the

present general case, to photon counting. The conditional state ρA|m = TrB [|m〉B〈m|ρ] /pB(m),
where pB(m) =B〈m|ρB |m〉B , obtained by projecting mode B onto Fock state |m〉 reads explicitly

ρA|m =
p
(
1− λ2

)
λ2m|m〉A〈m|+ (1− p)(1− µ2)µ2mρth

A (µ)

pB(m)
(9.41)

with pB(m) = p
(
1− λ2

)
λ2m + (1− p)(1− µ2)µ2m. It has the eigenvalues

η(m)
n =

p
(
1− λ2

)
λ2mδmn + (1− p)(1− µ2)2µ2(m+n)

pB(m)
, (9.42)

where δmn is the Kronecker symbol, that give the following entropy of the conditional state

S
(
ρA|m

)
= −

(1− p)
(
1− µ2

)2
µ2m

pB (m)

{
ln

[
(1− p)

(
1− µ2

)2
pB(m)

]

×
(

1

1− µ2
− µ2m

)
+ ln

(
µ2
) [ m

1− µ2
+

µ2

(1− µ2)
2 − 2mµ2m

]}
−η(m)

m ln η(m)
m . (9.43)

From which, one obtains the conditional entropy from Heig (A|B) =
∑∞
m=0 pB(m)S

(
ρA|m

)
.

It remains to calculate the global entropy of the state (9.2). For this purpose it is convenient
to express the state as

ρ =

∞∑
m,n=0

Mmn|m,m〉〈n, n|+
∞∑

m 6=n=0

emn|m,n〉〈m,n|, (9.44)

where

Mmn = p
(
1− λ2

)
λm+n

+ (1− p)
(
1− µ2

)2
µ2(m+n)δmn, (9.45)

emn = (1− p)
(
1− µ2

)2
µ2(m+n). (9.46)

The state (9.2) thus possesses the eigenvalues emn corresponding to the eigenvectors |m,n〉,
m 6= n = 0, 1, . . . and the remaining eigenvalues (≡ fl) are the eigenvalues of the infinite-
dimensional matrix M with elements (9.45). This gives the global entropy

S (ρ) = −2µ2 (1− p)
1 + µ2

{
ln
[
(1− p)

(
1− µ2

)2]
+

2 ln (µ)
(
1 + µ2 + 2µ4

)
1− µ4

}
−
∞∑
l=0

fl ln fl. (9.47)

The eigenvalues fl of matrix M appearing in the last expression of the previous equation cannot
be calculated analytically and one has to resort to numerical diagonalization of a sufficiently
large truncated matrix. Hence, one gets using Eq. (9.47), and expressions for Heig(A|B) and
S(ρB), the sought upper bound (9.38) on the true quantum discord.

The true discord can be also bounded from below in the following way. Let us observe first,
that apart from the trivial case p = 0 (corresponding to a product state) all other CV Werner
states have nonclassical correlations as they possess a strictly positive quantum discord D(ρ) > 0.
This can be proven using the sufficient condition on strict positivity of quantum discord [204]

according to which D(ρ) > 0 for a state ρ if at least one off-diagonal block ρ
(B)
ij ≡ B〈i|ρ|j〉B ,

i 6= j is not normal, i.e., it does not commute with its adjoint. In the present case of the Werner

state (9.2) we have explicitly ρ
(B)
ij = p

(
1− λ2

)
λi+j |i〉B〈j|. Assuming p > 0 and 0 < λ < 1 this

gives immediately a nonzero commutator[
ρ

(B)
ij ,

(
ρ

(B)
ij

)†]
= p2

(
1− λ2

)2
λ2(i+j) [|i〉B〈i| − |j〉B〈j|]

6= 0 for i 6= j, p 6= 0, (9.48)
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as required.
An explicit, non-tight lower bound can be derived that is nonnegative (and thus nontrivial)

at least on some subinterval of probabilities p. Namely, assume a POVM on mode B given by
a collection of rank-1 operators {|ψj〉〈ψj |}. If the component |ψi〉〈ψi| is detected on mode B in
the state (9.2), then mode A collapses into the normalized conditional state

ρA|i =
p|φi〉A〈φi|+ (1− p)〈ψi|ρth

B (µ) |ψi〉ρth
A (µ)

pi
, (9.49)

where |φi〉A is a pure unnormalized state that is not specified here and pi = 〈ψi|ρB |ψi〉 with ρB
given in Eq. (9.39) is the probability of measuring the outcome i. The state is a convex mixture
of a pure state and a thermal state. Making use of the concavity of the von Neumann entropy

S
(∑

j pjρj

)
≥
∑
j pjS (ρj) and the fact that the entropy vanishes on pure states we arrive at

the following inequality:

S
(
ρA|i

)
≥ (1− p)

pi
〈ψi|ρth

B (µ) |ψi〉S
(
ρth
A (µ)

)
. (9.50)

By multiplying both sides of the inequality by pi and summing over i one finds the classical
conditional entropy to be lower bounded as H{|ψi〉〈ψi|}(A|B) ≥ (1 − p)S

[
ρth
A (µ)

]
which, using

the definition of discord (7.8), finally yields the lower bound

L(ρ) = S (ρB)− S (ρ) + (1− p)S
[
ρth
A (µ)

]
. (9.51)

In what follows we evaluate the upper and lower bounds in Eqs. (9.38) and (9.51), respectively,
for two particularly important two-parametric subfamilies of the set of CV Werner states.

Examples

The case λ = µ

We first consider the case where λ = µ, which is of interest as this is perhaps the closest
continuous variable analogue to the discrete Werner state. The reduced state (9.39) is just a
thermal state ρB = ρth

B (λ) with a well-known entropy

S(ρB) = −
ln
(
1− λ2

)
(1− λ2)

− λ2

1− λ2
ln

(
λ2

1− λ2

)
. (9.52)

It can be shown that the CV Werner state (9.2) with λ = µ > 0 is entangled for any p > 0 [238].
The upper bound (9.38) and lower bound (9.51) on quantum discord are depicted in Figure 9.4.
Note that in this and in the following plots, only nonzero values of the lower bound (9.51) will
be shown.

The case λ = µ4

The case for which λ = µ4 is interesting because the CV Werner state (9.2) runs through three
different separability regions as the parameter p increases [238]:

1. If p ≤ psep ≡ (1−µ2)2

2(1−µ2+µ4) , then the state ρ is separable (dark gray strip in Figure 9.5).

2. If psep < p ≤ pPPT ≡
(1−µ2)

2

(1−µ2)2+(1−µ8)µ2 , the state ρ is PPT (i.e., it has positive partial

transposition) and it is unknown whether it is bound entangled or separable (light gray
strip in Figure 9.5).

3. If p > pPPT, then the state ρ is non-PPT and therefore entangled (white region in Fig-
ure 9.5).
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Figure 9.4: Upper bound U (solid curve) and lower bound L on quantum discord versus probability p
for the CV Werner state (9.2) with λ = µ = 0.8. All the quantities plotted are dimensionless. Taken
from [IV]. Copyright (2012) by The American Physical Society.

Other nonoptimized nonclassicality indicators

Next we focus on the determination of the nonoptimized (upper bound) version of AMID. This
is given by the MID and is achieved by performing photon number measurements on both
modes yielding the joint probability distribution pAB(m,n) = AB〈mn|ρ|mn〉AB . Its marginal
distributions pA = pB coincide with the eigenvalues of the reduced states (9.40), i.e., pA(m) =
pB(m) = gm whence we get the equality between local Shannon and von Neumann entropies

H (pA) = H (pB) = S (ρA) = S (ρB) . (9.53)

Hence MID simplifies to
M(ρ) = H (pAB)− S (ρ) . (9.54)

The global Shannon entropy can be derived easily by noting that the eigenvalues (9.42) of

the conditional state (9.41) satisfy η
(m)
n = pAB(m,n)/pB(m) thus representing a conditional

probability pAB(n|m) of detecting n photons in mode A given m photons have been detected
in mode B. This implies immediately that Heig(A|B) = H (pAB)− S (ρB), where we have used
Eq. (9.53) and the equality pA(m) = pB(m). Substituting from here for H (pAB) into Eq. (9.54)
finally leads to the equality of the upper bound on discord (9.38) and MID (7.42)

M(ρ) = U(ρ). (9.55)

Note that the two coincident quantities also provide an upper bound for the relative entropy
of quantumness of the states (9.2). Note further that the lower bound (9.51) on discord is
also a lower bound for the other measures of nonclassical correlations such as AMID, MID,
and relative entropy of quantumness, since quantum discord is in general smaller than those
mentioned quantities for arbitrary bipartite quantum states.

9.4 Partially transposed CV Werner state

One of the main technical disadvantages of the CV Werner state with µ 6= 0 is that its eigen-
values, and consequently its global von Neumann entropy, cannot be calculated analytically.
Interestingly, this ceases to be the case if the state is partially transposed. Then, one can find
regions of parameters p, λ and µ for which the partial transposes are positive-semidefinite, and
so represent a legitimate quantum state in their own right. Thus, one obtains another, some-
times simpler to treat family of non-Gaussian quantum states for which we can get further with
analytical tools than in the case of the original state.
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Figure 9.5: Upper bound U , Eq. (9.38) (solid curve), and lower bound L, Eq. (9.51) (dashed curve), on
quantum discord versus probability p for the CV Werner state (9.2) with λ = µ4 and µ = 0.8. The dark
gray shaded region corresponds to separable states, the light gray shaded region corresponds to PPT
states with unknown separability properties, and the white region corresponds to entangled non-PPT
states. The boundary probabilities psep and pPPT are depicted by vertical solid line and dashed line,
respectively. All the quantities plotted are dimensionless. Taken from [IV]. Copyright (2012) by The
American Physical Society.

Let us illustrate this on a simple example of the CV Werner state (9.2) with λ = µ2. As
was shown in Ref. [238] for

p =
1− λ

2
, (9.56)

the partial transposition ρTA ≡ ρ̃ of the Werner state ρ with respect to mode A,

ρ̃ = N
∞∑

m,n=0

λm+n (|n,m〉〈m,n|+ |m,n〉〈m,n|) , (9.57)

possesses the following nonnegative nonzero eigenvalues

am = 2Nλ2m, m = 0, 1, . . . , (9.58)

bmn = 2Nλm+n, m > n = 0, 1, . . . , (9.59)

where N =
(
1− λ2

)
(1− λ) /2, and is therefore a valid two-mode density matrix corresponding

to a different non-Gaussian state. Direct substitution of the eigenvalues into Eq. (9.8) gives the
analytical expression for the global entropy of ρ̃ of the form

S (ρ̃) = −
[
ln (2N ) +

1 + 3λ

1− λ2
λ lnλ

]
. (9.60)

Tracing the state (9.57) over mode A one gets the reduced state of mode B

ρ̃B = N
∞∑
m=0

(
λ2m +

λm

1− λ

)
|m〉B〈m| (9.61)

with entropy

S (ρ̃B) = −

[
N

∞∑
m=0

(
λ2m +

λm

1− λ

)
ln

(
λm +

1

1− λ

)
+ ln (N ) +

λ (1 + 3λ)

2 (1− λ2)
lnλ

]
. (9.62)
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Figure 9.6: Upper bound U , Eq. (9.66) (solid curve), and lower bound L, Eq. (9.67) (dashed curve),
on quantum discord versus squeezing parameter λ = tanh r for the partially transposed CV Werner
state (9.57). All the quantities plotted are dimensionless. Taken from [IV]. Copyright (2012) by The
American Physical Society.

Similarly one can find a reduced state ρ̃A of mode A which coincides with the reduced state
(9.61) and yields the local entropy S (ρ̃A) = S (ρ̃B).

Upon detecting m photons in mode B in the state (9.57), mode A collapses into the nor-
malized conditional state

ρ̃A|m =
N

p̃B(m)

(
λ2m|m〉A〈m|+ λm

∞∑
k=0

λk|k〉A〈k|

)
, (9.63)

where

p̃B(m) = Nλm
(
λm +

1

1− λ

)
(9.64)

is the probability of detecting m photons on mode B in the state (9.57). After some algebra,
the corresponding nonoptimized conditional entropy H̃eig(A|B) =

∑∞
m=0 p̃B(m)S

(
ρ̃A|m

)
attains

then the form
H̃eig(A|B) = S (ρ̃)− S (ρ̃B) + λ ln 2, (9.65)

where we have used Eqs. (9.60) and (9.62). Substituting finally the latter formula into Eq. (9.38)
we arrive at a very simple analytical expression for the upper bound on the quantum discord of
the state (9.57),

U (ρ̃) = λ ln 2. (9.66)

Even for the partially transposed CV Werner state ρ̃, it is possible to derive a nontrivial lower
bound on quantum discord. Repeating the algorithm leading to Eq. (9.51) for the state (9.57),
one gets the lower bound in the form:

L(ρ̃) = S (ρ̃B)− S (ρ̃) +

(
1 + λ

2

)
S
[
ρth
A

(√
λ
)]
. (9.67)

The upper bound (9.66) and lower bound (9.67) on discord are depicted in Figure 9.6 as a func-
tion of the parameter λ. Note that in this case they are quite close to each other, with the lower
bound being always faithful in the whole considered parameter space. Also, nonclassical corre-
lations in this PPT state (which may be separable or at most contain bound entanglement) are
quite weak (yet always nonzero), increasing slowly with the squeezing r (recall that λ = tanh r)
and converging to the small, finite value ln 2 in the limit r → ∞. As for other nonclassicality
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indicators, we get equivalent results. Moving for instance to the evaluation of the MID, one gets
the joint photon-number distribution for the state (9.57) to be

p̃AB (m,n) = Nλm+n (1 + δmn) . (9.68)

The Shannon entropy of the distribution reads

H (p̃AB) = S (ρ̃) + λ ln 2, (9.69)

where the global entropy S (ρ̃) is given in Eq. (9.60). The marginal distributions on each mode
coincide and they are given by Eq. (9.64). Hence for the state ρ̃ also, the local Shannon and
von Neumann entropies satisfy Eq. (9.53). Making use of the latter equality in the definition of
MID we can express it as

M(ρ̃) = H (p̃AB)− S (ρ̃) = λ ln 2, (9.70)

where in the derivation of the second equality we used Eq. (9.69). Thus, as for the generic CV
Werner state of the previous section, for the considered partially transposed CV Werner state
the MID coincides with the upper bound on discord associated with local photon counting, i.e.,
M(ρ̃) = U (ρ̃).

9.5 Summary of Chapter 9

In this chapter, we have explored the behaviour of the most important measures of non-classical
correlations on a simple family of two mode non-Gaussian continuous variable states. In some
simple cases, we were able to provide analytic solutions and saw some interesting phenomena.
Curiously, in the case of state ρ0, we found that for even a slight non-Gaussian element (e.g. in
the regime where p is close to unity but still not quite), the optimal measurement to perform
in the evaluation of the quantum discord is non-Gaussian photon detection. Although for the
pure Gaussian two mode squeezed vacuum (p = 1) photon counting also provides an optimal
value for the discord, so does homodyne detection, and it is conjectured that the discord is
always minimal with Gaussian POVMs on Gaussian states. This opens up the possibility that
even an infinitesimal step into the non-Gaussian realm requires a non-Gaussian measurement.
The considered states constitute probably the simplest example of bipartite states possessing
genuinely non-Gaussian CV non-classical correlations besides entanglement. For the state ρ0

we were also able to see how the gap between Gaussian discord and Discord varied with the
non-Gaussianity of the state.

For general continuous variable Werner states, we were able to provide loose upper and
lower bounds and we are tempted to conjecture that the upper bound does in fact yield the true
quantum discord for all CV Werner states. Finally, we constructed a non-trivial non-Gaussian
state which is positive under partial transposition and whose upper and lower bounds are easily
computable. The correlations in this state were shown to be quite weak and remain finite even in
the limit of infinite squeezing. Our study provides evidence of a trend for quantum correlations to
be generally limited in the absence of (distillable) entanglement, as originally noted for Gaussian
states.

Nonclassicality and non-Gaussianity are two of the most important resources for the opti-
mization and realistic implementation of present-day and next-generation quantum technology
[243, 244]. In this chapter we have taken an important first step to explore the interplay between
the two in physically relevant CV states. An important next target for future work would be to
study the structure of nonclassical correlations in other practically useful states deviating from
Gaussianity, such as photon-subtracted states. Comparing the performance of non-Gaussian
measurements, such as photon counting, with that of Gaussian strategies, such as homodyne
and heterodyne detection, for accessing nonclassical correlations, and studying how the gap
between the two scales with the non-Gaussianity of the states [242], and with other nonclassi-
cal parameters widely used in quantum optics, could provide novel insight into the nature of
quantumness (in its broadest sense) and its potential exploitation for CV quantum information.
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Chapter 10

Conclusions and Outlook

Before summarising this thesis, we first provide some ideas for further research related to the
content of this thesis.

10.1 Suggestions for further investigation

Obvious Extensions

There are a number of ways in which the work of this thesis can be extended. There are, of
course, fairly obvious suggestions to begin with. We could use the methods of Chapter 5 to
explore which operations are best for distilling entanglement in Gaussian states. Regarding
non-classicality measures, we could try to delve further into an analysis of non-Gaussian states.
Other than the Werner state of Chapter 9, there is nothing known about the behaviour of these
correlations in non-Gaussian states.

The direction of future research into the Gaussian Intrinsic Information of Chapter 6 is
clearest of all. It is known that the measure is always zero on separable states, but it has not
yet been rigorously proven that the measure is non-increasing under Gaussian local operations
and classical communication. It seems most plausible that the Gaussian Intrinsic Information
does possess this property and a sketch of an argument can be given. The effect of GLOCC will
be to increase the symplectic eigenvalues of the transformed Gaussian state. This in turn will

increase the strength of correlations with Eve’s purification - terms proportional to
√
ν2
A,B − 1

in equation (6.20). Thus any measurement that Eve performs will have a stronger effect on the
state shared by Alice and Bob. It seems likely then that Eve would have more power to decrease
their mutual information further.

Other properties should also be analysed. It seems highly unlikely that the measure will
be convex, as the set of Gaussian states is not convex, but the measure may be additive. The
measure shares a lot of similarities with the squashed entanglement and so may share similar
properties.

However, my personal opinion is that there may be an interesting link between the Gaussian
measure and the work carried out on Gaussian discord. More shall be said on this shortly.

Finding eigenvalues of non-Gaussian states

One plausible extension to the work carried out in Chapter 5 is that one could potentially find
analytic eigenvalues of non-Gaussian states, built as mixtures of Gaussian states. This involves
the use of the multivariable Hermite polynomials (Appendix A) and is best demonstrated by a
simple example.

One considers a non-Gaussian state ρ̂ made up of a mixture of two Gaussian states ρ̂1 and
ρ̂2 i.e.

ρ̂ = p1ρ̂1 + p2ρ̂2 (10.1)

where p1 + p2 = 1. In order to diagonalise ρ̂ a unitary transformation U is required, that
transforms the state to the diagonal matrix M

Uρ̂U† = p1Uρ̂1U
† + p2Uρ̂2U

† = M. (10.2)
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Now to the point. If the matrix ρ̂ can be diagonalised by Gaussian unitaries, then there must
exist a symplectic matrix S that acts upon the covariance matrices γ1 and γ2 (of ρ̂1 and ρ̂2

respectively) such that, when we generate the density matrix elements using the multivariable
Hermite polynomials, the matrix appears readily in the diagonal form M .

If we consider ρ̂1 and ρ̂2 to be single mode Gaussian states, then we can derive a simple
recursion formula for the generation of the (two variable) Hermite polynomials required for the
density matrix elements, centred at xj = 0 as in the appendices,

H
{θ}
a+1,b = −2θ12aH

{θ}
a−1,b − (θ11 + θ22) bH

{θ}
a,b−1, (10.3)

where θ is a two by two matrix created by suitable transformations of a covariance matrix. The
density matrix elements of M would then be given by

Mjk =
p1√

det [Sγ1ST + 1]
H
{θ(1)}
j,k +

p2√
det [Sγ2ST + 1]

H
{θ(2)}
j,k . (10.4)

Using the recursion relation, and the requirement that Mj,k = 0 if j 6= k, we arrive at conditions
on θ(1) and θ(2) which are then carried back through to yield

2∑
j=1

pj√
det [SγjST + 1]

(
SγjS

T + 1
)−1

= K (10.5)

where K is a diagonal matrix. One would then aim to solve this for symplectic matrix S. If the
transformation U is a non-Gaussian unitary then one would expect equation (10.5) to have no
solution. Other conditions may be found on K by considering that, for example, Tr [M ] = 1. If
the state is in fact Gaussian (p1 = 1 and p2 = 0) then S is trivially the matrix that symplectically
diagonalises γ1.

If (10.5) can be solved for S then one could return to evaluation of the density matrix
elements using the Hermite polynomials. It appears that some analytic solutions could perhaps
be found, but even from a numerical programming point of view, if an equation such as (10.5)
can be solved, then this would dramatically speed up the diagonalisation of density matrices.

Examining the link between quantum discord and local operations

The mysterious properties captured by measures such as the quantum discord appear to have
an intimate relation to quantum entanglement, even if they do not exclusively evaluate entan-
glement. To a certain extent this is epitomised in the Koashi Winter relation

EF (ρ̂AB) + J← (ρ̂AC) = S (ρ̂A) . (10.6)

As stated by Koashi and Winter, the von-Neumann entropy of the reduced state ρ̂A can be
thought of as the capacity of Alice’s subsystem to form correlations with those held by Bob and
Charlie.

In a recent publication by Streltsov et al. [206], it was shown that if two states (here called
A and C) initially have no quantum correlations, it is possible to perform a local (quantum)
operation on one subsystem to create non-classical correlations between the two subsystems.
That is, the state goes from having zero discord to non-zero discord.

The example in particular is that the initial state is described by

ρ̂AC =
1

2
(|00〉〈00|+ |11〉〈11|) (10.7)

and the local operation on C transforms the state to

ρ̂A′C′ =
1

2
(|00〉〈00|+ |1+〉〈1 + |) (10.8)

where |+〉 = (1/
√

2) (|0〉+ |1〉) thereby creating quantum discord between A and C. In [206]
the authors discussed non-unital maps as a way of explaining the phenomenon, but it is in fact
far more easy to understand if we consider the full purification of the state (10.7). As has been
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Figure 10.1: Initially no two subsystems are entangled (blue glowing circle) but all systems are strongly
classically correlated (black arrows) and the entanglement across any bipartition of the pure state is
maximum. After the local operation on C, the entropy of C decreases. No entanglement can form
between A(B) and C as there was none to begin with so only classical correlations can be there, and
weaker than previously. However, the capacity of A(B) to be correlated is not used up by this so
entanglement must emerge between A and B. From the other direction, the local measurement on C
can be seen as a non-local measurement on A and B.

said previously, a mixed state can be considered as an admission of ignorance on the researcher’s
behalf. The pure state

|GHZ〉 =
1√
2

(|000〉+ |111〉) (10.9)

satisfies TrB [|GHZ〉] = ρ̂AC and so we choose to explore the GHZ state after the interaction.
Now we have all the statistical correlations in one place. As the global state is pure, across any
bipartition the entropies are the same so

S (ρ̂A) = S (ρ̂BC) , S (ρ̂B) = S (ρ̂AC) , S (ρ̂C) = S (ρ̂AB) (10.10)

where S (ρ̂) is the von-Neumann entropy of the state ρ̂ and the logarithm is to the base 2 to
normalise as is standard in the qubit literature. In the GHZ state initially, there is entanglement
between each of the bipartitions (quantified by the Entanglement of Formation EF ):

EF (ρ̂AB,C) = EF (ρ̂A,BC) = EF (ρ̂B,AC) = 1 (10.11)

However, if knowledge of any one of the three subsystems is missing, there is no entanglement
between the other two - but classical correlations are maximal according to the Koashi-Winter
relation. By classical correlations, we mean one way classical correlations J← (ρ̂AB) where the
arrow implies the optimal measurement is performed on B. Consequently

EF (ρ̂AB) = EF (ρ̂AC) = EF (ρ̂BC) = 0; (10.12)

J← (ρ̂AC) = J→ (ρ̂AC) = 1 (10.13)

J← (ρ̂AB) = J→ (ρ̂AB) = 1 (10.14)

J← (ρ̂BC) = J→ (ρ̂BC) = 1 (10.15)

and
S (ρ̂A) = S (ρ̂B) = S (ρ̂C) = 1. (10.16)

Let us now consider what must happen after a local measurement on C. If Alice had no
knowledge of Bob or Charlie, then the probability distribution yielded from her part of the state
ρ̂A = Tr [ρ̂BC ] will be blissfully unchanged (she implicitly averages over everything that could
happen to states B or C by not knowing anything about them). Consequently S (ρ̂A′) = S (ρ̂A).
A similar argument holds to get S (ρ̂B′) = S (ρ̂B).

In fact, the only “local” distribution to be affected by the local measurement (which pre-
serves the purity Tr

[
ρ̂2
A′B′C′

]
= Tr

[
ρ̂2
ABC

]
= 1 as nothing is lost to any more environment
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qubits) is that of ρ̂C . In the case at hand, after the local operation, the entropy of ρ̂C′ is given
by S (ρ̂C) = y where

y =
ln [8]−

√
2 coth−1

[√
2
]

ln [4]
. (10.17)

At this point, the entropy of S (ρ̂C′) < S (ρ̂C). That is, the capacity of Charlie’s part of the
state to form correlations has decreased. As the state ρ̂C was initially separable from ρ̂A, a local
operation on ρ̂C can do nothing to create entanglement between A and C. Thus, in this case,
the only correlations that ρ̂C′ can form are classical, and they are weaker than previously.

S (ρ̂C′) = EF (ρ̂A′C′) + J→ (ρ̂B′C′) = J→ (ρ̂B′C′) = y; (10.18)

S (ρ̂C′) = EF (ρ̂B′C′) + J→ (ρ̂A′C′) = J→ (ρ̂A′C′) = y. (10.19)

However, Alice and Bobs’ local distributions remain unchanged - how could they change if they
have never been interacted with? Thus their respective capacities for forming correlations remain
unchanged. S (ρ̂A′) = S (ρ̂A) = 1 and S (ρ̂B′) = S (ρ̂B) = 1.

The entanglement between A and C remains unchanged, although the classical correlations
between A and C have altered.

S (ρ̂A′) = EF (ρ̂A′B′) + J← (ρ̂A′C′) . (10.20)

The classical correlations between A and C are given by J← (ρ̂A′C′) = 1− y which is a decrease
in the classical correlations available to ρ̂A′ . The consequence is that the remaining capacity for
Alice’s correlations must be filled - by becoming entangled with Bob!

The point is that the discord in ρ̂A′C′ emerges almost as a side effect of the change in local
entropy of Charlie’s state. A local operation on C has preserved the purity of the global state, but
decreased the entanglement EF (ρ̂A′B′,C′) < EF (ρ̂AB,C). The entanglement between EF (ρ̂A,BC)
and EF (ρ̂B,AC) stay the same. The result is to reduce the classical correlations between Alice
(Bob) and Charlie. However, the capacity of Alice (Bob) for forming correlations is unchanged
so the consequence is that they become entangled. This is verified by direct calculation using
the formula from [245]. The mutual information Iq (ρ̂AC) is reduced from 1 to y but one way
classical correlations are decreased further. In fact

D← (ρ̂A′C′) = Iq (ρ̂A′C′)− J← (ρ̂AC) = 2y − 1 (10.21)

D→ (ρ̂A′C′) = Iq (ρ̂A′C′)− J→ (ρ̂AC) = 0. (10.22)

Interestingly, we could think about this from the other direction - as opposed to performing a
local operation on C we could perform a complementary non-local entangling operation directly
on A and B. That is, a local operation is equivalent to an entangling operation on AB. This is
due to the fact that the global state ρ̂ABC is pure before and after the interaction:

S (ρ̂AB) = S (ρ̂C) (10.23)

S (ρ̂A′B′) = S (ρ̂C′) . (10.24)

The initial transformation was of the form ρ̂A′B′C′ = Êρ̂ABCÊ
T where

Ê = 1A ⊗ 1B ⊗
(

1 1/
√

2

0 1/
√

2

)
(10.25)

but could also be performed by a transformation

Ê′ = M̂AB ⊗ 1C (10.26)

where

M̂AB =


1 0 0 0
0 0 0 0
0 0 0 0

1/
√

2 0 0 1/
√

2

 . (10.27)

Note, the transformations Ê and Ê′ are not unitary.
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Ultimately, this example shows just how much is missed when one does not look at the
whole picture. It seems highly likely that a similar analysis could explain a rather baffling effect
- the distribution of entanglement between separate parties by means of a separable ancilla. This
has been explored in the qubit [181] and continuous variable [182, 183] regimes. In essence, Alice
holds particles A and C which are separable from particle B (EF (ρ̂AC,B) = 0). She forces them
to interact in a unitary way (CNOT gate in the qubit case [181] and beamsplitter in the CV
case [182, 183]). Alice then sends particle C to Bob who performs another unitary interaction,
and at the end, A is entangled with BC (EF (ρ̂A,BC) > 0). The counterintuitive aspect is that
C is separable from AB at all times. A, B and C together from a mixed state.

This phenomenon has been studied very recently in relation to discord in [246] and [247].
However, neither reference considers the role of the environment. Instinctively, it seems that if
one was to include extra modes such that the global state ρ̂ABC··· was pure, then the protocol
may reduce to nothing more than a clever form of entanglement swapping. The local entropies of
A, C and the purifying modes are altered by the first interaction, which changes their respective
capacities for forming correlations. A similar effect is seen after the interaction between B and
C. It seems entirely plausible that in much the same way as the previous GHZ example, the
alterations in local entropies create the entanglement between Alice and Bob with the discord
emerging as a side effect.

Most interesting of all is the consideration of the Gaussian Intrinsic Information of Chapter
6 with the Koashi-Winter relation. Analysis so far of GLEMS suggests that the optimal mea-
surement for Eve to perform to minimise the information shared between Alice and Bob is that
which maximises the one way classical correlations J← (ρ̂AE) (or J← (ρ̂BE)). Such a possibil-
ity would make sense, as by maximising classical correlations with A and B, the entanglement
between A and B as measured by the entanglement of formation is minimised. The relation
between our measure of entanglement and quantum discord needs to still be explored.

Ultimately, there is an overwhelming impression that deep down, quantum entanglement
and other non-classical correlations are two sides of the same coin. They are intimately related
and tell two entwined yet different stories.

10.2 Summary

This thesis has had three foci. Firstly, it was shown that Quantum Non-Demolition interactions
between Gaussian states could be used in conjunction with non-Gaussian operations such as
photon subtraction to increase entanglement in Gaussian states. This was demonstrated in great
detail with the two mode squeezed vacuum, whereby the interactions transformed the pure state
into a mixed state with higher entanglement. This investigation was primarily motivated by
the question as to whether it would be possible to increase the entanglement in two entangled
atomic ensembles, for use in quantum memory devices and quantum repeaters. It is thought that,
although theoretically feasible, there are still a number of experimental hurdles to overcome.

Secondly, a potential entanglement measure for Gaussian states was introduced. This mea-
sure has a deep operational meaning within quantum cryptography. Alice and Bob wish to
acquire a secret key about which a foe, Eve, knows nothing. However, Eve possesses all of the
information required to purify the quantum state shared by Alice and Bob and performs mea-
surements and local Gaussian operations to minimise the amount of shared classical correlations
that Alice and Bob can obtain from the quantum state. The measure is then an upper bound
on the secret key rate.

The second half of this thesis has introduced other types of nonclassical correlations that
may exist in bipartite quantum states. At present this is still very much an emerging field
in theoretical quantum information, and very little has been done in the continuous variable
setting. We introduced the Gaussian Ameliorated Measurement Induced Disturbance, profiled
its behaviour on two mode Gaussian states, and then compared it to other measures of non-
classical correlations. Following this, a full analysis was made of the continuous variable Werner
state which acts as a simple example of a non-Gaussian state, and the obvious first step into the
non-Gaussian realm.

These considerations should convince the reader that continuous variable entanglement in
Gaussian states and continuous variable non-classicality measures are still the basis of a very
much active and lively field of research. It is hoped that the results of this thesis, and the
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suggestions for future work, may advance understanding of the intertwined fates of quantum
entanglement and non-classical correlations beyond.



Appendix A

Multivariable Hermite Polynomials

In order to calculate the density matrix elements of a Gaussian state, the multivariable Hermite
polynomials are an invaluable tool. It is common knowledge that the one dimensional Hermite
polynomials are defined as

Hn(y) = (−1)ney
2

(
∂

∂y

)n
e−y

2

(A.1)

and the multivariable Hermite polynomials [248] are a simple extension:

H
{Θ,∆}
r,s,t,v (y1, y2, y3, y4) = (−1)

r+s+t+v
exp

[
yTΘy + ∆y

] ∂r
∂yr1

∂s

∂ys2

∂t

∂yt3

∂v

∂yv4
exp

[
−yTΘy−∆y

]
(A.2)

where y = (y1, y2, y3, y4)
T

. The matrix Θ, when applied to Chapter 5, is a 4× 4 matrix related
to the covariance matrix of the Gaussian state. Traditionally, in the definition of the Hermite
polynomials, the ∆ term does not appear, but it is useful to include it above, as in Chapter 5 the
∆ term is a row vector related to any displacements in the Q function as a result of homodyne
measurements.

The density matrix elements of a quantum state can be generated by the Q function of that
state. If the state is Gaussian, then the most general form of Q (α, β) (a two mode Gaussian
state) is

Q (α, β) =

√
det Θ′

π2
exp

[
−∆′Θ′−1∆′†

4

]
exp

[
−R†Θ′R−∆′R

]
(A.3)

where R = (α, α∗, β, β∗)
T

and Θ′ =
(
UγU† + 1

)−1

where γ is a covariance matrix and U is as

in Equation (5.13). ∆′ is related to any displacements.
The density matrix elements of any two mode quantum state are generated as

ρrstv = 〈r|〈s|ρ̂|t〉|v〉 =
(2π)

2

√
r!s!t!v!

(
∂r+t

∂α∗r∂αt

)(
∂s+v

∂β∗s∂βv

)[
Q (α, β) e|α|

2+|β|2
]
α=β=0

(A.4)

which for Gaussian states is written

ρrstv =
4
√

det Θ′√
r!s!t!v!

(
∂r+t

∂α∗r∂αt

)(
∂s+v

∂β∗s∂βv

)
exp

[
−R†

(
Θ′ − 1

2
1

)
R−∆′R

]
α=β=0

. (A.5)

The 1
2R
†1R contribution in the exponent takes care of the exp

[
|α|2 + |β|2

]
term in Equation

(A.4). The matrix elements in the exponent are not yet in the correct arrangement for compat-
ibility with the definition of the multivariable Hermite polynomials (A.2). At present we have
exponents of the form

(
α∗, α, β∗, β

)(
Θ′ − 1

2
1

)
α
α∗

β
β∗


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when it would be far more desirable to have the form

(
α∗, β∗, α, β

)
Θ


α∗

β∗

α
β

 .

For this, it is useful to note that
α∗

β∗

α
β

 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


︸ ︷︷ ︸

D†


α
α∗

β
β∗

 ,
(
α∗, α, β∗, β

)
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


︸ ︷︷ ︸

B†

=
(
α∗, β∗, α, β

)
(A.6)

and then

Θ = B

(
Θ′ − 1

2
1

)
D, (A.7)

from which the C(ij) of Equation (5.19) in Chapter 5 is defined. Similarly, the ∆ of equation
(A.2) is defined as

∆ = ∆′D. (A.8)

With that, the matrix elements of the Gaussian state are given by

ρrstv =
4
√

det Θ′√
r!s!t!v!

exp

[
−∆′Θ′−1∆′

4

]
exp

[
−yTΘy−∆y

]
× exp

[
yTΘy + ∆y

] ∂r

∂α∗r
∂s

∂β∗s
∂t

∂αt
∂v

∂βv
exp

[
−yTΘy−∆y

]
α=β=0

=
4
√

det Θ′ (−1)
r+s+t+v

√
r!s!t!v!

exp

[
−∆′Θ′−1∆′†

4

]
× exp

[
−yTΘy−∆y

]
H
{Θ,∆}
rstv (α∗, β∗, α, β)α=β=0

=
4
√

det Θ′ (−1)
r+s+t+v

√
r!s!t!v!

exp

[
−∆′Θ′−1∆′†

4

]
H
{Θ,∆}
rstv (A.9)

where yT =
(
α∗, β∗, α, β

)
and in the last line H

{Θ,∆}
rstv ≡ H{Θ,∆}rstv (0, 0, 0, 0).

An elegant recursion formula can be derived for the Hermite polynomials evaluated at y = 0
by directly using (A.2) and substituting there e.g. r + 1. By using Leibniz’s rule, that states
that if f and g are n−times differentiable functions then the nth derivative of the product fg is
given by (

∂

∂x

)n
(fg) =

n∑
k=0

(
n

k

)(
∂

∂x

)k
f

(
∂

∂x

)n−k
g, (A.10)

a recursion relation is given as

H
{Θ,∆}
r+1,s,t,v =∆1H

{Θ,∆}
r,s,t,v

− 2rΘ11H
{Θ,∆}
r−1,s,t,v

− s (Θ12 + Θ21)H
{Θ,∆}
r,s−1,t,v

− t (Θ13 + Θ31)H
{Θ,∆}
r,s,t−1,v

− v (Θ14 + Θ41)H
{Θ,∆}
r,s,t,v−1, (A.11)

where ∆1 is the first component of vector ∆. Similar formulae can be derived for H
{Θ,∆}
r,s+1,t,v

etc. by replacing the coefficients in (A.11). With the recursion relations it becomes very simple

to calculate the Hermite polynomials. In particular, if ∆ = 0, then H
{Θ,0}
0000 = 1 but H

{Θ,0}
1000 =

H
{Θ,0}
0100 = H

{Θ,0}
0010 = H

{Θ,0}
0001 = 0 and so from the recursion relations it is immediately seen that

only density matrices for which the sum of the indices is an even number need be calculated.
Furthermore, due to the requirement that the density matrix ρ̂ is hermitian, there is a further

symmetry H
{Θ,∆}
rstv = H

∗{Θ,∆}
tvrs



Appendix B

Symplectic Diagonalisation of two-mode
Gaussian states in standard form

We aim to find the symplectic matrix S that would diagonalise a two mode Gaussian state in
standard form

γ =


a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b

 (B.1)

where γ is defined as in Chapter 2, and the quantum vacuum has covariance matrix 1. The
matrix S must satisfy SΩST = Ω where

Ω =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (B.2)

and bring the covariance matrix γ to the form SγST = diag (νA, νA, νB , νB) where νA and νB
are symplectic eigenvalues of γ.

For convenience, we define

D =
(
a2 − b2

)2
+ 4 (ac+ + bc−) (bc+ + ac−)

∆ = a2 + b2 + 2c+c− (B.3)

and note that this allows the symplectic eigenvalues to be written as

νA,B =

√
∆±

√
D

2
. (B.4)

We first note that the symplectic eigenvalues can be found as the eigenvalues of the matrix |iΩγ|.
From this, it follows that the matrix S can be found as a product S =

(
⊕2
j=1U

∗)V T [249, 250],
where

U =
1√
2

(
i −i
1 1

)
(B.5)

and V contains in its columns the eigenvectors of iΩγ chosen such that S is real and satisfies the
symplectic condition SΩST . As we have the matrix γ in standard form, we can add the further
constraint that S does not mix position and momentum quadratures, and so S takes the form

S =
√

2


x1 0 x2 0
0 x3 0 x4

x5 0 x6 0
0 x7 0 x8

 , (B.6)
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where the real parameters x1, · · · , x8 are related to the eigenvectors uνA and ωνB of the matrix
iΩγ corresponding to the eigenvalues νA and νB . We find

uνA =


ix1

x3

ix2

x4

 , ωνB =


ix5

x7

ix6

x8

 (B.7)

along with the equations

Mx3 +
(
b2 + c+c− − ν2

A

)
x4 = 0,

Mx7 +
(
b2 + c+c− − ν2

A

)
x8 = 0,

x1 = ax3+c−x4

νA
,

x2 = bx4+c−x3

νA

x5 = ax7+c−x8

νB
,

x6 = bx8+c−x7

νB
(B.8)

where M = (ac+ + bc−). The symplectic condition SΩST = Ω also gives the conditions

x1x3 + x2x4 = 1
2 ,

x5x7 + x6x8 = 1
2 ,

x1x7 + x2x8 = 0,

x3x5 + x4x6 = 0. (B.9)

Several cases must be distinguished depending on the relations between the parameters a, b, c+, c−.

Case 1: a = b and c+ = −c− = c > 0 (two mode squeezed thermal states)

In this case one gets νA = νB =
√
a2 − c2 and

S1 =
1√
2


z−1 0 z−1 0
0 z 0 z
−z 0 z 0
0 −z−1 0 z−1

 (B.10)

where z = 4

√
a+c
a−c .

Case 2: a = b and c+ > −c−

In this case one gets νA =
√

(a+ c+) (a+ c−) and νB =
√

(a− c+) (a− c−) and then covariance
matrix γ is diagonalised by

S2 =
1√
2


z−1

1 0 z−1
1 0

0 z1 0 z1

−z2 0 z2 0
0 −z−1

2 0 z−1
2

 (B.11)

where

z1 = 4

√
a+ c+
a+ c−

, z2 = 4

√
a− c−
a− c+

. (B.12)

For c+ = −c− = c, one gets z1 = z2 = z and S2 = S1. Thus cases 1 and 2 are joined and we
can say that (B.11) diagonalises γ when a = b and c+ ≥ 0 and c− ≤ 0.

Case 3: a > b

In this case, we have M > 0 and LA < 0 where we have defined

LA,B = b2 + c+c− − ν2
A,B =

b2 − a2 ∓
√
D

2
. (B.13)
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We can then differentiate two subcategories:

a) If bc+ = −ac− then we get

νA =
√
a2 + c+c−, νB =

√
b2 + c+c− (B.14)

and LB = 0. Thus by solving (B.8) and (B.9) we arrive at

S3a =


√

νA
a 0 0 0

0
√

a
νA

0 c+√
aνA

c−√
bνB

0
√

b
νB

0

0 0 0
√

νB
b

 . (B.15)

This set of states is not an empty set of states. For instance, the covariance matrix with a = 3,
b = 2, c+ = 2 and c− = −4/3 represents an entangled physical state satisfying bc+ + ac− = 0.

b) If bc+ + ac− > 0 we have LB > 0 and if bc+ + ac− < 0 then LB < 0. By solving equations
(B.8) and (B.9) we get the matrix S3b in the form (B.6) with

x3 = −LA
M

x4, x7 = −LB
M

x8,

x1 = −aLA − c−M
νAM

x4, x2 =
bM − c−LA

νAM
x4,

x5 = −aLB − c−M
νBM

x8, x6 =
bM − c−LB

νBM
x8,

x4 = M
√

νA
2(aL2

A−2c−LAM+bM2)
,

x8 = M
√

νB
2(aL2

B−2c−LBM+bM2)
. (B.16)

Case 4: a < b In the case where a < b, the covariance matrix can be transformed into case 3
by applying a symplectic operation to swap the modes A and B. The symplectic matrix that
then diagonalises the covariance matrix is given by S4 = S̃3T , where S̃3 is the same as S3 but
with a and b swapped, and T is given by

T =

(
0 12

12 0

)
. (B.17)

With the matrices S1, · · · , S4 we can transform any two mode Gaussian covariance matrix in
standard form into diagonal form.



Appendix C

Comment on measurements of Alice and
Bob in Gaussian Intrinsic information

In Section 6.4, we discussed the merits born from swapping the order of the maximisation and
minimisation in the definition of the Gaussian Intrinsic Information. That is, we asked whether
µ̃G (ρ̂AB) = µG (ρ̂AB) where

µ̃G (ρ̂AB) = max
{Π̂GA,Π̂GB}

(
min
Π̂GE

(I (X : Y ↓ Z))

)
, (C.1)

and what advantages this would bring. If we assume for now that this is true, then the measure-
ments that Alice and Bob perform are pure, so we need only optimise over rank one Gaussian
POVMs.

The proof of this has come from Dr Ladislav Mǐsta and is as follows. The covariance
matrices ΓA,B of a generic measurement (6.21) with mixed state seed elements can be expressed
as Γj = Γp,j + Nj , where Γp,j signifies a pure covariance matrix and Nj = (νj − 1) Γp,j is a
positive semi-definite matrix, where νj ≥ 1 is a symplectic eigenvalue of Γj .

The outcome dj , j = A,B of a generic Gaussian POVM ΠG
j (dj) can therefore be expressed

as dj = dp,j + χj where dj is the outcome of a POVM with seed element Γp,j and χA, χB are
random variables associated with the classical correlation matrices NA and NB respectively. The
conditional mutual information I

(
A : B|Ē

)
of the distribution P (dA, dB , dĒ) then satisfies

I
(
A : B|Ē

)
= I

(
ĒA : B

)
− I

(
Ē : B

)
≤ I

(
ĒAp : B

)
− I

(
Ē : B

)
= I

(
Ap : B|Ē

)
= I

(
Ap : ĒB

)
− I

(
Ap : Ē

)
≤ I

(
Ap : ĒBp

)
− I

(
Ap : Ē

)
= I

(
Ap : Bp|Ē

)
(C.2)

where I
(
Ap : Bp|Ē

)
is the conditional mutual information between Alice and Bob from the

distribution P (dp,A, dp,B , dĒ). In the first and fourth lines of (C.2) we have used the chain rule
for the mutual information [185] and the inequalities in the second and fifth row follow from the
fact that mixing dp,j → dp,j + χj cannot increase mutual information between the outcomes of
measurements on modes A & E (B & E) [185, 251].

From this it is apparent that ΓA and ΓB can be restricted to pure covariance matrices.
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Appendix D

Reduction to covariant Rank-One POVMs
in the analysis of Gaussian Ameliorated

Measurement Induced Disturbance

In Chapter 8, we introduced the Gaussian Ameliorated Measurement Induced Disturbance
(GAMID) denoted AG (ρ̂AB) which measures the gap between the quantum mutual information
of a two mode Gaussian state and the highest value of the classical mutual information between
the two parties after local Gaussian measurements.

For the two mode Gaussian states, we claimed that the only measurements that we need
optimise over were covariant POVMS of the form given in equation (8.2) with pure seed states
Π̂G
j . Here we prove that statement.

The measurement of local POVMs (8.2) on a Gaussian state ρ̂AB gives the outcome d =(
dTA, d

T
B

)T
distributed according to

P (d) = Tr[Π̂G
A(dA)⊗ Π̂G

B(dB)ρ̂AB ]. (D.1)

Making use of the overlap formula for Wigner functions (2.73), the distribution can be expressed
as

P (d) = (2π)2

∫
WΠ̂GA(dA)(rA)WΠ̂GB(dB)(rB)Wρ̂AB (rA, rB)d2rAd2rB . (D.2)

This is simply a Gaussian integration and yields

P (d) =
1

π2
√

det(γ + γA ⊕ γB)
e−d

T (γ+γA⊕γB)−1d, (D.3)

where γA,B are CMs of the seed elements of POVMs (8.2) and γ is the CM of the state ρ̂AB .

The CMs γA,B can be expressed as γj = γ
(π)
j + Nj , where γ

(π)
j = S−1

j (STj )−1 is a pure-state

CM (Sj symplectically diagonalizes γj) and Nj = (νj − 1)γ
(π)
j is a positive-semidefinite matrix

(νj ≥ 1 is a symplectic eigenvalue of γj).

This means that the outcome dj with j = A,B of a generic Gaussian POVM Π̂G
j (dj),

with the seed element Π̂G
j being a mixed state with covariance matrix γj , can be expressed as

dj = d
(π)
j + χj . The symbol d

(π)
j is the outcome of the POVM with a pure seed element having

covariance matrix γ
(π)
j , and χA, χB are mutually uncorrelated random variables, uncorrelated

with d
(π)
A , d

(π)
B obeying Gaussian distributions with classical correlation matrices NA and NB

respectively. Since such processing of variables d
(π)
j cannot increase their Shannon mutual in-

formation due to the data processing inequality [251] we can restrict without loss of generality
to optimisation over projections onto pure states.

So, of all the covariant measurements that could be performed on subsystems A and B,
pure state covariant POVMs are optimal. However, does a pure state covariant measurement
always beat all non-covariant Gaussian POVMs? We answer in the affirmative. Covariant
measurements with pure state seed elements maximise the classical mutual information even
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within the framework of a larger class of generally non-covariant Gaussian POVMs possessing
the structure [220, 252]

π̂Gj (zj) =
pj(yj)

2π
D̂j(dj)Π̂

G
j (yj)D̂

†
j(dj), j = A,B, (D.4)

and satisfying the completeness condition
∫
zj
π̂Gj (zj)dzj = 1j . Here pj(yj) is a normalized dis-

tribution of the parameter yj , Π̂G
j (yj) is a normalized Gaussian state with CM γj(yj) dependent

on parameter yj and zj = (dTj , y
T
j )T .

Upon measuring the POVM (D.4) on the Gaussian state ρ̂AB , one finds the outcomes zA
and zB to follow the distribution P(zA, zB) = pA(yA)pB(yB)P (d, yA, yB), where the distribution
P (d, yA, yB) is obtained from Eq. (D.3) by replacing γj with γj(yj). Denoting the classical
mutual information of the distribution P(zA, zB) and P (d, yA, yB) as I (A(zA) : B(zB)) and
I (A(yA) : B(yB)), respectively, one then has

I (A(zA) : B(zB)) =

∫
I (A(yA) : B(yB)) p(yA)p(yB)dyAdyB . (D.5)

Hence it follows immediately that

IGc (ρ̂AB) ≤ max
(π̂GA(zA)⊗π̂GB(zB))

I (A(zA) : B(zB)) = I
(
A(y0

A) : B(y0
B)
)
, (D.6)

where we have to maximize over all Gaussian POVM elements π̂Gj (zj) and y0
j label the POVM

elements Π̂G
j (y0

j ), which maximize I (A(yA) : B(yB)). If we take these as seed elements of
Gaussian POVMs (8.2), we construct local covariant POVMs which give mutual information
I
(
A(y0

A) : B(y0
B)
)

and therefore achieve the classical mutual information IGc (ρ̂AB).
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[204] B. Bylicka and D. Chruściński. Witnessing quantum discord in 2 × N systems.
Phys. Rev. A, 81:062102, 2010.

[205] D. Girolami and G. Adesso. Quantum discord for general two-qubit states:
analytical progress. Phys. Rev. A, 83:052108, 2011.

[206] A. Streltsov, H. Kampermann, and D. Bruß. Behavior of quantum correlations
under local noise. Phys. Rev. Lett., 107:170502, 2011.

[207] M. Koashi and A. Winter. Monogamy of quantum entanglement and other cor-
relations. Phys. Rev. A, 69:022309, 2004.

[208] Felipe F. Fanchini, Marcio F. Cornelio, Marcos C. de Oliveira, and Amir O. Caldeira.
Conservation law for distributed entanglement of formation and quantum
discord. Phys. Rev. A, 84:012313, 2011.

[209] F. F. Fanchini, L. K. Castelano, M. F. Cornelio, and M. C. de Oliveira. Locally inac-
cessible information as a fundamental ingredient to quantum information.
New Journal of Physics, 14:013027, 2012.



143

[210] V. Madhok and A. Datta. Interpreting quantum discord through quantum state
merging. Phys. Rev. A, 83:032323, 2011.

[211] D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter. Operational
interpretations of quantum discord. Phys. Rev. A, 83:032324, 2011.

[212] M. Horodecki, J. Oppenheim, and A. Winter. Partial quantum information. Nature,
436:673, 2005.

[213] M. Horodecki, J. Oppenheim, and A. Winter. Quantum state merging and negative
information. Communications in Mathematical Physics, 269:107, 2007.

[214] D. Slepian and J. Wolf. Noiseless coding of correlated information sources.
IEEE. Transac. Inf. Th., 19:471, 1973.

[215] D. Yang, M. Horodecki, and Z. D. Wang. An additive and operational entangle-
ment measure: conditional entanglement of mutual information. Phys. Rev.
Lett., 101:140501, 2008.

[216] M. B. Plenio and V. Vitelli. The physics of forgetting: Landauer’s erasure
principle and information theory. Contemporary Physics, 42:25, 2001.
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