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A numerical method that employs a combination of contour advection and pseudo-

spectral techniques is used to simulate shear-induced instabilities in an internal solitary

wave. A three-layer configuration for the background stratification in which a linearly

stratified intermediate layer is sandwiched between two homogeneous ones is consid-

ered throughout. The flow is assumed to satisfy the inviscid, incompressible, Oberbeck-

Boussinesq equations in two dimensions. Simulations are initialized by fully nonlinear,

steady state, internal solitary waves. The results of the simulations show that the in-

stability takes place in the pycnocline and manifests itself as Kelvin-Helmholtz billows.

The billows form near the trough of the wave, subsequently grow and disturb the tail.

Both the critical Richardson number (Ric) and the critical amplitude required for insta-

bility are found to be functions of the ratio of the undisturbed layer thicknesses. It is

shown, therefore, that the constant, critical bound for instability in ISWs given in Barad

& Fringer (2010), namely Ric = 0.1 ± 0.01, is not a sufficient condition for instability.

It is also shown that the critical value of Lx/λ required for instability, where Lx is the

length of the region in a wave in which Ri < 1/4 and λ is the half width of the wave, is

sensitive to the ratio of the layer thicknesses. Similarly, a linear stability analysis reveals
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that, σ̄iTw, where σ̄i is the growth rate of the instability averaged over Tw, the period

in which parcels of fluid are subjected to Ri < 1/4, is very sensitive to the transition

between the undisturbed pycnocline and the homogeneous layers and, the amplitude of

the wave. Therefore, the alternative tests for instability presented in Fructus et al. (2009)

and Barad & Fringer (2010), respectively, namely Lx/λ > 0.86 and σ̄iTw > 5, are shown

to be valid only for a limited parameter range.

1. Introduction

Internal solitary waves (ISWs) are ubiquitous features in the Earth’s atmosphere and

ocean. See the recent reviews by Apel et al. (2006), Grue (2006), Helfrich & Melville

(2006) and Apel et al. (2007), for a thorough review of past and present work in the

field. In the open ocean, typically, the waves are highly nonlinear and may attain very

large amplitudes, for example in water depths of 200-300m they are frequently observed

as waves of depression having amplitudes of up to 120m. It is well known that shear-

induced instabilities can occur in large amplitude ISWs. For example they have been seen

in the field (Moum et al. 2003), the laboratory (Fructus et al. 2009) and in numerical

simulations (Barad & Fringer 2010).

Breaking ISWs can result in vertical mixing in the environment in which they prop-

agate. They are an important source of mixing, turbulence, re-distribution of potential

energy in the water column and mass and momentum transfer. In physical oceanogra-

phy, one of the most topical issues of debate is the role of internal waves on the overall

mixing of coastal oceans - a process that, in turn, has implications for global ocean

circulation, heat transport and hence climate modelling, see Munk & Wunsch (1998),

Garrett (2003a), Garrett (2003b), Thorpe (2004), Munk & Bills (2007) and Schiermeier

(2007). ISWs can present significant hazards in coastal and oceanic regions where off-
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shore petroleum exploration, production and sub-sea storage activities are in progress,

for example see Osborne et al. (1978) and Osborne & Burch (1980). In addition, mix-

ing induced by internal waves redistributes nutrients and dissolved gases, thus affecting

biological productivity in the oceans. To understand the behaviour of ISWs in these con-

texts, it is imperative that the evolutionary processes which lead to breaking and the

subsequent generation of turbulence be better understood.

Due to the difference in scale at which breaking is thought to take place and the scale at

which large amplitude ISWs have been sampled, very limited field data are available for

reference. Observations can be found in Woods (1968), Armi & Farmer (1988), Marmorino

(1990) and van Haren & Gostiaux (2010). However, the cleanest observation of a breaking

ISW is that of Moum et al. (2003). Figure 14 of their work shows an acoustical backscatter

image of what appears to be a clear manifestation of a shear-induced (Kelvin-Helmholtz)

instability in an ISW propagating shoreward over the Oregon continental shelf. The cause

of the instability captured by Moum et al. (2003) is conjectured to be background shear,

but questions concerning this cause remain open. In an effort to better understand such

breaking in particular and instability in general, a numerical scheme that can simulate

shear instabilities in ISWs is developed and presented here.

To study the evolution of an unstable ISW, two numerical schemes are employed.

The first, outlined in King et al. (2010), is an iterative procedure to find a fully nonlin-

ear steady state ISW solution. It takes any smooth profile of Brunt-Väisälä frequency

squared as input and can compute significantly larger amplitude waves than have been

presented elsewhere. The computations in King et al. (2010) do not appear to be limited

by low Richardson number, unlike other routines that follow Turkington et al. (1991),

for example see Lamb (2002). This is a key advantage in this study, as it is already well

known that small Richardson numbers, well below 1/4, are required for instability in



4 M. Carr, S. E. King and D. G. Dritschel

ISWs (Fructus et al. 2009; Barad & Fringer 2010). The second numerical scheme, out-

lined in Dritschel & Fontane (2010), takes a steady state solution as input and evolves

it with time. The method which has been termed the Combined Lagrangian Advection

Method (CLAM) uses a combination of contour advection (Dritschel & Ambaum 1997)

and standard pseudo-spectral techniques. Importantly, CLAM requires no numerical dif-

fusion of density to maintain numerical stability. A detailed discussion of the accuracy

of the method can be found in Fontane & Dritschel (2009). Application of the numerical

model in the context of breaking ISWs is novel. The stability of an ISW propagating in

an undisturbed stratification consisting of a linearly stratified middle layer sandwiched

between homogeneous top and bottom layers is focused upon here. Note that no pertur-

bations (or noise) are added to the initial state to trigger instability. A wide sweep of

parameter space is performed and significant new findings are obtained as a result.

The only other numerical scheme in the literature that has been used to simulate

shear-induced instabilities in ISWs in a similar stratification is the recent work of Barad

& Fringer (2010). They used an adaptive numerical method to simulate instabilities

in open-ocean ISWs. Their numerical scheme solves the Navier-Stokes equation in two

dimensions and resolves all of the length scales of interest by dynamically tracking im-

portant regions with recursively-nested finer grids. Barad & Fringer (2010) focused on

simulating waves similar to those that were observed by Moum et al. (2003). In particular,

they concentrated on simulating the instabilities along the pycnocline that Moum et al.

(2003) were unable to resolve with their measurements. They claimed that a sufficient

criterion for instability was that the Richardson number in the wave must fall below a

critical value of Ric = 0.1 ± 0.01. However, they considered a very limited parameter

space. They only presented 12 simulations and focused specifically on 9 of them. In par-

ticular, they assessed the effects of the non-dimensional interface thickness on the critical
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amplitude and Richardson number for instability and kept all other parameters fixed.

In this paper, a much wider parameter space is investigated. The ratio of all three layer

depths and the smoothness of transition between layers are varied. It is found that the

stability of the system is very sensitive to changes in these parameters and in particular,

that the critical Richardson number required for instability is a function of these param-

eters. Hence it is shown that a constant Ric = 0.1 ± 0.01 is not a sufficient condition

for assessing instability in ISWs. In particular, it is shown that if the thickness of the

lower layer is greater than approximately nine times the thickness of the upper two layers

added together then the critical Richardson number required for instability is less than

0.09. Moreover, if the thickness of the lower layer is less than approximately five times

the thickness of the upper two layers added together then the critical Richardson number

required for instability is larger than 0.11 (see §4.2 figure 13).

In Fructus et al. (2009), experimental observations of stable and unstable waves, propa-

gating in a stratification similar to that studied here were presented. In addition, numeri-

cal calculations for fully nonlinear steady states were made. It was reported that breaking

waves occurred for amplitudes above a critical threshold of a1 = 2.24
√
h1h2(1 + h2/h1)

when h2/h1 < 1, where h1 and h2 are the thicknesses of the undisturbed top and middle

layers respectively, and a1 is the maximum displacement of an isopycnal that traces the

upper interface of the pycnocline. In Fructus et al. (2009), the non dimensional thickness

of the lower layer, h3/(h1 + h2), varied between 3.22 and 7.25 but no account of this

variation was made. It is shown here that the critical amplitude marking the threshold

between stability and instability is dependent on both h2/h1 and h3/(h1+h2), and hence

the bound given in Fructus et al. (2009) should be used with caution. Fructus et al. (2009)

also presented a stability bound based on Lx/λ, where Lx is the length of the region in a

wave in which Ri < 1/4 and λ is the half width of the wave. They found that instability
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required a value of Lx/λ > 0.86. The computations in Barad & Fringer (2010) agree with

this bound. It will be shown here, that the critical value of Lx/λ required for instability

is sensitive to the ratio of the layer depths and the bounds given in Fructus et al. (2009)

and Barad & Fringer (2010) are only valid within a limited parameter range.

During the final stages of the submission process of this paper, the authors were made

aware of a recently submitted manuscript by Lamb & Farmer (2011) that presents numer-

ical simulations specifically designed to explore the mechanisms responsible for instability

observed in an internal solitary-like wave. The observed wave was acquired in the same

area and during the same period as the observations discussed in Moum et al. (2003).

The model background stratification was closely matched to the observed density profile

ahead of the wave and it was found that instabilities occurred when (i) the minimum

Richardson number in the pycnocline was less than about 0.1; (ii) Lx/λ > 0.8; and (iii)

a linear stability analysis predicted ln(af/ai) >≈ 4, where ai and af are the amplitudes

of perturbations entering and leaving the unstable region respectively. The numerical

findings are in good agreement with the predictions of Fructus et al. (2009) and Barad

& Fringer (2010). However, the objective of Lamb & Farmer (2011) was to simulate a

particular observed wave. No variation of the background stratification was made which

is the focus of the work presented here.

The physical interpretation of a bound based on Lx/λ is that unstable modes need some

time in which to grow before breaking is observed (Fructus et al. 2009; Barad & Fringer

2010). This has also been observed in progressive interfacial gravity waves (Troy & Koseff

2005). In this paper, ISWs are classified into three different types: stable, weakly unstable

and unstable. Weakly unstable waves are defined to be waves that exhibit oscillations

on the pycnocline and either no coherent billows form or short lived billows occur but

quickly collapse. These waves clearly have unstable modes associated with them but the
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modes do not have sufficient time to grow into the persistent coherent billows seen in

unstable waves. Stability curves are presented that help distinguish between the three

different regimes.

Barad & Fringer (2010) and Troy & Koseff (2005) both predicted that ISWs and

progressive interfacial wave trains respectively, will develop instabilities when the growth

rate of an unstable mode (corresponding to a locally parallel flow) exceeds a critical value

of σ̄iTw = 5, where σ̄i is the growth rate of the instability averaged over Tw, the period

in which parcels of fluid are subjected to Ri < 1/4. Barad & Fringer (2010) suggested

that a critical bound of σ̄iTw = 1 can be inferred for the data presented in Fructus et al.

(2009). They hypothesized that the smaller threshold in Fructus et al. (2009) may be

due to disturbances present in the laboratory. A linear stability analysis is presented here

which shows that the growth rate of an instability is very sensitive to the amplitude of

the wave, the ratio of the undisturbed layer depths and the sharpness of the pycnocline

(the smoothing distance over which transition from one layer to another is made in the

background stratification). Barad & Fringer (2010) did not take account of variations in

the sharpness of the pycnocline or in the depths of the upper and lower layers. Hence the

difference in the critical σ̄iTw is conjectured to be due to differences in the undisturbed

density field rather than disturbances in the laboratory. A more thorough discussion of

this is given in §5.

The paper is outlined as follows. The governing equations are presented in §2 and a

summary of their numerical solution is given in §3. In §4, the waves are classified and

stability curves are presented. In §5, results from a linear stability analysis are given and

finally in §6 a short summary of the main findings are given along with a discussion of

current field observations.
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2. Governing Equations

To model the time dependent motion of an ISW, the inviscid, incompressible, Oberbeck-

Boussinesq equations in two dimensions may be used:

ρ0 (ut + u · ∇u) = −∇p− ρgj, (2.1)

ρt + u · ∇ρ = 0, (2.2)

∇ · u = 0, (2.3)

where ρ0 is a convenient constant reference density, u = (u, v) is the fluid velocity vector,

t denotes time, ∇ = (∂/∂x, ∂/∂y) is the gradient operator, p is the fluid pressure, ρ is

the fluid density, g is the acceleration due to gravity and j is the unit vector in the verti-

cal direction. Note that the Boussinesq approximation is routinely used and accepted in

the literature when studying oceanic ISWs. However, Long (1965) and Benjamin (1966)

showed that finite amplitude internal waves may depend crucially on small effects ne-

glected in the Boussinesq approximation. In particular, they call for care when using the

approximation if quantities other than the non-dimensional density difference are small.

A thorough investigation of the non-Boussinesq regime, in the context presented here, is

currently in progress but beyond the scope of the present paper. Buoyancy and vorticity

are introduced as b = −g(ρ− ρ0)/ρ0 and ζ = vx − uy, respectively. Then taking the curl

of the momentum equation (2.1) and rewriting (2.1) and (2.2) in terms of vorticity and

buoyancy gives

ζt + u · ∇ζ = bx, (2.4)

bt + u · ∇b = 0, (2.5)

∇ · u = 0. (2.6)
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Figure 1. A schematic diagram of the computational domain.

To study the evolution of an ISW satisfying (2.4)-(2.6) two numerical schemes are em-

ployed. The first, which is outlined in detail in King et al. (2010) and briefly in §3.2, is

an iterative procedure which finds a steady state solution. The second, which is outlined

in detail in Dritschel & Fontane (2010) and briefly in §3.3, is the Combined Lagrangian

Advection Method (CLAM) which takes a steady state solution as input and evolves it

with time.

3. Numerical Method

3.1. Numerical Setup

A computational domain is set up that is 2π periodic in the horizontal x direction and

bounded above and below by rigid boundaries at y = 0 and y = Ly, see figure 1. The

aspect ratio of the domain, Ly/2π, is chosen to be 0.05 throughout the paper. This ensures

that the domain is long compared to the length of the waves. A three layer stratification is

considered in which a linearly stratified middle layer is sandwiched between homogeneous

layers. The thicknesses of the top, middle and bottom layers are denoted by h1, h2 and h3

respectively. The domain is chosen so that the ISW is located in the centre of the domain

as shown. The maximum displacement of the interface between the top and middle layers

is denoted by a1. The undisturbed Brunt-Väisälä frequency, N , is defined by

N2(Y ) =
db̄

dY
= − g

ρ0

dρ̄

dY
,
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where Y is an isopycnal coordinate used to denote y in the far field and bars denote back-

ground (undisturbed) variables. The undisturbed Brunt-Väisälä frequency is assumed to

be zero in the top and bottom layers, unity in the middle layer, and to have a smooth

transition between these values such that

N2(Y ) =
1

2
erf

(

Y − h3

δ

)

− 1

2
erf

(

Y − (h2 + h3)

δ

)

,

where erf denotes the error function and δ represents a distance over which the profile

is smoothed. A value of two y grid lengths is chosen for δ unless stated otherwise. A

discussion of this choice and the effect of varying δ is given in King et al. (2010) and in

§5. Unless stated otherwise, a resolution of (nx, ny) = (1024, 128), where nx and ny are

the number of grid points in the horizontal and vertical directions respectively, is used

throughout. Justification for this choice of resolution is given in §5.

3.2. The steady state solver

To find a steady state solution the numerical scheme of King et al. (2010) is utilized.

Following Yih (1960) and Grue et al. (2000) it was shown in King et al. (2010) that (2.1)

(or equivalently (2.4)) can be rewritten as

ζ = ∇2ψ = −N
2(Y )

c2
ψ, (3.1)

where ψ(x, y) is the streamfunction, defined such that v = ψx, and u = −ψy. Solutions

of (3.1) for a given N2(Y ) are computed using an iterative procedure. First, a uniform

computational grid is set up within the domain. The background buoyancy field, b̄(Y ),

is then found by integrating a given profile of N2(Y ) with respect to Y . The iterative

solution procedure is then started with a guess for ψ. A weakly nonlinear solitary wave

solution is used for this purpose which is known to be accurate at small wave amplitudes.

The wave amplitude is defined as A = ηrms = ψrms/c, where η is the (downward)

streamline displacement and r.m.s denotes the root-mean-square value. By using the
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wave speed cwnl from the weakly nonlinear solution, an initial amplitude A0 = ψrms/cwnl

is found. This initial guess is then corrected by solving

Y = y +
ψ(x, y)

c
, (3.2)

for the isopycnal coordinate Y followed by (3.1) for ζ at each point in the domain (using

the previous guess for ψ in the right hand side of (3.1)). Spectral inversion of ∇2ψ = ζ

provides an updated value for ψ, and

c =
ψrms

A , (3.3)

provides an updated value for c. This process is then repeated, by solving (3.2), (3.1), and

(3.3) until ψ converges. Subsequent states are found for higher amplitudes by increasing

A in increments of δA = 0.001.

3.3. The unsteady solver

To study the evolution of a steady state satisfying (2.4)-(2.6) the numerical procedure

outlined in Dritschel & Fontane (2010) is utilized. Note that no perturbations (or noise)

are added to the steady state. A hyperdiffusive vorticity term ν6∇6ζ (with diffusion

coefficient ν6 = 2−54) is added to the right hand side of (2.4) in order to stabilize the

solution. The unsteady simulations are then carried out using CLAM, a combination of

contour advection (Dritschel & Ambaum 1997) and pseudo-spectral techniques in order

to integrate (2.5) forward in time. This provides an accurate source term for the right

hand side of (2.4), which is solved using a pseudo-spectral method. Temporal integration

is performed using a fourth order Runge-Kutta integration scheme. Further details of the

method can be found in Dritschel & Fontane (2010).
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4. Numerical Results

The numerical model is tested over a parameter range in which the undisturbed

background stratification is varied via the parameters h2/(h1 + h2) ∈ [0.10, 0.91] and

h3/(h1 + h2) ∈ [2.33, 11.5]. As previously noted, the aspect ratio of the computational

domain, Ly/2π = 0.05, is fixed throughout and unless stated otherwise a resolution of

(nx, ny) = (1024, 128) is utilized. In addition, the distance, δ, over which the undisturbed

Brunt-Väisälä frequency profile is smoothed is set at two y grid lengths, (2Ly/ny =

0.0049) (unless given otherwise). Hence the minimum value of h2 that can be investi-

gated is restricted by the fact that the middle layer must be at least two y grid lengths

thick which in turn is restricted by the resolution considered. Similarly the minimum

value of h1 that can be investigated, (or equivalently the maximum value of h2 + h3

since h1 + h2 + h3 = Ly) is limited by the fact that the top layer must be at least two

y grid lengths thick to allow for smoothing into the top layer. Attention is restricted to

modelling ISWs of depression, i.e. h3 > (h1 + h2). Waves of elevation can be obtained

by symmetry for h3 < (h1 + h2). In order to compare with previous works, in particu-

lar Fructus et al. (2009) and Barad & Fringer (2010), a subset of the parameter space,

namely h2/(h1 + h2) ∈ [0.13, 0.80] and h3/(h1 + h2) ∈ [3.35, 5.67] is focused upon here.

Unless stated otherwise, the computations are performed in a frame of reference moving

at the wave speed c and all results are presented in this frame of reference.

4.1. Classification of Breaking

The waves are classified into three different types: stable, weakly unstable and unstable.

This is achieved by (i) calculating the percentage increase in several parameters in the

numerical system over 100 time units (approximately 16 buoyancy periods based on

the maximum N or around 50 rotation periods based on the maximum initial |ζ|) and

analyzing the variation in the percentage increase in these parameters with increments
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in wave amplitude, and (ii) a visual inspection of the numerical evolution of the vorticity

and buoyancy fields over 100 time units. A simulation duration of 100 time units is chosen

for the classification process as typically the classification state (stable, weakly unstable,

unstable) of an observed wave over 100 time units tended to remain the same over larger

simulation durations (t = 200) but varied over shorter computations (t = 50). In table

1, by way of illustration, the percentage increase in the parameters found most useful in

helping to classify stability with an increase in the non-dimensional amplitude are given

when h2/(h1 + h2) = 0.13 and h3/(h1 + h2) = 3.35. Enstrophy and palenstrophy are

defined as, E =
∫

D
|ζ|2dxdy and P =

∫

D
|∇ζ|2dxdy, respectively, where D is the two

dimensional computational domain, |ζ|max is the maximum vorticity in D, ζrms is the

root mean square of the vorticity field in D, s(cb,t,m), are the arc lengths of an isopycnal

situated at the bottom, top or middle of the pycnocline respectively, |∇b|max is the

maximum of the gradient of the buoyancy in D and ∇brms is the root mean square of the

gradient of the buoyancy field in D. The percentage increase in available potential energy,

kinetic energy, circulation and the mean square displacement of a given isopycnal from

the isopycnal mean height tracing the top, the middle or the bottom, of the pycnocline

respectively were all investigated for different wave types but did not show any significant

differences over 100 time units and so could not be used to help classify stability.

It can be seen from table 1 that as the amplitude of the wave increases (for a given

undisturbed background stratification) the percentage increase in the parameters con-

sidered tends to increase as well (though the increase is not always monotonic in all

parameters). To classify a change in the stability state of a given wave a marked increase

(or decrease) in the percentage increase of one or all of the parameters considered is

required. For example in table 1, all waves that are classified as stable have similar per-

centage changes in all parameters considered and the percentages are of a small value.
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a1

h1+h2

E log10(P) |ζ|max ζrms s(cb) s(ct) s(cm) |∇b|max ∇brms Classification

0.853 0.157 0.891 0.780 0.078 0.103 0.091 0.001 0.114 -0.022 Stable

0.909 0.158 0.806 1.105 0.079 0.007 0.023 0.001 0.292 -0.020 Stable

0.960 0.153 0.742 1.616 0.076 0.031 0.024 0.002 0.546 -0.022 Stable

1.006 0.192 0.820 1.556 0.096 0.109 0.011 0.002 0.329 -0.024 Stable

1.048 0.292 0.979 2.690 0.146 0.049 0.034 0.004 0.529 -0.021 Very weak

1.084 1.109 3.640 0.752 0.553 0.066 0.022 0.321 5.824 0.035 Weak

1.116 5.383 11.099 3.069 2.656 0.143 0.869 5.350 39.277 0.826 Unstable

1.143 20.170 22.687 3.808 9.622 3.958 11.078 18.271 96.067 3.211 Unstable

Table 1. Percentage increase (or decrease if negative number) in a given parameter: E , log10(P),

|ζ|max, ζrms, s(cb), s(ct), s(cm), |∇b|max, ∇brms for a wave of amplitude a1/(h1 + h2) with

undisturbed background layer thicknesses h2/(h1 + h2) = 0.13 and h3/(h1 + h2) = 3.35.

A marked increase in the percentage increases is seen in the weak case compared with

the stable cases and a further jump in the percentage increases is seen in the unstable

cases. In general, it is not possible to use one percentage increase in a single parameter

to consistently make a distinction between stability states and in addition the amount by

which the percentage increases changes from state to state varies for different background

stratification. Typically, identification of the boundary between unstable and weakly un-

stable waves is easier to establish than the bound between weakly unstable and stable

waves, as a marked difference in percentage increases in one or more parameters between

these states is easier to identify. To establish the boundary between unstable and weakly

unstable states a visual inspection of the buoyancy field and vorticity fields is used in

addition to the numerical values investigated.
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As an example, evolutions of the vorticity field ζ and the buoyancy field b in stable,

weakly unstable and unstable waves are presented in figures 2 to 7, respectively. In all six

figures the wave propagates from left to right. Successive plots are at times t = 0, 25, 50, 75

and 100 with time increasing downwards. The three waves depicted in figures 2-7 are

highlighted in bold in table 1. Waves that are classified as stable show little or no change

in form as they evolve (see figures 2 and 3) and the percentage increase in the various

theoretical parameters associated with the wave are very small (see table 1). Waves which

are classified as weakly unstable exhibit a small deformation of the interface and either

no coherent billows are formed or they quickly collapse again (see the lower three panels

of figures 4 and 5), and the percentage increases studied are small but in general bigger

than in the stable cases (see table 1). Waves which are classified as unstable exhibit

persistent coherent billows on the interface (see the lower three panels of figures 6 and

7) and the percentage increase in the parameters discussed in table 1 are significantly

bigger than in the weakly unstable and stable cases respectively.

The instability seen in figures 6 and 7 is typical of what is seen in all waves which

are classified as unstable throughout the paper. It takes the form of Kelvin-Helmholtz

billows forming on the pycnocline. The instability is not a numerical artifact, it is a

physical response to the strong shear force exerted across the pycnocline. This has been

seen previously in ISWs of this type in (a) the field (Moum et al. 2003), (b) the labo-

ratory (Fructus et al. 2009) and in (c) numerical simulations (Barad & Fringer 2010).

A comparison of the findings made here with those presented in Moum et al. (2003),

Fructus et al. (2009) and Barad & Fringer (2010) will be made later in the paper. Note

that in waves classified as weakly unstable, oscillations of the isopycnals occur but the

instabilities do not have sufficient time to grow into persistent coherent billows.

Figures 8 (a), (b) and (c) show the sensitivity of stable, weakly unstable and unstable
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Figure 2. Sequence showing the evolution of the vorticity field, ζ, for an ISW with,

a1/(h1 + h2) = 0.853, h2/(h1 + h2) = 0.13 and h3/(h1 + h2) = 3.35. Successive plots are

at times t = 0, 25, 50, 75, 100 with time increasing downwards. (x, y/Ly) ∈ [−1.5, 1.5]× [0.4, 0.9].

This wave is classified as stable. See complementary online movie 1.
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Figure 3. Sequence showing the evolution of the buoyancy field, b, corresponding to the same

ISW as in figure 2. See complementary online movie 2.

simulations respectively, to the resolution of the computations (and the number of con-

tours utilized in CLAM). The three different waves in figures 8 (a), (b) and (c) correspond

to the three waves presented in figures 3, 5 and 7 respectively. The average normalized
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Figure 4. Sequence showing the evolution of the vorticity field, ζ, for an ISW with,

a1/(h1 + h2) = 1.084. All other variables are the same as in figure 2. This wave is classified

as weakly unstable. See complementary online movie 3.

absolute error in the buoyancy field (for a given wave) |b− b∗|/|b∗|max, is plotted against

simulation time t, where b∗ is the buoyancy field in an equivalent simulation computed

at a resolution of (nx, ny) = (2048, 256) utilizing ten times as many contours (800) than
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Figure 5. Sequence showing the evolution of the buoyancy field, b, corresponding to the same

ISW as in figure 4. See complementary online movie 4.

in the standard simulations (80) presented throughout this paper. Figure 8 shows that

(i) there is very little difference between resolutions of (nx, ny) = (1024, 128) (▽) and

(nx, ny) = (2048, 256) (△), and that (ii) there is little difference between using 80 con-
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Figure 6. Sequence showing the evolution of the vorticity field, ζ, for an ISW with,

a1/(h1 + h2) = 1.143. All other variables are the same as in figure 2. This wave is classified

as unstable. See complementary online movie 5.

tours in CLAM (in this context) as opposed to 800. Hence throughout this paper, the

unsteady numerical computations use a resolution of (nx, ny) = (1024, 128) and employ



Numerical simulation of shear-induced instabilities in internal solitary waves 21

Figure 7. Sequence showing the evolution of the buoyancy field, b, corresponding to the same

ISW as in figure 6. See complementary online movie 6.

80 contours. Note that the average normalized absolute error in the vorticity field shows

a similar trend to that of the buoyancy field.
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Figure 8. The average normalized abolute error in the buoyancy field 10−4 × |b − b∗|/|b∗|max

versus simulation time t. (a) a1/(h1 + h2) = 0.853, (b) a1/(h1 + h2) = 1.084 and (c)

a1/(h1+h2) = 1.143. The wave in (a) is classified as stable and the corresponding evolution of b is

given in figure 3. The wave in (b) is classified as weakly unstable and the corresponding evolution

of b is given in figure 5. The wave in (c) is classified as unstable and the corresponding evolution

of b is given in figure 7. h2/(h1 + h2) = 0.13 and h3/(h1 + h2) = 3.35. (nx, ny) = (512, 64) (�),

(nx, ny) = (1024, 128) (▽), (nx, ny) = (2048, 256) (△).

4.2. Stability Curves

For all waves investigated, stability curves can be obtained by identifying the largest

amplitude stable state and the smallest amplitude unstable state. In figure 9, stability

curves are presented for the non-dimensional amplitude, a1/(h1 + h2), versus the non-
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dimensional pycnocline thickness, h2/(h1 + h2), for three data sets in which the non-

dimensional lower layer thickness h3/(h1 +h2) = 3.35 (⋄), 4 (∗), 5.67 (×) varies. Symbols

joined by a solid/dashed line denote stable/unstable observations respectively. The area

in between the solid and dashed curves marks a weakly unstable region for a given

data set. It is clear from figure 9 that the critical amplitude required for instability

increases with increases in both h2/(h1 + h2) and h3/(h1 + h2). In other words, an

increase in h2/(h1 + h2) or h3/(h1 + h2) stabilizes the system. This is expected for

h2/(h1 + h2) since the thicker the pycnocline is, the weaker the shear across it will

be, and hence the larger will be the amplitude required to excite instability. Note that

when h3/(h1 + h2) = 3.35 (⋄) and h2/(h1 + h2) ' 0.4 no unstable waves are observed

and hence no bound between unstable and weakly unstable waves can be established.

Weakly unstable waves are observed, hence, a bound between weakly unstable and stable

waves can be found but for clarity is not displayed. Similarly for h3/(h1 +h2) = 2.33 and

h2/(h1+h2) ∈ [0.100, 0.167] (data not displayed) a bound between weakly unstable waves

and stable waves can be established but no unstable waves are observed and moreover for

h2/(h1+h2) > 0.167 all waves computed are stable (no weakly unstable or unstable waves

are observed). In addition, the three stability curves in figure 9 show that the region of

weak instability decreases in width as h2/(h1 + h2) increases. This suggests that once

the stability (solid) and instability (dashed) curves converge the system cannot support

unstable waves (weakly unstable waves may still form though) and in particular, for fixed

values of h3/(h1 + h2), if h2/(h1 + h2) is sufficiently large, unstable waves cannot exist.

As it is not possible to compute at higher values of h2/(h1 + h2) than in figure 9 (they

are restricted by the computational domain height Ly = h1 + h2 + h3) it is not possible

to confirm the conjecture above.

Figure 10 shows the same data set as in figure 9 but plots against A as opposed to
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Figure 9. Stability diagram for different values of the lower layer thickness, h3/(h1 +h2) = 3.35

(⋄), 4 (∗), 5.67 (×). Non-dimensional amplitude, a1/(h1 + h2), versus non-dimensional pycno-

cline thickness, h2/(h1 + h2). Symbols joined by a solid/dashed line denote stable/unstable

observations respectively.

a1/(h1 + h2). Note that figure 10 does not exhibit the same trend as in figure 9 of the

stability and instability curves converging for large values of h2/(h1 + h2). Recall that

A = ψrms/c and the increment in amplitude in the numerical simulations is fixed at

δA = 0.001 (see §3.2). The increment in a1/(h1 + h2), therefore, investigated in figure 9

is variable and may offer an alternative explanation as to why the width of the weakly

unstable region varies with h2/(h1 + h2).

In Fructus et al. (2009), experimental observations of stable and unstable waves were

made and it was reported that breaking waves occurred for amplitudes above a critical

threshold of a1 = 2.24
√
h1h2(1 + h2/h1) when h2/h1 < 1. To compare their data with

the numerical findings presented here a plot of a1/
√
h1h2(1 + h2/h1) versus h2/h1 is

given in figure 16 for the same data set as that presented in figures 9 and 10. The row of

horizontal black dots marks the critical amplitude predicted by Fructus et al. (2009). In
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Figure 10. Stability diagram for different values of the lower layer thickness, h3/(h1+h2) = 3.35

(⋄), 4 (∗), 5.67 (×). Wave amplitude, A, versus non-dimensional pycnocline thickness,

h2/(h1 + h2). Symbols joined by a solid/dashed line denote stable/unstable observations re-

spectively.

Fructus et al. (2009), h3/(h1 + h2) varied between 3.22 and 7.25 but no account of this

variation was made. The numerical results in figure 16 show that the critical amplitude

marking the threshold between stability and instability is dependent on both h2/h1 and

h3/(h1 + h2), and hence the bound given in Fructus et al. (2009) is not general. The

shape of the stability curves presented in figure 16 are in good agreement with the fully

nonlinear solutions presented in figure 2 of Fructus et al. (2009). The fully nonlinear

solution presented in Fructus et al. (2009) was calculated at h3/(h1 + h2) = 4.13 and

Ri = 1/4. The stability bounds presented in figure 16 suggest a stability curve for

h3/(h1 + h2) = 4.13 at a slightly higher amplitude than the fully nonlinear curve in

Fructus et al. (2009). This is to be expected since Fructus et al. (2009) show that a

Ri number somewhat smaller than 1/4 is required for instability and hence their fully
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Figure 11. Stability diagram for different values of the lower layer thickness, h3/(h1+h2) = 3.35

(⋄), 4 (∗), 5.67 (×). Non-dimensional amplitude, a1/
√

h1h2(1 + h2/h1), versus non-dimensional

pycnocline thickness, h2/h1. Symbols joined by a solid/dashed line denote stable/unstable ob-

servations respectively. The horizontal line of black dots correspond to the bound reported in

Fructus et al. (2009).

nonlinear solution (which is computed at Ri = 1/4) is expected to underpredict the

amplitude required for instability.

In figure 12, stability curves are presented for the minimum Richardson number Rimin

versus the non-dimensional pycnocline thickness h2/(h1 + h2) for the same data set as

that presented in figures 9 to 16. The Richardson number represents a balance between

the destabilizing effects of velocity shear through ζ2 and the stabilizing effects of stratified

buoyancy through by. Hence as the thickness of the pycnocline, h2/(h1 + h2) increases

the critical minimum Richardson number required for instability is expected to decrease.

However, there is no clear trend of this form in figure 12. Hence, Rimin may not be

the best parameter to use when assessing stability. This has been noted previously by

Troy & Koseff (2005) who studied long internal wave trains and by Fructus et al. (2009)
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who studied ISWs. However, motivated by the fact that the Richardson number is easily

computed from field observations, researchers continue to seek a global Rimin to assess

stability. Barad & Fringer (2010) have recently presented numerical results which suggest

that a minimum Richardson number of 0.1±0.01 is required for instability in ISWs. Note

that the undisturbed stratification in Barad & Fringer (2010) is defined such that H1

denotes the upper layer thickness, H2 is the lower layer thickness and the total depth

of the fluid is H1 + H2. Their pycnocline has a thickness of δ0 and is situated such

that the mid-depth of the pycnocline is at the interface between the upper and lower

layers. The stratification in Barad & Fringer (2010) can be approximated here by setting

h1 = H1 − δ0/2, h2 = δ0, and h3 = H2 − δ0/2. Barad & Fringer (2010) computed their

bound via twelve simulations over a parameter range, which in the notation used here,

encompasses h2/(h1 + h2) ∈ [0.049, 0.571] and h3/(h1 + h2) ∈ [2.571, 3.878]. The global

lower bound for instability suggested by Barad & Fringer (2010) of 0.1 ± 0.01 for ISWs

is in good agreement with the data set shown in figure 12, in the sense that Rimin = 0.1

provides a lower bound for instability for the data set presented in figure 12. However,

figure 12 shows that the critical Rimin is a function of h3/(h1 + h2) and h2/(h1 + h2).

Hence a much sharper bound than the global bound suggested by Barad & Fringer (2010)

can be ascertained for the critical Rimin if h3/(h1 + h2) and h2/(h1 + h2) are known.

Moreover, figure 12 suggests that higher values of h3/(h1 + h2) may exhibit values of

Rimin that are smaller than the global bound suggested by Barad & Fringer (2010). In

figure 13, the critical Richardson number required for instability Ricrit versus the non-

dimensional lower layer depth h3/(h1 + h2) is plotted for an extended data set which

includes h3/(h1 + h2) = 9 and 11.5. For h3/(h1 + h2) = 3.35, 4, and 5.67, Ricrit was

calculated by taking the average value of Rimin for the unstable bounds (dashed lines)

presented in figure 12. The variance in the data about the average is marked by error bars
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Figure 12. Stability diagram for different values of the lower layer thickness, h3/(h1+h2) = 3.35

(⋄), 4 (∗), 5.67 (×). Minimum Richardson number Rimin versus non-dimensional pycnocline

thickness h2/(h1+h2). Symbols joined by a solid/dashed line denote stable/unstable observations

respectively.

in figure 13. This procedure was repeated for h3/(h1 + h2) = 9 for six data points over a

range, h2/(h1+h2) ∈ [0.2, 0.7]. When h3/(h1+h2) = 11.5, the pycnocline approaches the

upper boundary of the domain, and it is only possible to compute over a limited range

of h2/(h1 + h2) ∈ [0.25, 0.30]. Three data points are computed for h3/(h1 + h2) = 11.5

at h2/(h1 + h2) = 0.25, 0.275 and 0.30. The data in figure 13 clearly show that Ricrit

varies with h3/(h1 +h2). Moreover, critical values of Ri can be found that are below the

global minimum suggested by Barad & Fringer (2010), namely 0.1±0.01, if h3/(h1 +h2)

is sufficiently large.

Fructus et al. (2009) suggested that a sharper bound than Rimin for assessing the

stability of ISWs may be the parameter Lx/λ, where Lx is the width of the region in the

pycnocline in which Ri 6 1/4 and λ is the half width of the wave. They found breaking

waves occurred when Lx/λ > 0.86 and that the waves were stable otherwise. In figure 14,
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Figure 13. Critical Richardson number Ricrit versus non-dimensional lower layer thickness

h3/(h1 + h2). Crosses denote unstable observations and straight lines are error bars. The hor-

izontal dotted line at Ricrit = 0.9 represents the global bound suggested by Barad & Fringer

(2010).

stability curves are presented for Lx/λ versus the non-dimensional pycnocline thickness

h2/(h1 + h2) for the same three data sets as presented in figures 9 to 12. It can be seen

from figure 14 that Lx/λ clearly varies with h2/(h1 +h2) and h3/(h1 +h2). Fructus et al.

(2009) found the bound Lx/λ > 0.86 despite variations in h3/(h1 +h2) and h2/(h1 +h2).

Their stability bound is for 3.22 < h3/(h1 + h2) < 7.14 and 0.27 < h2/(h1 + h2) < 0.79,

and should therefore be used with caution.

5. Linear Stability Analysis

To determine the growth rate and propagation speed of the unstable modes seen in

the numerical simulations, a stability analysis that solves the Taylor-Goldstein equation

(Hazel 1972, see (1.1)) is performed. It is assumed that when the wave is at maximum

displacement, a vertical section through the flow behaves as parallel shear flow. The
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Figure 14. Stability diagram for different values of the lower layer thickness, h3/(h1+h2) = 3.35

(⋄), 4 (∗), 5.67 (×). Lx/λ versus non-dimensional pycnocline thickness h2/(h1 + h2). Symbols

joined by a solid/dashed line denote stable/unstable observations respectively.

flow is assumed to be strictly horizontal and invariant. A perturbation is added to the

invariant background flow and a linear stability analysis which utilizes spectral techniques

is employed to analyze the perturbation. The perturbation is assumed to have a complex

propagation speed, cp = cr ± i ci , for a given wavenumber k, where cr is the propagation

speed of the perturbation and k ci is the growth rate of the perturbation. Note that

the analysis in this section (and the subsequent presentation of results) are computed

in a fixed (or stationary) frame of reference i.e. the wave moves through the frame of

reference with a speed c. The wave number giving the maximal growth rate is identified

and the maximum growth rate is defined at this wave number by γ = (k ci(k) )max.

Following Fructus et al. (2009), the unstable perturbations are assumed to undergo an

amplification eF , where F is estimated to be F = Lxγ/2 ci .

The convergence of data from the linear stability analysis is checked by varying the

resolution of (i) the linear stability code and (ii) the steady state code (which provides
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the invariant background flow). Resolutions of ny = 128, 256, 512 and 1024 are compared

for the linear stability code. To three decimal places, it is found that a resolution of 512

is sufficient to see convergence in all parameters presented and so ny = 512 is fixed in the

linear stability code throughout. Figure 15 shows the sensitivity of the stability analysis

to the resolution of the steady state code for a case in which h2/(h1 + h2) = 0.286 and

h3/(h1 + h2) = 4.285 (values chosen for comparative purposes with Fructus et al. (2009)

given below). The subfigures of figure 15 are plotted with respect to the wave amplitude

A = ηrms and c0 is the linear long wave speed. The different symbols correspond to

different values of the resolution (nx, ny) of the steady state numerical solver. Squares,

downward triangles and upward triangles correspond to (nx, ny) = (512, 64), (1024, 128),

and (2048, 256), respectively. By comparing the triangles it can be seen that the difference

in the data sets at resolutions of (nx, ny) = (1024, 128) and (2048, 256) are negligible

compared with differences between these data sets and the data set at the lower resolution

(squares). Hence a resolution of (nx, ny) = (1024, 128) (for the steady state code) is used

throughout the paper unless state otherwise.

In Fructus et al. (2009), experimental observation of a breaking ISW with h2/(h1 +

h2) = 0.286, h3/(h1+h2) = 4.285 and a1/(h1+h2) = 1.59±0.04 showed that close to the

wave maximum the shear-induced billows have a wavelength of λi = 7.9h2 and a speed of

cr = 0.13c0. Fructus et al. (2009) also performed a linear stability analysis of their fully

nonlinear numerical results. They matched their numerical solution to the experimental

observation by comparing the wave amplitude, wave speed and wave-induced horizontal

velocity field in the stable part of the experimental wave. Their stability analysis predicted

that, for the same values of the layer depths as measured in the experiments, the most

unstable mode had a wavelength of λi = 7.6h2 and a speed of cr = 0.13c0.

In figure 16 results from the linear stability analysis of Fructus et al. (2009) are com-
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Figure 15. Wave amplitude A versus (a) billow propagation speed cr/c0, (b) billow growth rate

γ(h1 + h2)/c0 and (c) amplification factor F . h2/(h1 + h2) = 0.286 and h3/(h1 + h2) = 4.285.

(nx, ny) = (512, 64) (�), (nx, ny) = (1024, 128) (▽), (nx, ny) = (2048, 256) (△). Values are

plotted for the perturbation with maximum temporal growth rate.

pared with the linear stability analysis performed here for a wave with the same values

of h2/(h1 + h2) and h3/(h1 + h2) in both cases, and a1/(h1 + h2), and δ varying as

shown. The parameter δ, defined to be two grid lengths in the y direction, is a smooth-

ing parameter which dictates how sharp the undisturbed pycnocline is (see §3.1). In the

fully nonlinear simulations of Fructus et al. (2009) a layered approach was taken and

matching conditions were employed at the discontinuous boundaries. The pycnocline in

Fructus et al. (2009) can be thought of as being infinitely sharp (δ → 0). In order to
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compare with their work, δ is varied between values of δ = 0.0025 (x), 0.005 (△) and

0.01 (*) in figure 16. When δ = 0.0025 a vertical resolution of ny = 256 is required to

ensure the Brunt-Väisälä frequency field squared is sufficiently smooth throughout the

domain in the steady state numerical code (see §3.1). Hence in figure 16, a resolution

of (nx, ny) = (2048, 256) is used to compute the steady states for the three data sets

presented.

The subfigures of figure 16 show that (a) the billow propagation speed, (b) the billow

growth rate, (c) the amplification factor and (d) the billow wavelength are all functions

of the wave amplitude and the smoothing distance δ (the sharpness of the pycnocline).

In particular, figure 16 (a) shows that as δ decreases (the pycnocline is sharpened) the

propagation speed of a billow at onset increases. Moreover, there is a linear relationship

between wave amplitude and billow propagation speed with increases in wave amplitude

resulting in decreases in billow propagation speed. Note also that the billow propagation

speed can change sign with variance in the amplitude of the wave. Figure 16 (b) shows

that as δ decreases (the pycnocline is sharpened) the growth rate of a billow at onset

increases. Moreover, there is a linear relationship between wave amplitude and billow

growth rate with increases in wave amplitude resulting in increases in billow growth

rate. Finally figure 16 (d) shows that as δ decreases (the pycnocline is sharpened) and as

the wave amplitude increases the wavelength of a billow at onset decreases. A comparison

of the scale on the horizontal axes of figures 16 (a), 16 (b) and 16 (d) respectively, shows

that the billow propagation speed and growth rate are significantly more sensitive to

changes in δ and a1/(h1 +h2) than the billow wavelength is. Reasonable agreement with

the results of Fructus et al. (2009) is seen throughout.

Barad & Fringer (2010) also presented a linear stability analysis of their model. In

their work F is equivalently defined as F = max(σi)Tw/ 1 − cr/cp where max(σi) is
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Figure 16. Non-dimensional amplitude a1/(h1 +h2) versus (a) billow propagation speed cr/c0,

(b) billow growth rate γ(h1 + h2)/c0, (c) amplification factor F and (d) billow wavelength

λi/h2. h2/(h1 + h2) = 0.286 and h3/(h1 + h2) = 4.285. The different symbols correspond to

different values of the smoothing distance δ = 0.0025 (x), 0.005 (△), 0.01 (*). The black dot

and associated vertical error bar is taken from Fructus et al. (2009). Values are plotted for the

perturbation with maximum temporal growth rate.

the maximum growth rate and Tw, is the period in which parcels of fluid are subjected

to Ri < 1/4. Barad & Fringer (2010) and Troy & Koseff (2005) predicted that ISWs

and progressive interfacial wave trains respectively, will develop instabilities when the

non-dimensional growth rate exceeds a critical value of σ̄cTw = 5, where σ̄c is the critical

average growth rate over Tw. Barad & Fringer (2010) suggest that a critical bound
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of σ̄cTw = 1 can be inferred from the data presented in Fructus et al. (2009). They

hypothesize that the smaller threshold in Fructus et al. (2009) may be due to disturbances

present in the laboratory. However, figure 16 (c) shows that F is sensitive to the sharpness

of the pycnocline (δ) and the amplitude of the wave. In addition, it was shown in §4.2

that the stability of the system is very sensitive to the structure of the background

stratification. Barad & Fringer (2010) did not take account of such variations and hence

the differences in thresholds between their work and that of Fructus et al. (2009) is more

likely to be due to differences in the structure of the undisturbed density field.

For completeness, figure 17 is included to show how (a) the billow propagation speed,

(b) the billow growth rate and (c) the billow wavelength vary respectively, with h2/(h1 +

h2) and h3/(h1 + h2) for the same data set as in figures 9 to 12. They show that as

the non-dimensional pycnocline thickness is increased the critical billow propagation

speed required for instability increases (after an initial small decrease) while the crit-

ical billow growth rate and wavelength required for instability decrease. Moreover, as

the non-dimensional thickness of the lower layer increases the critical billow propaga-

tion speed required for instability tends to decrease while the critical billow growth rate

and wavelength required for instability increase respectively. A thorough investigation of

how the non-linear billow characteristics vary with background stratification and wave

amplitude is beyond the scope of the current paper. This issue will be addressed in a

forthcoming paper in which a combined laboratory and numerical study will investigate

the structure, evolution and mixing properties of shear-induced billows in ISWs. Note

that Barad & Fringer (2010) presented three-dimensional simulations which indicated

that the primary instability in their work was two-dimensional. The same result is en-

visaged here and hence the stability bounds presented in §4.2 and figure 17 are expected

to be representative at the point of onset of instability.
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Figure 17. Stability diagram for different values of the lower layer thickness, h3/(h1+h2) = 3.35

(⋄), 4 (∗), 5.67 (×). (a) billow propagation speed cr/c0, (b) billow growth rate γ(h1 +h2)/c0 and

(c) billow wavelength λi/h2 versus non-dimensional pycnocline thickness h2/(h1 +h2). Symbols

joined by a solid/dashed line denote stable/unstable observations respectively. Values are plotted

for the perturbation with maximum temporal growth rate.

6. Summary and Discussion

A numerical method for simulating shear-induced instabilities in an ISW has been

presented. The work focused on ISWs propagating in a three-layer fluid in which a lin-

early stratified pycnocline was sandwiched between homogeneous top and bottom layers.

The results showed that the stability of an ISW is very sensitive to the ratio of the layer

depths in the background stratification and the sharpness in transition between the three
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layers. In particular, it was shown that the critical amplitude and Richardson number

required for instability are functions of h2/(h1 +h2) and h3/(h1 +h3), where h1, h2, and

h3 are the thicknesses of the upper, middle and lower layers respectively. Hence it was

shown that a condition for instability based solely on a minimum Richardson number,

as suggested by Barad & Fringer (2010) for example, is not sufficient. It was shown, in

general, that a bound for stability, whether it be based on wave amplitude, Richardson

number or any other suitable parameter, is always a function of the undisturbed back-

ground stratification. Similar results have been found for parallel shear flows dating back

to the work of Miles & Howard (1964). A summary can be found in Turner (1980).

Moum et al. (2003) have observed unstable ISWs propagating shoreward over Oregon’s

continental shelf. By assuming streamlines parallel to isopycnals, they were able to infer

velocity profiles from which they concluded shear-induced instabilities were the cause

of the unsteadiness in their waves. The background parameters for the unstable waves

that they observed were h2/(h1 +h2) ≈ 0.333, h3/(h1 +h2) ≈ 6.267, and a1/(h1 +h2) ≈

1.333−1.667. The numerical results presented in figure 9 suggest that the waves observed

in Moum et al. (2003) should have been stable. However, the background stratification

in Moum et al. (2003) was multilayered and the waves did not propagate into quiescent

flow. In the numerical simulations the background fields were three layered and quiescent.

Both of these differences are expected to have a significant affect on the stability of the

system and hence may explain the discrepancy between the numerical simulations and

the observations of Moum et al. (2003).

Another significant point to note in the observations of Moum et al. (2003) is that

the wave-induced horizontal velocity was close to the wave speed. In such instances, so

called convective instability is expected to be present. Convective instability in ISWs

takes the form of small-scale overturning, and it has been shown in the laboratory that



38 M. Carr, S. E. King and D. G. Dritschel

it may aid shear-induced instability in ISWs, see Carr et al. (2008). For convective in-

stability to occur the Brunt-Väisälä frequency must be non zero. A configuration like

that presented here but in which the Brunt-Väisälä frequency is nonzero in the upper

layer was considered in King et al. (2010). It is well known that the steady state form

of ISWs propagating in such a configuration can have closed streamlines associated with

them (Brown & Christie 1998; Fructus & Grue 2004). Open questions remain on how

such closed streamlines should be modelled, see Helfrich & White (2010) and King et al.

(2010). A detailed numerical and experimental study of this problem is proposed as fu-

ture work with a view to understanding how convective instability may effect ISWs in

the ocean.
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