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Abstract

Galaxies are vast systems which contain stars, gas, and dust, spiralling under the influence

of gravity. On human timescales they appear constant and fixed, however these systems are

in motion – moving internally at vast speeds, and evolving through life stages. This work

considers how the combination of multiwavelength observations can be used to understand

these dynamic systems.

For decades, our observations of the motions of stars in these systems have not matched

those expected based on the visible matter which is seen to be present. This has necessitated

the inclusion of a dark matter component in our theory of galactic structure. This component

cannot be directly observed, however dynamical modelling offers an avenue through which

the properties of this can be derived. In this work, I use dynamical modelling to aid in the

study of a population of galaxies known as red geysers. These galaxies may offer direct signa-

tures of large scale outflows in galaxies which are needed in our theoretical framework to ex-

plain how galaxies stop forming new stars. Through this, more evidence was produced which

points towards these galaxies exhibiting large scale outflows. Further, I then use dynamical

modelling to explore the dark matter content of galaxies, and develop a novel method which

incorporates cold gas observations into the process in order to better constrain the dark matter

parameters. This method is shown to improve the modelling outcomes, and is an important

proof-of-concept test to highlight the potential for future work using cold gas kinematics in

dynamical models.

Galaxies are composed of their stellar populations contained within, and the evolutionary

processes we see hinge on how these populations are affected. Some of the most extreme

evolution processes are seen in so-called jellyfish galaxies, which are experiencing external

environmental pressure as they fall into dense cluster environments. The final section of this

work presents evidence of ongoing quenching taking place asymmetrically in a sample of these

galaxies, demonstrated by spectral signatures of post-starburst formation histories on their

leading edges. Using multiple data sources, I make the argument that this effect is being

caused by the progressive compression and stripping of gas due to the external pressure.
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1
Galaxies in a Dynamical Context

Suggested listening: I’m Having A Good Time by Skip Church

1.1 Galaxies

Galaxies are some of the most beautiful structures known to us, and shine out as islands of light

and matter in the vast dark emptiness of the Universe. From afar they appear serene, and on

Chapter image: Andromeda, NASA/Robert Gendler
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Chapter 1. Galaxies in a Dynamical Context

human timescales, permanent and unchanging. However galaxies are dynamic environments

on astronomical timescales. Their structure, formation and evolution are long studied topics,

but still a field which throws up problems large enough to challenge our current understanding

of the whole Universe and the physics therein.

Figure 1.1: The Milky Way is prominent in
the southern night sky, and the dark patches
caused by dust obscuration within the disk
have their own places in sky lore of other cul-
tures, including the Great Emu of aboriginal
peoples’ skylore. Image credit: Wikimedia
Commons / Barnaby Norris, 2007.

Being prominent in the night sky, our own

galaxy, the Milky Way, has been the subject

of study since ancient times, across many cul-

tures (Danezis et al., 2010; Carolina Sparavigna,

2013). In the southern hemisphere, the dark

night sky is dominated by the Milky Way and

the Small and Large Magellanic Clouds (SMC,

LMC), and this is reflected in the traditional sky-

lore of the indigenous peoples there. In South

Africa, among some peoples, the LMC and SMC

are named "Famine" and "Plenty" in their lan-

guages, reflecting their use to predict rainfall –

during times of drought, the SMC would be obscured by dust while the LMC would remain

visible due to its greater brightness (Medupe, 2015). In Australia, where Aboriginal people

discovered variable stars thousands of years prior to western science discovering them only

200 years ago (Hamacher, 2018), the LMC and SMC are told by some to be the camps of an

elderly man and woman, called Jukara, who are too old to gather their own food, but have

support from other "star people" who catch fish from the river of the Milky Way, and bring

them to be cooked on their campfires (Filipovic et al., 1996). In other Australian sky cultures,

such as that of the Yaraldi people of the Lower Murray region, the LMC and SMC are iden-

tified as emus – ancestors of the great emu which is seen as a dark patch across the western

part of the milky way (see Figure 1.1; Clarke, 2016). Descriptions, stories, and guidance from

extragalactic sources like the LMC and SMC are countless across human history, and central

to many cultures, but cannot be covered in this work. I direct the reader to the sources above,

and further reading within. As far back as the 10th century, there are recorded observations

from Persian astronomer al-S. ūf̄ı noting and describing Andromeda and the Large Magellanic

Cloud (Kunitzsch, 1987; Hafez et al., 2011). It would be centuries however before the signifi-

cance of these observations were realised – that Andromeda was the same type of object as the
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1.1. Galaxies

Milky Way simply viewed externally, and the implication that we exist in one galaxy among

trillions of others (Conselice et al., 2016).

Now, over 1000 years later, with almost unrecognisably advanced observational equip-

ment, powerful computational simulations and the advancement in our understanding of fun-

damental physics, we have a much clearer picture of what galaxies are, how they form, how

they change, and how they interact with the wider Universe. In order to understand galax-

ies fully, we have to call upon advancements in knowledge of astrophysical processes at all

scales. Galaxies act as a crossroads for physics and astronomy, their existence and evolution

depending on the interplay between the smallest scales (stellar physics and the nuclear pro-

cesses therein), and the grandest (the cosmic structure of the Universe). While much of our

knowledge in these areas is built up independently, galaxies offer an ideal testing ground for

our theories, as they depend so much on such a wide range of physics. Indicative of this, de-

spite extremely precise predictions in many of these areas, we still encounter problems when

we bring them together on galactic scales. There are still many unanswered questions and

troubling misalignments between the way we expect things to behave and what we observe.

When we look at the demographics of galaxies, it has been well established from early

in the history of modern extragalactic astronomy (Hubble, 1926) that they exist in a largely

bimodal population. When distributed in colour-stellar mass (or colour-luminosity) space,

a clear separation becomes apparent between what is known as the "red sequence" and the

so-called "blue cloud" (Brammer et al., 2009). This is illustrated schematically in Figure 1.2

(taken from Schawinski et al., 2014), alongside the area in between which is known as the

"green valley". The galaxies inhabiting these distinct regions differ in many key ways.

Morphologically, the blue cloud is the home of spiral (late-type) galaxies. These exhibit

structured spiral shapes, and have distinct dynamical structures, with an extended flat disk

of stars orbiting circularly in the same plane, and a more bulging structure nearer the centre

where more elliptical, dynamically-hot orbits dominate. They shine bluer due to populations

of young massive stars from recent/ongoing star formation. This star formation is fuelled by

vast amounts of cold hydrogen gas which exist in a flat rotating thin disk extending beyond

the region occupied by stars (Bland-Hawthorn, 1997).

Meanwhile the red sequence is generally populated by early-type galaxies (elliptical and S0

type) which lack the disky spiral structure, appearing disordered and kinematically hot with

3



Chapter 1. Galaxies in a Dynamical Context

Figure 1.2: Schematic from Schawinski et al. (2014) illustrating the distribution of galaxies in the
colour-stellar mass space, and showing the distinct regions inhabited by the "red sequence", the "blue
cloud" and the "green valley".

elliptical orbits dominating throughout. The redder appearance of these galaxies is due to

the absence of ongoing star formation, leaving only older stellar populations as the short-

lived blue population dies and is not replenished. This was traditionally attributed to elliptical

galaxies being completely bereft of gas, however recent radio studies have shown that this is

not the case (Demoulin-Ulrich et al., 1984; Binette et al., 1994; Morganti et al., 2006a; Serra

et al., 2012). Nonetheless, the fraction and surface density of gas in elliptical galaxies is still

below that found in spiral galaxies and so it is generally accepted that the differences in star

formation are due in part to the variation in gas content between the two populations (Grossi

et al., 2009), alongside the essential impact of processes which prevent the gas present from

cooling (Ciotti & Ostriker, 1997; Benson et al., 2003; Rafferty et al., 2008; Conroy et al., 2015).

The existence of green valley galaxies which inhabit the region between the two other

populations has been understood in the context of a time sequence between spiral galaxies and

elliptical galaxies (Coenda et al., 2018). The star formation in spiral galaxies ends, causing the

youngest blue stars to cease to be present as they die off and are not replaced, and this starts

the transition to the red sequence. Following this scenario, the galaxies in the green valley

represent galaxies in the process of this transition. Generally, it is believed that a hierarchical

evolution occurs with spirals merging together; disrupting their structure, turning them into
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elliptical galaxies; and disrupting gas reservoirs causing them to undergo quenching during

this process (Kauffmann et al., 2006; Gabor et al., 2010; Pontzen et al., 2017; Poggianti et al.,

2020). However, the picture is not so simple. Evidence has also shown that the green valley

population is best fit by not one but two gaussians (Jin et al., 2014), which would suggest there

is more than one physical process at play (Schawinski et al., 2014; Nogueira-Cavalcante et al.,

2019). The existence of red spirals (Masters et al., 2010) highlights the importance of secular

processes in the cessation of star formation, as this population has stopped star formation

but not lost their disk structures through merging. Equally, populations of blue ellipticals

(Schawinski et al., 2009) illustrate that star formation can continue despite morphological

disruption. It has also been shown that the transition from the blue cloud to the red sequence is

not necessarily a unidirectional process, with some galaxies moving from the red sequence back

into the green valley as star formation is rekindled (Salim, 2014). The processes determining

the evolution of a galaxy through its lifetime are complex and multifaceted, and cannot be

simply explained through external appearances alone.

While we began to classify galaxies and explain the demographics of the galaxy population

on a global scale through an evolutionary sequence, the study of the internal properties of

galaxies also brought to light questions about wider physics. As our ability to observe the

kinematics of the Milky Way and nearby galaxies grew, evidence began to accumulate which

pointed towards a key missing ingredient in what we knew of galaxies.

1.2 Dark Matter

In the 1920s, kinematic studies of the local stars in the Milky Way showed that their motion

was not directly in agreement with the mass which could be accounted for by observations

(Kapteyn, 1922; Jeans, 1922). This led to the coining of the phrase "dark matter" to refer

to mass which is inferred to be present by motion, but cannot be directly detected by any

observations.

For decades the idea that there was a vast fraction of the mass in the Universe which we

could not account for in any way was not generally accepted (not least because the implications

of this were inherently uncomfortable for many), however evidence slowly accumulated from

many independent sources.

Studies of motions in galaxy clusters in the 1930s revealed that the orbital velocities were
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ten times higher than could be accounted for by the visible matter in the cluster (Zwicky, 1933;

Andernach, 2017, for English translation). Without the presence of a large quantity of dark

matter, these clusters would be torn apart.

In the 1960s, 21cm observations of the Andromeda galaxy (M31) showed that the neutral

hydrogen continued far beyond the edge of the optical component of the galaxy, and crucially

the rotation curve at these large radii was flat, instead of decreasing as implied by the distri-

bution of visible matter and our understanding of gravity. This pointed to a mass to light ratio

of ∼ 20 in M31 overall, with the region beyond the edge of the stars being dominated by this

invisible mass (Roberts, 1966).

In the 1970s, Vera Rubin produced strong evidence from galactic dynamics for dark matter.

The data on the rotation curve of M31 was improved further as it was derived for both optical

data and radio data out to 30 kpc (Rubin & Ford, 1970) and rotation curves were derived for

diverse samples of spiral galaxies (Rubin et al., 1978, 1980; Rubin, 1983). Throughout, the

mismatch between the distribution of light from optical images and the distribution of mass

inferred from the rotation persisted, and the rotation curves were all found to be flat in the

outermost regions.

Simultaneously, the first redshift surveys began to map the distribution of nearby galaxies.

At the time, contemporary cosmology predicted that galaxies were distributed randomly. The

early results from the Centre for Astrophysics (CfA) redshift survey showed that galaxies follow

a structured distribution which traces overlapping filamentary lines in a web-like structure,

with vast empty voids in between (de Lapparent et al., 1986, see Figure 1.3). This could not

be accounted for by the gravitational clustering of matter as it was understood at the time, and

required the Universe to be dominated by non-baryonic matter which allowed the clustering

to happen faster than baryonic matter.

As these independent sources of evidence piled up, all converged and pointed to the ir-

refutable conclusion that there was a significant fraction of the mass in the Universe which we

could not account for with matter as we knew it.

Our current understanding of the Universe, the standard ΛCDM cosmological model, in-

corporates dynamically cold dark matter as a key component (Blumenthal et al., 1982). In this

model, dark matter is hypothesised to be a weakly interacting non-baryonic particle. After the

Big Bang, the Universe expanded and large scale structure began to form through gravitational
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1.2. Dark Matter

Figure 1.3: Summary plot from Springel et al. (2006) which shows large scale structure generated from
simulation in the right and lower quadrants in red, compared with the observed large scale structure
from two different surveys in the left and upper quadrants in blue and purple.

clustering around small perturbations in the matter density. As cold dark matter (CDM) is non-

baryonic and doesn’t interact dynamically, the underlying dark matter structure could evolve

and collapse more quickly than the baryonic matter into filaments and knots and concentrated

haloes of dark matter. As such, dark matter forms a sort of scaffolding for the Universe in

the form of the Cosmic Web. It was this interconnected tangle of filaments which was seen to

be traced by the distribution of galaxies in the redshift surveys. Due to the deeper potential

wells generated by the dark matter concentrated in the knots and haloes where the filaments

overlap, baryonic matter then fell into these regions, and it is here that galaxies begin to form

(Einasto, 2009).

By running dark matter only simulations of the formation and evolution of the large scale

structure, the exact cosmological parameters required to reproduce observations were pinned

down (Davis et al., 1985) and the current paradigm of ΛCDM cosmology began to be widely

accepted.

These dark matter haloes offered a solution to the problems seen in galactic dynamics. As

stated in White & Rees (1978), it is now understood that "every galaxy thus forms as a concen-

trated luminous core embedded in an extensive dark halo". When simulated with dark matter

alone, the structure of the haloes follow a universal radial density profile known as an NFW
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profile (Navarro et al., 1996). As these haloes extend far beyond the luminous components,

they offered an explanation of the flat rotation curves seen in the outskirts of galaxies where

the dark matter would become most dominant. Simulations however are only as valuable as

their ability to be tested against observations, this is crucial to establishing their accuracy and

validity of the underlying physics. In this case, the form of these curves would depend on

the structure of the haloes and behaviour of the dark matter, and so galactic dynamics allow

observational tests of the simulated dark matter physics.

The ΛCDM model has been one of the most rigorously tested theories in scientific history,

and on cosmological scales has proven to be extremely accurate (Bull et al., 2016). This is

perhaps epitomised by the 2015 results from the Planck Collaboration which measured the

parameters of the cosmological model describing the Universe to unprecedented accuracy,

and found them to remain concurrent with theory (Ade et al., 2016). However the picture is

still far from complete.

Despite the irrefutable evidence, we still do not know the nature of dark matter. The

search for candidate particles has not yet succeeded. Alternative theories such as modified

gravity (which posits that dark matter does not exist but accounts for the observational ev-

idence through changes to how we understand gravity to work) still persist, though equally

cannot fully explain all observed phenomena. On galactic scales we still encounter observa-

tional problems (Weinberg et al., 2015). One of the most striking of these is the apparent

divergence from NFW profiles in the centre of dwarf galaxies, known as the cusp-core prob-

lem (de Blok, 2010). While simulations predict the halo density to peak sharply in the centre,

observations have indicated a region in the centre of constant density (a core). Further, the

so-called "missing satellite problem" describes the issue of simulations predicting hundreds of

small subhaloes in the structure of haloes, whereas observationally we can only account for

a dozen around the Milky Way (Klypin et al., 1999). These problems present a great chal-

lenge to our understanding of dark matter and the cosmological model. Attempts have been

made to explain them through baryonic feedback affecting the dark matter distribution and

gas accretion (Pontzen & Governato, 2012), or the problems could indicate more complex

new physics relating to the behaviour of the dark matter itself (Egana-Ugrinovic et al., 2021;

Paduroiu et al., 2015; Iwanus et al., 2017). As hydrodynamic simulations attempt to replicate

these effects through changes to baryonic feedback physics or changes to dark matter physics,

precise and accurate observations are essential. One key measurement is the dark matter (DM)
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fraction of a galaxy, and ideally the spatially-resolved equivalent: the DM distribution. These

quantities can be recovered through dynamical modelling.

1.3 Dynamical Modelling

Dynamical modelling is an incredibly useful tool for understanding the structure of a galaxy.

In essence, the technique takes the distribution of light in a galaxy and uses this to infer the

distribution of mass, and then predicts the motions which would be expected for this distri-

bution, conditional on some other parameters. As galaxies contain a dark component, this

prediction directly from the luminous mass fails to match the observed motions, and hence

theoretical distributions of dark matter are often included in the "other parameters" part of

the model in order to measure a dark matter distribution.

Within this general description, there are many types of dynamical modelling methods,

each with their own advantages and disadvantages, in general they are grouped into two

camps – one which handles Jeans equations and deals with the integrals of motion in bulk,

and one which treats the system as a superposition of different orbits. Made to measure (M2M)

and Schwarzschild methods belong to the second camp. These methods work to build detailed

models of the gravitational potential of the system based on the mass distribution, tied to the

light distribution and a dark component added. Then, in the case of the Schwarzschild method,

generate a library of possible orbits in this potential; or, in the M2M method, create an n-body

simulation of particles in the potential. These are then weighted and matched to reproduce the

observed surface brightness distribution and the kinematics (Schwarzschild, 1979; Thomas,

2010). These models offer great accuracy and can model more realistic systems with triax-

ial potentials (van de Ven et al., 2008; van den Bosch et al., 2008), however are expensive

and require deep observations of the kinematics of the system. This limits the number of sys-

tems to which this can be applied, however exhibit great successes where they are applicable

(Cappellari et al., 2007; Kormendy & Ho, 2013; Yang et al., 2019; Santucci et al., 2022). In

contrast to this, Jeans modelling requires only the lower order kinematic moments – the line of

sight velocity and velocity dispersions – and so can be applied more widely to systems where

this is available. Jeans modelling uses the equations of stellar hydrodynamics introduced in

Jeans (1915), and directly integrates these for a given distribution function. However in order

to make the integrals involved solveable, the potentials modelled require some restrictive as-

sumptions such as axisymmetry, which limit the systems which can be modelled. This method
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is described in detail in Section 2.6, as it is the method expanded upon in this thesis.

Dynamical modelling methods have been used successfully for decades to expand our un-

derstanding of galactic structure and mass content (Cappellari, 2015), and have been ex-

panded upon by the inclusion of different tracers to allow more deep exploration into the

dark matter potentials. For example the use of stellar kinematics combined with discrete trac-

ers like globular clusters (Napolitano et al., 2014; Zhu et al., 2014, 2016) and/or planetary

nebulae (Tremblay et al., 1995; Zhu et al., 2016), or continuous tracers like cold molecular

gas (Tsukui et al., 2020) or neutral hydrogen (Yang et al., 2019). In the case of the use of

continuous tracers, these have required resolved observations of the kinematic maps for these

components, which are not available for a wide sample of galaxies. Unresolved observations of

neutral hydrogen in galaxies are widely available (Haynes et al., 2011, 2018; Koribalski et al.,

2020), and still contain information about the global cold hydrogen kinematics which can help

in informing dynamical models. This could allow constraints on the dark matter halo of galax-

ies through tracing the potential at greater radii, while still being applicable to a statistically

significant sample of galaxies. The potential information available in unresolved observations

of cold gas in galaxies is detailed in Section 2.3, and in Chapter 4 I introduce and apply a

method which combines Jeans modelling with unresolved neutral hydrogen observations.

Dynamical models deal with the dynamics of a galaxy in the moment that we observe

them, which remain constant in the human timescales on which we view them, but by their

very nature on longer timescales galaxies are evolving and changing.

1.4 Galaxies as Ever-Changing Dynamic Systems

If we consider a finite box in the Universe containing a finite amount of gas, and a finite amount

of dark matter, we can give an overview of how a galaxy would move through its life stages if

it were in complete isolation.

Under the influence of gravity, the material present would begin to cluster and collapse.

As dark matter interacts only through gravity and doesn’t collide or experience pressure, this

component is able to condense and collapse more quickly than the gas which heats through

pressure and and collisions as it collapses. The collapse of the dark matter component deep-

ens the gravitational potential well, and allows the collapse of the baryonic gas component

to occur more quickly than if the gas was present alone. We see evidence for this when we
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look at how quickly structure is able to form in the history of the Universe – without a dark

matter component, the material to create galaxies would not be able to cluster as quickly as

we observe (Frenk & White, 2012). As the gas falls into a deepening potential well, it heats

up, which slows the collapse process and prevents the gas from reaching the temperatures and

densities required to form stars – this occurs through equilibrium between the gravitational

forces encouraging collapse, and the thermal pressure resisting collapse. Further, as the gas

is collisional, these collisions in the vertical plane leads to the gas collapsing into one plane

as a thin rotating disk (Binney & Tremaine, 2008). As this accretion process continues, in-

stabilities in the gas (Toomre instabilities, Parker instabilities, Kelvin-Helmholtz instabilities,

etc: Toomre, 1964; Parker, 1966; Murray et al., 1993) cause the breakdown of equilibrium,

and allow cooling through shocks, and the formation of dense clumps in the gas medium.

These clumps can condense enough to collapse on themselves and form molecular gas clouds

(HII regions), finally reaching densities required for stars to form – seeing the central core

heat up enough through pressure that fusion can begin. Stars form in the medium accord-

ing to an initial mass function which is set by the fragmentation process of the clouds (still a

topic of research; Padoan & Nordlund, 2002; Larson, 2003). Depending on their mass, stars

evolve through different life stages according to stellar evolution (beyond the scope of this

thesis, see: Bodenheimer, 2003; Beccari & Carraro, 2015). Lower mass stars generate lower

temperatures and appear more red due to their blackbody spectrum, and have long lifespans;

while high mass stars generate higher temperatures and appear more blue, living consider-

ably shorter lifespans. During their lifetimes, stars generate new nuclear elements through

nucleosynthesis, ejecting some of these in stellar winds, and changing the interstellar medium

(ISM) from just hydrogen into a mix of elements (Hensler, 2014). Further, the radiation gen-

erated by stars heats and ionises the ISM, creating a complex multiphase ISM (McKee, 1995).

Massive stars reach their end through supernovae explosions which release vast amounts of

energy into the surrounding ISM, heating and removing gas from the nearby regions through

feedback. This feedback acts to slow star formation due to the injection of energy which acts

against further cooling. Further feedback effects would impact our galaxy from AGN activity

in the central regions (Bourne et al., 2014). Here, the density of material has become so high

that there is a supermassive black hole present. When this object accretes material, it radiates

vast amounts of thermal energy which heats the surrounding area, and can launch large scale

jets which mechanically removes material from the system (Fabian, 2012a). In our idealised
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Figure 1.4: From Tumlinson et al. (2017). An illustrative schematic of the gas cycle in galaxies through
the circumgalactic medium (CGM). A galaxy is fed by filamentary accretion of fresh gas from the in-
tergalactic medium (blue), while outflows remove gas from the disk in pink and orange, and pink gas
shows ejected gas being re-accreted. The purple background tones represent the diffuse gas halo, which
is a mixed contribution of all these sources.

finite box with finite material, this "galaxy" would continue to evolve through generations of

massive stars living and dying, injecting their material and energy into the ISM, before this

material cooled again and cycled into more stars. Star formation would also be impacted by

periodic eruptions of feedback from the AGN. These effects together create the gas cycle we

see in galaxies (see Figure 1.4), where gas is recycled. Gas would be cycled from existing

in the ISM, to being used in stars, to being ejected into the circumgalactic medium (CGM)

by feedback processes, before cooling again back to the ISM – becoming more metal-rich each

time through nucleosynthesis. Eventually, in the absence of new gas being accreted, the system

would run out of hydrogen gas to fuel new generations of stars, and the underlying population

of long-lived low-mass red stars would remain. Without further injection of fresh hydrogen gas

into the system, this would leave a "red dead" galaxy as we see in the galactic demographics.

However galaxies in the real universe do not exist in isolated finite boxes, and as such

can be considered to have fresh gas available to accrete. This allows galaxies to continue to

form stars past the depletion of their original reserves, but is also balanced by gas which is

not recycled but is fully removed from the potential well and lost to the surroundings. This
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raises the question of how galaxies remain quenched when there is still gas available – this is

addressed, in part, in Chapter 3. Also, there is the question of morphological evolution – ie.

the change from spiral disks to spheroidal ellipticals. This is difficult to address for a galaxy

in isolation, though there are some secular processes such as bar formation which thicken the

disk and lead to more elliptical morphologies (Gadotti, 2009, 2011; Kormendy, 2013, 2016).

1.5 Environmental Effects

In the real Universe, galaxies exist as part of a full ecosystem, with their environment – the

local Universe around them – varying greatly from galaxy to galaxy. Some exist in dense

clusters, interacting with many other galaxies; some are in smaller group environments; while

others are isolated in the field. Many features of galaxies are seen to correlate with their

environmental density, which is why we observe environment to be one of the leading factors

in determining the evolutionary path of a galaxy, and how they quench, as galaxies interact

with their surrounding structures (or lack thereof).

Galaxies in low density environments, which lack sources for new gas (Aragon Calvo et al.,

2019), suffer from starvation. This is the closest to our idealised finite box situation described

above. With the absence of a supply of fresh gas, these galaxies simply deplete their gas

reservoirs until no new stars can form. Further, with no nearby galaxies to interact with, these

galaxies avoid any external evolutionary factors such as merging and harassment, and evolve

secularly. These are often distinct from those affected by other quenching mechanisms, such

as interactions, as their disk structures are preserved Masters et al. (2010).

Galaxies existing in more dense environments where new gas is available either through

cold streams or through interactions with other galaxies, are replenished with fresh gas. The

effects in these regions are multifaceted. While there is more gas being fed to galaxies here

which can fuel further star formation and avoid starvation Darvish et al. (2014), the newly

accreted gas can shock as it enters the galaxies and feed directly to the central SMBH (Dubois

et al., 2013). This triggers AGN feedback which can quench star formation through heating and

ejecting gas. Further, the motion of the galaxies relative to any gas in the nearby environment

has been shown in simulations to be able to cause stripping of the gas due to the Kelvin-

Helmholtz effect at the edge of gas disks, and ram pressure stripping effects removing gas from

the system (Winkel et al., 2021). In these more dense environments galaxies also interact more
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often with other galaxies – whether through glancing blows defined as "harassment", which

perturbs the distribution of material in a pair of galaxies, affecting star formation, adding

non-axisymmetric structures, and disrupting disks (Moore et al., 1996; Bialas et al., 2015); or

through major mergers, which have the effect of providing new gas to fuel star formation, but

also heating and removing gas reservoirs, and catastrophically disrupting disk morphologies

(Struck, 1999; Lambas et al., 2012; Ellison, 2019). Indeed, we see observationally that galaxies

with closer proximity to denser filaments tend to be more likely to be quenched than those

further away (Chen et al., 2017; Kraljic et al., 2018), though some studies show that galaxies

become more massive nearer filament centres while remaining bluer than those in denser

cluster environments (Lee et al., 2021).

The trend of denser environments hosting a higher fraction of quenched galaxies extends

to the densest of environments – clusters. In these environments, galaxies suffer not only the

harassment and merging seen at intermediate densities, but the intracluster medium (ICM)

hosts hot dense gas which has heated due to collapse into the cluster potential, and has also

been heated due to the processes which have expelled this gas from galaxies in the cluster –

high metallicities in the ICM are a consequence of the gas being ejected from galaxies. This

gas is hot enough to emit in the x-ray regime, allowing us to observe its high density (Sarazin,

1986). A consequence of the density and velocity dispersion of this gas is the effect of ram

pressure stripping (RPS) on galaxies which are infalling into the cluster environment. These

galaxies are not in virial equilibrium with the cluster, so often have extremely high velocities

relative to the cluster – this, combined with the density of the medium, generates a pressure

force on the material in the infalling galaxy. This force is proportional to the density of the

medium and the relative velocity and causes the heating and removal of material from the

galaxy, most strongly affecting the most diffuse elements, pushing the material out of the

system and into a trail behind the galaxy. Sometimes this effect is so extreme that the material

left in the tails is dense enough to be observed, and even so dense as to host star formation

outside the galaxy (Kenney & Koopmann, 1999; Roediger, 2009; Poggianti et al., 2017, 2019a;

Gullieuszik et al., 2023; Giunchi et al., 2023; Waldron et al., 2023). These systems are known

as "jellyfish" galaxies, and the study of the quenching process in these is the subject of Chapter

5. This, along with the other consequences of existing in a cluster environment, leads to a

much higher rate of quenching for galaxies in these environments.
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1.6 Spatially Resolved Evolution

Based upon the presence or lack of certain emission lines, absorption lines, and other spectral

features, we can determine the evolution stage of a galaxy – and with resolved observations, we

can do this for spatially resolved parts of a galaxy (Wilkinson et al., 2015). As more massive,

hotter, bluer stars have a shorter lifetime than less massive, redder stars, their presence is an

indicator of recent star formation – with the signatures of the most massive stars being signs

of current ongoing star formation. This is the most simple inference we can make, however

this technique expands to full spectral modelling of the spectral energy distribution (SED) for

a spaxel of a galaxy. This uses a library of possible template spectra from different masses,

ages, and metallicities of stars, and fits the observed spectrum with different weights of these

templates in order to infer the underlying stellar population which has produced the SED. This

allows a determination of the age of the population, the metallicity, and the star formation

history (SFH) of the region (Conroy, 2013). This is an invaluable tool which allows studies of

how quenching takes place in galaxies spatially, and how this varies for galaxies in different

environments with different histories – helping understand which different processes cause

quenching.

Beyond just classifying spaxels as star forming or quenched, this also allows the speed

at which the quenching has occurred to be taken into account – this leads to a specific clas-

sification known as "post-starburst" (PSB Tran et al., 2004; Quintero et al., 2004; Le Borgne

et al., 2006; Kaviraj et al., 2007). These regions have spectral signatures which show that they

have undergone a recent burst in star formation before rapidly quenching, and are of partic-

ular interest to understanding processes which could cause rapid shutdown of star formation

(Dressler & Gunn, 1983; Wild et al., 2009; Chen et al., 2019a) – often indicating environ-

mental processes (Li et al., 2023). There have been studies which have noted that jellyfish

galaxies and other galaxies in clusters show signatures which suggest post-starburst star for-

mation histories (Poggianti et al., 2019a), and have looked at global spectra to indicate this.

Others have seen post-starburst signatures in the outer parts of disks as gas is stripped away.

This suggests that post-starburst classifications of spaxels in resolved observations of jellyfish

galaxies could illuminate the processes taking place. This is explored in a sample of jellyfish

galaxies introduced in Chapter 5 which exhibit PSB signatures in regions consistent with their

motion through a cluster.
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Chapter 1. Galaxies in a Dynamical Context

1.7 This Thesis

This thesis will describe and present the results of the work I have completed. This work fo-

cuses widely on understanding the structure and evolution of galaxies as dynamical systems,

through combining observational data of the stars in a galaxy with observations of other com-

ponents – for example, the gas.

In Chapter 2 I describe some methods which are used across the following Chapters, includ-

ing the basis for observations that are used, dynamical modelling methods, statistical methods

and spectral analysis. In Chapter 3, I use dynamical models to constrain the inclination of Red

Geyser galaxies in order to predict the shape of their spectral lines depending on whether the

observations we see are due to outflows or due to a rotating disk. In Chapter 4, I build upon

the use of dynamical models, this time adding a dark matter component, and showing proof

of concept for a novel method which incorporates cold gas observations in order to improve

the measurement of the dark matter content in a large sample of galaxies. In Chapter 5, I ex-

pand into considering the stellar populations and evolution of galaxies in cosmic time through

the study of post-starburst signatures in a sample of jellyfish galaxies – galaxies which are

experiencing extreme environmental effects due to infall into a dense environment. Finally, I

summarise the results of Chapters 3 - 5 in Chapter 6, discuss their implications, and set out

my vision for how these concepts can be built upon in future with the observations we have

currently and the observations we will have in the future.
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2
Observations, Methods, and Data

Suggested listening: O-o-h Child by Nina Simone

This chapter will set out the theory behind modelling methods, spectroscopic methods,

and tools which are used across multiple further chapters in this thesis. Sections 2.1, 2.2,

2.3 and 2.4 will describe the observational methods which generate the imaging data, optical

integral field spectroscopic (IFS) data, 21cm radio, and low frequency data used across the

Chapter image: Sloan 2.5m Telescope, SDSS
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Chapter 2. Observations, Methods, and Data

following chapters, and introduce the data used. Section 2.5 describes the multi-Gaussian

expansion (MGE) method of parameterising surface brightness distributions which is central

to mass modelling techniques. The Jeans Anisotropic Modelling technique is described in

Section 2.6, and the numerical fitting methods used to fit these models to data are described

in Section 2.7. Section 5.3.1 describes how spectral indices are used to identify signatures of

post-starburst star formation histories in galaxies. These methods are essential to the following

chapters, and so are explained here as they are threaded through the following work.

2.1 Astronomical Images

The most simple, and oldest, means of studying the night sky is through the use of our eyes.

Our eyes work by collecting photons, and focusing them on a focal plane so we end up with a

spatial map of surface brightness. Optical telescopes also act as photon collectors to enhance

what can be seen of the night sky by collecting more photons, and focus these images into

the focal plane to allow 2D projected distributions of surface brightness to be realised. In the

focal plane, these images can be recorded on photographic plates, or digitally recorded by

(charge coupled devices) CCDs which convert the photons collected into an electronic signal.

For extended objects such as galaxies, this is important to understand their morphologies.

Further, use of wavelength filters allow imaging to localise where certain energies of light are

coming from in a 2D image of an object.

2.1.1 DESI Legacy Survey

The DESI Legacy Imaging Survey (hereafter The Legacy Survey; Dey et al., 2019) is an optical

wide-field imaging survey, which was motivated by the need to provide targets for the Dark

Energy Spectroscopic Instrument Survey (DESI survey; Aghamousa et al., 2016). As the DESI

survey aims to spectroscopically measure redshifts of 35 million galaxies and quasars in order

to map large scale structure, many of the desired targets require greater imaging depths for

selection than previous wide-field surveys have provided (eg. SDSS and Pan-STARRS; Abaza-

jian et al., 2009; Chambers et al., 2016). The data generated by such a deep wide-field survey

also has wide-reaching secondary benefits and applications. In this instance, the provision of

deep imaging data for a large sample of galaxies which are also present in IFU surveys such as

MaNGA (see Section 2.2.1) is extremely useful for dynamical modelling, as we see in Chapters

3 and 4. As the modelling process relies on optical imaging to ascertain the surface brightness
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2.2. Integral Field Spectroscopy and Derived Quantities

Figure 2.1: Diagram from SDSS MaNGA illustrating the data products produced by integral field spec-
troscopy for one galaxy.From left to right: colour imaging of the galaxy, with the pink hexagon high-
lighting the region covered by the MaNGA IFU; map of the Hα emission which traces star formation,
this is seen to be stronger in the arms of the spiral galaxy; map of ionised gas velocity map showing
rotation; stellar velocity map showing rotation aligned with that of the gas; map of the spectral index
D4000 which quantifies the ratio of two parts of the spectrum, a proxy for stellar age as a higher D4000
value indicates an older stellar population.

of the galaxy, which is then used to approximate the stellar potential, deeper imaging is crucial

to ensure this element is accurate. Deep imaging is also key to capturing any diffuse disturbed

optical components in the outskirts of galaxies which are undergoing tidal disruption or ram

pressure stripping, such as jellyfish galaxies (as seen in Chapter 5).

The Legacy Survey is comprised of three imaging surveys conducted across three different

telescopes, providing g-, r-, and z-band optical images for use in target selection for the DESI

spectroscopic survey. These are the Beijing-Arizona Sky Survey (BASS; Zou et al., 2017),

the Dark Energy Camera Legacy Survey (DECaLS; Flaugher et al., 2015) and the Mayall z-

band Legacy Survey (MzLS; Dey et al., 2016). In this thesis, the work was conducted when

Data Release 9 (DR9) was the most current release of the survey, so all imaging used is from

this release. The images have a pixelscale of 0.27 arcseconds/pixel, and the point spread

function full width half maximum (PSF FWHM) is obtained manually for each image by fitting

a 2D gaussian to point sources in the field around the galaxy (on average 3.32 pixels, or ∼ 1

arcsecond). DR9 also includes a catalog for objects in the survey, with photometric quantities

such as fluxes and magnitudes. These quantities are used for verification checks in some of

the analysis performed in Chapter 4.

2.2 Integral Field Spectroscopy and Derived Quantities

One of the greatest advances in astronomy was the switch from simply "taking pictures" with

telescopes, to using spectroscopy to study derived quantities from the light emitted. This has

been taken even further through the use of Integral Field Units (IFUs) which allows a galaxy

to be split into multiple pixels in the field of view, with a spectrum produced for each pixel

(known as a "spaxel"). Each spectrum can then be used to derive physical quantities for each

spaxel (for example, the emission at certain wavelengths, the gas or stellar velocities, different
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Chapter 2. Observations, Methods, and Data

emission line indices, etc – see Figure 2.1 for examples), in essence mapping a chosen quantity

spatially across a galaxy. This has revolutionised studies of galaxies.

Optical telescopes can be considered as "photon collectors", and observations started from

this point. If a telescope is pointed at an astronomical object, photons can be collected and used

to infer a brightness or luminosity of the object. A step further than this used photographic

film or CCD detectors to collect photons from different points in the focal plane, and produce

a 2D distribution of photon counts – an image. This reveals the spatial distribution of surface

brightness in extended objects such as galaxies, and allows the morphology of these objects

to be studied. Many surveys have been conducted to image objects across the sky and were

revolutionary to our understanding of astronomy at their time (Lund & Dixon, 1973; Skrutskie

et al., 2006; Abazajian et al., 2009; Blanc et al., 2010; Cuillandre et al., 2012; Chambers et al.,

2016; Dey et al., 2019). Still, imaging is bringing key developments in our understanding of

galaxy evolution as we extend our imaging capabilities to high redshifts and the early universe

(Eisenstein et al., 2023; Williams et al., 2023). By pairing this technique with filters which

only allow certain wavelengths of light to pass through to the detector, different elements of

galaxies could be studied. For example, a narrow-band filter can be used to collect photons

of the wavelength corresponding to emission from ionised hydrogen, and this can be seen to

coincide with brighter areas of star formation (O’Dell, 2001). Building upon this, spectroscopy

takes the light collected from an observation and splits it finely by wavelength in order to

produce the spectrum of light collected. The spectrum of a star or galaxy shows the distribution

of energy emitted by the object as a function of wavelength, and allows access to quantities

which are not available from imaging alone – however, prior to integral field spectroscopy

(IFS), these observations lacked spatial resolution and would simply give the spectrum of the

whole object – or at least the central regions covered by the aperture of a single fibre – and

not how it changes over the object. Nonetheless, this still allows essential quantities to be

measured, such as redshift which is encoded in the shift of emission and absorption lines, or

velocity dispersion (i.e. the spread of velocities around the mean velocity) which is encoded

in the width of emission lines. Redshift surveys (Huchra et al., 1983; Huchra & Geller, 1991;

Hahn et al., 2023) revolutionised our understanding of large scale structure in the Universe

as they allowed the distribution of galaxies in 3D space to be fully realised for the first time.

Spectroscopy also allows information about the stellar populations of a galaxy to be derived,

such as star formation rates, through comparison of the spectrum to libraries of stellar spectra
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(Maraston, 2013).

Integral field spectroscopy combines these two strengths to allow spectroscopic informa-

tion to be recovered with spatial resolution. This has been implemented across many galaxy

surveys to produce detailed derived information for thousands of galaxies (de Zeeuw et al.,

2002; Bacon et al., 2010; Cappellari et al., 2011; Sánchez et al., 2012; Bryant et al., 2015). In

terms of dynamics, while unresolved spectroscopy allowed measurement of the line-of-sight

velocity dispersion, IFS dramatically increased the information available as we now have ac-

cess to the 2D internal kinematics of the systems, for stellar and gaseous components.

2.2.1 The MaNGA Survey

Particular to this thesis, the SDSS-IV survey Mapping Nearby Galaxies at APO (MaNGA; Bundy

et al., 2015) implements IFS technology using optical fibre bundles and a plate in the focal

plane of the 2.5m Sloan Telescope (Gunn et al., 2006). The system has 17 bundles which can

be used to observe multiple objects in the field of view in one pointing. The plates are uniquely

drilled with holes to cover targets in the field of view, and each hole is then fed a hexagonal

bundle of between 19 to 127 optical fibres (Drory et al., 2015) which cover the galaxy from

the centre out to 1.5 to 2.5 effective radii (Wake et al., 2017). Each spaxel placed across the

galaxy gives a spatial sampling of 1-2kpc, and observes a spectrum from 3600 Å to 10000 Å

with a spectral resolution of around 60km/s (Smee et al., 2013). With the final MaNGA data

release, the survey successfully observed 10,010 galaxies (Abdurro’uf et al., 2022), providing

an extremely significant sample for understanding galaxy evolution and dynamical modelling.

The spectra obtained from IFS observations must be analysed in order to derive physical

properties. In general terms, this is done using spectral fitting, and varies by survey. For the

purposes of this thesis, as I use MaNGA survey data for IFS data, I outline here how this is done

for this survey. MaNGA has its own data analysis pipeline (DAP; Westfall et al., 2019) which

generates the derived quantities. The DAP calculates the signal to noise ratio (SNR) and other

quality assurance quantities for the spectra, before spatially binning the data, measuring the

stellar kinematics, and fitting models to the emission lines to derive emission line properties.

In order to create accurate measurements of stellar kinematics, high SNR is required, and so

an adaptive binning scheme is used which combines spectra from nearby spaxels in order to

reach a chosen SNR of 10. This is the voronoi binning scheme, described in Cappellari & Copin

(2003). In order to fit the stellar kinematics and emission lines, the DAP uses the penalised
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pixel fitting (pPXF; Cappellari & Emsellem, 2004; Cappellari, 2017) method, which considers

the galaxy spectrum to be a superposition of different individual stellar spectra contained in

a library (in this case, the MILES stellar-template library; Sánchez-Blázquez et al., 2006;

Falcón-Barroso et al., 2011). These are convolved with kinematics and then fit to the observed

spectrum to give derived DAP quantities, which include 2D maps of kinematics (line-of-sight

velocity, and velocity dispersion), alongside equivalent widths and fluxes of different emission

lines. MaNGA IFU data are used in Chapters 3, 4, and 5, with the specific data products used

in each case described within.

2.3 Observing Hydrogen and Deriving Quantities

Figure 2.2: Schematic showing the set up of
a neutral hydrogen atom with one proton and
one electron, and the mechanics of the spin-
flip transition which allows it to emit at 21cm.
Source: Wikimedia Commons

Hydrogen is the most abundant chemical element

in the Universe, and is essential to galaxies as it

is the reservoir from which stars are formed. In

its simplest form, neutral atomic hydrogen (H I )

consists of a single proton and a single electron,

and this exists in many galaxies in a thin, regu-

larly rotating disk (Morganti et al., 2006b; Oost-

erloo et al., 2010). H I does not emit light in op-

tical wavelengths so cannot be observed with op-

tical telescopes, however the electron present in

the atom can inhabit two energy states defined by

the alignment of the electron spin with that of the

proton. When this electron changes spin (known

as a spin-flip transition), a photon is emitted with

a wavelength of 21cm (see Figure 2.2). This wavelength is in the radio regime and detectable

by radio telescopes, and has played a large role in our understanding of galaxies and the

Universe more widely (Dutta, 2019; Ouchi et al., 2020; Moazzenzadeh & Firouzjaee, 2021;

McClure-Griffiths et al., 2023). As the angular resolution of a telescope is given by R = λ/D,

(where R is the angular resolution in radians, λ is the wavelength of the light, and D is the

diameter of the telescope), radio observations are inherently limited in their spatial resolution,

and a single radio telescope on the scale we can currently engineer does not achieve meaning-

ful angular resolution to map quantities across a galaxy, and is considered spatially unresolved.
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Figure 2.3: Schematic from Giovanelli & Haynes (1988) showing how a rotating disk of H I in a galaxy
produces a double-horned profile in a 21cm spectrum. Panel b: the gas density in an idealised rotating
spiral galaxy, with contours on the left half showing lines of equal velocity. Panel a: gas surface density
along the major axis of the galaxy. Panel c: the rotational velocity of the galaxy along the major axis.
Panel e: the gas surface density seen in one narrow channel of the spectrum, this selects only gas which
is moving within the velocities in this channel, and so echoes the form of the lines of equal velocity.
Panel f: the full spectrum of the galaxy, highlighting the double-horned form created by the rotation.

This means the data produced by observing a galaxy at 21cm is often a single spectrum for the

whole system, as the resolution is on the order of multiple arcminutes.

Despite offering different information than resolved optical astronomy, the data collected

by single-dish radio astronomy contains a wealth of information about the hydrogen in galax-

ies, encoded in the shape of the 21cm emission line (Giovanelli & Haynes, 1988). For a galaxy

with its neutral hydrogen distributed in a perfectly thin, uniform, regularly rotating disk, an

observed 21cm spectrum will exhibit a characteristic double-horned profile due to the ge-

ometry and kinematics (see Figure 2.3). In the outer regions of a galaxy where the hydrogen

extends to, the rotation curve flattens and so large amounts of the H I gas will be moving at the

same velocity, and so we see two distinct peaks in H I flux which is redshifted and blueshifted

away from the 21cm line as per the Doppler effect. As the rotation and distribution is sym-

metric, theoretically this profile should also be symmetric. Deviations from the symmetry of

the line profile can be attributed to asymmetries in the spatial distribution of the gas in the

disk, or disturbances in the rotation, and work has been done to extract as much information
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from modelling these profiles as possible (Richter & Sancisi, 1994; Haynes et al., 1998; Laine

& Gottesman, 1998; Saintonge, 2007; Nelson, 2009; Stewart et al., 2014). Contained in the

profile is the mass of H I present, which is proportional to the flux integrated under the profile

(FHI
), and is recovered as per Springob et al. (2005), by the equation (Masters et al., 2014):
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and c = (a/b)0.12, where a/b is the axial ratio of the galaxy.

As the peaks of the double horned profile correspond to the maximum velocity then the

full linewidth corresponds to twice the rotational velocity (Roberts, 1978). There are multiple

methods to measure this width in the literature (see Masters et al., 2014), however WF50 (the

width measured between polynomial fits to the sides of the profile at 50% of the peak minus

the root mean squared (rms) noise) is considered most robust to noise and so is used in this

work (Giovanelli et al., 1997; Springob et al., 2005). The error on the width is found as:
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where al and ar are the slopes of the polynomial fits to the left and right sides of the profile,

and rms is the root mean squared noise in each channel in the signal-free part of the spectrum.

In order to recover the rotational velocity from WF50, the value must be corrected for multi-

ple effects, as outlined in Springob et al. (2005). The signal must be smoothed (see Springob

et al., 2005, for details), and the measured width corrected for instrumental and noise ef-

fects, corrected for redshift stretch and corrected for turbulence. This means the corrected

width (Wc) is given by:

Wc = (WF50 − 2∆vλ)/(1+ z)−Wt (2.3)

where ∆v is the channel width in kms−1, z is the redshift, Wt is a linear correction for tur-

bulence which is given as 6.5kms−1, and λ is a value which depends on the signal to noise

ratio:

λ= λ1(∆v) for log (SNR)< 0.6, (2.4)
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λ= λ2(∆v) +λ
′

2(∆v) log SNR for 0.6< log SNR< 1.1, (2.5)

λ= λ3(∆v) for log SNR> 1.1. (2.6)

The values for λ1, λ2, λ
′

2 and λ3 are constant where ∆v < 5kms−1 and ∆v > 11kms−1, but

depend on ∆v at values in between these. λ1, λ2, λ
′

2 and λ3 are given as follows: λ1 =

0.037∆v − 0.18, λ2 = 0.0527∆v − 0.732, λ
′

2 = −0.027∆v + 0.92, and λ3 = 0.023∆v + 0.28.

And finally to correct for viewing angle (i) and retrieve the intrinsic rotational velocity,

vrot =Wc/ sin i. (2.7)

As the H I data is unresolved, and the beam of the observation is on the order of arcmin-

utes, the data does not directly specifiy the radius at which this rotational velocity measured.

However, an estimation of the radius probed by this observation can be obtained by using the

well-studied H I mass-size relation (Broeils & Rhee, 1997; Wang et al., 2016), given as:

log DHI
= 0.51× log MHI

− 3.32 (2.8)

where DHI
is defined as the diameter, in kpc, at which the surface density of the gas reaches 1

M⊙pc−2, with MHI
in units of M⊙pc−2, and the radius RHI

simply being half of this diameter.

To acquire radio data with spatial resolution, radio arrays are required as these offer the

benefits of interferometry – exploiting the fact that the angular resolution equation can also

be presented as R= λ/B where B is the length of the baseline of an array of radio telescopes.

By spreading individual radio telescopes out in an array over large distances, smaller angular

resolution and spatially resolved data can be produced. This can be used to produce images

of the H I distribution in the sky (van Haarlem et al., 2013; Koribalski et al., 2020; Shimwell

et al., 2022), or 2D distribution and kinematic maps for individual galaxies (Franx et al.,

1994; Schoenmakers et al., 1997; Wong et al., 2004; Thean et al., 1997; Duffy et al., 2012;

Yang et al., 2019; Eibensteiner et al., 2023) similar to those produced by IFU data for stellar

kinematics (see Section 2.2). The details of how interferometric data is reduced and how

physical quantities are derived from their datacubes is beyond the scope of this thesis, the
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reader is directed to Chapter 7 of Bradt (2004).

H I surveys specific to this thesis are outlined below as the dataproducts are used in the

following chapters.

2.3.1 H I -MaNGA

Given the importance of neutral hydrogen in galaxies as the reservoir of fuel for star formation,

a major component of the interstellar medium, an extended dynamical tracer, and a signal for

environmental disturbance, the combination of stellar IFU observations with H I observations

can offer incredible synergy in many fields of study (star formation, quenching processes,

environmental interactions, dynamics, etc). As such, followup surveys which aim to provide

deep H I observations for samples of galaxies which already have optical IFU observations are

of great value. This is seen in the SAMI-H I survey in the southern hemisphere (Catinella et al.,

2023), and in the H I -MaNGA survey in the northern hemisphere (Masters et al., 2019; Stark

et al., 2021).

H I -MaNGA is a follow-up programme dedicated to providing 21cm H I radio observations

and upper limits for as many of the galaxies observed in the MaNGA survey as can be targeted

(see description in Section 2.2). This is done through a combination of matching existing

H I observations from the ALFALFA survey (Arecibo Legacy Fast Arecibo L-band Feed Array;

Haynes et al., 2011, 2018), and performing new observations using the Robert C. Byrd Green

Bank Telescope (GBT; under project code AGBT16A_095). The GBT observations provide sin-

gle dish data with a beam full width half maximum of 8.8 arcminutes, and a spectral resolution

of 1.2 km/s which is reduced to an effective spectral resolution of 10km/s after smoothing.

The reduced and calibrated spectra are produced using the GBTIDL package, and global prop-

erties such as H I mass and WF50 are derived as per the methods mentioned above in this

section. These are then published. As of DR3 (released as part of MaNGA DR17; Abdurro’uf

et al., 2022), data is publicly available for 6358 unique galaxies in the MaNGA survey. This

data is used in Chapter 4.

2.4 Low Frequency Observations

The LOFAR Two Metre Sky Survey (LoTSS; Shimwell et al., 2017) is using the Low Frequency

Array (LOFAR; van Haarlem et al., 2013) to image the whole northern sky at frequencies of
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120-168 MHz, to a resolution of 6 arcseconds. This is achieved by using LOFAR to tile the

sky, with beam of full width half maximum ∼ 4°, with pointings using 8hr observing times

in order to achieve a depth of ∼ 100µJy/beam. This is important for studying the radio

properties of galaxies, as 144MHz frequencies trace thermal emission from plasma in H II

regions of star forming galaxies, but are dominated by non-thermal synchrotron emission from

relativistic cosmic ray electrons (CRe) accelerated by supernovae Condon (1992). CRe can be

moved within the galaxy before emission can take place through synchrotron interaction with

magnetic fields, and so can result in extended emission. In the case of galaxies in clusters

which are experiencing ram pressure, CRe are transported by advection from the ram pressure

wind (Murphy et al., 2009; Vollmer et al., 2013), and so these galaxies exhibit extended tails in

144MHz images (Roberts et al., 2021; Poggianti et al., 2016a) (and in other tracers, including

ionised and molecular gas, UV stellar light, and X-ray emission; see Poggianti et al., 2019b;

Cramer et al., 2019). This allows LoTSS to be used to identify galaxies being stripped in

clusters. This data is used in Chapter 5 for this purpose.

2.5 Multi-Gaussian Expansion

To understand and model the motions in a galaxy, the gravitational field has to be described

mathematically, which follows from the mass distribution. Galaxies are, for all practical pur-

poses, infinitely complex systems with structure at every scale. This doesn’t lend itself well to

creating mathematical models, so as in many fields of physics we must use approximations.

We first assume that in regions where galaxies are luminous enough to be detected, the mass

distribution is dominated by luminous mass (i.e. stars), and so assume that the mass distri-

bution and light distribution are one and the same. This allows simply an image of a galaxy

showing the surface brightness distribution to be converted via a mass-to-light ratio (which is

assumed to be constant) into a mass distribution and therefore infer the gravitation potential.

In our method, we leave this mass-to-light ratio to be fitted based on the data, however note

that another option would be to fix this to values derived from stellar population analysis. This

doesn’t resolve the issue of describing the distribution. The method of using a Multi-Gaussian

Expansion (MGE) in order to approximate the distribution in a way which lends itself to ana-

lytical mathematics has been used widely since it was introduced in Monnet et al. (1992) (and

streamlined for use in galactic kinematics in Emsellem et al., 1994; Cappellari, 2002). This

method involves parameterising the observed surface brightness distribution of a galaxy as a
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set of 2D concentric elliptical Gaussians, with a constant position angle. The use of Gaussians

means convolving the result with a PSF to take seeing into account, and deprojecting the result

from an observed distribution into an intrinsic distribution, can be done analytically which is

more efficient. Further, the potential can be obtained with a single integration, while more

are required for other parameterisations, and velocity moments from Jeans equations can be

found with a double integration instead of triple.

As this thesis restricts its use of dynamical modelling to the Jeans Anisotropic Modelling

(JAM) method, this section sets out the theory of MGE models for the axisymmetric case only

– bypassing the more complex cases of triaxial distributions (for this, see; Cappellari, 2002).

First we define a coordinate system which is projected on the sky, (x
′
, y
′
, z
′
), with z

′
point-

ing along the line of sight towards the observer, and (0,0, 0) being the centre of the galaxy. In

this system, the projected surface brightness can be expressed as a sum of Gaussian compo-

nents:
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L j

2πσ2
j q
′
j

exp

�

−
1

2σ2
j

�

x ′2j +
y ′2j
q′2j

�

�

(2.9)

Here, N is the number of Gaussian components added in superposition to create the MGE, L j is

the total luminosity of each Gaussian, q′j is the observed axial ratio of each Gaussian (ranging

between 0 and 1), σ j is the width of the major axis of the Gaussian, and ψ j is the position

angle of the major axis counterclockwise from y ′ axis. (R′,θ ′) are the polar coordinates on

the plane of the sky, so that:

x ′j = R′ sin (θ ′ −ψ j)

y ′j = R′ cos (θ ′ −ψ j)
(2.10)

This surface brightness is then deprojected to recover the intrinsic surface brightness dis-

tribution. Assuming oblate axisymmetric geometry, the intrinsic luminosity density of a single

Gaussian component of the MGE (the sum is omitted but implied), can be written as:

ρ(x , y, z) =
L

(σ
p

2π)3q
exp

�

−
1

2σ2

�

x2 + y2 +
z2

q2

��

(2.11)

where the (x , y, z) coordinate system used here are such that the x-axis is aligned with the

long axis of the Gaussian and z-axis is aligned with short axis, σ is the observed major axis
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2.5. Multi-Gaussian Expansion

width, and q is the intrinsic axial ratio. The intrinsic axial ratio is obtained from the observed

axial ratio in the oblate axisymmetric case by:

q2 =
q′2 − cos2 i

sin2 i
(2.12)

for a galaxy viewed at inclination i, where i = 90° is edge on.

As such, by iteratively fitting stacks of Gaussians to photometry from imagery, the intrinsic

surface brightness distribution can be described by 3 N-dimensional vectors (where N is the

number of Gaussians), the luminosity of the Gaussian components, the width of the Gaussian

components, and the axial ratio of the Gaussian components.

In order to correctly compare this model to the observations, the model must be convolved

with the instrumental PSF of the observation, and the PSF caused by the atmospheric seeing.

We assume the PSF to be a circular Gaussian which is defined by a width σPSF . The luminosity

of the MGE is unaffected by the PSF, but the width (σ j) and the axial ratio (q j) are altered, to

their convolved values (σ̃ j , q̃ j), so that:

σ̃2
j = σ

2
j +σ

2
PSF

σ̃2
j q̃
′2
j = σ

2
j q
′2
j +σ

2
PSF

(2.13)

Leaving the convolved surface brightness model as:

Σ̃(R′,θ ′) = Σ(R′,θ ′) ∗ PSF =
N
∑

j=1

L j

2πσ̃2
j q̃
′
j

exp

�

−
1

2σ̃2
j

�

x ′2j +
y ′2j
q̃′2j

�

�

(2.14)

The python package MgeFit, described in Cappellari (2002), introduces an efficient fitting

algorithm for the MGE method which uses least-squared fitting to create an MGE parameter-

isation of surface brightness distribution from imaging. This is used in Chapters 3 and 4 to

represent the light distribution used in dynamical models.

2.5.1 Minimum Inclination Restrictions

It is noted in Cappellari (2002); Scott et al. (2013), and many other papers using MGE pa-

rameterisations that Equation 2.12 is undefined unless the criteria cos2 i < q′2j is satisfied for

all Gaussians in the MGE. This creates a non-physical restriction on the minimum inclination
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which can be modelled in a JAM model, defined by the flattest Gaussian component. In order

to allow the JAM model to explore the full parameter space in inclination in order to find the

best fit parameter for the model, this limitation should be worked around. This is done by iter-

atively placing higher and higher limits on the minimum axial ratio (q′) allowed for any single

component in the MGE fit, until the mean average deviation of the fit becomes 10% higher

than the unrestricted model (this signifies the point where the model has been restricted too

far and can no longer reproduce the distribution). The value of 10% is used due to the prece-

dent set in the Scott et al. (2013) paper, which is shown to be robust. This method is used in

all MGE models created throughout this thesis.

2.6 JAM Models

Figure 2.4: A schematic showing an overview of how dynamical models work. The observed motions
are dictated fully by the luminous potential and the dark potential, and if these could be perfectly
described then the motion predicted would match those observed. The luminous potential can be
described using the luminous matter distribution (though not perfectly), but the dark potential has no
observable. Generating predicted motions from the luminous mass distribution alone, and comparing
to observations, allows a theoretical dark potential to be added which causes the predicted motions to
match those observed.

As detailed in Section 1.3, dynamical modelling is an essential tool which allows recovery

of intrinsic quantities from galaxies which cannot be determined from imaging or spectroscopy

alone. There are many types of dynamical models which are used to measure these quantities,

however the key underlying principle is the same. The observed motions of the stars and

gas in galaxies must be generated by a gravitational potential. This gravitational potential in

turn must be generated by the distribution of matter, including the dark matter. As such, by

comparing the observed motions to the motions expected based on some modelled potential,

we can constrain the shape of the potential and hence the underlying matter distribution.

Through observation, we can estimate the potential due to the baryonic matter, then allowing

models to be constructed with varying dark distributions in order to find the best fit (see Figure
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2.6. JAM Models

2.4 for an outline of this). It is in the method used to predict observables from input that the

model types vary.

The work in this thesis uses the Jeans Anisotropic Modelling (JAM) technique, introduced

in Cappellari (2008). This method solves Jeans’ Equations (Jeans, 1915) in order to generate

a velocity field for a galaxy in a given potential. A galaxy may contain hundreds of billions of

stars, and modelling the individual positions and velocities of each one is not feasible, so Jeans’

equations rely on a distribution function which describes the densities of stars in position,

velocity and time. These equations are adapted from the collisionless Boltzmann equations

(Binney & Tremaine, 2008, equation 4–13b) – hence relying on the assumption that galaxies

are collisionless systems – to apply to the 6D phase space distribution of stars in a gravitational

potential. They take the form:
∂ n
∂ t
+
∑

i

∂ (n〈vi〉)
∂ x i

= 0, (2.15)

∂ (n〈v j〉)
∂ t

+ n
∂Φ

∂ x j
+
∑

i

∂ (n〈vi v j〉)
∂ x i

= 0 ( j = 1,2, 3) (2.16)

where Φ is the gravitational potential, n is the spatial density of stars at a time t and position

x = (x1, x2, x3), and v is the velocity vector (v1, v2, v3). In these equations, 〈...〉 denotes an

average in space and time.

In general, these cannot be uniquely solved except in special cases, as they are not closed.

The JAM method introduces assumptions and parameterisations which allow a solution to be

found. The method assumes axisymmetry in the system in a framework of cylindrical coordi-

nates (R,ψ, z), and defines the anisotropy parameter β in terms of the velocity dispersions in

the z and R directions (β = 1−σ2
z/σ

2
R), in order to describe the motions in the system. This

anisotropy is assumed to be constant across the system. Further, a choice is made to assume

the shape and orientation of what is known as the velocity ellipsoid. This can be chosen to

be spherically aligned – i.e. if one were to plot the velocities of the stars in spherical coordi-

nates (vr , vθ , vψ), and fit an ellipsoid to the distribution, then this would be aligned with the

axis – or cylindrically aligned – i.e. the same is true if the velocities were plotted in cylindri-

cal coordinates (vR, vψ, vz). Studies which have used the cylindrically and spherically aligned

JAM method on different systems confirm that the cylindrically-aligned method is valid for

fast rotating elliptical galaxies (Cappellari et al., 2007), and also disk galaxies (Noordermeer
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et al., 2008; Kalinova et al., 2017; Li et al., 2017). This thesis focuses on these galaxies and so

uses the cylindrically-aligned version. Combining these assumptions with the assumption that

mass follows light (so that the mass distribution is recovered by scaling the surface brightness

distribution), and parameterising the surface brightness distribution and any dark components

as an MGE (as described in Section 2.5), the equations become solvable, reducing to:

bµv2
z −µv2

ψ

R
+
∂ (bµv2

z )

∂ R
= −µ

∂Φ

∂ R
(2.17)

∂ (µv2
z )

∂ z
= −µ

∂Φ

∂ z
(2.18)

where µ represents the luminosity density, Φ is the gravitational potential, v is the velocity

with subscript in the cylindrical coordinates (R,φ, z), b is a variation of the orbital anisotropy

given by b = v2
R/v2

z . This is assumed to be constant. Here the notation used is:

µvkv j ≡
∫

vkv j f d3v (2.19)

In this case, we use the implementation of the JAM method released in the Python package

jampy. We direct the reader to Cappellari (2008) for a full description of the method, and use

this section to describe the practical considerations required.

Input into the model are the observations that are used to determine the best fit:

• MGE parameters (total counts, width, and axial ratio for each Gaussian) describing the

surface brightness of the galaxy, obtained from observation.

• A 2D kinematic map of the root mean squared velocity, VRMS , is needed to evaluate the

model. In this case, we use the first and second kinematic moments (V,σ) observed

by MaNGA (described in Section 2.2) which are combined into a 2D map of VRMS =
p

V 2 +σ2, and a 2D map of accompanying propagated errors is also input. This map is

in the voronoi binning scheme which amalgamates spatial bins to reach an SNR > 10 in

each. JAM also performs a convolution of the predicted kinematic maps with the PSF of

the MaNGA observations in order to allow for comparison to the observations.

And free parameters which are fitted by the model:
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• A mass-to-light ratio (M/L) is provided as a free parameter which multiplies the lumi-

nous MGE to convert from a luminosity distribution to a mass distribution. This could

have been fixed to values derived from stellar population modelling, but is left as a free

variable to reduce uncertainty introduced from these models.

• If a dark component is included in the model (true for Chapter 4), this is also required

in MGE form, and is provided as per the specific method used in that chapter, with

the parameters of the halo left free to be fitted. In the model, JAM takes an input of

the luminous MGE and the potential MGE, and the inclusion of the dark component

is reflected in the difference between the two (i.e. the luminous MGE contains that

from the surface brightness, and the potential MGE contains both that from the surface

brightness scaled by the mass-to-light-ratio and that from the dark component).

• The orbital anisotropy, β is also a free parameter.

• The inclination is also required, and in this case we leave this as a free parameter in

models which do not contain a dark matter halo, and then take the best fit inclination

from dark matter-free models and input this fixed value for the models which do include

dark matter (this is considered valid as the dark matter haloes are close to spherical due

to the lack of collisions, so the inclusion or omission should not affect the inclination).

Within JAM, the modelled kinematic map is generated and is then compared to the ob-

served kinematics in order to evaluate the model. This is what is then used to quantify the

likelihood values for the fitting process (described in Section 2.7) in order to determine the

best fit values for the free parameters in our models, given priors.

2.7 MCMC Fitting

Markov-Chain-Monte-Carlo (MCMC) techniques are now an essential component of an As-

tronomer’s science "toolkit". In essence, these methods repeatedly vary some input parame-

ters, as per our understanding of how these inputs may be distributed, and compare the output

with an observation in order to obtain a distribution of the input parameters based on the prob-

ability that these were the conditions that allowed the observation to happen. For example,

JAM models as described in the previous section take a set of input parameters (some observed

and fixed, others allowed to vary so as to find the best fit values), to produce a prediction of
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the kinematics of a system given those input conditions. In order to find the values that are

most likely to lead to the kinematics observed, the free input parameters are varied in value

until the kinematics are most similar to the observation – measured by a maximisation of the

likelihood. MCMC methods are a statistical tool which rely on Bayesian statistics. Bayesian

statistics deal with probability distributions. These differ from classical frequentist statistics,

in that they describe the likelihood of an observation based on the probability distribution of

parameters, instead of simply values.

These methods are based on Bayes’ Theorem which describes the probability of an outcome

based on the knowledge of the probability distribution of factors affecting this (Jeffreys, 1939).

The theorem relates three probability distributions – a prior, a likelihood, and a posterior – as:

P(θ |D) =
P(D|θ )P(θ )

P(D)
(2.20)

where θ is the input parameters of a model, and D is the observed data. So P(θ ) is the

probability distribution of the input parameters based on the knowledge available without the

data – i.e. the prior distribution, P(D|θ ) evaluates how likely the data we observe is based on

the prior distributions of the parameters – i.e. the likelihood distribution, multiplying the prior

and the likelihood functions gives the probability of the input parameters based on the data

we have observed – i.e. the posterior distribution. The term P(D) is known as the evidence

and simply normalises the function. The parameter values, θ , are varied within their prior

distributions until a set is found which maximises the likelihood of the observed data.

MCMC methods are algorithms which dictate how the parameters are varied at each step

through the creation of Markov chains which explore the multidimensional parameter space.

An algorithm is used to explore this space in a way which efficiently finds the maximum like-

lihood in the multidimensional parameter space. The details of the differences between these

parameter exploration methods are beyond the scope of this thesis, and we direct the reader

to Sharma (2017) for a detailed description of many algorithms used. However we note that

in Chapter 3 we use the Python package emcee (Foreman-Mackey et al., 2013) which uses

a novel algorithm to implement the Affine Invariant MCMC Ensemble Sampler (Goodman &

Weare, 2010). This was chosen as it is easy to implement and well-tested on relatively simple

posterior distributions with low dimensionality. In Chapter 4, we choose instead to use a Gibbs’

sampling algorithm (see Section 3.3 of Sharma, 2017), which is efficient and able to explore
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posterior distributions with many local minima in order to find the global minimum. This is

implemented in the GAStimator Python package (built by T. Davis, and publicly available).

2.8 PSB Selection

As noted in Section 1.6, PSB signatures are indicative of a unique quenching situation which

sees rapid quenching after a period of enhanced star formation. The means by which these

regions are identified is important when considering the interpretation of the results seen.

There are multiple ways in which PSB signatures are classified. In general, these spectra are

characterised by strong Balmer absorption (Hδ) – indicative of intermediate-age A-type stars,

but an absence of emission lines (like Hα and [OIII])which would be generated by hot young

O-type and B-type stars (Dressler & Gunn, 1983). These conditions occur when there has been

star formation followed by a rapid quenching which has taken place in the last 1 Gyr Poggianti

et al. (1999); Dressler et al. (2004). Quantitatively, there are a few different methods for

selecting PSB spectra. In this thesis we focus primarily on the method introduced in Chen

et al. (2019a), which selects a region in the plane defined by Hα equivalent width and Hδ

absorption (hereafter referred to as the Chen method). We also mention and discuss a method

using principal component analysis (PCA) introduced in Wild et al. (2007), which ignores the

information of emission lines, and so may contain regions which still experience some star

formation, and may probe a slightly later quenching timescale (hereafter referred to as the

PCA method). As is noted in French (2021), there are many different methods and definitions

for PSB signatures, and as such any method will not individually be able to completely identify

all spaxels which are PSB alone, and these methods by virtue will disagree. This feature may

allow specific identification of individual quenching mechanisms by considering differences,

overlaps, and distinctions between regions identified by each method.

2.8.1 Chen et al Method

This method is the one primarily relied upon in Chapter 5. Introduced in Chen et al. (2019a),

it relies upon measurements of the Hα emission line equivalent width and the Hδ absorption.

These quantities are both measure by IFU surveys , and in particular are included in the analysis

of MaNGA data (see Section 2.2.1). Following this method, a spaxel is classified as PSB if it

meets the following criteria:
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• The signal to noise ratio must be greater than 8

• Hδ absorption, HδA > 3 Å

• Hα equivalent width, EW (Hα) < 10 Å

• log EW (Hα)< 0.23HδA− 0.46

We also use an alternative classification scheme which relaxes the SNR requirement to

SNR > 3, in order to investigate lower brightness outer regions. Where this is done, we check

against a control sample to mitigate against simply gaining a PSB classification through noise.

Looking at the EW (Hα) - HδA plane, this selects the region shown in Figure 2.5, which

finds spaxels where the SFH features an initial burst of star formation, followed by a second

burst at t = 6.5G yr, and then an exponential decline in star formation with the e-folding

times between 50 and 300 Myr as shown in the legend.

Figure 2.5: From Chen et al. (2019a), showing evolutionary tracks of galaxies with different rates of
exponentially declining star formation (coloured lines) in the plane of Hα equivalent width versus Hδ
absorption. Solid lines show those which decline exponentially from an initial burst, dashed lines show
those which have an additional burst after 6.5Gyr before exponentially declining. The magenta star
shows the initial burst for all model galaxies, and the greyscale scatter points show all galaxies in the
SDSS DR7 catalogue. The black solid line indicates the region which is selected for PSB signatures.
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2.8.2 PCA Method

In Wild et al. (2007), indices were defined using a principal component analysis (PCA) tech-

nique. This method works by considering the spectrum near the 4000 Å break (the region

which contains the strongest features related to the content of young stars in a galaxy) as a

vector in an N-dimensional space. Then principal component analysis works to define eigen-

vectors in the space which designate axes along which the maximum variance is found be-

tween different stellar spectra in a library. These are then defined as PCA1 and PCA2. The full

method is set out in Wild et al. (2007), and Wild et al. (2009) applies this to a sample. PCA1

is equivalent to the D4000 index, while PC2 traces the excess Balmer absorption – and so PSB

signatures are classified as those with high PC2 but not high PC1. In Rowlands et al. (2018),

regions in the PCA1-PCA2 plane are used to classify different spaxels evolution stages as per

Figure 2.6. The purple region shows the area in which spaxels of a galaxy are classified as PSB

using this PCA method. These classifications are used in Chapter 5 in order to compare the

selection of PSB regions in our jellyfish galaxies with the Chen method.
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Figure 2.6: From Rowlands et al. (2018), showing classification regions in the PCA1-PCA2 plane (in-
dices defined using principal component analysis), with colours indicating the classification regions as
per the legend. Grey density plot and contours indicate the positions in the plane of spaxels in a sample
of MaNGA galaxies with log stellar masses greater than 10. Purple region indicates the region defined
as PSB.
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3
Jeans Modelling for Red Geysers

Suggested listening: Kite by Kate Bush

We exist on our planet which orbits our star, the Sun, at 30 kilometres per second (Levin

et al., 2017). Similarly, our Sun exists amongst billions of other stars in our galaxy – the Milky

Chapter image: Artist’s Impression of an Active Galaxy, ESA/AOES Medialab
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Way. Our Sun (and many of the others) is in orbit around the galactic centre, moving at a

blistering speed of 200 kilometres per second (Hunt et al., 2016). The cosmos is not at rest.

Galaxies are not simply stationary discrete objects in space, but are dynamic systems in motion.

Not only instantaneously in the motions of their constituents, but also in a grander scale as

they evolve through different life stages. In some cases, the instantaneous dynamics of the

system can be used as a tool to better understand the global evolution of the system. This

Chapter explores how dynamical modelling and kinematic observations can be used to study

processes taking place in galaxies which illuminate the mechanisms which cause a galaxy to

evolve.

The work contained in this chapter is published in Roy et al. (2021). This work is led

by Namrata Roy, and my specific contribution is the dynamical modelling of the galaxies in-

volved in order to provide accurate constraints on their inclination. This chapter describes this

modelling process and the impact of this work on the science problem detailed.

3.1 Background

In Section 1.1 we discussed how galaxies evolve from actively star forming to quiescent, and

some of the mechanisms by which this transition could be driven. The trend for higher fractions

of quiescent galaxies at present times (Bundy et al., 2006; Faber et al., 2007; Ilbert et al., 2010;

Moustakas et al., 2013) indicates that the change must be at least semi-permanent, which

indicates the removal of gas alone is not the only factor. If gas were simply removed in a single

event, then star forming would cease; but new gas would begin to refuel the gas reservoir and

allow star formation to begin again. Whether the gas was provided through minor mergers

or through mass loss from older stars in the system (Mathews & Brighenti, 2003), without

any other processes it would begin to condense and cool. Therefore, when considering how

quenching can take place globally in a galaxy, we require a secondary ongoing process which

prevents this gas from accumulating, cooling, condensing and forming stars.

Multiple processes have been suggested as candidates to explain this, including nuclear

activity from central supermassive black holes (SMBHs). This relies on the understanding that

active galactic nuclei (AGN) can cause feedback to their host galaxies through two different

modes: "radiative-mode" usually seen in lower mass systems when the SMBH is accreting

efficiently with the bulk of the energy output in radiation, and "jet-mode" which is primarily
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seen in high-mass systems where the SMBH is accreting inefficiently, producing little energy in

radiation and instead imparting energy through narrow bilateral outflows (jets) (Heckman &

Best, 2014). This second mode is posited as the source of our "maintenance-mode" feedback,

which recurrently accretes gas which begins to cool and in turn feeds just enough energy back

into the surrounding gas – heating it and preventing the cooling required for star formation,

but not so much as to remove it from the galaxy entirely. Evidence for this process has been

seen in some central clusters (Fabian et al., 2006; Fabian, 2012b), however if this process is

responsible for maintaining quiescence in the quiescent population we would expect to observe

signatures in a significant proportion of the local quiescent population in the field.

Figure 3.1: Reproduced from Roy et al. (2021). Spatially resolved emission line and kinematic maps
of Target 1, the prototypical red geyser from MaNGA observations, demonstrating the characteristic
features. Upper left: Hα flux; lower left: Hα equivalent width, showing bisymmetric ionised patterns
aligned with ionised gas kinematic axis; upper centre: 2D stellar line of sight velocity map, showing
rotation at much lower velocities than the ionised gas component; lower centre: ionised 2D gas velocity
field, showing greater velocities than stellar component, and misaligned axis; upper right: spatial map
of spaxels which are coloured according to BPT classification as per the lower right panel, showing
AGN signatures in the central regions; lower right: spatially resolved BPT diagram indicating the BPT
classification colours used above (for details of this, see: Roy et al., 2021).

In Cheung et al. (2016), a population of galaxies were introduced which were argued to

exhibit these outflow signatures, and could make up as much as 10% of the population. These

were dubbed "red geysers", and – in summary – are a population of quiescent spheroidal galax-

ies characterised by ionised gas which is kinematically misaligned from the stellar component,

with ionised gas velocities which far exceed stellar velocities, and bilateral features in Hα

equivalent width (EW, a measure of the strength of a spectral feature determined by the area

of the feature against the continuum) which are aligned with the kinematic axis of the gas (see
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Figure 3.2: Reproduced from Roy et al. (2021). Spatially resolved emission line and kinematic maps
of Target 2 from MaNGA observations. Panels the same as in Figure 3.1.

Figures 3.1 and 3.2). These types of galaxies had previously been observed (Sarzi et al., 2010;

Kehrig et al., 2012; Allen et al., 2015; Gomes et al., 2016), but the features were attributed

to the rotation of a misaligned gas accretion disk (Lagos et al., 2015). In the red geysers

framework, the misaligned ionised gas kinematics are not in rotation, but are wide biconi-

cal outflows from the AGN which we are observing face on, and the Hα features are shocked

regions in the centre of these outflows (see Figure 3.3). For the prototypical red geyser in

Cheung et al. (2016), they supported this interpretation over the disk model by using Jeans

modelling (see Section 2.6) to show the velocities of the gas are incompatible with rotation

(being higher than the escape velocity). This interpretation was also supported by work in

Roy et al. (2018), which showed enhanced nuclear radio emission in the red geyser popula-

tion compared to a control sample matched in mass, redshift and axial ratio, hence suggesting

the presence of AGN activity in this population.

In order to further exclude the possibility of a rotating disk explaining the observations,

Roy et al. (2021) set out to compare the changing shape of emission lines along the gradient

of the gas velocity map with those expected from a rotating disk model. For full details of

the methods used for this, see Roy et al. (2021), however for the purposes of this Chapter I

give a qualitative summary. The specific shape of the emission lines viewed at different lines

of sight away from the centre of the galaxy would exhibit a characteristic asymmetric shape

which would vary with position along the bisymmetric feature. Modelling shows that these

would be different in the case of a rotating disk model compared to that expected from a wind
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Figure 3.3: Reproduced from Cheung et al. (2016). a. A schematic diagram of the galaxy in gold, and
the biconical wind in purple. The wind has an opening angle of 80°, and the inner 10°of the bicone
is highlighted in green. The line of sight is indicated by the red arrow. b. The observed line of sight
velocity of the ionised gas in the prototypical red geyser, with Hα equivalent width overplotted in white
contours. c. The predicted observed ionised gas velocity derived from the wind model in a. (see
Cheung et al. (2016) for method details) with the white contours outlining the central axis of the wind.

model (see Figure 3.4).

For this to work, strong constraints are required on the inclination of the galaxies, which

– due to their more spherical geometry – isn’t straightforward to obtain for elliptical galaxies

from imaging alone. Dynamical modelling allows this to be constrained.

This showcases the power of dynamical modelling as a tool to measure things which are

otherwise not evident from imaging or unresolved spectroscopy alone.

3.2 Data

3.2.1 Sample Selection

A parent sample of red geysers in the MaNGA survey was introduced in Roy et al. (2018),

which includes 84 galaxies. These were visually selected to exhibit the features outlined in

Section 3.1. In this work, two galaxies were selected from this sample in order to be targeted

for spectroscopic followup with Keck, to obtain spectroscopic measurements which are detailed

enough to recover the change in asymmetric shapes of the emission lines due to Doppler effects

along the outflow axis. The two galaxies were selected to cover a range in Hα fluxes, radio

flux, and angle of kinematic misalignment in order to offer the best possible representation of

the full parent sample. The first galaxy has MaNGA ID: 1-217022, and is the original prototype

galaxy studied in detail in Cheung et al. (2016), and is known herein as "Target 1". In that

paper, a Jeans model was already constructed for this galaxy, which constrained the inclination.
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Figure 3.4: Reproduced from Roy et al. (2021). Left: A schematic diagram, showing how the shape
of emission lines would be expected to change if viewed on the approaching or receding sides, with a
characteristic wing to the blue side for the redshifted emission line, and wing on the red side for the
blueshifted line; Right: Mock spectra produced for the first target galaxy in the case of a wind scenario
(left), and disk scenario (right), highlighting the possibility to observationally distinguish between the
two scenarios by observing emission line shapes and their variation at different points along the axis of
the bisymmetric outflow.The difference arises from a biconical wind producing a range of inclinations
at which the material moves, and thus a broad component/tail exists in the emission line profile which
is not produced in the case of a rotating disk.

The second galaxy has MaNGA ID: 1-145922, and herein is referred to as "Target 2". This

galaxy also exhibits the characteristic features of a red geyser, however differs from Target

1 in a few ways, as seen in comparing Figures 3.1 and 3.2. Target 2 exhibits lower Hα EW

compared to Target 1, doesn’t exhibit signs of systematic rotation in the stellar kinematics, is

not radio detected, and LINER-type emission line ratios are present throughout much of the

galaxy as diagnosed by a BPT diagram.

3.2.2 Keck Followup Observations

The Keck Echellette Spectrograph and Imager (ESI) performs spectroscopy through use of a

single long slit, which spans 20 arcseconds. This gives spectra for an object which is spatially

resolved in one dimension, into 10 spectra, along the slit length. This number is decided

by the spatial resolution of 0.9 arcseconds, and the galaxy covering 9 arcseconds in the sky.

The spectra provided by these observations have a spectral resolution of ∼ 37 km/s or R ∼

8000, and a spatial seeing FWHM of 0.9 arcseconds. The wavelength range covered is from

0.39 to 1.1 micrometers, which includes the Hα and [NII]λ6584 emission lines. Comparing to

MaNGA’s (see 2.2.1) IFU observations, which provide spectral resolution R ∼ 2000 and spatial

resolution of 2.4 arcseconds, we see why this analysis could not be performed using MaNGA

data as the shape features of the emission lines would be lost. The targets are observed with

the slits aligned with the axis of the ionised bisymmetric features, using the above set up of

Keck ESI, with an exposure time of 1.5 - 2 hours each.
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Figure 3.5: DESI Legacy Image in the r-band for Target 2, used to create MGE parameterisation of
surface brightness distribution.

3.2.3 MaNGA Kinematics

In order to create a dynamical model as per the JAM method (see Section 2.6) to constrain the

inclination of Target 2, IFU data is required for the galaxy in order to derive the line-of-sight

stellar velocity and the stellar velocity dispersion. These are combined in order to produce a

2D map of the root mean squared velocity (VRMS).

In this case, we use IFU data from the Sloan Digital Sky Survey (SDSS-IV; Blanton et al.,

2017) programme Mapping Nearby Galaxies Using Apache Point Observatory (MaNGA; Bundy

et al., 2015). This is described fully in Section 2.2.1.

3.2.4 Legacy Survey Imaging

To create a dynamical model, along with kinematics, we also require deep images of the galaxy

in a single band. This gives a surface brightness distribution which can be used to approximate

the gravitational potential in a mathematically convenient form, via the MGE method (see

Section 2.5). As this is such an essential part of the model which has potential to greatly affect

the results, we opt to use imaging from the DESI Legacy Survey (fully described in Section 2.1)

which offers deep imaging. Further, we choose to use r-band imaging as this best corresponds

to the stellar component, with minimum sacrifice to dust, and has been frequently chosen for

previous JAM studies (see Scott et al., 2013). This is taken from DR9 of the survey.

3.3 Methods

This thesis focuses on the work personally performed by me during the course of my PhD.

As such, the details of the methods used in this paper for work carried out which I was not
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personally involved in (ie. the emission line fitting, asymmetry measurements, creation of

the mock model spectra), are not covered in detail here. This section focuses on the creation

of a dark matter-free dynamical JAM model to constrain the inclination of Target 2, which is

central to the generation of the mock model spectra to which the observations are compared.

If the reader wishes to know more about the methods applied in the rest of the paper, they are

directed to Roy et al. (2021).

3.3.1 MGE

As discussed in Sections 2.5 and 2.6, to create a JAM model, the surface brightness is param-

eterised using the MGE method described in Section 2.5. In this case, the r-band DESI Legacy

Survey accessed for Target 2 (see Figure 3.5) is used to construct the MGE approximation,

via the Python implementation MgeFit (Cappellari, 2002). As seen in the image, Target 2

has a spheroidal morphology. The issue with an artificial restriction on the minimum inclina-

tion allowed by an MGE model, as discussed in Section 2.5.1, is avoided by using the method

described therein.

The MGE parameters which best fit the observed surface brightness distribution are listed

in Table 3.1, and the residuals of the fit are compared to the photometry in Figure 3.6. These

residuals all remain within 20% of the observed values (majority lower than 10%), and so the

fit is determined to be accurate, and is used in the following section to create a JAM model.

Total Counts σ qobs

272.88 2.47 0.95
432.69 10.7 0.95
165.53 21.1 0.95
476.80 23.2 1.0
1109.95 58.3 1.0

Table 3.1: The parameters of the best fit MGE. Total Counts refer to the counts under each component,
σ is the width of each component in pixels, and qobs is the projected axial ratio of each component.
We acknowledge the lack of errors and small significant figures produced, however this is following the
accuracy obtained in Table 2 of Scott et al. (2013), where this method was developed.

3.3.2 JAM

JAM modelling allows the creation of modelled kinematic maps of a galaxy based on input

parameters which include inclination. To achieve this we follow the method described in Sec-

tions 2.6, to create models with no dark matter component using the MGE surface brightness

distribution of the galaxy. We decided that a simple JAM model neglecting dark matter is ade-
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3.3. Methods

Figure 3.6: Plots displaying the evaluation of the MGE fit based on the photometry in sectors around
the galaxy centre. Left: From top to bottom, the best fit MGE Gaussians (lines) are compared to the
data (points) radially along sectors. Right: The residuals of the fit along sectors.

quate for measuring the inclination, as in Cappellari et al. (2013), since modelled dark matter

haloes are spherical, and so the lack of inclusion does not affect the best fit inclination of the

system.

This leaves only non-dark matter parameters to be input into the model.

We use an MCMC simulation, through the Python package emcee (described fully in Sec-

tion 2.7), in order to determine the best fit parameters of the model based on the observed

kinematics, and constrain the inclination.

Free parameters to the model, and their priors, are listed here:

• Inclination, as cos i: flat prior between 0 and cos imin,

where imin is imposed by the axial ratio of the flattest component in the MGE as per :

q

q2
obs − cos imin

2

sin imin
> 0.05 (3.1)

where qobs is the observed axial ratio of the flattest MGE component.

• Orbital anisotropy, β: flat prior between 0 and 0.75

(Restricting β > 0 is required to break the known degeneracy between anisotropy and

inclination, and is observationally motivated for fast rotators (see Section 3.1.1 of Cap-

pellari et al., 2013) as the red geyser population are found to be).

• Mass-to-light ratio, M/L: flat prior between 0 and 10 in units of M⊙/L⊙.
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(Note that M/L in this case is not a stellar M/L, but a dynamical M/L, so expresses

discrepancies seen due to omission of the dark matter halo alongside a stellar M/L. This

means the value should not be compared to stellar M/L values found through other means,

such as stellar population modelling).

The MCMC was run until the parameters converged, and the first 1000 steps were dis-

carded as burn-in. The best fit values of the parameters were taken as the mean of the distri-

bution, with errors at the 16th and 84th percentile.

3.4 Results and Discussion

The best fit model is found with χ2/DoF = 2.68, and Figure 3.7 shows the predicted vRMS

from the model compared to the observed vRMS , along with the residual map. The parameters

corresponding to the best fit values are presented in Table 3.2.

Inclination (◦) β M/L
19.58+0.070

−0.057 0.216+0.025
−0.029 6.921+0.019

−0.021

Table 3.2: The parameters of the best fit JAM model.

We note the small errors reported in the above results. As discussed in Cappellari (2008),

these errors only account for the statistical errors in the fitting process and do not account for

systematic errors precipitating from the model used. I.e. the model we have used is fit very

well, but whether this is the correct model to use is not reflected in these numbers. Cappellari

(2008) explains that these systematic errors are often dominant but difficult to estimate. In

their work, they compare many different models and find a systematic error in M/L consisted

with 6%. As such, these errors should be considered artificially small. Further, recent work

by Zhu et al. (2023) proposes the artificial inflation of errors on the kinematic observations

obtained from MaNGA, which will also produce more accurate error estimation.

I now summarise the science results which were precipitated from the constraints on the

inclination provided by my dynamical modelling, to situate the work in the context it was

completed.

Using the inclination recovered above for Target 2, and the inclination previously con-

strained for Target 1 in Cheung et al. (2016), models were constructed to show the shape of

emission lines expected for both the disk and the wind models for both the targets. Figures

3.8 and 3.9 show these alongside the observed emission line shapes of Hα and [NII] for the
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Figure 3.7: Left: The symmetrised vrms field (denoted as vzz) for the galaxy which is input to JAM,
Centre: The output vrms field from the best fit cylindrical JAM model, Right: The residuals of the model
and data. The white contours on all trace the surface brightness of the MGE. Black dots denote masked
pixels.

two galaxies from Keck.

These emission lines were fitted using a Gauss-Hermite polynomial (for details, see: Roy

et al., 2021), which provides a value for the skewness parameter, k. A positive k value repre-

sents a wing on the emission line to the "red" side, a negative k value represents a wing to the

"blue" side, and k = 0 represents a symmetrical profile. These wings are shown to be present

for the case of the wind model due to the distribution of velocities of gas outflowing in the

cone, but less present in a disk model as this would only have one component. Figure 3.10

shows the variation of the skewness parameter with spaxel number, which indicates position

along the bisymmetric feature. The parameter is shown for the Keck data, the disk model, and

the wind model, for both Targets. The greater amplitude of the variation in observed skewness

with distance from the galaxy centre is more in line with those predicted for the wind model,

and thus this paper concludes more support for the wind model.

49



Chapter 3. Jeans Modelling for Red Geysers

Figure 3.8: Reproduced from Roy et al. (2021). Left: Mock spectra produced for Target 1 in the
case of a wind scenario (left), and disk scenario (right), highlighting the possibility to observationally
distinguish between the two scenarios by observing emission line shapes and their variation at different
points along the axis of the bisymmetric outflow.; Right: Observed spectra showing the Hα and [NII]
emission lines across the 9 spaxels observed using the slit. Top: Ionised gas velocity map of the galaxy
showing the position and alignment of the slit, and the nine spaxels for which spectra were produced.

Figure 3.9: Reproduced from Roy et al. (2021). Same as in Figure 3.8, but for target 2.
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Figure 3.10: Reproduced from Roy et al. (2021). The spatial variation of the skew parameter obtained
from fitting observed emission lines from Keck observations for the two targets, compared with the
predictions of the wind and disk models. The red and blue shaded regions show the skew parameter
averaged over the Hα and [NII] emission lines. The dashed lines show the predicted skew parameters
along the same spatial axis predicted for the disk model, and the solid lines show this for the wind
model.
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3.5 Summary and Future Outlook

This Chapter has described the work I contributed towards the published work Roy et al.

(2021), through building a JAM dynamical model in order to constrain the inclination of the

galaxy, which was required in order to create models of the shape of emission lines for two

different models. This allowed more certainty that the red geyser population is a population

exhibiting large scale ionised gas outflows due to nuclear activity, which helps to advance our

understanding of how galaxies remain quenched after their gas has been removed. Dynamical

modelling can contribute further to the analysis of a greater sample of red geyser galaxies in

the MaNGA sample, by constraining escape velocities for each system and comparing this to

the observed gas velocities in order to ascertain if the gas is bound (i.e. in a rotating disk) or

if it is outflowing (i.e. we are truly seeing red geyser phenomena). Situated in the context

of our understanding of galaxy evolution, direct observation of large scale AGN outflows in

"maintenance-mode" AGN is a big step in confirming the importance of these nuclear process

in not just quenching galaxies, but keeping them quenched. This also showcases the power

of IFS observations and dynamical models to illuminate features of galaxies which otherwise

cannot be easily constrained from imaging or unresolved spectroscopy alone. Perhaps one of

the most glaring examples of a feature of galaxies which cannot be explored using imaging is

the dark matter component. This is the focus of the work in the next Chapter.
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4
Jeans Modelling to Constrain the Dark Matter

Halo

Suggested listening: Turn on the Dark by Nick Shoulders

Our current understanding of the Universe still fails to fully explain what we observe.

The problem of dark matter has challenged Physics since it was first suggested to explain the

Chapter image: Still from video showing dark matter simulation of the Milky Way, Ralf Kaehler/SLAC National
Accelerator Laboratory
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motions seen in galaxies in the 30s by Zwicky (1933). While in some ways, the invocation

of a dark matter component in our cosmos was a step towards fully describing our Universe;

in other ways it kicked the problem into the grass as it offered no explanation of what this

dark matter was – other than stating it did not interact with electromagnetic radiation, and

thus could not be directly observed by any means at our disposal. In order to understand

this component more, we must use our observations of the gravitational effects it has on the

observable matter around it in order to infer its presence, distribution, and behaviour. In this

field, galactic dynamical models play an essential role.

This Chapter describes the work I have done which will contribute to a lead author paper

(currently in preparation). The work looks at using JAM models (described in Section 1.3) to

explore the dark matter content of galaxies, and introduces a novel method which includes

observed unresolved cold gas kinematics in the modelling process to offer an improvement

on the constraints of the dark matter halo parameters. In the Chapter, this is demonstrated

in-depth for a small sample and then the results of applying the technique to a larger sample

are presented and discussed. The properties of the dark matter haloes which are measured

are then related to other galaxy properties in order to explore the link between the dark mass

content and the evolution of galaxies.

4.1 Background

One of the most powerful uses of dynamical modelling is to determine the total mass present

in a galaxy – independent of the mass we see. Historically, this has changed the view of our

Universe through the discovery of a dark mass component which is unexplained by the stan-

dard model. As detailed in section 1.2, there are still problems present in our understanding in

this field, and as such improvements on dynamical modelling techniques are extremely valu-

able. An ideal dynamical modelling method would be able to model each individual system

in extreme detail using as much data as possible, while also being applicable to a large, sta-

tistically significant sample of galaxies. However, there is currently a trade-off between these

priorities as detailed modelling requires more time-expensive observations and computation-

ally expensive methods, while the models achievable with less expensive data and methods are

applicable to many systems but are less accurate. This work aims to balance these priorities

by using single dish hydrogen observations to improve the modelling for a large statistically

significant sample. For more details on the current field of dynamical modelling, see Section
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1.3.

As we are not able to directly observe dark matter, our best means of exploring its properties

is through comparison of observation with simulations. By running cosmological simulations

which model dark matter from first principles based on our theoretical assumptions of how

it may behave, we create mock observations of what we would expect the Universe (and the

galaxies within) to look like if that theory were correct. By creating simulations which include

as much realistic physics as computationally possible, if we base these on the correct theories

then we should be able to reproduce the Universe that we see. This involves an iterative

process of creating simulations, generating mock observations, and comparing to real observed

properties in order to fine tune the physics involved and create a more accurate simulation.

However, essential to this process is the observations to which the simulations are compared –

simulations are only as valuable as the observations that we compare them to. As we cannot

detect the dark matter in the Universe directly, we must use dynamical models to measure the

dark matter properties of galaxies around us, which can then be compared to the simulations.

A simulation which contained all of the correct physics that act in the Universe would be able

to reproduce not just the average galaxy properties of the population, but also the diversity in

the population too. For this reason, we must have dynamical modelling methods which allow

us to collect observations which test whether this is being achieved. As such, we need methods

which are applicable to large, statistically significant, samples. The limitations on dynamical

models for large samples are discussed in Section 1.3. This Chapter introduces a new method

which allows improved dynamical modelling with the addition of single dish hydrogen data –

and so is applicable to large samples.

Figure 4.1: Schematic illus-
trating that the luminous com-
ponent of a galaxy only inhab-
its the very central regions of
an extended halo of dark mat-
ter. Credit: Addison-Wesley
Longman

As outlined in Section 2.2, integral field spectroscopy (IFS),

and the resolved kinematics obtained from this has allowed

massive progress in data available for dynamical modelling.

However, as seen in Figure 4.1, the stellar component of a galaxy

which is detectable by IFS techniques is contained in the very

central region of an extended halo of dark matter (typically the

half light radius of the galaxy’s stellar component is only around

1-2% of the virial radius of the dark matter halo; Kravtsov, 2013;

Somerville et al., 2018). In these regions, the stellar mass also

generates a gravitational potential which dominates that of the
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dark matter component. In order to study dark matter effec-

tively, ideally we would want to probe regions where dark matter is the dominant component.

This is not possible with optical data as the stellar component does not extend to these radii,

however, as detailed in Section 1.3, dynamical models have used stellar kinematics combined

with other tracers in the outer regions. As shown in Figure 4.2, neutral hydrogen (H I ) exists

in galaxies in a thin rotating disk which extends to far greater radii than the stellar component,

and if the rotation is regular – as is the case in many elliptical galaxies (Morganti et al., 2006b;

Oosterloo et al., 2010), and we assume to be true for spiral galaxies which in general exhibit

less velocity dispersion (Beckman et al., 2004) – the dynamics can be treated as simple circular

motion instead of more complex kinematic modelling (Yang et al., 2019).

Figure 4.2: NGC 6946 observed in the opti-
cal on the left (Digitized Sky Survey), and in
H I on the right (Westerbork Synthesis Radio
Telescope), on the same scale (from Boomsma
et al., 2008)

As the nature of H I requires it to be dynam-

ically cold, this gas can be assumed to be rotat-

ing close to circular velocity due to the low ve-

locity dispersion and lack of asymmetric drift ef-

fect, with the velocity being dictated by the grav-

itational potential of the system. As such, this ro-

tation would be an excellent tracer on the poten-

tial where the dark matter dominates in the outer

regions, as the circular velocity, vc , relates to the

potential, Φ:

vc =

√

√

r
∂Φ

∂ r
(4.1)

Observing H I is intrinsically different from optical observations, and comes with its own

limitations, as explained in Section 2.3, however the information which can be extracted from

these observations is rich. Indeed, many studies (Weijmans et al., 2008; Martinsson et al.,

2013; Yang et al., 2019) have exploited this extra information to create very detailed models of

individual systems from resolved observations of H I kinematics. This highlights again the trade

off between sample size and modelling detail – resolved H I observations require full radio

array interferometric observations in order to give spatial information. These require deep

time-intensive observations, and are only available for a few hundred galaxies (this is changing

with the next generation of radio observatories; Apertif, MeerKAT, SKA, etc; Oosterloo et al.,
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2009; Jonas & MeerKAT Team, 2016; Dewdney et al., 2009; McMullin et al., 2022). Unresolved

radio observations are much more widely available, however these observations do not contain

spatial information and just provide a single spectrum for the region covered by the beam,

which is on the order of several arcminutes (for Green Bank Telescope, GBT, at 21cm; Masters

et al., 2019).

With the radio data alone, some quantities can be constrained, including a dynamical mass

inside the beam, which can be used to derive the dark matter fraction within the beam by com-

paring with the stellar mass measured optically. However, without the details of the stellar

kinematics there is little to be done in terms of full dynamical modelling. As such, the need

for large surveys of galaxies which provide both optical IFS data for the stellar component,

alongside hydrogen kinematics has been identified, precipitating plans to create and conduct

such surveys (Masters et al., 2019; Falcón-Barroso et al., 2019; Catinella et al., 2023). One

such survey, H I -MaNGA, is providing unresolved single-dish H I kinematics for galaxies ob-

served by an IFU in the MaNGA survey. The details of this survey are explained in Section 2.3,

as these are the data exploited in this chapter.

4.2 Sample and Data

This section uses stellar kinematic data from the MaNGA survey DR17 (see Section 2.2), H I

kinematic data from the H I -MaNGA survey DR3 (see section 2.3), and r-band imaging and

photometry data from the DESI Legacy Survey DR9 (see Section 2.1).

From the 6632 galaxies which had been observed in all three surveys at the time of the

data releases listed, a sample was constructed based on the following criteria:

• The galaxy has a positive detection in the H I -MaNGA survey

• The H I -MaNGA survey detection has signal-to-noise ratio SNR> 5

• The H I -MaNGA data is not flagged for any quality issues such as beam confusion (an-

other galaxy detected in the beam), baseline structure (there is a detection in what

should be the background baseline which has affected the baseline subtraction), etc.

• The galaxy inclination as measured in the SDSS survey through axial ratio is greater

than 60°, where 90° is edge-on.
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Figure 4.3: (u− r) colour vs stellar mass for the sample used. Green points and black contours show
the distribution of the full MaNGA DR17 sample, purple points and blue contours show the galaxies
observed in the full DR3 sample of H I -MaNGA, and yellow points show the galaxies selected in the
sample for this work based on the selection criteria described.

After the above criteria are applied this takes the sample size to 423. Figure 4.3 shows

where these galaxies lie in the colour-luminosity plane, and shows that the sample observed by

H I -MaNGA spans the full MaNGA sample but misses the most massive elliptical galaxies, while

the sample selected by the criteria above preferentially selects bluer galaxies. These criteria

do not actively address application of assumptions in the modelling process – for example,

galaxies exhibiting bar structures which cause the position angle to vary with radius would

not match the assumption of axisymmetry required for JAM modelling. These issues are dealt

with during the process by applying goodness-of-fit criteria to quality of MGE parameterisation

fits and JAM fits. This results in any galaxies which are not able to be adequately modelled by

the assumptions in our modelling process being discarded.

In terms of biases introduced in our sample at this stage, we note that the requirement

for a H I detection means we have, by design, selected galaxies which contain significant gas

content, which preferentially selects bluer disk galaxies with ongoing star formation, as can

be seen in Figure 4.3. While the MGE and JAM methods were originally designed for use on

elliptical galaxies, we note that past studies have worked with "fast rotators", which are ellip-

tical galaxies which contain a rotating disk component, and studies have applied the methods

to the modelling of disk galaxies explicitly (Kalinova et al., 2017; Li et al., 2017). This is valid

as these systems are rotationally dominated, and so can be modelled using these methods.
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4.3 Modelling with MaNGA Data Alone, without Dark Matter

4.3.1 Methods

Initially, I created JAM models using only the IFU data, similarly to what has been done previ-

ously in Santucci et al. (2022); Cappellari et al. (2011), and Chapter 3. These models do not

include any dark matter component, and are created to measure the inclination of the galaxies

for later modelling, and to demonstrate that dark matter is required in our models. First, the

gravitational potential must be approximated as per Section 2.5, which is then used to create

our JAM models.

Luminous Mass Distribution

A multi-gaussian expansion (MGE) parameterisation of the surface brightness was created fol-

lowing the method explained in Section 2.5, again using r-band imaging from DR9 of the DESI

Legacy Survey – described in Section 2.1. This was done by the exact same method as was

applied in the previous Chapter in Section 3.3.1, including the process by which artifical limi-

tations on inclination are avoided. This gives a 2-dimensional surface brightness distribution

which can then be multiplied by a mass-to-light ratio to convert this into a stellar mass distri-

bution and give the gravitational potential. We assume this mass-to-light ratio to be spatially

constant across the galaxy, which has its limitations compared to the physical reality of a galaxy

with diverse stellar populations. Galaxies are shown to have a spatially varying mass-to-light

ratio, with decomposition into a bulge mass-to-light-ratio and a disk mass-to-light ratio often

considered more accurate, however the assumption of a constant value has yielded valid re-

sults in past studies, with Cappellari et al. (2011) and Cappellari (2008) showing that masses

can be recovered within 6% of true values using this method. These models are presented here

in Figures 4.4, 4.5, 4.6, and 4.7 for four example galaxies. This shows that the MGE param-

eterisation fits the surface brightness distribution of the galaxies well, with residuals staying

below 20% at all radii in each sector. A 20% residual for the light in an individual sector would

translate to a mass error of just 0.1% for the full galaxy. Therefore, keeping the errors within

20% for each sector at each radial bin is sufficient (even given the cumulative effects of errors

across the spatial extent of the MGE) to ensure our models are accurate. These example galax-

ies are used as a proof-of-concept sample in these sections, and results are shown for them in

detail. These models are used throughout this Chapter when JAM models are created.
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Figure 4.4: MGE evaluation for 9095-12704. Top: Identification of the galaxy centre and major/minor
axes (green lines), and extent of surface brightness (red ellipse). Middle: MGE surface brightness
contours (red) compared with the observed r-band surface brightness contours (black). Bottom: Left
shows model photometry (lines) versus observed (dots) at different position angles, right shows residual
photometry.
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Figure 4.5: MGE evaluation for 8084-12705. Panels same as in Figure 4.4.
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Figure 4.6: MGE evaluation for 9190-12702. Panels same as in Figure 4.4.
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Figure 4.7: MGE evaluation for 12079-12702. Panels same as in Figure 4.4.
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Rejected MGE Models

While for these examples the MGE fits have worked well, we ran our MGE fitting algorithm

over all galaxies in the sample, with the same base parameters set. Of the 423 galaxies in

our selected sample, many failed to produce adequate models. After visual inspection of the

MGE models for the sample, we selected a limit of χ2 < 6, as this removed the failures from

the sample upon visual inspection (note, this is not reduced χ2). This value was calculated

as the comparison between the observed counts from the legacy image in each sector at each

radius, and the value found by the MGE model at this point. It is important to note that no

errors are taken into account for the image, and therefore this chi2 will be conservative. This

left a sample of 84 galaxies. This was a conservative estimate to exclude catastrophic failures,

which we note may exclude many viable galaxies. We also note that the precise nature of

the failures were diverse, ranging from failing to identify enough guide stars to calculate the

PSF or misidentifying the galaxy centre in the frame, to being badly modelled by a constant

proper angle or exhibiting strong non-axisymmetric structures like bars. See Figures 4.8 to

4.10 for examples. As JAM modelling relies on axisymmetry, we have to discard those which

fail to be accurately fit by this model. Some of these could be salvaged by tailoring the fitting

parameters to each galaxy or manually masking features in the images – however, as this is a

proof-of-concept study on a relatively large sample, we elected to discard those which were

not able to be fit without manual intervention, as this was beyond the scope of this project.

This leaves our sample size at 84 galaxies which are put through the modelling process. We

note that this biases our sample by removing those with barred structures, especially those

with bars which have a varying position angle. This is discussed in further sections.
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Figure 4.8: MGE evaluation for 8154-12705. This model failed, with chi2 value of 26. Panels same as
in Figure 4.4
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Figure 4.9: MGE evaluation for 10841-12702. This model failed, with chi2 value of 10. Panels same
as in Figure 4.4
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Figure 4.10: MGE evaluation for 11824-12702. This model failed, with chi2 value of 51. Panels same
as in Figure 4.4
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Gaseous Mass Distribution

Initially I create models with no dark matter, following the method used in Chapter 3. The

mass components present are the luminous component already described, along with a gaseous

component. The second component was included because the sample selection described in

Section 4.2 selects galaxies which are detected in H I -MaNGA, which by design means the

sample contains predominantly gas-rich galaxies and so the gas mass cannot be neglected.

Indeed, the H I gas mass in the sample is found to be around 0.1-0.2 that of the stellar mass.

In this case the gas is modelled as an exponential disk and parameterised based on the total gas

mass (as per Bigiel & Blitz, 2012), which is determined by scaling relations from the observed

H I mass from H I -MaNGA observations. Additional factors are added in order to account for

gas mass in other phases, including a factor of 1.36 to account for helium (as per Weijmans

et al., 2008), and a factor which depends on the stellar mass to derive the molecular H2 mass

(as per Table 3 of Catinella et al., 2018). As such, the gas mass is equal to:

Mgas,total = MHI
+ (0.36×MHI

) + (AH2
×MHI

) (4.2)

where AH2
is the (MH2

/ MHI
) value taken from Table 3 of Catinella et al. (2018), reproduced

here in Table 4.1:

x 〈x〉 Median log( MH2
/ MHI

)
log M⋆ 9.18 −1.044

9.53 −1.003
9.88 −0.704

10.22 −0.691
10.59 −0.659
10.91 −0.521
11.20 −0.559

Table 4.1: Molecular-to-atomic gas mass ratio scaling relations for xGASS-CO, reproduced from
Catinella et al. (2018)

Using the Mgas,total value from Equation 4.2, the density profile is then given (as per Bigiel

& Blitz, 2012) as:

Σgas(r) = 2.1×Σt rans × e−1.65×r/r25 (4.3)

where Σt rans is the surface density of the gas at the "transition radius" which is where the
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density of molecular gas is equal to the density of atomic gas, and is given by:

Σt rans =
Mgas,total

2π× 2.1× 0.37× r2
25

(4.4)

where r25 is the radius at which a galaxy reaches a surface brightness of 25 magnitudes/

arcsec2 in the B-band. Our galaxies do not have B-band surface photometry, but this is con-

verted using R25 = 2.5 × Re f f (Trujillo et al., 2020), where Re f f is the half-light radius in

the r-band, which is available for our galaxies from the SDSS NSA catalogue from elliptical

petrosian fitting. This profile is then also parameterised in MGE form, and added to the JAM

model.

JAM Model

JAM models without dark matter are constructed for our sample following the method de-

scribed in Sections 2.6 and 3.3.2. As with Section 3.3.2, we use MCMC to find the best fit

model. However, as these models are going to be developed to include more free parame-

ters to describe the dark halo, we opt to use a Gibbs Adaptive sampler implemented through

GAStimator (see Section 2.7). This is more robust to likelihood distributions with many local

minima. For these models, the free parameters and their priors are the same as those used in

Chapter 3.

The MCMC was run using a log likelihood function of:

log L = −
χ2

2
= −

1
2

N
∑

i

�

(vobs
rms,i − vmodel

rms,i )
2

(σobs
vrms,i
)2

�

(4.5)

where i indicates each data point in the 2D map, and N is the total number of valid data

points in the IFU. This is the quantity which is maximised by the MCMC process, and is at its

maximum when the IFU data is most closely reproduced by the model. We note that this form

is only truly valid in the case of uncorrelated errors, however in Cappellari et al. (2011), the

authors applied the method using both correlated and uncorrelated forms and state that in

practice the values and errors did not disagree between the methods. The errors used are the

inverse variance errors given by the MaNGA data. We also note that in Mitzkus et al. (2017),

a case was made for using inflated errors to avoid the issue of small bins in the inner regions

of the datacube. The authors were not aware of this method during the implementation of
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the model, and so used the method from Cappellari et al. (2011). This accounts for why

propagated errors of the model are artificially small.

As in Chapter 3, the MCMC was run until the parameters converged, and the first 1000

steps were discarded as burn-in. The best fit values of the parameters were taken as the mean

of the distribution, with errors at the 16th and 84th percentile. For reference, running parallel

on 30 cores, one galaxy model takes approximately just under an hour to run.

Comparison with Measured Cold Gas Velocity

As the M/L is now constrained for our models, this value can multiply the luminous MGE in

order to give the mass distribution present in the galaxy. The rotation curve can be produced

and extrapolated to greater radii based on the mass model, showing the circular velocity vs

radius, as circular velocity (vcirc) at a given radius (R) in an axisymmetric potential (Φ) is

determined by:

vcirc =

√

√

R
dΦ
dR

(4.6)

This can then be compared to the hydrogen velocity observed in order to see how well the

model fits in the most dark matter dominated region. To do this, the velocity is extracted from

the H I -MaNGA data as explained in Section 2.3, alongside the estimate of the radius probed.

This is estimated using the H I mass-size relation, as described in Section 2.3. While the scatter

in the relation means this is a rough estimate of the radius probed, this should correspond to

the outer parts of the disk as this is where the maximum rotational velocities are reached, and

further the velocity profile in the outer regions of disk galaxies is known to be largely constant

so our models should not be too sensitive to this selection.

4.3.2 Results

As described in Section 4.3.1, JAM models were created to constrain the dynamical mass

present in the galaxies, and this was used to extrapolate the velocity curves expected for this

mass distribution out to large radii by constraining the mass to light ratio and using an MGE

approximation out to greater radii than the images. Figures 4.11, 4.12, 4.13 and 4.14 show

the results of the JAM modelling process for a selection of 4 example galaxies from our sample

– with the observed vRMS map shown alongside that generated by the best fit model, and a map
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of the residuals between the model and the observations, showing good agreement; a corner

plot shows the posterior distributions of the free parameters in the JAM model from the MCMC

process, showing they are converged; and finally a plot of the projected circular velocity for the

best fit model is shown, with the velocity of the H I plotted to show that the models without

dark matter fail to fit the data in the outer regions. This highlights the importance of obtaining

data for the kinematics in the outer regions of galaxies, as despite these models managing to

correctly match the data in the inner regions covered by the IFU and dominated by the stellar

potential, they do not match the system in the outer regions. Further, and most importantly,

this shows very strikingly the requirement for an additional undetected (dark matter) mass

component in galaxies to explain the motions we observe at large radii.

Given these results, the next section (Section 4.4) creates models which include a dark

matter halo and constrain these parameters with only the IFU data, to see if these can match

the kinematics in the outer regions.
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Figure 4.11: Evaluation of JAM model with no dark matter for 9095-12704. Top: From L-R, observed,
modelled, and residual VRMS maps. White contours show isophotes from the MGE model. Middle:
Rotation curve generated by the model (blue), composed of the stellar component (dashed green curve)
and gas component (dashed orange curve). Vertical dashed line indicates the effective radius of the
galaxy, solid black line indicates the noise limit of the r-band image used to generate the MGE, and the
green vertical line indicates the radius reached by the IFU data. The black point shows the measured
H I velocity. Bottom: corner plot showing posterior distribution of variables from the JAM MCMC
simulation.
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Figure 4.12: Evaluation of JAM model with no dark matter for 8084-12705. Panels same as in Figure
4.11.
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Figure 4.13: Evaluation of JAM model with no dark matter for 9190-12702. Panels same as in Figure
4.11.
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Figure 4.14: Evaluation of JAM model with no dark matter for 12079-12702. Panels same as in Figure
4.11.
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4.4 Modelling with MaNGA Data Alone, including Dark Matter

In the previous section we saw that JAM models which omit dark matter are able to produce

models which replicate the kinematics observed by IFS in the inner regions, but fail to produce

high enough circular velocities in the outer regions to match our H I data. This section attempts

to add a dark matter component into the models without the additional constraint of the H I

data, to see if haloes can be correctly constrained by the IFU data alone.

4.4.1 Methods

These models follow the same method as those above in Section 4.3.1, except for the addition

of a dark component to the mass distribution.

Dark Mass Distribution

To create a dark component, the colossus python package is used (COsmology, haLO and

large-Scale StrUcture toolS; Diemer, 2018). Among many other features, this provides func-

tions which generate radial density profiles for theoretical dark matter distributions, given

defining parameters. Two options provided are an Einasto halo (Einasto, 1965) and an NFW

halo (Navarro et al., 1996). A subsample of models were run using both of these forms, and

the Einasto profile was seen to fit the data more reliably than the NFW halo. After some trials

and comparison (and literature examples showing a better description than other halo distri-

butions: Gao et al., 2008a), we select an Einasto halo (Einasto, 1965), which is defined as

per the radial density profile:

ρ(r) = ρs exp
�

−
2
α

��

r
rs

�α

− 1
��

(4.7)

where ρ is the density, r is the radius, and the halo is defined by a scale density ρs, a scale

length rs at which the scale density is reached, and a parameter α which determines how

quickly the profile steepens with slope. This equation can be transformed within colossus to

create Einasto haloes defined by α alongside the halo mass M200 (defined as the mass enclosed

within the sphere bounded at the radius where the density reaches that of 200 times the

background density) and concentration c, which are more widely used in the literature.

This adds further free parameters to our model. However, in order to minimise free pa-
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rameters in an effort to give the models the best chance to converge, we fix the α parameter to

∼ 0.16, which was the value found in Gao et al. (2008a) to best fit the distribution of present

day haloes in the Millennium Simulation (Gao et al., 2008b).

JAM Model

JAM models including a dark matter halo are constructed for our sample following the method

described in Section 4.3.1, but with the addition of an extra component in the form of a theo-

retical dark matter halo in MGE form, and a change to some priors. Further, the inclination is

no longer treated as a free parameter, but is fixed to the value which was found from the model

with no dark matter. This is valid as the dark matter halo added is spherically symmetrical,

and so the inclination is not expected to change with the addition of the dark component.

During the MCMC process, as each set of free parameters are generated from the priors

(including the additional parameters which define the halo), a dark matter profile is generated

by colossus which is also then parameterised as an MGE (this time only one dimensional

radial density profile is required as the dark matter halo is considered to be spherical) as per

Section 2.5, and added to the JAM model as a dark potential for that iteration. As such, input

into the JAM model are a luminous MGE which includes just the stellar MGE generated from

the r-band imaging, and a potential MGE which includes all components from the stellar MGE,

gas MGE, and dark MGE.

As with Section 3.3.2, we use MCMC to find the best fit model, and we opt again to use a

Gibbs Adaptive sampler implemented through GAStimator (details in Section 2.7). For these

models, the free parameters and their priors are listed here:

• Orbital anisotropy, β: flat prior between 0 and 0.75

• Stellar mass-to-light ratio, M/L: flat prior between 0.1 and the dynamical M/L fitted

by the model with no dark matter.

• Halo mass, log M200: flat prior between 7 and 15. Note, M200 is close to, but not equiv-

alent to, the virial mass.

• Halo concentration, c: Gaussian prior, centred on value set by the known mass-concentration
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relation for redshift zero (from Klypin et al., 2011):

c(M200) = 9.60
�

M200

1012h−1M⊙

�−0.075

(4.8)

with a 1σ width of 0.1, allowing scatter around this value. This relation is included as

models with an uninformative flat prior on the concentration often failed to converge

during the MCMC process.

The log likelihood function used, and the MCMC procedure are the same as in the previous

models.

4.4.2 Results

As described above, JAM models were created for our sample which now include a dark matter

halo (demonstrated to be needed in Section 4.3.2), and are fitted using only the IFU data. In

Figures 4.15, 4.16, 4.17 ,and 4.18, our model results are presented, and compared to the H I

data, for the same 4 example galaxies as in Section 4.3.2. We see that the inclusion of a dark

matter halo improves the fit in the outer regions, while still fitting the data well in the inner

regions, by increasing the circular velocity projected here, in some cases coming close to fitting

the data. However, without the model "knowing" about the kinematics in these outer regions,

it fails to match the measured velocities. Further, as in the case of 12079-12702, there is often

a large spread of halo parameters allowed which creates a spread of possible rotation curves

in the outer regions as the parameters are not as well constrained. We also see, as in the case

of 9190-12702, that in some cases the halo parameters are able to fit the data in the inner

regions well but then are massively failing to match the H I data in the outer regions.

We also note the impact of using the halo mass-concentration relation as a loose prior

for the concentration values. Running these models with an uninformative flat prior on the

concentration created models which often failed to converge during the MCMC process at all,

whereas these models converge.
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Figure 4.15: Evaluation of JAM model with dark matter, but no H I for 9095-12704. Top: From L-R,
observed, modelled, and residual VRMS maps. White contours show isophotes from the MGE model.
Middle: Rotation curve generated by the model (blue), composed of the stellar component (dashed
green curve), gas component (dashed pink curve), and dark component (dashed orange line). Vertical
dashed line indicates the effective radius of the galaxy, solid black line indicates the noise limit of the
r-band image used to generate the MGE, and the green vertical line indicates the radius reached by the
IFU data. The black point shows the measured H I velocity. Bottom: corner plot showing posterior
distribution of variables from the JAM MCMC simulation.
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Figure 4.16: Evaluation of JAM model with dark matter, but no H I for 8084-12705. Panels same as
in Figure 4.15.
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Figure 4.17: Evaluation of JAM model with dark matter, but no H I for 9190-12702. Panels same as
in Figure 4.15.
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Figure 4.18: Evaluation of JAM model with dark matter, but no H I for 12079-12702. Panels same as
in Figure 4.15.
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4.5 Adding Single Dish Hydrogen Kinematics

In the previous two Sections, 4.3 and 4.4, through JAM modelling we have demonstrated the

need for an additional dark matter component in our models in order to fit the kinematics

measured in the outer regions, and further we have shown that simply adding this component

and offering constraints from stellar IFU data alone is not enough to adequately constrain the

model to reproduce the observations. In this Section we introduce a novel method to include

the H I kinematic observations in the modelling process in order to offer an extra observational

constraint on the data from the most dark matter-dominant regions. This builds upon the past

techniques which have combined cold gas kinematics and other tracers with dynamical models

(see Section 1.3, and Yang et al., 2019), however benefits from the widespread availability

of single-dish H I data compared to resolved cold gas observations, allowing application to a

large sample.

4.5.1 Methods

In this section, the models are created in the exact same way as in the previous section, except

the fitting process is altered to include the H I observations in the likelihood function, thus

making the model also attempt to fit that point. The models use the same luminous, gaseous,

and dark MGE parameterisations as in Section 4.3.1. The rest of the method is detailed below.

JAM Model

JAM models including a dark matter halo are constructed for our sample following the method

described in Section 4.4, with the same variables used and the same priors applied, except in

this case the likelihood function also assesses how well the model matches the H I kinematics

in the outer region. To do this, at each MCMC step the projected circular velocity at the H I

radius (see Section 2.3) is calculated and compared to the measured observed velocity of the

H I . This in effect acts to "tell" the model to also find the best fit taking this into account

alongside the IFU data. This is added to the likelihood in combination with the IFU data

through the amended log likelihood function below:

log LHI
= −
(χ2

I FU +Wχ
2
HI
)

2
= −

1
2

� N
∑

i

�

(vobs
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�

(4.9)
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where i indicates each data point in the 2D map from the IFU, N is the number of data points

in the IFU, and W is a weighting factor. This weighting factor is set so W = N , in essence

giving the H I point the same statistical weight as the whole IFU combined. This was tested

at different values, and chosen as this was the highest weighting value that did not cause the

fit to the central IFU data to become less good. log LHI
is the quantity which is maximised by

the MCMC process, and is at its maximum when the model is closest to fitting the data.

The MCMC simulation was run following the same procedure as previously.

4.5.2 Results

The results for models which use this novel method of combining the H I observation with the

IFU observations in the modelling process are presented for the same 4 example galaxies as

used previously in Figures 4.19, 4.20, 4.21, and 4.22.

For all of these galaxies, the best fit model now manages to correctly fit the H I point at

the radius, while still fitting the IFU data in the centre (in some cases, the IFU data fit is even

also improved upon from the previous model – eg. 9190-12702). The posterior distributions

displayed in the corner plots show that the parameters in the model are well-constrained.

The H I points are fit very well by the models, which may suggest overfitting. Using lower

values of the weighting parameter did not result in the inner data being fit less well, and so

any fitting of the outer points are justified by the data. We note the extremely low errors on

the modelled value. As noted previously, a new method described in Mitzkus et al. (2017)

which was not known to the author at the time of modelling proposes an artificial inflation

of the error values from the kinematic maps in order to more accurately estimate the true

uncertainties in the data. This method will be tested in future to see if this accounts for the

artificially small errors. We also note that these errors represent the ability of the model to fit

the data using the MGE mass distribution, which itself did not account for any errors in the

image data. As such, the errrors are expected to be underestimated.

This Section, and Sections 4.3 and 4.4, have demonstrated the improvements to JAM mod-

elling provided by this method, featuring the addition of just one extra data point from un-

resolved 21cm hydrogen kinematics. These sections have demonstrated the results of this on

four example galaxies, and in Section 4.6 we detail the application of this method to a large

sample.
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Figure 4.19: Evaluation of JAM model with dark matter and H I for 9095-12704. Top: From L-R,
observed, modelled, and residual VRMS maps. White contours show isophotes from the MGE model.
Middle: Rotation curve generated by the model (blue), composed of the stellar component (dashed
green curve), gas component (dashed pink curve), and dark component (dashed orange line). Vertical
dashed line indicates the effective radius of the galaxy, solid black line indicates the noise limit of the
r-band image used to generate the MGE, and the green vertical line indicates the radius reached by the
IFU data. The black point shows the measured H I velocity. Bottom: corner plot showing posterior
distribution of variables from the JAM MCMC simulation.
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Figure 4.20: Evaluation of JAM model with dark matter and H I for 8084-12705. Panels same as in
Figure 4.19.
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Figure 4.21: Evaluation of JAM model with dark matter and H I for 9190-12702. Panels same as in
Figure 4.19.
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Figure 4.22: Evaluation of JAM model with dark matter and H I for 12079-12702. Panels same as in
Figure 4.19.
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4.6 Applying this Method to the Full Sample

In Sections 4.3, 4.4 and 4.5, it has been demonstrated that JAM models require a dark matter

component in order to reproduce the observed kinematics in the outer regions, and also that

these outer region kinematics must be included in the modelling process in order to appro-

priately constrain the model – single dish H I observations can achieve this. These sections

presented the results of this process in detail for 4 example galaxies. However, in Section 4.1

we stressed the importance of being able to model statistically significant sample sizes, and in

Section 4.2 we introduced a large sample of galaxies which had the prerequisite data avail-

able for this method to be applied to. This section documents the outcome of applying this

modelling technique to the sample, details galaxies which are rejected from the sample, and

evaluates the results of the modelling process. Further, we take the parameters measured by

the modelling process and examine how these relate to other galaxy properties – comparing

this to literature and our understanding of galaxy evolution.

4.6.1 Galaxies Discarded from Sample

The sample originally defined in Section 4.2 contained 423 galaxies. In Section 4.3.1, we note

that a large proportion of this sample failed to produce adequate MGE fits using our automatic

algorithm. This reduced our sample to 84 galaxies which could carry on to the modelling

process. The results of these models are shown here.

4.6.2 Evaluating Fits

All 84 galaxies which we set out to model produced viable dynamical modelling results. The

models produced with no dark matter (as in Section 4.3), and with dark matter but no con-

straints from the H I (as in Section 4.4) are not relevant to this section, as we have identified

the best constraints and match to the data are produced by our novel model which includes

the H I information (see Section 4.5). In order to identify poor fits to the data, we labelled

galaxies as successful fits, or unsuccessful fits based on the following criteria:

• Any galaxy which exhibited a χ2
I FU > 5 had to undergo a visual inspection in order to

assess the quality of the IFU fit. The majority of these were rejected. We note we did

not filter our sample based on the quality of the IFU data, and so expected this to be the

point where these cases were removed. See Figure 4.23 for an example of this.
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• The models remaining after this had their rotation curves visually inspected, and were

rejected if they revealed a dark matter component which did not dominate the stellar po-

tential at any radius. These specific failures are attributed to the shape of the kinematics

in the IFU data being reproduced by the stellar kinematics, and then a flat contribution

being added from the halo which can then be interchangeably swapped for a lower mass

to light ratio. See Figure 4.24 for an example of this.

Once the sample was inspected for the issues explained above, we find 50 galaxies with

good quality fits as per our criteria, and reject 34 galaxies. Examples of failed fits are shown

below.
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Figure 4.23: An example of a fit which has failed due to IFU data quality. Panels same as in Figure
4.19.
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Figure 4.24: An example of a fit which has failed due to data being unable to distinguish between dark
matter and higher mass to light ratio. Panels same as in Figure 4.19.
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4.6.3 Evaluating Measurements

In order to evaluate how well our models have managed to accurately measure the param-

eters, we take a look at some quantities measured for the sample against other independent

measurements for the sample.

First, we examine the properties of our sample compared to the galaxy population globally.

In Figure 4.25 we present our sample highlighted on a colour-mass diagram for both (g−r) and

(u− r). On this we differentiate between the galaxies which were classified as failed models

and rejected. We note that, as expected based on our sample selection for galaxies detected in

H I , the majority of our sample exists in the "blue cloud" region of the parameter space, with

some extending into the "green valley". Some galaxies were selected from the "red sequence",

however these failed to produce viable models. For discussion on what these regions mean for

galaxy evolution, see Section 1.1 and Figure 1.2. We also see that the galaxies which failed

are not confined to any specific part of the colour-mass plane.

Figure 4.25: Distribution of the sample in colour (Left: (g−r), Right: (u−r)) mass space. Green points
and black contours show the full SDSS DR17 sample, orange points show the successfully modelled
galaxies, and grey points show galaxies which were modelled but were rejected for the reasons detailed
in the text.

Further, we situate our sample within the full sample of the H I -MaNGA survey DR3 in

Figure 4.26. This shows that our sample spans the full range of parameter space explored

by the H I -MaNGA survey, and hence is a suitable proof-of-concept study for use in other

combined IFU-H I surveys.

In order to assess our measurements of the stellar component in the sample, we first com-

pare the photometry recovered by the MGE parameterisations to catalogue values. Initially,

we compared the apparent r-band magnitudes measured by the MGEs created from the Legacy
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Figure 4.26: The modelled sample compared with the full H I -MaNGA DR3 sample in H I mass versus
stellar mass. Orange points and black contours show the H I -MaNGA sample, green points show galax-
ies which were modelled.

survey imaging, to the published apparent r-band magnitudes from the NSA catalogue which

uses elliptical petrosian apertures to quantify flux from SDSS imaging. However, this exhib-

ited a large offset. Instead, we compared the MGEs made from Legacy imaging with the

magnitudes published in the Legacy catalogue in order to see if this explained the discrepancy.

These results are shown in Figure 4.27. We find that the photometry from the Legacy catalogue

matches our MGE photometry, however the SDSS photometry does not match.

We consider this due to the differences between measurements of a petrosian flux which

is defined within a set aperture, and the Legacy catalogue values which are generated from

modelled photometry – therefore capturing light to greater depths than those observed. That

this is a systematic offset is enough validation that we have correctly reproduced the surface

brightness distribution for our models.

This discrepancy however reaches further than just photometry measurements. As our

method of determining the stellar mass is hinged upon the luminosity – a simple multiplication

of the luminosity by the fitted stellar mass-to-light ratio – we expect that our stellar masses

will not match stellar masses in the NSA catalogue, as these are derived from SDSS imaging.

Derived separately from the fluxes, the Nasa-Sloan Atlas provides stellar mass-to-light ra-

tios derived from scaling relations to colour differences from photometry. These should be in-

dependent of the depth issues, and so we can compare our measurements with these – which

we do in Figure 4.28. We see a massive discrepancy between our values and those measured

by our models. We compare the NSA values to our modelled values for the models with no

dark matter (this would be expected to be higher as it is compensating for the dark compo-
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Figure 4.27: r-band magnitudes measured in our MGE models created from Legacy imaging, versus
catalogue values for the NSA catalogue (orange) and Legacy catalogue (green). Black line shows one-
to-one relation.

nent), the models with dark matter but no H I (which show large uncertainties due to the

lack of constraints), and the full models which include the H I information. The full models

provide mass-to-light ratios which are lower than those with no dark matter, which is expected

as the dark component should correct for some of the missing mass. However, we still see far

higher values from our models. To an extent, the NSA values are derived using a less accurate

method and so may be failing to properly account for the properties of the galaxies, however

this requires further investigation using other spectral fitting measures of the mass-to-light

ratio.
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Figure 4.28: Mass-to-light ratios from the best fit JAM models compared to the NSA catalogue stellar
r-band values derived from photometry. Red points show stellar M/L values from models which include
dark matter and the H I . Green points show dynamical M/L values from models which contain no dark
matter. Pink points show stellar M/L values from models which contain dark matter but do not include
the H I . Blue line shows the one-to-one relation.
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4.7 Discussion

4.7.1 The Need for Cold Gas

We have shown in Section 4.5 that the additional constraint of H I kinematics improves the fit

of the rotation curve for our four example galaxies. Considering the full sample, Figure 4.29

compares the dark matter halo mass derived by the models with and without the inclusion of

H I . This, strikingly, shows that there is little or no correlation between the halo masses found

without using cold gas and those found using cold gas. Further, the errorbars on the models

with no H I are extremely large, covering in some cases as much as 3 dex. Meanwhile, the

uncertainties on the models which are constrained by the additional H I information are much

smaller. In order to confirm that our full models do indeed derive more accurate values, in

Section 4.7.3 we compare the values to those in literature, and find that our value reproduce

the literature values. This confirms that the vast differences and lack of correlation found by

the models without H I are real, and massively reinforces that without the inclusion of cold

gas kinematics, we do not measure accurate values of dark matter mass.

Figure 4.29: log halo mass values for models which include H I versus those which do not. Blue line
shows one-to-one relation.

4.7.2 The Halo-Concentration Relation

Above we have validated that our models produce values in line with comparable catalogue

values. As such, in this Section we proceed to look at how our measurements compare to

published relations in the literature.

Here we consider the halo mass-concentration relation which we included in our model

97



Chapter 4. Jeans Modelling to Constrain the Dark Matter Halo

through the prior on the concentration. As this was a part of the assumptions fed into the

model, we expect some bias towards reproducing this relation, however we note that the prior

was given wide scatter, so points were allowed to deviate from the relation where the data

justified it. This is shown in Figure 4.30. Included in these plots is an alternative halo mass-

concentration relation, also from Klypin et al. (2011), for subhalos – in contrast to the relation

used in our prior which is for field haloes. This is included to investigate whether any of our

galaxies have settled on this instead. Upon removing our failed fits, we see that overall our

sample follows the relation, but we identify 7 notable outliers which warrant further investi-

gation – as highlighted in Figure 4.30.

Figure 4.30: Halo mass - concentration relation (HMCR) for modelled galaxies. The solid orange line
shows the literature relation from Klypin et al. (2011) which is used as the prior in our models, the
dashed orange line shows an alternative relation also from Klypin et al. (2011), for subhaloes. Left:
HMCR showing galaxies which were successfully modelled (green points) alongside those which failed
(grey points). Right: HMCR for successfully modelled galaxies only, red circles highlighting those
identified as outliers which are examined further in the text.

M-c Outliers

The outliers were visually re-inspected, and were found to deviate for a variety of reasons.

Some, such as in Figure 4.31 clearly fail due to a lack of IFU data points, others show they

were simply missed in the original visual inspection as the IFU χ2 cut didn’t flag up a need for

inspection of the rotation curve (Figure 4.32), others defy explanation as to their fits (Figure

4.33). These are excluded from the following analysis.
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Figure 4.31: Evaluation of JAM modelling for 12700-12702, one of the outliers which illustrates those
rejected for IFU issues. Panels the same as in Figure 4.19.
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Figure 4.32: Evaluation of JAM modelling for 12084-12705, one of the outliers which illustrates those
rejected dark matter component failing to become dominant. Panels the same as in Figure 4.19.
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Figure 4.33: Evaluation of JAM modelling for 8314-12705, one of the outliers which illustrates those
which were rejected for being outliers on the M-c relation, but not showing any discernible features
otherwise. Panels the same as in Figure 4.19.
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4.7.3 Comparison with Other Properties and Literature

The underlying dark matter properties of galaxies have been shown to be intimately linked to

their evolution and so have correlations with the properties of the stellar component.

First we consider the split of the dynamical mass between the dark matter component and

the stellar component (the stellar-halo mass relation, SHMR). This has been well studied in

simulations and in literature, and is an indication of how efficient star formation is for different

dark matter halo masses. Our results are shown in Figures 4.34, with both axes options for

ease of comparison with literature. In Figure 4.35, we also show these results in the form of

the ratio between stellar mass and halo mass against the halo mass.

Figure 4.34: Stellar-halo mass relation (SHMR) for stellar and halo masses fit by the JAM models. Left
and right panels show the same but with the axes swapped for ease of comparison with literature.

In Legrand et al. (2019), the authors use stellar halo abundance matching (considering the

halo mass function and stellar mass functions, and matching the largest haloes to the largest

stellar masses) to construct the form of the SHMR across different redshifts. Their results are

shown in Figure 4.36, in both the SHMR relation and a version showing the ratio of stellar

and halo mass vs the halo mass.

Comparing the lowest redshift results in Figure 4.36 (as MaNGA covers low redshift galax-

ies) with our results in Figures 4.34 and 4.35, we see that qualitatively the values are in the

same region as the literature values, with the SHMR results in the left panel of Figure 4.34

tentatively suggesting a change of gradient for higher stellar masses as predicted in the liter-

ature results from Figure 4.36. However, looking at the relation displayed as a ratio of the

stellar and halo masses, we fail to reproduce the turnover seen in the literature at halo masses

around 1012.
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Figure 4.35: SHMR shown for our galaxies in the form of the ratio of the stellar to halo masses, versus
the halo mass. This form is commonly used in literature.

These conclusions are also confirmed when comparing to the results of Girelli et al. (2020)

shown in Figure 4.37, which uses a similar method to compare observed stellar masses with

simulated halo masses through stellar halo abundance matching; and further by comparing

the right hand panel of our results in Figure 4.34, with the upper panel of the results from

Moster et al. (2010) (which uses a statistical comparison with simulated halo masses) shown

in Figure 4.38, alongside comparing Figure 4.35 with the lower panel.

That our data doesn’t reproduce the turnover when comparing the ratio of stellar to halo

mass with halo mass is a concern, however we note the small sample size we are using, and

also the bias in our sample. As shown in Figure 4.25, our sample is almost entirely late-type

spiral galaxies. In Figures 4.39 and 4.40 results from Posti & Fall (2021) are shown. In this

work, the authors use dynamical observations (H I in the case of spiral galaxies and globular

clusters in the case of elliptical galaxies) to measure the SHMR observationally. They show

that late-type spiral galaxies do not follow the relations seen through stellar halo abundance

matching, which could explain our inability to reproduce this turnover. Specifically, comparing

the right panel of Figure 4.34 with Figure 4.39 shows a much less pronounced downturn in

gradient which is more feasible for our small sample. Also, comparing the right panel of

Figure 4.40 with our results in Figure 4.35, we see a massive scatter in the lower mass end in

the spiral galaxies, which would mean a much larger sample size would be needed in order to

appropriately ascertain if we see the turnover.
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Figure 4.36: SHMR reproduced from Legrand et al. (2019) for different redshifts (colours, blue most
relevant to our work). Left: SHMR shown in usual form, Right: SHMR shown in the form of the ratio.

Figure 4.37: SHMR in ratio form, reproduced from Girelli et al. (2020) for different redshifts (colours,
grey most relevant to our work).
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Figure 4.38: SHMR from simulations reproduced from Moster et al. (2010). M denotes the halo mass,
while m refers to the stellar mass. Upper: SHMR shown in usual form, Lower: SHMR shown in the
form of the ratio.
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Figure 4.39: Observed SHMR from Posti & Fall (2021). Blue points show late type galaxies, from which
halo masses are derived from H I dynamical observations; red points show early-type galaxies, which
use globular cluster dynamics. The grey region shows the expected relation from abundance matching.
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Figure 4.40: Observed SHMR from Posti & Fall (2021), in the form of the ratio against stellar mass
(left), and the ratio against halo mass (right). Blue points show late type galaxies, from which halo
masses are derived from H I dynamical observations; red points show early-type galaxies, which use
globular cluster dynamics. The grey region shows the expected relation from abundance matching.
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Following our understanding of galaxy formation, as set out in Section 1.4, a more massive

dark matter halo leads to a deeper potential well and so the accretion of more cold gas to fuel

star formation. Using our H I mass data from H I -MaNGA, Figure 4.41 shows the relation

between gas mass and halo mass. This agrees qualitatively with the concept of more gas for

higher mass haloes, and reinforces the theory that the turnover in the SHMR is not due to a lack

of gas but due to effects which lower the efficiency of star formation from the gas reservoirs in

higher mass haloes. We compare this to Figure 4.42 which is taken from Dutta et al. (2022).

This paper used ALFALFA H I observations alongside a statistical scaling method to obtain halo

masses from stellar masses (described in Moster et al., 2013). Comparing with our results, we

see that again our values are qualitatively similar to those in the paper , but more importantly

note the large scatter in the literature plot. This again highlights that our small sample size

would make comparisons difficult.

Figure 4.41: Halo mass against H I mass for modelled galaxies.
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Figure 4.42: Halo mass against H I mass for the ALFALFA sample, reproduced from Dutta et al. (2022).
The solid black line shows the H I -Halo mass relation derived from this work, while the dashed black
line shows that derived from previous work.
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The effect of the halo mass on the ability of a galaxy to accrete gas also has an effect

on the star formation rate, however this is more complicated due to the effects of feedback

and other baryonic processes. In Wang et al. (2013), the authors compare the observed star

formation rate with halo masses which are obtained using a scaling relation between stellar

and halo mass which is tuned on observations. Using data from the Pipe3D MaNGA Value-

Added Catalogue (Sánchez et al., 2016b,a) which derives stellar population properties using

stellar spectral fitting, we produce Figure 4.43 to see how halo mass affects SFR. Figure 4.44

shows the expected form of this relation for different redshifts. Comparing our results again

with the lowest redshift as MaNGA galaxies are low redshift, we reproduce similar values

qualitatively.

Figure 4.43: Star formation rate (SFR) versus halo mass for galaxies modelled in this work. SFR values
come from the Pipe3D Value Added Catalogue as part of MaNGA, which derives this value using spectral
fitting.

The qualitative reproduction of literature values across a range of properties is confirmation

that our method is recovering the correct values for dark matter halo properties, but as Figure

4.29 highlighted this method recovers more precise and accurate values than without the use

of H I information.
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Figure 4.44: Reproduced from Wang et al. (2013), showing observed SFR against halo mass at different
redshifts (coloured lines, black most relevant to this work). The halo masses are derived from a scaling
relation which was tuned on observations. Black hashed region shows region lacking statistics.
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4.8 Summary

In this chapter, I have described the work I have completed which developed a novel dynamical

modelling method which combines stellar IFU data with single-dish H I radio observations

in order to better constrain the dark matter halo properties of a sample of galaxies. The

work in this chapter has acted as a pilot study on a modest sample in order to confirm that

this combination of observations, and modified modelling method allows for an improvement

on measurements. Importantly, through comparing models which contained only luminous

matter with those which had a dark matter component added in, we found that the models

lacking dark matter were not able to reproduce the kinematics in the outer regions measured

by the H I observations – while the models which did include a dark matter component were

able to match the stellar kinematics in the central regions and the H I kinematics in the outer

regions. In order for the dark matter component to be adequately constrained, the inclusion of

the H I measurement in the likelihood of the model was required. The quantities derived from

this method aligned with those in the literature from previous studies, however the sample

size was not large enough to directly compare quantitatively. To rigorously check this, we

plan to expand the sample as best as possible, and consider applying the method to mock

observations. The main restriction on this sample size was the ability to produce MGE models

for spiral galaxies which contained asymmetric structures such as bars. Nonetheless, this is

a crucial proof-of-concept study demonstrating the powerful role of cold gas kinematics in

synergy with stellar IFU data for mass component modelling in galaxies. Moving forwards, the

data output by the WEAVE-Apertif Survey (providing stellar kinematics deeper than MaNGA

alongside resolved H I observations; Falcón-Barroso et al., 2019) will open a new window of

opportunity to advance this method further, and apply to a rich sample.
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5
Signatures of Current Ongoing Quenching in

Jellyfish Galaxies

Suggested listening: Under the Sea by Jacob Collier

As explained in Section 1.6, stellar population modelling can be used to reveal the recent

Chapter image: Composite image of ESO 137-001 using imaging from the Hubble Space Telescope and X-Ray
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evolution of a galaxy, and combined with IFS data this can be done in a resolved manner in

order to study how different regions of a galaxy have changed. While this doesn’t directly

identify the process which has driven the evolution, spatial differences in evolution, situated

in the context of the galaxy, can be used to infer the mechanism.

Some of the most obvious candidates for galaxies undergoing quenching in a spatially re-

solved manner are jellyfish galaxies. Introduced in Section 1.5, these galaxies exist in dense

cluster environments and show evidence of undergoing extreme ram pressure stripping. Look-

ing at the stellar properties of these galaxies in a resolved fashion can allow us to study the

details of the processes taking place. In this Section, a sample of jellyfish galaxies in the MaNGA

sample are studied in order to establish whether the post-starburst signatures seen are due to

ram pressure stripping.

This Chapter presents work which is currently in progress towards a joint first author paper

alongside Ho-Hin Leung. Much of the work has been done in collaboration, but in this Chapter

the work done by me is emphasised, and any work completed by Hin is credited appropriately.

The dataset used is taken from Roberts et al. (2021), which was the paper that inspired us to

pursue this project.

5.1 Background

Quenching mechanisms can be split into two main groups: secular processes which result

from processes within a galaxy, and environmental processes which are driven by effects from

outside the galaxy – while their causes are distinct, their effects are often intertwined. These

are discussed in more detail in Sections 1.4 and 1.5. Considering the timescale of quench-

ing and the spatial progression of quenching, in tandem with the environment the galaxy is

situated in, can allow us to disentangle which mechanisms have been involved. If a galaxy

has quenched slowly, and with little spatial variation, this could be the result of simply gas

depletion; if a galaxy has quenched rapidly, starting from the inside to the outside regions,

this would point to nuclear activity as the culprit; and in cases where a galaxy has quenched

from outside in, or in different patterns from side to side etc, then we have to consider the en-

vironment in which the galaxy resides. Environmental effects on galaxies are complex, varied,

often non-linear, and act on many different scales. One clear trend we can see though is that

observations from Chandra, NASA/ESA/CXC
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quenching increases in higher density environments. Indeed, the fraction of galaxies which

have been quenched is significantly higher in more dense environments compared to those in

isolation (only around 20% of field galaxies are quenched, which rises to 40% in the outer

regions of clusters, to almost 100% in the central regions of massive clusters; Dressler, 1980),

highlighting the importance of environmental processes in galaxy evolution.

The most extreme instances of ram pressure stripping (RPS) result in some of the most

visually stunning types of galaxies – jellyfish galaxies. In these cases, the ram pressure has

stripped gas out of the galaxies in such density that it can be detected in long streaming tails

behind the path of the galaxy (see Chapter header image), even dense enough to allow star

formation to occur in-situ away from the main disk of the galaxy (Gullieuszik et al., 2023).

While the simple linear picture of how RPS can cause quenching appears intuitive – the gas

is removed from the galaxy, so star formation cannot continue – the details of the process are

more involved. RPS can remove gas, but also increase its density; can trigger star formation,

but this heats gas making it easier to remove; RPS can disturb gas and remove it, but also

funnel it to the central regions triggering AGN activity (we have evidence of higher rates of

AGN in galaxies affected by RPS: Ricarte et al., 2020). IFS observations combined with mul-

tiwavelength observations have shown multiphase gas present in jellyfish galaxies, with wide

ranges of densities and temperatures, with multiple different ionising sources alongside effects

of shocks and turbulence. This, as noted in Poggianti et al. (2019a), makes jellyfish galaxies

excellent "laboratories" for the physics of star formation and quenching in extreme conditions,

and galaxy evolution more widely.

Indeed, in contrast to the simple linear quenching scenario, it has been found that simu-

lated galaxies undergoing RPS in clusters can actually exhibit enhanced star formation in some

regions, specifically the leading half as the galaxy infalls (Troncoso-Iribarren et al., 2020). Us-

ing the EAGLE simulation (Schaye et al., 2015), Troncoso-Iribarren et al. (2020) identified the

leading half of the galaxy using the full 3-dimensional velocity vector, and found systemati-

cally higher star formation rates in this leading half. The extra information afforded by the

simulation revealed increased gas pressure in the leading half, which supports the idea that

the excess star formation seen in the leading half is caused by compression of the gas due to

motion through the intracluster medium.

This effect has been seen observationally, in individual cases (Gavazzi et al., 2001; Vulcani
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et al., 2018; Lee et al., 2020; Hess et al., 2022; Boselli et al., 2021), and with Roberts et al.

(2022) presenting a sample of galaxies which show this enhancement systemically. In Roberts

et al. (2022), a sample of jellyfish galaxies identified through radio observations are cross-

matched with the MaNGA survey (described in Section 2.2.1). The method used in Troncoso-

Iribarren et al. (2020) with full 3D velocity information is then repeated as best can be with

just the 2D information given by the direction of the jellyfish tail, and the results showing

enhanced star formation in the leading half are reproduced.

There have been connections showing that dense clusters are more likely to host galaxies

which are globally classified as post-starburst galaxies (Chandar et al., 2021; Werle et al., 2022;

Bellhouse et al., 2022), suggesting that ram pressure stripping can cause the star formation

burst and rapid quenching which leads to these features (see Section 5.3.1) – which makes

sense considering the extreme effects we see on the gas reservoirs of these galaxies.

A modest sample of jellyfish galaxies with readily available IFS data in MaNGA presents

an excellent opportunity for resolved studies of how ram pressure stripping acts as a driver for

galaxy evolution – both through triggering and quenching star formation – and considering

whether this can generate post-starburst signatures in these galaxies.

5.2 Data

Studying the effects of ram pressure stripping on the internal processes of galaxies in a resolved

manner requires a combination of data in order to identify jellyfish galaxies (those galaxies

undergoing the most extreme ram pressure stripping), and resolved spectroscopic data to ex-

plore the properties of the stars and gas in the galaxy. Before now, observing capabilities

suited to searching for and identifying jellyfish galaxies have been limited. Though signatures

of RPS can be observed in molecular gas (Jáchym et al., 2019; Moretti et al., 2020), ultraviolet

(George et al., 2018; Gullieuszik et al., 2023), and X-rays (Bartolini et al., 2022) , ideally H I

(Oosterloo & van Gorkom, 2005) or Hα (Gavazzi et al., 2001) are preferred tracers – as these

are diffuse components, they show stronger disturbance in cases of RPS. However, in order to

survey a large number of galaxies for RPS signatures, observations are required which cover a

large field of view and aren’t limited by redshift range (as is the case for narrow-band Hα imag-

ing). While optical morphologies from optical imaging can be used (Poggianti et al., 2016b;

Roman-Oliveira et al., 2021), giving the benefit of wide fields of view and short exposures, the
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stellar component is not as sensitive to RPS effects as H I or Hα. This means many galaxies un-

dergoing less intense RPS effects will not exhibit disturbances in optical morphology and will

be missed, and similarly there are other processes in a cluster environment which may result in

a disturbed optical morphology (Moore et al., 1996; Kelkar et al., 2017). Thankfully, the Low

Frequency Array (LOFAR; van Haarlem et al., 2013) has opened the door to efficient identi-

fication of jellyfish galaxies. Specifically the LOFAR Two-meter Sky Survey (LoTSS; Shimwell

et al., 2017, 2019) will produce resolved imagery of the entire northern sky in 120-168 MHz

with resolution of 6 arcsecs (see Section 2.4 for full description). This is ideal for finding jelly-

fish galaxies, as this bandwidth detects synchrotron emission which is produced by cosmic ray

electrons, accelerated by supernovae, which are transported out of the galaxy by ram pressure

– and so will trace the tails in jellyfish galaxies. The LoTSS survey is ongoing, however many

jellyfish galaxies have already been identified from the initial data releases. In Roberts et al.

(2021), they use the 144MHz observations to systematically survey 29 galaxy clusters for signs

of jellyfish galaxies, by looking for galaxies which exhibit one-sided extended radio tails, and

find around 100 candidates.

In order to explore the internal properties of these galaxies and how they are affected by

RPS, Roberts et al. (2022) crossmatches this sample to the MaNGA survey (see Section 2.2.1)

to present a sample of jellyfish galaxies which have resolved spectroscopic data. They find 29

galaxies which are in both surveys, and this is the sample which we use in this section of the

paper.

The sample is published in Roberts et al. (2022) and Roberts et al. (2021), alongside other

useful ancillary data relating to the galaxies and their host clusters. The sample of clusters used

was taken from the SDSS-ROSAT All Sky Survey (RASS; Voges et al., 1999) cluster catalogue

(Popesso et al., 2004) which measured X-ray luminosities of SDSS optical clusters.1 They

selected any cluster in this catalogue which had been observed by LoTSS and met the following

criteria: redshifts below 0.05, RASS X-ray data with signal-to-noise ratio above 3, and cluster

halo masses greater than 1014Msun as determined by abundance matching in Yang et al. (2007).

From these, galaxies which are visually identified to have unidirectional tails in the LoTTS data

are selected as jellyfish and assigned a "tail direction" which is considered to be 180° from the

direction of motion in the cluster. They identify 100 jellyfish galaxies in these clusters, 29 of

1Author note: the Roberts paper cites a paper about H I profiles as the cluster catalogue. I believe this is wrong.
The Popesso paper is for the ROSAT-SDSS cluster catalogue
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which are observed by MaNGA.

Bringing all these data sources together, we have a rich dataset giving a wide array of

information about our sample. This includes:

• The right ascension and declination of the galaxy, along with the right ascension and

declination of the central host – these combine to give the projected distance to the

cluster centre, and the projected direction to the cluster centre.

• The stellar mass and star formation rate of the galaxy as determined using SED fitting

in Salim et al. (2016, 2018).

• Tail directions which give inferred projected direction of motion.

• 1D velocity dispersion of the host cluster, σ, virial mass, and the virial radius, R180,

determined using the method in Yang et al. (2007) and equations 1 and 2 in Roberts

et al. (2021). These are used to give dimensionless scaled comparative values for the

projected distance of the galaxy from the cluster centre (R/R180) and the line-of-sight

velocity-offset of the galaxy with respect to the cluster (∆v/σ).

• From Roberts et al. (2022), we use the values found for SFR and sSFR enhancement in

the "leading edge" of the galaxy, derived using MaNGA observations as detailed therein.

• MaNGA emission line maps and velocity maps, see Section 2.2.1 for information on how

these quantities are derived.

• PCA1 and PCA2 maps from the definition in Wild et al. (2009), and the classifications

derived from these as per Rowlands et al. (2018).

This collection of data is used here to investigate the processes taking place in our sample.

5.3 Methods

5.3.1 Identifying Post-Starburst Spaxels

Post-starburst regions are defined by a burst of star formation in the recent past which has

since been rapidly quenched. Traditionally, the spectral signature of this type of star formation

history has been the presence of strong Balmer absorption which indicates the presence of
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intermediate-aged stars, but an absence of emission lines which would indicate no ongoing

star formation. In Chen et al. (2019b), a more refined method was used to identify PSB regions

so as not to exclude areas where small amounts of star formation are still present. This method

uses the absorption of Hδ (HδA) and the equivalent width of Hα emission (W (Hα)), as per

Section 2.8.1.

In Chen et al. (2019a), maps were produced for the whole DR17 MaNGA sample which

classify the spaxels as either PSB or not. These are internally available to collaborators and

so we visually inspected these for the sample introduced in Roberts et al. (2021), in order to

ascertain if there are spatial correlations with the inferred direction of motion in the cluster.

5.3.2 Classifying PSB Morphologies

By visually inspecting the distribution of spaxels identified as PSB in our maps compared to

the direction of motion inferred from direction of the tails, we assigned an index to the galaxy

based on whether it exhibited PSB features on its leading edge (ie. the edge facing away from

the tail). These indices are: 0 (no PSB spaxels were found), 1 (some PSB spaxels but not

aligned with the leading edge), 2 (PSB spaxels aligned with the leading edge).

5.3.3 Projected Phase Space Information

From observations alone we cannot fully measure the 6D phase space information for the

galaxies in our cluster. Ordinarily, for cluster galaxies we can access the line of sight velocity

with respect to the cluster centre, and the projected radius from the cluster centre. This al-

lows some understanding of the geometries involved, and has allowed studies looking at how

quenching, gas content, and infall time correlates with position in this projected phase space

(Oman et al., 2013; Jaffé et al., 2015; Oman & Hudson, 2016). In the case of our jellyfish

galaxies, we also gain one more constraint – the direction of travel projected in the plane of

the sky. This is inferred as the direction opposite to the direction of the tail detected in LoTSS,

and while it adds information we still caution that it is a projected quantity. For example, a

galaxy with a projected direction which is radially towards the centre of the cluster may in

fact be moving away from the centre when the line of sight component is taken into account.

However, galaxies which have tails that infer a direction which is moving radially away from

the centre cannot be moving towards it, even in 3D.

In order to take this information into account, we use the coordinates for our galaxies and
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the coordinates for the centre of their cluster in order to calculate a vector for the direction

to the centre of the cluster in projected space. We use the dot product of this with the vector

opposite that of the identified tail direction (i.e. the inferred direction of motion), in order to

quantify how the galaxy is moving radially in its cluster according to projected information. We

note again that a positive dot product, suggesting that the galaxy is moving towards the cluster

centre, could be a false positive due to projection effects; however a negative dot product,

suggesting the galaxy is moving away from the centre cannot be a false signal.

5.3.4 Control Sample

In order to ensure that the PSB regions we see when we reduce the SNR cut in the Chen

selection method are not a result of noise, I construct a control sample which is matched to

the jellyfish sample. To do this I select 10 galaxies for each jellyfish galaxy, which is matched

within 0.1 on the NSA stellar mass, matched within 0.005 in redshift, has no quality flags in

MaNGA data, has the same IFU size as the jellyfish galaxy, and is characterised as having less

than 3 galaxies in the group measured by the Galaxy Environment for MaNGA value-added

catalogue (GEMA; released with SDSS DR17, following the methods in Argudo-Fernández

et al., 2015). This creates a sample of 290 galaxies with the same distribution as the jellyfish

sample in mass, redshift, IFU size, but are not located in clusters.

Using a KS test to statistically quantify how similar the distributions are in mass and red-

shift, we find a p-value of 0.999 for the mass distributions, and a p-value of 0.951 for the

distribution in redshift. These values indicate that the samples are drawn from the same dis-

tribution with 95% confidence.

5.3.5 Kinematic Asymmetries

As RPS is known to be an effect which impacts galaxies asymmetrically as they infall, it is

valuable to quantify how this can manifest in our observations. The process is not known

to be strong enough in most instances to disrupt the morphology of the stellar component,

and so surface brightness should remain undisturbed. More sensitive than the morphology,

the kinematics of the stellar and gaseous components in a galaxy rely on equilibrium in their

orbits and so can be perturbed by the pressure of RPS. As such, we measure the asymmetry

of the velocity of the stellar and gaseous components, along with the velocity dispersion of

these components. This is motivated by signatures seen in the gas velocity dispersion maps
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of the strongest RPS candidates. To do this, the MaNGA map for each of the four kinematics

components (stellar velocity, stellar velocity dispersion, gas velocity, gas velocity dispersion)

for our sample are masked to remove spaxels with SNR < 8 in order to ensure we are not

measuring noisey spaxels in the outer regions. The maps are rotated 180 degrees, and then

subtracted from the original maps. The maps are rotated around the centre defined by the

MaNGA pointing – we note that this is not the most accurate way to do this, and may result in

large issues in this measurement. A way to mitigate this in a future study would be through the

use of kinematic modelling to locate the kinematics centre of the data. The absolute magnitude

of the difference in each of the spaxels are then added to create one number which quantifies

the asymmetry of the kinematic map. These values are used in our analysis.

5.4 Results and Discussion

5.4.1 Validity of PSB Regions at SNR>3

Comparing to the control sample we defined in Section 5.3.4, I consider the difference in

fraction of spaxels defined as PSB using the Chen method with the differing SNR cuts of 8 and

3, for both the jellyfish sample and the control sample. The normalised distributions of this

quantity for the two samples, are shown in Figure 5.1.

Figure 5.1: Normalised histograms showing the distribution of galaxies based on fraction of spaxels
classified as PSB using the Chen method with SNR limited to > 8 (left) and > 3 (right) for our jellyfish
sample (orange) and our control sample (blue).

We see that the control sample, containing galaxies matched on mass and redshift, but

which are not members of clusters, shows a trail off as we get to higher PSB fractions in

both SNR cut cases. The jellyfish galaxies also see a large number of galaxies with no signal,

however in both SNR cut cases there is a second peak seen at greater fractions. We note that
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the signal persists with the same form, which highlights that galaxies which have true PSB

regions gain a higher fraction by the extension to lower SNR regions. Meanwhile, despite some

galaxies which are classified as PSBs independent of their cluster membership (these have most

likely quenched due to non-RPS effects), the control sample does not gain a secondary peak

by the inclusion of noisier regions. Thus we conclude that this expansion is valid and we are

not at risk of creating a false PSB signal due to noise. Further, we note that the analysis relies

on the alignment of the PSB region with the implied leading edge of the galaxy, if PSB regions

were an artifact of noise in our SNR > 3 sample, then this signal would appear independent

of direction.

5.4.2 Post Starburst Regions at the Leading Edge

For our sample of jellyfish galaxies, we used the spatially resolved Hα and Hδ maps to create

maps of spaxels categorised as PSB or not, as per the method from Chen et al. (2019b) outlined

in Section 5.3.1. For this we used spaxels which had SNR > 3. This was a lower cut than

used previously, however comparison to a control sample (see Section 5.4.1) shows that PSB

signals in low SNR regions are not due to noise. In Figures 5.2 to 5.12, I show summary

plots of data for our sample of jellyfish galaxies which are classified with index 2 – i.e. they

exhibit PSB regions aligned with the leading edge. This includes a thumbnail image with the

tail direction and direction to the centre of the cluster indicated, 2D maps from MaNGA which

show emission line maps for lines relevant to our PSB selection (the Hα equivalent width, and

Hδ absorption), the Chen PSB selection maps where yellow indicates a PSB spaxel classification

(as described in Section 2.8.1), the D4000 break where higher values indicate older stellar

populations, PCA1 and PCA2 index maps which correspond roughly to the D4000 break and

Balmer absorption (these indices are described in Section 2.8.2), the PCA PSB selection maps

which classify spaxels based on their PCA1 and PCA2 values (as shown in Section 2.8.2), and

the stellar and gas velocities and velocity dispersion maps. The tail direction allows the inferred

direction of motion of the galaxy to be compared to the distribution of the PSB spaxels. For the

first 11 galaxies shown, the PSB regions align in a crescent shape along the leading edge with

respect to the direction of motion. We also note that these regions are in front (with respect

to the direction of motion) of bands of increased star formation rate, as identified in Roberts

et al. (2022) as the regions contributing to the excess star formation they find in the leading

half. These are seen through increased Hα equivalent width, and regions of decreased D4000.

122



5.4. Results and Discussion

Figure 5.2: Summary of observations for 8950-12705, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.

Figure 5.3: Summary of observations for 11014-3704, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.
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Figure 5.4: Summary of observations for 9862-9101, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.

Figure 5.5: Summary of observations for 9876-6101, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.
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Figure 5.6: Summary of observations for 9863-12701, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.

Figure 5.7: Summary of observations for 8604-9102, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.
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Figure 5.8: Summary of observations for 8625-12702, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.

Figure 5.9: Summary of observations for 8931-3703, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.
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Figure 5.10: Summary of observations for 8934-3701, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.

Figure 5.11: Summary of observations for 8935-6104 classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.
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Figure 5.12: Summary of observations for 9876-3703, classified with index 2. Panels described in text.
Chen PSB selection spaxels in yellow.
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Figures 5.13 to 5.21 show the 9 galaxies classified with index 1 (i.e. those which show PSB

regions but are not aligned with the leading edge), while those classified as index 0 (lacking

PSB regions) are presented in Appendix A.

Figure 5.13: Summary of observations for 11009-12704, classified with index 1. Panels described in
text. Chen PSB selection spaxels in yellow.
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Figure 5.14: Summary of observations for 12673-6101, classified with index 1. Panels described in
text. Chen PSB selection spaxels in yellow.

Figure 5.15: Summary of observations for 8312-12703, classified with index 1. Panels described in
text. Chen PSB selection spaxels in yellow.
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Figure 5.16: Summary of observations for 8550-3701, classified with index 1. Panels described in text.
Chen PSB selection spaxels in yellow.

Figure 5.17: Summary of observations for 8550-6103, classified with index 1. Panels described in text.
Chen PSB selection spaxels in yellow.
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Figure 5.18: Summary of observations for 8625-9102, classified with index 1. Panels described in text.
Chen PSB selection spaxels in yellow.

Figure 5.19: Summary of observations for 8932-12701, classified with index 1. Panels described in
text. Chen PSB selection spaxels in yellow.
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Figure 5.20: Summary of observations for 9869-12702, classified with index 1. Panels described in
text. Chen PSB selection spaxels in yellow.

Figure 5.21: Summary of observations for 9869-9102, classified with index 1. Panels described in text.
Chen PSB selection spaxels in yellow.
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5.4.3 Phase Space Information

In order to ascertain that the PSB signals are due to ram pressure stripping, we would expect

the position of the galaxy in projected phase space to correlate with the signatures. To do

this, we use the projected cluster information given in Roberts et al. (2021), and add the

information given by the tail direction through the dot product of the inferred direction of

motion with the direction to the centre of the cluster.

Figure 5.22 shows the distribution of our different classifications in traditional projected

phase space. We see that the galaxies which are classified with index 2 – i.e. those that show

regions of PSB spaxels aligned with their leading edge– are found almost completely within

0.5 effective radii of the cluster. Meanwhile, those which exhibit some PSB regions but which

are not aligned with the leading edge are seen across radii, along with those showing no PSB

spaxels (though these are absent in the innermost 0.3 effective radii). Ram pressure stripping

is expected to be strongest as galaxies pass through higher density intracluster medium, found

in the central regions. As such, this is an expected effect, with the projection effects taken into

account to explain the class 1 galaxies which appear to be at the closest radii to the centre. The

velocity offset with respect to the cluster is also a driving factor, with a greater velocity offset

creating greater RPS effects. This is not seen as a strong separator of the classes in our sample,

however we note this could be attributed to the loss of three dimensions of the velocity vector

due to only being able to observe the line of sight velocity offset, which is more susceptible to

muddying by projection effects.

In Figure 5.23, we show how the different populations of classification compare in dot

product values. The dot product is that between the vector of inferred direction of motion and

the vector of direction to the centre of the cluster. As such, +1 dot product indicates the galaxy

is heading directly towards the centre of the cluster (in projection), −1 indicates the galaxy

is moving directly away from the cluster centre, and 0 indicates that the galaxy is moving

tangential to the direction to cluster centre. We see that the index 2 galaxies – those which

display PSB regions which are spatially correlated with their leading edge (as determined by

the tail direction) – are those which are moving towards the centre of the cluster. This is

expected in an RPS scenario as these galaxies would be moving into denser medium, and RPS

effects increase with both velocity through the medium, and the density of the medium.

A comparison of the projected phase space information with the dot product information
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Figure 5.22: Distribution of galaxies by classification in projected phase space (PPS) – the projected
radius of the galaxy in its the cluster (normalised by the virial radius of the cluster), versus the line
of sight velocity with respect to that of the cluster centre (normalised by the velocity dispersion of the
cluster). Green, yellow, and blue points show the 2, 1, and 0 classification groups respectively. The
marginal distributions are shown as smoothed histograms on each axis.
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Figure 5.23: Box plot showing the values of dot product across the different classifications. The dot
product is the scalar product between the direction of movement of the galaxy inferred from the tail, and
the direction towards the centre of the cluster. Positive values denote the galaxy appears to be moving
towards the centre of the cluster (allowing for projection effects), while a negative value means it is
moving away.

for our classifications of PSBs is shown in Figure 5.24. This shows again that the line of

sight velocity offset is not a strong predictor of our classifications, but that the three classes

can almost be fully separated by diagonal lines in the plane of projected radius against dot

product. Class 2 galaxies inhabit the lower right corner, class 0 galaxies are confined to the

upper left corner, while class 1 galaxies exist in the region in between. This highlights that

the galaxies which we see the strongest PSB leading edge signatures in are those which are

falling in towards the cluster centre and are nearing their closest approach. This is a valuable

observation which can be compared to literature and simulation expectations of RPS processes

and potentially be used to constrain the process taking place. One final observation of note

is that there are galaxies in our sample which are moving away from the cluster centre (i.e.

have a negative dot product). Geometry of projection means these cannot be false signals (a

projected tail implying motion towards the centre can be false, but a projected tail implying

motion away from the centre cannot), and so this demonstrates backsplash galaxies which

have already undergone their first pericentre but are still exhibiting observable RPS tails. This

may challenge the findings of Oman et al. (2021) and Rohr et al. (2023), which found that

simulated galaxies should lose the majority of their gas content during the first infall. This is

discussed further in Section 5.4.6.
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Figure 5.24: Distribution of galaxies by classification in PPS versus the dot product. Left: Dot product
versus line of sight velocity with respect to that of the cluster centre (normalised by the velocity dis-
persion of the cluster). Right: Dot product versus the projected radius of the galaxy in its the cluster
(normalised by the virial radius of the cluster).

5.4.4 Star Formation and Gas Content

Roberts et al. (2021) considered the star formation excesses in the front leading half of the

galaxies compared to the other half. In many of our galaxies, we see a band of increased Hα

emission behind the leading edge PSB signal, as discussed in Section 5.4.2. These are the

regions which generate the enhancements studied in that paper. In Figure 5.25 we consider

whether the star formation (and specific star formation) enhancements seen in this paper are

related to our classification of PB morphology, and find no trend. While specific star formation

excess and star formation excess are correlated as expected, our classifications are not confined

to any part of this plane. Additionally, in Figure 5.26 we consider if the alignment with the

cluster centre (through the dot product) effects the star formation excesses, but also see no

trend. This indicates that despite the spatial correlation, the strength of these effects seems to

be decoupled, which may suggest the effect is dominated by RPS removing gas as opposed to

intense starbursts caused by pressure depleting the gas.

In order to consider this, we use data from the H I -MaNGA survey (see Section 2.3.1 for

details). Of our 29 jellyfish galaxies, 8 galaxies are detected in the H I -MaNGA survey, while

all have been observed. This means non-detections are due to lack of H I surface brightness.

Figure 5.27 shows how the galaxies which show the strongest spatially correlated PSB regions

are also those showing the least H I detections. To explore this further, we look at the gas mass
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Figure 5.25: Distribution of galaxies by classification in star formation and specific star formation
excess. The excess values were derived in Roberts et al. (2022) from Hα observations, and express the
excess (specific) star formation seen in the leading half (i.e. the half opposite the tail direction, at the
front of the direction of motion) compared to the trailing half.

Figure 5.26: Distribution of galaxies by classification in star formation excess (left) and specific star
formation excess (right) versus dot product.
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Figure 5.27: Histogram showing the fraction of galaxies with each classification which were detected
by the H I -MaNGA survey. This is specifically the fraction with a positive detection over the number in
each classification which was observed in H I -MaNGA

Figure 5.28: Violin plot highlighting the observed H I mass-stellar mass ratio for galaxies detected in
H I -MaNGA in each classification group. Point in classification 2 group indicates only one galaxy with
data here.

fraction in our sample for those with detections, and how this varies across the classifications.

This is shown in Figure 5.28, tentatively indicating that lower gas mass fractions are found in

galaxies showing the stronger PSB signal, however we do not have enough galaxies detected

in H I to determine this for certain.
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Figure 5.29: Box plots showing the distribution across classification groups for galaxies for asymmetries
in the gas velocity (left) and velocity dispersion (right) maps.

5.4.5 Gas Asymmetries

The trends with H I content suggest the effects are due to gas removal. To see if this can

be seen in action, we visually inspected the Hα velocity maps, and see some disturbances

and deviations from rotation which are not seen in the stellar velocity fields. These are most

pronounced in our classification 2 galaxies, for example, galaxies 8950-12705, 9863-12701,

and 9876-6101 (see Figures 5.2, 5.6, and 5.5). Further, on visually inspecting the Hα velocity

dispersion maps, we see strong correlations with the PSB regions to regions with heightened

gas velocity dispersion (for example 8604-9102, 9862-9101, and 11014-3704 – Figures 5.7,

5.4, and 5.3). This suggests the gas has been disrupted and removed by the RPS effects. In

order to quantify this, we determine the asymmetry of all four of the stellar and gas, velocity

and velocity dispersion fields. This method is described in Section 5.3.5.

In Figures 5.29 and 5.30, we show how the kinematic asymmetry varies across the classi-

fications for the velocity and the velocity dispersion, for both the stellar and gas components.

RPS is not expected to exert enough pressure to disrupt the stellar component, so if this effect

is due to RPS we would expect to see elevated asymmetry in the gas velocity and gas veloc-

ity dispersion, increasing for those showing the strongest RPS signal – ie those showing the

strongest PSB signal. This is indeed what we see in the data and suggests that we are seeing

PSB regions on the leading edge of our galaxies where RPS is removing and disrupting the gas

and quenching these regions in real time.
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Figure 5.30: Box plots showing the distribution across classification groups for galaxies for asymmetries
in the stellar velocity (left) and velocity dispersion (right) maps.

5.4.6 Comparison with Simulations

In Rohr et al. (2023), they find the main predictor of whether galaxies in clusters are classified

as jellyfish galaxies is the ratio of the stellar mass of the galaxy to the mass of the cluster halo

they are in. This makes sense intuitively, as a higher mass cluster halo will create a deeper

potential well which will increase the infall velocity and also produce higher gas densities,

while a lower galaxy stellar mass will mean the gas in the galaxy is less gravitationally bound

and so easier to strip away. Rohr et al. (2023) classifies jellyfish galaxies using visual inspection

of the gas particle densities from the simulation (Zinger et al., 2023), without considering

whether these would be observable in the real universe. As such, these identifications will

be sensitive to any RPS effects, regardless of strength, while our sample was visually selected

based on visible tails in the LoTSS data, and so we expect to only identify the most extreme

stripping examples. As we see in Figure 5.31, this is confirmed by comparing the distribution

of our sample in log(Mstel/Mhalo) with the distribution of galaxies in the Rohr et al. (2023)

sample that are identified as jellyfish.

As we see in Figure 5.32, despite the mass ratio being a strong predictor of identification

as a jellyfish, our classifications based on PSB morphology do not have different values. This

is indicative of our samples not showing different RPS signals in terms of tails (as we can

only identify the most extreme cases here), but suggests our PSB signatures are only present

in a select sample of galaxies, unrelated to the mass ratios. This could be due to timing, or

position in the cluster. We have already seen that the strongest PSB signals are found in the

inner regions of the clusters. Disentangling whether this is due to the timescales that RPS has

been taking place, or simply the higher densities in the central regions, involves exploring the
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Figure 5.31: Distribution of galaxies by stellar-cluster halo mass ratio, for our sample (left) versus
a simulated sample (right) from Rohr et al. (2023). On the right, the grey region indicates galaxies
in clusters at z=0 in the Illustris sample, the dark grey line indicates those visually inspected in the
sample, and the green line indicates those identified as jellyfish galaxies through visual inspection of
the gas column density.

timescales in the cluster vs the timescales of the quenching.

The Chen PSB selection method is sensitive to quenching which has taken place rapidly in

the past ∼ 1Gyr, which gives some indication of the timescales involved. Further, the PCA PSB

selection method is sensitive to a different quenching scenario which does not take into account

emission lines, and in some galaxies we see spatial trends where the Chen method identifies

spaxels which are at a different region of the leading edge than those identified by the PCA

method, while the gas velocity dispersion and D4000 break show disruption across the whole

region (eg. 8604-9102, seen in Figure 5.7). This could indicate a time evolution occuring along

the leading edge of the galaxy as the gas is stripped away, which is easiest to describe for this

galaxy. As seen in Roberts et al. (2022), moving out from the centre of the galaxy towards

the leading edge, we see a band of enhanced star formation which has been attributed to

gas being compressed – seen in simulations (Troncoso-Iribarren et al., 2020) and observations

(Roberts et al., 2021). Just outside this arc is where we find the PSB regions identified by

the Chen method which is known to identify very recent quenching. Then outside this region

is where we find the regions defined as PSB by the PCA method which probes slightly later

quenching. Looking at this trend, we propose a scenario where the galaxy has experienced

RPS during infall into the cluster, which has progressively compressed the gas at the leading

edge producing enhanced star formation, before removing the gas from this region causing

quenching, and that this progresses in a wave over time from the outer leading edge towards

the centre. To understand this fully, comparisons with timescales and SFH are required.
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Figure 5.32: Distribution of values of stellar-cluster halo mass ratio for different classification groups.

In the simulated jellyfish studied in Rohr et al. (2023), they find that all of the cold gas in

a jellyfish galaxy will be lost globally between initial infall and the galaxy beginning its second

infall, and the galaxy quenches globally (falls 1dex below the main star forming sequence)

shortly after pericentre. They also show that RPS can take a long time to fully remove the cold

gas (ranging from 1 - 7 Gyrs), but that the majority of mass is lost during a short peak of RPS

during the first infall which begins ≲ 1Gyr after infall and lasts ≲ 2 Gyr. While this considers

complete gas loss and global quenching (the authors also note that galaxies continue forming

stars until 99% of the cold gas content is lost), it suggests timescales similar to those probed by

the PSB selections. Similarly, Oman et al. (2021) considers quenching timescales from infall

into a cluster for simulated galaxies. In this case, they look at the H I gas content and find that

H I is typically removed from a galaxy by the first pericentre, which is followed a few Gyr later

by the disappearance of the Balmer lines, and then less than 1Gyr after this the galaxy begins

to redden due to quenching. As the PSB selections rely on the Balmer lines, this may be the

process we are seeing. Our observations of jellyfish galaxies which are implied to be moving

out of the cluster by their tail directions may contradict these simulated findings – though we

note these refer to cold gas content, while our LoTSS detections are from cosmic ray electrons.

Following up these galaxies using resolved cold gas observations (for example with Apertif or

SKA) would be illuminating in order to compare to these simulations.

In Oman et al. (2013), the authors use simulated orbits in clusters in order to correlate

the infall time of a galaxy to the projected phase space coordinates. Their results are shown
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Figure 5.33: Reproduced from Oman et al. (2013). Distribution of time since infall (colours) within
68% confidence level within the projected phase space at z=0, for simulated galaxies. This demon-
strates the potential for linking projected phase space values to infall times.

in Figure 5.33. As seen in Figure 5.22, our sample is found entirely at distances less than 1

virial radius, and with line of sight velocities spanning all the way from zero to 3 times the

cluster velocity dispersion, with a high concentration of our classification 2 PSB galaxies found

below 1. In this region of Figure 5.33, we expect time since initial infall to be higher than in

other regions. Correlating the effects seen in simulations for global quenching with the effects

seen in spatially resolved data is not straightforward, however this could suggest that we are

seeing galaxies at the peak of the RPS mass loss, and just before a global quenching signature

is detected in the simulated galaxies – i.e. we are seeing current quenching ongoing in these

galaxies.

Pulling all of these findings together, we propose we are seeing current ongoing quenching

on the leading edges of galaxies infalling into clusters and experiencing RPS. Our gas kinematic

data indicates this is due to heating and disruption of the gas in these frontal regions, and

removal of cold gas from the systems. We propose that this signal will propagate progressively

along the axis from the centre towards the leading edge, beginning with a wave of enhanced

star formation due to gas being compressed, before being quenched. In order to properly

explore this, our future work will involve producing resolved stellar formation history maps in

arced bins at increasing radii towards the leading edge. If our hypothesis is correct, we would
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see a progressively longer ago quenching time as we moved inside-out. These quenching

timescales can also be compared to projected phase space predictions of the time since infall,

to see if these values show a tight correlation. While MaNGA has offered excellent data for

many science cases, the spatial resolution of the bins combined with the PSF means that it is

not possible to achieve the SNR required to perform this analysis. The MUSE instrument has

produced high resolution IFU data for jellyfish galaxies as part of the GASP survey, and some

resolved SFH maps have been produced for jellyfish galaxies, however these have not focused

on the PSB features of these galaxies at the leading edge. Offering higher SNR and deeper

observations, we hope that the WEAVE instrument will allow this analysis to be completed for

a large sample of jellyfish galaxies. Further aiding in this area of research, the continuation

of LoTSS will hopefully identify many more jellyfish candidates which can be targeted for IFU

followup with WEAVE, while further in the future the SKA and Apertif surveys will enable

us to examine vast numbers of galaxies to search for jellyfish signatures in resolved cold gas.

This will also illuminate the disruption to the gas component more directly, and allow more

detailed study of the cold gas content across samples.

5.5 Summary

In this Chapter I have described the study of a sample of jellyfish galaxies which have been

identified through the LoTSS survey and observed by the MaNGA survey. In the widest scope,

this research shows again the importance of synergy between different astronomical surveys

and the value of multiwavelength programmes to study the processes of galactic evolution.

The use of low frequency data allowed the identification of the RPS signatures in these galax-

ies and the inference of their direction of motion; the optical IFU observations from MaNGA

allowed the PSB signatures on the leading edges to be found, the stellar populations to be

examined, and the kinematics of both the stars and gas to be tied to the PSB regions; and the

H I -MaNGA 21cm data allowed the cold gas content to be explored. This also pulled infor-

mation from X-Ray catalogues and cluster observations which underpin quantities which were

published in the Roberts et al. (2022) paper. Using these data, I have shown that the PSB

regions are preferentially on the leading edge of jellyfish galaxies which are near the centre

of their cluster and moving towards it, and are found beside regions of enhanced star forma-

tion (attributed to gas compression by ram pressure, as found in Roberts et al., 2021). There

are indications that cold gas content is lower in those galaxies which show the aligned PSB
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regions, though this is inconclusive due to the small sample size. Further, we propose a time

evolution scenario spatially across these galaxies, quenching from the leading edge in (with an

arc of enhanced star formation preceding this where the gas is compressed) which cannot be

ruled out or confirmed by the data we currently have. We have outlined our hopes for future

work towards testing this theory using upcoming facilities which will offer greater samples of

jellyfish galaxies with deeper complimentary IFU observations to allow resolved SFHs to be

produced in order to compare with infall timescales.
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Summary and Future Work

Suggested listening: Thank You for the Music by ABBA

This thesis has charted my work, which has sought to use observations and modelling to

Chapter image: Arp-Madore 417-391 captured by Hubble, ESA/Hubble/NASA/NOIRLab/NSF/AURA/J Dalcanton
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better understand galaxies, their structure, and their evolution. Galaxies are tumultuous and

violent environments, despite appearing placid from where we observe them. They are, in an

instant, moving at great speeds internally, while also undergoing massive global changes in

their internal processes and appearance over their lifetimes. This overarching theme is woven

through the Chapters of this work, which has considered this from multiple angles, and aimed

to advance our knowledge of galaxies using the state-of-the-art observations available to us at

this time. The work has also advanced the modelling techniques available to us, and acted as

a proof of concept for the incredible work which will become feasible with the next generation

of observatories. Here I summarise the work that I have done, and discuss how this work can

be built upon in the future with the data soon to be available from new facilities.

6.1 JAM Modelling for Red Geysers

In Chapter 3, I introduced dynamical modelling and showcased its power in measuring physical

properties of galaxies which are not easily obtained through using imaging alone. This was

done through using Jeans models to advance our science case for the direct observation of large

scale nuclear outflows in the red geyser population of galaxies. Important to galaxy evolution,

there have been limited observations which have shown evidence for the outflows which are

hypothesised to be required to keep galaxies quenched. In the red geyser population, the gas

kinematics and ionisation we observe are proposed to be signatures of large scale outflows. In

order to discern between this model and the alternative one of a rotating gas disk, Roy et al.

(2021) used detailed spectroscopic observations to measure the changing shape of emission

lines along the axis of these galaxies. These were then compared to the expected shapes from

models of outflows or models of disks.

To create the predicted models, we required a measurement of the inclination of the galaxy

with respect to the observer. As red geysers are predominantly elliptical galaxies, the inclina-

tion is difficult to constrain through imaging alone, and so I created dynamical models to mea-

sure this accurately using kinematic observations. These dynamical models used only stellar

kinematics from the inner regions and lacked a dark matter component, however are able to

constrain the inclination for these purposes.

Comparing the models to the observations, the results supported the hypothesis that the

observations are the result of an outflow from the nuclear regions, helping to add to evidence
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for this phenomenon.

6.2 JAM Modelling for Dark Matter Content

In Chapter 4, I expanded upon the modelling methods used in the previous Chapter by turning

the focus to the dark matter component of galaxies. I developed a novel modelling method

which extended the Jeans Modelling used in the previous Chapter, through the addition of

cold H I gas observations.

First, I once more created models for the galaxies without including dark matter. While

these are able to reproduce the observations in the inner regions, I wanted to assess how well

they reproduced kinematics in the outer regions where dark matter is most dominant. To do

this, I took advantage of data from the H I -MaNGA survey, which provided single dish H I ob-

servations of galaxies which already had IFS observations in MaNGA. Single dish observations

lack spatial resolution, however contain kinematic information about the rotational velocity

of the cold gas in the outer regions. Using this, I was able to compare the models without dark

matter to the observations, and in doing so confirmed that the models are unable to reproduce

observations with the luminous component alone. This result emphasises that galaxies must

contain another matter component which we cannot detect directly.

Following from this, I added dark matter haloes into the models and constrained the con-

tent first using just the IFS data from the stellar kinematics, and then the additional constraint

of the H I kinematics. I found that the dark matter halo cannot be well constrained by the

stellar data alone, but by adding the H I kinematics to the likelihood of the model the halo

parameters are constrained and allow measurement of the halo mass and concentration.

One key benefit of using single dish H I observations is that these are available for a sig-

nificant sample of galaxies, and so this method is applicable to a large sample. As a proof

of concept, I applied this method to a sample of galaxies and constrained the dark matter

content. I then compared these measurements to values in the literature, and found that we

qualitatively reproduce the values, but require a larger sample in order to compare fully.

In summary, this Chapter confirmed that dark matter is required in dynamical models,

and highlighted the necessity of combining single dish cold gas observations with IFS data in

order to properly constrain the dark matter content for a statistically significant sample. This

proof-of-concept is an important precursor to highlight future work that will be possible as our
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sample of galaxies which have both IFS and cold gas observations expands.

6.3 Exploring Quenching in Jellyfish Galaxies

In Chapter 5, I shifted my work to look at the more long term evolution of galaxies and their

stellar component, and explore what we can learn about this from jellyfish galaxies – galaxies

undergoing extreme environmental effects from infalling through dense medium in a cluster.

This project again highlighted the value in combining many types of observations, as iden-

tifying jellyfish galaxies requires detection of diffuse material in their tails (whether directly

through cold gas observations, or through cosmic ray electron synchrotron emission in this

case), while understanding their stellar populations requires optical observations.

This work expanded upon the study of a sample of jellyfish galaxies identified by their

tails in the LOFAR survey, which also had IFS observations in the MaNGA survey. The synergy

between these observations alongside cluster information, and even H I -MaNGA 21cm obser-

vations allowed a holistic look at the effects of their extreme environments on their evolution.

Resolved spectral analysis of these galaxies allowed regions on the leading edge to be

discovered which exhibit the signatures of post-starburst (PSB) regions, implying that they

have recently quenched following a burst of star formation. Using the combination of IFS data,

phase space information, and 21cm gas observations, I presented evidence which proposes

this signature is due to ram pressure stripping first compressing the gas on the leading edge

(causing a starburst), before removing the gas and causing fast quenching.

The results supported this concept, however a final analysis which would confirm this

through resolved stellar formation histories is not possible with the MaNGA data, and I ex-

plained our plans to enact this analysis in the future.

6.4 Future Work

Here I would like to discuss my views for how the field will advance in the near future, building

upon the work done in this thesis. As noted at the end of each Chapter, there is scope for

future work related to each of these projects. The first, concerning outflows in red geysers,

would involve further dynamical modelling in order to measure the escape velocities of these

galaxies and determine if the gas we see is gravitationally bound. More widely, the red geyser

population has continued to be studied through many wavelengths and again highlights the

150



6.4. Future Work

essential need to observe and analyse astrophysical phenomena across the full spectrum of

observations available. As these objects deal with nuclear activity, the combination of radio

observations with stellar observations is critical.

This theme is carried on in the other projects in this work. Chapter 4 highlighted the ben-

efits of including cold gas observations in dynamical models in order to measure dark matter

properties. With the H I -MaNGA survey in the north providing a large sample of galaxies with

both IFS and single dish hydrogen kinematics, along with the SAMI-H I survey providing the

same synergy in the south, this is soon to provide an extremely rich dataset for this method to

be applied widely, and developed further. Further ahead, WEAVE-Apertif will provide this syn-

ergy with higher signal to noise IFS observations, and the benefit of resolved H I observations.

This will allow more advanced modelling methods which take advantage of fully resolved H I

kinematics to be applied to a significant sample and further this field. This also sets the scene

for the rich dataset which will be provided when the Square Kilometer Array (SKA) comes

online, vastly expanding the number of galaxies observed with resolved H I , offering many

more targets for IFU surveys to observe to achieve this synergy.

Similar to the field of dynamical modelling and dark matter mass studies, the study of stel-

lar populations within jellyfish galaxies also requires the same synergy of IFS data and some

observation which traces the tails. Here resolved 21cm observations also offer a massive ben-

efit. Being able to identify more galaxies through the observation of tails of neutral hydrogen

in wide field 21cm imaging will offer a massive increase in jellyfish galaxies identified when

these observatories come online. This will also be added to by the full completion of the LoTSS

survey, adding more jellyfish identified by cosmic ray electron synchrotron emission. Through

the increased resolution and sensitivity offered by Apertif and SKA, we will be able to identify

jellyfish undergoing more subtle environmental effects and begin to expand the RPS regime

to include less extreme cases. This will then again benefit from the followup of IFS surveys

to study and understand the effects on the stellar populations in the galaxies in a resolved

manner. WEAVE-Apertif will be able to be exploited towards this scientific end. For even more

detailed IFS observations, the candidates already identified and studied in this paper would

benefit from deeper IFS data in order to perform resolved stellar formation history fitting on

the spectra. This could be offered by WEAVE or by a potential followup using MUSE for any

galaxies which are far enough south. By mosaicing MUSE pointings across the whole galaxy,

similar to that being done for edge on galaxies in the GECKOS survey (van de Sande et al.,
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2023), the SNR and spatial resolution required to study the SFHs of the stars in the leading

edge would be available.

As discussed above, the future for astronomy must exploit the synergy between surveys in

order to maximise the scientific ground we can cover. We are on the edge of the next gener-

ation of telescopes, and survey design should work to create this synergy wherever possible.

Galaxies are complex systems made up of many different components. They contain some

of the densest environments in the universe, emitting in high frequencies; while also relying

upon vast reservoirs of diffuse cold gas which are observable in low frequencies. This vast

range of emission, and the interconnectedness of the processes involved at all scales, neces-

sitates the multiwavelength nature of the observation and study of these objects. Alongside

multiwavelength observation, we must also develop and expand our modelling techniques in

order to take advantage of the information available in all kinds of data – for dynamical mod-

elling, and modelling of any sort. Galactic astronomy remains a ripe field, and will continue

to be for a long time into the future. Our steps forward in these areas will address outstanding

questions in our understanding for the Universe, for example the nature of dark matter and

the cusp-core problem.

Finally, on a personal note, a lot of astronomical work discusses galaxies as distant and

abstract objects, and often neglects the awe found in truly acknowledging that we are a part

of our own galaxy, and a product of its own evolution. I strive to maintain this perspective in

all the work I do, and hope the field continues this more widely.
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A
Index Zero Jellyfish Galaxies

Figure A.1: Summary of observations for 11004-12701, classified with index 0. Panels described in
text.
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Figure A.2: Summary of observations for 11006-3702, classified with index 0. Panels described in text.

Figure A.3: Summary of observations for 11942-6103, classified with index 0. Panels described in text.
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Figure A.4: Summary of observations for 8442-1901, classified with index 0. Panels described in text.

Figure A.5: Summary of observations for 8603-9102, classified with index 0. Panels described in text.
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Figure A.6: Summary of observations for 8622-6103, classified with index 0. Panels described in text.

Figure A.7: Summary of observations for 8932-3701, classified with index 0. Panels described in text.
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Figure A.8: Summary of observations for 8950-1901, classified with index 0. Panels described in text.

Figure A.9: Summary of observations for 9876-3702, classified with index 0. Panels described in text.
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