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Abstract: We investigate the energy splitting, quality factor and polar-
ization of the fundamental modes of coupled L3 photonic crystal cavities.
Four different geometries are evaluated theoretically, before experimentally
investigating coupling in a direction at 30◦ to the line of the cavities. In
this geometry, a smooth variation of the energy splitting with the cavity
separation is predicted and observed, together with significant differences
between the polarizations of the bonding and anti-bonding states. The con-
trolled splitting of the coupled states is potentially useful for applications
that require simultaneous resonant enhancement of two transitions.
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OCIS codes: (230.4555) Coupled resonators; (230.5298) Photonic crystals; (230.5590)
Quantum-well, -wire and -dot devices.
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1. Introduction

The‘L3’ defect was the first type of photonic crystal (PhC) nanocavity in which quality (Q) fac-
tors in excess of 104 were obtained experimentally [1]. This nanocavity consists of a PhC mem-
brane with a line of three holes missed out of a hexagonal lattice. HighQ factors are obtained
by displacing the end holes slightly outwards, which reduces the radiation losses compared to
cavities with undisplaced holes.

In this article, we investigate coupled L3 cavities, which are a class of ‘photonic molecules’
[2]. An interesting feature of photonic molecules based on coupled PhC cavities [3]–[7] com-
pared to coupled microdisks [8, 9], microspheres [10] or micropillars [11, 12] is that they offer
considerable design flexibility as regards their geometry. For example, an L3 photonic molecule
can have a number of different orientations, including (see Fig. 1): end-to-end [6], side-to-side,
30◦ diagonal, and 60◦ diagonal. As we shall show here, this permits controlled tuning of the en-
ergy splitting, which could potentially be used for simultaneous resonant enhancement of two
transitions [11, 12]. Moreover, the coupling can also be used to enhance theQ and rotate the po-
larization, thus offering additional possibilities for detailed mode design. In the long term, this
mode control could be important for generating quantum entanglement [13] or implementing
quantum-optical Josephson interferometers [14].

The paper is organized as follows. We begin by presenting numerical results for four different
geometries. These simulations indicate that the 30◦ diagonal geometry offers the smoothest
control of the mode splitting, and so in Section 3 we present an experimental study of coupled
cavities with this orientation. The conclusions are presented in Section 4.

2. Theoretical study

Figure 1 shows the calculated energies and quality factors of the split fundamental modes of
parallel L3 cavities coupled along directions at 0◦, 30◦, 60◦ and 90◦ to the line of the defects.
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The results were obtained by a guided mode expansion (GME) method derived from refs [15]–
[17] for GaAs structures with lattice constanta= 270nm, depthd = 130nm, fill factorf = 0.29
and end-hole displacements = 0.15a. Figure 2 shows the calculatedEx andEy field profiles
for the 30◦ geometry. (Thex andy directions are defined in the inset to Fig. 3.) Since some
geometries preclude labelling by strict symmetry, and theEy field is the dominant component
for the fundamental mode of isolated cavities, we term coupled modes withEy fields of the
same sign at each cavity center as bonding (B), and those withEy fields of opposing signs as
anti-bonding (AB). (See Figs 2c and f, respectively.)
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Fig. 1. Theoretical plots of the energies and quality factors of the split fundamental modes
of parallel L3 cavities coupled along lines defined relative to those of the cavities. Green
lines represent bonding (B) states, red lines represent anti-bonding (AB) states.

It is apparent from Fig. 1 that the mode splitting depends strongly on the coupling geometry.
For cavities coupled at 30◦, the AB mode consistently has the higher energy, while the opposite
is true for the 90◦ (side-to-side) geometry. However, the energy ordering switches several times
for the 0◦ (end-to-end) and 60◦ geometries, due to oscillations in the coupling matrix element.
Larger energy splittings for minimal separations are achieved from cavities coupled at greater
angles, since these geometries allow greater proportions of the cavities to be in close proximity.
Thus the largest splitting is calculated for the 90◦ geometry. However, the splitting drops off
very rapidly with separation, in contrast to the 30◦ geometry, which provides the smoothest
variation in the inter-cavity coupling due to the field extension along the 30◦ direction. For this
reason, the experimental study in Section 3 focuses on the 30◦ geometry.

The highQ factor of the fundamental mode of isolated L3 cavities is caused by the sup-
pression of the radiation losses. TheEx field component has odd parity about both thex andy
axes, which automatically causes field cancellation in the forward direction. This is not true for
the even-parityEy component, and the highQ is caused by minimizing the integrated in-plane
Ey field by fine tuning of the end hole positions [18]. The equivalent optimization for coupled
cavities is complicated by the different relative signs for the B and AB mode fields within the
two cavities. The fields at the cavity centers have opposite polarities in the AB mode, which
makes cancellation of radiation in the forward direction possible. This is not the case for the B
mode, and so we would, in general, expect the AB mode to have the higherQ.

The theoreticalQ factors presented in Fig. 1 confirm that the AB mode does usually have
the higherQ, although there are notable exceptions, especially in the 0◦ geometry. This par-
ticular geometry is further complicated by the fact that, at minimal separation, the single hole
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Fig. 2. Theoretical in-plane electric fields at the center of the slab for the bonding (a-c) and
anti-bonding(d-f) states. (a,d)| E |2; (b,e)Ex; (c,f) Ey. Color scales run from blue (low) to
red (high). In (a) and (d), blue and red represent zero and high intensity respectively, while
in (b), (c), (e) and (f), blue is negative and red positive.

separating the two cavities cannot be displaced in two directions at the same time. The calcula-
tions were thus performed with the hole undisplaced, and this results in a very large difference
between the B and AB modes. It is particularly noteworthy that theQ of the B mode is signifi-
cantly higher than that of the isolated cavities (≈40,000) at a cavity separation of 6a. The use
of coupled cavities can thus lead to an enhancement ofQ, although at the expense of a larger
modal volumeV, such thatQ/V is not enhanced [19].

In the 30◦ geometry, the perturbation of the cavities’ fields due to the coupling results in low
Q factors for minimal separation, with the AB mode having the largerQ at small separations.
This contrasts with the 60◦ geometry, where the AB mode has the lowerQ at the minimal
separation on account of anomalously strong coupling to lossy states at the edge of the light
cone. In the 90◦ geometry, the AB mode consistently has the higherQ factor, as expected.

3. Experimental study

The theoretical studies in Section 2 indicate that the 30◦ geometry offers the smoothest control
of the coupling. L3 photonic molecules with this geometry were therefore fabricated by electron
beam lithography in a GaAs membrane containing a single layer of InAs quantum dots with
a density of∼ 5× 1010 cm−2. ZEP520A resist was exposed with a dose of 36µCcm−2 at
30 kV, and the pattern was transferred into the GaAs by Cl2-based chemically assisted ion beam
etching (CAIBE). Air-bridges were then formed by selective etching with buffered hydrofluoric
acid of a 1µm-thick sacrificial Al0.6Ga0.4As layer. Photonic molecules were prepared with one,
two, three, or four holes between the cavities, corresponding to separations from 2

√
3ato5

√
3a,

with the samed, a, f ands parameters as in Section 2. A scanning electron microscope image
of a typical sample is included in Fig 3. Photoluminescence (PL) measurements were made by
using the dots as an internal light source under 633 nm excitation from a HeNe laser. The light
was collected in the direction normal to the sample surface through a microscope objective
with a numerical aperture of 0.42. The samples were mounted in a helium flow cryostat, at a
temperature of∼ 10 K.

Figure 3 compares a spectrum from an isolated cavity to that of dual cavities with the min-
imum spacing of 2

√
3a. The modes are labelled according to the in-plane parities of theirEx

fieldsat the center of the membrane, following the notation defined in ref. [18]. We place the
parity along thex axis above the parity along they axis, and add a numerical index denoting
their ordering in terms of energy. In the coupled cavities, clear splittings are observed for sev-
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Fig. 3. Comparison of an experimental PL spectrum from (a) an isolated cavity, and (b) a
photonicmolecule with a pair of cavities separated by 2

√
3a. The inset shows the experi-

mentalgeometry with 30◦ diagonal coupling.

eral modes. The largest splitting of 26 meV was observed for the fundamental,
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modes were respectively 3.3 meV and 2.2 meV [20]. The
weaker coupling of these higher-order modes may be understood qualitatively in terms of their
field patterns. The field of the fundamental mode of an individual L3 cavity spreads out along
the 30◦ direction, facilitating strong inter-cavity coupling, but the
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modes are
much more tightly localized in that direction.
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Fig. 4. Energies (a) and quality factors (b) of the split fundamental modes of coupled L3
cavities in the 30◦ geometry. The theoretical results for the modes energies from Section 2
are included for comparison in (a).

The splitting of the fundamental mode is explored in more detail in Fig. 4(a), with the error
bars representing the standard deviation for ten pairs of cavities. The experimental mode ener-
gies demonstrate excellent agreement with the theoretical results. The experimentalQ factors
shown in Fig. 4(b) are lower than the theoretical ones given in Fig. 1 on account of losses due
to imperfect fabrication and/or background absorption. Nevertheless, the predicted reduction in
Q for the minimally-spaced cavities is observed in the data. This reduction is a consequence of
the perturbation to the optimized fields of the individual L3 cavities caused by the coupling.
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The two modes also differ in their polarization. Figure 5 shows the average experimental
polarizationangles (solid circles) of the fundamental modes in the 30◦ geometry as a function
of cavity separation. The results were obtained by measuring the intensity as a function of linear
polarizer angle in detection. The inset shows a polar plot of the mode intensities for the 2

√
3a

separation,where 0◦ corresponds to thex axis (i.e. parallel to the L3 cavity long-axis) and 90◦

to they axis (i.e. perpendicular to the L3 cavity axis). The main figure shows the polarization
angle of each mode, determined as the axis of maximum intensity from the polar plots, as in
the inset. The fundamental modes of isolated L3 cavities are polarized along they axis due
to the parities of their in-plane electric field components [18]. It is therefore unsurprising that
the modes of weakly-coupled pairs of cavities exhibit polarizations that lie very close to they
axis. However, as we reduce the cavity separation, the field distributions become more strongly
perturbed, and the B mode gradually rotates. For the cavities with the smallest separations, the
polarization of the B mode is approximately orthogonal to the coupling axis.
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The open circles in Fig. 5 show finite difference time domain (FDTD) simulations of the
polarization 1µm above the cavity at a point in the center [21]. The experimental trends are
reproduced, although the quantitative agreement is not perfect. The discrepancies may indicate
that the polarization is very sensitive to perturbations in the barrier associated with fabrication
errors. Overall, the results in Fig. 5 show that coupled cavities may be used to engineer the
mode polarization, which is an important consideration when coupling QDs to cavities [22].

4. Conclusions

We have performed numerical simulations of coupled L3 PhC cavities in four different geome-
tries, and have found that the 30◦ geometry shows the smoothest variation in the energy splitting
of the fundamental mode with respect to cavity separation. Experimental results for this geom-
etry are in excellent agreement with the simulations. Significant differences were observed for
the polarization of the bonding and anti-bonding states, again in agreement with theory. Our re-
sults should facilitate informed decisions over the suitability of various geometries for different
applications, for example, for double photonic resonances in quantum dots.

Acknowledgments

This research was supported by the EPSRC through the QIPIRC and grants GR/S76076/01 and
EP/G001642/1.

#140134 - $15.00 USD Received 23 Dec 2010; revised 25 Feb 2011; accepted 25 Feb 2011; published 11 Mar 2011
(C) 2011 OSA 14 March 2011 / Vol. 19, No. 6 / OPTICS EXPRESS   5675




